
 

 
 

4 Lattice considerations 
D. Einfeld 

4.1 Introduction 

One of the first proposals for the lattice design of a diffraction-limited light source was produced in the 
early 1990s [4.1−4.5]. At that time the new 3rd generation light sources ALS, ESRF, and ELETTRA 
were commissioned in record time. All three machines reached their target specifications without any 
significant beam-dynamic problems and have operated reliably ever since. The successful 
commissioning results built confidence in the ability to operate storage rings with horizontal emittances 
an order of magnitude lower, in the 0.5 nmrad range. With a coupling of 1%, the vertical emittance 
would be of the order of 5 pmrad. The original calculations having been performed over 20 years ago, 
the new MAX IV [4.6] facility will be the first SRL to implement a sub-nmrad variant of this design, 
and other proposed machines are following the multi-bend achromat (MBA) concept. 

One of the most important factors in synchrotron radiation research is photon beam brilliance, 
which in storage rings is determined by the electron beam emittance and the coupling between the 
horizontal and vertical planes. Even in the limit of zero beam emittance, however, the phase space of 
the radiation emission from an undulator is itself finite due to diffraction effects at the source. For 
single-mode photon emission, the corresponding diffraction-limited ‘emittance’ of the photon beam is 
given by 

  (4.1) 

where λ is the X-ray wavelength and  is the photon energy in keV [4.7, 4.8]. For photon energies of 
1, 5, and 10 keV, the corresponding beam emittance should be smaller than 100, 20, and 10 pmrad, 
respectively. Equation (4.1) has been much debated, and there is still no consensus that the factor of 4π 
in the denominator is numerically correct [4.8]. Nevertheless, a light source is referred to as ‘diffraction-
limited’ when the electron beam emittance is less than that of the radiated photon beam at the desired 
X-ray wavelength.  

By way of review, recall that the horizontal emittance of an electron storage ring beam is 
determined by a balance between two competing processes: 1) quantum excitation of betatron 
oscillations from photon emission according to Eq. (3.3) and 2) longitudinal re-acceleration within the 
radio-frequency (RF) cavities to bring the beam to the nominal energy  again. The basic formula for 
calculating storage ring emittance, assuming isomagnetic bend magnets and no insertion devices, is 
summarized [4.9] as 

   (4.2) 

where  is a constant,  is the relativistic Lorentz factor,  is the Robinson 

partition number evaluated for the horizontal plane, ρ is the dipole magnet bending radius, and  
is the average of H evaluated in the bending magnets, 

   (4.3) 

The definitions of and are  

   (4.4) 
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In Eqs. (4.3) and (4.4), α, β, and γ are the standard position-dependent Twiss parameters in the 
horizontal plane, and  and  are the horizontal dispersion function and its first derivative, 
respectively. As a general rule, for low emittance one has to minimize the integral quantity  to 
maintain sufficient straight-section free space for insertion devices and operate at sufficiently high beam 
energy to meet the spectral requirements of the user community. 

4.2 Low-emittance lattice design 

Referring again to Eq. (4.2), the horizontal beam emittance is seen to scale with the square of the beam 
energy, scale linearly with , and be inversely proportional to the partition number . For 

bending magnets with a pure dipole field, . Since the H-function is determined by the Twiss 
parameters and the dispersion in bending magnets, low emittance can be achieved if the beam sigma 
matrix and  have specifically controlled values within the bending magnets. For example the 
horizontal emittance can be analytically evaluated for two well-known cases: the first bend magnet of 
a flat-field double-bend achromat (DBA) lattice [4.10]; and the centre bend magnet of a flat-field triple-
bend achromat (TBA) structure [4.11] (see Fig. 4.1). 

 
Fig. 4.1: The DBA lattice and TME structure to attain a minimum emittance 

The theoretical minimum emittance (TME) of a storage ring beam can be attained only when 
both the horizontal beta function and the horizontal dispersion reach a minimum at the centre of the 
bending magnets. These conditions are met when  and  [4.12, 4.13], 
yielding 

  (4.5) 
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According to Eq. (4.5), the TME is proportional to the third power of the dipole magnet deflection 
angle ϕ and the square of the electron energy. In practice, most conventional light sources operate with 
a horizontal emittance of two to five times the TME value. 

The optimum emittance of a DBA lattice is a factor of 3 above TME (see Fig. 4.1). The horizontal 
partition number  is given by 
 !" = 	1 − ',					' = 	 )

*+,- ∫ /[1 − 223
*]56	, (4.6) 

where k(s) is the normalized quadrupole gradient in the bending magnets. For bending magnets with a 
pure dipole field, . Vertical focusing in the bending magnets increases  to a maximum of 2, 
yielding a reduction in emittance of up to a factor of 2; however, the energy spread goes up and could 
have negative effects.  

The introduction of damping wigglers serves to increase the radiated energy loss per turn, U0, by 
an amount UWi [4.12, 4.13, 4.14], and to first approximation this decreases the emittance as follows:  

  (4.7) 

   (4.8) 

  (4.9) 

In Eqs. (4.7)–(4.9), U0 is the energy loss per turn in the bending magnets and UWi is that in the insertion 
devices. 

To achieve low emittance in the storage ring, the following points should be considered. 

(i) The number of magnets has to be large, which means using multi-bend achromat (MBA) cells 
with five or more bending magnets. 

(ii) The outer bending magnets must be shorter by roughly a factor of 2.  

(iii) The bending magnets should be of combined-function construction with vertical focusing to 
increase and maximize . Combined-function bending magnets also have the advantage of 
yielding a compact machine design, and they can often increase separation of the beta 
functions at sextupole locations. 

(iv) Damping wigglers can be installed to increase radiative energy loss per turn and therefore 
decrease emittance. 

(v) Longitudinal-gradient bending magnets have the potential to further decrease emittance [4.14]. 

4.3 The synchrotron radiation brilliance 

The brilliance is calculated according to  

   (4.10) 

where 7̇ is the photon flux in the central cone, which depends only on the number of periods, the beam 
current, and a function independent of the machine parameters. Hence, for a given insertion device, the 
flux for each harmonic is the same, and the energy at which each harmonic is located depends on the 
energy of the machine, as shown in Eqs. (4.11) and (4.12); K is the so-called deflection parameter: 
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   (4.11) 

   (4.12) 

Therefore, the differences between the brilliances of different lattices will come from the factor 

  (4.13) 

The denominator in (4.13) corresponds to the multiplication of convoluted sizes of electron and photon 
beams, i.e., 

 
   (4.14) 

The beam sizes and divergences  and  depend on machine parameters, the 

emittance ε, and the beta functions and . If the dispersion function at the position of the undulator 

is zero,  and  are given by 

   (4.15) 

The photon size and dispersion  and  for each harmonic depend on the length of the undulator L 
and the characteristic undulator wavelength λ [4.8]: 

  (4.16) 

Here K is the deflection parameter, L is the length of the undulator, lu is the undulator period, and n is 
the harmonic number. According to the investigations by Kim [4.15], the dimension of the photon 
source size differs by a factor of ½. The machine energy is given by the factor 1/γ2, so higher machine 
energy means lower wavelength (or higher photon energy). Therefore photon size decreases with 
machine energy, and hence brilliance, which depends on the photon size, increases with machine 
energy. 

The cross-section and divergence of the undulator radiation are presented in Figs. 4.2 and 4.3. 
The radiation cross-section σ(r) goes from 2 μm at 4 keV to 0.6 μm at 36 keV. The horizontal cross-
section σ(x) for the different lattices goes from 40 to 70 μm; hence the radiation cross-section has only 
a marginal influence on the brilliance. What is important is the horizontal beam cross-section σx, given 
by the emittance and the beta function. According to the data given for the vertical direction, the 
radiation cross-section has a non-negligible effect on the brilliance. 

It is completely different for the influence of the radiation divergence  on the brilliance. In the 
horizontal direction the two contributions are approximately equal, but in the vertical direction the 
divergence  of the undulator radiation determines the brilliance. Hence the beta function in the 
vertical direction, βy, does not have a big influence on the brilliance of the undulator radiation. 
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Fig. 4.2: Dependence of the radiation cross-section on the undulator photon energy (according to [4.8] and [4.15]). 

 
Fig. 4.3: Dependence of the radiation divergence on the undulator photon energy 

The emittance  of synchrotron radiation from the insertion devices is , and the 
corresponding plot is displayed in Fig. 4.4. 
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Fig. 4.4: Dependence of the synchrotron radiation emittance on the photon energy 

The photon energy Er of the undulator is proportional to the square of the beam energy and the 
harmonic number n; see Eqs. (4.11) and (4.12). It is inversely proportional to the undulator period λu 
and a function of the undulator parameter K. Hence, by increasing beam energy from 2.5 to 3 GeV, the 
photon energy will be increased by a factor of 1.44. 

This investigation shows that the emittance of the photon beam in the whole energy range is 
smaller than 30 pmrad. The emittance of the SEE-LS should be around 250 pmrad; hence, for the 
brilliance calculations the photon emittance does not have any influence. To achieve a high brilliance 
the cross-section of the stored electron beam has to be minimized, and this has to be done by decreasing 
the emittance as well the beta functions. 

4.4 Lattice for the SEE-LS 

Well-known lattices for the 4th generation light sources are: a) the 7MBA lattice used for MAX IV 
[4.16]; b) the 5 multi-bend achromat (5MBA) used for SIRIUS [4.17]; c) the HMBA lattice used for 
the upgrade of ESRF and other light sources [4.18, 4.19]; d) the double double-bend achromat (DDBA) 
and double triple-bend achromat (DTBA) lattices used for a possible upgrade of Diamond [4.20, 4.21]; 
e) the S6BA (also a DTBA) used for the upgrade of ELETTRA [4.22]; and f) the 7MBA lattice with 
anti-bends and longitudinal gradients in the magnets [4.23] proposed for the upgrade of SLS. Recently, 
a possible lattice for the upgrade of SOLEIL was presented [4.24]. The lattice file of SOLEIL is not 
available at present, and the lattice file used was extracted from the plots of the beta functions. The 
specifications of all these lattices are summarized in Table 4.1. 

The DDBA, DTBA, and S6BA lattices have the advantage of containing an additional straight 
section in the middle of the achromat. These straight sections can be used to install small insertion 
devices and all the instrumentation needed for operation of the machine; hence, more space is available 
for users. This is reflected in the percentage of the circumference devoted to straight sections. The 
HMBA lattice has the requirement that the phase advance between the dispersion regions must be π 
(vertical) or 3π (horizontal). This limits the settings for the smallest emittance but reduces the number 
of sextupoles needed. The specifications, according to a matching for a circumference of roughly 350 m, 
are given in Table 4.2. 
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Table 4.1: Parameters of the 4th generation light source lattices proposed for the upgrade of the facilities 

Lattice  MAX IV HMBA SIRIUS DDBA DTBA S6BA SLS-2 SOLEIL-2 

Circumference (m) 528 506.28 518.4 561 561 259.2 290.4 354.7 

Period 20 22 20 24 24 12 12 20 

Achromat-length (m) 26.4 23.013 25.92 23.37 23.37 21.6 24.2 17.73 

Energy (GeV) 3 3 3 3 3 2 2.4 2.75 

Emittance (pmrad) 328 141 250 272 101 255 102 72 

Tune Qx 44.06 53.6 48.1 51.21 57.45 33.1 37.2 55.2 

Tune Qy 17.76 15.43 13.17 17.31 20.36 9.2 15.3 18.2 

Chromaticity ξx −51.47 −87.86 −124.4 −129 −78.15 −75 −95 −134 

Chromaticity ξy −51.37 −70.78 −79.9 −93.51 −109.7 −51 −35.2 −125 

From the relation that the emittance is proportional to the square of the energy and inversely 
proportional to the cube of the number of magnets, it is possible to estimate the emittance for this lattice 
with a circumference of roughly 350 m. Accordingly, lattice files for the matched achromats have been 
evaluated. The corresponding lattices are presented in Figs. 4.5–4.14  

Given the requirements for the circumference, emittance, and number of straight sections, only 
the HMBA, DTBA, S6BA, and SLS-2 lattices can be taken as candidates for the SEE-LS. Consideration 
of nonlinear beam-dynamic issues eventually favoured the HMBA and the S6BA. Finally, owing to the 
reduced numbers of sextupoles and the larger dynamic aperture, the HMBA lattice was chosen as the 
candidate lattice for the SEE-LS. However, the S6BA lattice is also promising. In making a final 
decision, and considering the further calculations which have to be done, another lattice solution such 
as the proposed SOLEIL upgrade cannot be excluded in this case. 

4.4.1 The 7MBA lattice 

The 7MBA lattice (Fig. 4.5) is built with five unit cells, as shown in Fig. 4.6, and two matching sections. 
The lattice functions within each unit cell are like a TME structure and those in the matching cell are 
like a DBA structure (see Fig. 4.1). With a period of N = 14 the circumference is roughly 409 m, leading 
to an emittance of 288 pmrad. In order to reach a circumference of roughly 350 m, the number of 
achromats has to be reduced to 12, which leads to an emittance of roughly 460 pmrad. In addition, the 
horizontal chromaticity is quite high, which should reduce the dynamic aperture. Because of this, using 
large numbers of 7MBA lattices is not an attractive solution for the SEE-LS. 
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Table 4.2: Parameters of the 4th generation light source lattices that are candidates for the SEE-LS with a 
circumference of roughly 350 m. 

Lattice 7MBA HMBA I HMBA II SIRIUS DTBA S6BA SLS-2 SOLEIL-2 

Energy (GeV) 3 3 2.5 3 3 2.5 3 2.75 

Circumference (m) 408.9 345.4 329.2 362 361.8 347.2 332.4 354.7 

Emittance (pmrad) 288 255 218 806 365 166 131 72 

Period 14 16 16 14 16 16 14 20 

Tune Qx 45.23 41.38 37.2 31.39 39.24 44.18 43.29 64.4 

Tune Qy 12.41 12.26 12.22 10.39 13.22 12.39 10.92 22.3 

Chromaticity ξx −128.9 −104.73 −79.27 −97.4 −59.1 −109 −79.87 −157 

Chromaticity ξy −46.74 −70.58 −60.26 −37.97 −73 −82.4 −38.36 −127 

Uo (keV) 609 484 280 494 510 310 1131 340 

Jx 1.34 1.71 1.86 1.43 1.46 1.45 1.7 1.71 

σx(0) (μm) 56.1 70.9 55.8 131.4 45.7 44 19.4 8.5 

σy(0) (μm) 5.4 2.8 3.4 6 3.9 3.2 6.3 2.2 

 (μrad) 5.1 3.6 3.9 6.13 8 3.8 6.8 8.5 

 (μrad) 0.92 1.76 1.48 0.83 1.29 1.53 0.8 2.24 

Area (μm2) 302.94 198.52 189.72 788.4 178.23 140.8 122.22 18.7 

Percentage 17.9 26.1 27.4 27.1 37.5 31.7 22.3 25 

 
Fig. 4.5: The machine functions of a 3 GeV-7MBA lattice (like MAX IV) 

4.4.2 The 3 GeV HMBA I lattice 

Completely different from the 7MBA lattice is the HMBA lattice (see Fig. 4.7) as proposed for the 
upgrade of the ESRF [4.18, 4.19]. The lattice consists of two DBA structures for the matching to the 
straight sections and a matching section in the middle of the arc (see Fig. 4.7). To reduce the number of 
sextupoles, the phase advance between the two DBA structures has to be ∆ϕ(x) = 3π and ∆ϕ(y) = π; this 
places some limitations on the selection of the working points (tunes). With a period of N = 16 and an 
energy of 3 GeV, the circumference is 345.4 m, leading to an emittance of 255 pmrad. The horizontal 
chromaticity is also quite high, but a first dynamic aperture calculation has shown that an acceptable 
value can be reached, which could be a solution. For the installation of the injection, the RF system, 

(0)¢xσ
(0)¢yσ
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and machine components, up to four straight sections are needed; hence, for the installation of insertion 
devices there should be 12 straight sections, whereas for the 7MBA only 10 straight sections are 
available to the user. This is a big advantage of the HMBA over the 7MBA lattice. 

 
Fig. 4.6: The arrangements of magnets and the machine functions of a 3 GeV unit cell of the 7MBA lattice 

 
Fig. 4.7: The machine functions of a 3 GeV HMBA I lattice (like ESRF-EBS) 

4.4.3 The 2.5 GeV HMBA II lattice 

In order to see the difference in the energy, the 3 GeV version was also matched to an energy of 2.5 GeV 
(see Fig. 4.8). Accordingly, the emittance reduces to 218 pmrad and the circumference goes down to 
329.2 m. According to the scaling of the emittance with the energy, the emittance of the HMBA I lattice 
should go down to 177 pmrad for 2.5 GeV. Hence there is still some room for optimization. The length 
of the straight section is 5.63 m. This lattice could be a solution for the design of the SEE-LS. A further 
advantage of the 2.5 GeV version is that the radiated energy per turn decreases by a factor of around 2 
(from 484 to 280 keV—see Uo in Table 4.2); this reduces the cost of the RF system. 
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Fig. 4.8: The machine functions of a 2.5 GeV HMBA II lattice (like ESRF-EBS) 

 
Fig. 4.9: The machine functions of a 3 GeV 5MBA lattice (like SIRIUS II) 

4.4.4 The 3 GeV 5MBA lattice 

The 5MBA lattice of SIRIUS, matched to a circumference of roughly 350 m, is presented in Fig. 4.9. 
The structure of the 5MBA is roughly the same as that of the HMBA (see above), except that the 
matching of the two matching cells will be done by only one bending magnet. With a circumference of 
362 m and a period of N = 14, an emittance of 806 pmrad could be reached. The scaling of the original 
SIRIUS lattice with an emittance of 250 pmrad and N = 20 would result in an emittance of roughly 
730 pmrad, so there is still some room for optimization. Nevertheless, because of the high emittance 
and the relative low number of straight sections available to the user, this lattice is not a good candidate 
for the SEE-LS. 
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Fig. 4.10: The machine functions of a 3 GeV DTBA lattice (like the upgrade of Diamond) 

4.4.5 The 3 GeV DTBA lattice 

This lattice (see Fig. 4.10) yields a relatively large emittance of 365 pmrad with a circumference of 
361.8 m. As for the other lattices, the period is N = 16. Also, the phase advance between the two DBA 
structures has to be ∆ϕ(x) = 3π and ∆ϕ(y) = π. The advantage of this lattice is the additional straight 
section in the middle of the arc. This straight section can be used for the installation of the RF system 
as well as other machine components. Because of the relatively large emittance and circumference, this 
is not considered a candidate lattice for the SEE-LS. 

 
Fig. 4.11: The machine functions of a 2.5 GeV S6BA lattice (like the upgrade of ELETTRA) 

4.4.6 The 2.5 GeV S6BA lattice 

This lattice (see Fig. 4.11) leads to a circumference of 347.2 m and an emittance of 166 pmrad for an 
energy of 2.5 GeV, which in comparison with the other lattices is fairly low [4.25]. As for the other 
lattices, the period is N = 16. Like the DTBA lattice, the S6BA has the advantage of having an additional 
straight section in the middle of the arc. The chromaticities are rather high, but initial calculations have 
shown that a sufficient dynamic aperture should be attainable. This is so far a very good solution, if an 
energy of 3 GeV is not needed. Because there is no condition on the phase advance, the number of 
sextupoles is relatively high, but the flexibility in choosing the tune values is high as well. 
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Fig. 4.12: The machine functions within the unit cell of the 3 GeV lattice proposed for the upgrade of SLS 

 
Fig. 4.13: The machine functions of the 3 GeV lattice proposed for the upgrade of SLS 

4.4.7 The 3 GeV SLS-2 lattice 

For the upgrade of the SLS, a 7MBA lattice will also be used. There is, however, a big difference 
between the lattice of its unit cell and that of MAX IV (compare Figs. 4.12 and 4.6): instead of using a 
quadrupole at the beginning of the unit cell, a so-called ‘anti-bend’ will be used. An anti-bend [4.23] is 
a shifted quadrupole and reflects the beam to the outer side of the ring; hence the anti-bend has a 
focusing as well as a deflection effect. The consequences for the machine function can be seen by 
comparing Figs. 4.6 and 4.12. In Fig. 4.6 the dispersion function has values of around 2 cm, whereas in 
Fig. 4.12 it has a value of more or less 0 cm. Also, the horizontal beta function has smaller values with 
the anti-bends in the middle of the bend, with 768,ing. Both effects decrease the emittance by a lot. 

In addition to using the anti-bend, the emittance is reduced by means of a longitudinal gradient 
bending magnet, in which the magnetic field goes up to 2.5 T. The introduction of the longitudinal 
gradient and the anti-bend greatly reduces the emittance; the emittance of the unit cell decreases from 
349 to 144 pmrad. The anti-bend and the longitudinal gradient both change the emittance by a factor of 
1.5; for an energy of 2.5 GeV the emittance would go down to roughly 90 pmrad. However, the magnets 
are very complicated to build, and first dynamic aperture calculations have yielded a relatively small 
value. With a period of N = 14, the available straight sections are a bit smaller than in other lattices. 
Because of its complexity, small dynamic aperture, and reduced number of straight sections, the SLS-
2 lattice will not be considered as a candidate for the SEE-LS. 
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4.4.8 The 2.75 GeV SOLEIL-2 lattice 

For the upgrade of SOLEIL, the proposed lattice is shown in Fig. 4.14. The lattice file is not officially 
available, so the editor generated the file from different plots [4.24, 4.26] presented at various 
workshops and conferences. It is more or less an HMBA lattice as for the upgrade of the ESRF. A new 
element is the incorporation of anti-bends to reduce the emittance further. With the length of the 
achromat being roughly 17.5 m, it is a very compact design; therefore it is possible to obtain a period 
of N = 20 with a circumference of 353.1 m. Because the final design is not finished, this lattice will not 
be considered as a solution for the SEE-LS. 

 
Fig. 4.14: The machine functions of the 2.75 GeV lattice proposed for the upgrade of SOLEIL 

4.4.9 Number of magnets 

One factor for the budget is the number of components and, in this case, the number of magnets. The 
different lattices discussed here require the following numbers of magnets. 

– 7MBA: 98 bending magnets, 252 quadrupoles, and 308 sextupoles; a total of 658 magnets 

– HMBA: 112 bending magnets, 160 quadrupoles, and 128 sextupoles; a total of 400 magnets 

– SIRIUS: 70 bending magnets, 168 quadrupoles, and 196 sextupoles; a total of 434 magnets 

– DTBA: 96 bending magnets, 256 quadrupoles, and 128 sextupoles; a total of 480 magnets 

– S6BA: 96 bending magnets, 256 quadrupoles, and 288 sextupoles; a total of 640 magnets 

– SLS-2: 272 bending magnets, 160 quadrupoles, and 336 sextupoles; a total of 768 magnets 

– SOLEIL-2: 140 bending magnets, 200 quadrupoles, and 200 sextupoles; a total of 540 
magnets. 

The SLS-2 lattice has the largest number (768) and the HMBA the smallest number (400) of 
magnets. 

4.5 Brilliance calculations 

Brilliance calculations have been done for a cryogenic permanent magnet undulator (CPMU) with a 
period length of 16 mm and a beam current of 500 mA. The detailed parameters of the insertion device 
are given in Table 4.3, in which ε_nth denotes the photon energy of the nth harmonic. 
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Table 4.3: Data for the CPMU 16 used for the brilliance calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

The brilliances for the 3 GeV HMBA, 2.5 GeV HMBA, 2.5 GeV S6BA, and 3 GeV MAX IV 
lattices are presented in Fig. 4.15 for harmonic numbers up to n = 9. The maximum brilliance is in the 
range of 3 × 1021 photons/s/mm2/rad2/0.1%BW for the soft-X-ray region and goes up to 1 × 1018 
photons/s/mm2/rad2/0.1%BW for the hard X-ray region (35 keV photon energy). In order to exhibit the 
differences between a 3 GeV and a 2.5 GeV electron beam, the corresponding brilliances are plotted in 
Fig. 4.16. Going from 2.5 GeV to 3 GeV, the brilliance will increase by photon energies of roughly 
10 keV. 

The brilliances of the different lattices for different photon energies are summarized in Table 4.4. 
In general there are not great differences between the different lattices. This was already explained in 
chapter 1 and is due to the large contribution of the undulator radiation. Owing to the small emittance 
of SLS-2, this lattice provides the highest brilliance, greater by around a factor of 2 than the others. 

For a beam energy of 2.5 GeV, the brilliances of up to 10 keV are roughly the same as for 3 GeV. 
For photon energies of roughly 15 keV, the brilliance is smaller by approximately a factor of 2, and for 
20 keV it is smaller by a factor of 10 for a beam energy of 2.5 GeV. For photon energies as high as 
20 keV, the brilliance at 2.5 GeV is more than one order of magnitude smaller in comparison to a 3 GeV 
machine (see Fig. 4.16). 

Parameter Value Value Unit 
Energy 3 2.5 GeV 
Gap value 4.2 4.2 mm 
B0 1.26 1.26 T 
Total length 2 2 m 
Period length (λ0) 16 16 mm 
Number of periods 125 125  
K value 1.88 1.88  
λ1 0.00 0.00 μm 
σr 5.71 6.85 μm 

 12.68 15.22 μrad 
ε_1st 1.93 1.34 keV 
ε_3rd 5.78 4.02 keV 
ε_5th 9.64 6.69 keV 
ε_7th 13.49 9.37 keV 
ε_9th 17.35 12.05 keV 
ε_11th 21.20 14.72 keV 

¢rσ
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Fig. 4.15: Brilliances of the insertion device CPMU 16 for the 3 GeV HMBA, 2.5 GeV HMBA, 2.5 GeV S6BA, 
and 3 GeV MAX IV lattices. 

 
Fig. 4.16: Brilliances of the insertion device CPMU 16 for the 3 GeV HMBA and 2.5 GeV HMBA lattices 

Table 4.4: Brilliances in photons/(s mm2 mrad2 0.1BW) of the various lattices for different photon energies in 
keV. 

Lattice Energy 5 keV 10 keV 15 keV 20 keV 25 keV 30 keV 
MAX IV 3 GeV 3.70E+21 2.60E+21 1.45E+21 6.50E+20 2.00E+20 3.00E+19 
7MBA 3 GeV 2.50E+21 1.70E+21 9.50E+20 4.50E+20 1.40E+20 2.10E+19 
HMBA 3 GeV 3.40E+21 2.60E+21 1.50E+21 7.30E+20 2.20E+20 3.60E+19 
DTBA 3 GeV 3.20E+21 2.00E+21 1.10E+21 4.60E+20 1.30E+20 1.90E+19 
SLS-2 3 GeV 5.20E+21 3.90E+21 2.05E+21 9.90E+20 3.00E+20 5.00E+19 
HMBA 2.5 GeV 2.70E+21 1.40E+21 4.40E+20 5.40E+19   
S6BA 2.5 GeV 3.90E+21 2.10E+21 7.00E+20 8.50E+19   
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As mentioned in section 4.4, the brilliance is a function of the beam cross-section, given by the 
beta function. The dependence of the brilliance on the beta functions is presented in Table 4.5. At lower 
photon energies, the brilliance increases by roughly a factor of 2 for smaller beta functions, but at higher 
photon energies the brilliance goes through a maximum around beta function values of 5–10 m/rad. 
This is more clearly seen in Table 4.6, in which the brilliances are normalized so that the values 
corresponding to the largest beta function become 1. 

Table 4.5: Brilliances of the 3 GeV HMBA lattice for different beta functions and photon energies in keV 

Beta value 5 keV 10 keV 15 keV 20 keV 25 keV 30 keV 
19.73 3.40E+21 2.60E+21 1.50E+21 7.30E+20 2.20E+20 3.60E+19 
15 4.00E+21 3.20E+21 1.90E+21 8.50E+20 2.70E+20 4.20E+19 
10 4.60E+21 3.60E+21 2.05E+21 9.50E+20 2.90E+20 4.60E+19 
5 6.00E+21 4.40E+21 2.40E+21 1.05E+21 3.00E+20 4.70E+19 
2.5 7.20E+21 4.80E+21 2.50E+21 1.00E+21 2.60E+20 3.70E+19 
1.61 7.50E+21 4.30E+21 2.20E+21 8.50E+20 2.00E+20 2.90E+19 

Table 4.6: Normalized brilliances of the 3 GeV HMBA lattice for different beta functions 

4.6 Summary 

Based on the given emittance of 131 pmrad, the SLS-2 lattice seems the most favourable one, 
but the machine is complex, the dynamic aperture is small, and the costs will be higher than for the 
other lattices. This lattice also has a large number of magnets and is perhaps not the best solution for 
the SEE-LS. 

Next comes the 6SBA lattice, with a relatively small emittance of 166 pmrad at 2.5 GeV and an 
additional straight section in the middle of the arc. Initial calculations for the dynamic aperture show 
promising results. This lattice could be suitable for the SEE-LS, but it still has to be optimized. 

The 3 GeV HMBA I and 2.5 GeV HMBA II lattices are possible solutions too. 

The DTBA lattice can achieve a fairly large emittance, but its main advantage is the additional 
straight section in the middle of the arc. 

The 7MBA lattice is not attractive because of the larger emittance, larger circumference, and 
reduced period. 

The emittance and the brilliance are not the only relevant factors in choosing the lattice type. One 
also has to look at the overall cost of the project. A main part of the cost comes from the RF system and 
is determined by the radiation loss per turn, Uo. For the 2.5 GeV machines (see Table 1) Uo is at least a 
factor of 2 smaller than for the 3 GeV machines. Hence one could start with a 2.5 GeV version and later 
upgrade to 3 GeV. 

The 3 GeV HMBA I lattice scaled to an energy of 2.5 GeV results in an emittance of 177 pmrad. 
The difference in length between the two solutions at 3 GeV and 2.5 GeV is only 16.2 m, which is 
insignificant. Hence, for the first proposal of a lattice for the SEE-LS, the 3 GeV HMBA I  lattice 
operating at an energy of 2.5 GeV should be used. 

Beta value 5 keV 10 keV 15 keV 20 keV 25 keV 30 keV 
19.73 1.00 1.00 1.00 1.00 1.00 1.00 
15 1.18 1.23 1.27 1.16 1.23 1.10 
10 1.35 1.38 1.37 1.30 1.32 1.28 
5 1.76 1.69 1.60 1.44 1.36 1.31 
2.5 2.12 1.85 1.67 1.37 1.18 1.03 
1.61 2.21 1.65 1.47 1.16 0.91 0.81 
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At present the SOLEIL-2 lattice cannot be used as a proposal for the SEE-LS because the details 
of the lattice are not known. At the 6th Diffraction Limited Storage Ring (DLSR) Workshop held at the 
Lawrence Berkeley National Laboratory, some more lattices were presented with much better results. 

Using an HMBA lattice for the first proposal has the further advantage that many components 
from the ESRF-EBS upgrade can be used. 
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