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Abstract

The Future Circular Collider (FCC) at CERN, a proposed 100 km circular facility with several colliders
in succession, culminates in a 100 TeV proton–proton collider. It offers a vast new domain of exploration
in particle physics, with orders-of-magnitude advances in terms of precision, sensitivity, and energy.
The implementation plan published in 2018 foresees, as a first step, an electroweak factory electron–
positron collider. This high-luminosity facility, operating at centre-of-mass energies between 90 and
365 GeV, will study the heavy particles of the Standard Model (SM), Z, W, and Higgs bosons, and
top quarks with unprecedented accuracy. The physics programme offers great discovery potential:
(i) through precision measurements, (ii) through sensitive searches for symmetry violations, forbidden,
or extremely rare decays, and (iii) through the search for direct observation of new particles with
extremely small couplings. The electroweak factory e+e− collider constitutes a real challenge to the
theory and to precision calculations, triggering the need for the development of new mathematical
methods and software tools. A first workshop in 2018 focused on the first FCC-ee stage, the Tera-Z, and
confronted the theoretical status of precision Standard Model calculations on the Z boson resonance
to the experimental demands.

The second workshop, in January 2019, extended the scope to the next stages, with the pro-
duction of W bosons (FCC-ee-W), the Higgs boson (FCC-ee-H), and top quarks (FCC-ee-tt). In par-
ticular, the theoretical precision in the determination of the crucial input parameters, αQED, αQCD,
MW, and mt, at the level of FCC-ee requirements was thoroughly discussed. The requirements on
Standard Model theory calculations were spelt out, so as to meet the demanding accuracy of the
FCC-ee experimental potential. The discussion of innovative methods and tools for multiloop calcu-
lations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were dis-
cussed, including effective theory approaches. The reports of 2018 and 2019 serve as white papers of
the workshop results and subsequent developments.
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Editors’ note

Understanding the origins of the Universe and how it works and evolves is the present mission
of a large community of physicists of many nations and specialities. It calls for a large-scale
vision, involving general relativity, astrophysics, and cosmology, together with the detailed basic
understanding provided by particle physics; these disciplines work hand in hand, with the help
of several other research fields. Presently, particle physics stands at an important moment in
its history. With the discovery of the Higgs boson, the matrix of interactions and elementary
particles that is called the ‘Standard Model’ (SM), is complete. Yet the Higgs boson itself, and
how it breaks the electroweak symmetry, remains a fascinating subject requiring verification
at the next order of precision, typically at percent, or even per-mille, accuracy. Furthermore,
several experimental facts are not accounted for by the SM; let us mention: (i) the baryon
asymmetry of the Universe, (ii) the nature and origin of dark matter, and (iii) the origin of
neutrino masses. These have no unique, if any, explanation in the SM and yet will require
answers from particle physics.

Particle physics exploration must continue. . . but we no longer have a guiding scale.
How can this exploration be carried out? Which next tool is needed? Going to higher and

higher energies is an obvious idea. It has worked well for the Standard Model particles so far,
because they all have roughly the same strong and electroweak couplings. It is far from evident,
however, that the new phenomena or particles, required to explore these questions, will behave
in the same way—the opportunity to explore much smaller couplings or much higher scales
must be kept in mind. Here, the role of precision measurements, the search for extremely rare
decays of known particles, for small violations of the SM symmetries, and for direct production
of super-weakly coupled objects is in order. A broad search strategy is thus needed.

With this in mind, and armed with the recommendation of the European Strategy in 2013
that Europe should be in a position to “propose an ambitious post-LHC accelerator project
at CERN”, the FCC collaboration has elaborated a strategy of circular colliders fitting in a
new facility of 100 km circumference. It will start with a high-luminosity e+e− electroweak
factory, FCC-ee, and culminate in a proton collider, FCC-hh, of more than 100 TeV collision
energy. Additional options of heavy-ion collisions and e–p scattering are foreseen and, possibly,
muon collisions. This strategy offers, by way of synergy and complementarity, a thorough study
of the Higgs boson, as well as unmatched capabilities of high-energy exploration, precision
measurements, and sensitive rare process searches [1]. The FCC Conceptual Design Report
(CDR) has been prepared and released [2–4]. This powerful exploratory project will, right
from its first step as a Z factory, explore completely uncharted territory in terms of precision
and sensitivity. Moreover, it constitutes an extraordinary challenge for theory. The theoretical
community has responded with enthusiasm to the challenge; already several workshops have
gathered an increasing number of contributions.

In this report, we collect theory contributions to the 11th FCC-ee meeting held in January
2019 at CERN [5], completed by a few invited guest contributions. The report is a kind of
community white paper, rather than a conventional conference report. It collects, coherently,
the contributions from 86 scientists, representing the state of the art in 2019 and envisioning
the additional needs of future lepton colliders. We are grateful to Jens Vigen from CERN.
Due to his efforts in the final productions, the document meets the highest editorial standards.
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The collective interactions of all of us, in one way or another, at the meeting in January
2019 and for several months after, make the backbone of the final write-up. Nevertheless, for
the convenience of the reader, we decided to retain a sectional structure for the bulk of the
document, with individual bibliographies for the sections.

The volume follows the report [6] on the FCC-ee workshop in January 2018 [7], which
focused on the theory needs for the Tera-Z, the first stage of the FCC-ee, working in the
Z boson mass range. The purpose is to document existing studies and also to motivate future
theoretical studies, enabling by their predictions a full exploration of the experimental potential
of the FCC-ee.

It has become evident that a significant work must be accomplished, both in multiloop
calculations in the Standard Model and also in projects beyond the Standard Model. Documen-
tation of these requirements became highly desirable to complement the submitted Conceptual
Design Report. The present report exemplifies both the well-advanced status of phenomenology
for the FCC-ee and, at the same time, the need for further mathematically well-founded deep-
ening of the technologies for precision measurements. In this respect, it is a necessary addition
to the FCC CDR.

From a scientific point of view, the FCC is the most challenging collider project for the
next few decades [8]. We see it as our duty and pleasure to prepare such a frontier project
and to sustain CERN’s leading role in basic research worldwide. The goals must be set as high
as possible, i.e., at the level of the statistical uncertainties, because this precision genuinely
equates discovery potential.

We thank all participants of the workshop for their engagement with presentations and
in the discussions during the workshop, and the authors of the report for writing such excellent
contributions. The exploratory potential of the FCC-ee can be fully exploited only if the talent
and efforts of accelerator builders and experimenters is met by theory. The message is: we are
working on it.

From this quest for the unknown, driven by curiosity, history shows that there is a return
for all of us, scientists or not [9–11].

The editors.
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Executive summary
The main theoretical issues of the FCC-ee studies discussed in this report may be summarised
as follows.

1. To adjust the precision of theory predictions to the experimental demands from the
FCC-ee, an update of existing software and the development of new, independent software
will be needed. This should include, in the first instance, solutions to the following issues:

(a) factorisation to infinite order of multiphoton soft-virtual QED contributions;
(b) resummations in Monte Carlo generators;
(c) disentangling of QED and EW corrections beyond one loop, with soft-photon fac-

torisation or resummation;
(d) proper implementation of higher-loop effects, such as Laurent series around the Z

peak;
(e) further progress in methods and tools for multiloop calculations and Monte Carlo

generators.

Some discussions have been initiated in the 2018 report [1]; here, they are extended in
the Introduction and Chapters B and C.

2. To meet the experimental precision of the FCC-ee Tera-Z for electroweak precision observ-
ables (EWPOs), even three-loop EW calculations of the Zff̄ vertex will be needed, com-
prising the loop orders O(αα2

s ),O(Nfα
2αs),O(N2

f α
3), and also the corresponding QCD

four-loop terms. This was mainly a subject of the 2018 report [1].

3. To decrease the αQED uncertainty by a factor of five to ten, to the level (3–5) × 10−5,
will require improvements in low-energy experiments. Alongside this, the perturbative
QCD (pQCD) prediction of the Adler function must be improved by a factor of two,
accomplished with better uncertainty estimates for mc and mb. The next mandatory
improvements required are:

(a) four-loop massive pQCD calculation of the Adler function;
(b) improved αs in the low Q2 region above the τ mass;

(c) a better control and understanding of ∆α(5)
had(M2

Z), in terms of R data;
(d) different methods for directly accessing α(M2

Z), e.g., the muon forward–backward
asymmetry, or for calculating αQED, either based on a radiative return experiment,
e.g., at the FCC-ee Tera-Z, or using lattice QCD methods.

This is discussed in Chapter B.

4. FCC-ee precision measurements require many improvements on the theoretical QCD side.
These include: (i) higher-order pQCD fixed-order calculations; (ii) higher-order logarith-
mic resummations; (iii) per-mille-precision extractions of the αs coupling; and (iv) an
accurate control of non-perturbative QCD effects (such as, e.g., colour reconnection,
hadronization), both analytically and as implemented in the Monte Carlo generators.
These issues are discussed in Chapter B.
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5. The reduction of the theoretical uncertainty of the total W pair production cross-section
to the level of ∼ 0.01% at the FCC-ee-W requires at least the calculation of O(α2) and
dominant O(α3) corrections to double-resonant diagrams. Estimates within an effective
field theory (EFT) approach show that the theory-induced systematic uncertainty of the
mass measurement from a threshold scan can be at the level of ∆MW = (0.15−0.60) MeV.
The lower value results from assuming that the non-resonant corrections are under control.
In addition, it is also essential to reduce the uncertainty from initial-state radiation (ISR)
corrections and QCD corrections for hadronic final states to the required accuracy. This
is discussed in Chapter B.

6. Predictions for H decay widths and branching ratios are known with sufficient accuracy
for the LHC. At the FCC-ee, the Higgs mass can be measured with a precision below
0.05 GeV. The dependence of EWPOs onMH is mild, ∝ α log(MH/MW), and an accuracy
of 0.05 GeV of MH will not affect their determination. The main improvements in Higgs
boson studies will be connected with a better determination of branching ratios and
self-couplings. More on related issues is discussed in the Introduction and in Chapter B.

7. The top pair line shape for centre-of-mass energies close to the tt̄ production threshold
is highly sensitive to the mass of the top quark, allowing its determination with un-
precedented precision. The statistical uncertainty of the measurement (∼ 20 MeV) is
projected to be significantly less than the current theoretical uncertainty. It is crucial
to continuously improve the theoretical prediction. The most sensitive observable is the
total production cross-section for bb̄W+W−X final states near the top pair production
threshold. A very precise knowledge of the strong coupling constant from other sources
will be crucial in order to meaningfully constrain the top Yukawa coupling. These issues
are discussed in Chapter B.

8. Proper truncation of the ultraviolet scale Λ depends on the experimental precision of the
observables and Standard Model effective field theories (SMEFTs) must be adjusted to
FCC-ee experimental conditions, e.g., in construction of appropriate complete operator
bases and Wilson coefficients (WCs) for Beyond the Standard Model (BSM) theories.
This issue is discussed in Chapter D.

9. The FCC-ee and the FCC-hh will both be sensitive to BSM physics and exotic massive
states reaching tens of TeV or very weak couplings. It is proposed to use the SMEFT
framework and constrain the Higgs triple coupling by analysing precision measurements.
For these studies, but also exotic Higgs decays, it will be important to combine the LHC
and HL-LHC data with an analysis at the FCC-ee.
These issues are discussed in Chapter E.

Reference
[1] A. Blondel et al., Standard Model theory for the FCC-ee Tera-Z stage, CERN (CERN

Yellow Rep. Monogr. 3, Geneva, Switzerland),
arXiv:1809.01830, doi:10.23731/CYRM-2019-003
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Chapter A

Introduction and overview

Contribution∗ by: A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann
Corresponding author: J. Gluza [janusz.gluza@cern.ch]

This report includes a collection of studies devoted to a discussion of (i) the status of theoretical
efforts towards the calculation of higher-order Standard Model (SM) corrections needed for the
FCC-ee precision measurement programme, (ii) the possibility of making discoveries in physics
by means of these precision measurements, and (iii) methods and tools that must be developed
to guarantee precision calculations of the observables to be measured. This report originates
from presentations at the 11th FCC-ee Workshop: Theory and Experiments, 8–11 January 2019,
CERN, Geneva [1], with 117 registered participants and 42 talks on theory.

1 The FCC-ee electroweak factory
In the 2018 report [2], we focused on theoretical issues of the FCC-ee Tera-Z, which will be a
e+e− collider working at the Z resonance energy region. However, the FCC-ee collider project
will work in several energy regions, making it a complete electroweak factory, covering the
direct production of all massive bosons of the SM and the top quark. This plan is summarised
in Table A.1.1.

Table A.1.1: Run plan for FCC-ee in its baseline configuration with two experiments. The WW
event numbers are given for the entirety of the FCC-ee running at and above the WW threshold.

Phase Run duration Centre-of-mass Integrated Event
(years) energies luminosity statistics

(GeV) (ab−1)
FCC-ee-Z 4 88–95 150 3× 1012 visible Z decays
FCC-ee-W 2 158–162 12 108 WW events
FCC-ee-H 3 240 5 106 ZH events
FCC-ee-tt 5 345–365 1.7 106 tt̄ events

The exceptional precision of the FCC-ee comes from several features of the programme.

1. Extremely high statistics of 5× 1012 Z decays, 108 WW, 106 ZH, and 106 tt̄ events.
∗This contribution should be cited as:

A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann, Introduction and overview, DOI: 10.23731/CYRM-2020-
003.3, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 3.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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2. High-precision (better than 100 keV) absolute determination of the centre-of mass energies
at the Z pole and WW threshold, thanks to the availability of transverse polarisation and
the resonant depolarisation. This is a unique feature of the circular lepton colliders, e+e−
and µ

+
µ
−. At higher energies, WW, ZZ, and Zγ production can be used to constrain the

centre-of-mass energy with precisions of 2 and 5 MeV, at the ZH cross-section maximum
and at the tt̄ threshold, respectively. At all energies, e+e− → µ

+
µ
− events, which occur

at a rate in excess of 3 kHz at the Z pole, provide, by themselves, in a matter of minutes,
the determination of the centre-of mass energy spread, the residual difference between
the energies of e+ and e− beams and (relative) centre-of-mass energy monitoring with a
precision that is more than sufficient for the precision needs of the programme.

3. The clean environmental conditions and an optimised run plan allow a complete pro-
gramme of ancillary measurements of currently precision-limiting input quantities for the
precision EW tests. This is the case for the top quark mass from the scan of the tt̄
production threshold; of the unique, direct, measurement of the QED running coupling
constant at the Z mass from the Z–γ interference; of the strong coupling constant by
measurements of the hadronic-to-leptonic branching fractions of the Z, the W, and the τ

lepton; and, of course, of the Higgs and Z masses themselves.

For the reader’s convenience, we also include Table A.1.2 from the CDR, showing some
of the most significant FCC-ee experimental accuracies compared with those of the current
measurements. More on the experimental precision of the FCC-ee can be found in volumes 1
and 2 of the CDR documents [3, 4]. The experimenters are working hard to reduce systematic
uncertainties by devising dedicated methods and ancillary measurements; the task of the the-
oretical community will be to ensure that the SM predictions will be precise enough so as not
to spoil the best foreseeable experimental accuracies, i.e., the statistical uncertainties.

If future theory uncertainties match the FCC-ee experimental precision, the many different
measurements from the FCC-ee will provide the capability of exhibiting and deciphering signs
of new physics. Here are two examples: the EFT analysis searching for signs of heavy particles
physics with SM couplings shows the potential to exhibit signs of new particles up to around
70 TeV; with a very different but characteristic pattern, observables involving neutrinos would
show a significant deviation if these neutrinos were mixed with a heavy counterpart at the level
of one part in 100 000, even if those were too heavy to be directly produced.

Table A.1.2 shows that the FCC-ee has the potential to achieve (at least) a 20–100 times
higher precision or better in electroweak precision measurements over the present state-of-the-
art situation. This includes such input quantities as the Z, Higgs, and top masses, and the strong
and QED coupling constants at the Z scale. This extremely favourable situation will require
leap-jumps in the precision of the theoretical computations for Standard Model phenomena,
for all quantities given in Table A.1.2. The theory calculation must also be able to include the
improved input parameters [2,5], which, in the particular case of the FCC-ee, will be measured
within the experimental programme.

The quantities listed in Table A.1.2 are called electroweak precision observables (EWPO)
and encapsulate experimental data after extraction of well-known and controllable QED and
QCD effects, in a model-independent manner. They provide a convenient bridge between real
data and the predictions of the SM, or of the SM plus new physics. Contrary to raw experimental
data (like differential cross-sections), EWPOs are also well-suited for archiving and long-term
use. Archived EWPOs can be exploited over long periods of time for comparisons with steadily
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Table A.1.2: Measurement of selected electroweak precision observables (EWPOs) at the
FCC-ee, compared with the current precision. The systematic uncertainties are initial esti-
mates and might improve on further examination. This set of measurements, together with
those of the Higgs properties, achieves indirect sensitivity to new physics up to a scale Λ of
70 TeV in a description with dimension-6 operators, and possibly much higher in some specific
new physics models.

Observable Current FCC-ee FCC-ee Comment,
value ± Error stat. syst. dominant experimental error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan,
beam energy calibration

ΓZ (keV) 2495200 ± 2300 7 100 From Z line shape scan,
beam energy calibration

RZ
` (×103) 20767 ± 25 0.06 0.2–1 Ratio of hadrons to leptons,

acceptance for leptons
αs(mZ) (×104) 1196 ± 30 0.1 0.4–1.6 From RZ

`

Rb (×106) 216290 ± 660 0.3 <60 Ratio of bb̄ to hadrons,
stat. extrapolated from SLD

σ0
had (×103) (nb) 41541 ± 37 0.1 4 Peak hadronic cross-section,

luminosity measurement
Nν(×103) 2991 ± 7 0.005 1 Z peak cross-sections,

luminosity measurement
sin2θeff

W (×106) 231480 ± 160 3 2–5 From Aµµ

FB from Aµµ

FB at Z peak,
beam energy calibration

1/αQED(mZ)(×103) 128952 ± 14 4 Small From Aµµ

FB off peak
Ab

FB, 0 (×104) 992 ± 16 0.02 1-3 b quark asymmetry at Z pole,
from jet charge

Apol,τ
FB (×104) 1498 ± 49 0.15 <2 τ polarisation and charge asymmetry,

τ decay physics
mW (MeV) 80350 ± 15 0.5 0.3 From WW threshold scan,

beam energy calibration
ΓW (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan,

beam energy calibration
αs(mW)(×104) 1170 ± 420 3 Small From RW

`

Nν(×103) 2920 ± 50 0.8 Small Ratio of invisible to leptonic,
in radiative Z returns

mtop (MeV/c2) 172740 ± 500 17 Small From tt̄ threshold scan,
QCD errors dominate

Γtop (MeV/c2) 1410 ± 190 45 Small From tt̄ threshold scan,
QCD errors dominate

λtop/λ
SM
top 1.2 ± 0.3 0.10 Small From tt̄ threshold scan,

QCD errors dominate
ttZ couplings ± 30% 0.5 – 1.5% Small From ECM = 365 GeV run
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improving theoretical calculations of the SM predictions, and for validations of the new physics
models beyond the SM. They are also useful for the comparison and combination of results from
different experiments. However, removing trivial but sizeable QED or QCD effects from EWPOs
might induce additional sources of uncertainty. The work needed is well-known concerning QED,
more significant conceptual work may need to be done for QCD.

Let us summarise briefly the mandatory improvements of the calculations of QED effects
in EWPOs according to recent work [6]:

1. improved calculation of the additional light fermion pair emissions (for Z boson mass and
width);

2. better calculation of the final-state radiation effects in the presence of cut-offs (for RZ
` );

3. implementation of a new QED matrix element in the Monte Carlo (MC) event gener-
ator for low-angle Bhabha processes (for the luminosity determination in view of the
measurement of σ0

had and other cross-sections);

4. O(α2) calculation for e+e− → Zγ (for the determination of Nν);

5. improved MC simulation of τ decays (for the effective weak mixing angle and tau branching
ratio measurements);

6. QED effects at the W pair production threshold (for measurement of the W mass and
width);

7. initial–final-state interference (e.g., for the forward–backward charge asymmetry of lepton
pairs around the Z peak).

For more on the related subject of the separation of QED effects from weak quantities
at the FCC-ee precision and generally on the improvements in the definition of EWPOs, see
recent discussions in Ref. [2]. A similar systematic discussion of the QCD effects in EWPOs is
in progress, see Ref. [2] and Section B.2 in this report.

For the FCC-ee data analysis, owing to the rise of non-factorisable QED effects above
the experimental uncertainties, direct use of MC programs might become the standard for
fitting EWPOs to the data, even at the Tera-Z stage [2, 6, 7]. New MC event generators will
have to provide built-in provisions for an efficient direct fitting of EWPOs to data, which are
not present in the LEP legacy MCs. Section C.3 of Ref. [2] describes possible forms of future
EWPOs at FCC-ee experiments and specifies the new required MC software. It is emphasized
there that, owing to non-factorisable QED contributions, the multiphoton QED effects will have
to be factorised at the amplitude level. Additional quantities available in tau and heavy flavour
physics will reach 10−5 precision and are likely to need similar attention.

Very precise determinations of MW at the FCC-ee will rely on the precise measurement
of the cross-section of the e+e− → W+W− process near the threshold. A statistical precision
of 0.04% of this cross-section translates into 0.6MeV experimental uncertainty on MW, com-
pared with the current 3MeV theoretical uncertainty for MW. Therefore, improved theoretical
calculations are required for the generic e+e− → 4f process near the WW threshold with an
improvement of one order of magnitude. The most economical solution will be to combine the
O(α1) calculation for the e+e− → 4f process with the O(α2) calculation for the doubly resonant
e+e− →W+W− subprocess. The former calculation is already available [8]. The latter will need
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to be developed; inclusion of the resummed QED corrections will be mandatory. For details,
see Chapter B and Ref. [9].

In the case of the FCC-ee-H, MH will be obtained from the e+e− → HZ process with a
precision better than 10MeV [3,10]. Theory uncertainties (mainly owing to final-state radiation
effects) will be subdominant. The main focus will be on calculations of Higgs boson branching
ratios and self-couplings. See Chapters B and E.

The anticipated experimental uncertainty on the mt measurement at FCC-ee-tt [2] is
O(20) MeV. On the theory side, there are several sources of uncertainties: (i) the perturbative
uncertainty for the calculation of the threshold shape with higher-order QCD corrections; (ii)
the threshold mass definition translated into the MS scheme; and (iii) the precision of αs.
Combining these three sources of uncertainty, a theoretical uncertainty close to the experimental
one and less than 50 MeV formt appears feasible.∗ In addition, a very accurate determination of
the efficiency of experimental acceptances and selection cuts is needed. This task will require the
inclusion of higher-order corrections and resummation results in a Monte Carlo event generator;
next-to-leading-order (NLO) QCD corrections for off-shell tt̄ production, and matching between
these contributions, complement previous semi-analytic results.

In this report, we are especially interested in the discussion of input parameters and of
EWPOs connected with W, H, and top production physics. These are masses of heavy SM
particles, their couplings, and also αQED and αQCD, which, as running quantities, must be
adjusted carefully at the considered high-energy regions. These issues will be discussed in this
report.

2 What this theory report brings: an overview
The report is divided into four basic chapters. Both the workshop and this report are mainly
devoted to precision theoretical calculations. It is a most important subject because the value
of most of the FCC-ee experimental analyses relies on the precision of the Standard Model and
BSM predictions.

In Chapter B, the status and prospects for measurements and determination of αQED and
αs at the FCC-ee are given, but also issues of QED and QCD resummations, an EFT radiative
correction approach to W boson production, heavy quarkonia, analysis of the weak mixing angle
from data (important, as it definitely has non-perturbative effects different from those in α),
QCD vertex functions beyond two loops, EFT and QED in flavour physics, top pair production
and mass determination, and a summary of SM precision predictions for partial Higgs decay
widths.

In Chapter C, numerical and analytical methods for precision multiloop calculations are
presented and recent advances in the field are discussed. The chapter is an addition to the 2018
report [2]. We mentioned already that Monte Carlo generators are very important, as they link
pure experimental data with theory. Generators for precision e+e− simulations, τ , top, and W
boson physics, heritage projects, and the need for proper software preservation with Monte
Carlo generators are also discussed in Chapter C.

Chapter D consists of only one contribution. SMEFT theory is a bridge between SM
physics and the analysis of extended gauge models. The chapter is connected with this issue
and a specific code is presented. For another discussion, see the talk by J. de Blas [12].

∗Examples show that estimations of higher-order corrections can differ from actual calculations by factors of
three to five [7, 11].
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In Chapter E, finally, three contributions are collected, about Higgs models that go beyond
the Standard Model theory.
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Chapter B

Precision calculations in the Standard Model

1 αQED, eff(s) for precision physics at the FCC-ee/ILC
Contribution∗ by: F. Jegerlehner [fjeger@physik.hu-berlin.de]

Discovering the ‘physics behind precision’ at future linear or circular colliders (ILC or FCC
projects) requires improved SM predictions based on more precise input parameters. I will
review the role of αQED, eff at future collider energies and report on possible progress based on
results from low-energy machines.

1.1 α(M2
Z) in precision physics (precision physics limitations)

Uncertainties of hadronic contributions to the effective fine structure constant α ≡ αQED are
a problem for electroweak (EW) precision physics. Presently, we have α, Gµ, and MZ as the
most precise input parameters, which, together with the top Yukawa coupling yt, the Higgs self-
coupling λ, and the strong interaction coupling αs allow us to make precision predictions for the
particle reaction cross-sections encompassed by the Standard Model (SM). The cross-section
data unfolded form detector and photon radiation resolution effects are often conveniently
representable in terms of so-called pseudo-observables, such as sin2 Θf , vf , af , MW, ΓZ, ΓW, . . . ,
as illustrated in Fig. B.1.1.

Because of the large 6% relative correction between α in the classical limit and the effective
value α(M2

Z) at the Z mass scale, where 50% of the shift is due to non-perturbative hadronic
effects, one is losing about a factor of five orders of magnitude in precision. Nevertheless, for the
vector boson Z and W, top quark, and Higgs boson precision physics possible at future e+e−
colliders, the best effective input parameters are given by α(MZ), Gµ, and MZ. The effective
α(s) at a process scale

√
s is given in terms of the photon vacuum polarisation (VP) self-energy

correction ∆α(s) by

α(s) = α

1−∆α(s) ; ∆α(s) = ∆αlep(s) + ∆α(5)
had(s) + ∆αtop(s) . (1.1)

To be included are the perturbative lepton and top quark contributions, in addition to the
non-perturbative hadronic VP shift ∆α(5)

had(s) from the five light quarks and the hadrons they
form.

∗This contribution should be cited as:
F. Jegerlehner, αQED, eff(s) for precision physics at the FCC-ee/ILC, DOI: 10.23731/CYRM-2020-003.9, in:
Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 9.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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SU(2)L ⊗ U(1)Y
Higgs mechanism

g2, g1, v
yt, λ, . . .

Thomson
scattering e+e−, ep,p ( )p̄

p ( )p̄, e+e−

→ Z

p ( )p̄, e+e−

→ H

e+e− → f f̄
e+e− → e+e−

νe,νN

µ-decay

e+e−

p ( )p̄, e+e−

→ W+W−

e+e−

p ( )p̄, e+e−

→ tt̄

α αs

MZ

MW

Gµ

Mtyt

MHλ

sin2 ΘW

vf , af

Fig. B.1.1: Many precisely measurable pseudo-observables associated with scattering-,
production-, and decay processes are interrelated and predictable in terms of a few independent
input parameters.

The current accuracies of the corresponding SM input parameter are:

δα
α

∼ 3.6 × 10−9 ,

δGµ

Gµ

∼ 8.6 × 10−6 ,

δMZ
MZ

∼ 2.4 × 10−5 ,

δα(MZ)
α(MZ) ∼ 0.9÷ 1.6 × 10−4 (present : lost 105 in precision!) ,
δα(MZ)
α(MZ) ∼ 5 × 10−5 (FCC-ee/ILC requirement) .

(1.2)

We further note that δMW/MW ∼ 1.5× 10−4 , δMH/MH ∼ 1.3× 10−3 , δMt/Mt ∼ 2.3× 10−3 ,
at present. Evidently, α(MZ) is the least precise among the basic input parameters α(MZ), Gµ,
and MZ, and requires a major effort of improvement. As an example, one of the most precisely
measured derived observables, the leptonic weak mixing parameter sin2 Θ` eff = (1− v`/a`)/4 =
0.231 48± 0.000 17 and also the related W mass MW = 80.379± 0.012GeV are affected by the
present hadronic uncdertainty δ∆α(MZ) = 0.000 20 in predictions by δ sin2 Θ` eff = 0.000 07 and
δMW/MW ∼ 4.3× 10−5, respectively.

Here, one has to keep in mind that, besides ∆α, there is a second substantial leading
one-loop correction, which enters the neutral to charged current effective Fermi-couplings ratio
ρ = GNC(0)/GCC(0) = 1 + ∆ρ , where ∆ρ = 3

√
2M2

t Gµ/16π2 is quadratic in the top quark
mass. The mentioned δMt/Mt uncertainty affects the MW and sin2 Θ` eff predictions, as given
by

δMW

MW
∼M2

W/(2M2
W −M2

Z) ·∆ρ δMt

Mt
∼ 1.3× 10−2 δMt

Mt
' 3.0× 10−5 , (1.3)
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δ sin2 Θf

sin2 Θf
∼ 2 cos2 Θf

cos2 Θf − sin2 Θf
∆ρ δMt

Mt
∼ 2.7× 10−2 δMt

Mt
' 6.2× 10−5 , (1.4)

which are comparable to the current uncertainties from δ∆α. Thus, an improvement of δMt by
a factor of five appears to be as important as an improvement of α(MZ). We are reminded that
the dependence on MH is very much weaker because of the custodial symmetry, which implies
the absence of M2

H corrections, such that only relatively weak logMH effects are remaining.
The input parameter uncertainties affect most future precision tests and may obscure

new physics searches! To reduce hadronic uncertainties for perturbative QCD (pQCD) contri-
butions, last but not least, it is also very crucial to improve the precision of QCD parameters
αs, mc, mb, mt, which is also a big challenge for lattice QCD.

1.1.1 The relevance of α(M2
Z)

Understanding precisely even the simplest four-fermion, vector boson, and Higgs boson pro-
duction and decay processes, requires very precise input parameters.

Unlike in QED and QCD in the SM, a spontaneously broken non-Abelian gauge theory,
there are intricate parameter inter-dependences, all masses are related to couplings, and only six
quantities (besides f 6= t fermion masses and mixing parameters), α, Gµ, andMZ, in addition to
the QCD coupling αs, the top quark Yukawa coupling y, and the Higgs boson self-coupling λH,
are independent. The effective α(M2

Z) exhibits large hadronic correction that affects prediction-
like versions of the weak mixing parameter via

sin2 Θi cos2 Θi = π α√
2Gµ M2

Z

1
1−∆ri

; ∆ri = ∆ri(α,Gµ,MZ,mH,mf 6=t,mt) , (1.5)

with quantum corrections from gauge-boson self-energies and vertex and box corrections, where
∆ri depends on the definition of sin2 Θi. The various definitions coincide at tree level and hence
only differ by quantum effects. From the weak gauge-boson masses, the electroweak gauge
couplings, and the neutral current couplings of the charged fermions, we obtain

sin2 ΘW = 1− M2
W

M2
Z
, (1.6)

sin2 Θg = e2/g2 = πα√
2Gµ M2

W
, (1.7)

sin2 Θf = 1
4|Qf |

(
1− vf

af

)
, f 6= ν , (1.8)

for the most important cases and the general form of ∆ri reads

∆ri = ∆α− fi(sin2 Θi) ∆ρ+ ∆ri reminder , (1.9)

with a universal term ∆α, which affects the predictions of MW, ALR, Af
FB, Γf , etc. The leading

corrections are ∆α(M2
Z) = Π′

γ
(0)− Re Π′

γ
(M2

Z) from the running fine structure constant and

∆ρ = ΠZ(0)
M2

Z
− ΠW(0)

M2
W

+ 2 sin ΘW

cos ΘW

ΠγZ(0)
M2

Z
,

which is proportional to Gµ M
2
t and therefore large, dominated by the heavy top quark mass

effect, or by the large top Yukawa coupling.
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The uncertainty δ∆α implies uncertainties δMW, δ sin2 Θi given by

δMW

MW
∼ 1

2
sin2 ΘW

cos2 ΘW − sin2 ΘW
δ∆α ∼ 0.23 δ∆α , (1.10)

δ sin2 Θf

sin2 Θf
∼ cos2 Θf

cos2 Θf − sin2 Θf
δ∆α ∼ 1.54 δ∆α . (1.11)

Also affected are the important relationships between couplings and masses, such as

λ = 3
√

2Gµ M
2
H (1 + δH(α, . . . )) ; y2

t = 2
√

2Gµ M
2
t (1 + δt(α, . . . ) , (1.12)

which currently offer the only way to determine λ and yt via the experimentally accessible
masses MH and Mt. Direct measurement of λ and yt will probably be possible only at future
lepton colliders, such as the FCC-ee.

The parameter relationships between very precisely measurable quantities provide strin-
gent precision tests and, at high enough precision, would reveal the physics missing within the
SM. Currently, the non-perturbative hadronic contribution ∆α(5)

had(M2
Z) limits the precision pre-

dictions. Concerning the relevance of quantum corrections and their precision, one should keep
in mind that a 30 SD disagreement between some SM prediction and experiment is obtained
when subleading SM corrections are neglected, and only the leading corrections ∆α(M2

Z) and
∆ρ in Eq. (1.9) are accounted for.

Calculate, for example, the W and Z mass from α(MZ), Gµ and sin2 Θ` eff : first sin2 ΘW = 1−M2
W/M

2
Z

is related to sin2 θ`,eff(MZ) via

sin2 θ`,eff(MZ) =
(

1 + cos2 ΘW

sin2 ΘW
∆ρ
)

sin2 ΘW ,

where the leading top quark mass square correction is

∆ρ = 3M2
t
√

2Gµ

16 π2 ; Mt = 173± 0.4GeV .

The iterative solution with input sin2 θ`,eff(MZ) = 0.23148 is sin2 ΘW = 0.224 26 while 1−M2
W/M

2
Z = 0.222 63

is what one gets using PDG:

M exp
W = 80.379± 0.012GeV ; M exp

Z = 91.1876± 0.0021GeV .

Predicting, then, the masses, we have

MW = A0

sin2 ΘW
; A0 =

√
πα√
2Gµ

; MZ = MW

cos ΘW

where, including photon VP correction α−1(MZ) = 128.953± 0.016. For the W and Z masses, we then get

M the
W = 81.1636± 0.0346GeV ; M the

Z = 92.1484± 0.0264GeV .

This gives the following SD values:
W : 23σ ; Z : 36σ

Uncertainties from sin2 θ, α(MZ), and Mt, as well as experimental uncertainties, are added in quadrature.
The result is, of course, scheme-dependent, but illustrates well the sensitivity to taking into account the proper
radiative corrections. Actually, including full one-loop and leading two-loop corrections reduces the disagreement
below the 2σ level.
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LHC

⇤ (GeV)

M
H

(G
e
V

)

Fig. B.1.2: Left: Plot by Riesselmann and Hambye in 1996, the first two-loop analysis after
knowing Mt from CDF [2]. Right: the SM dimensionless couplings in the MS scheme as a
function of the renormalization scale for MH = 124–126GeV, which were obtained in Refs.
[1, 3–5].

1.2 The ultimate motivation for high-precision SM parameters
After the ATLAS and CMS Higgs discovery at the LHC, the Higgs vacuum stability issue is one
of the most interesting to be clarified at future e+e− facilities. Much more surprising than the
discovery of its true existence is the fact that the Higgs boson turned out to exhibit a mass very
close to what has been expected from vacuum stability extending up to the Planck scale ΛPl
(see Fig. B.1.2). There appears to be a very tricky conspiracy with other couplings to achieve
this ‘purpose’. Related is the question of whether the SM allows us to extrapolate up to the
Planck scale. Thus, the central issue for the future is the very delicate ‘acting together’ between
SM couplings, which makes the precision determination of SM parameters more important than
ever. Therefore, higher-precision SM parameters g′, g, gs, yt, and λ are mandatory for progress
in this direction. Actually, the vacuum stability is controversial at present at the 1.5σ level
between a metastable and a stable EW vacuum, which depends on whether λ stays positive up
to ΛPl or not. This is illustrated in Fig. B.1.3. If the SM extrapolates stable to ΛPl, obviously the
resulting effective parameters affect early cosmology, Higgs inflation, Higgs reheating, etc. [1].
The sharp dependence of the Higgs vacuum stability on the SM input parameters, as well as
on possible SM extensions and the vastly different scenarios that can result as a consequence
of minor shifts in parameter space, makes the stable vacuum case a particularly interesting one
and it could reveal the Higgs particle as ‘the master of the Universe’. After all, it is commonly
accepted that dark energy provided by some scalar field is the ‘stuff’ shaping the Universe both
at very early (inflation) as well as at late times (accelerated expansion).

It is highly conceivable that perturbation expansion works up to the Planck scale with-
out a Landau pole or other singularities and that the Higgs potential remains (meta)stable!
The discovery of the Higgs boson has supplied us, for the first time, with the complete set of
SM parameters and, for the peculiar SM configuration, revealed that all SM couplings, with
the exception of the hypercharge g1, are decreasing with energy. Very surprisingly, this implies
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Fig. B.1.3: Left: Shaposhnikov et al. and Degrassi et al. matching [6, 7]. Right: The shaded
bands show the difference in the SM parameter extrapolation using the central values of the
MS parameters obtained from differences in the matching procedures.

that perturbative SM predictions improve at higher energies. More specifically, the pattern
now looks as follows: the gauge coupling related to U(1)Y is screening (IR-free), the couplings
associated with SU(2)L and SU(3)c are antiscreening (UV-free). Thus g1, g2, and g3 behave as
expected (standard wisdom). By contrast, the top Yukawa coupling yt and Higgs self-coupling
λ, while screening if stand-alone (IR-free, like QED), as part of the SM are transmuted from
IR-free to UV-free. The SM reveals an amazing parameter conspiracy, which reminds us of
phenomena often observed in condensed matter systems: “There is a sudden rapid passage to
a totally new and more comprehensive type of order or organisation, with quite new emergent
properties” [8], i.e., there must be reasons that couplings are as they are. This manifests itself
in the QCD dominance within the renormalization group (RG) of the top Yukawa coupling,
which requires g3 > 3 yt/4, and in the top Yukawa dominance within the RG of the Higgs boson
coupling, which requires λ < 3 (

√
5− 1) y2

t /2 in the gaugeless (g1, g2 = 0) limit. Under focus
is the Higgs self-coupling. Does it stay positive λ > 0 up to ΛPl? A zero-valued λ would be
an essential singularity. The key problem concerns the precise size of the top Yukawa coupling
yt, which decides the stability of our world! The metastability vs. stability controversy will be
decided by obtaining more precise input parameters and by better-established EW matching
conditions. Most important in this context is the direct measurement of yt and λ at future e+e−
colliders, but also the important role that the running gauge couplings are playing requires sub-
stantial progress in obtaining more precise hadronic cross-sections in order to reduce hadronic
uncertainties in α(MZ) and α2(MZ). This is a big challenge for low-energy hadron facilities.
Complementary, progress in lattice QCD simulations of two-point correlators will be important
to pin down hadronic effects from first principles. Such improvement in SM precision physics
could open a new gateway to precision cosmology of the early Universe!

1.3 R data evaluation of α(M2
Z)

What we need is a precise calculation of the hadronic photon vacuum polarisation function.
The non-perturbative hadronic piece from the five light quarks ∆α(5)

had(s) = −(Π′
γ
(s)−Π′

γ
(0))(5)

had
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γ γ
had ⇔ γ

had

2

Fig. B.1.4: The master equation (1.13), relating Π′ had
γ (q2) and σhad

tot (q2), is based on analyticity
and the optical theorem.

can be evaluated in terms of σ(e+e− → hadrons) data via the dispersion integral

∆α(5)
had(s) = −α s3π

(
P
E2

cut∫
m2

π0

ds′
Rdata

γ
(s′)

s′(s′ − s) + P
∞∫

E2
cut

ds′
RpQCD

γ
(s′)

s′(s′ − s)

)
, (1.13)

where Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/(4πα2/3s) measures the hadronic cross-section in
units of the tree-level e+e− → µ

+
µ
− cross-section sufficiently above the muon pair production

threshold (s� 4m2
µ
). The master equation (Eq. (1.13)) is based on analyticity and the optical

theorem, as shown in Fig. B.1.4.
A compilation of the available R data is shown in Fig. B.1.5 for the low-energy ππ channel

and in Fig. B.1.6 for R(s) above the ρ resonance peak. Since the mid 1990s [9], enormous
progress has been achieved, also because the new initial-state radiation (ISR) radiative return
approach† provided good statistics data from φ and B meson factories (see Refs. [10–53]). Still,
an issue in hadronic vacuum polarisation (HVP) is the region 1.2–2GeV, where we have a
test ground for exclusive (more than 30 channels) versus inclusive R measurements, where
data taking or data analysis is ongoing with CMD-3 and SND detectors (scan) and BaBar
and BESIII detector data (radiative return). The region still contributes about 50% to the
uncertainty of the hadronic contribution to the muon g − 2, as we may learn from Fig. B.1.9,
in the next section. Above 2GeV, fairly accurate BES II data [49–51] are available. Recently,
a new inclusive determination of Rγ(s) in the range 1.84–3.72 GeV has been obtained with the
KEDR detector at Novosibirsk [52, 53] (see Fig. B.1.7). At present, the results from the direct
and the Adler function improved approach, to be discussed in Section 1.4, reads

∆α(5)
hadrons(M2

Z) = 0.0277 56± 0.000 157
0.027563± 0.000120 Adler

α−1(M2
Z) = 128.916± 0.022

128.953± 0.016 Adler (1.14)

In Fig. B.1.8, we show the effective fine structure constant as a function of the c.m. energy
E =

√
s, for the time-like and space-like regions. The question now is: what are the possible

improvements?

1. Evidently, a direct improvement of the dispersion integral involves reducing the uncer-
tainty of R(s) to 1% up to above the Υ resonances; probably, nobody will do that. One
may rely on pQCD above 1.8GeV and refer to quark–hadron duality, as in Ref. [57]. Then
experimental input above 1.8GeV is not required. But then we are left with questions

†This was pioneered by the KLOE Collaboration, followed by BaBar and BESIII experiments.
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Fig. B.1.5: The low-energy tail of R is provided by π
+

π
− production data. Shown is a compilation

of the modulus square of the pion form factor in the ρ meson region. The corresponding R(s) is
given by R(s) = 1

4 β
3
π
|F (0)

π
(s)|2 , βπ = (1− 4m2

π
/s)1/2 is the pion velocity (s = E2). Data from

CMD-2, SND, KLOE, BaBar, BESIII, and CLEOc [10–24] besides some older sets.

Fig. B.1.6: The compilation of R(s) data utilised in the evaluation of ∆αhad. The bottom
line shows the relative systematic uncertainties within the split regions. Different regions are
assumed to have uncorrelated systematics. Data from Refs. [25–53] and others. We apply pQCD
from 5.2GeV to 9.46GeV and above 11.5GeV using the code of Ref. [54].
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2012 2017

excl. vs incl. clash

Fig. B.1.7: Illustrating progress by BaBar and NSK exclusive channel data vs. new inclusive
data by KEDR. Why is the point at 1.84GeV so high?
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Fig. B.1.8: Left: The effective α(s) at time-like vs. space-like momentum transfer, showing
quark–hadron duality at work. In the time-like region, the effective charge varies dramatically
near resonances but agrees quite well on average with the space-like version. Locally, it is
ill-defined near OZI suppressed meson decays J/ψ,ψ1,Υ1,2,3 where Dyson series of self-energy
insertions do not converge (see Section 5 of Ref. [55]). Right: A first experimental determination
of the effective charge in the ρ resonance region by KLOE-2 [56], which demonstrates the
pronounced variation of the vacuum polarisation (charge screening) across a resonance.

about where precisely to assume thresholds and what are the mass effects near thresholds.
Commonly, pQCD is applied, taking into account uncertainties in αs only. This certainly
does not provide a result that can be fully trusted, although the R data integral in this
range is much less precise at present. The problem is that, in this theory-driven approach,
70% of ∆α(5)

had (M2
Z) comes from pQCD. Thereby, one has to assume that, in the time-

like region above 1.8GeV, pQCD, on average, is as precise as the usually adopted MS
parametrization suggests. Locally, pQCD does not work near thresholds and resonances,
obviously.

- 17 -



F. Jegerlehner

Table B.1.1: ∆α(5)
had(MZ) in terms of e+e− data and pQCD. The last two columns list the relative

accuracy and the percentage contribution of the total. The systematic uncertainties (syst) are
assumed to be independent among the different energy ranges listed in the table.

Final state Range ∆α(5)
had × 104 (stat) (syst) [tot] Rel Abs

(GeV) (%) (%)
ρ (0.28, 1.05) 34.14 (0.03) (0.28) [0.28] 0.8 3.1
ω (0.42, 0.81) 3.10 (0.03) (0.06) [0.07] 2.1 0.2
φ (1.00, 1.04) 4.76 (0.04) (0.05) [0.06] 1.4 0.2
J/ψ 12.38 (0.60) (0.67) [0.90] 7.2 31.9
Υ 1.30 (0.05) (0.07) [0.09] 6.9 0.3
Had (1.05, 2.00) 16.91 (0.04) (0.82) [0.82] 4.9 26.7
Had (2.00, 3.20) 15.34 (0.08) (0.61) [0.62] 4.0 15.1
Had (3.20, 3.60) 4.98 (0.03) (0.09) [0.10] 1.9 0.4
Had (3.60, 5.20) 16.84 (0.12) (0.21) [0.25] 0.0 2.4
pQCD (5.20, 9.46) 33.84 (0.12) (0.25) [0.03] 0.1 0.0
Had (9.46,11.50) 11.12 (0.07) (0.69) [0.69] 6.2 19.1
pQCD (11.50, 0.00) 123.29 (0.00) (0.05) [0.05] 0.0 0.1
Data (0.3,∞) 120.85 (0.63) (1.46) [1.58] 1.0 0.0
Total 277.99 (0.63) (1.46) [1.59] 0.6 100.0

2. The more promising approach discussed in the following relies on the Euclidean split
method (Adler function controlled pQCD), which only requires improved R measure-
ments in the exclusive region from 1 to 2GeV. Here, NSK, BESIII, and Belle II can top
what BaBar has achieved. However, in this rearrangement, a substantially more precise
calculation of the pQCD Adler function is as important. Required is an essentially exact
massive four-loop result, which is equivalent to sufficiently high-order low- and high-energy
expansions, of which a few terms are available already [58].

Because of the high sensitivity to the precise charm and bottom quark values, one also
needs better parameters mc and mb besides αs. Here one can profit from activities going on
anyway and the FCC-ee and ILC projects pose further strong motivation to attempt to reach
higher precision for QCD parameters.

1.3.1 ∆αhad(M2
Z) results from ranges

Table B.1.1 shows the contributions and uncertainties to ∆α(5)
had(MZ) for MZ = 91.1876GeV in

units 10−4 from different regions. Typically, depending on cuts applied, the direct evaluation of
the dispersion integral of R yields 43% from data and 57% from perturbative QCD. Here, pQCD
is used between 5.2GeV and 9.5GeV and above 11.5GeV. Systematic uncertainties are taken
to be correlated within the different ranges, but taken as independent between the different
ranges.

In Fig. B.1.9, we illustrate the relevance of different energy ranges by comparing the
hadronic contribution to the muon g − 2 with that to the hadronic shift of the effective charge
at MZ. The point is that the new muon g − 2 experiments strongly motivate efforts the mea-
sure R(s) in the low-energy region more precisely. From Fig. B.1.9, we learn that low-energy
data alone are not able to substantially improve a direct evaluation of the dispersion integral
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Fig. B.1.9: A comparison of the weights and square uncertainties between ahad
µ

and ∆α(5)
had (M2

Z)
of contributions from different regions. It reveals the importance of the different energy regions.
In contrast to the low-energy dominated ahad

µ
, ∆α(5)

had (M2
Z) is sensitive to data from much higher

energies.

(Eq. (1.13)). Therefore, to achieve the required factor of five improvement, alternative methods
to determine ∆α(5)

had(s) at high energies must be developed.

1.4 Reducing uncertainties via the Euclidean split trick: Adler function controlled
pQCD

As we learn from Fig. B.1.6, it is difficult, if not impossible, to tell at what precision pQCD
can replace data. This especially concerns resonance and threshold effects and to what extent
quark–hadron duality can be made precise. This is much simpler to accommodate by com-
parison in the Euclidean (space-like) region, as suggested by Adler [59] a long time ago and
successfully tested [60]. As the data pool has been improving greatly, the ‘experimental’ Adler
function is now known with remarkable precision. Actually, on the experimental side, new more
precise measurements of R(s) are being made, primarily in the low-energy range. On the theory
side, pQCD calculations for Euclidean two-point current correlators are expected to be pushed
further. Advances are also expected from lattice QCD, which can also produce data for the Adler
function. As suggested in Refs. [61–63], in the Euclidean region, a split into a non-perturbative
and a pQCD part is self-evident. One may write

α
(
M2

Z

)
= αdata

(
−M2

0

)
+
[
α
(
−M2

Z

)
− α

(
−M2

0

)]pQCD
+
[
α
(
M2

Z

)
− α

(
−M2

Z

)]pQCD
, (1.15)

where the space-like offset M0 is chosen such that pQCD is well under control for −s < −M2
0 .

The non-perturbative offset αdata(−M2
0 ) may be obtained by integrating R(s) data, by choosing

s = −M2
0 in Eq. (1.13).

The crucial point is that the contribution from different energy ranges to αdata(−M2
0 )

is very different from those to αdata(M2
Z). Table B.1.1 now is replaced by Table B.1.2, where

αdata(−M2
0 ) is listed for M0 = 2GeV in units 10−4. Here 94% results using data and only
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Table B.1.2: ∆α(5)
had(−M2

0 ) at M0 = 2GeV in terms of e+e− data and pQCD. Labels as in
Table B.1.1.

Final state Range ∆α(5)
had(−M2

0 )× 104 (stat) (syst) [tot] Rel Abs
(GeV) (%) (%)

ρ (0.28, 1.05) 29.97 (0.03) (0.24) [0.24] 0.8 14.3
ω (0.42, 0.81) 2.69 (0.02) (0.05) [0.06] 2.1 0.8
φ (1.00, 1.04) 3.78 (0.03) (0.04) [0.05] 1.4 0.6
J/ψ 3.21 (0.15) (0.15) [0.21] 6.7 11.2
Υ 0.05 (0.00) (0.00) [0.00] 6.8 0.0
Had (1.05, 2.00) 10.56 (0.02) (0.48) [0.48] 4.6 56.9
Had (2.00, 3.20) 6.06 (0.03) (0.25) [0.25] 4.2 15.7
Had (3.20, 3.60) 1.31 (0.01) (0.02) [0.03] 1.9 0.2
Had (3.60, 5.20) 2.90 (0.02) (0.02) [0.03] 0.0 0.2
pQCD (5.20, 9.46) 2.66 (0.02) (0.02) [0.00] 0.1 0.0
Had (9.46, 11.50) 0.39 (0.00) (0.02) [0.02] 5.7 0.1
pQCD (1.50, 0.00) 0.90 (0.00) (0.00) [0.00] 0.0 0.0
Data (0.3, ∞) 60.92 (0.16) (0.62) [0.64] 1.0 0.0
Total 64.47 (0.16) (0.62) [0.64] 1.0 100.0

6% pQCD, applied again between 5.2GeV and 9.5GeV and above 11.5GeV. Of ∆α(5)
had(M2

Z)
22% data, 78% pQCD! The split point, M0, may be shifted to optimise the uncertainty con-
tributed from the pQCD part and the data based offset value. A reliable estimate of the latter
is mandatory and we have also crosschecked its evaluation using the phenomenological effective
Lagrangian global fit approach [64, 65], specifically, within the broken hidden local symmetry
implementation.

In Fig. B.1.10, we illustrate the relevance of different energy ranges by comparing the
hadronic shift of the effective charge as evaluated at space-like low-energy scale M0 = 2 GeV
with those at the time-like MZ scale. The crucial point is that the profile of the offset α at M0
much more closely resembles the profile found for the hadronic contribution to aµ and improving
ahad

µ
automatically leads to an improvement of ∆α(5)

had(−M2
0 ); this is the profit gained from the

Euclidean split trick.
What does this have to do with the Adler function? (i) The Adler function is the monitor

to control the applicability of pQCD and (ii) the pQCD part [α(−M2
Z)− α(−M2

0 )]pQCD is
favourably calculated by integrating the Adler function D(Q2). The small remainder
[α(M2

Z)− α(−M2
Z)]pQCD can be obtained in terms of the VP function Π′

γ
(s). In fact, the Adler

function is the ideal monitor for comparing theory and data. The Adler function is defined as
the derivative of the VP function:

D(−s) .= 3π

α
s

d
ds∆αhad(s) = −

(
12π

2
)
s

dΠ′
γ
(s)

ds (1.16)

and can be evaluated in terms of e+e− annihilation data by the dispersion integral

D(Q2) = Q2

 E2
cut∫

4m2
π

ds R(s)data

(s+Q2)2 +
∫ ∞
E2

cut

ds R
pQCD(s)

(s+Q2)2

 . (1.17)
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Fig. B.1.10: Contributions and square errors from e+e− data ranges and from pQCD to
∆α(5)

had(−M2
0 ) vs. ∆α(5)

had(M2
Z).

It is a finite object not subject to renormalization and it tends to a constant in the high-energy
limit, where it is perfectly perturbative. Comparing the direct R(s)-based and the D(Q2)-based
methods

pQCD ↔ R(s) pQCD ↔ D(Q2)
Very difficult to obtain Smooth simple function

in theory in Euclidean region

we note that in the time-like approach pQCD only works well in ‘perturbative windows’ roughly
in the ranges 3.00–3.73GeV, 5.00–10.52GeV and 11.50GeV to ∞ [54], while in the space-like
approach pQCD works well for Q > 2.0GeV, a clear advantage.

In Fig. B.1.11, the ‘experimental’ Adler function is confronted with theory (pQCD +
NP). Note that, in contrast to most xfR plots, like Fig. B.1.6, showing statistical errors only, in
Fig. B.1.11. the total error is displayed as the shaded band. We see that while one-loop and two-
loop predictions clearly fail to follow the data band, a full massive three-loop QCD prediction
in the gauge-invariant background field MOM scheme [66] reproduces the experimental Adler
function surprisingly well. This has been worked out [60] by Padé improvement of the moment
expansions provided in Refs. [67–69]. Figure B.1.11 also shows that non-perturbative (NP)
contributions from the quark and gluon condensates [70, 71]‡ start to contribute substantially
only at energies where pQCD fails to converge because one is approaching the Landau pole in
MS parametrized QCD. Strong coupling constant freezing, as in analytic perturbation theory,
advocated in Ref. [72] or similar schemes, is not actually able to improve the agreement in the
low-energy regime. Coupling constant freezing also contradicts lattice QCD results [73].

From the three terms of Eq. (1.15), we already know the low-energy offset ∆αhad(−M2
0 ) for

M0 = 2.0GeV. We obtain the second term by integrating the pQCD predicted Adler function

∆1 = ∆αhad
(
−M2

Z

)
−∆αhad

(
−M2

0

)
= α

3π

∫ M2
Z

M2
0

dQ′2
D
(
Q′2

)
Q′2

, (1.18)

‡These are evaluated by means of operator product expansions; the explicit expressions may be found in
Ref. [60].
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Fig. B.1.11: Monitoring pQCD vs. data: the pQCD prediction of D(Q2) works well down to
M0 = 2.0GeV, provided full massive QCD at three-loop order or higher is employed.

based on a complete three-loop massive QCD analysis. The QCD parameters used are αs(MZ) =
0.1189(20),mc(mc) = 1.286(13)[Mc = 1.666(17)]GeV , mb(mc) = 4.164(25)[Mb = 4.800(29)]GeV .
The result obtained is

∆1 = ∆αhad
(
−M2

Z

)
−∆αhad

(
−M2

0

)
= 0.021 074± 0.000 100 .

This includes a shift +0.000 008 from the massless four-loop contribution included in the
high-energy tail. The error ±0.000 100 will be added in quadrature. Up to three loops, all
contributions have the same sign and are substantial. Four-loop and higher orders could still
add up to non-negligible contributions. An error for missing higher-order terms is not included.

The remaining term concerns the link between the space-like and the time-like region at
the Z boson mass scale and is given by the difference

∆2 = ∆α(5)
had

(
M2

Z

)
−∆α(5)

had

(
−M2

Z

)
= 0.000 045± 0.000 002 ,

which can be calculated in pQCD. It accounts for the iπ-terms from the logs ln(−q2/µ2) =
ln(|q2/µ2|) + iπ. Since the term is small, we can also get it from direct data integration based
on our data compilation. We obtain ∆αhad (−M2

Z) = 276.44± 0.64± 1.78 and ∆αhad (+M2
Z) =

276.84± 0.64± 1.90, and taking into account that errors are almost 100% correlated, we have
∆αhad(M2

Z)−∆αhad(−M2
Z) = 0.40± 0.12 less precise but in agreement with the pQCD result.

We then have

∆α(5)
had

(
−M2

0

)data
= 0.006 409± 0.000 063

∆α(5)
had

(
−M2

Z

)
= 0.027 483± 0.000 118
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∆α(5)
had

(
M2

Z

)
= 0.027 523± 0.000 119 .

To get α−1(M2
Z), we also have to include the leptonic piece [74]

∆αlep
(
M2

Z

)
' 0.031 419 187 418 , (1.19)

and the top quark contribution. A very heavy top quark decouples as

∆αtop ' −
α

3π

4
15

s

m2
t
→ 0

when mt � s. At s = M2
Z, the top quark contributes

∆αtop
(
M2

Z

)
= −0.76× 10−4 . (1.20)

Collecting terms, this leads to the result presented in Eq. (1.14). One should note that the Adler
function controlled Euclidean data vs. pQCD split approach is only moderately more pQCD-
driven than the time-like approach adopted by Davier et al. [57] and others, as follows from the
collection of results shown in Fig. B.1.12. The point is that the Adler function driven method
only uses pQCD where reliable predictions are possible and direct cross checks against lattice
QCD data may be carried out. Similarly, possible future direct measurements of α(−Q2) in µ-e
scattering [75] can provide Euclidean HVP data, in particular, also for the offset ∆αhad(−M2

0 ) .

1.5 Prospects for future improvements
The new muon g − 2 experiments at Fermilab and at JPARC in Japan (expected to go into
operation later) trigger the continuation of e+e− → hadrons cross-section measurements in the
low-energy region by CMD-3 and SND at BINP Novosibirsk, by BES III at IHEP Beijing and
soon by Belle II at KEK Tsukuba. This automatically helps to improve ∆α(−M2

0 ) and hence
α(M2

Z) via the Adler function controlled split-trick approach. Equally important are the results
from lattice QCD, which come closer to being competitive with the data-driven dispersive
method.

The improvement by a factor of five to ten in this case largely relies on improving the
QCD prediction of the two-point vector correlator above the 2GeV scale, which is a well-defined
and comparably simple task. The mandatory pQCD improvements required are as follows.

(a) Four-loop massive pQCD calculation of Adler function. In practice, this requires the calcu-
lation of a sufficient number of terms in the low- and high-momentum series expansions,
such that an accurate Padé improvement is possible.

(b) mc, mb improvements by sum rule or lattice QCD evaluation.
(c) Improved αs in low Q2 region above the τ mass.

Note that the direct dispersion relations (DR) approach requires precise data up to much
higher energies or a heavy reliance on the pQCD calculation of the time-like R(s)! The virtues
of the Adler function approach are obvious:

(a) no problems with physical threshold and resonances;
(b) pQCD is used only where we can check it to work accurately (Euclidean Q>∼ 2.0GeV);
(c) no manipulation of data, no assumptions about global or local duality;
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Davier, Höcker 1998

[20%,79%]
Erler 1998

[56%,43%]
Burkhardt, Pietrzyk 2001

[54%,45%]
Hagiwara et al. 2004

[38%,41%]
Jegerlehner 2006 direct

[26%,73%]
Jegerlehner 2006 Adler

[50%,49%]
Hagiwara et al. 2011

[29%,70%]
Davier et al. 2011

[45%,54%]
Jegerlehner 2016 direct

[21%,77%]
Jegerlehner 2016 Adler

Fig. B.1.12: How much pQCD? Here a history of results by different authors. It shows that the
Adler function controlled approach to ∆α(5)

had (M2
Z) is barely more pQCD-driven than many of

the standard evaluations. The pQCD piece is 70% in Davier et al. [57] and 77% in our Adler-
driven case, with an important difference: in the Adler-controlled case, the major part of 71%
is based on pQCD in the space-like region and only 6% contributing to the non-perturbative
offset value is evaluated in the time-like region, while in the standard theory-driven, as well as
in the more data-driven approaches, pQCD is applied in the time-like region, where it is much
harder to be tested against data.

(d) the non-perturbative ‘remainder’ ∆α(−M2
0 ) is mainly sensitive to low-energy data;

(e) ∆α(−M2
0 ) would be directly accessible in a MUonE experiment (project) [75] or in lattice

QCD.

In the direct approach, e.g., Davier et al. [57] use pQCD above 1.8GeV, which means that no
error reduction follows from remeasuring cross-sections above 1.8GeV. Also, there is no proof
that pQCD is valid at 0.04% precision as adopted. This is a general problem when utilising
pQCD at time-like momenta exhibiting non-perturbative features.

What we can achieve is illustrated in Fig. B.1.13 and Table B.1.3. Our analysis shows that
the Adler function inspired method is competitive with Patrick Janot’s [76] direct near-Z pole
determination via a measurement of the forward–backward asymmetry Aµµ

FB in e+e− → µ
+

µ
−.

The modulus square of the sum of the two tree-level diagrams has three terms: the Z exchange
alone, Z ∝ (M2

ZGµ)2, the γ–Z interference, I ∝ α(s)M2
ZGµ, and the γ-exchange only, G ∝ α2(s).

The interference term determines the forward–backward (FB) asymmetry, which is linear in
α(s); v denotes the vector Zµµ coupling that depends on sin2 Θ` eff(s), while a denotes the axial
Zµµ coupling that is sensitive to the ρ-parameter (strongMt dependence). In extracting α(M2

Z),
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270 280
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space-like split

∆α
(5)
had(M

2
Z) in units 10−4

?

?

?

?

276.00 ± 0.90 e+e− Davier et al. 2017

276.11 ± 1.11 e+e− Keshavarzi et al. 2017

277.56 ± 1.57 e+e− my update 2017

277.56 ± 0.85 e+e− δσ < 1% < 11 GeV

276.07 ± 1.27 e+e− M0 = 2.5 GeV Adler 2017

275.63 ± 1.20 e+e− M0 = 2.0 GeV Adler

275.63 ± 1.06 e+e− δσ < 1% < 2 GeV

275.63 ± 0.54 e+e− + pQCD error ≤ 0.2%

275.63 ± 0.40 e+e− + pQCD error ≤ 0.1%

Fig. B.1.13: Comparison of possible improvements. My ‘direct’ analysis is data-driven, adopting
pQCD in the window 5.2–9.5GeV and above 11.5GeV . The Adler-driven results under ‘space-
like split’ show the current status for the two offset energies, M0 = 2.5GeV and 2GeV. The
improvement potential is displayed for three options: reducing the error of the data offset by a
factor of two, improving pQCD to a 0.2% precision Adler function in addition and the same by
improving pQCD to a 0.1% precision Adler function. The direct results are from Refs. [57,77,78].

one is using the v and a couplings as measured at the Z peak directly. At tree level, one then
has

Aµµ

FB = Aµµ

FB,0 + 3 a2

4 v2
I

Z + G ; Aµµ

FB,0 = 3
4

4v2a2

(v2 + a2)2 , (1.21)

where

G =
c2

γ

s
, I = 2cγcZ v

2 (s−M2
Z)

(s−M2
Z)2 +M2

ZΓ2
Z
, Z = c2

Z (v2 + a2) s
(s−M2

Z)2 +M2
ZΓ2

Z

cγ =
√

4π

3 α(s) , cZ =
√

4π

3
M2

Z
2π

Gµ√
2
, v =

(
1− 4 sin2 Θ`

)
a , a = −1

2 .

Note thatM2
ZGµ = M2

WGµ/ cos2 ΘW = π (α2(s))/
√

2(cos2 Θg(s)) and sin2 Θg(s) = α(s)/α2(s).
i.e., all parameters vary more or less with energy, depending on the renormalization scheme
utilised. The challenges for this direct measurement are precise radiative corrections (see Refs. [79,
80] and references therein) and the required dedicated off-Z peak running. Short accounts of
the methods proposed for improving α(M2

Z) may be found in Sections 8 and 9 of Ref. [81].
The Adler function based method is much cheaper, I think, and does not depend on

understanding the Z peak region with unprecedented precision. Another very crucial point may
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Table B.1.3: Precision in α(M2
Z)

Present Direct 1.7× 10−4

Adler 1.2× 10−4

Future Adler QCD 0.2% 5.4× 10−5

Adler QCD 0.1% 3.9× 10−5

Future Via Aµµ

FB off-Z 3 × 10−5 [76]

Table B.1.4: Possible achievements for the FCC-ee project
√
s

√
t̄ 1996 [83,84] Present FCC-ee expected [82]

(GeV)
MZ 3.5 0.040% 0.013% 0.6× 10−4

350 GeV 13 1.2× 10−4 2.4× 10−4

γ ↑ t

e−

e+

e−

e+

γ

→
se− e−

e+
e+

+ ;

γ ↑ t

e−

µ±

e−

µ±

Fig. B.1.14: t-channel dominated QED processes. Left: VP dressed tree-level Bhabha scattering
at small scattering angles. Right: the leading VP effect in µe scattering.

be that the dispersive method and the Adler function modified version provide the effective
α(s) for arbitrary c.m. energies, not at s = M2

Z only; although, given a very precise α(M2
Z), one

can reliably calculate α(s) − α(M2
Z) via pQCD for values of s in the perturbative regime, i.e.,

especially going to higher energies. In any case, the requirements specified here that must be
satisfied in order to reach a factor of five improvement appears to be achievable.

1.6 The need for a space-like effective α(t)

As a normalization in measurements of cross-sections in e+e− collider experiments, small-angle
Bhabha scattering is the standard choice. This reference process is dominated by the t-channel
diagram of the Bhabha scattering process shown in the left of Fig. B.1.14. In small-angle Bhabha
scattering, we have δHVPσ/σ = 2 δα(t̄)/α(t̄), and for the FCC-ee luminometer

√
t̄ ' 3.5GeV

near the Z peak and ' 13GeV at 350GeV [82]. The progress achieved after LEP times is
displayed in Fig. B.1.15. What can be achieved for the FCC-ee project is listed in Table B.1.4.
The estimates are based on expected improvements possible for ∆αhad(−Q2) in the appropriate
energy ranges, centred at

√
t̄.
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Fig. B.1.15: Hadronic uncertainty δ∆αhad(
√
t). The progress since LEP times, from 1996 (left)

to now (right) is remarkable. A great deal of much more precise low-energy data, ππ, etc., are
now available.

1.6.1 A new project: measuring the low-energy α(t) directly
The possible direct measurement of ∆αhad(−Q2) follows a very different strategy of evaluating
the HVP contribution to the muon g − 2. There is no VP subtraction issue, there is no ex-
clusive channel separation and recombination, no issue of combining data from very different
experiments and controlling correlations. Even a 1% level measurement can provide invaluable
independent information. The recent proposal [75] to measure α(−Q2) via µ

−e−-scattering (see
right part of Fig. B.1.15) in the MUonE projects at CERN is very important for future precision
physics. It is based on a cross-section measurement

dσunpol.
µ−e−→µ−e−

dt = 4πα(t)2 1
λ(s,m2

e,m
2
µ
)


(
s−m2

µ
−m2

e

)2

t2
+ s

t
+ 1

2

 . (1.22)

The primary goal of the project concerns the determination of ahad
µ

in an alternative way

ahad
µ

= α

π

1∫
0

dx (1− x) ∆αhad
(
−Q2(x)

)
, (1.23)

where Q2(x) ≡ x2m2
µ
/(1− x) is the space-like square momentum transfer and

∆αhad(−Q2) = α

α(−Q2) + ∆αlep(−Q2)− 1 (1.24)

directly compares with lattice QCD data and the offset α(−M2
0 ) discussed before. We propose to

determine, very accurately, ∆αhad (−Q2) at Q ≈ 2.5GeV by this method (one single number!)
as the non-perturbative part of ∆αhad (M2

Z), as needed in the ‘Adler function approach’. It
would also be of direct use for a precise small-angle Bhabha luminometer! Because of the high
precision required, accurate radiative corrections are mandatory and corresponding calculations
are in progress [85–88].
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1.7 Conclusions

Reducing the muon g−2 prediction uncertainty remains the key issue of high-precision physics
and strongly motivates more precise measurements of low-energy e+e− → hadrons cross-
sections. Progress is expected from Novosibirsk (VEPP 2000/CMD3,SND), Beijing (BEPCI-
I/BESIII), and Tsukuba (SuperKEKB/BelleII). This helps to improve α(t) in the region rele-
vant for small-angle Bhabha scattering and in calculating α(s) at FCC-ee/ILC energies using
the Euclidean split-trick method. The latter method requires pQCD prediction of the Adler
function to improve by a factor of two. This also means that we need improved parameters, in
particular, mc and mb.

One question remains to be asked. Are presently estimated and essentially agreed-on
evaluations of ∆α(5)

had (M2
Z) in terms of R data reliable? One has to keep in mind that the

handling of systematic errors is rather an art than a science. Therefore, alternative methods
are very important and, fortunately, are under consideration.

Patrick Janot’s approach is certainly an important alternative method, directly accessing
α(M2

Z) with very different systematics. This is a challenging project.
Another interesting option is an improved radiative return measurement of σ(e+e− →

hadrons) at the GigaZ, allowing for directly improved dispersion integral input, which would
include all resonances and thresholds in one experiment!

In any case, on paper, e−µ
+ → e−µ

+ appears to be the ideal process to perform an
unambiguous measurement of α(−Q2), which determines the leading-order (LO) HVP to aµ,
as well as the non-perturbative part of α(s)!

Lattice QCD results are very close to becoming competitive here as well. Thus, in the
end, we will have alternatives, allowing for important improvements and crosschecks.

The improvement obtained by reducing the experimental error to 1% in the range from φ
to 3GeV would allow one to choose a higher cut point, e.g., for

√
M0 = 3.0GeV. One can then

balance the importance of data against pQCD differently. This would provide further important
consolidation of results. For a 3GeV cut, one gets ∆αhad(−M2

0 ) = 82.21±0.88[0.38] in 10−4. The
QCD contribution is then smaller, as well as safer, because the mass effects that are responsible
for the larger uncertainty of the pQCD prediction are also substantially reduced. Taking the
view that a massive four-loop QCD calculation is a challenge, the possibility of optimising
the choice of split scale M0 would be very useful. Therefore, the ILC/FCC-ee community
should actively support these activities as an integral part of the e+e−-collider precision physics
programme!

1.8 Addendum: the coupling α2, MW, and sin2 Θf

Besides α, the SU(2) gauge coupling α2 = g2/(4π) is also running and thereby affected by
non-perturbative hadronic effects [78,89,90]. Related with the UY(1)⊗SUL(2) gauge couplings
is the running of the weak mixing parameter sin2 Θf , which is actually defined by the ratio
α/α2. In Refs. [78, 89, 90], the hadronic effects have been evaluated by means of DRs in terms
of e+e− data with appropriate flavour separation and reweighting. Commonly, a much simpler
approach is adopted in studies of the running of sin2 Θf , namely using pQCD with effective
quark masses [91–94], which have been determined elsewhere.
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Given g ≡ g2 and the Higgs vacuum expectation value (VEV) v, then

M2
W = g2 v2

4 = πα2√
2Gµ

.

The running sin2 Θf(s) relates electromagnetic to weak neutral channel mixing at the LEP scale
to low-energy νee scattering as

sin2 Θlep(M2
Z) =

{
1−∆α2

1−∆α + ∆νµe,vertex+box + ∆κe,vertex

}
sin2 Θνµe(0) . (1.25)

The first correction from the running coupling ratio is largely compensated for by the νµ charge
radius, which dominates the second term. The ratio sin2 Θνµe/ sin2 Θlep is close to 1.002, in-
dependent of the top and Higgs masses. Note that errors in the ratio (1−∆α2)/(1−∆α) can
be taken to be 100% correlated and thus largely cancel. A similar relation between sin2 Θlep(M2

Z)
and the weak mixing angle appearing in polarised Møller scattering asymmetries has been
worked out [91,92]. It includes specific bosonic contribution ∆κb(Q2), such that

κ(s = −Q2) = 1−∆α2(s)
1−∆α(s) + ∆κb(Q2)−∆κb(0) , (1.26)

where, in our low-energy scheme, we require κ(Q2) = 1 at Q2 = 0. Explicitly [91,92], at one-loop
order

∆κb(Q2) = − α

2π sW

{
−42 cW + 1

12 ln cW + 1
18 −

(
r

2 ln ξ − 1
) [

(7− 4z) cW + 1
6 (1 + 4z)

]

− z
[

3
4 − z +

(
z − 2

3

)
r ln ξ + z (2− z) ln2 ξ

]}
, (1.27)

∆κb(0) = − α

2π sW

{
−42 cW + 1

12 ln cW + 1
18 + 6 cW + 7

18

}
, (1.28)

with z = M2
W/Q

2, r =
√

1 + 4z, ξ = (r + 1)/(r − 1), sW = sin2 ΘW, and cW = cos2 ΘW.
Results obtained in Refs. [91, 92] based on one-loop perturbation theory using light quark
masses mu = md = ms = 100MeV are compared with results obtained in our non-perturbative
approach in Fig. B.1.16.

How can we evaluate the leading non-perturbative hadronic corrections to α2? As in the
case of α, they are related to quark-loop contributions to gauge-boson self-energies (SE) γγ, γZ,
ZZ, and WW, in particular, those involving the photon, which exhibit large leading logarithms.
To disentangle the leading corrections, decompose the self-energy functions as follows (s2

Θ =
e2/g2 ; c2

Θ = 1− s2
Θ):

Πγγ = e2 Π̂γγ ,

ΠZγ = eg
cΘ

Π̂3γ

V − e2 sΘ
cΘ

Π̂γγ

V ,

ΠZZ = g2

c2Θ
Π̂33
V−A − 2 e2

c2Θ
Π̂3γ

V + e2 s2Θ
c2Θ

Π̂γγ

V ,

ΠWW = g2 Π̂+−
V−A .

(1.29)

With Π̂(s) = Π̂(0) + sΠ′(s), we find the leading hadronic corrections

∆α(5)
had(s) = −e2

[
Re Π′γγ(s)− Π′γγ(0)

]
, (1.30)
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Fig. B.1.16: sin2 ΘW (Q) as a function of Q in the time-like and space-like region. Hadronic
uncertainties are included but barely visible in this plot. Uncertainties from the input parameter
sin2 ΘW (0) = 0.238 22(100) or sin2 ΘW (M2

Z) = 0.231 53(16) are not shown. Note the substantial
difference from applying pQCD with effective quark masses. Future FCC-ee/ILC measurements
at 1TeV would be sensitive to Z′, H−−, etc.

∆α(5)
2 had(s) = − e

2

s2
Θ

[
Re Π′3γ(s)− Π′3γ(0)

]
, (1.31)

which exhibit the leading hadronic non-perturbative parts, i.e., the ones involving the photon
field via mixing. Besides ∆α(5)

had(s), ∆α(5)
2 had(s) can also then be obtained in terms of e+e− data,

together with isospin flavour separation of (u, d) and s components

Π3γ

ud = 1
2 Πγγ

ud ; Π3γ

s = 3
4 Πγγ

s (1.32)

and for resonance contributions

Πγγ = Π(ρ) + Π(ω) + Π(φ) + · · ·

Π3γ = 1
2 Π(ρ) + 3

4 Π(φ) + · · · (1.33)

We are reminded that gauge-boson self-energies are potentially very sensitive to new physics
(oblique corrections) and the discovery of what is missing in the SM may be obscured by non-
perturbative hadronic effects. Therefore, it is important to reduce the related uncertainties.
Interestingly, flavour separation assuming OZI violating terms to be small implies a perturbative
reweighting, which, however, has been shown to disagree with lattice QCD results [95–98]!
Indeed, the ‘wrong’ perturbative flavour weighting

Π3γ

ud = 9
20 Πγγ

ud ; Π3γ

s = 3
4 Πγγ

s

clearly mismatch lattice results, while the replacement 9/20⇒ 10/20 is in good agreement. This
also means that the OZI suppressed contributions should be at the 5% level and not negligibly
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t/t1 [t1 = 0.727 fm]

t3
G

2
(t

)

data Nf = 2, isospin

mn = 190 MeV

mn = 277 MeV

mn = 324 MeV

weigted Euclidean time correlator
∆α2 from alphaQED, SU(2) flavour separation
∆α2 from alphaQED, SU(3) flavour separation
lattice data linearly extrapolated to mπ in CL

Q2
[
GeV2

]

∆
α

h
v
p

2
(Q

2
)

1086420

0.02

0.015

0.01

0.005

0

Fig. B.1.17: Testing flavour separation in lattice QCD. Left: a rough test by checking the
Euclidean time correlators clearly favours the flavour separation of Eq. (1.33) [95–97], while the
pQCD reweighting (not displayed) badly fails. Right: the renormalised photon self-energy at
Euclidean Q2 [98] is in good agreement with the flavour SU(3) limit, while again it fails with
the SU(2) case, which coincides with perturbative reweighting.

small. Actually, if we assume flavour SU(3) symmetry to be an acceptable approximation, we
obtain

Π3γ

uds = 1
2 Πγγ

uds ,

which does not require any flavour separation in the uds-sector, i.e., up to the charm threshold
at about 3.1GeV. Figure B.1.17 shows a lattice QCD test of two flavour separation schemes.
One, labelled ‘SU(2)’, denotes the perturbative reweighting advocated in Refs. [91–94] and
the other, labelled ‘SU(3)’, represents that proposed in Ref. [89]. Lattice data clearly disprove
pQCD reweighting for the uds-sector! This also shows that pQCD-type predictions based on
effective quark masses cannot be accurate. This criticism also applies in cases where the effective
quark masses have been obtained by fitting ∆α(5)

had(s), even more so, when constituent quark
masses are used.

The effective SU(2) coupling ∆α2(E) in comparison with ∆αQED(E) is displayed in
Fig. B.1.18, and the updated sin2 ΘW (s) is shown in Fig. B.1.16 for time-like as well as for
space-like momentum transfer. Note that sin2 ΘW(0)/ sin2 ΘW(M2

Z) = 1.028 76; a 3% correction
is established at 6.5σ. Except for the LEP and SLD points (which deviate by 1.8σ), all ex-
isting measurements are of rather limited accuracy, unfortunately. Upcoming experiments will
substantially improve results at low space-like Q. We are reminded that sin2 Θ` eff , exhibiting a
specific dependence on the gauge-boson self-energies, is an excellent monitor for new physics.
At pre-LHC times, it was the predestined monitor for virtual Higgs particle effects and a corres-
ponding limiter for the Higgs boson mass.
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Fig. B.1.18: ∆αQED(E) and ∆α2(E) as functions of energy E in the time-like and space-like
domain. The smooth space-like correction (dashed line) agrees rather well with the non-resonant
‘background’ above the φ resonance (a kind of duality). In resonance regions, as expected,
‘agreement’ is observed in the mean, with huge local deviations.
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2 Precision quantum chromodynamics
Contribution∗ by: D. d’Enterria [dde@cern.ch]

The unprecedentedly small experimental uncertainties expected in the electron–positron mea-
surements at the FCC-ee, key to searches for physics beyond the SM up to Λ ≈ 50TeV, impose
precise calculations for the corresponding theoretical observables. At the level of theoretical pre-
cision required to match that of the FCC-ee experimental measurements, the current relevant
QCD uncertainties have to be reduced at at least four different levels.

1. Purely theoretical perturbative uncertainties from missing higher-order (HO) corrections
in perturbative QCD (pQCD) calculations of e+e− scattering amplitudes and decay pro-
cesses involving multiple real emissions or virtual exchanges of quarks and gluons. Such
fixed-order (FO) corrections include pure QCD and mixed QCD–QED or QCD–weak
terms. Reducing such uncertainties requires pQCD calculations beyond the current state
of the art, often given by next-to-next-to-leading-order (NNLO) accuracy, pure, or mixed
with higher-order electroweak terms.

2. Theoretical uncertainties due to incomplete logarithmic resummations of different en-
ergy scales potentially appearing in the theoretical calculations. Examples include resum-
mations of (i) soft and collinear logs in final states dominated by jets—either in ana-
lytical calculations or (only partially) incorporated into matched parton shower Monte
Carlo generators—and (ii) logarithmic terms in the velocity of the produced top quarks
in e+e− → tt cross-sections. Reducing such uncertainties requires calculations beyond the
current state of the art, often given by the next-to-next-to-leading-log (NNLL) accuracy.

3. Parametric uncertainties propagated into the final theoretical result, owing to the depend-
ence of the calculation on the input values of (i) the QCD coupling at the Z pole scale,
αs(mZ), known today with a relatively poor ±0.9% precision, and (ii) the heavy quark
(charm and bottom) masses mc and mb. Theoretical progress in lattice QCD determi-
nations of αs and mc,b is needed, complemented with much more precise experimental
measurements. A per-mille extraction of αs(mZ) is thereby also a key axis of the FCC-ee
physics programme [1].

4. Non-perturbative uncertainties from final-state hadronic effects linked to power-suppressed
infrared phenomena, such as colour reconnection, hadronization, and multiparticle cor-
relations (in spin, colour, space, momenta), that cannot be currently computed from
first-principles QCD theory, and that often rely on phenomenological Monte Carlo mod-
els. The high-precision study of parton hadronization and other non-pQCD phenomena
is also an intrinsic part of the FCC-ee physics programme [2].

∗This contribution should be cited as:
D. d’Enterria, Precision quantum chromodynamics, DOI: 10.23731/CYRM-2020-003.38, in: Theory for the FCC-
ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 38.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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B.2 Precision quantum chromodynamics

Examples of key observables where such four sources of QCD uncertainty will have an
impact at the FCC-ee are numerous.

1. Uncertainties from missing HO terms are non-negligible in theoretical predictions for
electroweak precision observables (EWPOs) at the Z pole, WW and tt cross-sections,
(N)MSSM Higgs cross-sections and decays, etc.

2. Uncertainties from missing soft and collinear log resummations, in analytical calculations
or in parton shower MC generators, impact all e+e− final states with jets—e.g., the
accurate extraction of forward–backward quark asymmetries at the Z pole—as well as
precision flavour physics studies via B meson decays. Similarly, the size of the NNLL
corrections (in the ln v top quark velocity) appears to be as large as that from the FO
N3LO terms in e+e− → tt cross-section calculations.

3. The αs(mZ) parametric uncertainty has a significant effect on the determination of all top
properties (mtop, λtop , Γtop), all hadronic Higgs decay widths (H → cc̄, bb̄, qq̄, g g) and
associated Yukawa couplings, as well as on the extraction of other similarly crucial SM
parameters (mc,mb, αQED).

4. Non-perturbative uncertainties, in particular colour reconnection and hadronization effects,
impact hadronic final states in e+e− →WW and e+e− → tt, and forward–backward an-
gular asymmetries of quarks at the Z pole.

In the following sections, the current status and FCC-ee prospects for these four axes of
QCD studies are summarised.

2.1 Higher fixed-order pQCD corrections
Computations of pQCD corrections beyond the N2,3LO accuracy are required for many the-
oretical FCC-ee observables, in order to match their expected experimental precision. New
analytical, algorithmic, and numerical concepts and tools are needed to be able to compute
HO QCD and mixed QCD+electroweak multiloop, -legs, and -scales corrections for processes
involving the heaviest SM particles (W, Z, H, t) to be carefully scrutinised at the FCC-ee.
Concrete developments are covered in more detail in various other sections of this report, and
are summarised here.

1. EWPOs: Mixed QCD-electroweak calculations of the Zff̄ vertex will be needed at the
FCC-ee at higher order than known today, including the O(αα2

s ),O(Nfα
2αs),O(N2

f α
3)

loop orders, where Nn
f denotes n or more closed internal fermion loops, plus the corres-

ponding QCD four-loop terms [3]. The number of QCD diagrams for Z → bb̄ decays
at two (three) loops is 98 (10 386) [3]. Section 9 provides, e.g., details on the extension
of calculations beyond the two-loop QCD off-shell vertex functions, noting that for the
triple-gluon vertex there are 2382 (63 992) three- (four-) loop graphs to evaluate. Including
massive quarks in three- and four-point functions is a further requirement in order to re-
duce the FO theoretical uncertainties.

2. W bosons (Section 7): The resonant e+e− →WW cross-section contains soft corrections
to the Coulomb function, analogous to ultrasoft (mtopv

2) QCD corrections in tt pro-
duction [4]. For the W hadronic decay modes, QCD corrections to the partial decay

- 39 -



D. d’Enterria

widths have to be included beyond NNLO to match the corresponding theoretical QED
precision given by the countingO(α2

s ) ∼ O(αQED). QCD corrections to W self-energies and
decay widths up to O(αQED α

2
s ) and O(α4

s ) are required. Currently, O(α4
s ) corrections for

inclusive hadronic vector boson decays are known [5], while mixed QCD-EW corrections
are known up to O(αQED αs) [6].

3. Higgs bosons (Section 12): The pure QCD corrections to Higgs boson decays into quarks,
gluons, and photons are known up to N4LO (no mass effects), N3LO (heavy top limit),
and NLO, respectively. Those translate into approximately 0.2%, 1%, and <3% scale
uncertainties from missing HO corrections. In the case of the (N)MSSM Higgs sector
(Section 3), HO pQCD corrections to the Higgs bosons decays are mostly known at NLO
accuracy; thereby, their uncertainty is larger than for the SM Higgs case.

4. Top quarks (Section 11): The total cross-section for inclusive e+e− → bb̄W+W−X pro-
duction can be computed in a non-relativistic effective field theory with local effective
vertices and matching corrections known up to N3LO in pQCD [7]. Those translate into
about 3% theoretical scale uncertainties of the threshold tt cross-sections that propagate
into an uncertainty of ±60MeV in the position of the resonant peak. Although the un-
certainty has been reduced by a factor of two going from NNLO to N3LO, perturbative
progress is still needed, in particular in the threshold top mass definition translated into
the MS scheme.

5. The extraction of αQED from the R ratio requires the calculation of the four-loop massive
pQCD calculation of the Adler function (together with better estimates of αs in the low-Q2

region above the τ mass, as well as of the mc and mb masses).

2.2 Higher-order logarithmic resummations
Improvements in the resummations of all-order logarithmic terms from different energy scales,
appearing in the theoretical calculations for certain processes, are needed in various directions.

1. Soft and collinear parton radiation impacts many e+e− observables with jets in the fi-
nal state. Such uncertainties enter through incomplete NNLL resummations in analytical
calculations (e.g., based on soft-collinear effective theory, SCET), or through approximate
models of the coherent branching implemented in the parton shower MC generators used
to unfold and interpret the experimental data. Among those experimental observables,
the measured forward–backward (FB) angular asymmetries of charm and bottom quarks
in e+e− collisions around the Z pole, directly connected to the weak mixing angle, will
need a careful study. The asymmetry value measured at LEP, (A0,b

fb )exp = 0.0992±0.0016,
remains today the electroweak precision observable with the largest disagreement (2.9σ)
with respect to the SM prediction, (A0,b

fb )th = 0.1038 [8,9]. Consequently, so also does the
effective weak mixing angle derived from it, sin2 θf

eff
= 0.232 21± 0.000 29, compared with

the sin2 θf
eff

= 0.231 54± 0.000 03 world-average [10]. The dominant systematic uncertain-
ties on (A0,b

fb )exp arise from angular decorrelations induced in the thrust axis by soft and
collinear parton radiation or parton-to-hadron b quark hadronization, and were estimated
using MC simulations 20 years ago [11]. A recent reanalysis of the QCD corrections to
A0,b

fb [12], with different modern parton shower models [13–15], indicates propagated un-
certainties of about 1% (0.4%) for the lepton (jet) charge-based measurements, slightly
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smaller but still consistent with the original measurements derived at LEP. The mea-
surement of A0,b

fb at the FCC-ee will feature insignificant statistical uncertainties, and
improvements in the modelling of parton radiation will be required for any high-precision
extraction of the associated sin2 θf

eff
value.

2. Another field of e+e− measurements where progress in logarithmic resummations is needed
is in the studies of event shapes—such as the thrust T , C parameter, and jet broadening.
All those observables are commonly used to extract the QCD coupling [1]. Theoretical
studies of event shapes supplement FO perturbation theory with the resummation of en-
hanced logarithmic contributions, specifically accounting for terms ranging from αns lnn+1

down to αns lnn−2, i.e., N3LL [16]. However, the αs(mZ) values derived from the T and
C measurements differ and their combination has thereby a final 2.9% systematic uncer-
tainty [10]. This result points to limits in the resummation formalism that (i) hold only
for C, 1 − T � 1, where every emission is so soft and collinear that one can effectively
neglect the kinematic cross-talk (e.g., energy–momentum conservation) that arises when
there are a number of emissions, and (ii) use a power correction valid only in the two-jet
limit, 1− T � 1 [16].

3. High-precision studies of n-jet rates at the FCC-ee will also benefit from a reduction of
resummation uncertainties. Jet rates in e+e− rely on an algorithm to reconstruct them that
comes with a parameter (ycut = k2

T/s, in the kT Durham [17] and Cambridge [18] cases) to
define how energetic the emission should be in order to be considered a jet. For ln ycut >
−4, the extracted αs value from three-jet rates is fairly independent of ycut, whereas the
result depends substantially on the choice of ycut below that [19]. This feature points to
a breakdown of FO perturbation theory, owing to logarithmically enhanced (αs ln2 ycut)n
terms. Jet rates at the one-in-a-million level in e+e− at the Z pole will be available at
the FCC-ee, including: four-jet events up to kT ≈ 30GeV (corresponding to | ln ycut| ≈ 2),
five-jet events at kT ≈ 20GeV (| ln ycut| ≈ 3), six-jet events at kT ≈ 12GeV (| ln ycut| ≈ 4),
and seven-jet events at kT ≈ 7.5GeV (| ln ycut| ≈ 5). Such results will be compared with
theoretical calculations with an accuracy beyond the NNLO+NNLL provided today by
the eerad3 [20], mercutio 2 [21], and CoLoRFulNNLO [22] (NNLO), and ARES [23]
(NNLL) codes, thereby leading to αs extractions with uncertainties well below the current
few-percent level. In general, with the envisioned FCC-ee luminosities, jet measurements
will extend along the six axes of higher accuracy, finer binning, higher jet resolution
scales, larger numbers of resolved final-state objects, more differential distributions, and
possibility placing stringent additional cuts to isolate specific interesting regions of the
n-jet phase spaces not strongly constrained by LEP measurements [24].

4. In top physics studies, the size of the NNLL corrections (in top quark velocity, ln v) in
e+e− → tt cross-section calculations appears to be as large as that from the FO N3LO
terms [7], calling for improved resummation studies for such an observable.

5. In the sector of flavour physics (Section 10), new tools based on SCET, developed to study
processes with energetic quarks and gluons, can be applied after certain modifications to
improve the accuracy of theoretical corrections for B-physics studies at the FCC-ee, in
particular for regions of phase space where the perturbative approach breaks down, owing
to the presence of large logarithmic enhancements, and where the next-to-soft effects
become more important.
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2.3 Per-mille-precision αs extraction
The strong coupling, αs, is one of the fundamental parameters of the Standard Model, and
its value not only directly affects the stability of the electroweak vacuum [25] but it chiefly
impacts all theoretical calculations of e+e− scattering and decay processes involving real or
virtual quarks and gluons [1]. Known today with a 0.9% precision, making it the worst known
of all fundamental interaction couplings in nature [10], the input value of αs(mZ) propagates as
a parametric uncertainty into many of the FCC-ee physics observables, chiefly in the Z, Higgs,
and top quark sectors.

1. The leading source of uncertainty in the calculation of crucial EWPOs at the Z pole, such
as ΓZ, σ0

had, and R`, is the propagated δαs parametric source [3].

2. In the Higgs sector (Section 12), the current αs(mZ) parametric uncertainty (combined
with uncertainties arising from our imperfect knowledge of mc and mb) propagates into
total final uncertainties of ∼2% for the BR(H→WW, ZZ) and BR(H→ τ

+
τ
−, µ+

µ
−)

branching ratios, of ∼6–7% for BR(H→ gg) and BR(H→ cc̄), ∼3% for BR(H→ γγ), and
∼7% for BR(H→ Zγ).

3. Precise studies of the e+e− → tt cross-section (Section 11) indicate that it should be
possible to extract the top quark width and mass with an uncertainty of around 50MeV,
provided that a precise independent extraction of the strong coupling is available. Such a
requirement is, in particular, crucial to meaningfully constrain the top Yukawa coupling.

The current world-average value, αs(mZ) = 0.1181 ± 0.0011, is derived from a combination
of six subclasses of approximately independent observables [10] measured in e+e− (hadronic Z
boson and τ decays, and event shapes and jet rates), DIS (structure functions and global fits
of parton distributions functions), and p–p collisions (top pair cross-sections), as well as from
lattice QCD computations constrained by the empirical values of hadron masses and decay
constants. To enter into the αs(mZ) world-average, the experimental (or lattice) results need to
have a counterpart pQCD theoretical prediction at NNLO (or beyond) accuracy.

Of the current six αs(mZ) extractions entering in the PDG average, that derived from
comparisons of NNLO pQCD predictions with lattice QCD results (Wilson loops, qq̄ potentials,
hadronic vacuum polarisation, QCD static energy) [26] today provides the most precise result:
αs(mZ) = 0.1188±0.0011. The current ∼0.9% uncertainty is dominated by finite lattice spacing,
truncations of the pQCD expansion up to NNLO, and hadron extrapolations. Over the next 10
years, reduction of the statistical uncertainties, at least by a factor of two, can be anticipated
with increased computing power, while reaching the ∼0.1% uncertainty level will also require
the computation of fourth-order pQCD corrections [1].

After the lattice result, the most theoretically and experimentally ‘clean’ extractions of
αs are those based on the hadronic decays of the τ lepton, and W and Z bosons that will
be measured with unparalleled accuracies at the FCC-ee. To derive αs(mZ), the experimental
ratios of hadronic-to-leptonic decays are compared with the corresponding pQCD theoretical
prediction, known today up to O(α4

s ) [5, 27]:

Rτ,W,Z
` (Q = mτ,mW,mZ) = σ(e+e− → (τ,W,Z)→ hadrons)

σ(e+e− → (τ,W,Z)→ `+`−)

= REW(Q)
(

1 +
N=4∑
i=1

cn(Q)
(
αs(Q)
π

)n
+O(α5

s ) + δm + δnp

)
. (2.1)
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In this equation, Q is the typical momentum transfer in the process used for measuring R`, cn
are coefficients of the perturbative series that can, in practice, be calculated up to some finite
order n = N , and the terms δm and δnp correspond, respectively, to mixed QCD+EW higher-
order and power-suppressed O(Λp/Qp) non-perturbative corrections, which affect, differently,
the tau lepton and electroweak boson decays. For αs(mZ) = 0.118, the size of the QCD term
in Eq. (2.1) amounts to a 4% effect, so at least per-mille measurement accuracies for the R`

ratios are required for a competitive αs(mZ) determination [8]. Such an experimental precision
has been reached in measurements of τ and Z boson decays, but not for the W boson and
that is why the latter still does not provide a precise αs extraction [28]. Reaching per-mille
uncertainties in αs determinations based on Eq. (2.1) requires 100 times smaller uncertainties
in the experimental τ, W, and Z measurements, a situation only reachable at the FCC-ee.

The ratio of hadronic to leptonic tau decays, known experimentally to within ±0.23%
(Rτ,exp

` = 3.4697±0.0080), compared with next-to-NNLO (N3LO) calculations, yields αs(mZ) =
0.1192± 0.0018, i.e., a 1.5% uncertainty, through a combination of results from different theo-
retical approaches (contour-improved perturbation theory (CIPT) and fixed-order perturbation
theory (FOPT)) with different treatments of non-pQCD corrections [29,30]. The current αs un-
certainty is shared roughly equally between experimental and theoretical systematics. The latter
are driven by differences in the CIPT and FOPT results, although the power-suppressed non-
perturbative δnp term in Eq. (2.1), which is of O(Λ2/m2

τ
) ≈ 10−2, is not negligible for the tau,

at variance with the much heavier W and Z bosons. High-statistics τ spectral functions (e.g.,
from B factories now, and the FCC-ee in the future), and solving CIPT–FOPT discrepancies
(extending the calculations to N4LO accuracy and controlling the non-pQCD uncertainties) are
required to reduce the relative αs uncertainty below the ∼1% level.

The current state-of-the-art N3LO calculations of W boson decays [6] would allow a
theoretical extraction of αs with a ∼0.7% uncertainty, provided that one would have experi-
mental measurements of sufficient precision. Unfortunately, the relevant LEP W+W− data are
poor, based on 5 × 104 W bosons alone, and result in a QCD coupling extraction, αs(mZ) =
0.117± 0.040, with a huge ∼37% uncertainty today [28]. A determination of αs with per-mille
uncertainty from W boson decays can only be achieved through the combination of two devel-
opments: (i) data samples commensurate with those expected at the FCC-ee (108 W bosons)
and (ii) a significantly reduced uncertainty of the Vcs CKM element, which directly enters into
the leading REW(Q) prefactor of Eq. (2.1) and propagates into a significant parametric uncer-
tainty on the extracted αs. Figure B.2.1 (left) shows the expected αs(mZ) value derived from
the RW

` ratio with 108 W bosons at the FCC-ee, assuming that Vcs has a negligible uncertainty
(or, identical, assuming Cabibbo–Kobayashi–Maskawa (CKM) matrix unitarity). The extracted
QCD coupling would have ∼0.2% propagated experimental uncertainties.

The current QCD coupling extraction based on Z boson hadron decays uses three closely
related pseudo-observables measured at the LEP: R0

` = Γhad/Γ`, σ0
had = 12π/mZ · ΓeΓhad/Γ2

Z,
and ΓZ, combined with N3LO calculations, to give αs(mZ) = 0.1203 ± 0.0028 with a 2.5%
uncertainty [10]. Alternatively, fixing all SM parameters to their measured values and letting
free αs in the electroweak fit yields αs = 0.1194 ± 0.0029 (∼2.4% uncertainty, shallow blue
curve in Fig. B.2.1 (right)) [31]. At the FCC-ee, with 1012 Z bosons providing high-precision
measurements with ∆mZ = 0.1 MeV, and ∆ΓZ = 0.1MeV, ∆R0

` = 10−3 (achievable thanks to
the possibility of performing a threshold scan including energy self-calibration with resonant
depolarisation) reduces the uncertainty on αs(mZ) to ∼0.15%. Figure B.2.1 (right) shows the
expected αs extractions from RZ

` and ΓZ at the FCC-ee (yellow band) with the experimental
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Fig. B.2.1: Left: Expected αs determination from the W hadronic-to-leptonic decay ratio (RW
` )

at the FCC-ee (the diagonal blue line assumes CKM matrix unitarity) [28]. Right: Precision on
αs derived from the electroweak fit today (blue band) [31] and expected at the FCC-ee (yellow
band, without theoretical uncertainties and with the current theoretical uncertainties divided
by a factor of four).

uncertainties listed in Table (A.1.2), without theoretical uncertainties (dotted red curve) and
with the theoretical uncertainties reduced to one-quarter of their current values (solid red
curve) [31].

The FCC-ee will not only provide an unprecedented amount of electroweak boson data,
but also many orders of magnitude more jets than collected at LEP. The large and clean set of
accurately reconstructed (and flavour-tagged) e+e− hadronic final states will provide additional
high-precision αs determinations from studies of event shapes, jet rates, and parton-to-hadron
fragmentation functions (FFs) [1]. The existing measurements of e+e− event shapes (thrust T ,
C parameter) [23,32–34] and n-jet rates [19,35,36], analysed with N2,3LO calculations matched,
in some cases, to soft and collinear N(2)LL resummations, yield αs(mZ) = 0.1169 ± 0.0034, with
a 2.9% uncertainty [10]. This relatively large uncertainty is mostly driven by the span of indi-
vidual extractions that use different (Monte Carlo or analytical) approaches to account for soft
and collinear radiation as well as to correct for hadronization effects. Modern jet substructure
techniques [37] can help mitigate the latter corrections. In terms of event shapes, the recent
combination of the CoLoRFulNNLO subtraction method [38] with NNLL corrections in the
back-to-back region [39] has led to a precise calculation of the energy–energy correlation (EEC)
observable in electron–positron collisions, and thereby an accurate NNLO+NNLL extraction of
αs(mZ) = 0.1175±0.0029 (∼2.5% uncertainty) [40], as discussed in detail in Section 4. Moreover,
a very recent analysis of two-jet rates in e+e− collisions at N3LO+NNLL accuracy [41] has pro-
vided a new QCD coupling determination with ∼1% uncertainty: αs(mZ) = 0.118 81±0.001 32.
In addition, other sets of observables computed today with a lower degree of accuracy (NLO,
or approximately NNLO, bottom part of Fig. B.2.2), and thereby not now included in the PDG
average, will provide additional constraints [1]. The energy dependence of the low-z FFs today
provides αs(mZ) = 0.1205±0.0022 (∼2% uncertainty) at NNLO*+NNLL [42,43], whereas NLO
scaling violations of the high-z FFs yield αs(mZ) = 0.1176±0.0055 (∼5% uncertainty, mostly of
experimental origin) [44]. In addition, measurements of the photon structure function Fγ

2(x,Q2),
via e+e− → γ γ → hadrons, have been employed to derive αs(mZ) = 0.1198 ± 0.0054 (∼4.5%
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Fig. B.2.2: Summary of the αs(mZ) determinations discussed here. Top: Subclasses entering in
the current PDG world-average (solid dots, orange band) whose numerical value is listed on
top [10]. Middle: Expected FCC-ee values via W, Z hadronic decays (open squares). Bottom:
Other methods based on e+e− data not (yet) in the αs(mZ) world-average: recent EEC [40] and
two-jet rates [41], plus other extractions at a (currently) lower level of theoretical accuracy.

uncertainty) at NLO [45]. Extension to full-NNLO accuracy of the FFs and Fγ

2(x,Q2) fits using
the much larger e+e− datasets available at various centre-of-mass energies at the FCC-ee will
enable subpercentage precision in αs(mZ) to be attained. Figure B.2.2 presents a comparison
of the current αs(mZ) results (top), the expected FCC-ee extractions (middle), and the other
aforementioned methods based on e+e− data not currently included in the world-average.

2.4 High-precision non-perturbative QCD
All e+e− processes with quarks and gluons in the final state have an intrinsic uncertainty
linked to the final non-perturbative conversion of the partons, present in the last stage of the
QCD shower, into hadrons. Such a process cannot be computed using first-principles QCD
calculations and is described using phenomenological models, such as the Lund string [46], as
implemented in the pythia MC generator [13], or the cluster hadronization approach [47] typ-
ical of the herwig event generator [48]. The analysis and unfolding of any e+e− experimental
measurement of hadronic final states relies on these very same Monte Carlo generators; there-
fore, the final results are sensitive to their particular implementation of soft and collinear parton
radiation (whose MC modelling is equivalent to an approximate next-to-leading-log (NLL) ac-
curacy [49]) and of the hadronization process. Examples of such propagated uncertainties have
been discussed already in the context of αs extractions from various experimental e+e− observ-
ables. An improved MC reproduction of the experimental hadron data can, e.g., help in enabling
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advanced light quark and gluon jet tagging in constraints of the Higgs Yukawa couplings to
the first and second family of quarks. Controlling the uncertainties linked to hadronization and
other final-state partonic effects, such as colour reconnection and multiparticle (spin, momenta,
space, etc.) correlations, is, therefore, basic for many high-precision SM studies. Such effects
are optimally studied in the clean environment provided by e+e− collisions, without coloured
objects in the initial state. An FCC-ee goal, therefore, is to produce truly precise QCD measure-
ments to constrain many aspects of non-perturbative dynamics to the 1% level or better, leaving
an important legacy for MC generators for the FCC-eh and FCC-hh physics programme, much
as those from LEP proved crucial for the parton shower models used today at the LHC [2].
In particular, the FCC-ee operating at different c.m. energies will enormously help to control
resummation and hadronization effects in event shape distributions, reducing, in particular,
non-perturbative uncertainties from a 9% effect at

√
s = 91.2GeV to a 2% at 400GeV [2,50].

The modelling of parton hadronization in the current MC event generators has achieved
a moderate success, and the LHC data have only further complicated the situation. First, the
production of baryons (in particular containing strange quarks) remains poorly understood and
is hard to measure in the complicated hadron–hadron environment. Second, and most import-
antly, the LHC measurements have challenged the standard assumption of parton hadronization
universality, i.e., that models developed from e+e− data can be directly applied to hadron–
hadron collisions. Strong final-state effects, more commonly associated with heavy-ion physics
and quark–gluon–plasma formation, such as the ‘ridge’ [51] or the increase of strangeness pro-
duction in high-multiplicity pp events [52], cannot be accommodated within the standard MC
generators. The large statistical samples available at the FCC-ee will allow parton hadroniza-
tion to be controlled in the QCD vacuum with subpercentage uncertainties, and thereby provide
a better understanding of any collective final-state effects present in hadron–hadron collisions,
starting with multistrange baryons, whose total production rates could only be determined with
5–20% accuracy at the LEP [53, 54], and going further to excited [54, 55], exotic, or multiple
heavy hadrons, with implications for more advanced fragmentation models. For Λ–Λ correlation
distributions, where MC generator programs today fail to describe the LEP [56] and LHC data,
the huge FCC-ee samples of hadronic Z decays will have statistical uncertainties matching the
best LEP systematic uncertainties, corresponding to a total errors reduction by a factor of ten
or more.

In e+e− → tt, when the top and antitop quarks decay and hadronize close to each other,
interactions and interferences between them, the decay bottoms, and any radiated gluons af-
fect the rearrangement of the colour flow and thereby the kinematic distributions of the final
hadronic state. Whereas the perturbative radiation in the process can, in principle, be theo-
retically controlled, there is a ‘cross-talk’ among the produced hadronic strings, also known as
colour reconnection (CR), that can only be modelled phenomenologically [57]. In the pp case,
such CR effects can decrease the precision that can be achieved in the extraction of the top
mass, and constitute 20–40% of its uncertainty [58]. Colour reconnection can also impact limits
for CP-violation searches in H → W+W− → q1q̄2q3q̄4 decays [59]. Searches for such effects
can be optimally studied in the process e+e− → W+W− → q1q̄2q3q̄4 [59], where CR could
lead to the formation of alternative ‘flipped’ singlets q1q̄4 and q3q̄2, and correspondingly more
complicated string topologies [60]. The combination of results from all four LEP collaborations
excluded the no-CR null hypothesis at 99.5% CL [61], but the size of the WW data sample
was too small for any quantitative studies. At the FCC-ee, with the W mass determined to
better than 1MeV by a threshold scan, the semileptonic WW measurements (unaffected by
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CR) can be used to probe the impact of CR in the hadronic WW events [2,62]. Alternative CR
constraints at the FCC-ee have been proposed through the study of event shape observables
sensitive to string overlap, such as sphericity for different hadron flavours, as described in ‘rope
hadronization’ approaches [63, 64].
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Contribution∗ by: G.F.R. Sborlini [german.sborlini@ific.uv.es]

In this section, we review some recent results concerning the inclusion of mixed QCD–QED
corrections in the computation of physical observables. First, we comment on the extension of
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations to deal with the presence
of mixed QCD–QED interactions. We describe the calculation of the full set of higher-order
corrections to the splitting kernels, through the Abelianization algorithm. This procedure al-
lows us to build the functional form of the QCD–QED corrections, starting from pure QCD
terms. As a practical application of this technique, we also explore the computation of fixed-
order corrections to diphoton production, and the inclusion of higher-order mixed QCD–QED
resummation effects to Z production. In both cases, we directly apply the Abelianization to
the qT subtraction or resummation formalism, obtaining the universal ingredients that allow
us to compute the aforementioned corrections to any process involving colourless and neutral
particles in the final state.

3.1 Introduction and motivation
The large amount of data that high-energy experiments are collecting allows the precision of
several measurements to be increased. In consequence, theoretical predictions must be pushed
forward by including previously neglected small effects. This is the case for electroweak (EW)
or QED corrections, which are subdominating for collider physics. However, from naïve power
counting, it is easy to notice that O(α) ≈ O(α2

S). In addition, QED interactions (as well as
the full set of EW calculations) lead to novel effects that could interfere with the well-known
QCD signals. Moreover, these effects might play a crucial role in the context of future lepton
colliders, such as the FCC-ee. For these reasons, EW and QED higher-order corrections must
be seriously studied in a fully consistent framework.

The aim of this brief section is to present some results related to the impact of QED
corrections on the calculation of physical observables for colliders. In Section 3.2, we recall the
computation of the full set of QCD–QED splitting functions at O(ααS) and O(α2), centring
into the Abelianization algorithm and the relevance of the corrections to achieve a better
determination of the photon PDF. Then, we apply the Abelianization to the well-established
qT subtraction or resummation [1,2] framework. In Section 3.3, we show the impact of the NLO
QED corrections to diphoton production. After that, we characterize the mixed QCD–QED
resummation of soft gluons or photons for Z boson production in Section 3.4. Conclusions are
drawn and future research directions are discussed in Section 3.5.

3.2 Splittings and PDF evolution
Splitting functions are crucial in describing the singular collinear behaviour of scattering ampli-
tudes. On the one hand, they are used to build the counterterms to subtract infrared (IR)

∗This contribution should be cited as:
G.F.R. Sborlini, Inclusion of mixed QCD–QED resummation effects at higher orders, DOI: 10.23731/CYRM-
2020-003.51, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 51.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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Fig. B.3.1: Corrections due to the inclusion of QED contributions in the Pqγ (right) and Pγq
(left) splitting kernels. We include both O(α2) (brown) and O(ααS) (red) terms. The K ratio
is defined using the leading order as normalization. To ease the visual presentation, we rescaled
the O(ααS) terms by a factor of 0.1.

singularities from cross-sections. On the other hand, they are the evolution kernels of the
integro-differential DGLAP equations [3], which govern the perturbative evolution of PDFs.
When taking QCD and EW or QED interactions into account, it is necessary to include photon
and lepton PDFs, and this will lead to the presence of new splitting functions. In Refs. [4, 5],
we computed the O(ααS) and O(α2) corrections to the DGLAP equations, as well as the asso-
ciated kernels. The strategy that we adopted was based on the implementation of a universal
algorithm, called Abelianization, which aims to explode previously known pure QCD results
to obtain the corresponding QCD–QED or QED expressions. Roughly speaking, the key idea
behind this method is that of transforming gluons into photons: colour factors are replaced by
suitable electric charges, as well as symmetry or counting factors.

With the purpose of exhibiting the quantitative effects that mixed QCD–QED or O(α2)
corrections might have, we plot the K ratio for quark–photon and photon–quark splitting
functions in Fig. B.3.1. It is important to notice that these contributions are not present in
pure QCD, which implies that the evolution of photon PDF is noticeably affected by O(ααS)
splittings or even higher orders in the mixed QCD–QED perturbative expansion. We would like
to point out that a precise determination of photon distributions is crucial to obtaining more
accurate predictions for several physical observables.

3.3 Fixed-order effects: application to diphoton production
The qT subtraction or resummation formalism [1,2] is a powerful approach to computing higher-
order corrections to physical observables. This formalism has been mainly applied to QCD
calculations, and relies on the colour neutrality of the final-state particles.† Thus, we used
the Abelianization algorithm to compute the universal coefficients required to implement NLO
QED corrections to any process involving only neutral particles in the final state. In this way,
we demonstrate that this extension can deal consistently with the cancellation of IR divergences

†An extension to deal with massive or coloured particles in the final state is presented in Refs. [6, 7].
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Fig. B.3.2: Impact of higher-order QED corrections on the transverse momentum (left) and
invariant mass (right) distributions for diphoton production. The black (blue) curve shows the
total NLO QCD (QED) prediction, without including the LO contribution. The dashed green
line indicates the relative contribution of the qγ-channel to the total NLO QED correction.

in the limit qT → 0.
As a practical example, we used the public code 2gNNLO [8,9], which provides up to NNLO

QCD corrections to diphoton production, and we implemented the corresponding NLO QED
corrections [10, 11]. We applied the default ATLAS cuts, with 14TeV centre-of-mass energy,
and the NNPDF3.1QED [12, 13] PDF set. The transverse momentum and invariant mass spectra
are shown in Fig. B.3.2. It is interesting to note that, even if the corrections are small compared
with the QCD contributions, the QED interactions lead to novel features, such as a dynamic
cut in the invariant mass spectrum. This is because real radiation in the qq̄ channel contains
three final-state photons, which must be ordered according to their transverse momenta before
imposing the selection cuts. Moreover, introducing the QED corrections (or, even better, mixed
NLO QCD–QED corrections) will allow us to reduce the scale uncertainties and produce more
reliable theoretical predictions.

3.4 Mixed resummation effects: Z boson production

Finally, we studied the impact of including mixed QCD–QED terms within the qT resummation
formalism. This is equivalent to considering the simultaneous emission of soft or collinear gluons
and photons. A detailed description of the formalism is presented in Ref. [14], which gives
the computation of the modified Sudakov form factors as well as all the required universal
coefficients to reach mixed NLL′+NLO accuracy in the double expansion in α and αS. Explicitly,
we obtained

G ′N(αS, α, L) = GN(αS, L) + L g′(1)(αL) + g
′(2)
N (αL) +

∞∑
n=3

(
α

π

)n−2
g
′(n)
N (αL)

+ g′(1,1)(αSL, αL) +
∞∑

n,m=1
n+m 6=2

(
αS

π

)n−1 (α
π

)m−1
g
′(n,m)
N (αSL, αL) (3.1)
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Fig. B.3.3: The qT spectrum for Z boson production at the LHC with 13TeV centre-of-mass en-
ergy. In the left panel, we show the combination of NNLL+NNLO QCD contributions together
with the LL (red dashed curve) and NLL′+NLO (blue solid curve) QED effects. We include the
uncertainty bands that result from the full scale variation by a factor of two (up and down).
More details about scale uncertainties are shown in the right panel, where we independently
modify the resummation (upper plot) and renormalization (lower plot) scales.

and

H′FN (αS, α) = HF
N(αS) + α

π
H′F (1)
N +

∞∑
n=2

(
α

π

)n
H′F (n)
N +

∞∑
n,m=1

(
αS

π

)n (α
π

)m
H′F (n,m)
N (3.2)

for the expansion of the Sudakov exponents and the hard-virtual coefficients, respectively. A
similar expansion is available for the soft-collinear coefficients Cab. Other important ingredients
of the formalism are the mixed QCD–QED renormalization group equations, which include a
double expansion of the corresponding β functions [14].

To test our formalism, we used Z boson production as a benchmark process. We started
from the code DYqT [15] to compute the next-to-next-to-leading logarithmic QCD (NNLL)
corrections properly matched to the fixed-order contribution (i.e., NNLO QCD in this case). In
Fig. B.3.3, we show the combination of NNLL+NNLO QCD predictions for the qT spectrum of
the produced Z (in the narrow width approximation), together with the LL (red dashed curve)
and mixed NLL′+NLO QED contributions (blue solid curve). The effects introduced by mixed
QCD–QED terms reach the percentage level for qT ≈ 20 GeV, when considering LHC kinematics
at 13TeV centre-of-mass energy. However, the most noticeable consequence of introducing these
corrections is the scale-dependence reduction. This means that our predictions are more stable
when varying the electroweak parameters or the factorisation, renormalization, or resummation
scales.

3.5 Conclusions
In this brief section, we reviewed some of our recent efforts towards more precise phenomeno-
logical predictions for colliders. We centred the discussion on the inclusion of QED and mixed
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QCD–QED corrections to the evolution of PDFs (through the computation of novel splitting
functions), QED fixed-order computations (using diphoton production as a benchmark), and
mixed QCD–QED qT resummation (applied to Z boson production). In all these cases, the
corrections constitute percentage-level deviation from the dominant QCD correction, but this
could still be detected through an increased precision of the forthcoming experimental measure-
ments (such as those provided by the FCC-ee). Thus, understanding how to extend the exposed
frameworks to deal with even higher perturbative orders is crucial to match the quality of the
experimental data, allowing us to detect any possible deviation from the Standard Model and
discover new physical phenomena.
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4.1 Introduction
The most precise determination of fundamental parameters of the Standard Model is very
important. One such fundamental parameter is the strong coupling of QCD. Its importance
can be gauged by taking a look at the various experiments and configurations where it was
measured; for an up-to-date summary, see Ref. [1]. The precise measurement of such a parameter
is difficult for two reasons. First, high-quality data with small and well-controlled uncertainties
are needed. Second, high-precision calculations are needed from the theory side, such that
theoretical uncertainties are small as well.

In a theoretical prediction based on calculation in perturbation theory, the uncertainty has
two main sources: the omission of higher-order terms, which are estimated by the renormaliza-
tion scale, and the numerical stability of the integrations. While the dependence on unphysical
scales can, in principle, be decreased by including more and more higher-order contributions
in the prediction, the numerical uncertainty can be intrinsic to the method used to obtain the
theoretical prediction. Moreover, the method of comparing experiment with theory is also af-
fected by another uncertainty. While an experiment measures colour singlet objects, hadrons,
the predictions are made in QCD for colourful ones, partons. The assumption of local parton–
hadron duality ensures a correspondence between these two up to non-perturbative effects.
Non-perturbative effects are power corrections in nature, going with some negative power of
the collision energy. This means that, for an accurate comparison, either (i) these effects should
be estimated and taken into account, or (ii) the experiment should have a high enough energy
that these contributions become negligible compared with other effects, or (iii) an observable
must be chosen that is not sensitive to these effects.

To take these non-perturbative effects into account, we must choose from phenomenolog-
ical [2, 3] or analytical models [4]. It is worth noting that none of these models is derived from
first principles; hence, there is still room for improvement. Non-perturbative effects derived
from first principles would also be favoured because these corrections are to be used in com-
parisons of predictions with experimental measurements. Currently, phenomenological models
use several parameters fitted to experimental data; thus, bias is introduced in the measurement
of physical parameters. The calculation of non-perturbative corrections from first principles is
also advocated because the only available analytical model seems to be ill-suited for the current
precision of theoretical calculations, as shown in Ref. [5].

In this report, we show two approaches to how the measurement of a physical parameter,
the strong coupling, can be carried out with high precision. Because the used observables allow
for such measurements, these can be considered as interesting subjects to study in a future

∗This contribution should be cited as:
A. Kardos, S. Kluth, G. Somogyi, Z. Trócsányi, Z. Tulipánt, A. Verbytskyi, CoLoRFulNNLO at work: a de-
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Fig. B.4.1: Top: Fixed-order prediction for EEC in the first three orders of perturbation theory
with theoretical uncertainties. The dots show the measurement by the OPAL collaboration [11].
Bottom: Comparison of the predictions and the measurement with the NNLO result.

electron–positron collider.

4.2 Precision through higher orders
A possible approach to increasing the precision of a measurement from the theoretical perspec-
tive is to select an observable and refine its prediction by including higher-order contributions
in fixed-order perturbation theory or by means of resummation. With the completion of the
CoLoRFulNNLO subtraction method [6–8] for electron–positron collisions, the next-to-next-to-
leading-order (NNLO) QCD prediction for energy–energy correlation (EEC) recently became
available [9] for the first time. Matching this with predictions obtained by resumming leading
(LL), next-to-leading (NLL), and next-to-next-to-leading logarithms (NNLL) in the back-to-
back region [10], it was possible, by matching the two calculations, to arrive at the most precise
theoretical prediction for this observable at NNLO+NNLL accuracy in QCD [5]. The energy–
energy correlation is defined as a normalised energy-weighted sum of two-particle correlations:

1
σt

dΣ(χ)
d cosχ ≡

1
σt

∫ ∑
i,j

EiEj
Q2 dσe+e−→ij+Xδ(cosχ+ cos θij) , (4.1)

where Q is the centre-of mass energy of the collision, σt is the corresponding total cross-section,
Ei is the energy of the ith particle, and cos θij is the enclosed angle between particles i and j.
The theoretical prediction for EEC in the first three orders of perturbation theory is depicted
in Fig. B.4.1. The theoretical uncertainties were obtained by varying the renormalization scale
between mZ/2 and 2mZ. As can be seen from the lower panel, even when using the highest-
precision prediction, the difference between measurement and theory is sizeable. This can be
attributed to missing higher-order terms becoming important at the edge of phase space and
missing hadronization corrections.

The behaviour near χ = 0 can be improved by including all-order results through resum-
mation. As described in Ref. [12], we used modern Monte Carlo (MC) tools to extract such
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Fig. B.4.2: EEC distributions obtained with the two MC tools at the parton and hadron level
at 91.2 GeV, with corresponding OPAL data. Note that for these two plots a different definition
of χ was used: this time, the back-to-back region corresponds to χ→ 180◦.

corrections for EEC. To do this, we generated event samples at both the hadron and the parton
level and the ratio of these provided the hadron-to-parton ratio or H/P . Using this ratio and
multiplying our parton-level predictions bin by bin, we obtained our theoretical prediction at
the hadron level. As MC tools, we used SHERPA2.2.4 [13] and Herwig7.1.1 [14]. The exact
set-up of the MC tools is presented in Ref. [12].

The value for the strong coupling was determined by fitting the predictions to 20 different
datasets (for details, see Table 1 of Ref. [12]). For illustrative purposes, Fig. B.4.2 shows the
predictions obtained with SHERPA and Herwig at the parton and hadron level. For SHERPA, we
used both the Lund (SL) [3] and cluster (SC) [2] hadronization models, while in Herwig we
used the built-in cluster model. The figure also indicates the range used in the actual fitting
procedure.

For the fitting, the MINUIT2 program [15] was used to minimize the quantity:

χ2(αS) =
∑

datasets
χ2

dataset(αS) (4.2)

with the χ2(αS)† quantity calculated as:

χ2(αS) = (D − P (αS))TV −1(D − P (αS)) , (4.3)

where D is the vector of data points, P is the vector of predictions as functions of αS and V
is the covariance matrix.

†Not to be confused with the angle χ.
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With the fitting procedure performed in the range between 60◦ and 160◦. The resulting
strong coupling NNLL+NNLO prediction is

αS(mZ) = 0.117 50± 0.002 87 (4.4)

and at NNLL+NLO accuracy is

αS(mZ) = 0.122 00± 0.005 35 . (4.5)

Notice the reduction in uncertainty as we go from NNLL+NLO to NNLL+NNLO.

4.3 Precision through small power corrections
As outlined in the introduction, the current methods of taking the effect of non-perturbative
contributions into account can raise concerns, mainly because only phenomenological models
are present for them. The other big concern is that these models rely on experimental results
through tuned parameters. The best option, without any model derived from first principles,
is to decrease these effects as much as possible. The idea is simple: if the non-perturbative
contribution can be shrunk, its large uncertainties will make a smaller contribution to the final
uncertainty of the extracted value of the strong coupling.

In this section, we focus on altering the definitions of existing observables to decrease the
non-perturbative corrections. The most basic and most used observables in electron–positron
collisions are the thrust (T ) and the various jet masses. In their original definitions, these all
incorporate all registered hadronic objects of the event or a given, well-defined region. Hence, a
natural way to modify them is to filter the tracks contributing to their value in an event. One
possible way to remove tracks is by means of grooming [16–21]. In particular, the soft drop [21]
is a grooming when a part of the soft content of the event is removed according to some criteria.

In Ref. [22], soft-drop variants were defined for thrust, τ ′SD = 1−T ′SD, hemisphere jet mass,
e

(2)
2 and narrow jet mass, ρ. As showed in that paper, the non-perturbative corrections can be
drastically decreased if soft drop is applied. The effect of soft drop turns out to be the most
significant in the peak region of the distributions, where the contribution from all-order resum-
mation and non-perturbative effects is the greatest. This makes these observables promising
candidates for strong coupling measurements at a future electron–positron collider. The appli-
cation of these observables—although very interesting—is limited at LEP measurements, owing
to the limited amount of data taken and because the soft-drop procedure inherently results in
a decrease of cross-section.

In our recent paper [23], we analysed the proposed observables from the standpoint of
perturbative behaviour by calculating the NNLO QCD corrections to the observables and ana-
lysing their dependence on the non-physical renormalization scale as an indicator of the size
of neglected higher-order terms. The soft-drop versions of the observables listed have two par-
ameters related to soft drop: zc and β [22]. This allows for optimisation in order to minimize
the decrease in cross-section when the soft-drop procedure is applied.

Figure B.4.3 shows the soft-dropped thrust distribution in the first three orders of QCD
perturbation theory for a specific choice of the two soft-drop related parameters. On the right-
hand side of the figure, the K factors are depicted for various parameter choices to illustrate
the stability of the result. We found that the most stable perturbation prediction and moderate
drop in cross-section can be achieved when (zc, β) = (0.1, 0).

- 60 -



B.4 CoLoRFulNNLO at work: a determination of αS

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

τ
′ SD σ 0

d
σ

d
τ
′ SD

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5 1

τ ′SD

NNLO
NLO
LO

zc = 0.1, β = 0
ξ ∈ [0.5, 2]

Q = 91.2 GeV, αS(Q) = 0.118

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

e(
2) 2 σ
0

d
σ

d
e(
2) 2

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

e
(2)
2

NNLO
NLO
LO

zc = 0.1, β = 0
ξ ∈ [0.5, 2]

Q = 91.2 GeV, αS(Q) = 0.118

Fig. B.4.3: Left: Soft-dropped thrust distribution at the Z peak in the first three orders of
perturbation theory; the bands represent the uncertainty coming from the variation of the
renormalization scale between Q/2 and 2Q. Right: The K factors for the soft-dropped thrust
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Fig. B.4.4: The same as Fig. B.4.3 but for the hemisphere jet mass

Figure B.4.4 depicts the soft-dropped hemisphere jet mass in exactly the same way as
the soft-dropped thrust shown in Fig. B.4.3. In this case, it can be seen once more that the
perturbative behaviour stabilizes on going to higher orders in perturbation theory. This is
most pronounced at the left-hand side of the peak, where the NLO and NNLO predictions
coincide. For this observable, we found that the best choice for the soft-drop parameters is also
(zc, β) = (0.1, 0). For the traditional versions of these observables, the peak region is the one
where the all-order resummed results and non-perturbative corrections must have agreement
with the experiment, but for the soft-dropped versions neither the higher-order contributions nor
the non-perturbative corrections are drastic. The minimal role of higher orders in perturbation
theory can be seen from the perturbative stability of our results, while the small size of non-
perturbative corrections has been shown in Ref. [22]. These properties make the soft-dropped
event shapes attractive observables for the extraction of the strong coupling.
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4.4 Conclusions
A future electron–positron collider would be considered a dream machine for many reasons.
A machine of this type would allow for a precise tuning of collision energy; it would have
no annoying underlying event and it would have coloured partons in the initial state. Several
possible measurements could be envisioned at such a machine but from the QCD point of
view, determination of the strong coupling stands out. The strong coupling is a fundamental
parameter of the Standard Model of particle physics, so knowing its value is of key importance.

In this report, we showed two possible ways to conduct such a measurement. First, it can
be achieved by including higher-order corrections in the theoretical prediction and comparing
this with the experimental result modelling non-perturbative effects with modern MC tools.
Second, we showed modified versions of well-known observables defined in electron–positron
collisions where non-perturbative corrections can be minimized, hence diminishing the effects
of their uncertainties on theoretical predictions. These observables seem to be promising can-
didates, not just for strong coupling measurements but also for the purpose of testing the
Standard Model further. Thus, they should be seriously considered as important measurements
at a future electron–positron facility.
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We present an overview of the pathways to the required theoretical precision for the luminosity
targeted by the FCC-ee precision studies. We put the discussion in context with a brief review
of the situation at the time of the LEP. We then present the current status and an overview of
routes to the desired 0.01% targeted by the FCC-ee (as well as by the ILC).

We use the situation that existed at the end of the LEP as our starting point. At the
end of the LEP, the error budget for the BHLUMI4.04 MC used by all LEP collaborations to
simulate the luminosity process was that calculated in Ref. [1]. For reference, we reproduce this
result here in Table B.5.1. In this table, we show the published works on which the various
error estimates are based, as discussed in Ref. [1].

Table B.5.1: Summary of the total (physical + technical) theoretical uncertainty for a typical
calorimetric detector. For LEP1, this estimate is valid for a generic angular range of 1◦–3◦ (18–
52 mrad), and for LEP2 it is valid for energies up to 176GeV and an angular range of 3◦–6◦.
Total uncertainty is taken in quadrature. Technical precision is included in (a).

LEP1 LEP2
Type of correction or error 1996 1999 1996 1999

(%) (%) (%) (%)
(a) Missing photonic O(α2) [2, 3] 0.10 0.027 0.20 0.04
(b) Missing photonic O(α3L3

e) [4] 0.015 0.015 0.03 0.03
(c) Vacuum polarisation [5, 6] 0.04 0.04 0.10 0.10
(d) Light pairs [7, 8] 0.03 0.03 0.05 0.05
(e) Z and s-channel γ [9, 10] 0.015 0.015 0.0 0.0
Total 0.11 [10] 0.061 [1] 0.25 [10] 0.12 [1]

One way to address the 0.01% precision tag needed for the luminosity theory error for
the FCC-ee is to develop the corresponding improved version of the BHLUMI. This problem is
addressed in Ref. [11], wherein the path to 0.01% theory precision for the FCC-ee luminosity is
presented in some detail. The results of this latter reference are shown in Table B.5.2, wherein
we also present the current state of the art for completeness, as discussed in more detail in
Ref. [11].

The key steps in arriving at Table B.5.2 are as follows. The errors associated with the
photonic corrections in lines (a) and (b) in the LEP results in Table B.5.1 are due to effects that
are known from Refs. [2–4] but were not implemented into BHLUMI. In Table B.5.2, we show
what these errors will become after these known results are included in BHLUMI, as discussed in
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Table B.5.2: Anticipated total (physical + technical) theoretical uncertainty for a FCC-ee lumi-
nosity calorimetric detector with angular range 64–86mrad (narrow), near the Z peak. Descrip-
tion of photonic corrections in square brackets is related to the second column. The total error
is summed in quadrature.

Type of correction or error Update 2018 FCC-ee forecast
(%)

(a) Photonic [O(Leα2)] O(L2
eα

3) 0.027 0.1× 10−4

(b) Photonic [O(L3
eα

3)] O(L4
eα

4) 0.015 0.6× 10−5

(c) Vacuum polarisation 0.014 [12] 0.6× 10−4

(d) Light pairs 0.010 [13,14] 0.5× 10−4

(e) Z and s-channel γ exchange 0.090 [9] 0.1× 10−4

(f) Up–down interference 0.009 [15] 0.1× 10−4

(f) Technical precision (0.027) 0.1× 10−4

Total 0.097 1.0× 10−4

Ref. [11]. Similarly, in line (c) of Table B.5.1, the error is due to the uncertainty at the time of
LEP on the hadronic contribution to the vacuum polarisation for the photon at the respective
momentum transfers for the luminosity process; in Table B.5.2, we show the improvement of
this error that is expected for the FCC-ee, as discussed in Refs. [12,16].

Continuing in this way, in line (d) in Table B.5.2, we show the expected improvement [11],
with reference to the LEP time for Table B.5.1, in the light pairs error for the FCC-ee. As
explained in Ref. [11], the complete matrix element for the additional real e+e− pair radiation
should be used, because non-photonic graphs can contribute as much as 0.01% for the cut-off,
zcut ∼ 0.7. This can be done with the MC generators developed for the e+e− → 4f processes for
LEP2 physics—see Ref. [11] for further discussion. With known methods [11], the contributions
of light quark pairs, muon pairs, and non-leading, non-soft additional e+e−+nγ corrections can
be controlled such that the error on the pairs contribution is as given in line (d) for the FCC-ee.
As noted, we also show the current state of the art [11] for this error in line (d) of Table B.5.2.

Turning to line (e) in Table B.5.2, we show the improvement of the error for the Z and
s-channel γ exchange for the FCC-ee as well as its current state of the art. In Ref. [11], a detailed
discussion is presented of all of the six interference and three additional squared modulus terms
that result from the s-channel γ, s-channel Z, and t-channel Z exchange contributions to the
amplitude for the luminosity process. It is shown that, if the predictions of BHLUMI for the
luminosity measurement at FCC-ee are combined with those from Bhwide [17] for this Z and
s-channel γ exchange contribution, then the error in the second column of line (e) of Table B.5.2
could be reduced to 0.01%. To reduce the uncertainty of this contribution practically to zero
we would include these Z and γs exchanges within the CEEX-type matrix element at O(α1) in
BHLUMI [18]. Here, CEEX stands for coherent exclusive exponentiation, which acts at the level
of the amplitudes, as compared with the original Yennie–Frautschi–Suura [19] (YFS) exclusive
exponentiation (EEX), which is used in BHLUMI4.04 and which acts at the level of the squared
amplitudes. It is expected to be enough to add the EW corrections to the large angle Bhabha
(LABH) process in the form of effective couplings in the Born amplitudes. This leads to the
error estimate shown in Table B.5.2 in line (e) for the FCC-ee.

For completeness, we note that for our discussion of the Z- and s-channel γ exchanges
we made [11] a numerical study using Bhwide for the the calorimetric LCAL-type detector,
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Table B.5.3: Results from Bhwide for the Z and γs exchange contributions to the FCC-ee lumi-
nosity with respect to the γt⊗ γt process for the calorimetric LCAL-type detector [20] with the
symmetric angular range 64–86mrad; no acoplanarity cut was applied. MC errors are marked
in brackets.

ECM ∆tot δ
QED
O(α) δ

QED
h.o. δ

weak
tot

(GeV) (%) (%) (%) (%)
90.1876 +0.642 (12) −0.152 (59) +0.034 (38) −0.005 (12)
91.1876 +0.041 (11) +0.148 (59) −0.035 (38) +0.009 (12)
92.1876 −0.719 (13) +0.348 (59) −0.081 (38) +0.039 (13)

as described in Ref. [20], for the symmetric angular range 64–86mrad without any cut in
acoplanarity. The pure weak corrections were calculated with the ALIBABA EW library [21,22].
The results, shown in Table B.5.3, were obtained for three values of the centre-of-mass (CM)
energy: ECM = MZ, MZ±1GeV, where the latter two values have Z contributions that are close
to maximal in size. The results in the second column for the total size of the Z and γs exchanges
are consistent with our expectations, as explained in Ref. [11]: the contribution is positive below
the Z peak, where it reaches a size ∼0.64%, is close to zero near the peak, and changes sign
above the peak, where it reaches a size ∼−0.72%. The third column features the fixed-order
(non-exponentiated) O(α) QED correction and shows that it is sizeable and up to a half of
the size of the Born level effect, with a sign that is opposite to that of the latter effect. The
fourth column shows the size of the higher-order QED effects from YFS exponentiation, which
also change their sign near the Z peak, in opposition to the corresponding change of the O(α)
corrections. We see that the size of the former effects is about a quarter of that of the latter.
The effects in the fourth column allow us to make a conservative estimate of the size of the
missing higher-order QED effects in Bhwide using the big log factor γ = α ln(|t̄|/m2

e)/π = 0.042
from Section 4 of Ref. [11] and the safety factor of 2 from Ref. [9], together with the largest
higher-order effect in Table B.5.3, 0.081%, as 0.081%× γ× 2 ' 0.007%. The last column shows
that the size of the pure weak corrections, as implemented within the O(α) YFS exponentiation
scheme, is at a level of 0.01% below and at MZ and increases up to ∼0.04% above MZ. We
may use the same factor as we did for the higher-order corrections to estimate the size of the
missing higher-order pure weak corrections in Bhwide as ∼0.003%. Altogether, by adding the
two estimates of its massing effects, we obtain a conservative estimate of 0.01% for the physical
precision of Bhwide to justify our remarks concerning the error in line (e) of Table B.5.2 that
would result from the combination of the prediction of BHLUMI and that of Bhwide for this
contribution.

In line (f) in Table B.5.2, we show the estimate of the error in the up–down interference
between radiation from the e− and e+ lines. Unlike in LEP1, where it was negligible, for the
FCC-ee, this effect, calculated in Ref. [15] at O(α1), is ten times larger and must be included
in the upgraded BHLUMI. Once this is done, the error estimate shown in line (f) for the FCC-ee
is obtained [11].

This brings us to the issue of the technical precision. In an ideal situation, to get the
upgraded BHLUMI’s technical precision at a level of 10−5 for the total cross-section and 10−4 for
single differential distributions, one would need to compare it with another MC program devel-
oped independently, which properly implements the soft-photon resummation, LO corrections
up to O(α3L3

e), and the second-order corrections with the complete O(α2Le). In principle, an

- 67 -



B.F.L. Ward, S. Jadach, W. Płaczek, M. Skrzypek, S.A. Yost

extension of a program like BabaYaga [23–25], which is currently exact at NLO with a matched
QED shower, to the level of NNLO for the hard process, while keeping the correct soft-photon
resummation, would provide the best comparison with the upgraded BHLUMI to establish the
technical precision of both programs at the 10−5 precision level.† During the intervening time
period, a very good test of the technical precision of the upgraded BHLUMI would follow from
the comparison of its results with EEX and CEEX matrix elements; the basic multiphoton
phase space integration module of BHLUMI was already well tested in Ref. [27] and such a test
can be repeated at an even higher precision level.

In summary, we conclude that, with the appropriate resources, the path to 0.01% precision
for the FCC-ee luminosity (and the ILC luminosity) at the Z peak is open via an upgraded
version of BHLUMI.
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Abstract
We examine large-angle two-photon production in e+e− annihilation as a possible process to
monitor the luminosity of the FCC-ee. We review the current status of the theoretical pre-
dictions and perform an exploratory phenomenological study of the next-to-leading and higher-
order QED corrections using the Monte Carlo event generator BabaYaga@NLO. We also con-
sider the one-loop weak corrections, which are necessary to meet the high-precision requirements
of the FCC-ee. Possible ways to approach the target theoretical accuracy are sketched.

6.1 Introduction
The successful accomplishment of the FCC-ee physics goals requires a detailed knowledge of
the collider luminosity. The ambitious FCC-ee target is a luminosity measurement with a total
error of the order of 10−4 (or even better) and calls for a major effort by both the experimental
and theoretical community.

At the FCC-ee, the standard luminosity process is expected to be small-angle Bhabha
scattering, likewise at the LEP. However, the process of large-angle two-photon production,
i.e., e+e− → γγ, has also been recently proposed as a possible alternative normalization process
for FCC-ee operation [1–3]. Actually, this is a purely QED process at leading order at any
energy; it receives QED corrections from the initial state only and does not contain at order α
the contribution due to the vacuum polarisation (in particular, hadronic loops), which enters
at next-to-next-to-leading-order (NNLO) only. Conversely, the cross-section of e+e− → γγ is
significantly smaller than that of small-angle Bhabha scattering but adequate everywhere at
the FCC-ee, with the exception of the running at the Z resonance. Moreover, the process is
affected by a large background, owing to large-angle Bhabha scattering.

In spite of these limitations, the possibility of using photon-pair production as a lumi-
nosity process at the FCC-ee is an interesting option to be pursued. Contrarily to Bhabha
scattering, which received a lot of attention over the past decades, there is rather scant theo-
retical literature about e+e− → γγ annihilation and the most recent phenomenological results
refer to e+e− colliders of moderate energies [4–7]. Moreover, the few available Monte Carlo
(MC) generators [5,7] are tailored for low-energy accelerators and need to be improved for the
high-energy, high-precision requirements of the FCC-ee.

In this contribution, we provide a first assessment of the current status of the theoretical
accuracy for large-angle two-photon production at FCC-ee energies. For this purpose, we use
the MC program BabaYaga@nlo [5,8–11], which includes next-to-leading-order (NLO) QED
corrections matched to a QED parton shower, and compute the one-loop weak corrections

∗This contribution should be cited as:
C.M. Carloni, M. Chiesa, G. Montagna, O. Nicrosini, F. Piccinini, e+e− → γγ at large angles for FCC-ee
luminometry, DOI: 10.23731/CYRM-2020-003.71, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S.
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Table B.6.1: Two-photon production cross-section at LO, NLO, and higher-order QED cor-
rections for four FCC-ee c.m. energies. Numbers in parentheses are the relative contributions
of NLO and higher-order QED corrections.

√
s LO NLO Higher-order

(GeV) (pb) (pb) (pb)
91 39.821 41.043 [+3.07%] 40.868(3) [−0.44%]

160 12.881 13.291 [+3.18%] 13.228(1) [−0.49%]
240 5.7250 5.9120 [+3.26%] 5.884(2) [−0.49%]
365 2.4752 2.5582 [+3.35%] 2.5436(2) [−0.59%]

from heavy boson exchange. The QED corrections to e+e− → γγ at order α were previously
calculated some time ago [12–14] and NLO electroweak corrections are reported in Refs. [15–17].
A generator based on Ref. [14] was used at LEP for the analysis of photon-pair production at
energies above the Z [18]. Here, we perform an exploratory phenomenological study of the
QED corrections at NLO and evaluate the impact of higher-order contributions due to multiple
photon emission, by considering typical values for the c.m. energies of the FCC-ee. Possible
perspectives to achieve the target theoretical accuracy are briefly outlined.

6.2 Theoretical approach and numerical results
According to the theoretical formulation implemented in BabaYaga@nlo, the photonic cor-
rections are computed using a fully exclusive QED parton shower matched to QED contributions
at NLO. The matching of the parton shower ingredients with the NLO QED corrections is
realised in such a way that its O(α) expansion reproduces the NLO cross-section, and expo-
nentiation of the leading contributions owing to soft and collinear radiation is preserved, as
in a pure parton shower algorithm. Various studies and comparisons with independent calcu-
lations [6,11,19] showed that this formulation enables a theoretical accuracy at a level of 0.1%
(or slightly better) for the calculation of integrated cross-sections.

To meet the high-precision requirements of FCC-ee, we also computed the one-loop weak
corrections due to heavy boson exchange. The calculation was performed by treating the ultra-
violet divergencies in dimensional regularisation and using the computer program Recola [20],
which internally adopts the Collier [21] library for the evaluation of one-loop scalar and ten-
sor integrals. In our calculation, we used the on-shell renormalization scheme, with complex
mass values for the heavy boson masses [22].

In the following, we show a sample of numerical results obtained using the code
BabaYaga@nlo. They refer to four canonical c.m. energy values, which are representative of
the expected FCC-ee operation programme (Z pole, WW, ZH, and tt̄ thresholds)

√
s = 91, 160, 240, 365 GeV (6.1)

To study the effects due to the QED corrections, we consider a simulation set-up, in which
we require at least two photons within the angular acceptance 20◦ ≤ θγ ≤ 160◦ with energy
Eγ ≥ 0.25 ×

√
s. In Table B.6.1, we examine the impact of the QED radiative corrections on

the integrated cross-sections, when considering these kinematic cuts.
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Fig. B.6.1: Top: Angular distribution of the most energetic photon, for four FCC-ee c.m. ener-
gies. Bottom: Relative contributions of NLO and higher-order QED corrections.

The photon-pair production cross-section is shown for different accuracy levels, i.e., at
LO, NLO QED, and including higher-order contributions due to multiphoton radiation. The
numbers in parentheses are the relative contributions due to NLO and higher-order QED cor-
rections, respectively. It can be observed that the NLO corrections are at the level of a few
percent, while the higher-order contributions amount to about 5%� and reduce the effect due
to O(α) corrections.

A representative example of the effects due to QED corrections on the differential cross-
sections is given in Fig. B.6.1, which shows the angular distribution of the most energetic photon
for the four energy points. One can see that the NLO corrections are particularly important in
the central region, where they reach the 20–30% level, being mainly due to soft-photon radiation.
This effect is partially compensated for by the higher-order corrections, which amount to some
percent in the same region.

We also preliminarily explored the contribution of one-loop weak corrections, to conclude
that their size is at the percentage level, i.e., roughly as large as QED contributions beyond
NLO. A more detailed investigation of their effects is being made.

6.3 Summary and outlook
We have examined large-angle two-photon production in e+e− annihilation as a possible process
to monitor the luminosity at the FCC-ee. We have assessed the present status of the theoret-
ical accuracy through an exploratory phenomenological study of the radiative corrections to
e+e− → γγ annihilation at the c.m. energies of main interest. To this end, we have improved the
theoretical content of the code BabaYaga@nlo, which includes exact NLO QED corrections
matched to parton shower, by computing the weak corrections due to the presence of heavy
bosons in the internal loops.

The accuracy of the present calculation can be estimated to be at the 0.1% level or
slightly better. A first way to improve it is given by the calculation of NNLO fermion loop
contributions, accompanied by the computation of the same-order real pair corrections, along
the lines described in Refs. [19, 23]. This should be sufficient to get close to an accuracy at
the 10−4 level. Beyond that, a full calculation of NNLO QED corrections and, eventually, of
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two-loop weak contributions will ultimately be needed to reach the challenging frontier of the
10 ppm theoretical accuracy. These developments are now under consideration.
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7 Prospects for higher-order corrections to W pair production near
threshold in the EFT approach

Contribution∗ by: C. Schwinn [schwinn@physik.rwth-aachen.de]

The precise measurement of the mass of the W boson plays an essential role for precision
tests of the Standard Model (SM) and indirect searches for new physics through global fits to
electroweak observables. Cross-section measurements near the W pair production threshold at
a possible future e−e+ collider promise to reduce the experimental uncertainty to the level of
3 MeV at an International Linear Collider (ILC) [1,2], while a high-luminosity circular collider
offers a potential improvement to 0.5 MeV in the case of the FCC-ee [3, 4] or 1 MeV at the
CEPC [5]. At the point of highest sensitivity, an uncertainty in the cross-section measurement
of 0.1% translates to an uncertainty of ∼1.5 MeV on MW [3]. Therefore, a theoretical pre-
diction for the cross-section with an accuracy of ∆σ ∼ 0.01% at threshold is required to fully
exploit the potential of a future circular e−e+ collider. Theory predictions using the double-pole
approximation (DPA) [6] at next-to-leading order (NLO) [7–11] successfully described LEP2
results with an accuracy of better than 1% above threshold. An extension of the DPA to NNLO
appears to be appropriate for a future e−e+ collider operating above the W pair threshold, e.g.,
for the interpretation of anomalous triple-gauge-coupling measurements at

√
s = 240 GeV.

However, the accuracy of the DPA at NLO degrades to 2–3% near the threshold. In this re-
gion, the combination of a full NLO calculation of four-fermion production [12,13] with leading
NNLO effects obtained using effective field theory (EFT) methods [14, 15] reduces the theory
uncertainty of the total cross-section to below 0.3%; sufficient for the ILC target uncertainty
but far above that of the FCC-ee. This raises the question of the methods required to reach
a theory accuracy ∼0.01%. In this contribution, this issue is addressed from the EFT point
of view. The discussion is limited to the total cross-section, where the EFT approach is best
developed so far, although cuts on the W decay products can also be incorporated [15]. To reach
the target accuracy, it will also be essential to have theoretical control of effects beyond the
pure electroweak effects considered here. In particular, it is assumed that next-to-leading log-
arithmic corrections (α/π)2 ln(m2

e/s) from collinear initial-state photon radiation (ISR), which
have been estimated to be .0.1% [12], will be resummed to all orders. The QCD effects, which
are particularly important for the fully hadronic decay modes, are only briefly considered. In
Section 7.1, aspects of the EFT approach are reviewed from an updated perspective using in-
sight into the factorisation of soft, hard, and Coulomb corrections [16]. The NLO and leading
NNLO results are summarised and compared with the NLOee4f calculation [12]. In Section 7.2,
the structure of the EFT expansion and calculations of subsets of corrections are used to esti-
mate the magnitude of the NNLO and leading N3LO corrections and to determine whether
such calculations are sufficient to meet the FCC-ee target accuracy.
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C. Schwinn, Prospects for higher-order corrections to W pair production near threshold in the EFT approach,
DOI: 10.23731/CYRM-2020-003.77, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot
and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 77.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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7.1 Effective theory approach to W pair production
In the EFT approach to four-fermion production near the W pair production threshold [14], the
cross-section is expanded simultaneously in the coupling, the W decay width, and the energy
relative to the production threshold, which are taken to be of similar order and are denoted
collectively by

δ ∼ v2 ≡
(s− 4M2

W)
M2

W
∼

ΓW

MW
∼ α. (7.1)

An NNLOEFT calculation includes corrections up to O(δn), whereas, as usual, NNLO refers
to the O(αn) corrections. As discussed in Sections 7.1.1 and 7.1.2, non-resonant and Coulomb
corrections lead to odd powers of v, so that the expansion proceeds in half-integer powers of
δ. The current state of the art in the EFT is the calculation of the total cross-section for the
semi-leptonic final state µ

−
νµud up to NLOEFT [14], which includes corrections of the order

NLOEFT : v2, α, α2/v2, (7.2)
supplemented with the genuineO(α2, α3) corrections at the next order, δ3/2, in the δ-expansion [15],

N3/2LOEFT : αv, α2/v, α3/v3. (7.3)
In the following, aspects of these results and the EFT method are reviewed that are useful for
the estimate of NNLOEFT corrections and the remaining uncertainty.

7.1.1 Expansion of the Born cross-section
The total cross-section e−e+ → 4f can be obtained from the imaginary part of the forward-
scattering amplitude e−e+→ e−e+, where the Cutkosky cuts are restricted to those with four-
fermion final states. Flavour-specific final states can be selected accordingly. The expansion
of the forward-scattering amplitude in δ can be formulated in terms of an EFT [14, 17, 18],
where the initial-state leptons are described by soft-collinear effective theory [19], and the W
bosons by a non-relativistic EFT. Similarly to the DPA [6], the cross-section is decomposed
into resonant and non-resonant contributions:

σee4f(s ≈ 4M2
W) = σres(s) + σnon-res(s). (7.4)

The EFT method enables computation of the Born cross-section as an expansion according to
the counting (Eq. (7.1)), σee4fBorn = σ

(0)
Born + σ

(1/2)
Born + . . . This is not necessary in practice since the

full e−e+ → 4f Born cross-section for arbitrary kinematics can be computed using automated
Monte Carlo programs. However, the expansion serves as a test-case of the EFT method and
provides useful input for estimating the accuracy of a future NNLOEFT calculation. The leading-
order resonant contribution to the cross-section is given by the imaginary part of a one-loop
EFT diagram with non-relativistic W propagators, denoted by dashed lines,

σ
(0)
Born(s) = σ(0)

res(s) = 1
s
Im


 = πα2

s4
Ws

Im
−

√√√√− EW

MW

 . (7.5)

Here, the complex energy variable EW ≡
√
s− 2MW + iΓW ∼ MWv

2 has been introduced and
sW = sin θW with the weak mixing angle θW. A specific final state is selected by multiply-
ing Eq. (7.5) by the LO branching ratios,

σ
(0)
f1f2f3f4

=
Γ(0)

W−→f1f2
Γ(0)

W+→f3f4

Γ2
W

σ(0)
res . (7.6)

- 78 -



B.7 Prospects for higher-order corrections to W pair production near threshold

The non-resonant contribution to the cross-section arises from local four-electron operators,

σnon-res(s) = 1
s

Im


 = α3

s6
Ws
K, (7.7)

where the dimensionless constant K = K(0) + αK(1)/s2
W + . . . is computed from the forward-

scattering amplitude in the full SM without self-energy resummation in the W propagators. The
first contribution is of order α3 and arises from cut two-loop diagrams corresponding to squared
tree diagrams of the e−e+ → W±ff processes. Hence, the leading non-resonant contribution
σ(1/2)
non-res ≡ σ

(1/2)
Born is suppressed by α/v ∼ δ1/2 compared with the resonant LO cross-section

(Eq. (7.5)). For the final state, µ
−

νµud, the explicit result is [14]∗

K(0) = −4.25698. (7.8)

The O(v2) corrections in Eq. (7.2) originate from higher-order terms in the EFT expansion of
the resonant Born cross-section, σ(1)

Born, and depend strongly on the centre-of-mass energy [14],

σ
(1)
Born(
√
s = 161 GeV) = 8%× σee4fBorn, σ

(1)
Born(
√
s = 170 GeV) = −8%× σee4fBorn. (7.9)

7.1.2 Radiative corrections
Including radiative corrections, the resonant cross-section factorises into hard, soft, and Coulomb
functions [16]. (This formula holds for the leading term in the expansion in v. Subleading terms
result in a sum over Wilson coefficients and Green functions related to higher partial waves.
In higher orders, there are also soft corrections to the Coulomb function analogous to ultrasoft
QCD corrections in tt production [20].)

σres(s) = Im

 C C

 = 4π
2α2

sM2
Ws

4
W

Im
[
C2

∫
dωW (ω)GC(0, 0, EW − ω)

]
. (7.10)

Here, curly lines depict soft photons with momenta (q0, ~q) ∼ (δ, δ), while dotted lines denote
potential (Coulomb) photons with (q0, ~q) ∼ (δ,

√
δ). The Wilson coefficient C = 1+αC(1)/2π . . .

is related to contributions of hard loop momenta q ∼ MW to the on-shell amplitudes e−e+ →
W−W+ evaluated at the production threshold. For the input parameters used in Ref. [14], the
explicit value of the one-loop coefficient is

C(1) = Re c(1,fin)
p,LR = −10.076. (7.11)

The function W (ω) includes soft-photon effects, which decouple from the W bosons [21,22] for
the total cross-section, since soft radiation is only sensitive to the total (i.e., vanishing) electric
charge of the produced system. This function is the QED analogue of the soft function for Drell–
Yan production near the partonic threshold [23, 24]. The leading Coulomb Green function at
the origin,

G
(0)
C (0, 0; EW) = −

M2
W

4π


√√√√− EW

MW
+ α

2 ln
(
−
EW

MW

)
− α

2
π

2

12

√√√√−MW

EW
+α3 ζ(3)

4
MW

EW
+ · · ·

, (7.12)

∗Equation (7.8) is obtained by setting s = 4M2
W in Eq. (37) in Ref. [14], where an additional s-dependence

of K has been kept.
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sums Coulomb exchange and is known to all orders (see, e.g., Ref. [14]). At each order, the
Coulomb corrections ∼(α/v)n ∼ δn/2 are parametrically enhanced over the remaining O(αn)
corrections but do not have to be resummed to all orders, owing to the screening of the Coulomb
singularity by ΓW [25]. The convolution of the soft and Coulomb functions results in logarithms
of EW ∼ MWv

2, which can be resummed in analogy to threshold resummation at hadron
colliders [24,26,27]. However, for QED corrections, α log v is not enhanced, so this resummation
is formally not necessary.† Higher-order corrections to the non-resonant cross-section (Eq. (7.7))
only arise through hard corrections to K, while loop corrections in the EFT vanish.

These ingredients provide results for massless initial-state electrons and could be used, in
analogy to QCD predictions at hadron colliders, to define appropriate ‘partonic’ cross-sections
that are convoluted with corresponding electron structure functions resumming large mass log-
arithms. Structure functions in such a scheme are known up to NNLO [29]. In the NLOEFT

calculation of Ref. [14], however, electron mass effects have been treated by including collinear
corrections and matching to the commonly used resummed structure functions [30] by subtract-
ing double-counting contributions.‡

A useful result [15] for computing a class of higher-order effects of the form αn+1/vn is
obtained from Eq. (7.10) by combining the all-order Coulomb Green function with one-loop hard
and soft corrections and matching to ISR structure functions, as in the NLOEFT calculation:

∆σC×[S+H]1(s) = 4π2α2

sM2
Ws

4
W

α

π

{(
7
2 + π2

4 + C(1)
)
ImGC(0, 0; EW). (7.13)

Corrections of the same order, αn+1/vn, result from the NLO Green function [31] G(1)
C , which

includes the O(α) correction to the Coulomb potential. In the Gµ input parameter scheme, the
O(α2/v) correction reads [15]

∆G(1)
C (0, 0, EW) = −M

2
W

4π

α2

8π
ln
(
− EW

MW

){
−β0

2

[
ln
(
− EW

MW

)]
+ ∆Gµ

}
+O(α3) (7.14)

with the QED beta function with five quark flavours, β0 = −4(∑f 6=tNCfQ
2
f )/3 = −80/9, and

where the scheme-dependent constant ∆Gµ
= 61.634 is related to the quantity

δα(MZ)→Gµ
= α

4π

(
∆Gµ + 2β0 ln

(2MW

MZ

))

used in Ref. [15]. Equations (7.13) and (7.14) are the basis for computing examples of leading
N3LO corrections in Section 7.2.

7.1.3 NLOEFT result
The genuine radiative corrections at NLOEFT can be obtained by expanding Eq. (7.13) to O(α)
relative to the leading order and adding the second-order Coulomb correction from Eq. (7.12).

†An initial study obtained NLL effects of 0.1% [28], so the relevance for the FCC-ee may have to be revisited.
‡In the process of finalizing this report, we have noted that NLL contributions arising from the combination

of numerator factors of me and integrals with negative powers of me have been inadvertently omitted in the
computation of the collinear corrections. The expressions and numerical predictions in this report are preliminary
results including the missing contributions. A more complete discussion will be given elsewhere.
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A specific four-fermion final state is selected by multiplying the NLO correction with the LO
branching ratios (Eq. (7.6)) and adding NLO decay corrections,

∆σ(1)
decay =

Γ(1,ew)
f1f2

Γ(0)
f1f2

+
Γ(1,ew)

f3f4

Γ(0)
f3f4

σ(0)
res , (7.15)

with the one-loop electroweak corrections to the partial decay widths, Γ(1,ew)
fifj

. For hadronic
decay modes, QCD corrections to the partial decay widths must also be included up to NNLO,
using the counting α2

s ∼ α. In Table B.7.1, the O(α)-contributions of the NLOEFT result are
compared with the NLOee4f calculation in the full SM [12].§ The differences are of the order

∆σ(1)
4f (s) ≡ σee4fNLO(s)− σ(1)

EFT(s) = σee4fBorn(s)× (0.7− 0.1)% (7.16)

for
√
s = 161–170 GeV. Near the threshold, the dominant source of this discrepancy is ex-

pected to be the O(δ3/2) contribution from the O(α) correction to the non-resonant cross-
section (Eq. (7.7)), which has not been computed in the EFT approach.¶ Attributing the
difference at

√
s = 161 GeV to this correction, one obtains

K(1) ≈ 1.4, (7.17)

indicating that the O(α) corrections to the non-resonant contribution (Eq. (7.8)) are moderate,
|K(1)/K(0)| ≈ 0.3. Above the threshold, O(δ3/2) and O(δ2) corrections to the resonant cross-
section are expected to be important; these arise from the combination of O(α/v, α) corrections
in the EFT with O(v2) kinematic corrections and from O(α) corrections to the Wilson coef-
ficients of subleading production operators. Naive estimates using the O(v2) expansion of the
Born amplitude and the first Coulomb correction,

σ(3/2)
αv (s) ∼ |σ(1)

Born(s)|σ(1/2)
C (s)/σ(0)

Born(s), σ
(2)
αv2(s) ∼ α

s2
W

|σ(1)
Born(s)|, (7.18)

indicate that both corrections are ∼ 0.3% × σee4fBorn at
√
s = 170 GeV, overestimating the dis-

crepancy to the NLOee4f calculation. To assess the accuracy of the EFT expansion, it would
be interesting to calculate these corrections exactly and investigate whether the difference to
the NLOee4f calculation could be reduced, e.g., by resumming relativistic corrections to the W
propagators.

7.1.4 Leading NNLO corrections
In Ref. [15], those O(δ3/2) corrections according to Eq. (7.3) have been computed that originate
from genuine NNLO corrections in the usual counting in α. These consist of several classes:
(a) interference of one-loop Coulomb corrections with soft and hard corrections (Eq. (7.13));
(b) interference of one-loop Coulomb corrections with corrections to W decay, obtained from
Eq. (7.15) by replacing the LO cross-section with the first Coulomb correction; (c) interference
of one-loop Coulomb corrections with NLO corrections to residues of W propagators; and (d)
radiative NLO corrections to the Coulomb potential (Eq. (7.14)). The third Coulomb correction

§Note that here the updated results in the erratum to Ref. [12] are used. The EFT results here and in
Table B.7.2 differ from those of Refs. [14, 15] because of the corrected collinear contributions.

¶For e−e+→ tt, a related calculation has been performed recently [32].
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Table B.7.1: Comparison of the strict electroweak NLO results (without QCD corrections,
second Coulomb correction and ISR resummation) in the EFT approach to the full NLOee4f

calculation and the DPA implementation of Ref. [11].

σ(e−e+→ µ
−

νµud X)(fb)√
s Born NLO(EFT) [14] ee4f [12] DPA [12]

(GeV)
161 150.05(6) 107.34(6) 106.33(7) 103.15(7)
170 481.2(2) 379.03(2) 379.5(2) 376.9(2)

Table B.7.2: Leading O(α2) corrections [15] (second and third column) and contributions to
leading O(α3) corrections from triple-Coulomb exchange [15] (fourth column), interference
of double-Coulomb exchange with soft and hard corrections (Eq. (7.26)) (fifth column), and
double-Coulomb exchange with the NLO Coulomb potential (Eq. (7.27)) (sixth column). The
relative correction is given with respect to the Born cross-section without ISR improvement, as
quoted in Ref. [15].

σ(e−e+→ µ
−

νµud X)(fb)√
s O(α2/v2) O(α2/v) O(α3/v3) O(α3/v2)|C2×[S+H]1 O(α3/v2)|CNLO

2
(GeV)
158 0.151 0.061 3.82× 10−3 −1.50× 10−3 5.38× 10−3

[+0.245%] [+0.099%] [+0.006%] [−0.002%] [+0.009%]
161 0.437 0.331 9.92× 10−3 −0.433× 10−2 1.52× 10−2

[+0.284%] [+0.215%] [+0.006% ] [−0.003%] [+0.010%]
164 0.399 1.038 2.84× 10−3 −3.95× 10−3 1.97× 10−2

[+0.132%] [+0.342%] [+0.001%] [−0.001%] [+0.007%]
167 0.303 1.479 9.43× 10−4 −3.00× 10−3 1.77× 10−2

[+0.074%] [+0.362%] [+0.000%] [−0.001%] [+0.004%]
170 0.246 1.734 4.39× 10−4 −2.43× 10−3 1.56× 10−2

[+0.051%] [+0.360%] [+0.000%] [−0.001%] [+0.003%]

from Eq. (7.12) contributes at the same order, δ3/2. Care has been taken to avoid double-
counting corrections already included in the NLOee4f calculation, so the two results can be
added to obtain the current best prediction for the total cross-section near the threshold. The
numerical results are reproduced in Table B.7.2, together with the second Coulomb correction
included in the NLOEFT calculation. The results show that the leading Coulomb-enhanced
two-loop corrections are of the order of 0.3%. The uncertainty due to the remaining non-
Coulomb-enhanced NNLO corrections was estimated to be below the ILC target accuracy of
∆MW = 3 MeV [15] but not sufficient for the FCC-ee.
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7.2 Estimate of NNLOEFT corrections and beyond
In this section, the structure of the EFT expansion of the cross-section and the ingredients
for higher-order corrections reviewed in Section 7.1 are used to estimate the possible effects of
a future NNLOEFT calculation. Owing to the counting (Eq. (7.1)), this also includes leading
corrections beyond NNLO in the conventional perturbative expansion:

NNLOEFT : v4, αv2, α2 α3/v2, α4/v4. (7.19)

The contributions of O(v4, αv2) in Eq. (7.19) arise from kinematic corrections to the Born
and NLO cross-section in the full SM, as discussed in Sections 7.1.1 and 7.1.3, respectively.
The genuine O(α2) corrections are estimated in Section 7.2.1. A representative subset of the
O(α3/v2) corrections is computed in Section 7.2.2 and serves as an estimate of effects beyond
a conventional NNLO calculation. The quadruple-Coulomb correction α4/v4 follows from the
expansion of the known Coulomb Green function and is smaller than 0.001% and therefore
negligible. Counting α ∼ α2

s , QCD corrections to W self-energies and decay widths up to

αα2
s , α4

s (7.20)

are also required. Currently, the required O(α4
s ) corrections for inclusive hadronic vector boson

decays are known [33], while mixed QCD-EW corrections are known up to O(ααs) [34]. The
uncertainty of a future NNLOEFT calculation can be estimated by considering the impact of
corrections at the next order in the δ-expansion, i.e.,

N5/2LOEFT : αv3, α2v, α3/v, α4/v3, α5/v5. (7.21)

The contributions ∼αv3 are already included in the NLOee4f calculation. The fifth Coulomb
correction ∼α5/v5 is known but negligibly small. The corrections ∼α4/v3 arise from the combin-
ation of O(α) corrections with triple-Coulomb exchange and are also expected to be negligi-
ble, since the latter is <0.01%. Therefore, the dominant genuine radiative corrections beyond
NNLOEFT are expected to be of order α3/v. These arise from a combination of single Coulomb
exchange and various sources of O(α2) corrections and are estimated in Section 7.2.3. Further
contributions from triple-Coulomb exchange combined with ∼v2 kinematic corrections are again
expected to be negligible. The O(α2) corrections to the non-resonant cross-section (Eq. (7.7))
also provide ∼α3/v corrections relative to the LO cross-section, while corrections ∼α2v arise
from a combination of single Coulomb exchange with kinematic corrections ∼αv2. Such non-
resonant and kinematic corrections are estimated in Section 7.2.4. It is assumed throughout that
large logarithms of me are absorbed in electron structure functions and only the uncertainty
due to non-universal O(α2, α3) corrections is considered.

7.2.1 O(α2) corrections in the EFT
The most involved corrections of order α2 in the EFT arise from hard two-loop corrections to the
Wilson coefficients of production operators and to decay rates and from soft two-loop corrections
to the forward-scattering amplitude. Additional corrections from higher-order potentials or the
combination of double-Coulomb exchange with kinematic corrections ∼v2 are anticipated to
be subdominant. The soft corrections for massless initial-state electrons can be extracted from
the two-loop Drell–Yan soft function [23, 24] and converted to the electron mass regulator
scheme using the NNLO structure functions computed in Ref. [29]. We make no attempt here
to estimate these soft corrections, which are formally of the same order as the hard corrections.

- 83 -



C. Schwinn

This is supported by the NLO result, where hard corrections alone provide a reasonable order-
of-magnitude estimate and soft corrections contribute less than 50% of the NLO corrections
for
√
s = 158–170 GeV. The contribution of the NNLO Wilson coefficient of the production

operator to the cross-section reads

σ
(2)
hard(s) = πα2

s4
Ws

Im
−

√√√√− EW

MW

(
α

π

)2
C(2)

 , (7.22)

where the NNLO hard coefficient is defined in terms of the squared Wilson coefficient,

C2 = 1 + α

π
C(1) +

(
α

π

)2
C(2) + · · ·

The computation of C(2) involves the two-loop amplitude for e−e+→W−W+, evaluated directly
at the threshold. Such a computation is beyond the current state of the art, which includes two-
loop EW corrections to three-point functions [35–37], but will presumably be feasible before
the operation of the FCC-ee. A naive estimate of the NNLO coefficient in terms of the the
one-loop result (Eq. (7.11)),

C(2) ∼ (C(1))2, (7.23)

suggests an effect on the cross-section of

∆σ(2)
hard ≈ σ(0)

res × 0.06%. (7.24)

The NNLO corrections to W boson decay give rise to the correction

∆σ(2)
decay =

Γ(2,ew)
µ−νµ

Γ(0)
µ−νµ

+
Γ(2,ew)

ud

Γ(0)
ud

+
Γ(1,ew)

µ−νµ
Γ(1,ew)

ud

Γ(0)
µ−νµ

Γ(0,ew)
ud

σ(0)
res . (7.25)

The product of NLO corrections in the last term contributes a negligible 0.001% to the Gµ

input parameter scheme. A naive estimate of the currently unknown O(α2) corrections to W
decay suggests

Γ(2,ew)
fifj

≈ α

s2
W

Γ(1,ew)
fifj

∼ 0.01%× Γ(0)
fifj

,

consistent with the size of the O(α2) corrections to Z decay [36,37]. The estimates given in this
subsection indicate that the combined non-Coulomb-enhanced corrections of O(α2) are of the
order of 0.1% and are therefore mandatory to reduce the uncertainty below ∆MW . 1.5 MeV.

7.2.2 Corrections of O(α3/v2)
The corrections of O(α3/v2) involve a double-Coulomb exchange in combination with an O(α)
correction and arise from similar sources to those of the O(α2/v) corrections discussed in
Section 7.1.4. The subclass of contributions arising from the combination of double-Coulomb
exchange with soft and hard corrections is obtained by inserting theO(α2) term in the expansion
of the Coulomb Green function (Eq. (7.12)) into Eq. (7.13), resulting in the contribution to the
cross-section

∆σC2×[S+H]1 = α2

s4
Ws

α3
π

2

12 Im


√√√√−MW

EW

[(
7
2 + π2

4 + C(1)
)]

(7.26)
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Corrections from the NLO Coulomb potential to double-Coulomb exchange can be obtained
by expanding the expression for the NLO Coulomb Green function [31] quoted in Ref. [38] and
using the result for the Coulomb potential in the Gµ input parameter scheme [15], resulting in

∆σCNLO
2 (s) = α2

s4
Ws

α3

24 Im


√
−MW

EW

π
2
(
−β0 ln

(
− EW

MW

)
+ ∆Gµ

)
− 12β0ζ3

. (7.27)

The combination of double-Coulomb exchange with NLO corrections to W decay is obtained
from Eq. (7.15) by replacing σ(0)

res with the second Coulomb correction. The resulting effect is, at
most, 0.002%. Further corrections arise from corrections to the propagator residues and can be
computed with current methods, but are beyond the scope of the present simple estimates. At
O(α2/v), the corresponding corrections are of a similar size to the mixed soft+hard Coulomb
corrections [15]. Therefore, the predictions from Eqs. (7.26) and (7.27), which are shown in
Table B.7.2 together with the known two- and three-loop corrections [15], are expected to be
representative of the the O(α3/v2) corrections. They are of a similar order as the third Coulomb
correction, and individually of the order .0.01% near the threshold. The sum of all O(α3/v2)
corrections may, therefore, be of the order of 0.01%, indicating the need to go beyond a strict
O(α2) calculation to reach the FCC-ee accuracy goal.

7.2.3 Radiative corrections of O(α3/v)
Genuine three-loop corrections at O(α3/v) can arise from a combination of the first Coulomb
correction and soft or hard O(α2) corrections, corrections from higher-order potentials to the
Coulomb Green function or a combination of O(α) hard or soft and potential corrections.
One contribution in the latter class can be computed by inserting the NLO Green func-
tion (Eq. (7.14)) into the product with the O(α) hard and soft corrections (Eq. (7.13)),

σ̂CNLO×[S+H]1(s) = α2

ss4
W

α3

8π
Im


(

7
2 + π2

4 +C(1)
)(
−β0

2 ln
(
− EW
MW

)
+ ∆Gµ

)
ln
(
− EW
MW

). (7.28)

The corrections to the cross-section for
√
s = 161–170 GeV are given by

∆σCNLO×[S+H]1 = −0.001%× σLO. (7.29)

A further indication for the magnitude of corrections at this order can be obtained from the
combination of the NNLO hard coefficient with the first Coulomb correction,

∆σC1×H2 = −πα2

s4
Ws

α3C(2)

2π
Im
[

ln
(
−
EW

MW

)]
, (7.30)

and using the estimate (Eq. (7.23)) for the hard two-loop coefficient, which results in

∆σC1×H2(161 GeV) ≈ 0.005%× σLO, ∆σC1×H2(170 GeV) ≈ 0.002%× σLO. (7.31)

These results indicate that the O(α3) corrections beyond NNLOEFT are .0.01%. It is expected
that the factorisation (Eq. (7.10)) and the N3LO Coulomb Green function [39] enable the
computation of all O(α3/v) corrections once the NNLOEFT result is known, as for a related
calculation for hadronic tt production [40].
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7.2.4 Non-resonant and kinematic O(α2) corrections
KinematicO(α2v) corrections andO(α2) corrections to the non-resonant cross-section in Eq. (7.21)
would be included in a full NNLOee4f calculation, which is far beyond current calculational
methods. The comparison of the NLOEFT and NLOee4f results in Section 7.1.3 indicate a well-
behaved perturbative expansion of the non-resonant corrections (Eq. (7.7)), with coefficients
K(i) of order one. This suggests that the non-resonant and kinematic NNLO corrections are
reasonably estimated by scaling the corresponding NLO corrections,

∆σ(2)
4f (s) = σee4fNNLO(s)− σ(2)

EFT(s) ≈ α

s2
W

(
σee4fNLO(s)− σ(1)

EFT(s)
)

= σee4fBorn(s)× 0.02% (7.32)

for
√
s = 161–170 GeV. Therefore, these effects must be under control to reach the desired

accuracy for the FCC-ee. A calculation of theO(α2) non-resonant correction in the EFT involves
a combination of O(α2) corrections to the processes e−e+ → W±ff with O(α) corrections for
e−e+ → 4f. Such a computation is beyond current capabilities, but may be possible before a
full NNLOee4f calculation is available. A comparison of future NNLO calculations in the EFT
and the conventional DPA may also enable these corrections to be constrained.

7.3 Summary and outlook
The prospects of reducing the theoretical uncertainty of the total W pair production cross-
section near the threshold to the level of ∼0.01% required to fully exploit the high statistics
at a future circular e−e+ collider have been investigated within the EFT approach, building on
results for the NLO and dominant NNLO corrections. The estimates in Section 7.2.1 suggest
that O(α2) corrections beyond the leading Coulomb effects [15] are of the order

∆σNNLO ≈ 0.1%× σBorn (7.33)
at the threshold and are therefore mandatory to reach FCC-ee precision. In Sections 7.2.2
and 7.2.3, the dominant, Coulomb-enhanced three-loop effects have been estimated to be of the
order

∆σN3LO ≈ few× 0.01%× σBorn , (7.34)
based on computations or estimates of representative examples of O(α3/v2, α3/v) effects. These
corrections are either part of the NNLOEFT result or can be computed once this result is avail-
able. The effect of the remaining O(α3) corrections without Coulomb enhancement is expected
to be below the FCC-ee target accuracy. However, the accuracy of the NNLOEFT calculation
is limited by non-resonant and kinematic corrections. An extrapolation of the difference of the
NLOEFT and NLOee4f calculations suggests the magnitude

∆σ(2)
4f ≈ 0.02%× σBorn. (7.35)

Related estimates, ∆σN3LO ≈ 0.02% and ∆σ(non-res)
NNLO ≈ 0.016%, have been obtained using scaling

arguments and an extrapolation of the accuracy of the DPA [41]. Our results suggest that a
theory-induced systematic error of the mass measurement from a threshold scan of

∆MW = (0.15− 0.45) MeV (7.36)
should be achievable, where the lower value results from assuming that the non-resonant cor-
rections are under control. In addition to the corrections considered here, it is also essential to
reduce the uncertainty from ISR corrections and QCD corrections for hadronic final states to the
required accuracy. It would also be desirable to bring the precision for differential cross-sections
to a similar level to that of the total cross-section.
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Owing to its non-relativistic nature, heavy quarkonium, constituting heavy quark–antiquark
pairs (QQ̄ = bb̄ or cc̄) is an ideal object to investigate both perturbative and non-perturbative
aspects of QCD. The non-relativistic QCD factorisation formalism [1], built on rigorous effect-
ive field theory [2], provides a powerful tool to calculate heavy quarkonium production and
decay systematically. In this formalism, the production of heavy quarkonium is factorised into
the process-dependent short-distance coefficients (SDCs) multiplied by supposedly universal
long-distance matrix elements (LDMEs). The SDC describing the production of a QQ̄ pair in
Fock state n = 2S+1L

[a]
J with total spin S, orbital angular momentum L, and total angular

momentum J can be calculated perturbatively as an expansion in αs. The LDMEs related to
the probability that Fock state n will evolve into the heavy meson are organised by the veloc-
ity scaling rules [3] of non-relativistic QCD (NRQCD), and their values can be determined by
fitting to experimental data. Here, the velocity, vQ, refers to the motion of a heavy quark, Q, in
the rest frame of the heavy meson. Although NRQCD has greatly improved our understanding
of the heavy quarkonium production mechanism, the long-standing ‘J/ψ polarisation puzzle’
has not yet been resolved. The SDCs for the relevant colour singlet (CS) channel (3S

[1]
1 ) and

the three colour octet (CO) (3S
[8]
1 , 1S

[8]
0 , 3P

[8]
J ) channels have been obtained by three groups in-

dependently, while the corresponding LDMEs were fitted to different sets of experimental data,
based on different considerations [4–6]. However, none of these predictions can explain both the
J/ψ yield and polarisation data at hadron colliders simultaneously. Recently, the universality
of the NRQCD LDMEs was challenged by ηc hadroproduction data [7].

Compared with hadron colliders, in e+e− colliders, the production mechanism is simpler,
the uncertainties in the theoretical calculations are smaller, and the convergence of perturb-
ative calculations is faster. Moreover, on the experimental side, the much cleaner background
makes it possible to study the production of other heavy quarkonia besides the J/ψ and Υ
mesons, such as ηc,b and χc,b, and to study more production processes, such as the associated
production of heavy quarkonium with a photon or a heavy quark pair, in detail. Therefore,
heavy quarkonium production in e+e− colliders plays an important role in testing NRQCD fac-
torisation, so as to help resolving the ‘J/ψ polarisation puzzle’. There are two ways to produce
heavy quarkonium directly.∗ One is in e+e− annihilation and the other is in γγ collisions. We
review heavy quarkonium production, concentrating on the J/ψ case, by these two processes in
Sections 8.1 and 8.2, respectively, and discuss the prospects of heavy quarkonium production at
the FCC-ee beyond the current measurements made at B factories and CERN LEP-II. Section
8.3 contains a summary and an outlook.

∗This contribution should be cited as:
Z.-G. He, B.A. Kniehl, Perspectives of heavy quarkonium production at the FCC-ee, DOI: 10.23731/CYRM-
2020-003.89, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 89.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

∗Here, we mean production other than through the decay of other heavy particles, like the Z boson, Higgs
boson, or top quark.
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8.1 Heavy quarkonium production through e+e− annihilation
The total cross-section for inclusive J/ψ production in e+e− annihilation was measured by the
Babar [8], Belle [9], and CLEO [10] collaborations at

√
s = 10.6 GeV, yielding

σ(e+e− → J/ψ + X) =


2.5± 0.21± 0.21 pb Babar
1.47± 0.10± 0.13 pb Belle
1.9± 0.2 pb CLEO

The NRQCD prediction at leading order (LO) is in the wide range of 0.8-1.7 pb [11–14], in-
cluding 0.3 pb from the CS mechanism. The Belle collaboration further managed to discriminate
the contributions due to the final states J/ψ +cc̄+X and J/ψ+Xnon−cc̄, and found that σ(e+e− →
J/ψ + cc̄ + X) = 0.74± 0.08+0.09

−0.08 pb and σ(e+e− → J/ψ + Xnon−cc̄) = 0.43± 0.09± 0.09 pb [15].
Neither of these results is compatible with LO NRQCD predictions.

The LO NRQCD prediction for σ(e+e− → J/ψ + cc̄ + X) is about 0.15 pb, in which
the CO contribution is negligible [16]. To solve the problem, both the next-to-leading-order
(NLO) QCD [17] and relativistic corrections [18] were calculated. The relativistic correction
was found to be less than one percent of the LO contribution. The effect of the NLO QCD
correction is large. Its K factor is about 1.8 formc = 1.5 GeV and αs = 0.26. After including the
feed-down contribution from ψ(2S), the NRQCD prediction at NLO becomes 0.53+0.59

−0.23 pb and
largely removes the discrepancy [17]. However, the theoretical prediction depends strongly on
the chosen values ofmc and αs. According to the design [19], the FCC-ee will run at several beam
energies. Measuring J/ψ +cc̄ production at different energies will definitely help to improve our
understanding of the parameter setting in the theoretical calculation.

At high energies, the predominant contribution to J/ψ + cc̄ production comes from the
fragmentation process. For heavy quarkonium production, it is found that there are two types of
fragmentation [20], (1) single-parton fragmentation (SPF) and (2) double-parton fragmentation
(DPF). At hadron colliders, experimentally, the J/ψ + cc̄ final state is hard to detect and,
theoretically, both SPF and DPF contribute, so that it is very difficult to study their properties
separately.

In the e+e− annihilation process, only SPF contributes. Thus, the differential cross-section
in the fragmentation limit can be expressed as

dσ(e+e− → J/ψ + cc̄) = 2
∫

dσ(e+e− → cc̄)Dc→J/ψ(z)dz, (8.1)

where
Dc→J/ψ(z) = 8α2

s
27π

z(1− z)2(5z4 − 32z3 + 72z2 − 32z + 16)
(2− z)6

|R(0)|2
m3

c
, (8.2)

with z = EJ/ψ/
√
s, where |R(0)| is the wave function of J/ψ at the origin [21].

At
√
s = 10.6 GeV, the fragmentation contribution can only account for 58% of the com-

plete calculation [16]. The comparison between the complete calculation and the fragmentation
approximation is shown in Fig. B.8.1. We observe that, only in the energy range of the FCC-ee
or even beyond, the fragmentation contribution provides a good approximation. Conversely, the
differential cross-section of e+e− → QQ̄ is known at O(α2

s ) [22,23]. By comparing experimental
measurements with higher-order theoretical calculations, the fragmentation function at higher
orders can also be extracted.
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Fig. B.8.1: Cross-section of σ(e+e− → J/ψ + cc̄ + X) normalised to σ(e+e− → cc̄ + X) at LO
in NRQCD as a function of the centre-of-mass energy. The dotted line denotes the complete
result, and the solid line denotes the fragmentation calculation. Figure courtesy ref. [16].

For J/ψ +Xnon-cc̄ production, in the CS contribution, the NLO QCD corrections [24] and
relativistic corrections [25] are equally important. Their K factors are both around 1.2 [24,25],
and the cross-section through NLO in QCD and v2 becomes σ(e+e− → J/ψ + gg) ' 437 fb for
µ =
√
s/2 and mc = 1.5 GeV, which almost saturates the Belle measurement and leaves little

room for the CO contribution [25]. The NLO QCD corrections to the CO channels 1S
[8]
0 and

3P
[8]
J were also computed [26]. A lower bound on the CO contribution is obtained by using the

LDMEs from Ref. [4], yielding 0.3 pb. Therefore, the total NRQCD prediction is larger than
the Belle measurements, but does not conflict with the Babar and CLEO measurements if we
assume that σ(e+e− → J/ψ + cc̄ + X) is similar in these three experiments. To understand the
CO mechanism in e+e− annihilation, further analysis of J/ψ + Xnon-cc̄ production at 10.6GeV
and in the future at the FCC-ee is necessary.

Besides charmonium, the production of bottomonium in e+e− annihilation is also of great
interest. However, the collision energy at B factories is so close to the Υ production threshold
that perturbative calculations are no longer reliable. Moreover, such a low energy is not sufficient
to enable Υ + bb̄ production. At the FCC-ee, the collision energy is of the order of 102 GeV
and, therefore, provides a unique opportunity to study Υ + Xnon-bb̄ and Υ + bb̄ production in
e+e− annihilation. Theoretically, the NRQCD prediction through NLO can easily be obtained
from the known J/ψ calculation by changing the value of

√
s and replacing mc with mb and

the LDMEs of J/ψ by those of Υ.

8.2 Heavy quarkonium production in γγ collisions
J/ψ photoproduction in γγ collisions (e+e− → e+e−J/ψ + X) was measured by the DELPHI
collaboration at LEP-II [27,28]. The total cross-section was found to be σ(e+e− → e+e−J/ψ +
X) = (45±9±17) pb [28]. The DELPHI collaboration also measured the transverse momentum
(pT) distribution of the cross-section. Since the higher excited states χcJ and ψ

′ can decay
into J/ψ via radiative decays or hadronic transitions, their feed-down contributions should
also be considered. In such processes, the cc̄ pair can either be produced by photons directly
(direct photoproduction) or via the light quark and gluon content of the photons (resolved
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photoproduction), so that there are three channels: direct, single resolved, and double resolved,
all of which contribute formally at the same order in the perturbative expansion and should be
included.

Working in the Weizsäcker–Williams approximation to describe the bremsstrahlung pho-
tons radiated off the e± beams and using the factorisation theorems of the QCD parton model
and NRQCD, the general formula for the differential cross-section for the production of the
heavy quarkonium state H can be written as

dσ(e+e− → e+e−H + X)
dx1dx2dxadxb

=
∑
a,b,n

fγ(x1)fγ(x2)fa/γ(xa)fb/γ(xb)× dσ̂(a+ b→ QQ̄(n) + X)〈OH(n)〉,

(8.3)
where fγ(x) is the flux function of the photon in the e± beam, fj/γ(x) is δ(1 − x) if j = γ

and otherwise the parton distribution function of parton j in the resolved photon, dσ̂(a+ b→
QQ̄(n) + X) is the partonic cross-section, and 〈OH(n)〉 is the NRQCD LDME.

In the LO calculation, both direct J/ψ production and the feed-down from χcJ for J =
0, 1, 2 and ψ

′ are included [29]. For J/ψ (ψ′) production through relative order O(v4), the
Fock states include n = 3S

[1,8]
1 , 1S

[8]
0 , 3P

[8]
J , and for χcJ production at LO in v2 one needs n =

3P
[1]
J , 3S

[8]
1 . As shown in Fig. B.8.2, the LO NRQCD prediction of dσ/dp2

T, evaluated with
the LDMEs from the LO fit to Tevatron data [30], agree very well with the DELPHI data,
while the CS contribution itself lies far below the data, as the central values are about 16
times smaller. The total cross-section in the range 1 ≤ p2

T ≤ 10 GeV2 measured by DELPHI
is 6.4 ± 2.0 pb [27]. The NRQCD prediction is 4.7+1.9

−1.2 pb [29], which is also consistent with
the DELPHI result, within errors. However, the CS contribution is only 0.39+0.16

−0.09 pb [29]. The
nice agreement between the NRQCD calculation and the experimental measurement for J/ψ

photoproduction is one of the earliest pieces of evidence for the CO mechanism predicted by
NRQCD.

In 2011, two groups independently obtained complete NLO QCD corrections to J/ψ direct
hadroproduction for the first time [31, 32]. However, their LDMEs are different because they
fitted to data in different pT ranges. To eliminate such problems and further check the universal-
ity of the NRQCD LDMEs at NLO, a global analysis to worldwide data including γγ collisions
was conducted. The resulting three CO LDMEs, 〈OJ/ψ(1S

[8]
0 )〉 = (4.97 ± 0.44) × 10−2 GeV3,

〈OJ/ψ(3S
[8]
1 )〉 = (2.24 ± 0.59) × 10−3 GeV3, and 〈OJ/ψ(3P

[8]
0 )〉 = (−1.61 ± 0.20) × 10−2 GeV5,

which obey the velocity scaling rules, were found to explain all the J/ψ yield data fairly well,
except for the case of γγ collisions [4]. In contrast to the situation at LO, the DELPHI data
systematically overshoot the NLO NRQCD prediction, as may be seen in Fig. B.8.3. However,
Figs. B.8.2 and B.8.3 indicate that the uncertainties in the experimental measurements are
very large. There are only 36 ± 7 J/ψ → µ

+
µ
− events in total (and 16 thereof in the region

pT > 1 GeV), collected with an integrated luminosity of 617pb−1. The integrated luminosity
at the FCC-ee will reach the ab−1 level, which is more than three orders of magnitude larger
than that of LEP-II. Measuring J/ψ production in γγ collisions at the FCC-ee would not only
serve as a cross-check of the LEP-II results, but also provide results with high accuracy. Such
a study could surely clarify the current conflict and deepen our understanding of the heavy
quarkonium production mechanism in γγ collisions.

Unlike the case of e+e− annihilation, J/ψ+cc̄+X production in γγ collisions is predicted to
have a smaller cross-section than J/ψ +Xnon-cc̄ production. While γγ → J/ψ + Xnon-cc̄ proceeds
dominantly via single resolved photoproduction, γγ → J/ψ + cc̄ + X proceeds dominantly via
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direct photoproduction [33]. The total cross-section in the region p
J/ψ

T > 1 GeV is predicted
to be about 0.16–0.20 pb, depending on the chosen values of αs and the CS LDME [33, 34].
Its NLO NRQCD correction has also been calculated, and the K factor is found to be 1.46,
enhancing the total cross-section in the region pJ/ψ

T > 1 GeV to become around 0.23–0.29 pb,
which is too small to be analysed at LEP-II [34]. The cross-section becomes larger as the e+e−
collision energy increases. Based on the results given in Ref. [34], we estimate the numbers of
Jψ + cc̄ events accumulated with the FCC-ee at the ZZ and ZH thresholds to be around 2×106

each, assuming the kinematic-cut conditions for the FCC-ee to be the same as for LEP-II. Such
large data samples should be enough to usefully study J/ψ + cc̄ + X production in γγ collisions.
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8.3 Summary and outlook
The production mechanisms of heavy quarkonium, especially of the J/ψ meson, have not yet
been fully understood within the framework of NRQCD factorisation. We have discussed here
two modes of J/ψ production at e+e− colliders, through e+e− annihilation and γγ collisions. In
the e+e− annihilation case, for J/ψ + cc̄ + X production, the NRQCD prediction and the Belle
measurement agree within errors; however, for J/ψ+Xnon-cc̄ production, the Belle result favours
the CS model prediction and is overshot by NRQCD predictions evaluated using any of the
available LDME sets, although the latter are mutually inconsistent. We note that the NRQCD
predictions seem to be compatible with the Babar and CLEO results. As for J/ψ production
in γγ collisions, the NRQCD prediction can explain the LEP-II data, whose uncertainties are
large, at LO, but fails once the NLO correction is included.

The FCC-ee will run at different energy points with considerable integrated luminosity, of
O(ab−1) or even O(102 ab−1) at the Z boson peak [19], which will provide a perfect environment
to judge the disagreements independently. Moreover, it can significantly enrich our knowledge
of heavy quarkonium production in e+e− collisions, especially by studying bottomonium pro-
duction, the fragmentation function of c→ J/ψ, and J/ψ + cc̄ production in γγ collisions.
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9 Vertex functions in QCD—preparation for beyond two loops
Contribution∗ by: J.A. Gracey [gracey@liverpool.ac.uk]

Abstract
We summarise the algorithm to determine the two-loop off-shell three-point vertex functions
of QCD before outlining the steps required to extend the results to three and more loops.

9.1 Introduction
In our current generation of high-energy particle accelerators involving hadron collisions, a
major source of background is radiation derived from the strong sector. As this is governed by
quantum chromodynamics (QCD), to quantify the background effects one must carry out high
loop order computations. There has been remarkable activity and progress in this direction since
around the turn of the millennium. The primary focus has been with the evaluation of on-shell n-
point gluonic and fermionic amplitudes to several loop orders, both analytically and numerically.
Indeed, such results have been crucial in ensuring that the Higgs particle was observed at
CERN’s LHC. However, having information on the off-shell Green’s functions, such as the
three-point vertices of QCD, is also important for theory as well as experiment. For instance,
various articles in this direction have appeared over the years. A non-exhaustive literature for
this status of three- and four-point functions at various external momenta configurations is given
by Refs. [1–11]. There are various theoretical reasons for having such off-shell Green’s functions.
One is that knowing, say, the two-loop off-shell vertex functions enables higher-loop n-point on-
shell amplitudes to be modelled numerically. This could be an interim position in the absence of
the technology to compute them fully explicitly. Such an approach is not uncommon. Equally, in
solving QCD beyond the perturbative limit analytically to probe deep infrared properties using
the Schwinger–Dyson formalism, approximations must be made in order to solve the infinite
tower of Green’s functions. Until recent years, the validity of such approximations could not be
fully quantified. However, with explicit perturbative results, for instance, such error analyses
have been made possible. For instance, one approximation in solving two- and three-point
Schwinger–Dyson equations is to neglect the summed graphs deriving from the quartic gluon
vertex. Work in this direction over a period of time [12–16] has confirmed that such a step does
not affect final results by more than a few percent. Equally, the Schwinger–Dyson method has
been applied to finding the behaviour of the vertex functions. While similar approximations
have been made, such analyses must be consistent with explicit perturbative results where
no approximation is made at a particular loop order to drop a subset of contributing graphs.
As an aside, lattice gauge theory calculations of vertex functions equally have to match on
to perturbative results. Therefore, in light of these different areas of activity, there is a clear
need to compute QCD n-point, and specifically vertex functions, off-shell as well as on-shell.
For the former, which is the focus of this article, we will review the status of the two-loop
evaluation of the three-point vertices as well as outline the algorithm to extend this to higher-
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loop order. While the discussion will be technical in nature, we will pool together all the
necessary ingredients for the goal to be obtained at three loops.

While it is not immediately obvious, it is the case that the route to achieve this will
involve higher-level mathematics extracted, for instance, from an algebraic geometry approach.
Indeed, this also lies at the heart of on-shell amplitude computations. This technology has
revolutionalized the programme of loop calculations. An example of this can be seen in the
results for two-loop off-shell vertex results of Ref. [17], where harmonic polylogarithms based
on a specific type of polynomials, known as cyclotomic, [18], appeared. One corollary of such
results is the possibility of effecting renormalization schemes other than the canonical MS one,
which is universally accepted as the default scheme. Although this is the scheme with which one
can carry out very high loop order calculations, it is not a kinematic one and retains no data
within the β function, for instance, of the information on the subtraction point. In Ref. [19], the
momentum subtraction scheme, denoted MOM, was introduced and the R ratio studied [20].
Extending Ref. [19] to the next order in Ref. [21] produced the three-loop MOM renormalization
group functions. This allowed for studies of physical quantities at a loop order where scheme
effects were apparent [22]. One consequence is that choosing alternative renormalization schemes
could lead to a different way of estimating theory errors in measurements. In other words, similar
to an experiment estimating a measured quantity in different schemes, the average of the result
could be a more sound way of assessing truncation errors as an alternative to using values
at different scales. With fully off-shell vertex functions, for instance, this idea can be extended
beyond the symmetric point subtraction of the MOM case to have a region bounding the central
value.

This section is organised as follows. The method used to evaluate three-point off-shell
vertex functions is discussed next, with reference to the triple-gluon vertex. This forms the
basis for higher-loop computations, with the algorithm being outlined in Section 9.3. Concluding
remarks are made in Section 9.4.

9.2 Current status
At the outset, it is worth reviewing aspects of the early QCD vertex evaluations. By this we
mean that our focus will be on cases where there is no nullification of an external momentum.
This is important, since, in the computation of the QCD β-function to very high loop order, the
extraction of the MS coupling constant renormalization constant can be facilitated by setting
the momentum of one of the external fields of the vertex function to zero. This is a mathematical
shortcut, since the ultraviolet divergence is not contaminated by any infrared ones. By contrast,
this infrared-safe procedure does not produce the correct finite part of the vertex functions, so
it is not an appropriate method for gaining insight into any aspect of the kinematic properties
of the vertex functions themselves. To be more concrete in the discussion, we will focus on the
triple-gluon vertex function of Fig. B.9.1, which represents

〈
Aaµ(p1)Abν(p2)Acσ(−p1 − p2)

〉
= fabcΣggg

µνσ(p1, p2) = fabc
14∑
k=1
Pggg

(k)µνσ(p1, p2)Σggg
(k) (p1, p2) , (9.1)

where fabc are the colour group structure constants. The momenta pi satisfy energy–momentum
conservation

3∑
n=1

pi = 0 (9.2)
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↓ p3

p1↗ ↖ p2
µa ν b

σ c

Fig. B.9.1: Triple-gluon vertex function

and the underlying Lorentz invariants that the three-point functions depend on are expressed
in terms of two dimensionless variables, x and y, and one mass scale, µ, which are defined by

x = p2
1
p2

3
, y = p2

2
p2

3
, p2

3 = −µ2 , (9.3)

and we assume that none of p2
i vanishes. In Eq. (9.1), we have decomposed the vertex into its 14

scalar amplitudes Σggg
(k) (p1, p2) with respect to a basis of Lorentz tensors Pggg

(k)µνσ(p1, p2). With
this structure in mind for the other two three-point vertices, the full one-loop vertex functions
were studied in Ref. [19] in the early years following the discovery of asymptotic freedom.

Two important main early papers that stand out are Refs. [19, 23]. The former focused
on the vertex functions at the fully symmetric subtraction point defined by x = y = 1 and
introduced the MOM kinematic renormalization scheme known as MOM for momentum sub-
traction. Unlike the MS scheme, the renormalization is carried out at this specific symmetric
point and the finite part of the vertex functions is absorbed into the renormalization constants.
Therefore, the β-functions contain kinematic data. The motivation of Ref. [19] was to study
whether the convergence of the perturbative series could be improved in this new scheme. The
other article [23] reported a systematic study of each fully off-shell three-point vertex with a
view to writing each in terms of amplitudes dictated by external gluons being transverse. As
such, it has served as the default vertex function convention, where Schwinger–Dyson tech-
niques are used to approximate other Green’s functions. Consequently, there have been a large
number of one-loop studies of the three three-point vertices for different external momentum
configurations, as noted earlier. In some cases, these studies have been at two loops, but for
the most part one or more external gluon legs were on-shell and quarks have been massless,
except in the case of Refs. [3, 7]. In the main, the evaluation has been by standard quantum
field theory techniques via Feynman graphs. However, modern string-inspired methods have
been used [11, 24] for off-shell one-loop vertex functions. The case where a gluon, for example,
is on-shell must be treated separately from the configuration introduced in Eq. (9.3), owing to
potential infrared singularities in taking the on-shell limit from the fully off-shell results.

Studies of the vertex functions for the special cases where one or more external lines
are on-shell has direct applications to experimental set-ups. One of the reasons why these were
computed was, in the main, that the calculational tools for the off-shell case were not developed
until much later. Several main components were necessary for this, with the main breakthrough
arriving in the form of the Laporta algorithm [25]. This is a procedure of relating scalar Feynman
integrals of a particular n-point function at a specified loop order to core or master integrals
of r-point functions with r ≤ n and the same loop order, the connection between integrals
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↓ p3

p1↗ ↖ p2

Fig. B.9.2: One-loop three-point master integral I1(x, y)

being made via integration by parts. Then, starting with the most complicated integral, the
relations derived from integration by parts could be solved algebraically. While such a large set
of equations clearly contains a degree of redundancy, the whole process can be encoded for a
computer to handle and several packages to do so are publicly available [26–32]. The second
breakthrough necessary to complete this task was the determination of the master integrals.
For three-point functions, these had to be constructed by specialised methods [33–36] to two
loops, as integration by parts had been exhausted by the Laporta algorithm. To give a flavour of
the resultant mathematical structure, the one-loop master integral of Fig. B.9.2 is, for instance,
given by [33–35]

I1(x, y) = − 1
µ2

[
Φ1(x, y) + Ψ1(x, y)ε+

[
ζ(2)

2 Φ1(x, y) + χ1(x, y)
]
ε2 +O(ε3)

]
(9.4)

in d = 4 − 2ε dimensions, where ζ(z) is the Riemann zeta function. Here, the functions are
related to polylogarithms Lin(z). For instance

Φ1(x, y) = 1
λ

[
2Li2(−ρx) + 2Li2(−ρy) + ln

(
y

x

)
ln
(

(1 + ρy)
(1 + ρx)

)
+ ln(ρx) ln(ρy) + π

2

3

]
, (9.5)

with

ρ(x, y) = 2
[1− x− y + λ(x, y)] , λ(x, y) =

[
1− 2x− 2y + x2 − 2xy + y2

]1
2 , (9.6)

with the other functions of Eq. (9.4) given in [33–35] too. While the O(ε) terms may not, at
first sight, appear to be necessary, they are required for various reasons. One is that, at higher
loops, these one-loop expressions are multiplied by the counterterms. Thus, when a pole in ε
multiplies a term that is O(ε), then that will contribute to the finite part of the vertex function
at the next loop order. Accordingly, one needs the master integrals to at least O(ε2) at one
loop for a three-loop evaluation. We have indicated this since it could be the case that, in
the reduction using the Laporta algorithm, a spurious pole in ε arises, which we discuss later.
This is not an uncommon occurrence but the latest Laporta algorithm packages now have tools
to circumvent this possibility. These technical issues aside, the full off-shell three-point QCD
vertex functions are available to two loops with more details provided in Ref. [17].

- 100 -



B.9 Vertex functions in QCD—preparation for beyond two loops

9.3 Three-loop strategy

One reason for detailing the formalism to carry out the two-loop computations is that it points
the way for higher-loop corrections. On that basis, we outline the next parts of the jigsaw to
construct the three-loop extension of Ref. [17]. First, we assume that the procedure of the gen-
eral algorithm for the Green’s functions is applied to obtain the three-loop scalar amplitudes, as
illustrated in Eq. (9.1). From these, the large set of scalar Feynman integrals is assembled; these
must be reduced to the master integrals. The Laporta algorithm can, in principle, be applied in
the three-loop case, using one of the latest packages that have the built-in improvements, such
as the refined algebraic reduction of the Kira package [32]. However, to speed the integration
by parts procedure, it is not inconceivable that a faster algorithm could be developed. For
instance, for many years, the Mincer package served the multiloop community well for three-
loop massless two-point graphs in four dimensions [37,38]. It implemented the star–triangle rule
to produce an efficient code to evaluate even the heaviest fully gluonic three-loop graphs. With
the need for more precision experimentally, the four-loop Forcer package [39, 40] has super-
seded Mincer in the journey to hit the latest precision benchmark. Each has been encoded in
the symbolic manipulation language Form [41,42]. With increasing loop order, the evaluation
time for a Green’s function increases. However, the Forcer algorithm implements a new inte-
gration rule to handle an internal topology that has no three-loop antecedents and hence is a
purely four-loop feature. We have mentioned this since Forcer, like Mincer, applies only to
two-point functions. However, the same new rule should be applicable or adaptable to three-
loop three-point functions, since such a configuration emerges when one slices the vertex off a
two-point function, where that vertex contains one of the external legs. The remaining graph
would retain the internal topology of the two-point four-loop case. Therefore, an adaptation of
the new feature of Forcer could, in principle, be transferred to the three-point case to provide
an efficient alternative to the application of the Laporta algorithm for massless three-point
functions.

While such technology is already in effect in situ, the main obstacle to the full implementa-
tion of a three-loop evaluation is the determination of the required three-loop master integrals.
In recent years, this field has advanced, with progress made in understanding the mathematical
properties of high-order Feynman integrals. Examples of such articles include Refs. [43, 44],
which provide novel procedures to compute Feynman graphs. The background to this is that
there is a wide range of tools to evaluate a graph. One method is to introduce the Schwinger
parameter representation of each propagator and convert the L-loop d-dimensional space–time
integral into an integral over Schwinger parameters. The resulting integral has a large number
of parameter integrations to be carried out and there is no guarantee that this can be achieved
analytically. This is to be preferred over a numerical approach, as the latter, if a Monte Carlo
approach is used, could require a sizeable amount of computer resources to obtain reasonable
accuracy. In certain instances, an analytical evaluation is possible and, in essence, uses algebraic
geometry to produce an integration strategy. Such higher mathematics is relevant, since the
integrand contains polynomials of the parameters, which represent higher-dimensional geome-
tries. Established mathematical theorems are then effected, which determine which parameter
integration order is to be used, with the guiding principle being linear reducibility. By this,
we mean that after each parameter integration the polynomial degree reduces but the key to
achieve this is to have the polynomial factor off a smaller polynomial involving only factors
linear in the next variable to be integrated. It is this linearity that is key, as it allows one to use
the machinery of hyperlogarithms to carry out the integration over that Schwinger parameter.
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What was not immediately evident is whether this procedure could be iterated without obstruc-
tion and that when it terminates the value of the integral is found. It has now been shown that,
if an integral is linearly reducible [45,46], in this sense there is at least one choice of integration
order that allows the integral to be determined. While this is, in essence, the general current
position, it is known that, to three loops, the three-point vertex master integrals are all linearly
reducible. Thus, in principle, the required master integrals can be determined.

The actual practicalities of this have yet to be carried out. However, several packages
are available to assist with this task. For instance, converting a scalar Feynman integral into
Schwinger parameter representation via the underlying graph polynomials is now a standard
feature of integration packages, such as Hyperint [47]. This package is appropriate for an
analytical determination, since any evaluation can be written in various hyperlogarithm repre-
sentations. It has features that allow one to find the order of integration over the parameter
variables to ensure that there is no obstruction to the linear reducibility. In principle, one can
expand to several orders in the ε expansion in d = 4−2ε dimensions. However, for terms beyond
the leading few, the parameter integration can become tedious, especially for high loop orders.
Therefore, a more appropriate strategy would be one where only the first term of the ε expan-
sion of a master integral was required, which would then require the Laporta reduction to be
constrained to producing a basis of masters that is finite. There is a caveat with this because
one is using dimensional regularisation, which means that the reduction produces factors of
rational polynomials in d. Such functions can include poles in (d− 4), which are termed spuri-
ous poles. This is in the sense that while they correspond to a divergence it is not necessarily
one due to the divergence of an actual graph. There are now ways to circumvent this, which
work hand in hand with another property of the beauty of computing in d dimensions. This
was analysed in depth in Refs. [48, 49], where it was shown that d-dimensional integrals can
be related to the corresponding topology in (d+ 2) dimensions plus a sum of others that have
the same core topology but with propagators missing. Such higher-dimensional integrals can
be incorporated in the Laporta reduction process and have been implemented in version 2.11
of the Reduze package [27]. The advantage is that, with the increase in dimensionality in the
higher-dimensional integral, it is not as ultraviolet divergent as its lower-dimensional counter-
part. Thereby, in principle, one reduces the evaluation of the more difficult master integrals
to finite higher-dimensional ones, which should therefore be more accessible to the Hyperint
package.

In summarising the algorithm to extend the two-loop QCD off-shell vertex functions,
it is worth noting that, for the triple-gluon vertex, there will be 2382 three-loop graphs to
evaluate and 63 992 at four loops. For both the other three-point vertices, the numbers of
graphs in each case are the same and are 688 and 17 311, respectively, at three and four loops.
Thus, the evaluation of even just the three-loop vertex functions will require a substantial
amount of work and computing time. This would especially be the case at four loops without
access to appropriate computers to build the necessary databases of integral relations. In the
interim, there is a potential alternative to gain some insight into or estimate of the three-loop
contributions. In the period between the early work of Celmaster and Gonsalves [19] and its
extension to the next order in Ref. [21], a method was developed [9] where the vertex functions
were computed, at the fully symmetric point, numerically at two loops in QCD. The approach
was to apply a large momentum expansion of the vertex functions to very high order. This
produced a set of two-point integrals, which were evaluated using Mincer [37, 38]. Provided
that enough terms were computed, the approximate value of the contributing graphs could
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be accurately estimated numerically. The stability and accuracy of the expansion could be
checked by choosing different external momenta to play the role of the large momentum. What
was remarkable when the analytic two-loop expressions became available [21] was how accurate
the large-momentum Mincer-based expansion values were. The only major difference was for
a colour group Casimir coefficient in one three-loop MOM β function, which turned out to
be of the order 0.01 [9]. The numerical coefficient was small and the expansion needed to a
higher accuracy than was computationally available at the time [9]. With advances in symbolic
manipulation, such as the provision of the Forcer program, which is significantly more efficient
than Mincer, such an interim numerical evaluation of the vertex functions would at least give
information on the magnitude of the next-order corrections. As a corollary, it would provide
the four-loop MOM β functions numerically.

9.4 Discussion
To recap, we have reviewed recent results in the determination of the three-point vertex func-
tions of QCD at two loops. We have for the most part concentrated on the off-shell case; it
would not have been possible to achieve this without the earlier work on different external
momentum configurations. While the two-loop off-shell results followed a long time after the
one-loop case, the main reason for this was lack of the required computational technology. The
last decade has seen a revolution in this direction with the Laporta algorithm [25], as well as
a systematic way of computing master integrals from high-level mathematics. Consequently,
the road to achieve the extension to three loops is, in principle, possible. One useful corollary
of such a computation would be the extension of the renormalization group functions to four
loops in kinematic schemes such as MOM. To go to higher orders beyond three, this depends
on whether the linear reducibility of four-loop masters can be established. One case that we
have not touched on is that of the four-point functions. The technology to compute the full
off-shell one-loop amplitudes is already available. However, the current situation is that the
relevant two-loop off-shell masters have not been computed. Moreover, it has not been estab-
lished whether they are linearly reducible in order that the hyperlogarithm approach can be
applied. This at present appears to be an open question for future work. Finally, including
massive quarks in three- and four-point functions is another direction that needs consideration.
However, this is not straightforward at two loops, since the three-point masters with one mass
scale and off-shell momentum configuration are not yet known.
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10 Effective field theory approach to QED corrections in flavour
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10.1 Introduction and motivation
Thanks to the accurate measurements performed at the low-energy facilities [1] and the LHC,
flavour physics of light quarks, especially the bottom quark, emerged on the precision frontier
for tests of the Standard Model (SM) and in searches for new physics effects. On the theoretical
side, short-distance perturbative higher-order QCD and electroweak corrections are under good
control for many processes. Moreover, tremendous progress in lattice computations [2] allows
percentage to even subpercentage accuracy to be achieved for long-distance non-perturbative
quantities. This allows for the prediction of some key observables with unprecedented accuracy
and, in turn, the determination of short-distance parameters, such as the elements of the quark-
mixing matrix (CKM) in the framework of the SM. Given these prospects, it is also desirable
to improve the understanding and treatment of QED corrections, which are generally assumed
to be small. Unfortunately, not much new development has taken place in the evaluation of
such corrections.

For the future e+e− machines, the proper computation of QED corrections will be particu-
larly important because the large data samples allow for precision measurements that require
their inclusion in theoretical predictions. We would like to advocate a framework for a proper
and systematic treatment of QED effects based on the effective field theory (EFT) approach,
which exploits scale hierarchies present in processes involving mesons. In this spirit, QED
corrections to Bs → µ

+
µ
− have recently been analysed [3], revealing an unexpectedly large

contribution owing to power enhancement. Such an effect cannot be found in the standard
approach based on soft-photon approximation [4–6], as it requires a helicity flip induced by the
photon. Further, the common assumption that hadrons are point-like objects neglects effects
related to the structure of hadrons. It implies implicitly that the soft-photon approximation
itself is performed in the framework of an EFT in which photons have virtuality below a typical
hadronic binding scale ΛQCD ∼ O(100 MeV) of partons in hadrons, below which they do not
resolve the partonic structure of the hadrons. In consequence, this approach cannot address
QED corrections, owing to virtualities above the scale ΛQCD. These observations are a motiva-
tion to scrutinise further QED corrections in flavour physics in the light of upcoming precise
measurements and existing tensions in flavour measurements, in particular, related to tests of
lepton flavour universality.

In addition to a systematic power counting, the EFT treatment offers the possibility of the
all-order resummation of the corrections. This is particularly important for the mixed QCD–
QED corrections, owing to the size of the QCD coupling constant and the presence of large
logarithmic corrections. While the soft-exponentiation theorem allows resumming leading QED

∗This contribution should be cited as:
M. Beneke, C. Bobeth, R. Szafron, Effective field theory approach to QED corrections in flavour physics, DOI:
10.23731/CYRM-2020-003.107, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and
T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 107.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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effects related to ultrasoft photons that do not resolve the partonic structure of hadrons, not
much is known about the resummation of the subleading logarithms in QED for photons with
larger virtuality. Standard factorisation theorems derived in QCD cannot be directly translated
to QED, for, in the QCD case, the mass effects related to light degrees of freedom are typically
neglected. This is not the case in QED, where the lepton mass provides a cut-off for collinear
divergences. Moreover, the fact that in QCD one can observe only colour singlet states addition-
ally simplifies the computations, while in QED, and more generally in the electroweak sector of
the SM [7,8], it is necessary to account for charged particles in both the final and initial states.
As a result, the QED factorisation theorems have not been explored intensively in the literature
so far, but this gap should be filled before a precise e+e− collider becomes operational.

Power corrections to the standard soft approximation may also play an important role
in certain processes. Studies of power corrections in the QCD case recently gained much at-
tention [9–15]. New tools based on soft-collinear EFT (SCET) developed to study processes
with energetic quarks and gluons can, after certain modifications, be applied to improve the
accuracy of electroweak corrections in future lepton colliders. This is particularly important
in collider physics for regions of phase space where the perturbative approach breaks down,
owing to the presence of large logarithmic enhancements, and the next-to-soft effects become
more important. Particularly interesting are mass-suppressed effects related to soft fermion
exchange [16–18], whose consistent treatment in the SCET language is not yet fully known.
Beyond applications to precision SM physics, the SCET framework may be necessary after
possible discovery of new physics at the LHC [19,20].

10.2 QED corrections in Bq → `+`−

The decay of a neutral meson Bq → `+`− (` = e, µ, τ) is the first step in an investigation of
QED effects in QCD bound states. Its purely leptonic final state and neutral initial state keep
complications related to the non-perturbative nature of QCD to the necessary minimum. Yet, as
we shall see, even this simple example requires investigation of power corrections in SCET. The
importance of this decay derives from the fact that it depends, at leading order (LO) in QED,
only on the Bq meson decay constant, which can nowadays be calculated with subpercentage
precision on the lattice [21], necessitating the inclusion of higher-order QED corrections from
all scales at this level. This decay has been observed for ` = µ by LHCb [22, 23], CMS [24],
and ATLAS [25]. The currently measured branching fraction for Bs decays of about 3× 10−9 is
compatible with the latest SM predictions [3,26,27] and it is expected that the LHCb experiment
will be able to measure the branching fraction with 5% accuracy with 50/fb (Run 4) around
the year 2030 [28]. The FCC-ee running on the Z resonance is expected to provide, with about
O(103) reconstructed events [29], an even higher event yield compared with LHCb Run 4. This,
together with the cleaner hadronic environment at the FCC-ee, should allow better control of
backgrounds and also systematic uncertainties, such that one can expect improved accuracy.
However, the gain in accuracy cannot be quantified without a dedicated study.

On the theory side, electroweak and QCD corrections above the scale µb ∼ 5 GeV of
the order of the b quark mass mb are treated in the standard framework of weak EFT of the
SM [30]. The effective Lagrangian is a sum of four-fermion and dipole operators

L∆B=1 = N∆B=1

[ 10∑
i=1

Ci(µb)Qi

]
+ h.c. , (10.1)

with N∆B=1 ≡ 2
√

2GFVtbV
∗

tq and covers, in principle, all weak decays of b hadrons. The perti-
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nent operators relevant for Bq → `+`− (q = d, s) are

Q7 = e

(4π)2

[
q̄σµν(mbPR +mqPL)b

]
Fµν ,

Q9 = αem

4π

[
q̄γµPLb

]∑
`

[
¯̀γµ`

]
,

Q10 = αem

4π

[
q̄γµPLb

]∑
`

[
¯̀γµγ5`

]
. (10.2)

The matching Ci(µb) coefficients are computed at the electroweak scale µW ∼ O(100 GeV) and
evolved to the scale of µb ∼ mb with the renormalization group equation of the weak EFT.

Because the neutral Bq meson is a pseudo-scalar and the SM interactions are mediated
by axial and vector currents, the decay rate must vanish in the limit m` → 0, and therefore
the decay amplitude is proportional to the lepton mass. The hadronic matrix element at LO
in QED is parametrized by a single decay constant fBq , defined by 〈0|q̄γµγ5b|B̄q(p)〉 = ifBqp

µ.
The leading amplitude for Bq → `+`− is

iA = m` fBq N C10(µb)
[
¯̀γ5`

]
,

(
N ≡ N∆B=1

αem

4π

)
(10.3)

and the branching fraction is

Br(0)
q` ≡ Br(0)

[
Bq → `+`−

]
=
τBqm

3
Bqf

2
Bq

8π
|N |2 m2

`

m2
Bq

√√√√1− 4m2
`

m2
Bq

|C10|2 , (10.4)

with mBq denoting the mass of the meson and τBq its total lifetime. For neutral Bs mesons,
the mixing needs to be accounted for [31], thereby allowing for the measurement of related
CP asymmetries, to be discussed next. In this case, Eq. (10.4) refers to the ‘instantaneous’
branching fraction at time t = 0, which differs from the measured untagged time-integrated
branching fraction by the factor (1 − y2

s )/(1 + ysA∆Γ), where ys = ∆Γs/(2Γs) is related to
the lifetime difference and A∆Γ denotes the mass-eigenstate rate asymmetry. Concerning QED
corrections, this branching fraction refers to the ‘non-radiative’ one prior to the inclusion of
photon bremsstrahlung effects.

If one takes into account soft-photon radiation (both real and virtual) with energies smaller
than the lepton mass, the decay amplitude is dressed by the standard Yennie–Frautschi–Suura
exponent [4, 32]

Br
[
Bq → `+`− + nγ

]
= Br(0)

q` ×
(

2Emax

mBq

)2αem
π

(
ln
m2

Bq
m2
`

−1
)

+O(m`)

. (10.5)

This ‘photon-inclusive’ branching fraction is based on eikonal approximation, in the limit when
the total energy carried away by the n photons, Emax, is much smaller than the lepton mass.
The QED corrections in the initial state are entirely neglected and photons are assumed to
couple to leptons through eikonal currents

Jµ(q) = e
∑
i

Qiηi
pµi
pi · q

, (10.6)
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where η = −1 for incoming particles and η = +1 for outgoing particles. The sum runs over all
charged particles with momenta pi and charges Qi. Eikonal currents are spin-independent and
thus they do not change the helicity of the leptons.

From this point, we focus only on the case of muons in the final state, ` = µ. In the
experimental analysis [23–25], the signal is simulated fully inclusive of final-state radiation off
the muons by applying PHOTOS [33] corresponding to a convolution of the Emax-dependent
exponential factor in the determination of the signal efficiency. Conversely, photon emission
from the quarks (initial state) vanishes in the limit of small photon energies because it is
infrared-safe, since the decaying meson is electrically neutral. Hence, it can be neglected as
long as the signal window is sufficiently small, in practice of O(60 MeV) [34], and is effectively
treated as negligible background on both experimental and theory sides. In consequence, the
experimental analyses currently provide the non-radiative branching fraction relying on the
simulation with PHOTOS.

The limitations of the conventional approximation had missed the important effect re-
sponsible for the power enhancement of QED corrections to the Bs → µ

+
µ
− decay. Indeed, even

when the cut on the real photon emission is much smaller than the muon mass, virtual photons
with virtualities of the order of the muon mass or larger can resolve the structure of the meson,
whose typical size is of the order of 1/ΛQCD. In this case, the meson cannot be treated as a
point-like object. Moreover, the eikonal approximation is not suitable for such photons, as they
can induce a helicity flip of the leptons. However, straightforward computation of the QED
corrections is not possible, as it requires the evaluation of non-local time-ordered products of
the L∆B=1(0) Lagrangian with the electromagnetic current jQED = Qqq̄γ

µq, such as

〈0|
∫

d4xT{jQED(x),L∆B=1(0)}|B̄q〉. (10.7)

Currently, this object is beyond the reach of lattice QCD, while the SCET approach allows
one to systematically expand this matrix element and reduce the non-perturbative quantities
to universal ones at leading order.

Let us consider Fig. B.10.1, where the photon is exchanged between the light quark
and the lepton. There are two low-energy scales in the diagram, set by the external kinemat-
ics of the process Bq → µ

+
µ
−. One is the muon mass mµ, which is related to the collinear

scale. We parametrize the lepton momentum in terms of the light-cone co-ordinates as p` =
(n+p`, n−p`, p

⊥
` ) ∼ mb (1, λ2

c, λc), where we introduced the small counting parameter λc ∼
mµ/mb. The second low-energy scale is related to the typical size of the soft light quark momen-
tum lq ∼ ΛQCD and for counting purposes we introduce λs ∼ ΛQCD/mb. In the case of muons, it
happens that numerically λc ≈ λs and in the following we equate them and do not distinguish
between them. It turns out that there also exists a hard-collinear invariant constructed from the
lepton and quark momentum p` · lq ∼ λm2

b, thus in addition to the collinear and soft regions we
must also consider a hard-collinear region, where momenta scale as k ∼ mb

(
1, λ, λ1/2

)
. This

non-trivial hierarchy of intermediate scales must be properly accounted to evaluate the leading
QED corrections, which can be done by subsequent matching on SCETI and SCETII [35] at
the hard (∼mb) and hard-collinear scales, respectively.

The power enhancement is directly related to the interplay of collinear and hard-collinear
scales. When the hard-collinear or collinear photon interacts with the soft quark, momentum
conservation forces the quark to become hard-collinear. These modes can be integrated out
perturbatively with the help of the EFT methods. In this case, we must first match the operators
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b

q̄
γ

C9,10

ℓ̄

ℓ

q̄ ℓ

Fig. B.10.1: Example diagram that gives rise to the power-enhanced QED correction. A photon
can be either collinear with virtuality k2 ∼ m2

µ
or hard-collinear, k2 ∼ mµmb.

in Eq. (10.2) on SCETI currents [36]. In SCETI, we retain soft, collinear, and hard-collinear
modes; only the hard modes are integrated out. The leading SCETI operator contains a hard-
collinear quark field, which scales as λ1/2 instead of the soft quark field with scaling λ3/2. When
we integrate out the hard-collinear modes, we must convert the hard-collinear quark field ξC(x)
to the soft quark field qs. This is done with the help of power-suppressed Lagrangian [37]

L(1)
ξq = q̄s(x−)W †

ξCi /D⊥ ξC(x)− ξ̄C(x) i
←−
/D⊥WξC qs(x−),

where WξC is a collinear Wilson line carrying charge of the collinear field ξC. This Lagrangian
insertion costs an additional power of λ1/2, but the resulting SCETII operators are still power-
enhanced, as compared with the operators obtained without an intermediate hard-collinear
scale. The power-enhanced correction to the amplitude is [3]

i∆A = αem

4π
Q`Qqm`mBqfBqN

[
¯̀(1 + γ5)`

]
×


∫ 1

0
du(1− u)Ceff

9 (um2
b)
∫ ∞

0

dω
ω
φB+(ω)

[
ln mbω

m2
`

+ ln u

1− u

]

−Q`C
eff
7

∫ ∞
0

dω
ω
φB+(ω)

[
ln2 mbω

m2
`

− 2 ln mbω

m2
`

+ 2π
2

3

], (10.8)

where φB+(ω) is the Bq meson light-cone distribution amplitude (LCDA), which contains infor-
mation about the non-perturbative structure of the meson. This virtual correction is, by itself,
infrared-finite, as it modifies the exclusive decay rate. The power enhancement manifests itself
in Eq. (10.8) as the inverse power of the ω variable that results from the decoupling of the
hard-collinear quark modes

mBq

∫ ∞
0

dω
ω
φB+(ω) lnk ω ∼ mBq

ΛQCD
∼ 1
λ
. (10.9)

The ω may be interpreted as a momentum of the soft quark along the light-cone direction
of the lepton, and thus ω ∼ ΛQCD. The annihilation of the quark into leptons is a non-local
process in the presence of the QED interactions and the virtual leptons with the wrong helicity
can propagate over distances of the order of the meson size. Thus, the helicity flip costs a
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factor m`/ΛQCD instead of the typical suppression factor of m`/mb present in the leading-order
amplitude.

The terms proportional to C10 cancel after the collinear and anticollinear contributions
are added, such that only C9 contributes out of the semileptonic operators. The term ∝C7
requires separate treatment since the convolution integral containing the hard matching co-
efficient exhibits an endpoint singularity. In addition, the collinear contribution has a rapidity-
type divergence. There exists an additional contribution related to the soft region, which, after
a suitable rapidity regularisation, can be combined with the collinear contribution. When the
convolution integral is performed in dimensional regularisation before taking the limit d → 4,
the total correction is finite and exhibits the double-logarithmic enhancement.

The numerical evaluation [3] of the power-enhanced correction (Eq. (10.8)) shows a partial
cancellation of the terms ∝Ceff

9 and ∝Ceff
7 . The final impact on the branching fraction Br(0)

qµ
is

a decrease in the range (0.3–1.1)%, with a central value of 0.7%. Despite the cancellation,
the overall correction is still sizeable compared with the natural size of a QED correction of
αem/π ∼ 0.3%. The large uncertainties of the power-enhanced QED correction are due to the
poorly known inverse moment λB and almost unknown inverse-logarithmic moments σ1 and σ2
of the B meson LCDA.∗ The prediction for the muonic modes for the untagged time-integrated
branching fractions for Bs → µ

+
µ
− and Bd → µ

+
µ
− are

Br(0)
sµ

=
(

3.59
3.65

)[
1±

(
0.032
0.011

)
fBs

± 0.031|CKM ± 0.011|mt ± 0.012|non-pmr ± 0.006|pmr ± +0.003
−0.005|QED

]
× 10−9,

(10.10)

Br(0)
dµ

=
(

1.05
1.02

)[
1±

(
0.045
0.014

)
fBd

± 0.046|CKM ± 0.011|mt ± 0.012|non-pmr ± 0.003|pmr ± +0.003
−0.005|QED

]
× 10−10,

(10.11)

where we group uncertainties: (i) main parametric long-distance (fBq) and short-distance (CKM
and mt), (ii) remaining non-QED parametric (τBq , αs) and non-QED non-parametric (µW, µb,
higher order, see Ref. [26]), and (iii) from the QED correction (λB and σ1,2, see Ref. [3]). We
provide here two values, depending on the choice of the lattice calculation of fBq for Nf = 2+1
(upper) and Nf = 2 + 1 + 1 (lower), with averages from FLAG 2019 [2]. Note that the small
uncertainties of the Nf = 2 + 1 + 1 results are currently dominated by a single group [21] and
confirmation by other lattice groups in the future is desirable. It can be observed that, in this
case, the largest uncertainties are due to CKM parameters, such that they can be determined
provided the accuracy of the measurements at the FCC-ee is at the 1% level. Still fairly large
errors are due to the top quark mass mt = (173.1 ± 0.6)GeV, here assumed to be in the pole
scheme, where an additional non-parametric uncertainty of 0.2% is included (in ‘non-pmr’)
for the conversion to the MS scheme. Further ‘non-pmr’ contains a 0.4% uncertainty from µW
variation and 0.5% further higher-order uncertainty, all linearly added. For the CKM input, we
use Refs. [3, 27].

As mentioned, for the Bs meson, the mixing provides the opportunity to measure CP
asymmetries in a time-dependent analysis

Γ[Bs(t)→ µ
+
λ µ
−
λ ]− Γ[B̄s(t)→ µ

+
λ µ
−
λ ]

Γ[Bs(t)→ µ
+
λ µ
−
λ ] + Γ[B̄s(t)→ µ

+
λ µ
−
λ ]

= Cλ cos(∆mBst) + Sλ sin(∆mBst)
cosh(yst/τBs) +Aλ∆Γ sinh(yst/τBs)

, (10.12)

∗Throughout, the same numerical values as in Ref. [3] are used for Bs and Bd, neglecting SU(3)-flavour
breaking effects.
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where all quantities are defined in Ref. [31] and |Aλ∆Γ|2 + |Cλ|2 + |Sλ|2 = 1 holds. For example,
the mass-eigenstate rate asymmetry A∆Γ = +1 in the SM exactly, if only a pseudo-scalar
amplitude exists, and is therefore assumed to be very sensitive to possible new flavour-changing
interactions, with essentially no uncertainty from SM background. We now see that the QED
correction of the SM itself generates small ‘contamination’ of the observable, given by Ref. [3]

Aλ∆Γ ≈ 1− 1.0 · 10−5 , Sλ ≈ −0.1% , Cλ ≈ ηλ 0.6% , (10.13)

where ηL/R = ±1. Present measurements [23] set only very weak constraints on the deviations
of Aλ∆Γ from unity, and Cλ, Sλ have not yet been measured,† but the uncertainty in the B
meson LCDA is, in principle, a limiting factor for the precision with which new physics can be
constrained from these observables. Also, Sλ and Cλ deviate marginally from the leading-order
SM prediction of zero, but signals from new physics should be substantially larger to distinguish
them from the SM QED correction.

A similar framework can be used to analyse QED corrections to B± → `±ν`. In this case,
power enhancement does not arise, owing to the different chirality structure of the current and
the presence of only one charged lepton in the final state [3]. QED corrections that depend on
the meson structure are subleading in this case. The leading QED corrections for this process
can be obtained from the usual soft-photon approximation, where the charged meson is treated
as a point-like charge.

10.3 Summary and outlook
The proper treatment of QED corrections in theoretical predictions is essential to the success
of future e+e− colliders. We have shown how this goal could be achieved in flavour physics for
the example of a power-enhanced leading QED correction to the leptonic decays Bq → µ

+
µ
−

with q = d, s [3] and provided updated predictions. A systematic expansion based on the
appropriate EFTs must be implemented to cover dynamics from the hard scale µb ∼ 5 GeV over
hard-collinear (SCETI) and collinear scales (SCETII) down to the ultrasoft scales O(10MeV).
Further, the EFTs allow for a systematic resummation of the leading logarithmic corrections
and they provide a field-theoretical definition of non-perturbative objects in the presence of
QED, as, for example, generalised light-cone distribution amplitudes of the B meson dressed by
process-dependent Wilson lines [36]. The consistent evaluation of the QED corrections is thus
a challenging task, but it can be accomplished with the help of effective field theory.

In the example at hand, the special numerical value of the muon mass and its proximity
to the typical size of hadronic binding energies ΛQCD gave rise to a special tower of EFTs. The
application to the cases of electrons and taus requires additional considerations. Full theoretical
control of QED corrections is also desirable for other decays that will allow future precision
determination of short-distance parameters. For example, an important class is that of exclusive
b→ u`ν̄` and b→ c`ν̄` decays for the determination of CKM elements Vub and Vcb, respectively.
Owing to the absence of resonant hadronic contributions, the only hadronic uncertainties from
B → M form factors could become controllable with high accuracy in lattice calculations for
large dilepton invariant masses, i.e., energetic leptons, which is also the preferred kinematic
region for the tower of EFTs discussed here. Other interesting applications are observables
that are predicted in the SM to vanish when restricting to the leading order in the weak

†Note that Cλ requires the measurement of the muon helicity, whereas Aλ∆Γ and Sλ can also be determined
as averages over the muon helicity; furthermore, Aλ∆Γ can be measured without flavour-tagging, whereas it is
required for Sλ and Cλ.
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operator product expansion but might be sensitive to non-standard interactions. Then the QED
corrections in the SM provide a background to the new physics searches, as in the example
of A∆Γ in Bs → µ

+
µ
− given here. This concerns observables in the angular distributions of

B→ K(∗)`+`− as, for example, discussed in Refs. [38,39].
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11 Top pair production and mass determination
Contribution∗ by: A. Maier [andreas.martin.maier@desy]

The mass of the top quark can be measured in a well-defined scheme and with unrivalled
precision at a future electron–positron collider, like the FCC-ee. The most sensitive observable
is the total production cross-section for bb̄W+W−X final states near the top pair production
threshold. I review the state of the art in theory predictions for this quantity.

11.1 Introduction
The total cross-section for inclusive bb̄W+W−X production can be measured with very high
precision at a future high-energy electron–positron collider. Owing to the potential for large
integrated luminosity, the FCC-ee is especially well-suited for such a measurement. The line
shape for centre-of-mass energies close to the top–antitop production threshold is highly sensi-
tive to the mass of the top quark, which allows its determination with unprecedented precision.
Since the statistical uncertainty of the measurement is projected to be significantly below the
current theory error [1, 2], it is crucial to continuously improve the theoretical prediction.

11.2 Effective theory framework
The bb̄W+W−X final state is mostly produced through the creation and decay of non-relativistic
top–antitop pairs, interacting predominantly via a colour Coulomb potential. The dynamics of
this system are described by potential non-relativistic effective field theory (PNREFT) [3–5],
combined with unstable particle effective field theory [6, 7]. Within this framework, higher-
order corrections can be treated systematically through a simultaneous expansion in the non-
relativistic velocity v and the strong, electromagnetic, and top Yukawa couplings αs, α, and yt.
We adopt the power counting v ∼ αs ∼

√
α ∼ yt with the top quark width Γt ∼ mtα. Powers

of αs/v from the bound-state interaction are resummed to all orders in perturbation theory.
At leading order, the PNREFT Lagrangian is given by

LPNREFT, LO = ψ†
(

i∂0 +
~∂2 + imtΓt

2mt

)
ψ+Lanti-quark−

∫
d3~r

[
ψ†ψ

]
(~x+~r)CFαs

r

[
χ†χ

]
(~x) , (11.1)

where ψ is the quark field and χ the antiquark field. The resulting top pair propagator is the
Green function of the Schrödinger equation with the colour Coulomb potential interaction.
Its imaginary part is closely related to the resonant top pair production cross-section via the
optical theorem.

11.3 Higher-order corrections
Higher-order corrections to the PNREFT Lagrangian are obtained by matching to the full
Standard Model. In the first step, hard modes with large four-momenta k ∼ mt are integrated
out. This gives rise to a non-relativistic effective field theory with local effective vertices. These

∗This contribution should be cited as:
A. Maier, Top pair production and mass determination, DOI: 10.23731/CYRM-2020-003.117, in: Theory for
the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 117.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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Fig. B.11.1: Non-resonant diagrams contributing to the W+bt̄ final state at NLO. The final
state W−b̄t follows from charge conjugation.

matching corrections are known to NNNLO in the QCD and Higgs sector [8–11] and to NNLO
in the electroweak sector [12–16].

In the second matching step, soft modes k ∼ mtv and potential modes k0 ∼ mtv
2, ~k ∼ mtv

for gluons and light quarks are also eliminated from the theory. The most challenging part is
the calculation of the corrections to the static colour Coulomb potential to NNNLO, which is
reported in Refs. [17–19].

11.3.1 Resonant production
With the matched PNREFT Lagrangian, the resonant top pair production cross-section can
be calculated, including NNNLO QCD and Higgs effects and NNLO electroweak effects, by
computing corrections to the Green function to this order. The complete result for the QCD
corrections was first presented for the S-wave contribution in Ref. [20] and for the P-wave
contribution in Ref. [9] (see also Ref. [21]). Schematically, the known contributions to the top
pair production cross-section can be written as

σres ∼ α2v
∞∑
k=0

(
αs

v

)k
×



1 LO
αs, v,

α
v

NLO
α2

s , αsv, v
2, α

v
×
{
α
v
, αss, v

}
, yt
√
α, y2

t NNLO
α3−i

s vi, y2
t ×

{
α
v
, αs, v

}
NNNLO

. (11.2)

11.3.2 Non-resonant production
Top quarks are unstable and the final state bb̄W+W−X can also be produced in non-resonant
channels that do not involve the creation of a top–antitop pair near the mass shell. According to
unstable particle effective field theory, the full cross-section is given by the sum of the resonant
and non-resonant contributions:

σ = σres + σnon-res . (11.3)

While non-resonant production is suppressed by one power of α, it does not suffer from the
same phase space suppression as resonant production and therefore contributes with a factor
of α/v relative to the leading-order cross-section, i.e., at NLO. The diagrams at this order are
shown in Fig. B.11.1; their contribution was first detailed in Ref. [22]. The NNLO non-resonant
cross-section was later detailed in Ref. [16].

Virtual top quarks in the non-resonant channels are formally far off-shell with squared
momenta p2

t − m2
t ∼ m2

t � mtΓt, so the width must not be resummed in the propagators.
Since we integrate over the full phase space, endpoint divergences occur whenever p2

t − m2
t

vanishes. At NNLO, this leads to poles proportional to Γt/ε in 4 − 2ε dimensions. As usual
in asymptotic expansions, these cancel against poles in a different expansion region. In this
case, the corresponding poles appear in the form of finite-width divergences in the resonant
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Fig. B.11.2: Total cross-section for the process e+e− → at various orders in perturbation theory.
Left: Cross-section without ISR from NLO to NNNLO with the pure NNNLO QCD result as
comparison. Right: Effect of ISR on the cross-section.

cross-section. A detailed account of the NNLO calculation including the arrangement of pole
cancellations is given in Ref. [16].

11.3.3 Initial-state radiation
Formally, photonic corrections in the initial state are suppressed by one order in α and therefore
contribute at NNLO according to our power counting. However, it is well-known that these
corrections are enhanced by logarithms of mt over me, which have to be resummed to all
orders. The resummed cross-section is given by [23,24]

σ(s) =
∫ 1

0
dx1

∫ 1

0
dx2 ΓLL

ee (x1)ΓLL
ee (x2)σ̂(x1x2s) + σISRconst(s) , (11.4)

where ΓLL
ee (x) is a leading logarithmic structure function, σ̂ is the ‘partonic’ cross-section without

ISR resummation and σISRconst accounts for the non-logarithmic NNLO contribution.

11.4 Cross-section predictions
The formulae for the cross-section can be evaluated numerically with the code
QQbar_threshold [25], which includes all aforementioned corrections. Figure B.11.2 shows the
behaviour of the total cross-section near threshold for a top quark mass of mt(20 GeV) =
171.5 GeV in the potential-subtracted scheme [26] and input parameters Γt = 1.33 GeV,
mH = 125 GeV, αs(mZ) = 0.1177, α(mZ) = 1/128.944. The uncertainty bands originate from a
variation of the renormalization scale between 50 and 350 GeV.

Figure B.11.3 shows the effect of changing various parameters. The variation suggests
that it should be possible to extract the top quark width and mass in the potential-subtracted
scheme with an uncertainty of better than 100 MeV. The sensitivity to the top Yukawa coupling
and the strong coupling is less pronounced and there is a considerable degeneracy between the
two parameters. A precise knowledge of the strong coupling constant from other sources will be
crucial to meaningfully constrain the Yukawa coupling. In any case, a dedicated experimental
analysis will be needed to determine the exact precision with which the various top quark
properties can be extracted from a measurement of the cross-section.

Acknowledgements
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12 Higgs boson decays: theoretical status
Contribution∗ by: M. Spira [Michael.Spira@psi.ch]

12.1 Introduction
The discovery of a Standard-Model-like Higgs boson at the LHC [1,2] completed the theory of
electroweak and strong interactions. The measured Higgs mass of (125.09±0.24)GeV [3] ranges
at the order of the weak scale. The existence of the Higgs boson [4–9] allows the Standard
Model (SM) particles to be weakly interacting up to high-energy scales. This, however, is only
possible for particular Higgs boson couplings to all other particles so that with the knowledge
of the Higgs boson mass all its properties are uniquely fixed. The massive gauge bosons and
fermions acquire mass through their interaction with the Higgs field, which develops a finite
vacuum expectation value in its ground state. The minimal model requires the introduction of
one isospin doublet of the Higgs field and leads after spontaneous symmetry breaking to the
existence of one scalar Higgs boson.

Since all Higgs couplings are fixed within the SM, any meaningful approach to introduce
variations requires the introduction of effects beyond the SM (BSM). Two major branches are
being pursued for this purpose: (i) the introduction of higher-dimension operators in terms of a
general effective Lagrangian with dimension-6 operators providing the leading contributions for
energy scales sufficiently below the novel cut-off scale of these operators and (ii) the introduction
of specific BSM models with extended Higgs, gauge, and fermion sectors. The extraction of BSM
effects, however, strongly relies on the accuracy of the SM part as, e.g., sketched in the basic
decomposition of the SM-like Higgs boson decay widths as

Γ = ΓSM + ∆ΓBSM (12.1)
Any potential to extract the BSM effects ∆ΓBSM is limited by the uncertainties δΓSM of the
SM part.

12.2 SM Higgs boson decays
The determination of the branching ratios of Higgs boson decays thus necessitates the inclu-
sion of the available higher-order corrections (for a recent overview see, e.g., Ref. [10]) and a
sophisticated estimate of the theoretical and parametric uncertainties.

12.2.1 H→ f f̄
The Higgs decay H → bb̄ is the dominant Higgs boson decay with a branching ratio of about
58%. The subleading fermionic decays H → τ

+
τ
− and H → cc̄ reach branching ratios of about

6% and 3%, respectively. The rare decay H → µ
+

µ
− will become visible at the HL-LHC and

happens with about 0.02% probability [11]. The present status of the partial decay widths can
be summarised in terms of the (factorised) expression

Γ(H→ ff) = NcGFMH

4
√

2π
m2

f (1 + δQCD + δt + δmixed) (1 + δelw) , (12.2)

∗This contribution should be cited as:
M. Spira, Higgs boson decays: theoretical status, DOI: 10.23731/CYRM-2020-003.123, in: Theory for the FCC-
ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 123.
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where Nc = 3(1) for quarks (leptons), GF denotes the Fermi constant, MH denotes the Higgs
mass, andmf denotes the fermion mass. In general, the pure QCD corrections δQCD to the Higgs
boson decays into quarks are known up to NLO including the full quark mass dependence [12–16]
and up to N4LO for the leading corrections with the leading mass effects [17–23]. The dominant
part of the QCD corrections can be absorbed in the running quark mass evaluated at the scale
of the Higgs mass. The top-induced QCD corrections, which are related to interference effects
between H→ gg and H→ qq̄, are known at NNLO in the limit of heavy top quarks and light
bottom quarks [24–26]. In the case of leptons, there are no QCD corrections (δQCD = δt =
δmixed = 0). The electroweak corrections δelw are known at NLO exactly [27–30]. In addition,
the mixed QCD-elw corrections range at the per-mille level if the factorised expression with
respect to QCD and elw corrections is used [31–36]. The public tool Hdecay [37, 38] neglects
these mixed QCD-elw corrections but includes all other corrections. The partial decay width
of H→ bb̄ is also known fully differential at N3LO QCD [39–42].

12.2.2 H→W(∗)W(∗),Z(∗)Z(∗)

The branching ratios of SM Higgs boson decays into (off-shell) W and Z bosons amount to about
21% and 3%, respectively. Off-shell effects of the W and Z bosons are important [43–45] and
lead to the H→ Z∗Z(∗) → 4`± decay as one of the discovery modes of the SM Higgs boson [1,2].
The electroweak corrections to the full decay modes H → V(∗)V(∗) → 4f (V = W,Z) have
been calculated [27, 46–49]. The public tool Prophecy4f [48, 49] for calculating the exclusive
decay processes has been used in the experimental analyses. An improvement beyond the pure
elw corrections has been made by the proper matching to parton showers at NLO [50]. However,
shower effects have not been relevant for the analyses performed so far.

12.2.3 H→ gg

The loop-induced Higgs decay into gluons reaches a branching ratio of about 8%. The decay is
dominantly mediated by top and bottom quark loops, with the latter providing a 10% contri-
bution. The charm quark contributes at the level of about 2%. The two-loop QCD corrections
are known, including the exact quark mass dependences [51–53]. They enhance the partial decay
width by about 70% and thus cannot be neglected in the decay profile of the Higgs boson. The
NNLO, N3LO, and, recently, the N4LO QCD corrections have been obtained for the top loops
in the limit of heavy top quarks, i.e., the leading term of a heavy top mass expansion [54–56].
The QCD corrections beyond NLO amount to less than 20% of the NLO QCD-corrected partial
decay width, thus signalling perturbative convergence in spite of the large NLO corrections.
The residual theoretical uncertainties have been estimated at the level of about 3% from the
scale dependence of the QCD-corrected partial decay width. The NLO elw corrections have
been calculated for the top-loop contributions first in the limit of heavy top quarks [34,57,58],
then the electroweak corrections involving light fermion loops exactly [59–61], and finally the
full electroweak corrections involving W, Z, and top-loop contributions, including the full vir-
tual mass dependences, by means of a numerical integration [62,63]. They amount to about 5%
for the SM Higgs mass value. The public tool Hdecay [37, 38] includes the NLO QCD results
with the full quark mass dependences, the NNLO and N3LO QCD corrections in the heavy top
limit, and the full NLO elw corrections in terms of a grid in the Higgs and top masses used for
an interpolation.
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12.2.4 H→ γγ

The rare loop-induced Higgs decay into photons reaches a branching ratio of about 0.2%. The
decay is dominantly mediated by W and top quark loops, with the W loops being dominant. The
two-loop QCD corrections are known, including the exact top mass dependences [53, 64–73].
They correct the partial decay width by a small amount, about 2%. The QCD corrections
beyond NLO have been estimated in the limit of heavy top quarks to be in the per-mille
range [74–76]. The NLO elw corrections to the W and top-induced contributions have been
obtained by a numerical integration of the corresponding two-loop diagrams [63, 77–79]. They
decrease the partial photonic branching ratio of the SM Higgs boson by about 2%, thus nearly
cancelling against the QCD corrections by accident. The public tool Hdecay [37,38] includes the
NLO QCD results with the full quark mass dependences and the full NLO elw corrections in
terms of a grid in the Higgs and top masses used for an interpolation, but neglects all corrections
beyond NLO.

12.2.5 H→ Zγ and Dalitz decays

The rare loop-induced Higgs decay into a Z boson and a photon reaches a branching ratio
of less than 0.2%. The decay is dominantly mediated by W and top quark loops, with the
W loops being dominant. The two-loop QCD corrections are known, including the exact top
mass dependences [80–82]. They correct the partial decay width by a small amount in the
per-mille range and thus can safely be neglected. The electroweak corrections to this decay
mode are unknown. However, the decay mode H→ Zγ → f f̄γ is one of the more general Dalitz
decays H → f f̄γ [83–89]. The latter are described by the diagrams in Fig. B.12.1, where the
Z boson exchange appears in a part of the triangle diagrams. The resonant Z boson exchange
corresponds to the H → Zγ decay mode. The separation of this part, however, depends on
the experimental strategy to reconstruct the Z boson in the final state. A first step for the
reconstruction of the Z boson is to cut on the invariant mass of the final-state fermion pair.
The corresponding distributions of the Dalitz decays are shown in Fig. B.12.2 for the three
charged lepton final states normalised to the partial width into photons with a cut Eγ > 1 GeV
on the photon energy. For small invariant masses, the photon conversion H → γγ

∗ → γ`+`−

provides the dominant contribution, while for invariant masses around the Z boson mass the
Z boson contribution H → γZ∗ → γf f̄ takes the dominant role. At the endpoint q2 <∼ M2

H of
the spectrum, the direct contribution determines the distributions. This increases with growing
Yukawa coupling, i.e., it is largest for H→ γτ

+
τ
− (where it dominates in the whole q2 range). (It

should be noted that the endpoint in the e+e−γ case is four or five orders of magnitude smaller
than the photon and Z exchange contributions, thus making it impossible to determine the
electron Yukawa coupling. The same conclusion is also valid for the reverse process e+e− → Hγ,
so that the s-channel line shape measurement proposed in Ref. [90] will not be sensitive to the
electron Yukawa coupling but dominated by the loop-induced contribution with an additional
photon.) For a clean separation of the H → γγ, H → γγ

∗ → γ`+`−, H → Zγ, and H → `+`−

contributions, appropriate cuts must be implemented for the Dalitz decays. The low-q2 part
must be attributed to H→ γγ, the q2-part around M2

Z to H→ Zγ and the endpoint region close
to M2

H to the QED corrections to H→ `+`−. The public code Hdecay [37, 38] does not include
the full Dalitz decays.
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Fig. B.12.1: Generic diagrams contributing to the Dalitz decays H→ γf f̄

12.3 Uncertainties
The parametric errors are dominated by the uncertainties in the top, bottom, and charm quark
masses, as well as the strong coupling αs. We have used the MS masses for the bottom and
charm quarks, mb(mb) = (4.18 ± 0.03) GeV and mc(3 GeV) = (0.986 ± 0.026) GeV, and the
top quark pole mass mt = (172.5 ± 1) GeV, according to the conventions of the LHC Higgs
cross-section WG (HXSWG) [11]. The MS bottom and charm masses are evolved from the input
scale to the scale of the decay process with four-loop accuracy in QCD. The strong coupling
αs is fixed by the input value at the Z boson mass scale, αs(MZ) = 0.118 ± 0.0015. The total
parametric uncertainty for each branching ratio has been derived from a quadratic sum of the
individual impacts of the input parameters on the decay modes along the lines of the original
analyses in Refs. [91,92] and the later analysis in Ref. [93].

The theoretical uncertainties from missing higher orders in the perturbative expansion
are summarised in Table B.12.1 for the individual partial decay processes, along with the
perturbative orders of the included QCD or elw corrections [10,11]. To be conservative, the total
parametric uncertainties are added linearly to the theoretical uncertainties. The final result for
the branching ratios is shown in Fig. B.12.3 for the leading Higgs decay modes with branching
ratio larger than 10−4 for the Higgs mass range between 120 and 130GeV. These have been
obtained using Prophecy4f [48,49] for the decays H→WW,ZZ and Hdecay [37,38] for the other
decay modes. The bands represent the total uncertainties of the individual branching ratios. For
a Higgs massMH = 125 GeV, the total uncertainty of the leading decay mode H→ bb̄ amounts
to less than 2%, since the bulk of it cancels out within the branching ratio. The uncertainty of
Γ(H→ bb̄), however, generates a significant increase in the uncertainties of the subleading decay
modes. The total uncertainties of BR(H → WW/ZZ) and BR(H → τ

+
τ
−/µ

+
µ
−) amount to

∼2%, while the uncertainties of BR(H→ gg) and BR(H→ cc̄) range at ∼6–7%, of BR(H→ γγ)
at ∼3% and of BR(H → Zγ) at ∼7%. The total decay width of ∼4.1 MeV can be predicted
with ∼2% total uncertainty.
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−
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Fig. B.12.2: The invariant mass distributions in
√
q2 = M`+`− of the Dalitz decays H →

γ +e+e−/µ
+

µ
−/τ

+
τ
− normalised to Γ(H→ γγ) with a cut Eγ > 1 GeV on the photon energy. The

red lines show the contribution of the tree diagrams, the thin solid lines denote the contribution
of the photon conversion H → γγ

∗ → γ`+`−, and the dashed line the contribution from the Z∗
exchange diagrams, while the thick lines present the total contributions. The dotted lines denote
the contribution from the box diagrams (in ’t Hooft–Feynman gauge). From Ref. [89].
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Table B.12.1: Estimated theoretical uncertainties from missing higher orders and the perturb-
ative orders (QCD/elw) of the results included in the analysis.

Partial width QCD Electroweak Total On-shell Higgs
(%) (%) (%)

H→ bb̄/cc̄ ∼0.2 ∼0.5 ∼0.5 N4LO / NLO
H→ τ

+
τ
−/µ

+
µ
− — ∼0.5 ∼0.5 — / NLO

H→ gg ∼3 ∼1 ∼3 N3LO / NLO
H→ γγ <1 <1 ∼1 NLO / NLO
H→ Zγ <1 ∼5 ∼5 LO / LO
H→WW/ZZ→ 4f <0.5 ∼0.5 ∼0.5 NLO/NLO

Fig. B.12.3: Higgs boson branching ratios and their uncertainties for Higgs masses around
125GeV. Figure courtesy ref. [11].
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Chapter C

Methods and tools

1 Heritage projects, preservation, and re-usability concerns
Contribution∗ by: S. Banerjee, M. Chrzaszcz, Z. Was, J. Zaremba
Corresponding author: Z. Was [z.was@cern.ch]

The FCC is a long-term project, novel in many respects, and new calculations, including simu-
lation programs, will be appearing in the forthcoming years. However, many of the approaches
developed for previous experiments, in particular LEP, will be useful, either directly as a tools
or as a means to prepare substantial benchmarks. In addition, programs that will be prepared
for Belle II, especially in the domain of τ, B, and D resonance physics, will continue to be
valuable tools. Such programs and projects will undoubtedly evolve in the meantime, but one
can expect that ready-to-use versions will be available when the need arises. Then only inter-
faces will need to be archived solely for the FCC. In some cases, the whole projects will require
long-term preservation. Before we will explain some attempts on preservation of some example
projects, such as τ decays, radiative corrections in decays, or electroweak corrections, let us
mention possible general approaches.

There are many helpful tools for managing software projects, in both development and
preservation. However, preservation-development tools become obsolete and code history, nec-
essary for future extensions and validation, may become lost; therefore, it is important to
ensure proper migration from one preservation-development tool to the next. In addition, very
stable solutions belong to repositories beyond an author’s responsibility, specifically targeting
long-term preservation.

The CPC International Program Library [1] serves such a purpose; CERN web pages like
that used for TAUOLA [2] or PHOTOS [3] may also offer the necessary facility.

Issues arise if parts of the code are prepared using automated code development tools. If
those tools (i.e., other programs) are not published, the programs prepared with their help are
of limited help for future applications, especially if extensions are needed.

The interfaces between segments of the code can be of a different type. The reassurance
offered by solutions based on some tools is indisputable, but can be overshadowed if such a
tool evolves over an unsuitable time. We have experienced minor, but at inconvenient moments
for our project evolution, difficulties as a result of ROOT library [4] upgrades to new versions.
Manual intervention on our part and changes to the work routine were necessary.† Because many
software development projects of phenomenology represent a sizeable fraction of the total effort

∗This contribution should be cited as:
S. Banerjee, M. Chrzaszcz, Z. Was, J. Zaremba, Heritage projects, preservation, and re-usability concerns, DOI:
10.23731/CYRM-2020-003.135, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and
T. Riemann, CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 135.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

†We had to modify the code for our projects, owing to changes in the ROOT library, first in July 2002 and
again for the changes introduced with ROOT release 6.
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and the people involved may often not be immediately available, this may represent a major
inconvenience.

1.1 Common tools for all FCC design studies
As already mentioned, it is of crucial importance to have a common software platform with all
the repositories. In the FCC, this effort has begun with the creation of a twiki page [5], where
different MC generators are available. This collection should be extended with documentation
of programs, links to available original git repositories, etc. Everybody is welcome to link or
put there related codes or results to be used in future software.

The twiki page [5] currently includes three sections.

1. FccComputing, in which the installation procedure of the FCC-ee software is described.

2. FccGenerators, containing different MC generators. Currently, Tauola, Higgsline, KKMC,
and Bhabha generators are presented.

3. FccSoftware, containing various examples of simulations run in the FCC framework.

Next, we will briefly describe currently available generators and discuss their preservation.

1.1.1 Tauola
The τ decay phenomenology relies to a large degree on experimental data. This is because of
the complexity of experimental analyses and the difficulty in phenomenology modelling decays
where intermediate resonances used in hadronic currents are broad and perturbative QCD de-
scription is only partly suitable. Background analysis for multidimensional distributions is a
problem. Collaborations are hesitant to enable outside use of their matrix element paramet-
rizations, because they may be unsuitable for other, externally studied, distributions. Neverthe-
less, if they become available, it is worthwhile to store them in publicly available repositories.
In Ref. [6], parametrizations developed for ALEPH and CLEO were archived, together with
the original parametrization, useful for technical testing of the Tauola algorithm. In Ref. [7],
thanks to discussions with the BaBar community, an extension of Tauola with multichannel ca-
pacity that is easy to manipulate by users was prepared. The resulting default parametrization
equivalent to that work was archived in Ref. [8]. In that reference, a framework for work with
C++ currents and for Belle II was prepared. Hopefully, this may provide a means to feed back
code at the FCC. A smooth transition period for evolution from partly Fortran to fully C++
code is envisaged in this solution.

1.1.2 Photos and Tauola Universal interface
The code for these projects is currently in C++. Preservation of the up-to-date variants is
assured, thanks to CERN special accounts and web pages [2, 3]. Some versions are archived in
the CPC [9,10]. The main issue for the project is the fast evolution of event format HepMC [11],
and especially how other projects use that format to write down generated events. In addition,
long-term preservation efforts may be impaired because of the evolution of configuration and
make-file arrangements.
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1.1.3 EvtGen
The decays of heavy flavoured hadrons provide huge constrains on Beyond Standard Model
physics [12]. The FCC-ee is due to run on the Z pole, and will also be a heavy flavour factory.
The decays of such mesons and hadrons are modelled with the EvtGen package [13]. The package
consists of various models, which are constantly being updated with the theory predictions,
such as form factors and amplitude calculations. Currently, the main developers of EvtGen are
involved in LHCb collaboration; however, the package is made publicly available [14] via the
git repository. It was recently extended to describe the decays of spin 1/2 particles. The project
is written in C++ and interfaces with the HepMC format [11]. It is also possible to interface it
with the Tauola, Pythia, and Photos packages.

1.1.4 Electroweak corrections
The KKMC code is published and archived in Ref. [15]. Its electroweak correction library, in
use until today, is also published and archived: Dizet version 6.21 [16, 17]. At present, only
Dizet version 6.42 [18, 19] is available for the KKMC electroweak sector upgrade. This version
of Dizet is missing updates, owing to the photonic vacuum polarisation, e.g., as provided in
Refs. [20, 21]. We could implement the updates ourselves because Dizet version 6.42 is well-
documented. However, some versions of Dizet that still exist may become unavailable at a later
date. In fact, it was difficult for us to obtain access and we decided to revert to version 6.42.
This indicates the necessity for code maintenance, even if authors may at some time become
unavailable.

In any case, Dizet version 6.42 [18, 19] with updates from Refs. [20, 21] is prepared as a
facility for the electroweak tables used in KKMC [15].

Using tables prepared by one program in another program is not only the method to
enhance the speed of the calculation. Interpolation of values enable technical regularisation of
the functions. Technical instabilities at the phase space edges can be regulated.

The tables can be used by other programs that understand the format. In this way, for
example, the TauSpinner package [10, 22] can be used for graphical presentation for different
variants of Dizet and of its initialization as a natural continuation of work [23] for the LHC or
similar activities for the FCC.

This limit is a substantial burden for interfaces. Preservation of projects is only partly
assured by the CPC publications. The most up-to-date versions are available at user webpages,
which sometimes are not available or may become unavailable.
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2 Scalar one-loop Feynman integrals in arbitrary space–time dimen-
sion d – an update

Contribution∗ by: T. Riemann, J. Usovitsch
Corresponding author: T. Riemann [tordriemann@gmail.com]

2.1 Introduction
The study and use of analyticity of scattering amplitudes was founded by R. Eden, P. Landshoff,
D. Olive, and J. Polkinghorn in their famous book The Analytic S-Matrix in 1966 [1]. Indeed,
as early as 1969, J. Schwinger quoted: “One of the most remarkable discoveries in elementary
particle physics has been that of the complex plane, [. . . ] the theory of functions of complex
variables plays the role not of a mathematical tool, but of a fundamental description of nature
inseparable from physics.” [2].

It took many years to make use of analyticity and unitarity, together with renormaliz-
ability and gauge invariance of quantum field theory, as a practical tool for the calculation of
cross-sections at real colliders. When the analysis of LEP 1 data, around 1989, was prepared,
it became evident that the S-matrix language helps to efficiently sort the various perturbative
contributions of the Standard Model.

The scattering amplitude for the reaction e+e− → (Z, γ)→ f f̄ at LEP energies depends on
two variables, s and cos θ, and the integrated cross-section may be described by an analytical
function of s with a simple pole, describing mass and width of the Z resonance:

A = R

s−M2
Z + iMZΓZ

+
∞∑
i=0

ai
(
s−M2

Z + iMZΓZ
)i
. (2.1)

Here, position s0 = M2
Z−iMZΓZ and residue R of the pole, as well as the background expansion,

are of interest. The analytic form of Eq. (2.1) must be respected when deriving a Z amplitude
at multiloop accuracy; see Ref. [3] and the references therein.

Shortly after the work by Eden et al. [1], physical amplitudes were also proposed for
consideration as complex functions of space–time dimension d (dimensional regularisation) [4,5].

In perturbative calculations with dimensional regularisation, Feynman integrals I are
complex functions of the space–time dimension d = 4 − 2ε. In fact, they are meromorphic
functions of d and may be expanded in Laurent series around poles at, e.g., ds = 4+2N0, N0 ≥ 0.
Let Jn be an n-point one-loop Feynman integral, as shown in Fig. C.2.1:

Jn ≡ Jn
(
d; {pipj},

{
m2
i

})
=
∫ ddk

iπd/2
1

Dν1
1 D

ν2
2 · · ·Dνn

n

(2.2)

with
Di = 1

(k + qi)2 −m2
i + iε (2.3)
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Fig. C.2.1: One-loop Feynman integral

and
ν =

n∑
i=1

νi,
n∑
e=1

pe = 0. (2.4)

The Feynman integrals are analytical functions of d everywhere with exclusion of isolated
singular points ds, where they behave not worse than

As
(d− ds)Ns

. (2.5)

In physics applications, we need the Feynman integrals at a potentially singular point,
d = 4, so that their general behaviour at non-singular points is not in the original focus.
Nevertheless, the question arises:

Can we determine the general d-dependence of a Feynman integral?

For one-loop integrals, the question has been answered recently, in Ref. [6].
At the beginning of systematic cross-section calculations in d dimensions came two sem-

inal papers on one-loop Feynman integrals in dimensional regularisation [7, 8]. Later, many
improvements and generalisations were introduced in various respects.

We see several reasons to study the d-dependence of one-loop Feynman integrals and will
discuss them briefly in the next subsection.

2.2 Interests in the d-dependence of one-loop Feynman integrals
2.2.1 Interest from mathematical physics
There is a general interest in the Feynman integrals as meromorphic functions of space–time
dimension d; the easiest case is that of one loop. Early attempts, for the massless case, trace
back to Boos and Davydychev [9]. The general one-loop integrals were tackled systematically
by Tarasov et al. since the 1990s; see, e.g., Refs. [10–13] and references therein. In Refs. [14,15],
the class of generalised hypergeometric functions for massive one-loop Feynman integrals with
unit indices was determined and studied with a novel approach based on dimensional difference
equations.

(a) 2F1 Gauss hypergeometric functions are needed for self-energies.
(b) F1 Appell functions are needed for vertices.
(c) FS Lauricella–Saran functions are needed for boxes.

Finally, the correct, general massive one-loop one- to four-point functions with unit indices
at arbitrary kinematics were determined by Phan and Riemann [6], who also calculated the
numerics of the generalised hypergeometric functions.

- 140 -



C.2 Scalar one-loop Feynman integrals in arbitrary space–time dimension d—an update

2.2.2 Interest from tensor reductions of n-point functions in higher space–time
dimensions

For many-particle calculations, inverse Gram determinants 1/G(pi) from tensor reductions ap-
pear at certain kinematic configurations pi. These terms 1/G(pi) may diverge, because Gram
determinants can exactly vanish: G(pi) ≡ 0. One may perform tensor reductions so that no
inverse Gram determinants appear. But then one has to calculate scalar one-loop integrals
in higher dimensions, D = 4 + 2n − 2ε, n > 0 [16, 17]. In fact, one introduces new scalar
integrals [16]. Let us take as an example a rank-5 tensor of an n-point function:

Iµνλρσn =
∫ ddk

iπd/2
kµkνkλkρkσ∏n

j=1 cj

= −
n∑

i,j,k,l,m=1
qµi q

ν
j q

λ
kq

ρ
l q
σ
mnijklmI

[d+]5
n,ijklm + 1

2

n∑
i,j,k=1

g[µνqλi q
ρ
j q
σ]
k nijkI

[d+]4
n,ijk

− 1
4

n∑
i=1

g[µνgλρq
σ]
i I

[d+]3
n,i . (2.6)

The integrals I [d+]l
n,ab... are special cases of I [d+]l,s

n,ab... , defined in [d+]l = 4 − 2ε + 2l dimensions, by
shrinking line s and raising the powers of propagators (indices) a, b, . . .

At this step, the tensor integral is represented by scalar integrals with higher space–time
dimensions and higher propagator powers. The publicly available Feynman integral libraries
deliver, though, ordinary scalar integrals in d = 4 − 2ε dimensions, with unit propagator
powers. With the usual integration by parts reduction technique [18,19], one may shift indices,
i.e., reduce propagator powers to unity:

νjj+I5 = 1(
0
0

)
5

5∑
k=1

(
0j
0k

)
5

[
d−

5∑
i=1

νi(k−i+ + 1)
]
I5. (2.7)

The operators i±, j±,k± act by shifting the indices νi, νj, νk by ±1.
After this step, one has yet to deal with scalar functions in d = 4−2ε+2l dimensions. This

may be further reduced by applying dimensional reduction formulae invented by Tarasov [10,13]:
shift of dimension and index,

νj
(
j+I

[d+]
5

)
= 1

()5

[
−
(
j

0

)
5

+
5∑

k=1

(
j

k

)
5
k−
]
I5, (2.8)

and shift only of dimension,(
d−

5∑
i=1

νi + 1
)
I

[d+]
5 = 1

()5

[(
0
0

)
5
−

5∑
k=1

(
0
k

)
5
k−
]
I5. (2.9)

The procedure is elegant, but it introduces inverse powers of potentially vanishing Gram de-
terminants in both cases. As a consequence, one has finally to treat the numerical implications
in sophisticated ways.

At this stage, one might try an alternative. Perform the reductions of tensor functions to
scalar functions with unit indices, but allowing for the use of higher space–time dimensions.
This avoids the vanishing inverse Gram problem, but introduces the need of a library of scalar
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Feynman integrals in higher dimensions. This idea makes it attractive to derive an algorithm
allowing the systematic calculation of scalar one- to n-point functions in arbitrary dimensions,
and to implement a numerical solution for it.

To be a little more definite, we quote here some unpublished formulae from Refs. [17,20].
The following reduction of a five-point tensor in terms of tensor coefficients Es

ijklm, with line s
skipped from the five-point integral, may be used as a starting point:

Iµ ν λρσ5 =
5∑
s=1

 5∑
i,j,k,l,m=1

qµi q
ν
j q

λ
kq

ρ
l q
σ
mE

s
ijklm +

5∑
i,j,k=1

g[µνqλi q
ρ
j q
σ]
k E

s
00ijk +

5∑
i=1

g[µνgλρq
σ]
i E

s
0000i

.
(2.10)

The tensor coefficients Es
ijklm are expressed in terms of integrals I [d+]l,s

4,i··· , e.g.:

Es
ijklm = − 1(

0
0

)
5


[(

0l
sm

)
5
nijkI

[d+]4,s
4,ijk + (i↔ l) + (j ↔ l) + (k ↔ l)

]
+
(

0s
0m

)
5
nijklI

[d+]4,s
4,ijkl

.
(2.11)

No factors 1/G5 =
()

5
appear. Now, in a next step, one may avoid the appearance of inverse

sub-Gram determinants ()4. Further, the complete dependence on the indices i of the tensor
coefficients can be shifted into the integral’s pre-factors with signed minors. One can say that
the indices decouple from the integrals. As an example, we reproduce the four-point part of
I

[d+]4
4,ijkl:

nijklI
[d+]4
4,ijkl =

(
0
i

)
(

0
0

)
(

0
j

)
(

0
0

)
(

0
k

)
(

0
0

)
(

0
l

)
(

0
0

)d(d+ 1)(d+ 2)(d+ 3)I [d+]4
4

+

(
0i
0j

)(
0
k

)(
0
l

)
+
(

0i
0k

)(
0
j

)(
0
l

)
+
(

0j
0k

)(
0
i

)(
0
l

)
+
(

0i
0l

)(
0
j

)(
0
k

)
+
(

0j
0l

)(
0
i

)(
0
k

)
+
(

0k
0l

)(
0
i

)(
0
j

)
(

0
0

)3

× d(d+ 1)I [d+]3
4 +

(
0i
0l

)(
0j
0k

)
+
(

0j
0l

)(
0i
0k

)
+
(

0k
0l

)(
0i
0j

)
(

0
0

)2 I
[d+]2
4 + · · · (2.12)

In Eq. (2.12), one has to understand the four-point integrals to carry the corresponding index
s of Eq. (2.10) and that the signed minors are

(
0
k

)
→
(

0s
ks

)
5
, etc. We arrived at:

(a) no scalar five-point integrals in higher dimensions;
(b) no inverse Gram determinants ()5;
(c) four-point integrals without indices;
(d) scalar four-point integrals in higher dimensions appearing as I [d+]2,s

4 , etc.;
(e) inverse four-point Gram determinants

(
0
0

)
5
≡ ()4.

2.2.3 Interest from multiloop calculations
Higher-order loop calculations need higher-order contributions from ε-expansions of one-loop
terms, typically stemming from the expansions

1
d− 4 = − 1

2ε (2.13)
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and

Γ(ε) = a1

ε
+ a0 + a1ε+ · · · (2.14)

A seminal paper on the ε-terms of one-loop functions is Ref. [21]. A general analytical solution
of the problem of determining the general ε-expansion of Feynman integrals is unsolved so far,
even for the one-loop case, although see Refs. [22–25]. The determination of one-loop Feynman
integrals as meromorphic functions of d might be a useful preparatory step for determining the
pole expansion in d around, e.g., d = 4.

2.2.4 Interest from Mellin–Barnes representations
A powerful approach to arbitrary Feynman integrals is based on Mellin–Barnes representations
[26, 27]. One-loop integrals with variable, in general non-integer, indices are needed in the
context of the loop-by-loop Mellin–Barnes approach to multiloop integrals. Details may be
found in the literature on the Mathematica package AMBRE [28–35], and in references therein.

A crucial technical problem of the Mellin–Barnes representations arises from the increasing
number of dimensions of these representations with an increasing number of physical scales. We
will detail this in Section 2.3.1. Thus, there is an unresolved need for low-dimensional one-loop
Mellin–Barnes (MB) integrals, with arbitrary indices.

2.3 Mellin–Barnes representations for one-loop Feynman integrals
Two numerical MB approaches are advocated.

2.3.1 AMBRE
There are several ways to take advantage of Mellin–Barnes representations for the calculation of
Feynman integrals. One approach is the replacement of massive propagators by Mellin–Barnes
integrals over massless propagators, invented by Usyukina [36]. Another approach transforms
the Feynman parameter representation with Mellin–Barnes representations into a number of
complex path integrals, invented in 1999 by Smirnov for planar diagrams [26] and Tausk for non-
planar diagrams [27]. This approach ‘automatically’ implies a general solution of the infrared
problem and has been worked out in the AMBRE approach [28,32,34,35,37].

The general definitions for a multiloop Feynman integral are

JLn ≡ JLn
(
d; {pipj}, {m2

i }
)

=
∫ L∏

j=1

ddkj
iπd/2

1
Dν1

1 D
ν2
2 · · ·Dνn

n

(2.15)

with

Di =
(

L∑
l=1

ailkl +
E∑
e=1

biepe

)2

−m2
i + iδ, ail, bie ∈ {−1, 0, 1}, (2.16)

where mi are the masses, pe the external momenta, kl the loop momenta, iδ the Feynman
prescription, and, finally, νi the complex variables.

With the following Feynman trick, we get a really neat parametric representation:

(−1)ν
n∏
j=1

(
−Dνj

j

) =
(−1)νΓ(ν)

(
n∏
j=1

∫
{xj≥0}

dxj x
νj−1
j

Γ(νj)

)
δ

(
1−

n∑
j=1
xj

)
(−kµl Mll′kl′µ + 2kµl Qlµ + J − iδ)ν , ν =

n∑
j=1

νj, (2.17)
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where
Mll′ =

n∑
j=1

ajlajl′xj (2.18)

is an L× L symmetric matrix,

Qν
l = −

n∑
j=1

xjajl
E∑
e=1

bjep
ν
e (2.19)

is a vector with L components, and

J = −
n∑
j=1

xj

(
E∑
e=1

bjep
µ
e

E∑
e′=1

pνe′bje′gµν −m2
j

)
, (2.20)

where xj are the Feynman parameters introduced using the Feynman trick. The metric tensor
is gµν = diag(1,−1, . . . ,−1).

The Feynman integral can now be written in the Feynman parameter integral represen-
tation:

JLn = (−1)νΓ(ν − LD/2)

 n∏
j=1

∫
{xj≥0}

dxj xνj−1
j

Γ(νj)

 δ
1−

n∑
j=1

xj

 U(x)ν−(L+1)D/2

F (x)ν−LD/2 , (2.21)

where

U(x) = detM, (2.22)
F (x) = U(x)

(
Qµ
lM

−1
ll′ Ql′µ + J − iδ

)
. (2.23)

From these definitions, it follows that the functions F (x) and U(x) are homogeneous in the
Feynman parameters xi. The function U(x) is of degree L and the function F (x) is of degree
L+ 1. The functions U(x) and F (x) are also known as Symanzik polynomials.

At one-loop level, the definition of the Feynman integral simplifies drastically and gives
many insights straight away, which we will bring to light in this work:

Jn ≡ Jn
(
d; {pipj}, {m2

i }
)

=
∫ ddk

iπd/2
1

Dν1
1 D

ν2
2 · · ·Dνn

n

(2.24)

with propagators depending only on one-loop momenta:

Di = 1
(k + qi)2 −m2

i + iε, (2.25)

with

qi =
i∑

e=1
pe. (2.26)

We assume here, for brevity,

νi = 1,
n∑
e=1

pe = 0. (2.27)
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If we take the argument of the Dirac delta function to be 1−∑n
j=1 xj, the Feynman parameter

representation for one-loop Feynman integrals simplifies to

Jn = (−1)nΓ (n− d/2)
∫ 1

0

n∏
i=1

dxiδ
1−

n∑
j=1

xj

 1
Fn(x)n−d/2

. (2.28)

Here, the F function is the second Symanzik polynomial, which is just of second degree in the
Feynman parameters:

Fn(x) = 1
2
∑
i,j

xiYijxj − iε. (2.29)

The Yij are elements of the Cayley matrix Y = (Yij),

Yij = Yji = m2
i +m2

j − (qi − qj)2. (2.30)

Gram and Cayley determinants were introduced by Melrose [38]; see also Ref. [13]. The (n −
1)× (n− 1)-dimensional Gram determinant Gn ≡ G12···n is

Gn = −

∣∣∣∣∣∣∣∣∣∣
(q1 − qn)2 (q1 − qn)(q2 − qn) . . . (q1 − qn)(qn−1 − qn)

(q1 − qn)(q2 − qn) (q2 − qn)2 . . . (q2 − qn)(qn−1 − qn)
... ... . . . ...

(q1 − qn)(qn−1 − qn) (q2 − qn)(qn−1 − qn) . . . (qn−1 − qn)2

∣∣∣∣∣∣∣∣∣∣
. (2.31)

The 2nGn equals, notationally, the Gn−1 of Ref. [13]. Evidently, the Gram determinant Gn is
independent of the propagator masses.

The Cayley determinant ∆n = λ12···n is composed of the Yij introduced in Eq. (2.30):

Cayley determinant : ∆n = λn ≡ λ12···n =

∣∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
Y12 Y22 . . . Y2n
... ... . . . ...
Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣
. (2.32)

We also define the modified Cayley determinant

modified Cayley determinant : ()n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 Y11 Y12 . . . Y1n
1 Y12 Y22 . . . Y2n
... ... ... . . . ...
1 Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.33)

The determinants ∆n, ()n, and Gn are evidently independent of a common shifting of the
momenta qi.

One may use Mellin–Barnes integrals [39],

1
(1 + z)λ = 1

2πi

+i∞∫
−i∞

ds Γ(−s) Γ(λ+ s)
Γ(λ) zs = 2F1

[
λ, b ;
b ; − z

]
, (2.34)
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to split the sum Fn(x) in Eq. (2.29) into a product, enabling nested MB integrals to be calcu-
lated. For some mathematics behind the derivation, see the corollary at p. 289 in Ref. [40].
Equation (2.34) is valid if |Arg(z)| < π. The integration contour must be chosen such that the
poles of Γ(−s) and Γ(λ + s) are well-separated. The right-hand side of Eq. (2.34) is identified
as Gauss’s hypergeometric function.

There areNn = n(n+1)/2 different Yij for n-point functions, leading toNn = [n(n+1)/2−
1]-dimensional Mellin–Barnes integrals when splitting the sum in Eq. (2.29) into a product:

– N3 = 5 MB dimensions for the most general massive vertices;
– N4 = 9 MB dimensions for the most general massive box integrals;
– N5 = 14 MB dimensions for the most general massive pentagon integrals.

The introduction of Nn-dimensional MB integrals allows x integrations to be calculated. The
MB integrations must be calculated afterwards, and this raises some mathematical problems
with increasing integral dimensions. This is, for Mellin–Barnes integrals numerical applications,
one of the most important limiting factors.

For further details of this approach, we refer to the quoted literature on AMBRE and
MBnumerics.

2.3.2 MBOneLoop
A completely different approach was initiated in Refs. [6,41]. The idea is based on rewriting the
F function in Eq. (2.28) by exploring the factor δ(1−∑xi), which makes the n-fold x-integration
to be an integral over an (n− 1)-simplex.

The δ function allows for the elimination of xn, just one of the xi, which creates linear
terms in the remaining xi variables in the F function:

Fn(x) = xTGnx+ 2HT
n x+Kn. (2.35)

The Fn(x) may be recast into a bilinear form by shifts x→ (x− y),

Fn(x) = (x− y)TGn(x− y) + rn−iε = Λn(x) + rn−iε = Λn(x) +Rn. (2.36)

As a result, there is a separation of F into a homogeneous part Λn(x),

Λn(x) = (x− y)TGn(x− y), (2.37)

and an inhomogeneity Rn,

Rn = rn−iε = Kn −HT
nG
−1
n Hn−iε = −λn

gn
−iε = −

(
0
0

)
n

()n
. (2.38)

It is only this inhomogeneity Rn = rn − iε that carries the iε prescription. The (n − 1) com-
ponents yi of the shift vector y appearing here in Fn(x) are

yi = −
(
G−1
n Kn

)
i
, i 6= n. (2.39)

The following relations are also valid:

yi = ∂rn
∂m2

i

= − 1
gn

∂λn
∂m2

i

= −∂iλn
gn

= 2
gn

(
0
i

)
n

, i = 1, . . . , n. (2.40)
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One further notation has been introduced in Eq. (2.40), namely that of cofactors of the modified
Cayley matrix, also called signed minors in, e.g., [38, 42](

j1 j2 · · · jm
k1 k2 · · · km

)
n

. (2.41)

The signed minors are determinants, labelled by those rows j1, j2, . . . , jm and columns k1, k2, . . . ,
km that have been discarded from the definition of the modified Cayley determinant ()n, with
a sign convention:

sign
(
j1 j2 · · · jm
k1 k2 · · · km

)
n

= (−1)j1+j2+···+jm+k1+k2+···+km × Signature[j1, j2, . . . , jm]× Signature[k1, k2, . . . , km]. (2.42)

Here, Signature (defined like the Wolfram Mathematica command) gives the sign of permuta-
tions needed to place the indices in increasing order. The Cayley determinant is a signed minor
of the modified Cayley determinant,

∆n = λn =
(

0
0

)
n

. (2.43)

For later use, we also introduce

yn = 1−
n−1∑
i−1

yi ≡
∂rn
∂m2

n

. (2.44)

The auxiliary condition∑n
i yi = 1 is fulfilled. Further, the notations for the F function are finally

independent of the choice of the variable that was eliminated by the use of the δ function in
the integrand of Eq. (2.28). Moreover, the inhomogeneity Rn is the only variable carrying the
causal iε prescription, while, e.g., Λ(x) and yi are, by definition, real quantities. The Rn may
be expressed by the ratio of the Cayley determinant (Eq. (2.32)) and the Gram determinant
(Eq. (2.31)),

Rn = r1···n − iε = −λ1···n

g1···n
− iε. (2.45)

One may use the Mellin–Barnes relation (Eq. (2.34)) to decompose the integrand of Jn
given in Eq. (2.28), as follows:

Jn ∼
∫

dx 1
[F (x)]n− d2

≡
∫

dx 1
[Λn(x) +Rn]n− d2

≡
∫

dx R
−(n− d2 )
n[

1 + Λn(x)
Rn

]n− d2
=
∫

dx R
−(n− d2 )
n

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ

(
n− d

2 + s
)

Γ
(
n− d

2

) [
Λn(x)
Rn

]s
, (2.46)

for |Arg(Λn/Rn)| < π. The condition always applies. Further, the integration path in the
complex s-plane separates the poles of Γ(−s) and Γ(n− d/2 + s).
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As a result of Eq. (2.46), the Feynman parameter integral of Jn becomes homogeneous:

κn =
∫

dx
[

Λn(x)
Rn

]s

=
n−1∏
j=1

∫ 1−
∑n−1

i=j+1 xi

0
dxj

[
Λn(x)
Rn

]s
≡

∫
dSn−1

[
Λn(x)
Rn

]s
. (2.47)

To reformulate this integral, one may introduce the differential operator P̂n [43, 44],

P̂n
s

[
Λn(x)
Rn

]s
≡

n−1∑
i=1

1
2s(xi − yi)

∂

∂xi

[
Λn(x)
Rn

]s
=
[

Λn(x)
Rn

]s
, (2.48)

into Eq. (2.47):

Kn = 1
s

∫
dSn−1 P̂n

[
Λn(x)
Rn

]s
= 1

2s

n−1∑
i=1

n−1∏
k=1

uk∫
0

dx′k (xi − yi)
∂

∂xi

[
Λn(x)
Rn

]s
. (2.49)

After calculating one of the x integrations—by partial integration, eliminating in this way the
corresponding differential, and applying a Barnes relation [39] (see Ref. [45]), one arrives at a
recursion relation in the number of internal lines n:

Jn(d, {qi,m2
i })

= −1
2πi

+i∞∫
−i∞

ds
Γ(−s)Γ(d−n+1

2 + s)Γ(s+ 1)
2Γ(d−n+1

2 )

( 1
Rn

)s
×

n∑
k=1

(
1
Rn

∂rn
∂m2

k

)
k−Jn

(
d+ 2s; {qi,m2

i }
)
.

(2.50)

The operator k−, introduced in Eq. (2.7), will reduce an n-point Feynman integral Jn to a sum
of (n− 1)-point integrals Jn−1 by shrinking propagators Dk from the original n-point integral.
The starting term is the one-point function, or tadpole,

J1(d;m2) =
∫ ddk

iπd/2
1

k2 −m2 + iε = −Γ(1− d/2)
R

1−d/2
1

, (2.51)

R1 = m2 − iε. (2.52)

The cases Gn = 0 and λn = rn = 0 are discussed in Section 2.5.
Equation (2.50) is the master integral for one-loop n-point functions in space–time dimen-

sion d, representing them by n integrals over (n− 1)-point functions with a shifted dimension
d + 2s. The recursion was first published in Ref. [41]. This implies a series of Mellin–Barnes
representations for arbitrary massive one-loop n-point integrals with (n−1) Mellin–Barnes inte-
gral dimensions. This linear increase in the MB dimension is highly advantageous compared
with the number of MB integral dimensions in the AMBRE approach (increasing as n2 with
the number n of scales).

Based on Eq. (2.50), one has now several opportunities to proceed.

(i) Evaluate the MB integral in a direct numerical way.
(ii) Derive ε-expansions for the Feynman integrals.
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(iii) Apply the Cauchy theorem for deriving sums and determine analytical expressions in
terms of known special functions.

The first approach is based on AMBRE/MBOneLoop, the middle one is not yet finished,
and the last approach was applied in Ref. [41] for massive vertex integrals and in Ref. [6] for
massive box integrals.

A few comments are in order.

1. Any four-point integral, e.g., is, in the recursion, a three-fold Mellin–Barnes integral,
whereas, with AMBRE, one gets for, e.g., box integrals up to nine-fold MB integrals.

2. Euclidean and Minkowskian integrals converge equally well; see Refs. [46,47].

3. There appear to be no numerical problems due to vanishing Gram determinants. For a
few details, see Table C.2.6 and Ref. [48].

2.4 The basic scalar one-loop functions
2.4.1 Massive two-point functions
From the recursion relation (Eq. (2.50)), taken at n = 2 and using Eq. (2.51) with d→ d+2s for
the one-point functions under the integral, one gets the following Mellin–Barnes representation:

J2(d; q1,m
2
1, q2,m

2
2) = eεγE

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ

(
d−1

2 + s
)

Γ(s+ 1)
2 Γ

(
d−1

2

) Rs
2

×

 1
r2

∂r2

∂m2
2

Γ
(
1− d+2s

2

)
(m2

1)1− d+2s
2

+ (m2
1 ↔ m2

2)
 . (2.53)

One may close the integration contour of the MB integral in Eq. (2.53) to the right, apply
the Cauchy theorem, and collect the residua originating from two series of zeros of arguments
of Γ functions at s = m and s = m − d/2 − 1 for m ∈ N. The first series stems from the
MB-integration kernel, the other one from the dimensionally shifted one-point functions. And
then one may sum up analytically in terms of Gauss’ hypergeometric functions.

The two-point function, with R2 ≡ R12, becomes

J2(d;Q2,m2
1, q2,m

2
2)

= −
Γ
(
2− d

2

)
(d− 2)

Γ
(
d
2 − 1

)
Γ
(
d
2

) ∂2R2

R2

(m2
1) d2−1

2F1

[
1, d2 −

1
2 ;

d
2 ;

m2
1

R2

]
+ R

d
2−1
2√

1− m2
1

R2

√
π

Γ
(
d
2

)
Γ
(
d
2 −

1
2

)


+ (m2
1 ↔ m2

2). (2.54)

Equation (2.54) is valid for |m2
1/r12| < 1, |m2

2/r12| < 1 and Re((d− 2)/2) > 0. The result is in
agreement with Eq. (53) of Ref. [15].

The iterative determination of higher-point functions proceeds analogously. Closing the
integration contours to the right or to the left will cover different kinematic regions in the
invariants Rn.
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2.4.2 Massive three-point functions
The Mellin–Barnes integral for the massive vertex is a sum of three terms [49]:

J3 = J123 + J231 + J312, (2.55)

using the representation for, e.g., J123,

J123(d, {qi,m2
i }) = −eεγE

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ(d−2+2s

2 )Γ(s+ 1)
2 Γ(d−2

2 )
R−s3 ×

1
r3

∂r3

∂m2
3
J2(d+ 2s; q1,m

2
1, q2,m

2
2).

(2.56)
After applying the Cauchy theorem and summing up, one gets an analytical represen-

tation. The integrated massive vertex has been published in Ref. [41]. We quote here the
representation given in Ref [6]:

J123 = Γ
(

2− d

2

)
∂3r3

r3

∂2r2

r2

r2

2
√

1−m2
1/r2−Rd/2−2

2

√
π

2
Γ
(
d
2 − 1

)
Γ
(
d
2 −

1
2

) 2F1

[
d−2

2 , 1 ;
d−1

2 ;
R2

R3

]
+ R

d/2−2
3 2F1

[
1, 1 ;
3/2 ;

R2

R3

]
+ Γ

(
2− d

2

)
∂3r3

r3

∂2r2

r2

m2
1

4
√

1−m2
1/r2[

+2(m2
1)d/2−2

d− 2 F1

(
d− 2

2 ; 1, 1
2; d2; m

2
1

R3
,
m2

1
R2

)
−Rd/2−2

3 F1

(
1; 1, 1

2; 2; m
2
1

R3
,
m2

1
R2

)]
+ (m2

1 ↔ m2
2),

with the short notation
R3 = R123, R2 = R12, (2.57)

etc. For d→ 4, the bracket expressions vanish so that their product with the prefactor Γ(2−d/2)
stays finite in this limit, as it must come out for a massive vertex function. For some numerics,
see Tables C.2.1, C.2.2, C.2.3, and C.2.4.

2.4.3 Massive four-point functions
Finally, we reproduce the box integral, as a three-dimensional Mellin–Barnes representation:

J4(d; {p2
i }, s, t, {m2

i }) =
(−1

4πi

)4 1
Γ(d−3

2 )

4∑
k1,k2,k3,k4=1

Dk1k2k3k4

(
1
r4

∂r4

∂m2
k4

)
(

1
rk3k2k1

∂rk3k2k1

∂m2
k3

)(
1

rk2k1

∂rk2k1

∂m2
k2

)
(m2

k1)d/2−1 (2.58)

+i∞∫
−i∞

dz4

+i∞∫
−i∞

dz3

+i∞∫
−i∞

dz2

(
m2
k1

R4

)z4 ( m2
k1

Rk3k2k1

)z3 ( m2
k1

Rk2k1

)z2

Γ(−z4)Γ(z4 + 1)
Γ(z4 + d−3

2 )
Γ(z4 + d−2

2 )
Γ(−z3)Γ(z3 + 1)

Γ(z3 + z4 + d−2
2 )

Γ(z3 + z4 + d−1
2 )
× · · ·
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Table C.2.1: Numerics for a vertex, d = 4− 2ε. Input quantities suggest that, according to Eq.
(73) in Ref. [15], one has to set b3 = 0. Although b3 of Ref. [15] deviates from our vanishing
value, it has to be set to zero, b3 → 0. The results of both calculations for J3 agree for this case.

[p2
i ], [m2

i ] [+100, +200, +300], [10, 20, 30]
G123 −160 000
λ123 −8 860 000
m2
i /r123 −0.180 587, −0.361 174, −0.541 761

m2
i /r12 −0.975 61, −1.951 22, −2.926 83

m2
i /r23 −0.398 01, −0.796 02, −1.194 03

m2
i /r31 −0.180 723, −0.361 446, −0.542 169∑
J terms [15] (0.019 223 879− 0.007 987 267 i)∑
b3 terms (TR) 0

J3 (TR) (0.019 223 879− 0.007 987 267 i)
b3 term [15] (−0.089 171 509 + 0.069 788 641 i) (0.022 214 414)/eps
b3 +∑

J terms (−0.012 307 377− 0.009 301 346 i)
J3 (OT) ∑

J terms, b3 term → 0, OK
MB suite
(−1)×fiesta3 [50] −(0.012 307 + 0.009 301 i) + (8× 10−6 + 0.000 01 i)± (1 + i)10−4 )
LoopTools [51] 0.019 223 88− 0.007 987 267 i

Table C.2.2: Numerics for a vertex, d = 4− 2ε. Input quantities suggest that, according to Eq.
(73) in Ref. [15], one has to set b3 = 0. Further, we have set in the numerics for Eq. (75) of
Ref. [15] so that the root of the Gram determinant is

√
−g123 + iε, which seems counterintuitive

for a ‘momentum’-like function. Both results agree if we do not set Tarasov’s b3 → 0. Table
courtesy of Ref. [52].

[p2
i ], [m2

i ] [−100, +200, −300], [10, 20, 30]
G123 480 000
λ3 −19 300 000
m2
i /r3 0.248 705, 0.497 409, 0.746 114

m2
i /r12 0.248 447, 0.496 894, 0.745 342

m2
i /r23 −0.398 01, −0.796 02, −1.194 03

m2
i /r31 0.104 895, 0.209 79, 0.314 685∑
J terms (−0.012 307 377− 0.056 679 689 i) (0.012 825 498 i)/eps∑
b3 terms (0.047 378 343 i) (−0.012 825 498 i)/eps

J3(TR) (−0.012 307 377− 0.009 301 346 i)
b3 term (0.047 378 343 i) (−0.012 825 498 i)/eps
b3 +∑

J terms (−0.012 307 377− 0.009 301 346 i)
J3(OT) ∑

J terms, b3 term→0, gets wrong!
MB suite
(-1)*fiesta3 −(0.012 307 + 0.009 301 i) (8× 10−6 + 0.000 01 i)± (1 + i)10−4 )
LoopTools/FF, ε0 −0.012 307 377 367 78− 0.009 301 346 170 i
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Table C.2.3: Numerics for a vertex in space–time dimension d = 4 − 2ε. Causal ε = 10−20.
Agreement with Ref. [15]. Table courtesy Ref. [52].

p2
i −100,−200,−300
m2
i 10,20,30

G123 −160 000
λ123 15 260 000
m2
i /r123 0.104 849, 0.209 699, 0.314 548

m2
i /r12 0.248 447, 0.496 894, 0.745 342

m2
i /r23 0.133 111, 0.266 223, 0.399 334

m2
i /r31 0.104 895, 0.209 79, 0.314 685∑
J terms (0.093 387 7− 0 i) −(0.022 214 4− 0 i)/eps∑
b terms −0.101 249 +0.022 214 4/eps

J3(TR) (−0.007 861 55− 0 i)
b3 (−0.101 249 + 0 i) (0.022 214 4 + 0 i)/eps
b3+J terms (−0.007 861 546 + 0 i)
J3(OT) b3 + J terms → OK
MB suite −0.007 862 014, 5.002 549 159× 10−6, 0
(-1)*fiesta3 −0.007 862 6× 10−6 + 6× 10−6 i± (1 + i)10−10

LoopTools/FF, ε0 −0.007 861 546 132 290 822 90

Table C.2.4: Numerics for a vertex in space–time dimension d = 4−2ε. Causal ε = 10−20. Input
quantities suggest that, according to Eq. (73) in Ref. [15], one has to set b3 = 0. Agreement,
owing to setting b3 = 0 there. Table courtesy Ref. [52].

p2
i +100, −200, +300
m2
i 10, 20, 30

G123 480 000
λ123 4 900 000
m2
i /r123 −0.979 592, −1.959 18, −2.938 78

m2
i /r12 -0.975 61, −1.951 22, −2.926 83

m2
i /r23 0.133 111, 0.266 223, 0.399 334

m2
i /r31 −0.180 723, −0.361 446, −0.542 169∑
J terms (0.006 243 624− 0.018 272 524 i)∑
b3 terms 0

J3(TR) (0.006 243 624− 0.018 272 524 i)
b3 term (0.040 292 491 + 0.029 796 253 i) (−0.012 825 498 i)/eps
b3 +∑

J terms (−0.012 307 377− 0.009 301 346 i) (4× 10−18 − 6× 10−18 i)/eps
J3(OT) ∑

J terms, b3 term→0, OK
MB suite
(−1)×fiesta3 −(−0.006 322 + 0.014 701 i) + (0.000 012 + 0.000 014 i)± (1 + i)10−2

LoopTools/FF, ε0 0.006 243 624 78− 0.018 272 524 0 i
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Table C.2.5: Comparison of the box integral J4 defined in Eq. (2.60) with the LoopTools function
D0(p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2,m2

1,m
2
2,m

2
3,m

2
4) [51, 55] at m2

2 = m2
3 = m2

4 = 0. Further
numerical references are from the packages K.H.P_D0 (PHK, unpublished) and MBOneLoop
[56, 57]. External invariants: (p2

1 = ±1, p2
2 = ±5, p2

3 = ±2, p2
4 = ±7, s = ±20, t = ±1). Table

from Ref. [6], licence: https://creativecommons.org/licenses/by/4.0/.

(p2
1, p

2
2, p

2
3, p

2
4, s, t) Four-point integral

(−,−,−,−,−,−) d = 4, m2
1 = 100

J4 0.009 178 67
LoopTools 0.009 178 670 7
MBOneLoop 0.009 178 670 7
(+,+,+,+,+,+) d = 4, m2

1 = 100
J4 −0.011 592 7− 0.000 406 03 i
LoopTools −0.011 591 7− 0.000 406 02 i
MBOneLoop −0.011 591 736 9− 0.000 406 024 3 i
(−,−,−,−,−,−) d = 5, m2

1 = 100
J4 0.009 268 95
K.H.P_D0 0.009 268 88
MBOneLoop 0.009 268 948 8
(+,+,+,+,+,+) d = 5, m2

1 = 100
J4 −0.002 728 89 + 0.012 648 8 i
K.H.P_D0 (–)
MBOneLoop −0.002 728 424 2 + 0.012 648 813 4 i
(−,−,−,−,−,−) d = 5, m2

1 = 100− 10 i
J4 0.009 200 65 + 0.000 782 308 i
K.H.P_D0 0.009 200 6 + 0.000 782 301 i
MBOneLoop 0.009 200 648 1 + 0.000 782 309 0 i
(+,+,+,+,+,+) d = 5, m2

1 = 100− 10 i
J4 −0.003 987 25 + 0.012 067 i
K.H.P_D0 −0.003 987 23 + 0.012 069 i
MBOneLoop −0.003 986 770 2 + 0.012 067 038 8 i

· · · × Γ
(
z2 + z3 + z4 + d− 1

2

)
Γ
(
−z2 − z3 − z4 −

d+ 2
2

)
Γ(−z2)Γ(z2 + 1).

Equation (2.58) can be treated using the Mathematica packages MB and MBnumerics of
the MBsuite, replacing AMBRE with a derivative of MBnumerics: MBOneLoop [46, 53]. For
numerical examples, see Table C.2.5.

After applying the Cauchy theorem and summing the residues, we get [6, 54]:

J4 = J1234 + J2341 + J3412 + J4123, (2.59)
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with R4 = R1234, R3 = R123, R2 = R12, etc.:

J1234 = Γ
(

2− d

2

)
∂4r4

r4


b123

2

−Rd/2−2
3 2F1

[
d−3

2 , 1 ;
d
2 − 1 ;

R2

R3

]
+Rd/2−2

4
√

π

Γ
(
d
2 − 1

)
Γ
(
d
2 −

3
2

)2F1(d→ 4)


+
+R

d/2−2
2
d− 3 F1

(
d− 3

2 ; 1, 1
2; d− 1

2 ; R2

R4
,
R2

R3

)
−Rd/2−2

4 F1 (d→ 4)


+ m2
1

8
Γ
(
d
2 − 1

)
Γ
(
d
2 −

3
2

) ∂3r3

r3

∂2r2

r2

r3

r3 −m2
1

r2

r2 −m2
1[

−(m2
1)d/2−2 Γ

(
d
2 − 3/2

)
Γ
(
d
2

) FS

(
d

2 −
3
2 , 1, 1, 1, 1,

d

2 ,
d

2 ,
d

2 ,
d

2 ,
m2

1
R4

,
m2

1
m2

1 −R3
,

m2
1

m2
1 −R2

)

+Rd/2−2
4

√
πFS(d→ 4)

]
+ (m2

1 ↔ m2
2)

. (2.60)

For d → 4, all three contributions in square brackets approach zero, so that the massive
J4 gets finite in this limit, as it should do. Table C.2.5 contains numerical examples.

2.5 The cases of vanishing Cayley determinant λn = 0 and of vanishing Gram
determinant Gn = 0

We refer here to two important special cases, where the general derivations cannot be applied.
In the case of vanishing Cayley determinant, λn = 0, we cannot introduce the inhomo-

geneity Rn = −λn/Gn into the Symanzik polynomial Fn. Let us assume that it is Gn 6= 0, so
that rn = 0. A useful alternative representation to Eq. (2.50) is known from the literature, see
e.g., Eq. (3) in Ref. [15]:

Jn(d) = 1
d− n− 1

n∑
k=1

∂kλn
Gn

k−Jn(d− 2). (2.61)

Another special case is a vanishing Gram determinant, Gn = 0. Here again, one may use
Eq. (3) of Ref. [15] and the result is (for λn 6= 0):

Jn(d) = −
n∑
k=1

∂kλn
2λn

k−Jn(d). (2.62)

The representation was, for the special case of the vertex function, also given in Eq. (46) of
Ref. [58].

For the vertex function, a general study of the special cases has been conducted, as
reported in Ref. [59].

2.6 A massive four-point function with vanishing Gram determinant
As a very interesting non-trivial example, we have restudied the numerics of a massive four-
point function with a small or vanishing Gram determinant [46,48,49,53]. The original example
has been taken from Appendix C of Ref. [17].
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Table C.2.6: The Feynman integral J4(12−2ε, 1, 5, 1, 1) compared with numbers from Ref. [17].
The I [d+]4

4,2222 is the scalar integral, where propagator 2 has index ν2 = 1 + (1 + 1 + 1 + 1) = 5,
and the other propagators have index 1. The integral corresponds to D1111 in the notation of
LoopTools [51]. For x = 0, the Gram determinant vanishes. We see an agreement of about 10 to
11 relevant digits. The deviations of the two calculations seem to stem from a limited accuracy
of the Padé approximations used in Ref. [17]. Table courtesy Refs. [48,53].

x Value for 4!× J4(12− 2ε, 1, 5, 1, 1)
0 (2.059 692 897 30 + 1.555 949 101 18 i)10−10 [17]

0 (2.059 692 897 30 + 1.555 949 101 18 i)10−10 MBOneLoop+Kira+MBnumerics

10−8 (2.059 692 893 42 + 1.555 949 091 87 i)10−10 [17]

10−8 (2.059 692 893 63 + 1.555 949 091 87 i)10−10 MBOneLoop+Kira+MBnumerics

10−4 (2.059 656 094 97 + 1.555 856 053 43 i)10−10 [17]

10−4 (2.059 656 094 89 + 1.555 856 053 43 i)10−10 MBOneLoop+Kira+MBnumerics

The sample outcome is shown in Table C.2.6. The new iterative Mellin–Barnes represen-
tations deliver very precise numerical results for, e.g., box functions, including cases of small
or vanishing Gram determinants. The software used is MBOneLoop [60]. The notational cor-
respondences are, e.g.,

J4(12− 2ε, 1, 5, 1, 1)→ I
[d+]4
4,2222 = D1111.

2.7 Calculation of Gauss hypergeometric function 2F1, Appell function F1, and
Saran function FS at arbitrary kinematics

Little is known about the precise numerical calculation of generalised hypergeometric functions
at arbitrary arguments. Numerical calculations of specific Gauss hypergeometric functions 2F1,
Appell functions F1 (Eq. (1) of Ref. [61]), and Lauricella–Saran functions FS (Eq. (2.9) of
Ref. [62]) are needed for the scalar one-loop Feynman integrals:

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
k! (c)k

xk, (2.63)

F1(a; b, b′; c; y, z) =
∞∑

m,n=0

(a)m+n(b)m(b′)n
m! n! (c)m+n

ymzn, (2.64)

FS(a1, a2, a2; b1, b2, b3; c, c, c;x, y, z) =
∞∑

m,n,p=0

(a1)m(a2)n+p(b1)m(b2)n(b3)p
m! n! p! (c)m+n+p

xmynzp. (2.65)

The (a)k is the Pochhammer symbol. The specific cases needed here are discussed in the appen-
dices of Ref. [6]. Here, we repeat only few definitions.

One approach to the numerics of 2F1, F1, and FS may be based on Mellin–Barnes represen-
tations. For the Gauss function 2F1 and the Appell function F1, Mellin–Barnes representations
have been known for some time. See Eq. (1.6.1.6) in Ref. [63],

2F1(a, b; c; z) = 1
2πi

Γ(c)
Γ(a)Γ(b)

∫ +i∞

−i∞
ds (−z)s Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s) , (2.66)
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and Eq. (10) in Ref. [61], which is a two-dimensional MB integral:

F1(a; b, b′; c;x, y) = 1
2πi

Γ(c)
Γ(a)Γ(b′)

∫ +i∞

−i∞
dt (−y)t 2F1(a+ t, b; c+ t, x)Γ(a+ t)Γ(b′ + t)Γ(−t)

Γ(c+ t) .

(2.67)

For the Lauricella–Saran function FS, the following, new, three-dimensional MB integral was
given in Ref. [6]:

FS(a1, a2, a2; b1, b2, b3; c, c, c;x, y, z)

= 1
2πi

Γ(c)
Γ(a1)Γ(b1)

∫ +i∞

−i∞
dt(−x)tΓ(a1 + t)Γ(b1 + t)Γ(−t)

Γ(c+ t) × F1(a2; b2, b3; c+ t; y, z). (2.68)

The numerics of the Gauss hypergeometric function are generally known in all detail.
For the Appell function F1, the numerical mean value integration of the one-dimensional

integral representation of Ref. [64] may be advocated, being quoted in Eq. (9) of Ref. [61]:

F1(a; b, b′; c;x, y) = Γ(c)
Γ(a)Γ(c− a)

∫ 1

0
du ua−1(1− u)c−a−1

(1− xu)b(1− yu)b′ . (2.69)

We need three specific cases, taken at d ≥ 4. For vertices, e.g.,

F v
1 (d) ≡ F1

(
d− 2

2 ; 1, 1
2; d2;xc, yc

)
= 1

2(d− 2)
∫ 1

0

du u d2−2

(1− xcu)
√

1− ycu
. (2.70)

Integrability is violated at u = 0 if not <e(d) > 2. The stability of numerics is well-controlled,
as exemplified in Table C.2.7.

For the calculation of the four-point Feynman integrals, one also needs the Lauricella–
Saran function FS [62]. Saran defines FS as a three-fold sum (Eq. (2.65)), see Eq. (2.9) in
Ref. [62]. Saran derives a three-fold integral representation in Eq. (2.15) and a two-fold integral
in Eq. (2.16). We recommend use of the following representation, given on p. 304 of [62]:

FS(a1, a2, a2; b1, b2, b3; c, c, c, x, y, z)

= Γ(c)
Γ(a1)Γ(c− a1)

∫ 1

0
dtt

c−a1−1(1− t)a1−1

(1− x+ tx)b1 F1(a2; b2, b3; c− a1; ty, tz). (2.71)

For the box integrals, one needs the specific case

F b
S(d) = FS

(
d− 3

2 , 1, 1; 1, 1, 1
2; d2 ,

d

2 ,
d

2 , xc, yc, zc
)

=
Γ(d2)

Γ(d−3
2 )Γ(3

2)

∫ 1

0
dt
√
t(1− t) d−5

2

(1− xc + xct)
F1(1; 1, 1

2; 3
2; yct, zct). (2.72)

Equation (2.72) is valid if <e(d) > 3.
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Table C.2.7: The Appell function F1 of the massive vertex integrals as defined in Eq. (2.70).
As a proof of principle, only the constant term of the expansion in d = 4 − 2ε is shown,
F1(1; 1, 1

2 ; 2;x, y). Upper values from general numerics of appendices of Ref. [6]; lower values
from setting d = 4 and the use of analytical formulae. Table courtesy of Ref. [6] under licence
http://creativecommons.org/licenses/by/4.0/.

x− iεx y − iεy F1(1; 1, 1
2 ; 2;x, y)

+11.1− 10−12i +12.1− 10−12i −0.175 044 248 073 5 −0.054 228 129 473 2 i
−0.175 044 248 073 518 778 844 982 899 12 −0.054 228 129 473 304 027 882 097 641 167 i

+11.1− 10−12i +12.1 + 10−12i +1.710 854 529 324 4 +0.054 228 129 473 2 i
+1.710 854 529 324 335 571 348 382 041 75 +0.054 228 129 471 482 173 815 892 709 24 i

+11.1 + 10−12i +12.1− 10−12i +1.710 854 530 411 4 −0.054 228 129 473 2 i
+1.710 854 529 324 335 571 348 382 041 75 −0.054 228 129 471 482 173 815 892 709 24 i

+11.1 + 10−12 i +12.1 + 10−12 i −0.175 044 248 073 5 +0.054 228 129 473 3 i
−0.175 044 248 073 518 778 844 982 899 12 +0.054 228 129 473 304 027 882 097 641 167 i

+12.1− 10−15 i +11.1− 10−15 i −0.170 082 716 648 4 −0.051 868 484 603 7 i
+12.1− 10−10 i +11.1− 10−15 i −0.170 082 716 648 000 581 011 657 492 79 −0.051 868 484 604 656 749 765 565 256 21 i
+12.1− 10−15 i +11.1 + 10−15 i −0.170 082 716 648 4 −1.754 420 290 995 5 i

−0.170 082 716 648 440 256 472 688 173 99 −1.754 420 290 995 576 887 358 425 620 38 i
+12.1 + 10−15 i +11.1− 10−15 i −0.170 082 716 648 4 +1.754 420 290 995 5 i

−0.170 082 716 648 440 256 472 688 173 99 +1.754 420 290 995 576 887 358 425 620 38 i
+12.1 + 10−15 i +11.1 + 10−15 i −0.170 082 716 648 4 +0.051 868 484 603 7 i
+12.1− 10−10 i +11.1− 10−15 i −0.170 082 716 648 000 581 011 657 492 79 +0.051 868 484 604 656 749 765 565 256 21 i
+11.1− 10−15 i −12.1 −0.053 370 514 651 8 −0.195 769 211 155 7 i

−0.053 370 514 651 899 444 733 494 011 52 −0.195 769 211 155 733 985 388 920 833 693 i
+11.1 + 10−15 i −12.1 −0.053 370 514 651 8 +0.195 769 211 155 7 i

−0.053 370 514 651 899 444 733 494 011 52 +0.195 769 211 155 733 985 388 920 833 693 i
−11.1 +12.1− 10−12 i +0.106 086 408 466 2 −0.144 744 070 008 2 i

+0.106 086 408 476 510 642 871 335 275 99 −0.144 744 070 021 333 407 167 349 619 088 i
−11.1 +12.1 + 10−12 i +0.106 086 408 466 2 +0.144 744 070 008 2 i

+0.106 086 408 476 510 642 871 335 275 99 +0.144 744 070 021 333 407 167 349 619 088 i
−12.1 −11.1 +0.122 456 767 687 224 028

+0.122 456 767 687 224 025 065 133 951 61
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[44] V.A. Golubeva and V.Z. Énol’skii, Math. Notes Acad. Sci USSR 23 (1978) 63. doi:
10.1007/BF01104888

[45] G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge 1922). https://www.forgottenbooks.com/de/books/
ATreatiseontheTheoryofBesselFunctions_10019747

[46] J. Usovitsch et al., MBnumerics: numerical integration of Mellin–Barnes integrals in phys-
ical regions, LL2018, St. Goar, Germany, 2018 2018, https://indico.desy.de/indico/
event/16613/session/4/contribution/22/material/slides/0.pdf

[47] J. Usovitsch et al., PoS LL2018 (2018) 046. arXiv:1810.04580, doi:10.22323/1.303.
0046

[48] J. Usovitsch and T. Riemann, New approach to Mellin–Barnes integrals for massive one-
loop Feynman integrals, Standard Model Theory for the FCC-ee Tera-Z Stage, (CERN-
2019-003), section E.6. arXiv:1809.01830, doi:10.23731/CYRM-2019-003

- 159 -

http://arxiv.org/abs/0704.2423
http://dx.doi.org/10.1016/j.cpc.2007.07.001
http://arxiv.org/abs/0902.4830
http://dx.doi.org/10.22323/1.070.0124
http://prac.us.edu.pl/~gluza/ambre/
http://arxiv.org/abs/1006.4728
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.034
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.034
http://dx.doi.org/10.1088/1742-6596/608/1/012070
http://dx.doi.org/10.1088/1742-6596/608/1/012070
http://arxiv.org/abs/1607.07538
https://doi.org/10.22323/1.260.0034
https://doi.org/10.22323/1.260.0034
http://dx.doi.org/http://dx.doi.org/10.18452/19484
http://ediss.sub.uni-hamburg.de/volltexte/2019/10081
http://dx.doi.org/10.1007/BF01037795
http://inspirehep.net/record/1419883/files/phdKajda.pdf
http://dx.doi.org/10.1007/BF028329
http://plms.oxfordjournals.org/content/s2-6/1/141.extract
http://arxiv.org/abs/1711.05510
http://dx.doi.org/10.5506/APhysPolB.48.2313
http://dx.doi.org/10.1007/BF02725874
http://dx.doi.org/10.1007/BF01076413
https://doi.org/10.1007/BF01104888
https://doi.org/10.1007/BF01104888
https://www.forgottenbooks.com/de/books/ATreatiseontheTheoryofBesselFunctions_10019747
https://www.forgottenbooks.com/de/books/ATreatiseontheTheoryofBesselFunctions_10019747
https://indico.desy.de/indico/event/16613/session/4/contribution/22/material/slides/0.pdf
https://indico.desy.de/indico/event/16613/session/4/contribution/22/material/slides/0.pdf
http://arxiv.org/abs/1810.04580
http://dx.doi.org/10.22323/1.303.0046
http://dx.doi.org/10.22323/1.303.0046
http://arxiv.org/abs/1809.01830
https://dx.doi.org/10.23731/CYRM-2019-003


T. Riemann, J. Usovitsch

[49] T. Riemann, Scalar 1-loop Feynman integrals in arbitrary space–time dimension D, 14th
Workshop on Calculations for Modern and Future Colliders (CALC2018), 2018, JINR,
Dubna, Russia, https://indico.jinr.ru/conferenceOtherViews.py?showSession=
all&showDate=all&view=standard&fr=no&confId=418,
http://indico.jinr.ru/getFile.py/access?contribId=77&sessionId=5&resId=0&
materialId=slides&confId=418

[50] A.V. Smirnov, Comput. Phys. Commun. 185 (2014) 2090. arXiv:1312.3186,
doi:10.1016/j.cpc.2014.03.015

[51] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153.
arXiv:hep-ph/9807565, doi:10.1016/S0010-4655(98)00173-8,
http://www.feynarts.de/looptools

[52] K.H. Phan et al., Scalar one-loop vertex integrals as meromorphic functions of space–time
dimension d, 41st International Conference of Theoretical Physics: Matter to the Deepest,
Podlesice, Poland, 2017.
http://indico.if.us.edu.pl/event/4/contribution/32/material/slides/0.pdf

[53] J. Usovitsch, Numerical evaluation of Mellin–Barnes integrals in Minkowskian regions,
FCC-ee Mini Workshop Precision EW and QCD calculations for the FCC Studies:
Methods and Techniques, 2018, CERN, Geneva, Switzerland.
https://indico.cern.ch/event/669224/contributions/2805454/attachments/
1581984/2500208/Usovitsch.pdf

[54] T. Riemann et al., Scalar one-loop Feynman integrals in arbitrary space–time dimen-
sion, LL2018, St. Goar, Germany, 2018, https://indico.desy.de/indico/event/16613/
session/12/contribution/24/material/slides/0.pdf

[55] G. van Oldenborgh, Comput. Phys. Commun. 66 (1991) 1.
doi:10.1016/0010-4655(91)90002-3

[56] J. Usovitsch et al., The MBnumerics project, Standard Model Theory for the FCC-ee Tera-
Z stage, (CERN-2019-003), section E.2. arXiv:1809.01830,
doi:10.23731/CYRM-2019-003

[57] T. Riemann, 1-loop Feynman integrals at arbitrary space–time d, 11th FCC-
ee Workshop: Theory and Experiments, CERN, Geneva, Switzerland, 2019,
https://indico.cern.ch/event/766859/contributions/3252618/attachments/
1776255/2887926/riemann11FCCeeWS2019.pdf

[58] G. Devaraj and R.G. Stuart, Nucl. Phys. B519 (1998) 483. arXiv:hep-ph/9704308,
doi:10.1016/S0550-3213(98)00035-2

[59] K.H. Phan and D.T. Tran, PTEP, 2019 (2019) 063B01 arXiv:1904.07430,
doi:10.1093/ptep/ptz050

[60] J. Usovitsch, MBOneLoop, a Mathematica/Fortran package for the numerical calculation
of multiple MB-integral representations for one-loop Feynman integrals at arbitrary kine-
matics, http://prac.us.edu.pl/~gluza/ambre/

[61] P. Appell, Sur les fonctions hypergéométriques de plusieurs variables, les polynômes
d’Hermite et autres fonctions sphériques dans l’hyperespace, Mémorial Sci Math 3 (1925)
82. http://www.numdam.org/item?id=MSM_1925__3__1_0

[62] S. Saran, Acta Math. 93 (1955) 293. doi:10.1007/BF02392525

- 160 -

 https://indico.jinr.ru/conferenceOtherViews.py?showSession=all&showDate=all&view=standard&fr=no&confId=418
 https://indico.jinr.ru/conferenceOtherViews.py?showSession=all&showDate=all&view=standard&fr=no&confId=418
http://indico.jinr.ru/getFile.py/access?contribId=77&sessionId=5&resId=0&materialId=slides&confId=418
http://indico.jinr.ru/getFile.py/access?contribId=77&sessionId=5&resId=0&materialId=slides&confId=418
http://arxiv.org/abs/1312.3186
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://www.feynarts.de/looptools
http://indico.if.us.edu.pl/event/4/contribution/32/material/slides/0.pdf
https://indico.cern.ch/event/669224/contributions/2805454/attachments/1581984/2500208/Usovitsch.pdf
https://indico.cern.ch/event/669224/contributions/2805454/attachments/1581984/2500208/Usovitsch.pdf
 https://indico.desy.de/indico/event/16613/session/12/contribution/24/material/slides/0.pdf
 https://indico.desy.de/indico/event/16613/session/12/contribution/24/material/slides/0.pdf
http://dx.doi.org/10.1016/0010-4655(91)90002-3
http://arxiv.org/abs/1809.01830
http://dx.doi.org/10.23731/CYRM-2019-003
https://indico.cern.ch/event/766859/contributions/3252618/attachments/1776255/2887926/riemann11FCCeeWS2019.pdf
https://indico.cern.ch/event/766859/contributions/3252618/attachments/1776255/2887926/riemann11FCCeeWS2019.pdf
http://arxiv.org/abs/hep-ph/9704308
http://dx.doi.org/10.1016/S0550-3213(98)00035-2
http://arxiv.org/abs/1904.07430
https://doi.org/10.1093/ptep/ptz050
http://prac.us.edu.pl/~gluza/ambre/
http://www.numdam.org/item?id=MSM_1925__3__1_0
http://dx.doi.org/10.1007/BF02392525


C.2 Scalar one-loop Feynman integrals in arbitrary space–time dimension d—an update

[63] L. Slater, generalised Hypergeometric Functions (Cambridge University Press, Cambridge,
1966). doi:10.1002/zamm.19660460536

[64] E. Picard, Ann Sci l’É.N.S. 2 10 (1881) 305.
http://www.numdam.org/item?id=ASENS_1881_2_10__305_0

[65] J. Gluza et al., Eur. Phys. J. C71 (2011) 1516. arXiv:1010.1667,
doi:10.1140/epjc/s10052-010-1516-y

- 161 -

https://doi.org/10.1002/zamm.19660460536
http://www.numdam.org/item?id=ASENS_1881_2_10__305_0
http://arxiv.org/abs/1010.1667
http://dx.doi.org/10.1140/epjc/s10052-010-1516-y




C.3 NNLO corrections in four dimensions

3 NNLO corrections in four dimensions
Contribution∗ by: R. Pittau [pittau@ugr.es]

3.1 Introduction
Currently, four-dimensional techniques applied to higher-order calculations are under active
investigation [1–8]. The main motivation for this is the need to simplify perturbative calculations
necessary to cope with the precision requirements of the future LHC and FCC experiments.

In this contribution, I review the four-dimensional regularisation or renormalization (FDR)
approach [9] to the computation of NNLO corrections in four dimensions. In particular, I de-
scribe how fully inclusive NNLO final-state quark-pair corrections [10]

σNNLO = σB + σV + σR with



σB =
∫

dΦn

∑
spin
|A(0)

n |2

σV =
∫

dΦn

∑
spin

{
A(2)
n (A(0)

n )∗ + A(0)
n (A(2)

n )∗
}

σR =
∫

dΦn+2
∑
spin

{
A

(0)
n+2(A(0)

n+2)∗
} (3.1)

are computed in FDR by directly enforcing gauge invariance and unitarity in the definition of
the regularised UV- and IR-divergent integrals. The IR-divergent parts of the amplitudes are
depicted in Fig. C.3.1 and dΦm := δ (P −∑m

i=1 pi)
∏m
i=1 d4piδ+(p2

i ).

A
(0)
n =

(a)

p

A
(2)
n,IR =

(b)

p

q1

q2q12 A
(0)
n+2,IR =

(c)

k1
k3

k4k34

Fig. C.3.1: The lowest-order amplitude (a), the IR-divergent final-state virtual quark-pair cor-
rection (b), and the IR-divergent real component (c). The empty circle stands for the emission
of n−1 particles. Additional IR finite corrections are created if the gluons with momenta q1
and k34 are emitted by off-shell particles contained in the empty circle.

In Section 3.2, I recall the basics of FDR. The following sections deal with its use in the
context of the calculation of σNNLO in Eq. (3.1).

3.2 FDR integration and loop integrals
The main idea of FDR can be sketched out with the help of a simple one-dimensional example
[11]. More details can be found in the relevant literature [9, 10,12–16]. Let us assume that one
needs to define the UV divergent integral

I = lim
Λ→∞

∫ Λ

0
dx x

x+M
, (3.2)
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where M stands for a physical energy scale. FDR identifies the UV divergent pieces in terms of
integrands that do not depend onM , the so-called FDR vacua, and separates them by rewriting

x

x+M
= 1− M

x
+ M2

x(x+M) . (3.3)

The first term in the right-hand side of Eq. (3.3) is the vacuum responsible for the linear O(Λ)
UV divergence of I and 1/x generates its ln Λ behaviour. From the definition of FDR integration,
both divergent contributions need to be subtracted from Eq. (3.2). The subtraction of the O(Λ)
part is performed over the full integration domain [0,Λ], while the logarithmic divergence is
removed over the interval [µR,Λ] only. The arbitrary separation scale µR 6= 0 is needed to keep
adimensional and finite the arguments of the logarithms appearing in the subtracted and finite
parts. Thus

IFDR := I − lim
Λ→∞

(∫ Λ

0
dx−

∫ Λ

µR
dxM

x

)
= M ln M

µR
. (3.4)

The advantage of the definition in Eq. (3.4) is two-fold.

– The UV cut-off Λ is traded for µR, which is interpreted, straight away, as the renormal-
ization scale.

– Other than logarithmic UV divergences never contribute.

The use of Eq. (3.4) is inconvenient in practical calculations, owing to the explicit appearance
of µR in the integration interval. An equivalent definition is obtained by adding an auxiliary
unphysical scale µ to x,

x→ x̄ := x+ µ, (3.5)

and introducing an integral operator
∫∞

0 [dx], defined in such a way that it annihilates the FDR
vacua before integration. Thus

IFDR =
∫ ∞

0
[dx] x̄

x̄+M
=
∫ ∞

0
[dx]

(
1− M

x̄
+ M2

x̄(x̄+M)

)
:= M2 lim

µ→0

∫ ∞
0

dx 1
x̄(x̄+M)

∣∣∣∣∣
µ=µR

,(3.6)

where µ→ 0 is an asymptotic limit. Note that, in order to keep the structure of the subtracted
terms as in Eq. (3.3), the replacement x→ x̄ must be performed in both the numerator and the
denominator of the integrated function.

This strategy can be extended to more dimensions and to integrands that are rational
functions of the integration variables, as is the case of multiloop integrals. For instance, typical
two-loop integrals contributing to σV(γ

∗ → jets) and σV(H→ bb̄ + jets) are

K1 :=
∫ [

d4q1
] [

d4q2
] 1
q̄2

1D̄1D̄2q̄2
2 q̄

2
12
, Kρσαβ

2 :=
∫ [

d4q1
] [

d4q2
] qρ2q

σ
2 q

α
1 q

β
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
, (3.7)

where q12 := q1 + q2, D̄1,2 = q̄2
1 + 2(q1 · p1,2), p2

1,2 = 0, and q̄2
i := q2

i − µ2 (i = 1, 2, 12), in the
same spirit as Eq. (3.5).

FDR integration keeps shift invariance in any of the loop integration variables and the
possibility of cancelling reconstructed denominators, e.g.,∫ [

d4q1
] [

d4q2
] q̄2

1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12

= K1. (3.8)
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Since, instead, ∫ [
d4q1

] [
d4q2

] q2
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
6= K1 ,

this last property is maintained only if the replacement q2
i → q̄2

i is also made in the numerator of
the loop integrals whenever q2

i is generated by Feynman rules. This is called global prescription
(GP), often denoted q2

i →
GP

q̄2
i .

GP and shift invariance guarantee results that do not depend on the chosen gauge [12,14].
Nevertheless, unitarity should also be maintained. This requires that any given UV divergent
subdiagram produce the same result when computed or manipulated separately or when em-
bedded in the full diagram. Such a requirement is called subintegration consistency (SIC) [15].
Enforcing SIC in the presence of IR-divergent integrals, such as those in Eq. (3.7), needs extra
care. In fact, the IR treatments of σV and σR should match each other. In the next sections, I
describe how this is achieved in the computation of the observable in Eq. (3.1).

3.3 Keeping unitarity in the virtual component
Any integral contributing to σV has the form

IV =
∫ [

d4q1
] [

d4q2
] NV

D̄q̄2
2 q̄

2
12
, (3.9)

where D̄ collects all q2-independent propagators and NV is the numerator of the corresponding
Feynman diagram. IV can be subdivergent or globally divergent for large values of the inte-
gration momenta. For example, K1 in Eq. (3.7) only diverges when q2 → ∞, while K2 also
diverges when q1,2 → ∞. This means that FDR prescribes the subtraction of a global vacuum
(GV) involving both integration variables in K2, while the subvacuum (SV) developed when
q2 → ∞ should be removed from both K1 and K2. In addition, IR infinities are generated by
the on-shell conditions p2

1,2 = 0. Even though IR divergences are automatically regulated when
barring the loop denominators, a careful SIC preserving treatment is necessary in order not
to spoil unitarity. Since the only possible UV subdivergence is produced by the quark loop in
Fig. C.3.1(b), this is accomplished as follows [10].

– One does not apply GP to the contractions gρσqρ2qσ2 when gρσ refers to indices external to
the UV divergent subdiagram.

– One replaces everywhere q̄2
1 → q2

1 after GV subtraction.

The external indices entering the calculation of σV in Eq. (3.1) are denoted ρ̂ and σ̂ in
Fig. C.3.2(a,b). Using this convention, one can rephrase the first rule as follows: gρσqρ2qσ2 =
q2

2 →
GP

q̄2
2, but gρ̂σ̂q

ρ
2q
σ
2 := q̂2

2 →
GP

q2
2, which gives, for instance,

gρσK
ρσαβ
2 →GP

K̄αβ
2 =

∫ [
d4q1

] qα1 q
β
1

q̄4
1D̄1D̄2

∫ [
d4q2

] 1
q̄2

12
= 0, but

gρ̂σ̂K
ρσαβ
2 →GP

K̂αβ
2 =

∫ [
d4q1

] [
d4q2

] q2
2q
α
1 q

β
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
6= 0, (3.10)

where K̄αβ
2 vanishes because the shift q2 → q2 − q1 makes it proportional to the subvacuum

1/q̄2
2, which is annihilated by the

∫
[d4q2] operator. It can be shown [10, 15] that integrals such

as K̂αβ
2 generate the unitarity-restoring logarithms missed by K̄αβ

2 .
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pq1+p
ρ̂

σ̂

(a)

q2q12

ρ̂

σ̂

(b)

k1
ρ̂

σ̂

k3

k4

(c)

ρ̂

σ̂

k1

k3

k4

(d)

.

Fig. C.3.2: Virtual and real cuts contributing to the IR-divergent parts of σV (a,b) and σR
(c,d).

As for the second rule, it states that a GV subtraction is needed first. In the case of K̂αβ
2 ,

this is achieved by rewriting
1
D̄1

= 1
q̄2

1
− 2(q1 · p1)

D̄1q̄2
1

.

The first term gives a scaleless integral, annihilated by
∫

[d4q1][d4q2], so that

K̂αβ
2 = −2

∫ [
d4q1

] [
d4q2

] (q1 · p1)q2
2q
α
1 q

β
1

q̄6
1D̄1D̄2q̄2

2 q̄
2
12
, (3.11)

which is now only subdivergent when q2 →∞, as is K1 in Eq. (3.7). After that, the replacement
q̄2

1 → q2
1 produces

K1 → K̃1 =
∫

d4q1
[
d4q2

] 1
q2

1D1D2q̄2
2 q̄

2
12
, K̂αβ

2 → K̃αβ
2 = −2

∫
d4q1

[
d4q2

] (q1 · p1)q2
2q
α
1 q

β
1

q6
1D1D2q̄2

2 q̄
2
12
.(3.12)

All two-loop integrals IV in Eq. (3.9) should be treated in this way. In the case of the NF part
of σV(γ

∗ → jets) and σV(H → bb̄ + jets), this produces three master integrals, which can be
computed as described in Appendix D of Ref. [10].

After loop integration, σV contains logarithms of µ2 of both UV and IR origin. The former
should be replaced by logarithms of µ2

R, as dictated by Eq. (3.6), while the latter compensate
the IR behaviour of σR. To disentangle the two cases, it is convenient to renormalise σV first.
This involves expressing the bare strong coupling constant a0 := α0

S/4π and the bare bottom
Yukawa coupling y0

b in terms of a := αMS
S (s)/4π and yb extracted from the the bottom pole

mass mb. The relevant relations in terms of L := lnµ2/(p1 − p2)2 and L′′ := lnµ2/m2
b are [10]

a0 = a
(
1 + aδ(1)

a

)
, y0

b = yb
(
1 + aδ(1)

y + a2
(
δ(2)
y + δ(1)

a δ(1)
y

))
, (3.13)

with

δ(1)
a = 2

3NFL, δ(1)
y = −CF (3L′′ + 5) , δ(2)

y = CFNF

(
L′′

2 + 13
3 L

′′ + 2
3π

2 + 151
18

)
. (3.14)

After renormalization, the remaining µ2s are the IR ones.
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3.4 Keeping unitarity in the real component
The integrands in σR of Eq. (3.1) are represented in Fig. C.3.2(c,d). They are of the form

JR = NR

Ssα34s
β
134
, si···j := (ki + · · ·+ kj)2, 0 ≤ α, β ≤ 2, (3.15)

where NR is the numerator of the amplitude squared and S collects the remaining propagators.
Depending on the values of α and β, JR becomes infrared divergent when integrated over Φn+2.
These IR singularities must be regulated consistently with the SIC preserving treatment of σV
described in Section 3.3.

The changes q2
2 →

GP
q̄2

2 and q2
12 →

GP
q̄2

12 in the virtual cuts of Fig. C.3.2(a,b) imply the
Cutkosky relation

1
(q̄2

2 + i0+)(q̄2
12 + i0+) ↔

(2π

i

)2
δ+(k̄2

3)δ+(k̄2
4), (3.16)

with k̄2
3,4 := k2

3,4 − µ2. Hence, one replaces in Eq. (3.1) Φn+2 → Φ̃n+2, where the phase space
Φ̃n+2 is such that k2

3 = k2
4 = µ2 and k2

i = 0 when i 6= 3, 4. In Ref. [10], it is proven that SV
subtraction in σV does not alter Eq. (3.16). Analogously, the correspondence between cuts (a)
and (d)

1
(q1 + p)2 + i0+ ↔

2π

i δ+(k2
1) (3.17)

is not altered by GV subtraction. Finally, k2
3, k2

4, and (k3 + k4)2 = s34 in NR of Eq. (3.15)
should be treated using the same prescriptions imposed on q2

2, q2
12, and q2

1 in NV of Eq. (3.9),
respectively. This means replacing

k2
3,4 → k̄2

3,4 = 0, (k3 · k4) = 1
2
(
s34 − k2

3 − k2
4

)
→ 1

2(s34 − k̄2
3 − k̄2

4) = 1
2s34, (3.18)

where the last equalities are induced by the delta functions in Eq. (3.16). These changes should
be made everywhere in NR, except in contractions induced by the external indices ρ̂ and σ̂ in
cuts (c,d). In this case

gρ̂σ̂k
ρ
3,4k

σ
3,4 → k2

3,4 = µ2, gρ̂σ̂k
ρ
3k

σ
4 → (k3 · k4) = s34 − 2µ2

2 . (3.19)

In the case of the NF part of σR(γ
∗ → jets) and σR(H→ bb̄ + jets), integrating JR over Φ̃4 and

taking the asymptotic µ→ 0 limit produces the phase space integrals reported in Appendix E
of Ref. [10].

3.5 Results and conclusions
Using the approach outlined in Sections 3.3 and 3.4, one reproduces the known MS results for
the NF components of σNNLO(H→ bb̄ + jets) and σNNLO(γ

∗ → jets) [10]

σNNLO(H→ bb̄ + jets) = ΓBORN(yMS
b (MH))

{
1 + a2CFNF

(
8ζ3 + 2

3π
2 − 65

2

)}
,

σNNLO(γ
∗ → jets) = σBORN

{
1 + a2CFNF (8ζ3 − 11)

}
. (3.20)
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This shows, for the first time, that a fully four-dimensional framework to compute NNLO quark-
pair corrections can be constructed based on the requirement of preserving gauge invariance
and unitarity. The basic principles leading to a consistent treatment of all the parts contributing
to the NNLO results in Eq. (3.20) are also expected to remain valid when considering more
complicated environments. A general four-dimensional NNLO procedure including initial-state
IR singularities is currently under investigation.
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Corresponding author: G. Rodrigo [german.rodrigo@csic.es]

4.1 Introduction
Computations in perturbative quantum field theory (pQFT) feature several aspects that, al-
though intrinsically non-physical, are traditionally successfully eluded by modifying the dimen-
sions of space–time. Closed loops in pQFT implicitly extrapolate the validity of the Standard
Model (SM) to infinite energies—equivalent to zero distance—much above the Planck scale. We
should expect this to be a legitimate procedure if the loop scattering amplitudes that contribute
to the physical observables are either suppressed at very high energies, or if there is a way to
suppress or renormalise their contribution in this limit. In gauge theories like QCD, massless
particles can be emitted with zero energy, and pQFT treats the quantum state with N external
partons as different from the quantum state with emission of extra massless particles at zero
energy, while these two states are physically identical. In addition, partons can be emitted in
exactly the same direction, or, in other words, at zero distance. All these unphysical features
have a price and lead to the emergence of infinities in the four dimensions of space–time.

In dimensional regularisation (DREG) [1–5], the infinities are replaced by explicit poles
in 1/ε, with d = 4− 2ε, through integration of the loop momenta and the phase space of real
radiation. Then, the 1/ε ultraviolet (UV) singularities of the virtual contributions are removed
by renormalization, and the infrared (IR) soft and collinear singularities are subtracted. The
general idea of subtraction [6–18] involves introducing counterterms that mimic the local IR be-
haviour of the real components and that can easily be integrated analytically in d dimensions.
In this way, the integrated form is combined with the virtual component, while the uninte-
grated counterterm cancels the IR poles originated from the phase space integration of the
real-radiation contribution.

Although this procedure efficiently transforms the theory into a calculable and well-defined
mathematical framework, a big effort needs to be invested in evaluating loop and phase space
integrals in arbitrary space–time dimensions, which are particularly difficult at higher perturb-
ative orders. In view of the highly challenging demands imposed by the expected accuracy
attainable at the LHC and future colliders, like the FCC, there has been a recent interest in the
community to define perturbative methods directly in d = 4 space–time dimensions in order
to avoid the complexity of working in a non-physical multidimensional space [19]. Examples of
these methods are the four-dimensional formulation (FDF) [20] of the four-dimensional helicity
scheme, the six-dimensional formalism (SDF) [21], implicit regularisation (IREG) [22,23], and
four-dimensional regularisation or renormalization (FDR) [24, 25].† In this section, we review
the four-dimensional unsubtraction (FDU) [26–28] method, which is based on loop-tree duality

∗This contribution should be cited as:
J.J. Aguilera-Verdugo, F. Driencourt-Mangin, J. Plenter, S. Ramírez-Uribe, G. Rodrigo, G.F.R. Sborlini, W.J.
Torres Bobadilla, S. Tracz, Unsubtractions at NNLO, DOI: 10.23731/CYRM-2020-003.169, in: Theory for the
FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 169.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

†See Section C.3 in this report.
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(LTD) [29–36]. The idea behind FDU is to exploit a suitable mapping of momenta between
the virtual and real kinematics in such a way that the summation over the degenerate soft
and collinear quantum states is performed locally at integrand level without the necessity of
introducing IR subtractions, whereas the UV singularities are locally suppressed at very high
energies, e.g., at two loops [35]. The method should improve the efficiency of Monte Carlo event
generators because it simultaneously describes real and virtual contributions.

Finally, LTD is also a powerful framework to analyse the singular structure of scattering
amplitudes directly in the loop momentum space, which is particularly interesting for character-
izing unitarity thresholds and anomalous thresholds for specific kinematic configurations [36].

4.2 Loop-tree duality
The LTD representation of a one-loop scattering amplitude is given by

A(1)({pn}N) = −
∫
`
N (`, {pn}N)⊗GD(α) , (4.1)

where GD(α) = ∑
i∈α δ̃ (qi)

∏
j 6=iGD(qi; qj), and N (`, {pn}N) is the numerator of the integrand,

which depends on the loop momentum ` and the external momenta {pn}N . The delta function
δ̃ (qi) = i2π θ(qi,0) δ(q2

i −m2
i ) sets on-shell the internal propagator with momentum qi = ` + ki

and selects its positive energy mode, qi,0 > 0. At one loop, α = {1, . . . , N} labels all the internal
momenta, and Eq. (4.1) is the sum of N single-cut dual amplitudes. The dual propagators,

GD(qi; qj) = 1
q2
j −m2

j − i0 η · kji
, (4.2)

differ from the usual Feynman propagators only by the imaginary prescription, which now de-
pends on η · kji, with kji = qj − qi. The dual propagators are implicitly linear in the loop
momentum, owing to the on-shell conditions. With η = (1,0), which is equivalent to integrat-
ing out the energy component of the loop momentum, the remaining integration domain is
Euclidean.

At two loops, the corresponding dual representation is [31,35]

A(2)({pn}N) =
∫
`1

∫
`2
N (`1, `2, {pn}N)⊗ [GD(α1)GD(α2 ∪ α3) +GD(−α2 ∪ α1)GD(α3)

−GD(α1)GF (α2)GD(α3)] . (4.3)

Now, the internal momenta are qi = `1 + ki, qj = `2 + kj, and qk = `1 + `2 + kk, and are
classified into three different sets, with i ∈ α1, j ∈ α2, and k ∈ α3 (see Fig. C.4.1). The minus
sign in front of α2 indicates that the momenta in α2 are reversed to hold a momentum flow
consistent with α1. The dual representation in Eq. (4.3) spans over the sum of all possible
double-cut contributions, with each of the two cuts belonging to a different set. In general, at
higher orders, LTD transforms any loop integral or loop scattering amplitude into a sum of tree-
level-like objects that are constructed by setting on-shell a number of internal loop propagators
equal to the number of loops.

Explicit LTD representations of the scattering amplitude describing the decay H → γγ

have been presented at one [34] and two loops [35].
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α1 α2 α3

ℓ1 ℓ2

ℓ1 + ℓ2

Fig. C.4.1: Momentum flow of a two-loop Feynman diagram

4.3 Four-dimensional unsubtraction
It is interesting to note that although in Eqs. (4.1) and (4.3) the on-shell loop three-momenta
are unrestricted, all the IR and physical threshold singularities of the dual amplitudes are
restricted to a compact region [32, 36], as discussed in Section 4.4. This is essential to define
the four-dimensional unsubtraction (FDU) [26–28] algorithm, namely, to establish a mapping
between the real and virtual kinematics in order to locally cancel the IR singularities without
the need for subtraction counterterms.

In the FDU approach, the cross-section at next-to-leading order (NLO) is constructed,
as usual, from the renormalised one-loop virtual correction with N external partons and the
exclusive real cross-section with N + 1 partons

σNLO =
∫
N

dσ(1,R)
V +

∫
N+1

dσ(1)
R , (4.4)

integrated over the corresponding phase space,
∫
N and

∫
N+1. The virtual contribution is obtained

from its LTD representation∫
N

dσ(1,R)
V =

∫
(N, ~̀)

2 Re 〈M(0)
N |
(∑

i

M(1)
N (δ̃(qi))

)
−M(1)

UV(δ̃(qUV))〉 Ô({pn}N) , (4.5)

whereM(0)
N is the N -leg scattering amplitude at leading order (LO), andM(1)

N (δ̃(qi)) is the dual
representation of the unrenormalised one-loop scattering amplitude with the internal momen-
tum qi set on-shell. The integral is weighted with the explicit observable function Ô({pn}N).
The expression includes appropriate counterterms,M(1)

UV(δ̃(qUV)), that implement renormaliza-
tion by subtracting the UV singularities locally, as discussed in Refs. [27, 28], including UV
singularities of degree higher than logarithmic that integrate to zero.

By means of an appropriate mapping between the real and virtual kinematics [27,28],

{p′r}N+1 → (qi, {pn}N) , (4.6)

the real phase space is rewritten in terms of the virtual phase space and the loop three-
momentum ∫

N+1
=
∫

(N, ~̀)

∑
i

Ji(qi)Ri({p′r}N+1) , (4.7)
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where Ji(qi) is the Jacobian of the transformation with qi on-shell, and Ri({p′j}N+1) defines a
complete partition of the real phase space∑

i

Ri({p′r}N+1) = 1 . (4.8)

As a result, the NLO cross-section is cast into a single integral in the Born or virtual phase
space and the loop three-momentum

σNLO =
∫

(N, ~̀)

[
2 Re 〈M(0)

N |
(∑

i

M(1)
N (δ̃(qi))

)
−M(1)

UV(δ̃(qUV))〉 Ô({pn}N)

+
∑
i

Ji(qi)Ri({p′r}N+1) |M(0)
N+1({p′r}N+1)|2 Ô({p′r}N+1)

]
, (4.9)

and exhibits a smooth four-dimensional limit in such a way that it can be evaluated directly
in four space–time dimensions. Explicit computations are presented in Refs. [27,28] with both
massless and massive final-state quarks. More importantly, with suitable mappings in Eq. (4.6)
conveniently describing the quasi-collinear configurations, the transition from the massive [28]
to the massless configuration [27] is also smooth.

The extension of FDU to next-to-next-to-leading order (NNLO) is obvious; the total
cross-section consists of three contributions

σNNLO =
∫
N

dσ(2,R)
VV +

∫
N+1

dσ(2,R)
VR +

∫
N+2

dσ(2)
RR , (4.10)

where the double virtual cross-section dσ(2,R)
VV receives contributions from the interference of

the two-loop with the Born scattering amplitudes, the square of the one-loop scattering ampli-
tude with N external partons, the virtual-real cross-section dσ(2,R)

VR includes the contributions
from the interference of one-loop and tree-level scattering amplitudes with one extra external
particle, and the double real cross-section dσ(2)

RR comprises tree-level contributions with the
emission of two extra particles. The LTD representation of the two-loop scattering amplitude,
〈M(0)

N |M
(2)
N (δ̃(qi, qj))〉, is obtained from Eq. (4.3), while the two-loop momenta of the squared

one-loop amplitude are independent and generate dual contributions of the type
〈M(1)

N (δ̃(qi))|M(1)
N (δ̃(qj))〉. In both cases, there are two independent loop three-momenta and

N external momenta with which to reconstruct the kinematics of the tree-level corrections
entering dσ(2)

RR and the one-loop corrections in dσ(2,R)
VR :

{p′′r}N+2 → (qi, qj, {pn}N) , (q′k, {p′s}N+1)→ (qi, qj, {pn}N) , (4.11)

in such a way that all the contributions to the NNLO cross-section are cast into a single phase
space integral

σNNLO =
∫

(N, ~̀1, ~̀2)
dσNNLO . (4.12)

Explicit applications of FDU at NNLO are currently under investigation.

4.4 Unitarity thresholds and anomalous thresholds
An essential requirement for FDU to work is to prove that all the IR singularities of the dual
amplitudes are restricted to a compact region of the loop three-momenta. This has recently
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been proven at higher orders [36], thus extending the one-loop analysis of Ref. [32], as well
as analysing the case of anomalous thresholds. The location of the singularities of the dual
amplitudes in the loop three-momentum space are encoded at one loop through the set of
conditions

λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0 → 0 , (4.13)

where q(+)
r,0 =

√
~q 2
r +m2

r, with r ∈ {i, j}, are the on-shell loop energies. There are, indeed,
only two independent solutions. The limit λ++

ij → 0 describes the causal unitarity threshold,
and determines that q(+)

r,0 < |kji,0|, where kji,0 depends on the external momenta only and is
therefore bounded. For massless partons, it also describes soft and collinear singularities. The
other potential singularity occurs for λ+−

ij → 0, but this is a non-causal or unphysical threshold
and it cancels locally in the forest defined by the sum of all the on-shell dual contributions.
For this to happen, the dual prescription of the dual propagators plays a central role. Finally,
anomalous thresholds are determined by overlapping causal unitarity thresholds, e.g., λ++

ij and
λ++
ik → 0 simultaneously.

At two loops, the location of the singularities is determined by the set of conditions

λ±±±ijk = ±q(+)
i,0 ± q

(+)
j,0 ± q

(+)
k,0 + kk(ij),0 → 0 , (4.14)

where kk(ij) = qk − qi − qj depends on external momenta only, with i ∈ α1, j ∈ α2, and
k ∈ α3. Now, the unitarity threshold is defined by the limit λ+++

ijk → 0 (or λ−−−ijk → 0 ) with
q

(+)
r,0 ≤ |kk(ij),0| and r ∈ {i, j, k}, and the potential singularities at λ++−

ijk → 0 and λ+−−
ijk → 0

cancel locally in the forest of all the dual contributions. Again, the anomalous thresholds are
determined by the simultaneous contribution of unitarity thresholds. The generalisation of
Eq. (4.14) to higher orders is straightforward.

4.5 Conclusions
The bottleneck in higher-order perturbative calculations is not only the evaluation of multiloop
Feynman diagrams, but also the gathering of all the quantum corrections from different loop
orders (and thus different numbers of final-state partons). To match the expected experimental
accuracy at the LHC, particularly in the high-luminosity phase, and at future colliders, new
theoretical efforts are still needed to overcome the current precision frontier. LTD is also a
powerful framework to analyse, comprehensively, the emergence of anomalous thresholds at
higher orders.
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The Standard Model involves several heavy particles: the Z and W bosons, the Higgs boson,
and the top quark. Precision studies of these particles require, on the theoretical side, quantum
corrections at the two-loop order and beyond. It is a well-known fact that, starting from two
loops, Feynman integrals with massive particles can no longer be expressed in terms of multiple
polylogarithms. This immediately raises the following question. What is the larger class of
functions needed to express the relevant Feynman integrals? For single-scale two-loop Feynman
integrals related to a single elliptic curve we now have the answer: they are expressed as iterated
integrals of modular form [1]. This brings us to a second question: is there an efficient method
to evaluate these functions numerically in the full kinematic range? In this contribution, we
review how this can be done. This review is mainly based on Refs. [2, 3].

Efficient numerical evaluation methods rely on three ingredients: (i) an (iterated) integral
representation, used to transform the arguments into the region of convergence, (ii) a (nested)
sum representation, defined in the region of convergence, which can be truncated and gives
a numerical approximation, and (iii) methods to accelerate the convergence of the truncated
series. Let us illustrate this strategy for the numerical evaluation of the dilogarithm [4], defined
by

Li2(x) =
x∫

0

dt1
t1

t1∫
0

dt2
1− t2

=
∞∑
n=1

xn

n2 . (5.1)

The power series expansion can be evaluated numerically, provided |x| < 1. Using the functional
equations

Li2(x) = −Li2
(1
x

)
− π

2

6 −
1
2 (ln(−x))2 , Li2(x) = −Li2(1− x) + π

2

6 − ln(x) ln(1− x),

any argument of the dilogarithm can be mapped into the region |x| ≤ 1 and −1 ≤ Re(x) ≤ 1/2.
The numerical computation can be accelerated by using an expansion in z = − ln(1 − x) and
the Bernoulli numbers Bi:

Li2(x) =
∞∑
i=0

Bi
zi+1

(i+ 1)! . (5.2)

Multiple polylogarithms are defined for zk 6= 0 by [5–7]

G(z1, . . . , zk; y) =
y∫

0

dy1

y1 − z1

y1∫
0

dy2

y2 − z2
· · ·

yk−1∫
0

dyk
yk − zk

. (5.3)
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This represents multiple polylogarithms as iterated integrals. Alternatively, we may define mul-
tiple polylogarithms through a nested sum

Lim1,...,mk(x1, . . . , xk) =
∞∑

n1>n2>···>nk>0

xn1
1

n1m1
· · · x

nk
k

nkmk
. (5.4)

With the shorthand notation

Gm1,...,mk(z1, . . . , zk; y) = G(0, . . . , 0︸ ︷︷ ︸
m1−1

, z1, . . . , zk−1, 0, . . . , 0︸ ︷︷ ︸
mk−1

, zk; y), (5.5)

where all zj for j = 1, . . . , k are assumed to be non-zero, the two notations are related by

Lim1,...,mk(x1, . . . , xk) = (−1)kGm1,...,mk

( 1
x1
,

1
x1x2

, . . . ,
1

x1 · · ·xk
; 1
)
. (5.6)

The numerical evaluation of multiple polylogarithms follows the same strategy [8]. Using the
integral representation, one transforms all arguments into a region, where the sum represen-
tation gives a converging power series expansion. In addition, the Hölder convolution is used to
accelerate the convergence of the series expansion. The Hölder convolution reads (with z1 6= 1
and zk 6= 0)

G (z1, . . . , zk; 1) =
k∑
j=0

(−1)j G
(

1− zj, 1− zj−1, . . . , 1− z1; 1
2

)
G
(
zj+1, . . . , zk;

1
2

)
. (5.7)

Multiple polylogarithms are a special case of iterated integrals. Let us briefly review Chen’s
definition of iterated integrals [9]: let M be an n-dimensional manifold and

γ : [0, 1]→M (5.8)

a path with start point xi = γ(0) and endpoint xf = γ(1). Suppose further that ω1, . . . , ωk are
differential 1-forms on M . Let us write

fj (λ) dλ = γ∗ωj (5.9)

for the pull-backs to the interval [0, 1]. For λ ∈ [0, 1] the k-fold iterated integral of ω1, . . . , ωk
along the path γ is defined by

Iγ (ω1, . . . , ωk;λ) =
λ∫

0

dλ1f1 (λ1)
λ1∫
0

dλ2f2 (λ2) · · ·
λk−1∫
0

dλkfk (λk) . (5.10)

For multiple polylogarithms, we have ωj = d ln(λ−zj). A second special case is given by iterated
integrals of modular forms [10]:

ωj = 2πi fj (τ) dτ, (5.11)

where fj(τ) is a modular form. This type of iterated integral occurs in physics for the equal-
mass sunrise integral [1, 11–14] and the the kite integral [15, 16]. A physical application is the
two-loop electron self-energy in quantum electrodynamics, if the mass of the electron is not
neglected [3,17]. This is a single-scale problem and we set x = p2/m2. In all these examples, the
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complication is related to the equal-mass sunrise integral, which cannot be expressed in terms
of multiple polylogarithms. This is related to the fact that the system of differential equations
for this Feynman integral contains an irreducible second-order differential operator [18–20]

L = x (x− 1) (x− 9) d2

dx2 +
(
3x2 − 20x+ 9

) d
dx + x− 3. (5.12)

Let ψ1 and ψ2 be two independent solutions of the homogeneous equation

L ψ = 0. (5.13)

ψ1 and ψ2 can be taken as the periods of the elliptic curve

E : w2 − z (z + 4)
[
z2 + 2 (1 + x) z + (1− x)2

]
= 0. (5.14)

One defines the modulus k and the complementary modulus k′ by

k2 = 16
√
x

(1 +
√
x)3 (3−

√
x)
, k′2 = 1− k2. (5.15)

In a neighbourhood of x = 0, the periods may be taken as

ψ1,0 = 4K (k)
(1 +

√
x)

3
2 (3−

√
x)

1
2
, ψ2,0 = 4iK (k′)

(1 +
√
x)

3
2 (3−

√
x)

1
2
. (5.16)

The complete elliptic integral K(k) can be computed efficiently from the arithmetic-geometric
mean

K (k) = π

2 agm (k′, 1) . (5.17)

The periods ψ1 and ψ2 generate a lattice. Any other basis of the lattice again gives two independ-
ent solutions of the homogeneous differential equation (Eq. (5.13)). It is a standard convention
to normalise one basis vector of the lattice to one: (ψ2, ψ1) → (τ, 1) where τ = ψ2/ψ1 and
Imτ > 0. Let us now consider a change of basis:(

ψ′2
ψ′1

)
= γ

(
ψ2
ψ1

)
, γ =

(
a b
c d

)
. (5.18)

The transformation should be invertible and preserve Im(ψ′2/ψ′1) > 0, therefore, γ ∈ SL2 (Z).
In terms of τ and τ ′, this yields

τ ′ = aτ + b

cτ + d
. (5.19)

This is a modular transformation and we write τ ′ = γ(τ). Let us denote the complex upper
half plane by H. A meromorphic function f : H → C is a modular form of modular weight k
for SL2(Z), if (i) f transforms under Möbius transformations as f (τ ′) = (cτ + d)k · f(τ) for
all γ ∈ SL2(Z), (ii) f is holomorphic on H, and (iii) f is holomorphic at infinity. Furthermore,
one defines modular forms for congruence subgroups Γ ⊂ SL2(Z) by requiring property (i) only
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for γ ∈ Γ (plus holomorphicity on H and at the cusps). Relevant to us will be the congruence
subgroup Γ1(6), defined by

Γ1(6) =
((

a b
c d

)
∈ SL2(Z) : a, d ≡ 1 mod 6, c ≡ 0 mod 6

}
. (5.20)

With ψ1,0 and ψ2,0 defined by Eq. (5.16), we set

τ0 = ψ2,0

ψ1,0
, q0 = e2iπτ0 . (5.21)

We then change the variable from x to τ0 (or q0) [12]. The differential equation for the master
integrals ~I relevant to the two-loop electron self-energy then reads

d
dτ0

~I = ε A(τ0) ~I, (5.22)

where A(τ0) is an ε-independent matrix whose entries are modular forms for Γ1(6) [1, 14]. It
follows immediately that all master integrals can be expressed in terms of iterated integrals of
modular forms.

Let us now discuss how to evaluate numerically iterated integrals of modular forms in an
efficient way. The essential point is that modular forms have a q-expansion. Using

2πi dτ0 = dq0

q0
, (5.23)

we may integrate term-by-term and obtain the q0-expansion of the master integrals. Truncating
the q0-series to the desired accuracy gives a polynomial in q0. This needs to be done only once.
The resulting polynomial can then be evaluated for different values of q0 (or x) numerically.
Note that the conversion from x to q0 is also fast, since the complete elliptic integrals can be
computed efficiently with the help of the arithmetic-geometric mean. Let us give an example.
One finds for the ε2-term of the sunrise integral [3]

I
(2)
6 = 3Cl2

(2π

3

)
− 3
√

3
[
q0 −

5
4q

2
0 + q3

0 −
11
16q

4
0 + 24

25q
5
0 −

5
4q

6
0 + 50

49q
7
0 −

53
64q

8
0 + q9

0

]
+O

(
q10

0

)
.

(5.24)
We have q0 = 0 for x = 0 and Eq. (5.24) gives a fast convergent series in a neighbourhood
of x = 0. We are interested in evaluating the master integrals in the full kinematic range
x ∈ R. This raises the question: for which values x ∈ R do the q0-series for the master integrals
converge? Or phrased differently, for which values x ∈ R do we have |q0| < 1? It turns out
that we have |q0| < 1 for x ∈ R\{1, 9,∞}, corresponding to p2 ∈ R\{m2, 9m2,∞} [2]. Thus,
the q0-series for the master integrals converge for all real values of x except three points. Let
us stress that the q0-series give the correct real and imaginary part of the master integrals, as
specified by Feynman’s iδ prescription. To cover the three remaining points, x ∈ {1, 9,∞}, we
recall that the periods ψ1 and ψ2 are not uniquely determined. By using four different choices
for the pair of periods (ψ1, ψ2), we may define q0, q1, q9 and q∞ such that (i) the integration
kernels are modular forms of Γ1(6) and (ii) qj = 0 for x = j [3]. This gives expansions around
all singular points of the system of differential equations or—phrased differently—around all
cusps of Γ1(6). In particular, there is always a choice such that |qj| / 0.163 for all real values
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of x. Truncation of the q-series to order O(q30) gives for the finite part of the two-loop electron
self-energy a relative precision better than 10−20 for all real values p2/m2.

Although we focused on the two-loop electron self-energy, we expect the methods discussed
here to be applicable to any single-scale Feynman integral related to a single elliptic curve. This
is a significant step beyond Feynman integrals evaluating to multiple polylogarithms and puts
single-scale Feynman integrals related to a single elliptic curve on the same level of understand-
ing as Feynman integrals evaluating to multiple polylogarithms. With the ongoing research
on Feynman integrals beyond multiple polylogarithms [1, 2, 11–16, 20–50] we may expect more
results—in particular, on multiscale Feynman integrals beyond multiple polylogarithms—to be
coming soon.
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6 Numerical multiloop calculations: sector decomposition and QMC
integration in pySecDec
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Corresponding author: S.P. Jones [s.jones@cern.ch]

The FCC-ee will allow the experimental uncertainties on several important observables, such as
the electroweak precision observables (EWPOs), to be reduced by up to two orders of magnitude
compared with the previous generation LEP and SLC experiments [1, 2]. To be able to best
exploit this unprecedented boost in precision, it is also necessary for theoretical predictions to
be known with sufficient accuracy. In practice, this means that very high-order perturbative
corrections to electroweak precision observables and other processes will be required, both in
the Standard Model (SM) and potentially also in BSM scenarios.

One of the key challenges for computing perturbative corrections is our ability to compute
the Feynman integrals that appear in these multiloop corrections. There has been very signif-
icant progress in this direction in recent years, ranging from purely analytic approaches [3–
17] to semi-analytical approaches based on expansions [18–23] and also via purely numerical
methods [24–32].

So far, the method of sector decomposition has already proved to be useful for computing
the complete electroweak two-loop corrections to Z boson production and decay [33], which is of
direct relevance to the FCC-ee, as well as several processes of significant interest at the LHC [34–
37] and also BSM corrections [38, 39]. The latter calculations were based on SecDec 3 [40].
Another code based on sector decomposition, Fiesta [41–43], has also been used successfully
in various multiloop calculations, for example for numerical checks of recent evaluations of
four-loop three-point functions [13–16].

In this contribution, we will briefly describe the essential aspects of this method and
provide a short update regarding some of the recent developments [26, 44] that have enabled
state-of-the-art predictions to be made using this technique.

In Section 6.1, we will introduce the method of sector decomposition as we use it for com-
puting Feynman integrals and describe how it leads to integrals that are suitable for numerical
evaluation. In Section 6.2, we will discuss a particular type of quasi-Monte Carlo integration
that allows us to numerically integrate the sector-decomposed loop integrals efficiently. Finally,
in Section 6.3, we will give a short outlook for the field of numerical multiloop calculations.

6.1 Feynman integrals and sector decomposition
A general scalar Feynman integral I in D = 4−2ε dimensions with L loops and N propagators
Pj, each raised to a power νj, can be written in momentum space as

I =
∫ ∞
−∞

L∏
l=1

[
dDkl

] 1∏N
j=1 P

νj
j

, where
[
dDkl

]
= µ4−D

iπD
2

dDkl, Pj =
(
qj −m2

j + iδ
)
, (6.1)

∗This contribution should be cited as:
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decomposition and QMC integration in pySecDec, DOI: 10.23731/CYRM-2020-003.185, in: Theory for the
FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
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and qj are linear combinations of external momenta pi and loop momenta kl. After introducing
Feynman parameters, the momentum integrals can be performed straightforwardly and the
integral can be recast in the form

I = (−1)Nν Γ(Nν − LD/2)∏N
j=1 Γ(νj)

∫ ∞
0

N∏
j=1

dxj xνj−1
j δ

(
1−

N∑
i=1

xi

)
UNν−(L+1)D/2(~x)
FNν−LD/2(~x, sij,m2

j)
, (6.2)

where the momentum integrals have been replaced by an N -fold parameter integral. Here, U
and F are the first and second Symanzik polynomials; they are homogeneous polynomials in the
Feynman parameters of degree L and L+ 1, respectively, and Nν = ∑

j νj. This procedure can
be extended to support Feynman integrals with tensor numerators. There are three possibilities
of poles in the dimensional regulator ε arising.

1. The overall Γ(Nν − LD/2) can diverge, resulting in a single UV pole.

2. U(~x) vanishes for some x = 0 and has a negative exponent, resulting in a UV subdiver-
gence.

3. F(~x, sij,m2
j) vanishes on the boundary and has a negative exponent, giving rise to an IR

divergence.

After integrating out the δ distribution and extracting a common factor of (−1)NνΓ(Nν−
LD/2), we are faced with integrals of the form

Ii =
∫ 1

0

N−1∏
j=1

dxjxνj−1
j

Ui(~x)expoU(ε)

Fi(~x, sij,m2
j)expoF(ε) . (6.3)

The sector decomposition algorithms aim to factorise, via integral transforms, the polynomials
Ui and Fi (or, more generally, any product of polynomials P({xj})) as products of a monomial
and a polynomial with non-zero constant term, explicitly

P({xj})→
∏
j

x
αj
j (c+ p({xj})) , (6.4)

where {xj} is the set of Feynman parameters, c is a constant, and the polynomial p has no
constant term. After this procedure, singularities in ε resulting from the region where one or
more xj → 0 can appear only from the monomials xαjj . In this factorised form, the integrand
can now be expanded in ε and the coefficients of the expansion can be numerically integrated;
for an overview, see Ref. [25].

If we consider only integrals for which the Mandelstam variables and masses can be chosen
such that the F polynomial is positive semidefinite (i.e., with a Euclidean region), this procedure
is sufficient to render the integrals numerically integrable.† However, not all integrals of interest
have a Euclidean region in this sense. Consider, for example, the three-point function depicted
in Fig. C.6.1, which appears in the two-loop electroweak corrections to the Zbb̄ vertex [48,49].
The F polynomial is given by

F/m2
Z

†In the physical region, such integrals may still require the integration contour to be deformed into the
complex plane, in accordance with the causal iδ Feynman prescription [45–47].
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0
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s = M2
Z

MZ

0

0

0
0

0

Fig. C.6.1: A Zbb̄ vertex diagram with no Euclidean region, which can give rise to poorly
convergent numerical integrals after sector decomposition. Figure taken from Ref. [49].

= x2
3x5 + x2

3x4 + x2x3x5 + x2x3x4 + x1x3x5 + x1x3x4 + x1x
2
3 + x1x2x3 + x0x3x4 + x0x

2
3 + x0x2x3

− x1x2x4 − x0x1x5 − x0x1x4 − x0x1x2 − x0x1x3 , (6.5)

where mZ is the Z boson mass and xj are the Feynman parameters. Note that the massive
propagator has the same mass as the external Z boson, which gives rise to terms in the F
polynomial of differing sign, regardless of the value chosen for mZ.

After sector decomposition, integrals for which the F polynomial is not positive semidef-
inite can diverge not only as some xj → 0 but also as some xj → 1. One solution for dealing
with such integrals is to split the integration domain in each Feynman parameter and then map
the integration boundaries back to the unit hypercube such that the divergences at xj → 1
are mapped to divergences at xj → 0. Sector decomposition can then resolve the singular-
ities at xj → 0 as usual. Such a splitting procedure was introduced in earlier versions of
SecDec [50, 51], and also in Fiesta [42, 43].

However, prior to pySecDec [44], integrals were always split at xj = 1/2 and, as shown
in Ref. [52], this can again lead to problems if the F polynomial vanishes at this point (which
happens to be the case for the polynomial in Eq. (6.5)). The proposed solution in Ref. [52] was
therefore to split the integrals at a random point, such that, if one run produces a problematic
result, it is always possible to rerun the code and avoid a problematic split.

Alternatively, it is often possible to avoid having to evaluate such problematic integrals, as
well as integrals that have poor numerical convergence properties, through the use of integration
by parts identities (IBPs) [53,54]. In particular, it is usually possible to express Feynman inte-
grals in terms of a sum of (quasi-)finite integrals‡ with rational coefficients [55, 56]. Typically,
choosing a basis of (quasi-)finite integrals leads to significantly improved numerical proper-
ties; see, for example, Ref. [57]. The choice of a quasi-finite basis proved advantageous for the
numerical evaluation of the gg→ HH and gg→ Hg amplitudes [34–36].

6.2 Quasi-Monte Carlo integration
Numerical integration of the sector-decomposed finite integrals can be a computationally in-
tensive process. One of the most widely used tools for numerical integration is the Cuba
package [58, 59], which implements several different numerical integration routines, relying on
pseudo-random sampling, quasi-random sampling, or cubature rules.

‡Here, quasi-finite integrals are integrals for which the overall Γ(Nν − LD/2) can give rise to poles in ε but
for which no poles arise from the integration over the U and F polynomials.
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In the last few years, it was found that a particular type of quasi-Monte Carlo (QMC)
integration based on rank-1 shifted lattice (R1SL) rules has particularly good convergence
properties for the numerical integration of Feynman parametrized integrals [60–62]. An unbiased
R1SL estimate Q̄n,m[f ] of the integral I[f ] can be obtained from the following (QMC) cubature
rule [63]:

I[f ] ≈ Q̄n,m[f ] ≡ 1
m

m−1∑
k=0

Q(k)
n [f ], Q(k)

n [f ] ≡ 1
n

n−1∑
i=0

f
({

iz
n

+ ∆k

})
. (6.6)

Here, the estimate of the integral depends on the number of lattice points n and the number
of random shifts m. The generating vector z ∈ Zd is a fixed d-dimensional vector of integers
coprime to n. The shift vectors ∆k ∈ [0, 1)d are d-dimensional vectors with components consist-
ing of independent, uniformly distributed, random real numbers in the interval [0, 1). Finally,
the curly brackets indicate that the fractional part of each component is taken, such that all
arguments of f remain in the interval [0, 1). An unbiased estimate of the mean-square error
due to the numerical integration can be obtained by computing the variance of the different
random shifts Q(k)

n [f ].
The latest version of pySecDec provides a public implementation of a R1SL (QMC)

integrator. The implementation is also capable of performing numerical integration on a number
of CUDA-compatible graphics processing units (GPUs), which can significantly accelerate the
evaluation of the integrand. The integrator, which is distributed as a header-only C++ library,
can also be used as a stand-alone integration package [26]. The generating vectors distributed
with the package are generated using the component-by-component construction [64].

6.3 Summary and outlook
We have presented new developments for the numerical calculation of multiloop integrals, fo-
cusing on the sector decomposition approach in combination with quasi-Monte Carlo (QMC)
integration. We described a new feature present in pySecDec, which allows integrals with spe-
cial (non-Euclidean) kinematic configurations to be calculated as they occur, e.g., in electroweak
two-loop corrections, which previously had shown poor convergence in SecDec 3. We also de-
scribed a QMC integrator, developed in conjunction with pySecDec as well as for stand-alone
usage, which can lead to considerably more accurate results in a given time compared with
standard Monte Carlo integration. This integrator is also capable of utilising CUDA-compatible
graphics processing units (GPUs).

In view of the need for high-precision calculations with many mass scales at future collid-
ers, as they occur, for example, in electroweak corrections, numerical methods are a promising
approach, and are actively being developed to best utilise recent progress in computing hard-
ware. Several further developments towards the automation of numerical multiloop calculations,
with sector decomposition as an ingredient, could be envisaged. For example, to provide bound-
ary conditions for numerical solutions to differential equations, along the lines of Refs. [29,65],
for automated asymptotic expansions, similar to Refs. [20, 66], or aiming at fully numerical
evaluations of both virtual and real corrections.
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7.1 Introduction
The operation of the Large Hadron Collider (LHC) has been a great success, with Run 1 cul-
minating in the discovery of the Higgs boson by the ATLAS and CMS experiments in 2012.
In Run 2, the LHC experiments have moved towards performing high-precision measurements
with uncertainties reaching below the percentage level for certain observables. Looking forward
to the Future Circular Collider with electron beams (FCC-ee), which will operate in the exper-
imentally much cleaner environment of electron–positron initial states, there will be an even
more dramatic increase in experimental precision. To exploit the precision measurements, the
theory community will need to provide high-precision predictions that match the experimental
uncertainties. This requires the development of efficient ways to compute these corrections,
breaking through the current computational bottlenecks.

In this section, we discuss the calculation of a key component in making such predictions—
the loop amplitude. Specifically, we discuss the computation of an independent set of analytical
two-loop five-gluon helicity amplitudes in the leading-colour approximation. These amplitudes
are an ingredient for the phenomenologically relevant description of three-jet production at next-
to-next-to-leading order (NNLO) for hadron colliders. Nonetheless, the methods we present are
completely general and can also be applied to predictions for electron–positron collisions.

The first two-loop five-gluon amplitude to be computed was the one with all helicities pos-
itive in the leading-colour approximation, initially numerically [1] and subsequently analytic-
ally [2,3]. In the last few years, a flurry of activity in this field led to the numerical calculation
of all five-gluon [4, 5], and then all five-parton [6, 7] amplitudes in the leading-colour approxi-
mation. The combination of numerical frameworks with finite-field techniques, with a view to
the reconstruction of the rational functions appearing in the final results, was first introduced
to our field in Ref. [8], and an algorithm applicable to multiscale calculations was presented in
Ref. [9]. Inspired by these ideas, the four-gluon amplitudes were analytically reconstructed from
floating-point evaluations [10]. The first application involving multiple scales was the single-
minus two-loop five-gluon amplitude [11]. In this section, we describe the calculation of the full
set of independent five-gluon amplitudes in the leading-colour approximation [12]. These re-
sults were obtained using analytical reconstruction techniques, starting from numerical results
obtained in the framework of two-loop numerical unitarity [5,7,10,13]. Recently, the remaining
five-parton amplitudes have also become available [14], and all two-loop amplitudes for three-jet
production at NNLO in QCD are now known analytically in the leading-colour approximation.†

∗This contribution should be cited as:
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page, Analytics from numerics: five-point QCD amplitudes
at two loops, DOI: 10.23731/CYRM-2020-003.193, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S.
Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 193.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

†The approach taken in Ref. [14] is very similar to that described here; we refer the reader to the results
presented in Ref. [14] for a more compact expression for the five-gluon amplitudes and further improvements in
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This section is organised as follows. In Section 7.2, we describe the amplitudes under
consideration and the numerical unitarity framework employed for their evaluation. Section 7.3
describes the objects we will be computing and the simplifications that are made to allow
for an efficient functional reconstruction. The implementation and the results are presented in
Section 7.4 and we conclude in Section 7.5.

7.2 Amplitudes
We discuss the computation of the two-loop five-gluon amplitudes in QCD. The calculation is
performed in the leading-colour approximation where there is a single partial amplitude. The
bare amplitude can be perturbatively expanded as

A({pi, hi}i=1,...,5)
∣∣∣
leading colour

=
∑

σ∈S5/Z5

Tr (T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5)) g3
0

(
A(0) + λA(1) + λ2A(2) +O(λ3)

)
. (7.1)

Here, λ = Ncg
2
0/(4π)2, g0 is the bare QCD coupling and S5/Z5 is the set of all non-cyclic

permutations of five indices. The amplitudesA(k) appearing in the expansion of Eq. (7.1) depend
on the momenta pσ(i) and the helicities hσ(i) and these proceedings focus on the calculation of
A(2) in the ’t Hooft–Veltman scheme of dimensional regularisation, with D = 4− 2ε.

The first step in the analytic reconstruction procedure is the numerical evaluation of
the amplitude. We evaluate the amplitudes in the framework of two-loop numerical unitarity
[5, 7, 10, 13]. The integrands of the amplitudes A(2) are parametrized with a decomposition in
terms of master integrands and surface terms. On integration, the former yield the master
integrals, while the latter vanish. Labelling the loop momenta `l, the parametrization we use is
given by

A(2)(`l) =
∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j∈PΓ ρj

, (7.2)

with ∆ being the set of all propagator structures Γ, PΓ the associated set of propagators, and
MΓ and SΓ denoting the corresponding sets of master integrands and surface terms, respectively.
If the master integrals are known, the evaluation of the amplitude reduces to the determination
of master coefficients cΓ,i with i ∈ MΓ. In numerical unitarity, this is achieved by solving a
linear system, which is generated by sampling on-shell values of the loop momenta `Γ

l belonging
to the algebraic variety of PΓ. In this limit, the leading contribution to Eq. (7.1) factorises into
products of tree amplitudes

∑
states

∏
i∈TΓ

Atree
i (`Γ

l ) =
∑

Γ′≥Γ ,
i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(`Γ
l )∏

j∈(PΓ′\PΓ) ρj(`Γ
l ) . (7.3)

The tree amplitudes associated with vertices in the diagram corresponding to Γ are denoted
TΓ and the sum is over the physical states of each internal line of Γ. On the right-hand side,
the sum is performed over all propagator structures Γ′ , such that PΓ ⊆ PΓ′ . At two loops,
subleading contributions appear, which cannot be described by a factorisation theorem in the
on-shell limit. In practice, this complication is eliminated by constructing a larger system of
equations, as described, for instance, in Ref. [15]. For a given (rational) phase space point, we

the methodology.
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solve the linear system in Eq. (7.3) using finite-field arithmetic. This allows us to obtain exact
results for the master integral coefficients in a very efficient manner.

Once the coefficients cΓ,i are known, the amplitude can be decomposed into a linear
combination of master integrals IΓ,i, according to

A(2) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,iIΓ,i , (7.4)

with

IΓ,i =
∫

dDll
mΓ,i(ll)∏
j∈PΓ ρj

. (7.5)

For planar massless five-point scattering at two loops, the basis of master integrals is known in
analytical form [16,17].

7.3 Simplifications for functional reconstruction
Functional reconstruction techniques allow one to reconstruct rational functions from numerical
data, preferably in a finite field to avoid issues related to loss of precision [8, 9]. By choosing
an appropriate set of variables, such as momentum twistors [18], we can guarantee that the
coefficients cΓ,i in Eq. (7.4) are rational. The specific parametrization we use is [9]

s12 = x4, s23 = x2x4, s34 = x4

(
(1 + x1)x2

x0
+ x1(x3 − 1)

)
,

s45 = x3x4, s51 = x1x4(x0 − x2 + x3) , (7.6)
tr5 = 4 i ε(p1, p2, p3, p4)

= x2
4

(
x2(1 + 2x1) + x0x1(x3 − 1)− x2(1 + x1)(x2 − x3)

x0

)
,

where sij = (pi+pj)2, with the indices defined cyclically. One could, in principle, reconstruct the
rational master integral coefficients. However, the difficulty of the reconstruction is governed by
the complexity of the function under consideration. The amplitude A(2) of Eq. (7.4) contains a
lot of redundant information; to improve the efficiency of the reconstruction, it is thus beneficial
to remove this redundancy. Furthermore, while Eq. (7.4) provides a decomposition in terms of
master integrals in dimensional regularisation, after expanding the master integrals in ε there
can be new linear relations between the different terms in the Laurent expansion in ε. We thus
expect cancellations between the different coefficients cΓ,i. In this section, we discuss how we
address these issues and define the object we reconstruct.

We start by expressing the Laurent expansion of the master integrals in Eq. (7.5) in terms
of a basis B of so-called pentagon functions hi ∈ B [17]. That is, we rewrite the amplitudes as

A(2) =
∑
i∈B

0∑
k=−4

εk c̃k,i(~x)hi(~x) +O(ε), (7.7)

where ~x = {x0, x1, x2, x3, x4} and the c̃k,i(~x) are rational functions of the twistor variables. All
linear relations between master integrals that appear after expansion in ε are resolved in such
a decomposition.
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Next, we recall that the singularity structure of two-loop amplitudes is governed by lower-
loop amplitudes [19–22]. One can thus exploit this knowledge to subtract the pole structure
from the amplitudes in order to obtain a finite remainder that contains the new two-loop
information. There is freedom in how to define the remainders, as they are only constrained by
removing the poles of the amplitudes. For helicity amplitudes that vanish at tree level, A(k)

±++++,
we use

R(2)
±++++ = Ā(2)

±+++++ SεĀ(1)
±++++

5∑
i=1

(−si,i+1)−ε
ε2

+O(ε), (7.8)

where Sε = (4π)εe−εγE . The Ā(k) denote amplitudes normalised to remove any ambiguity related
to overall phases. In the case of amplitudes that vanish at tree level, we normalise to the
leading order in ε of the (finite) one-loop amplitude. For the maximally helicity violating (MHV)
amplitudes, A(k)

−∓±++, which we normalise to the corresponding tree amplitude, we define

R(2)
−∓±++ = Ā(2)

−∓±++ −
(

5 β̃0

2ε + I(1)
)
SεĀ(1)

−∓±++ +
(

15 β̃2
0

8ε2 + 3
2ε
(
β̃0I(1) − β̃1

)
− I(2)

)
S2
ε +O(ε) ,

(7.9)
where β̃i are the coefficients of the QCD β function divided by N i+1

c and I(1) and I(2) are
the standard Catani operators at leading colour. Precise expressions for the operators in our
conventions can be found in Appendix B of Ref. [7]. We note that for both Eq. (7.8) and
Eq. (7.9) we require one-loop amplitudes expanded up to order ε2. By expressing the one-loop
amplitudes and the Catani operators in the basis of pentagon functions, the remainder can be
expressed in the same way,

R(2) =
∑
i∈B

ri(~x)hi(~x) . (7.10)

We observe that the coefficients ri(~x) are rational functions of lower total degree than the c̃k,i(~x)
of Eq. (7.7).

As a further simplification, we investigate the pole structure of the coefficients ri(~x). The
alphabet determines the points in phase space where the pentagon functions have logarithmic
singularities, and as such provides a natural candidate to describe the pole structure of the co-
efficients. We use the alphabet A determined in Ref. [17] to build an ansatz for the denominator
structure of the ri(~x),

ri(~x) = ni(~x)∏
j∈Awj(~x)qij . (7.11)

We then reconstruct the remainder on a slice ~x(t) = ~a · t +~b, where all the twistor variables
depend on a single parameter t and ~a and ~b are random vectors of finite-field values. This
reconstruction in one variable is drastically simpler than the full multivariate reconstruction.
In addition, the maximal degree in t on the slice corresponds to the total degree in ~x. We
determine the exponents qij by matching the ansatz on the univariate slice and check its va-
lidity on a second slice. Having determined the denominators of the rational coefficients ri, the
reconstruction reduces to the much simpler polynomial reconstruction of the numerators ni(~x).

The last simplification we implement is a change of basis in the space of pentagon func-
tions. Amplitudes are expected to simplify in specific kinematic configurations where the pen-
tagon functions degenerate into a smaller basis, which requires relations between the different
coefficients. This motivates the search for (helicity-dependent) bases with coefficients of lower
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Table C.7.1: Each tn/td denotes the total degree of numerator (n) and denominator (d) of the
most complex coefficient for each helicity amplitude in the decomposition of Eq. (7.7) (second
column) or Eq. (7.10) (third column). The fourth column lists the highest polynomial we re-
construct. The final column lists the number of letters wj(~x) that contribute in the denominator
of Eq. (7.11).

Helicity c̃k,i(t) ri(t) n′i(t) wjs in denominator
+ + + + + t34/t28 t10/t4 t10 3
−+ + + + t50/t42 t35/t28 t35 14
−−+ + + t70/t65 t50/t45 t40 17
−+−+ + t84/t82 t68/t66 t53 20

total degree. To find them, we construct linear combinations of coefficients
∑
i∈B

ai,kri(~x) = Nk(~x, ai,k)∏
j∈Awj(~x)q′kj

, (7.12)

and solve for phase space independent ai,k such that the numerators Nk(~x, ai,k) factorise a
subset of the wj ∈ A. This can be performed on univariate slices by only accepting solutions
that are invariant over a number of slices. The matrix ai,k allows us to change to a new basis
B′ in the space of special functions, in which remainders can be decomposed as in Eq. (7.10),
with coefficients r′i(~x) whose numerators n′i(~x) are polynomials of lower total degree than those
of Eq. (7.11).

7.4 Implementation and results
The master integral coefficients of the one- and two-loop amplitudes are computed using nu-
merical unitarity in a finite field. They are combined with the corresponding master integrals,
expressed in terms of pentagon functions, and the known pole structure is subtracted to obtain
the finite remainders as a linear combination of pentagon functions. After a rotation in the
space of pentagon functions and multiplication by the predetermined denominator factors, we
obtain numerical samples for the numerators n′i(~x) in a finite field. These samples are used to
analytically reconstruct the n′i(~x) with the algorithm of Ref. [9], which we slightly modified to
allow a more efficient parallelization. These steps were implemented in a flexible C++ frame-
work, which was used to reconstruct the analytical form of the two-loop remainders of a basis
of five-gluon helicity amplitudes (the other helicities can be obtained by parity and charge con-
jugation). Two finite fields of cardinality O(231) were necessary for the rational reconstruction
by means of the Chinese remainder theorem.

Table C.7.1 shows the impact of the simplifications discussed in the previous section
for each helicity. In the most complicated case, the g−g+g−g+g+ helicity amplitude, we must
reconstruct a polynomial of degree 53. This required 250 000 numerical evaluations, with 4.5
min per evaluation.

The results that we provide contain the one-loop amplitudes in terms of master integrals
and the two-loop remainders in terms of pentagon functions. The one-loop master integrals
are provided in terms of pentagon functions up to order ε2. The combined size of the expres-
sions amounts to 45MB without attempting any simplification (we refer the reader to Ref. [14]
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for more compact expressions). These expressions can be combined to construct the full ana-
lytical expression for the two-loop five-gluon leading-colour amplitudes in the Euclidean region.
We validated our expressions by reproducing all the target benchmark values available in the
literature [1–5,7, 11].

7.5 Conclusion
In this section, we have presented the recent computation of the analytical form of the leading-
colour contributions to the two-loop five-gluon scattering amplitudes in pure Yang–Mills theory.
This computation was undertaken in a novel way, made possible by a collection of mature tools.
The amplitude is first numerically reduced to a basis of master integrals with the two-loop nu-
merical unitarity approach, where the coefficients take finite-field values [5,7,10,13]. This allows
us to numerically calculate a finite remainder, expressed in terms of pentagon functions [17].
The generation of these numerical samples is driven by a functional reconstruction algorithm [9],
which determines the analytical form of the pentagon-function coefficients from a series of eval-
uations. A key step in efficiently implementing this strategy was to utilise physical information
to simplify the analytical form of the objects we reconstruct, and hence reduce the required
number of evaluations. First, we reconstruct the finite remainder, which removes redundant
information related to lower-loop contributions. Second, we decompose the remainder in terms
of pentagon functions to account for relations between different master integrals after expan-
sion in the dimensional regulator. Next, we exploit the knowledge of the singularity structure
of the pentagon functions to efficiently establish the denominators of the coefficient functions.
Finally, we find a basis of pentagon functions with coefficients of lower degree by exploiting
their reconstruction on a univariate slice.

These techniques show a great deal of potential for future calculations. Indeed, they have
very recently been used to obtain the full set of leading-colour contributions to the five-parton
scattering amplitudes [14]. We foresee further applications to processes with a higher number
of scales and loops, such as those required for a future lepton collider in the near future.
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In this section, we report on the recent progress made in the development of the Feynman
integral reduction program Kira. The development is focused on algorithmic improvements
that are essential to extend the range of feasible high-precision calculations for present and
future colliders like the FCC-ee.

8.1 Introduction
Kira [1] implements Laporta’s algorithm [2] to reduce Feynman integrals to a basis of master
integrals. In this approach, large systems of integration by parts [3] and Lorentz invariance [4]
identities, as well as symmetry relations, are generated and solved by a variant of Gaussian
elimination, systematically expressing complicated integrals in terms of simpler integrals with
respect to a given complexity criterion. Though alternative reduction techniques have been
proposed and applied to specific problems, see, e.g., Refs. [5–8], to date programs based on La-
porta’s algorithm [9–11] pose the only general-purpose tools suited for large-scale applications.
Since these reduction programs constitute one of the bottlenecks of high-precision predictions,
their continuous improvement is crucial to meet the increasing demand for such calculations.

A key element of Kira is its equation selector to extract a linearly independent system
of equations, discarding equations that are not required to fully reduce all integrals requested
by the user. The selector is based on Gaussian elimination using modular arithmetic on the
coefficients.

8.2 Improved symmetrization
The detection of symmetry relations between sectors within and across topologies received a
performance boost as a result of the implementation of the algorithm described in Ref. [12]. In
this approach, a canonical form of the integrand of each sector is constructed, so that a one-to-
one comparison of the representations can be made. Additionally, the combinatorial complexity
of the loop momentum shift finder to determine the mapping prescriptions of equivalent sectors
has been reduced. Furthermore, the detection of trivial sectors received a significant speed-up
by employing Kira’s IBP solver instead of the less optimised previous linear solver.

As an example, the ‘cube topology’ shown in Fig. C.8.1, i.e., the five-loop vacuum bubble
with 12 propagators of equal mass and the symmetry of a cube, can now be analysed in less
than 10min on a state-of-the-art desktop computer.

8.3 Parallel simplification algorithms for coefficients
8.3.1 Algebraic simplifications with Fermat
To simplify multivariate rational functions in masses and kinematic quantities, which appear
as coefficients in the Gaussian elimination steps, Kira relies on the program Fermat [13]. In
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Fig. C.8.1: The cube topology is the five-loop vacuum bubble with 12 propagators of equal
mass and octahedral symmetry. The high symmetry of 48 equivalent propagator permutations
in the top-level sector makes this topology an ideal candidate for symmetrization benchmarks.

almost all cases, the run time for the reduction is dominated by those algebraic simplifications.
It turns out that, when a new coefficient is constructed from several (often thousands of) known
coefficients, combining them naïvely and simplifying them in one step results in an avoidable
performance penalty. Instead, Kira recursively combines coefficients pairwise, choosing the
pairs based on the size of their string representations. Besides the improved performance, this
strategy also offers new possibilities for the parallelization, since the pairwise combinations can
be evaluated by different Fermat instances.

In the Gaussian back substitution, one can restrict a solver to calculate only the coefficients
of a specific master integral. This allows the user to parallelize the reduction across several
machines and merge the results in a final step.

8.3.2 Algebraic reconstruction over integers
An alternative algorithm to simplify the coefficients is given by algebraic reconstruction over
integers, introduced in Refs. [7,14,15]. This strategy is based on sampling the rational functions
by setting kinematic invariants and masses to integer values repeatedly. Each sample can be
evaluated rather quickly, but the number of samples required to reconstruct the simplified
result increases with the degree of the numerator and denominator of the rational function,
the number of invariants involved, and the number of invariants over which it is sampled. Of
course, the sample can again be evaluated in parallel, leading to the potential for massive
parallelization on dozens of CPU cores. An implementation of this algorithm is available in
Kira 1.2 and is continuously being improved and extended. Furthermore, Kira automatically
decides which simplification strategy, i.e., algebraic reconstruction or Fermat, is expected to be
more efficient in each case. The criteria for these decisions are subject to investigation and offer
room for future improvements.

8.3.3 Algebraic reconstruction over finite integer fields
Instead of sampling rational functions over integers, it is also possible to reconstruct them
from samples over finite integer fields. Mapping coefficients to a finite field limits the size of
each coefficient and, with that, the complexity of each operation. Choosing the module as
a word-size prime, numerical operations on coefficients correspond to the native arithmetic
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capabilities of the employed CPU, allowing for high performance sampling of the coefficients.
A reconstruction algorithm for multivariate rational functions was first presented in Ref. [16].
Recently, the library FireFly [17] became available, implementing a similar algorithm. FireFly
has been combined with Kira to use it for Feynman integral reduction, calculating the samples
with Kira’s finite integer Gaussian elimination. An independent implementation is available in
FIRE 6 [11].

In the sampling over (arbitrary-size) integers described here, whenever a coefficient is
required to proceed with the reduction, the solver needs to wait until that coefficient has been
reconstructed. Using finite integers, the entire solver can be parallelized, opening the possibility
of distributing solvers over different machines. The reconstructor can then collect the samples
from the solvers and finish the calculation when a sufficient number of samples is available. The
finite integer reconstruction is expected to become publicly available in a future Kira release
in combination with FireFly.

8.4 Basis choice
It is well-known that the reduction time strongly depends on the choice of the master integrals.
In a convenient basis, the reduction coefficients tend to become much simpler than, e.g., in the
basis that follows directly from the integral ordering. In this respect, uniformly transcendental
bases [18], finite bases [19], or finite uniformly transcendental bases [20] present interesting
candidates to study the impact of the basis choice on the reduction performance. These special
choices involve linear combinations of integrals as basis elements that we call ‘master equations’.

In Kira, integrals are represented by integer ‘weights’ in such a way that they obey the
imposed integral ordering. Choosing a specific basis of master integrals is already possible. To
this end, the weights are modified so that the preferred basis integrals are regarded as simpler
than all other integrals. In the presence of master equations, a new kind of object must be
introduced, representing the master equation instead of a particular integral. With appropriate
bookkeeping, the implementation becomes straightforward and will soon be available in a Kira
release.

8.5 Conclusions
The complexity of precision calculations needed to match the accuracy of the FCC-ee experi-
ment demands for integral reduction tools beyond the state-of-the-art capabilities. For example,
the computation of pseudo-observables at the Z boson resonance, involving reductions of three-
loop Feynman diagrams with up to five scales, will be necessary to reach the accuracy that may
be achieved with the FCC-ee [21]. We expect that Feynman integral reduction programs based
on Laporta’s algorithm will continue to play a key role in such calculations; e.g., by harnessing
the potential of rational reconstruction, basis choices, and large-scale parallelization, we are
convinced that Kira will keep up with the arising technical challenges.
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The precision physics programmes of the FCC-ee demand for a precise simulation of all Stand-
ard Model (SM) processes and possible beyond-the-SM (BSM) signals in a state-of-the-art way
by means of Monte Carlo (MC) techniques. As a standard tool for e+e− simulations, the multi-
purpose event generator WHIZARD [1,2] has been used: this generator was originally developed
for the TESLA project, and was later used, e.g., for the ILC Technical Design Report [3,4]. The
WHIZARD package has a modular structure, which serves a modern unit-test driven software
development and guarantees a high level of maintainability and extendability. WHIZARD comes
with its own fully general tree-level matrix element generator for the hard process, O’Mega [5].
It generates amplitudes in a recursive way, based on the graph-theoretical concepts of directed
acyclical graphs, thereby avoiding all redundancies. The matrix elements are generated either
as compilable modern Fortran code or as byte-code instructions interpreted by a virtual ma-
chine [6]. For QCD, WHIZARD uses the colour flow formalism [7]. Matrix elements support
all kinds of particles and interactions up to spin-2. A large number of BSM models are hard-
coded, particularly the minimal supersymmetric Standard Model (MSSM) and next-to-MSSM
(NMSSM) [8, 9]. General BSM models can be loaded from a Lagrangian level tool, using the
interface to FeynRules [10]; from version 2.8.0 of WHIZARD on (early summer 2019) a fully
fledged interface to the general UFO format is available. One of the biggest assets of WHIZARD
is its general phase space parametrization, which uses a heuristic based on the dominating sub-
processes, which allows integration and simulation of processes with up to ten fermions in the
final state. The integration is based on an adaptive multichannel algorithm, called VAMP [11].
Recently, this multichannel adaptive integration has been enhanced to a parallelized version
using the MPI3 protocol, showing speed-ups of up to 100 [12], while a first physics study using
this MPI parallelized integration and event generation has been published [13].

WHIZARD allows all the necessary ingredients for a high-precision e+e− event simulation
to be described: the CIRCE1/CIRCE2 modules [14] simulate the spectrum of beamstrahlung
(including beam energy spectra) that comes from classical electromagnetic radiation, owing
to extreme space charge densities of highly collimated bunches for high-luminosity running.
This takes care of a precise description of the peaks of the luminosity spectra and a smooth
mapping of the tail that does not lead to artificial spikes and kinks in differential distributions.
For the beam set-up, WHIZARD furthermore allows polarised beams to be correctly described,
with arbitrary polarisation settings and fractions, asymmetric beams, and crossing angles. QED
initial-state radiation (ISR) is convoluted in a collinear approximation according to a resum-
mation of soft photons to all orders and hard-collinear photons up to third order [15]. While
this will give a correct normalization of the cross-section to the given QED order, one ex-
plicit ISR photon per beam will be inserted into the event record. A special handler generates
transverse momentum according to a physical pT distribution and boosts the complete events
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accordingly. This treatment is also available for the photon beam components, according to the
Weizsäcker–Williams spectrum (equivalent photon approximation, EPA).

The MC generator WHIZARD offers a vast functionality, which cannot be given full justice
here, e.g., automatic generation of decays, factorised processes, including full spin correlations
(which can also be switched off for case studies), specification of the helicity of decaying reson-
ances, preset branching ratios, etc. WHIZARD supports all used HEP event formats, such as
StdHEP, LHE, HepMC, LCIO, and various ASCII formats. It allows easy reweighting of event
samples. WHIZARD has its own two QCD parton shower algorithms, a kT-ordered shower and
an analytic parton shower [16], and ships with the final version of PYTHIA6 [17] for showering
and hadronization. The event records are directly interfaced and exchanged, and the frame-
work has been validated with the full LEP dataset by the Linear Collider Generator Group in
a set-up similar to the FCC-ee. Recently, we added a corresponding interface for an externally
linked PYTHIA8 [18], which, again, allows direct communication between the event records of
WHIZARD and PYTHIA. This offers the ability to use all the machinery for QCD jet matching
and merging from PYTHIA inside WHIZARD. WHIZARD also directly interfaces Fastjet [19]
for jet clustering. One important feature of WHIZARD is the proper resonance matching of
hadronically decaying resonances, e.g., in the process e+e− → jjjj. This is predominantly WW
production (∼80%), followed by ZZ production (.20%) and the QCD four-jet continuum. When
simulating full quantum theoretical amplitudes for four-jet production, the parton shower does
not know intermediate resonances because of the full coherence of the process, and hence does
not preserve the resonance mass of the hadronic Ws. WHIZARD allows one to automatically
determine underlying resonance histories, evaluates their approximate rates, and inserts reso-
nance histories for final-state jets according to these rates. Figure C.9.1 shows, for the process
e + e− → jjjj, the photon energy distribution after hadronization and hadronic decays. The
central line in the inset (red) shows the full process, which disagrees with LEP data, while the
blue line shows the factorised process e+e− → W+W− → (jj)(jj) (where the shower program
knows the resonance history) and the resonance-matched processes (green and orange). These
correctly reproduce the data using full matrix elements, thereby allowing different handles on
how far to take Breit–Wigner tails of resonances into account. This type of matching has now
been validated for six-jet processes, including H→ bb̄.

Finally, we comment on the NLO QCD capabilities of WHIZARD: WHIZARD has com-
pleted its final validation phase for lepton collider QCD NLO corrections, and version 3.0.0 will
be released (approximately at the end of 2019) when proton collider processes are also com-
pletely validated. For NLO QCD corrections, WHIZARD uses the Frixione–Kunszt–Signer sub-
traction (FKS) formalism [20], where real and integrated subtraction terms are automatically
generated for all processes. WHIZARD also implements the resonance-aware variant [21]. Vir-
tual multileg one-loop matrix elements are included from one-loop providers, such as GoSam [22],
OpenLoops [23,24], and RECOLA [25,26]. First proof-of-principle NLO calculations have been
made for electroweak corrections [27,28] in lepton collisions, while NLO QCD has been imple-
mented for LHC processes first [29, 30]. The automated FKS subtraction has been tested and
reported in a study of off-shell tt̄ and tt̄H processes in lepton collisions [31]. The complete
validation of the automated NLO QCD set-up will be available after the version 3.0.0 release
of WHIZARD (S. Braß et al., in preparation). WHIZARD allows fixed-order NLO events for
differential distributions to be generated at NLO QCD using weighted events, as well as auto-
matically POWHEG-matched and damped events [32,33]. Decays at NLO QCD are treated in
the same set-up as scattering processes.
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Fig. C.9.1: Energy distribution of photons in e+e− → jjjj after parton shower and hadronization.
Full amplitudes without resonance histories (red), factorised process e+e− →W+W− → (jj)(jj)
(blue), and full process with resonance histories and different Breit–Wigner settings (green and
orange, respectively).

The scan of the top threshold is a crucial component of the FCC-ee physics programme.
To determine systematic uncertainties from, e.g., event selection, WHIZARD allows simulation
at the completely exclusive final-state e+e− →W+bW−b̄, matching the continuum NLO QCD
calculation to the NRQCD threshold NLL resummation [34]. This simulation is available via a
specific top threshold model inside WHIZARD.

References
[1] W. Kilian et al., Eur. Phys. J. C71 (2011) 1742. arXiv:0708.4233,

doi:10.1140/epjc/s10052-011-1742-y
[2] http://whizard.hepforge.org, last accessed 24 January 2020.
[3] H. Baer et al., The international linear collider technical design report, vol. 2: physics

(2013), arXiv:1306.6352

[4] H. Abramowicz et al., The international linear collider technical design report, vol. 4:
detectors, arXiv:1306.6329

[5] M. Moretti et al., O’Mega: an optimising matrix element generator, 2001,
arXiv:hep-ph/0102195

[6] B. Chokoufe Nejad et al., Comput. Phys. Commun. 196 (2015) 58. arXiv:1411.3834,
doi:10.1016/j.cpc.2015.05.015

[7] W. Kilian et al., JHEP 10 (2012) 022. arXiv:1206.3700, doi:10.1007/JHEP10(2012)022

[8] T. Ohl and J. Reuter, Eur. Phys. J. C30 (2003) 525. arXiv:hep-th/0212224,
doi:10.1140/epjc/s2003-01301-7

- 207 -

http://arxiv.org/abs/0708.4233
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://whizard.hepforge.org
http://arxiv.org/abs/1306.6352
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/hep-ph/0102195
http://arxiv.org/abs/1411.3834
http://dx.doi.org/10.1016/j.cpc.2015.05.015
http://arxiv.org/abs/1206.3700
http://dx.doi.org/10.1007/JHEP10(2012)022
http://arxiv.org/abs/hep-th/0212224
http://dx.doi.org/10.1140/epjc/s2003-01301-7


S. Braß, W. Kilian, T. Ohl, J. Reuter, V. Rothe, P. Stienemeier

[9] K. Hagiwara et al., Phys. Rev. D73 (2006) 055005. arXiv:hep-ph/0512260,
doi:10.1103/PhysRevD.73.055005

[10] N.D. Christensen et al., Eur. Phys. J. C72 (2012) 1990. arXiv:1010.3251,
doi:10.1140/epjc/s10052-012-1990-5

[11] T. Ohl, Comput. Phys. Commun. 120 (1999) 13. arXiv:hep-ph/9806432,
doi:10.1016/S0010-4655(99)00209-X

[12] S. Brass et al., Eur. Phys. J. C79 (2019) 344. arXiv:1811.09711,
doi:10.1140/epjc/s10052-019-6840-2

[13] A. Ballestrero et al., Eur. Phys. J. C78 (2018) 671. arXiv:1803.07943,
doi:10.1140/epjc/s10052-018-6136-y

[14] T. Ohl, Comput. Phys. Commun. 101 (1997) 269. arXiv:hep-ph/9607454,
doi:10.1016/S0010-4655(96)00167-1

[15] M. Skrzypek and S. Jadach, Z. Phys. C49 (1991) 577. doi:10.1007/BF01483573

[16] W. Kilian et al., JHEP 04 (2012) 013. arXiv:1112.1039, doi:10.1007/JHEP04(2012)013

[17] T. Sjöstrand et al., JHEP 05 (2006) 026. arXiv:hep-ph/0603175,
doi:10.1088/1126-6708/2006/05/026

[18] T. Sjöstrand et al., Comput. Phys. Commun. 178 (2008) 852. arXiv:0710.3820,
doi:10.1016/j.cpc.2008.01.036

[19] M. Cacciari et al., Eur. Phys. J. C72 (2012) 1896. arXiv:1111.6097,
doi:10.1140/epjc/s10052-012-1896-2

[20] S. Frixione et al., Nucl. Phys. B467 (1996) 399. arXiv:hep-ph/9512328,
doi:10.1016/0550-3213(96)00110-1

[21] T. Jezo and P. Nason, JHEP 12 (2015) 065. arXiv:1509.09071,
doi:10.1007/JHEP12(2015)065

[22] G. Cullen et al., Eur. Phys. J. C74 (2014) 3001. arXiv:1404.7096,
doi:10.1140/epjc/s10052-014-3001-5

[23] F. Cascioli et al., Phys. Rev. Lett. 108 (2012) 111601. arXiv:1111.5206,
doi:10.1103/PhysRevLett.108.111601

[24] F. Buccioni et al., Eur. Phys. J. C78 (2018) 70. arXiv:1710.11452,
doi:10.1140/epjc/s10052-018-5562-1

[25] S. Actis et al., Comput. Phys. Commun. 214 (2017) 140. arXiv:1605.01090,
doi:10.1016/j.cpc.2017.01.004

[26] A. Denner et al., Comput. Phys. Commun. 224 (2018) 346. arXiv:1711.07388,
doi:10.1016/j.cpc.2017.11.013

[27] W. Kilian et al., Eur. Phys. J. C48 (2006) 389. arXiv:hep-ph/0607127,
doi:10.1140/epjc/s10052-006-0048-y

[28] T. Robens et al., Acta Phys. Pol. B39 (2008) 1705. arXiv:0803.4161

[29] T. Binoth et al., Phys. Lett. B685 (2010) 293. arXiv:0910.4379,
doi:10.1016/j.physletb.2010.02.010

[30] N. Greiner et al., Phys. Rev. Lett. 107 (2011) 102002. arXiv:1105.3624,
doi:10.1103/PhysRevLett.107.102002

- 208 -

http://arxiv.org/abs/hep-ph/0512260
http://dx.doi.org/10.1103/PhysRevD.73.055005
http://arxiv.org/abs/1010.3251
http://dx.doi.org/10.1140/epjc/s10052-012-1990-5
http://arxiv.org/abs/hep-ph/9806432
http://dx.doi.org/10.1016/S0010-4655(99)00209-X
http://arxiv.org/abs/1811.09711
http://dx.doi.org/10.1140/epjc/s10052-019-6840-2
http://arxiv.org/abs/1803.07943
http://dx.doi.org/10.1140/epjc/s10052-018-6136-y
http://arxiv.org/abs/hep-ph/9607454
http://dx.doi.org/10.1016/S0010-4655(96)00167-1
http://dx.doi.org/10.1007/BF01483573
http://arxiv.org/abs/1112.1039
http://dx.doi.org/10.1007/JHEP04(2012)013
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/hep-ph/9512328
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/1509.09071
http://dx.doi.org/10.1007/JHEP12(2015)065
http://arxiv.org/abs/1404.7096
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/1111.5206
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://arxiv.org/abs/1710.11452
http://dx.doi.org/10.1140/epjc/s10052-018-5562-1
http://arxiv.org/abs/1605.01090
http://dx.doi.org/10.1016/j.cpc.2017.01.004
http://arxiv.org/abs/1711.07388
http://dx.doi.org/10.1016/j.cpc.2017.11.013
http://arxiv.org/abs/hep-ph/0607127
http://dx.doi.org/10.1140/epjc/s10052-006-0048-y
http://arxiv.org/abs/0803.4161
http://arxiv.org/abs/0910.4379
http://dx.doi.org/10.1016/j.physletb.2010.02.010
http://arxiv.org/abs/1105.3624
http://dx.doi.org/10.1103/PhysRevLett.107.102002


C.9 Precision Monte Carlo simulations with WHIZARD

[31] B. Chokoufe Nejad et al., JHEP 12 (2016) 075. arXiv:1609.03390,
doi:10.1007/JHEP12(2016)075

[32] B. Chokoufe Nejad et al., PoS EPS-HEP2015 (2015) 317. arXiv:1510.02739, doi:
10.22323/1.234.0317

[33] J. Reuter et al., J. Phys. Conf. Ser. 762 (2016) 012059. arXiv:1602.06270,
doi:10.1088/1742-6596/762/1/012059

[34] F. Bach et al., JHEP 03 (2018) 184. arXiv:1712.02220, doi:10.1007/JHEP03(2018)184

- 209 -

http://arxiv.org/abs/1609.03390
http://dx.doi.org/10.1007/JHEP12(2016)075
http://arxiv.org/abs/1510.02739
http://dx.doi.org/10.22323/1.234.0317
http://dx.doi.org/10.22323/1.234.0317
http://arxiv.org/abs/1602.06270
http://dx.doi.org/10.1088/1742-6596/762/1/012059
http://arxiv.org/abs/1712.02220
http://dx.doi.org/10.1007/JHEP03(2018)184




C.10 FCC tau polarisation

10 FCC tau polarisation
Contribution∗ by: S. Banerjee, Z. Was
Corresponding author: Z. Was [z.was@cern.ch]

SM parameters, such as the τ polarisation can be measured very precisely in τ decays. The
phenomenology is quite similar to that of measurement of the AFB parameter of the SM [1].
Details of the τ decay spectrum, as well as a good understanding of associated uncertainty, play
an important role in this measurement of polarisation, because the spin of the τ lepton is not
measured directly.

The distribution of hadronic final-state products in decays of a τ lepton needs to be
evaluated to understand the substructure of the vertex. An important effect is related to
bremsstrahlung, because the signature of every decay mode needs to take into account the
final-state configurations with accompanying photons. Corresponding virtual corrections can-
cel the bulk of these effects and specialised programs, such as PHOTOS [2,3], are useful.

Corresponding effects can be sizeable; even during the early stages of LEP preparations, it
was found [4] that the corresponding corrections affect the slope of the π spectrum in τ

− → π
−

ν,
for example. This translates to a 0.013 effect on τ idealised observable Apol. For more discussion
and essential experimental context, see Ref. [5].

However, not all of the final-state photons can be associated with bremsstrahlung. For
example, in the cascade decay τ

− → π
−

ων, a subsequent decay of ω → π
0
γ contributes to

the final state τ
− → π

−
π

0
γν, coinciding with the radiative corrections to the final state of the

τ
− → ρ

−
ν decay channel. In this case, the photon originates from the ω→ π

0
γ decay and is of

non-QED bremsstrahlung origin.
The branching fractions for the τ

− → π
−

ων decay and for the ω→ π
0
γ decay are 0.02 and

0.08, respectively [6]. Thus, the resulting decay channel τ
− → π

−
π

0
γν contributes 0.0015 of all

τ decays.
Such contributions and subsequent changes of the hadronic decay energy spectrum in τ

decays need to be understood for each spin-sensitive channel. Resulting deformation of τ
− →

ρ
−

ν decay spectra may mimic the contribution of the τ polarisation that can be obtained from
future high-precision data analysis at the Belle II experiment.

This is the case when one of the τ decay channels mimics bremsstrahlung correction for
the other one. The dynamics of the low-energy strong interactions are difficult to obtain from
a perturbative calculation.

Another hint of the non-point-like nature of the τ vertex was explained in the corrections
to the π energy spectra in the τ

− → π
−

ν decay channel [7,8]. Although at the lowest order, the
spectrum is fully determined by the Lorentz structure of the vertex, and the real and virtual
photonic corrections play an important role in the level of precision under discussion. The
dominant part of the effects of the QED bremsstrahlung from point-like sources can be seen in
Fig. 3 of Ref. [8], where the effects induced by hadronic resonances also play an important role.

The Belle II experiment is expected to collect 1011
τ lepton decays with 50 ab−1 of data,
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and the detector is extremely well-suited to study τ lepton physics. The backgrounds can be
well-controlled in an electron–positron collider environment. We can expect that the τ decay
spectra can be measured without large degradation, owing to a highly granular electromagnetic
calorimeter with large fiducial coverage, as explained in the Belle II technical design report [9].
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The Monte Carlo event generator MCSANCee is used to estimate the significance of polarisa-
tion effects in one-loop electroweak radiative corrections. The electron–positron annihilation
processes e+e− → µ

−
µ

+ (τ
−

τ
+, ZH) are considered, taking into account conditions of future

colliders.

11.1 Introduction
Radiative corrections with effects due to polarisation of the initial particles will play an import-
ant role in the high-precision programme at the FCC-ee. MCSANCee is a Monte Carlo generator
of unweighted events for polarised e+e− scattering and annihilation processes with complete
one-loop electroweak (EW) corrections. The generator uses the adaptive Monte Carlo algorithm
mFOAM [1], which is a part of the ROOT [2] framework.

The SANC computer system is capable of calculating cross-sections of general Standard
Model (SM) processes with up to three final-state particles [3, 4]. Using the SANC system,
we calculated electroweak radiative corrections at the one-loop level to the polarised Bhabha
scattering [5, 6], which is the basic normalization process at e+e− colliders. For processes

e+e− → µ
−

µ
+ (τ

−
τ

+, ZH) , (11.1)

we made a few upgrades of the standard procedures in the SANC system. We investigated
the effect of the polarisation degrees of initial particles on the differential cross-sections. We
found that the EW corrections to the total cross-section range from −18% to +69%, when the
centre-of-mass energy

√
s varies in the set 250GeV, 500GeV, and 1TeV.

11.2 Cross-section structure
The cross-section of a generic 2 → 2(γ) process e+e− → X3X4(γ) (X3X4 = µ

−
µ

+, τ−τ
+,ZH)

reads
σPe−Pe+ = 1

4
∑

χ1,χ2

(1 + χ1Pe−)(1 + χ2Pe+)σχ1χ2 ,

where χi = −1(+1) corresponds to a lepton with left (right) helicity state.
The cross-section at the one-loop level can be divided into four parts:

σ1−loop = σBorn + σvirt(λ) + σsoft(λ, ω) + σhard(ω),

where σBorn is the Born level cross-section, σvirt is the virtual (loop) contribution, σsoft is the
contribution due to soft-photon emission, and σhard is the contribution due to hard photon

∗This contribution should be cited as:
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CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 213.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

- 213 -

http://dx.doi.org/10.23731/CYRM-2020-003.213
http://dx.doi.org/10.23731/CYRM-2020-003
http://creativecommons.org/licenses/by/4.0/


A. Arbuzov, S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov,
V. Yermolchyk

emission (with energy Eγ > ω). Auxiliary parameters λ (‘photon mass’) and ω cancel out after
summation.

We treat all contributions using the helicity amplitudes approach:

σPart
χ1χ2 = 1

2s
∑

χi,i≥3

∣∣∣∣HPart
χ1χ2χ3,...|

2dLIPS, (11.2)

where Part ∈ {Born, virt, hard}, and dLIPS is a volume element of the Lorentz-invariant phase
space.

The soft-photon contribution is factorised in front of the Born level cross-section:

dσsoft
χ1χ2 = dσBorn

χ1χ2 ·
α

2π
Ksoft(ω, λ).

11.3 Numerical results and comparison
The following input parameters are used for numerical estimates and comparisons:

α−1(0) = 137.035 999 76,
MW = 80.451 495 8 GeV, MZ = 91.1876 GeV, ΓZ = 2.499 77 GeV,
me = 0.510 999 07 MeV, mµ = 0.105 658 389 GeV, mτ = 1.777 05 GeV,
md = 0.083 GeV, ms = 0.215 GeV, mb = 4.7 GeV,
mu = 0.062 GeV, mc = 1.5 GeV, mt = 173.8 GeV.

The following simple cuts are imposed:

| cos θ| < 0.9,
Eγ > 1 GeV (for comparison of hard bremsstrahlung).

Tuned comparison of our results for polarised Born and hard bremsstrahlung with the
results of the WHIZARD [7] and CalcHEP [8] programs shows an agreement within statistical
errors. The unpolarised soft + virtual contribution agrees with the results of Ref. [9] for e+e− →
µ

+
µ
−(τ

+
τ
−) and with the ones of the GRACE system [10]. For e+e− → ZH, we found an agreement

with the results of the GRACE system [10] and with those given in Ref. [11].
The integrated cross-sections of Eq. (11.1) and the relative corrections δ are given in

Tables C.11.1 [12] and C.11.2 [13] for various energies and beam polarisation degrees.
In these tables, we summarise the estimates of the Born and one-loop cross-sections and

the relative corrections δ of the processes e+e− → µ
+

µ
−, (τ

+
τ
−,ZH) for the set (0, 0; −0.8, 0;

−0.8, −0.6; −0.8, +0.6) of longitudinal polarisations Pe+ and Pe− of the positron and electron
beams, respectively. Values of energy 250, 500, and 1000GeV were taken. The relative correction
δ is defined as

δ = σ1-loop − σBorn

σBorn
· 100%. (11.3)

11.4 Conclusion
As can be seen from Tables C.11.1 and C.11.2, the difference between values of δ for polarisation
degrees of initial particles (0, 0) and (−0.8, 0; −0.8, −0.6; −0.8, +0.6) amounts to a significant
value: 6–20%.

- 214 -



C.11 Electron–positron annihilation processes in MCSANCee

Table C.11.1: Processes e+e− → µ
+

µ
− and e+e− → τ

+
τ
−: Born vs one loop

Pe− , Pe+ σBorn
µ+µ− σ1−loop

µ+µ− δ σBorn
τ+τ− σ1−loop

τ+τ− δ

(pb) (pb) (%) (pb) (pb ) (%)√
s = 250GeV

0, 0 1.417(1) 2.397(1) 69.1(1) 1.417(1) 2.360(1) 66.5(1)
−0.8, 0 1.546(1) 2.614(1) 69.1(1) 1.546(1) 2.575(1) 66.5(1)
−0.8, −0.6 0.7690(2) 1.301(1) 69.2(1) 0.7692(1) 1.298(1) 68.8(1)
−0.8, +0.6 2.323(1) 3.927(1) 69.1(1) 2.324(1) 3.850(1) 65.7(1)√
s = 500GeV

0, 0 0.3436(1) 0.4696(1) 36.7(1) 0.3436(1) 0.4606(1) 34.0(3)
−0.8, 0 0.3716(1) 0.4953(1) 33.3(1) 0.3715(1) 0.4861(1) 30.8(1)
−0.8, −0.6 0.1857(1) 0.2506(1) 35.0(1) 0.1857(1) 0.2466(1) 32.8(1)
−0.8, +0.6 0.5575(1) 0.7399(1) 32.7(1) 0.5575(1) 0.7257(1) 30.1(1)√
s = 1000GeV

0, 0 0.085 35(1) 0.116 3(1) 36.2(1) 0.085 34(2) 0.113 4(1) 33.6(1)
−0.8, 0 0.092 13(1) 0.121 2(1) 31.6(1) 0.092 13(1) 0.118 85(2) 29.0(1)
−0.8, −0.6 0.046 08(1) 0.061 69(1) 33.9(1) 0.046 08(1) 0.060 67(1) 31.7(1)
−0.8, +0.6 0.138 2(1) 0.180 7(1) 30.8(1) 0.138 2(1) 0.177 0(1) 28.1(1)

Table C.11.2: Process e+e− → ZH: Born vs one loop

Pe− , Pe+ σBorn
ZH σ1−loop

ZH δ

(pb) (pb) (%)√
s = 250GeV

0, 0 205.64(1) 186.6(1) −9.24(1)
−0.8, 0 242.55(1) 201.5(1) −16.94(1)
−0.8, −0.6 116.16(1) 100.8(1) −13.25(1)
−0.8, +0.6 368.93(1) 302.2(1) −18.10(1)√
s = 500GeV

0, 0 51.447(1) 57.44(1) 11.65(1)
−0.8, 0 60.680(1) 62.71(1) 3.35(2)
−0.8, −0.6 29.061(1) 31.25(1) 7.54(1)
−0.8, +0.6 92.299(1) 94.17(2) 2.03(2)√
s = 1000GeV

0, 0 11.783(1) 12.92(1) 9.68(1)
−0.8, 0 13.898(1) 13.91(1) 0.10(2)
−0.8, −0.6 6.6559(1) 6.995(1) 5.09(2)
−0.8, +0.6 21.140(1) 20.83(1) −1.47(2)
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In assessing theoretical uncertainties for future e+e− colliders, it is necessary to achieve
an accuracy of approximately 10−4 for many observables. Estimating the value of δ at different
degrees of polarisation of the initial states, we see that taking beam polarisation into account
is crucial.

Further development of the process library of the Monte Carlo generator MCSANCee in-
volves e+e− → γγ (plus cross-symmetric processes) and (‘W fusion’) e+e− → νeνeH. We have
started work on the introduction of higher-order corrections, as well as on the implementation
of multiphoton emission contributions.
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The top quark and Higgs boson masses have been predicted before their respective discoveries
by the global fit of the Standard Model to electroweak precision data. With the Higgs boson
discovery and the measurement of its mass, the last missing parameter of the Standard Model
has been fixed and thus the internal consistency of the Standard Model can be probed at a new
level by comparing direct measurements with the indirect predictions of the global electroweak
fit. In this section, we discuss the expected precisions in the most important indirect predictions
that are expected in the FCC-ee era and compare them with the state of the art.

Global electroweak analyses and fits have a long history in particle physics, starting be-
fore the discovery of the W and Z bosons. The basic idea of the global electroweak fit is the
comparison of the state-of-the-art calculations of the electroweak precision observables with the
most recent experimental data to constrain the free parameters of the fit and to test the good-
ness of fit. The free parameters of the SM relevant for the global electroweak analysis are the
coupling constant of the electromagnetic, weak, and strong interactions, as well as the masses
of the elementary fermions and bosons. This number can be reduced by fixing parameters with
insignificant uncertainties compared with the sensitivity of the fit, as well as imposing the re-
lations of the electroweak unification. The typical floating parameters chosen in the fit are the
masses of the Z and the Higgs boson, the top, the bottom, and charm quark masses, and the
coupling parameters ∆α5 and αS(mZ). An introduction and a review of the current status of
the global electroweak fit can be found in Ref. [1].

Besides a global analysis of the consistency between observables and their relations, the
global electroweak fit can be used to indirectly determine and hence predict the expected values
of observables. Technically, this indirect parameter determination is performed by scanning the
parameter in a chosen range and calculating the corresponding χ2 values. It should be noted
that the value of χ2

min is not relevant for the uncertainty estimation, only its difference relative
to the global minimum, ∆χ2 := χ2 − χ2

min.
These indirect determinations have been recently performed with the latest measured

values of electroweak precision observables in Ref. [1] and the state-of-the art fitting frameworks
GAPP and Gfitter. While GAPP (Global Analysis of Particle Properties) [2] is a Fortran
library for the evaluations of pseudo-observables, Gfitter consist of independent object-oriented
C++ code [3]. Both frameworks yield consistent results. Selected input parameters of the fit,
including their current experimental uncertainty, are summarised in Table C.12.1, while the
∆χ2 distributions for the indirect determinations of MH, MW, and mtop are summarised in
Figure C.12.1.

We repeat the indirect fit of these observables using the GAPP program, mainly by
assuming the FCC-ee projections and target uncertainties from Refs. [4, 5], as well as non-
dominant theory uncertainties from unknown higher orders. It should be noted that the uncer-

∗This contribution should be cited as:
J. Erler, M. Schott, Global electroweak fit in the FCC-ee era, DOI: 10.23731/CYRM-2020-003.217, in: Theory
for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 217.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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Table C.12.1: Overview of selected observables, their values, and current uncertainties, which
are used or determined within the global electroweak fit [1]. The future expected FCC-ee un-
certainties are also shown [4,5].

Parameter Current value FCC-ee unc.- Parameter Current value FCC-ee unc.-
target target

MH 125.09± 0.15GeV ±0.01GeV MZ 91.1875± 0.0021GeV <0.1MeV
MW 80.380± 0.013GeV ±0.6MeV ΓZ 2.4952± 0.0023GeV 25 keV
ΓW 2.085± 0.042GeV ±1.0MeV σ0

had 41.540± 0.037 nb 0.004 nb
mtop 172.90± 0.47GeV ±15MeV Rb 0.21629± 0.00066 <0.00006
∆αhad[×10−5] 2758± 10 ±3 AFB

LR(b) 0.0992± 0.0016 ±0.0001
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Fig. C.12.1: Comparisons of χ2 distributions for scanning different observables using the Gfitter
and the GAPP, using the current experimental values and uncertainties. Theoretical uncertain-
ties are indicated by the filled blue and yellow areas, respectively.
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Fig. C.12.2: Comparisons of χ2 distributions for scanning different observables using GAPP
with the current experimental values but the expected uncertainties from FCC.

tainty in the weak mixing angle is assumed to be ±5× 10−6 during the fit.†

Similar studies have been previously performed [6, 7]. Of special importance are the sig-
nificantly lower uncertainties in mZ, mW, and mtop (Table C.12.1), which could be reduced
by an order of magnitude. The ∆χ2 distributions for MH, MW, and mtop are summarised
in Figure C.12.2, yielding precisions of the indirect determinations of ∆MH = ±1.4GeV,
∆MW = ±0.2MeV, and ∆mtop = ±0.1GeV. Thus, the indirect test of the internal consistency
of the electroweak sector would be brought to a new level. The uncertainty in mH increases
from ±1.4GeV to ±5.7GeV, if no advances are made on the theory side. Likewise, the expected
uncertainty in the indirectly determined value of ∆αhad increases from 0.05% to 0.1%. Last but

†This uncertainty combines the expected measurement precision of the asymmetry observables, i.e., it can
be seen as a combination of AFB(µ), AFB(b) and the τ polarisation measurements.
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not least, the number of active neutrinos Nν can be constrained at FCC-ee within ±0.0006,
compared with the current result Nν = 2.992± 0.007.
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Program summary
Program title: CoDEx
Version: 1.0.0
Licensing provisions: CC By 4.0
Programming language: Wolfram Language®

Mathematica® Version: 10+
URL: https://effexteam.github.io/CoDEx
Send BUG reports and questions: effex.package@gmail.com

1.1 Introduction
In spite of the non-observation of any new resonances after the discovery of the Standard Model
(SM) Higgs-like particle, which announces the success of the SM, we have enough reason to
believe the existence of theories beyond it (BSM), with the SM as a part. As any such theory will
affect the electroweak and the Higgs sector, and the sensitivity of these precision observables
is bound to increase in the near future, indirect estimation of the allowed room left for BSM
using Standard Model effective field theory (SMEFT) is well motivated.

Provided that the S-matrix can be expanded perturbatively in the inverse powers of
the ultraviolet scale (Λ−1), and the resultant series is convergent, we can integrate out heavy
degrees of freedom and the higher mass dimensional operators capture their impact through –∑
i(1/Λdi−4)CiOi, where di is the operator mass dimension (>5), and Ci, a function of BSM

parameters, is the corresponding Wilson coefficient. Among different choices of operator base,
we restrict ourselves to ‘SILH’ [1, 2] and ‘Warsaw’ [3–6] bases. All WCs are computed at the
cut-off scale Λ, usually identified as the mass of the heavy field. The truncation the 1/Λ series
depends on the experimental precision of the observables [7]. Already, there has been quite
good progress in building packages and libraries [8–13].

One can justifiably question the validity of choosing to use SMEFT over the full BSM
Lagrangian; the answer lies in the trade-off between the computational challenge of the full
BSM and the precision of the observables. The choice of Λ ensures the convergence of theMZ/Λ
series. Using the anomalous dimension matrix (γ) (which is basis dependent), the SMEFT WCs

∗This contribution should be cited as:
S.D. Bakshi, J. Chakrabortty, S.K. Patra, CoDEx: BSM physics being realised as SMEFT, DOI: 10.23731/CYRM-
2020-003.221, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 221.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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Fig. D.1.1: Flow-chart demonstrating the working principle of CoDEx

Ci(Λ) (computed at Λ) are evolved to Ci(MZ), some of which are absent at the Λ scale, as the
matrix γ contains non-zero off-diagonal elements. See Refs. [4–6, 14] regarding the running of
the SMEFT operators. We need to choose only those ‘complete’ bases in which the precision
observables are defined.

CoDEx, a Mathematica® package [15], in addition to integrating out the heavy field propa-
gators from tree and one-loop processes and generating SMEFT operators up to dimension-6,
provides the WCs as a function of BSM parameters (Fig. D.1.1). In this draft, we briefly discuss
the underlying principle of CoDEx, and give one illustrative example of the workflow. Details
about downloading, installation, and detailed documentation of the functions are available at
the website [16].

1.2 The package in detail

CoDEx is a Wilson coefficient calculator, developed in the Mathematica environment. The
algorithm of this code is based on the ‘covariant derivative expansion’ method discussed in
Refs. [17–31]. Each and every detail of this package can be found in Ref. [16]. The main func-
tions provided by this program are given in Table D.1.1. Here we have demonstrated the working
methodology of CoDEx with an explicit example.

- 222 -



D.1 CoDEx: BSM physics being realised as SMEFT

Table D.1.1: Main functions provided by CoDEx

Function Details
CoDExHelp Opens the CoDEx guide, with all help files listed
treeOutput Calculates WCs generated from tree-level processes
loopOutput Calculates WCs generated from one-loop processes
codexOutput Generic function for WC calculation with

choices for level, bases, etc., given with OptionValues
defineHeavyFields Creates representation of heavy fields

Use the output to construct BSM Lagrangian
texTable Given a List, returns the LATEX output of a tabular

environment, displayed or copied to clipboard∗
formPick Applied on a list of WCs from a specific operator basis,

reformats the output in the specified style
RGFlow RG Flow of WCs of dim. 6 operators in ‘Warsaw’ basis,

from matching scale to a lower (arbitrary) scale
initializeLoop Prepares the Isospin and colour symmetry generators

for a specific model with a specific heavy field content:
loopOutput can only be run after this step is completed

∗This is a simplified version of the package titled TeXTableForm [32].

1.2.1 Detailed example: electroweak SU(2)L triplet scalar with hypercharge
Y = 1

Here, we have demonstrated the workflow of CoDEx with the help of a complete analysis of a
representative model.

LBSM = LSM + Tr[(Dµ∆)†(Dµ∆)]−m2
∆Tr[∆†∆] + LY − V (H,∆), (1.1)

where

V (H,∆) = ζ1(H†H)Tr[∆†∆] + ζ2(H†τ iH)Tr[∆†τ i∆] +
[
µ(HTiσ2∆†H) + h.c.

]
, (1.2)

and LY = y∆L
TCiτ 2∆L+ h.c. (1.3)

Here, the heavy field is ∆. Once this heavy field, ∆, is integrated out using CoDEx, the
effective operators up to dimension-6 for both bases are generated. The effective operators and
their respective Wilson coefficients are listed in Tables D.1.2 to D.1.4. Next, we give the exact
steps that must be followed to run the code and compute the desired results.

1. First, load the package:

In[1]:= Needs["CoDEx"]

2. We have to define the field ∆ as:

fields =
{
{fieldName, components, colorDim, isoDim,
hyperCharge, spin, mass}
};
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Table D.1.2: Effective operators and Wilson coefficients in ‘SILH’ basis for complex triplet
scalar (Y = 1) model.

O2B
g2

Y
160π2m2

∆

O2W
g2

W
240π2m2

∆

O3W
g2

W
240π2m2

∆

O6 −ζ1µ
2

m4
∆
− ζ2µ

2

4m4
∆
− ζ3

1
4π2m2

∆
− ζ2

2ζ1

32π2m2
∆

OBB
ζ1

32π2m2
∆

OH
ζ2

1
8π2m2

∆
+ µ2

2m4
∆

OR
ζ2

2
96π2m2

∆
+ µ2

m4
∆

OT
ζ2

2
192π2m2

∆
− µ2

2m4
∆

OWB − ζ2

96π2m2
∆

OWW
ζ1

48π2m2
∆

Table D.1.3: Effective operators and Wilson coefficients in ‘Warsaw’ basis for complex triplet
scalar (Y = 1) model.

QH −ζ1µ
2

m4
∆
− ζ2µ

2

4m4
∆
− ζ3

1
4π2m2

∆
− ζ2

2ζ1

32π2m2
∆

QH�
ζ2

2
192π2m2

∆
+ µ2

2m4
∆

QHD
ζ2

1
4π2m2

∆
+ ζ2

2
96π2m2

∆
− 2µ 2

m4
∆

QHW
ζ1g

2
W

48π2m2
∆

QHWB − ζ2gWgY

48π2 m2
∆

Qll
y2

∆
4m2

∆

QW
g3

W
1440π2m2

∆
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Table D.1.4: Mass dimension-5 effective operators and Wilson coefficients for complex triplet
scalar (Y = 1) model.

Dimension-5 operator Wilson coefficient

llHH y2
∆

m∆

We follow the convention in this line.

In[2]:= fieldewcts=
{
{hf,3,1,3,1,0,m∆∆∆}
};

In[3]:= hfvecst2ss=defineHeavyFields[fieldewcts];

In[4]:= δδδ=hfvecst2ss[[1,1]]

Out[4]= {hf[1,1]+i ihf[1,1],hf[1,2]+i ihf[1,2],hf[1,3]+i ihf[1,3]}

3. Now, we will build the Lagrangian after defining the heavy field. We need to provide only
those terms that contain the heavy fields. The kinetic terms (covariant derivative and
mass terms) of the heavy field will not play any role in this construction, and thus can
be ignored. The Lagrangian is written in the following way:

In[5]:= ∆∆∆=
3∑∑∑
i
δδδ[[i]] PauliMatrix[i];

In[6]:= ∆∆∆c =i tau[2].∆∆∆;

In[7]:= V=ζζζ1 dag[H].H Tr[dag[∆∆∆].∆∆∆]

+ζζζ2
3∑∑∑
i

dag[H].tau[i].H Tr[dag[∆∆∆].tau[i].∆∆∆]

+µµµ H.(i tau[2].dag[∆∆∆]).H
+µµµ dag[H].(-i ∆∆∆.tau[2]).hermitianConjugate[H];

In[8]:= lyukawa=Expand[yΣΣΣ
2∑∑∑
i

2∑∑∑
j

hermitianConjugate[lepb[1][[i]]].

gamma[0].chargeC.(∆∆∆c[[i,j]] lep[1][[j]])

+yΣΣΣ
2∑∑∑
i

2∑∑∑
j

lepb[1][[i]].gamma[0].

(dag[∆∆∆c][[i,j]] dag[chargeC].lep[1][[j]])];

In[9]:= Lpotent2ss=Expand[lyukawa-V];

In[10]:= initializeLoop["t2ss",fieldt2ss]

Out[10]= Check the documentation page CoDExParafernalia for details.
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» Isospin Symmetry Generators for the field ‘hf’ are
isot2ss[1,a] = tauadj[a]

» colour Symmetry Generators for the field ‘hf’ are colt2ss[1,a] = 0

(See the documentation of initializeLoop for details.)

In[13]:= wcT2SSwar=codexOutput[Lpotent2ss,fieldt2ss,model→→→"t2ss"];
formPick["Warsaw","Detailed2",wcT2SSwar,FontSize→→→Medium,
FontFamily→→→"Times New Roman",Frame→→→All]

4. The operators can be generated in both ‘SILH’ and ‘Warsaw’ bases along with their re-
spective Wilson coefficients. This output can be exported into a LATEX format as well;
see Table D.1.3.

In[14]:= wcT2SSsilh=codexOutput[Lpotent2ss,fieldt2ss,model→→→"t2ss",
operBasis→→→"SILH"];
formPick["SILH","Detailed2",wcT2SSsilh,FontSize→→→Medium,
FontFamily→→→"Times New Roman",Frame→→→All]

The output of this is given in Table D.1.2.

In[15]:= wcT2SSdim5=codexOutput[Lpotent2ss,fieldt2ss,model→→→"t2ss",
operBasis→→→"Dim5"];

formPick["Dim5","Detailed2",wcT2SSdim5,FontSize→→→Medium,
FontFamily→→→"Times New Roman",Frame→→→All]

The output of this is given in Table D.1.4.

5. The RG evolution of these WCs can be performed only in the ‘Warsaw’ basis, as this is
the complete one using RGFlow:

In[16]:= RGFlow[wcT2SSwar,m,µµµ]

Let us consider that the CoDEx output, which is the WCs at the high scale, is generated,
and saved as:

In[17]:= wcT2SSwar={{"qH",-
ζζζ13

4 m∆∆∆
2 πππ2 -

ζζζ1 ζζζ22

32 m∆∆∆
2 πππ2 -

ζζζ1 µµµ2

m∆∆∆
4 -

ζζζ2 µµµ2

4 m∆∆∆
4 },

{"qHbox",
ζζζ22

192 m∆∆∆
2 πππ2 +

µµµ2

2 m∆∆∆
4 },

{"qHD",
ζζζ12

4 m∆∆∆
2 πππ2 +

ζζζ22

96 m∆∆∆
2 πππ2 -

2 µµµ2

m∆∆∆
4 },{"qHW",

gW2 ζζζ1
48 m∆∆∆

2 πππ2 },

{"qHWB",-
gW gY ζζζ2
48 m∆∆∆

2 πππ2 },{"qll[1,1,1,1]",
yΣΣΣ2

4 m∆∆∆
2 },{"qW",

gW3

1440 m∆∆∆
2 πππ2 }}

Once we declare the matching scale (high scale) as the mass of the heavy particle (‘m’),
we need to recall the function RGFlow to generate the WCs at low scale, as:

In[18]:= floRes1 = RGFlow[wcT2SSwar,m,µµµ]

- 226 -



D.1 CoDEx: BSM physics being realised as SMEFT

Out[18]= {{qW,
gW3

1440 m∆
2 π2 +

29 gW5 Log[ µ
m ]

46080 m∆
2 π4 },{qH,-

ζ13

4 m∆
2 π2 -

ζ1 ζ22

32 m∆
2 π2 -

ζ1 µ2

m∆
4 -

ζ2 µ2

4 m∆
4 -

3 gW6 ζ1 Log[ µ
m ]

256 m∆
2 π4

-
gW4 gY2 ζ1 Log[ µ

m ]

256 m∆
2 π4 -

3 gW2 ζ12 Log[ µ
m ]

32 m∆
2 π4 -

3 gW4 ζ12 Log[ µ
m ]

256 m∆
2 π4 +

3 gY2 ζ12 Log[ µ
m ]

32 m∆
2 π4

-
3 gW2 gY2 ζ12 Log[ µ

m ]

128 m∆
2 π4 -

3 gY4 ζ12 Log[ µ
m ]

256 m∆
2 π4 +

27 gW2 ζ13 Log[ µ
m ]

128 m∆
2 π4 +

9 gY2 ζ13 Log[ µ
m ]

128 m∆
2 π4

+
gW4 gY2 ζ2 Log[ µ

m ]

256 m∆
2 π4 +

gW2 gY4 ζ2 Log[ µ
m ]

256 m∆
2 π4 -

gW2 ζ22 Log[ µ
m ]

256 m∆
2 π4 -

gW4 ζ22 Log[ µ
m ]

2048 m∆
2 π4 +

gY2 ζ22 Log[ µ
m ]

256 m∆
2 π4

-
gW2 gY2 ζ22 Log[ µ

m ]

1024 m∆
2 π4 -

gY4 ζ22 Log[ µ
m ]

2048 m∆
2 π4 +

27 gW2 ζ1 ζ22 Log[ µ
m ]

1024 m∆
2 π4

+
9 gY2 ζ1 ζ22 Log[ µ

m ]

1024 m∆
2 π4 +

3 gW4 ζ1 λ Log[ µ
m ]

64 m∆
2 π4 -

gW2 gY2 ζ2 λ Log[ µ
m ]

64 m∆
2 π4 +

5 gW2 ζ22 λ Log[ µ
m ]

1152 m∆
2 π4

+
3 gW2 µ2 Log[ µ

m ]

4 m∆
4 π2 +

3 gW4 µ2 Log[ µ
m ]

32 m∆
4 π2 -

3 gY2 µ2 Log[ µ
m ]

4 m∆
4 π2

+
3 gW2 gY2 µ2 Log[ µ

m ]

16 m∆
4 π2 +

3 gY4 µ2 Log[ µ
m ]

32 m∆
4 π2 +

27 gW2 ζ1 µ2 Log[ µ
m ]

32 m∆
4 π2

+
9 gY2 ζ1 µ2 Log[ µ

m ]

32 m∆
4 π2 +

27 gW2 ζ2 µ2 Log[ µ
m ]

128 m∆
4 π2 +

9 gY2 ζ2 µ2 Log[ µ
m ]

128 m∆
4 π2 +

5 gW2 λ µ2 Log[ µ
m ]

12 m∆
4 π2 },

{qHbox,
ζ22

192 m∆
2 π2 +

µ2

2 m∆
4 +

5 gY2 ζ12 Log[ µ
m ]

192 m∆
2 π4 -

gW2 ζ22 Log[ µ
m ]

768 m∆
2 π4

+
gY2 ζ22 Log[ µ

m ]

1536 m∆
2 π4 -

gW2 µ2 Log[ µ
m ]

8 m∆
4 π2 -

gY2 µ2 Log[ µ
m ]

4 m∆
4 π2 },

{qHD,
ζ12

4 m∆
2 π2 +

ζ22

96 m∆
2 π2 -

2 µ2

m∆
4 +

9 gW2 ζ12 Log[ µ
m ]

128 m∆
2 π4 -

5 gY2 ζ12 Log[ µ
m ]

384 m∆
2 π4

+
3 gW2 ζ22 Log[ µ

m ]

1024 m∆
2 π4 +

5 gY2 ζ22 Log[ µ
m ]

3072 m∆
2 π4 -

9 gW2 µ2 Log[ µ
m ]

16 m∆
4 π2 +

5 gY2 µ2 Log[ µ
m ]

16 m∆
4 π2 },

{qHW,
gW2 ζ1

48 m∆
2 π2 -

gW6 Log[ µ
m ]

1536 m∆
2 π4 -

53 gW4 ζ1 Log[ µ
m ]

4608 m∆
2 π4

-
gW2 gY2 ζ1 Log[ µ

m ]

512 m∆
2 π4 -

gW2 gY2 ζ2 Log[ µ
m ]

768 m∆
2 π4 },{qHB,-

gW2 gY2 ζ2 Log[ µ
m ]

256 m∆
2 π4 },

{qHWB,-
gW gY ζ2

48 m∆
2 π2 +

gW5 gY Log[ µ
m ]

7680 m∆
2 π4 +

gW3 gY ζ1 Log[ µ
m ]

384 m∆
2 π4 -

gW3 gY ζ2 Log[ µ
m ]

576 m∆
2 π4 -

19 gW gY3 ζ2 Log[ µ
m ]

2304 m∆
2 π4 },

{qeH[1,1],
3 gW4 ζ1 Log[ µ

m ] Yu†[e]

256 m∆
2 π4 -

3 gW2 ζ12 Log[ µ
m ] Yu†[e]

128 m∆
2 π4

+
3 gY2 ζ12 Log[ µ

m ] Yu†[e]

128 m∆
2 π4 +

gW2 gY2 ζ2 Log[ µ
m ] Yu†[e]

256 m∆
2 π4

+
gW2 ζ22 Log[ µ

m ] Yu†[e]

9216 m∆
2 π4 +

gY2 ζ22 Log[ µ
m ] Yu†[e]

1024 m∆
2 π4 +

7 gW2 µ2 Log[ µ
m ] Yu†[e]

24 m∆
4 π2 -

3 gY2 µ2 Log[ µ
m ] Yu†[e]

16 m∆
4 π2 },

{quH[1,1],
3 gW4 ζ1 Log[ µ

m ] Yu†[u]

512 m∆
2 π4 -

3 gW2 ζ12 Log[ µ
m ] Yu†[u]

128 m∆
2 π4

+
3 gY2 ζ12 Log[ µ

m ] Yu†[u]

128 m∆
2 π4 +

gW2 gY2 ζ2 Log[ µ
m ] Yu†[u]

768 m∆
2 π4 +

gW2 ζ22 Log[ µ
m ] Yu†[u]

9216 m∆
2 π4

+
gY2 ζ22 Log[ µ

m ] Yu†[u]

1024 m∆
2 π4 +

7 gW2 µ2 Log[ µ
m ] Yu†[u]

24 m∆
4 π2 -

3 gY2 µ2 Log[ µ
m ] Yu†[u]

16 m∆
4 π2 },

{qdH[1,1],
3 gW4 ζ1 Log[ µ
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2 π4 -

3 gW2 ζ12 Log[ µ
m ] Yu†[d]

128 m∆
2 π4

+
3 gY2 ζ12 Log[ µ

m ] Yu†[d]

128 m∆
2 π4 -

gW2 gY2 ζ2 Log[ µ
m ] Yu†[d]

768 m∆
2 π4 +

gW2 ζ22 Log[ µ
m ] Yu†[d]

9216 m∆
2 π4

+
gY2 ζ22 Log[ µ

m ] Yu†[d]
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2 π4 +

7 gW2 µ2 Log[ µ
m ] Yu†[d]

24 m∆
4 π2 -

3 gY2 µ2 Log[ µ
m ] Yu†[d]

16 m∆
4 π2 },
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2 π4 },

{q1Hl[1,1],-
gY2 yΣ2 Log[ µ
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96 m∆
2 π2 -

gY2 ζ12 Log[ µ
m ]
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2 π4 -

gY2 ζ22 Log[ µ
m ]

6144 m∆
2 π4 +

gY2 µ2 Log[ µ
m ]
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4 π2 },

{q3Hl[1,1],
gW2 yΣ2 Log[ µ

m ]

96 m∆
2 π2 +

gW2 ζ22 Log[ µ
m ]
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2 π4 +

gW2 µ2 Log[ µ
m ]

192 m∆
4 π2 },

{qHe[1,1],-
gY2 ζ12 Log[ µ

m ]

192 m∆
2 π4 -

gY2 ζ22 Log[ µ
m ]

3072 m∆
2 π4 +

gY2 µ2 Log[ µ
m ]

32 m∆
4 π2 },

{q1Hq[1,1],
gY2 ζ12 Log[ µ

m ]

1152 m∆
2 π4 +

gY2 ζ22 Log[ µ
m ]

18432 m∆
2 π4 -

gY2 µ2 Log[ µ
m ]

192 m∆
4 π2 },

{q3Hq[1,1],
gW2 ζ22 Log[ µ

m ]

18432 m∆
2 π4 +

gW2 µ2 Log[ µ
m ]

192 m∆
4 π2 },
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{qHu[1,1],
gY2 ζ12 Log[ µ

m ]

288 m∆
2 π4 +

gY2 ζ22 Log[ µ
m ]

4608 m∆
2 π4 -

gY2 µ2 Log[ µ
m ]

48 m∆
4 π2 },

{qHd[1,1],-
gY2 ζ12 Log[ µ

m ]

576 m∆
2 π4 -

gY2 ζ22 Log[ µ
m ]

9216 m∆
2 π4 +

gY2 µ2 Log[ µ
m ]

96 m∆
4 π2 },

{qll[1,1,1,1],
yΣ2

4 m∆
2 +

11 gW2 yΣ2 Log[ µ
m ]

192 m∆
2 π2 +

5 gY2 yΣ2 Log[ µ
m ]

64 m∆
2 π2 },{q1lq[1,1,1,1],-

gY2 yΣ2 Log[ µ
m ]

96 m∆
2 π2 },

{q3lq[1,1,1,1],
gW2 yΣ2 Log[ µ

m ]

96 m∆
2 π2 },{qle[1,1,1,1],

gY2 yΣ2 Log[ µ
m ]

16 m∆
2 π2 },

{qlu[1,1,1,1],-
gY2 yΣ2 Log[ µ

m ]

24 m∆
2π2 },{qld[1,1,1,1],

gY2 yΣ2 Log[ µ
m ]

48 m∆
2 π2 }}

We have provided the flexibility to users to reformat, save, or export all these WCs
corresponding to the effective operators at the electroweak scale (µµµ) to LATEX, using
formPick. We have also provided an illustrative example:

In[19]:= formPick["Warsaw","Detailed2",floRes1,Frame→→→All,
FontSize→→→Medium,FontFamily→→→"Times New Roman"]

Out[19]=

QW εabcWρ
a,µWµ

b,νWν
c,ρ

29gW
5 log

(
µ
m∆

)
46080π4m2

∆
+ gW

3

1440π2m2
∆... ... ...

Qld
(̄
lγµ l)(d̄γµ d)

gY
2yΣ

2 log
(

µ
m∆

)
48π2m2

∆
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Chapter E

Beyond the Standard Model (BSM)

1 (Triple) Higgs coupling imprints at future lepton colliders
Contribution∗ by: J. Baglio, C. Weiland
Corresponding author: J. Baglio [julien.baglio@uni-tuebingen.de]

1.1 Triple Higgs coupling studies in an EFT framework
The measurement of the triple Higgs coupling is one of the major goals of the future colliders.
The direct measurement at lepton colliders relies on the production of Higgs boson pairs in
two main channels: e+e− → ZHH, which is dominant at centre-of-mass energies below 1 TeV
and maximal at around 500 GeV, and e+e− → HHνeν̄e, which becomes dominant for high-
energy colliders. This direct measurement is required to be at least at a centre-of-mass energy
of 500 GeV, and is hence only possible at future linear colliders, such as the International Linear
Collider (ILC), operating at 500 GeV or 1 TeV [1], or the Compact Linear Collider (CLIC),
operating at 1.4TeV (stage 2) or 3 TeV (stage 3) [2]. The SM triple Higgs coupling sensitivity
is estimated to be δκλ = (λHHH/λ

SM
HHH − 1) ∼ 28% at the 500 GeV ILC, with a luminosity of

4 ab−1 [3, 4], and δκλ ∼ 13% at the CLIC, when combining the 1.4 TeV run, with 2.5 ab−1 of
data, and the 3 TeV run, with 5 ab−1 of data [5].

Still, circular lepton collider projects, such as the Circular Electron–Positron Collider
(CEPC) [6] or the FCC-ee [7, 8], which run at energies below 500 GeV (not to mention the
ILC or the CLIC running at lower energies), can provide a way to constrain the triple Higgs
coupling [9]. Since Ref. [10], in which it was first proposed to use precision measurements to
constrain the triple Higgs coupling, in particular, the measurements in single Higgs production
at lepton colliders, there have been studies of the combination of single and double Higgs
production observables, not only at lepton but also at hadron colliders [11–14]. The analyses
use the framework of Standard Model effective field theory (SMEFT). According to the latest
ECFA report [15], the combination of HL-LHC projections [16] with ILC exclusive single Higgs
data gives δκλ = 26% at 68% CL, while with the FCC-ee (at 250 or 365 GeV) this goes down
to δκλ = 19%, and with CEPC we get δκλ = 17%. We will present in more detail the results of
Refs. [12, 13], which demonstrate how important the combination of the LHC results with an
analysis at lepton colliders is, and show the potential of the FCC-ee.†

Figure E.1.1 (left) displays the latest experimental results available at the 13 TeV LHC
for the search of non-resonance Higgs pair production and the 95% CL limits on the triple
Higgs coupling, which have been presented in Ref. [17]. The results constrain δκλ in the range

∗This contribution should be cited as:
J. Baglio, C. Weiland, (Triple) Higgs coupling imprints at future lepton colliders, DOI: 10.23731/CYRM-2020-
003.231, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 231.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.

†Julien Baglio thanks Christophe Grojean for his very useful input to this subsection.
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Fig. E.1.1: Left: Latest experimental bounds on the triple Higgs coupling from the ATLAS
collaboration at the 13 TeV LHC, combining bb̄bb̄, bb̄τ

+
τ
−, and bb̄γγ final states. Taken from

Ref. [17]. Right: Minimum negative-log-likelihood distribution of κλ at the HL-LHC with 3 ab−1

of data, including differential observables in Higgs pair production, with ATLAS (blue), CMS
(red), and ATLAS+CMS (black) projected results. Figure taken from Ref. [16].

[−6.0 : 11.1]. We can compare them with the projections at the HL-LHC with 3 ab−1 presented
in the HL-HE LHC report [16] in an SMEFT framework, using a differential analysis in the
channel pp→ HH. Compared with the projection in Ref. [12], which also included single Higgs
data in the channels pp → W±H,ZH, tt̄H, there is a substantial improvement, thanks to the
experimental differential analysis. We have −0.5 ≤ δκλ ≤ 0.5 at 68% CL and −0.9 ≤ δκλ ≤ 1.3
at 95% CL. The degeneracy observed in Ref. [12] with a second minimum at δκλ ∼ 5 is now
excluded at 4σ.

The combination with data from lepton colliders removes the second minimum even more
drastically and only the SM minimum is left at δκλ = 0 [13], in particular when data from
250GeV and 350–365 GeV centre-of-mass energies are combined [13]. This is shown in Fig. E.1.2,
where two set-ups are compared, the combination of HL-LHC data with circular lepton colliders
(FCC-ee or CEPC) data on the left-hand side, and the combination of HL-LHC data with the
ILC data on the right-hand side. In both cases, the lepton collider data consist of measurements
in the channels e+e− → W+W−,ZH, νeν̄eH. The second minimum disappears completely even
with a relatively low integrated luminosity of L = 200 fb−1 at 350 GeV, when combined with
the data at 250GeV. Note that the FCC-ee (or CEPC), thanks to its much higher luminosity
in the 250 GeV run, is doing significantly better than the ILC.

1.2 Probing heavy neutral leptons via Higgs couplings
Since the confirmation of neutrino oscillations in 1998 by the Super-Kamiokande
experiment [18], it has been established that at least two neutrinos have a non-zero mass [19].
This experimental fact cannot be accounted for in the SM and requires new physics. One of the
simplest extensions is the addition of new heavy neutral leptons that are gauge singlets and mix
with the active neutrinos to generate the light neutrino masses. An appealing model, allowing
for these new fermionic states to be in the range of gigaelectronvolts to a few teraelectronvolts
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Fig. E.1.2: ∆χ2 distributions for a global fit of the parameter δκλ at circular lepton colliders
(left) or at the ILC (right), combined with HL-LHC data. The different lines compare the
different centre-of-mass energies and luminosity scenarios. Figures taken from Ref. [13].

while having Yukawa couplings of order one, is the inverse see-saw (ISS) model [20–22], in
which a nearly conserved lepton-number symmetry [23, 24] is introduced, naturally explaining
the smallness of the mass of the lightest neutrino states while allowing for large couplings be-
tween the heavy neutrinos and the Higgs boson, leading to a rich phenomenology. In this view,
the very precise study of the Higgs sector at lepton colliders can offer a unique opportunity to
test low-scale see-saw mechanisms, such as the ISS.

1.2.1 Heavy neutral leptons in the gigaelectronvolt regime
We begin with the gigaelectronvolt regime. In these low-scale see-saw models, the mixing be-
tween the active and the sterile neutrinos leads to modified couplings of neutrinos to the W,
Z, and Higgs bosons. This naturally leads to the idea of using precision measurements of the
Higgs boson branching fractions into gauge bosons in order to test the mass range MN < MH,
where MN is the mass of the heavy neutrino states and MH is the mass of the Higgs boson.
As H → NN is allowed, the invisible Higgs decay width is modified and hence the branch-
ing fraction BR(H → W+W−) is modified via the modified total decay width ΓH. Accord-
ing to an analysis of 2015 [25], the FCC-ee could be the most competitive lepton collider to
test this option, as demonstrated in Fig. E.1.3. In particular, the experimental sensitivity to
BR(H → W+W−) is expected to be 0.9% at the FCC-ee, compared with 1.3% at the CEPC,
operating at 240 GeV [26], and 6.4% at the ILC, operating at 250GeV [1].‡

1.2.2 Probing heavy neutral leptons in the multi-teraelectronvolt regime
Since the coupling of the heavy neutral leptons to the Higgs boson can be quite large in low-
scale see-saw models for masses MN of a few teraelectronvolts, it is also very appealing to use,
again, Higgs properties to probe a mass regime of MN ∼ O(1− 10 TeV).

Off-diagonal couplings of the Higgs boson to heavy neutral leptons will induce charged-
lepton-flavour-violating (cLFV) decays [28]. In particular, simplified formulae were provided in
Ref. [29], showing that cLFV Higgs decays exhibit a different functional dependence on see-

‡The latest analysis at the ILC, using a luminosity of 500 fb−1, states that a precision of 4.1% can be
achieved [27].
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Fig. E.1.3: Estimated sensitivities on the heavy sterile neutrino properties from the decay
H→W+W−, assuming 10 years of data collection. The black line denotes the bound from the
LHC coming from H→ γγ with up to 2015 data. Taken from Ref. [25].

saw parameters than cLFV radiative decays. They thus provide complementary observables
to search for heavy neutral leptons. In a typical low-scale see-saw model like the ISS, the
predicted branching fraction can be as large as BR(H → τµ) ∼ 10−5 and could even reach
BR(H → τµ) ∼ 10−2 in a supersymmetric model [30], thus being well within the reach of
a Higgs factory like the FCC-ee. However, Higgs observables are also uniquely sensitive to
diagonal couplings and this was discussed in particular in Refs. [31, 32], using the triple Higgs
coupling, and in Ref. [33], using a direct physical observable, the production cross-section
σ(e+e− → W+W−H). Taking into account all theoretical and experimental constraints that
were available, the three studies have found sizeable effects.

In the triple Higgs coupling studies, the one-loop corrections to λHHH, defined as the
physical triple Higgs coupling after electroweak symmetry breaking, are studied. The calculation
is performed in the on-shell scheme and compares the SM prediction with the prediction in
low-scale see-saw models (specifically the ISS presented in Ref. [32]). Representative one-loop
diagrams involving the new heavy neutral leptons are given in Fig. E.1.4 and details of the
calculation and analytical formulae can be found in the original articles. The results are given
in terms of deviations with respect to the tree-level value λ0

HHH and to the renormalised one-loop
value in the SM λ1,SM

HHH of the triple Higgs coupling,

∆(1)λHHH = 1
λ0

(
λ1

HHH − λ0
)
,

∆BSM = 1
λ1,SM

HHH

(
λ1

HHH − λ
1,SM
HHH

)
, (1.1)

with λ1
HHH being the one-loop renormalised triple Higgs coupling in the low-scale see-saw model

considered. The constraints from low-energy neutrino observables are implemented via the µX
parametrization; see Ref. [29] for more details and Appendix A of Ref. [32] for terms beyond
the lowest order in the see-saw expansion. All relevant theoretical and experimental bounds
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Fig. E.1.4: Representative Feynman diagrams for the one-loop corrections to λHHH involving
the neutrinos in the ISS model.

are taken into account. The most stringent constraint comes from the global fit to electroweak
precision observables and lepton universality tests [34].

Figure E.1.5 displays the results of the analysis in the planeMR−|Yν | whereMR is the see-
saw scale and |Yν | is the magnitude of the Yukawa coupling between the heavy neutral leptons
and the Higgs boson. For an off-shell Higgs momentum of qH∗ = 500GeV splitting into two on-
shell Higgs bosons, sizeable deviations can be obtained, up to ∆BSM ' −8%. Compared with the
expected sensitivity of ∼10% at the ILC at 1TeV with 5 ab−1 [35] or the FCC-hh sensitivity
of ∼5% when two experiments were to be combined [36], the deviation can be probed and
hence test masses of order O(10 TeV). In the case of the FCC-hh, as the hadronic centre-of-
mass energy is large, the case qH∗ = 2500 GeV is even more interesting, with a deviation up
to ∆BSM ' +35%, leading to a larger coverage of the parameter space and the possibility of
testing the model at the 3TeV CLIC, where the sensitivity to λHHH is expected to be of the
order of 13% [5]. The triple Higgs coupling λHHH is a viable new (pseudo-)observable for the
neutrino sector in order to constrain mass models, and might also be used in the context of the
FCC-ee in an indirect way in e+e− → ZH at the two-loop order, given the expected sensitivity
the FCC-ee is supposed to reach in this channel. Studies remain to be done in this context.

The study presented in Ref. [33] considered a more direct observable, the production
cross-section σ(e+e− → W+W−H) at lepton colliders. The set-up is the same as in Ref. [32],
albeit with an updated global fit using NuFIT 3.0 [37] to explain neutrino oscillations. The
representative diagrams in the Feynman–’t Hooft gauge are displayed in Fig. E.1.6, with the
contributions of the heavy neutral leptons in the t channel.

The deviation ∆BSM now stands for the comparison between the total cross-section
σ(e+e− → W+W−H) calculated in the ISS model and in the SM, ∆BSM = (σISS − σSM)/σSM.
Using the CLIC baseline for the polarisation of the beams [2] with an unpolarised positron
beam, Pe+ = 0, and a polarised electron beam, Pe− = −80%, the contour map at 3 TeV in
the same MR − |Yν | plane is presented in the left-hand side of Fig. E.1.7. Again, the grey
area is excluded by the constraints that mostly originate from the global fit [34]. The process
e+e− → W+W−H exhibits sizeable negative deviations, of at least −20%. Note that the full
results can be approximated within 1% for MR > 3 TeV by the simple formulae presented in
Ref. [33]. Compared with the left-hand side of Fig. E.1.5, the coverage of the parameter space
is here much larger. optimised cuts can also be chosen to enhance the deviation, such as the
cuts |ηH/W± | < 1 and EH > 1 TeV (see the right-hand side of Fig. E.1.7 for the η distributions),

- 235 -



J. Baglio, C. Weiland

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 18 20

∆
BSM [%]

|Y
ν
|

M
R

[TeV]

∆
BSM map with q

H∗ = 500 GeV

−8

−7

−6

−5

−4

−3

−2

−1

0

−
2%

−
4%

−

6%

−

8%

−

10
%

−

20
%

−

30
%

E
x
cl
u
d
ed

b
y

th
e
co

n
st
ra

in
ts

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 18 20

∆
BSM [%]

|Y
ν
|

M
R

[TeV]

∆
BSM map with q

H∗ = 2500 GeV

0

5

10

15

20

25

30

35

30%

20%
15%

10%

5%

E
xc

lu
d
ed

by
th

e
co

n
st
ra

in
ts
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Fig. E.1.6: ISS neutrino contributions to the process `+`− →W+W−H in the Feynman–’t Hooft
gauge. Mirror diagrams can be obtained by flipping all the electric charges; the indices i, j run
from 1 to 9.

which push the corrections down to −66% while keeping an ISS cross-section at a reasonable
level: 0.14 fb, as compared with 1.23 fb before cuts. This has been studied for a benchmark
scenario with |Yν | = 1 and heavy neutrinos in the range 2.4–8.6 TeV. The results means that
this observable has a great potential that needs to be checked in a detailed sensitivity analysis.
In the context of the FCC-ee, a similar observable could be chosen to test the effects of heavy
neutral leptons in the same mass range, albeit at the one-loop level, namely the production
cross-section σ(e+e− → ZH).

1.3 Conclusions
This contribution has presented the current status of the triple Higgs coupling measurements
at the LHC and the prospects for future lepton colliders. As combined studies in an EFT
framework using precision measurements in single Higgs observables, as well as direct Higgs
pair production, have shown, lepton colliders are able to completely remove the degeneracy
in the measurement of the triple Higgs coupling beyond the 4σ level, and the combination
of data collected at a centre-of-mass energy of 250 GeV with data collected at energies of at
least 350 GeV is of crucial importance for very-high-precision measurements in single Higgs
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Fig. E.1.7: Left: Contour map of the neutrino corrections ∆BSM at the 3TeV CLIC, using a
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rapidity distributions of the W+ (black), W− (red), and Higgs (blue) bosons. The solid curves
stand for the SM predictions while the dashed curves stand for the ISS predictions, for the
benchmark scenario described in the text. Figures taken from Ref. [33].

physics. Opportunities offered by the Higgs sector to test neutrino mass models at future
lepton colliders have also been presented. The FCC-ee is very competitive to test the heavy
sterile neutrino option in the gigaelectronvolt regime. As far as the teraelectronvolt regime
for the heavy neutrino scale is concerned, studies reported in the literature have shown that
the CLIC and ILC at high energies could offer new avenues in the Higgs sector via precision
measurements of the triple Higgs coupling, as well as of the production cross-section of a pair
of W bosons in association with a Higgs boson. In the same spirit, the FCC-ee may well offer
new opportunities in the same mass regime via precision calculations at one and two loops for
the ZH production cross-section, which remain to be studied.
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2 Exotic Higgs decays (and long-lived particles) at future colliders
Contribution∗ by: J.F. Zurita [jose.zurita@kit.edu]

2.1 Exotic Higgs decays: motivations and signatures
The theoretical motivations and the large breadth of signatures for exotic Higgs decays have
been thoroughly reviewed in Ref. [1]. They were first considered as a discovery mode of new
physics in the context of a hidden valley scenario [2–4]. In the last few years, exotic Higgs
decays have been revisited, as they arise ubiquitously in models of neutral naturalness, such
as twin Higgs [5], folded supersymmetry [6], fraternal twin Higgs [7], hyperbolic Higgs [8], and
singlet scalar top partners [9].

A simple proxy model for hidden valleys is obtained via a Higgs portal set-up,

L ⊃ 1
2

(
∂µφ

)2
− 1

2M
2φ2 − A|H|2φ− 1

2κ|H|
2φ2 − 1

6µφ
3 − 1

24φ
4 − 1

2λH|H|4 . (2.1)

The fields H and φ mix, depending on κ and A, giving rise to physical states h(125) and X(mX).
Note that the phenomenology is fully encapsulated by three free parameters: mX , cτ(X) ≡ cτ ,
and Br(h → XX). We will assume that the h → XX is always kinematically open. Existing
constraints on the h(125) properties imply that currently the room for an exotic Higgs branching
ratio, Br(h → XX) is below about 10%. Since the mixing controls the X decay widths, a
small mixing naturally gives rise to particles that travel a macroscopic distance cτ & mm
before decaying. Exotic Higgs decays are then encompassed within the larger class of ‘long-
lived particles’ (LLP) signatures. For concreteness, we review LLPs in the next subsection.

It is worth stressing that the HL-LHC will produce about 108 Higgs bosons, while the
CEPC and FCC-ee (240) will only give about 106. Hence, there is a trade-off between the
clean environment provided by the collider and the corresponding production cross-section.
This already tells us that future electron–positron colliders might probe exotic Higgs branching
fractions down to 10−5, while at the HL-LHC one could, in principle, go down to 10−6 or even
10−7, depending on the visibility of the target final state.

2.2 Long-lived particles (LLPs)
Long-lived particles are Beyond Standard Model states with macroscopic lifetimes (& nanosec-
onds). These are theoretically well motivated in extensions of the SM trying to solve funda-
mental problems of the SM, such as dark matter or neutrino masses. A comprehensive overview
of the theoretical motivations for LLPs can be found in Ref. [10], while a signature-driven
document was put forward by the LLP@LHC community in Ref [11].

In a nutshell, to obtain a macroscopic lifetime (or a very narrow width), one is led to one of
three choices: a large mass hierarchy (e.g., muon decay), a compressed spectrum (e.g., neutron
lifetime), and feeble interactions. The latter is the one that concerns exotic Higgs decays.

∗This contribution should be cited as:
J.F. Zurita, Exotic Higgs decays (and long-lived particles) at future colliders, DOI: 10.23731/CYRM-2020-
003.241, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 241.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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Fig. E.2.1: Reach of the ATLAS [16], CMS [17], and LHCb [18] studies for X → jj, where
X is taken to be a dark pion πV of the hidden valley scenario. This model is in one-to-one
correspondence with that described in Section 2.1. The shaded regions show where Br(H →
XX) > 50% is excluded. Note that the area to the lower left cannot be probed by current
searches. Plot taken from the supplementary material of Ref. [18].

In the last few years, there several proposed detectors have been targeting neutral LLPs,
such as MATHUSLA [12], FASER [13], CODEX-b [14], and AL3X [15]. Exotic Higgs decays
constitute a major theoretical motivation in the design of such experiments, which can probe
the difficult phase space regions where the standard triggers and object reconstruction became
inefficient. These shortcomings will be detailed in the next subsection.

2.3 Exotic Higgs decays vis-à-vis current LHC data
Since, in the simplest scenarios, the X particle decays like a SM Higgs boson of mX, what occurs
is that the predominant decays are into bb̄ pairs, if the channel is open. In that case, the existing
programme of LHC searches for displaced hadronic vertexes (see, e.g., Refs. [16–18]) can cover
part of the parameter space. We display the current coverage in the cτ–mX plane in Fig. E.2.1.
We immediately see that the current LHC data are not able to cover the region of short lifetimes
(cτ . 10 cm) and low masses (mX < 35 GeV). Low masses for X imply lower boosts, so the
soft jets of the event will not pass the typical HT or pT(j) trigger thresholds used by ATLAS
and CMS.† As a sample, the reported trigger efficiency of CMS for mX = 50 GeV and cτ = 30
mm is about 2%. The other limitation corresponds to short lifetimes, which is limited by the
vertex resolution. Hence, the shortcomings of pp machines can be targeted, instead, with a
collider providing better angular resolution, lower pT thresholds, and more accurate vertexing,
which happens at both e−p and e+e− machines. We stress that additional data will not alter
this picture, and the low cτ and low mX region would continue to be extremely hard to probe.

†It is worth noting that LHCb has the capability to trigger directly on displaced vertexes.
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Fig. E.2.2: Sensitivities of the displaced searches for exotic Higgs decays at the HL-LHC (left)
and FCC-hh (right), in the cτ–Br(h→ XX) plane, for mX = 30 GeV. The curves correspond to
the use of different triggers and different assumptions about the reconstruction of the displaced
vertexes. Plot taken from Ref [19].

2.4 Future experiments: HL-LHC, FCC, CEPC, LHeC

2.4.1 Proton–proton colliders

We show in Fig. E.2.2 (taken from Ref. [19]) the expected reach at the HL-LHC (
√
s = 14TeV

and total integrated luminosity of 3 ab−1) and at the FCC-hh (
√
s = 100TeV and total inte-

grated luminosity of 3 ab−1) for a scalar mass of mX = 30GeV. The curves indicate different
choices of trigger and of reconstruction capabilities of the displaced vertex. In particular, the
orange curve corresponds to one displaced vertex in the inner tracker with an impact parameter
of 50 µm, which poses an interesting experimental challenge and thus should be regarded as an
optimistic case. The blue curve corresponds to the realistic case of using VBF, h→ bb̄ triggers
down to an impact parameter of 4 cm.

We see that one can cover lifetimes as short as a millimetre (or even one micrometre for
the optimistic scenario), while the probed exotic branching ratios can reach down to 10−5 (10−6)
for the HL-LHC (FCC-hh), for the benchmark case of mX = 30GeV. As discussed before, lower
masses would suffer from a poor trigger efficiency, which opens a window of opportunity for
both electron–proton and electron–positron colliders.

2.4.2 Electron–proton colliders

The reach on exotic Higgs decays for future electron–proton colliders is displayed in Fig. E.2.3.
We see that the electron–proton colliders, owing to their better resolution, can test masses down
to 5 GeV for exotic branching fractions of about 10−4. This mass range is almost impossible
to probe at the LHC, because of the overwhelming multijet background. We also note that
electron–proton colliders provide a smaller luminosity.‡ Hence, electron–proton colliders provide
a window of opportunity to overcome the gaps in coverage discussed for proton–proton colliders.

‡During a 25 year run period of the Future Circular Collider (FCC), the proton–proton incarnation (FCC-hh)
is expected to collect 15–30 ab−1 while the electron–proton version will collect only 1 ab−1 [20].
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Fig. E.2.3: Reach of the future electron–proton colliders: LHeC (solid), FCC-eh (60), and FCC-
eh (240). The LHeC would collide a 7TeV proton from the LHC against a 50GeV electron
beam, while for the FCC-eh a 50TeV proton beam will collide against a 60GeV (design case)
or 240GeV beam (optimistic scenario). Taken from Refs. [21, 22].

2.4.3 Electron–positron colliders

Finally, we take a look at the e+–e− case. A detailed analysis is reported in Ref [23]; here,
we briefly summarise the most salient points. This study considers the Higgs-strahlung process
e+e− → hZ with leptonic decays of the Z boson for both the FCC-ee [24] and the CEPC [25,26].
A set of basic selection cuts allows us to achieve a zero-background regime for the irreducible
SM processes.§ Two different strategies are pursued: the large mass and the long-lifetime regime.
The main difference between the two is in the requirements on the minimal distance between
the displaced vertexes. The results are shown in Fig. E.2.4.

One immediately sees that the e+e− colliders can test exotic branching fractions down to
5 × 10−5. Moreover, they can go low in mass, down to a few gigaelectronvolts, and they can
also probe decay lengths down to micrometres, where the proton–proton colliders would be
ineffective.

2.5 Conclusions

In this contribution, I have summarised the existing studies on exotic Higgs decays at current
and future colliders. While the proton–proton machines would, in principle, be the best option,
owing to their larger energies and luminosities, we have also seen that the phase space regions
where the LHC and FCC-hh lose steam, namely, low X masses and short lifetimes provide a
unique window of opportunity for both e−p and e+e− colliders. The latter two types of machine
have only recently been studied, and thus there is naturally much room for improvement. It
should also be stressed that these kinds of study can help to optimise the detector design of
future colliders.

§Backgrounds from particles originating away from the interaction point (e.g., beam halo, cosmic muons,
cavern radiation) are not considered.
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3.1 Introduction
The signal that was discovered in the Higgs searches at ATLAS and CMS at a mass of
∼125GeV [1–3] is, within current theoretical and experimental uncertainties, compatible with
the properties of the Higgs boson predicted within the Standard Model (SM) of particle physics.
No conclusive signs of physics beyond the SM have been reported so far. However, the measure-
ments of Higgs signal strengths for the various channels leave considerable room for Beyond
Standard Model (BSM) interpretations. Consequently, the investigation of the precise proper-
ties of the discovered Higgs boson will be one of the prime goals at the LHC and beyond. While
the mass of the observed particle is already known with excellent accuracy [4, 5], significant
improvements of the information about the couplings of the observed state are expected from
the upcoming runs of the LHC [3, 6–9] and even more so from the high-precision measure-
ments at a future e+e− collider [10–18]. For the accurate study of the properties of the Higgs
boson, precise predictions for the various partial decay widths, the branching ratios (BRs),
and the Higgs boson production cross-sections, along with their theoretical uncertainties, are
indispensable.

Motivated by the ‘hierarchy problem’, supersymmetry (SUSY) inspired extensions of the
SM play a prominent role in the investigations of possible new physics. As such, the min-
imal supersymmetric Standard Model (MSSM) [19, 20] or its singlet extension, the next-to-
MSSM (NMSSM) [21, 22], have been the object of many studies in the last decades. Despite
this attention, these models are not yet prepared for an era of precision tests, as the uncer-
tainties at the level of the Higgs mass calculation [23–25] are about one order of magnitude
larger than the experimental uncertainty. At the level of the decays, the theoretical uncertainty
arising from unknown higher-order corrections has been estimated for the case of the Higgs
boson of the SM (where the Higgs mass is treated as a free input parameter) in Refs. [26, 27]
and updated in Ref. [28]: depending on the channel and the Higgs mass, it typically falls in the
range of ∼0.5–5%. To our knowledge, no similar analysis has been performed in SUSY-inspired
models (or other BSM models), but one can expect the uncertainties from missing higher-order
corrections to be larger in general—with many nuances, depending on the characteristics of
the Higgs state and the considered point in parameter space: we provide some discussion of
this issue at the end of this section. In addition, parametric uncertainties that are induced by
the experimental errors of the input parameters should be taken into account. For the case
of the SM decays, those parametric uncertainties have been discussed in the references cited.
In the SUSY case, the parametric uncertainties induced by the (known) SM input parameters
can be determined in the same way as for the SM, while the dependence on unknown SUSY
parameters can be utilised in setting constraints on those parameters. While still competitive

∗This contribution should be cited as:
F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein, Precision predictions for Higgs decays in the (N)MSSM,
DOI: 10.23731/CYRM-2020-003.247, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot
and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 247.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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today, the level of accuracy of the theoretical predictions of Higgs boson decays in SUSY models
should soon become outclassed by the achieved experimental precision (in particular at future
e+e− colliders) on the decays of the observed Higgs signal. Without comparable accuracy of the
theoretical predictions, the impact of the exploitation of the precision data will be diminished—
either in terms of further constraining the parameter space or of interpreting deviations from
the SM results. Further efforts towards improving the theoretical accuracy are therefore neces-
sary in order to enable a thorough investigation of the phenomenology of these models. Besides
the decays of the SM-like state at 125GeV of a SUSY model—where the goal is clearly to reach
an accuracy that is comparable to the case of the SM—it is also of interest to obtain reliable
and accurate predictions for the decays of the other Higgs bosons in the spectrum. The decays
of the non-SM-like Higgs bosons can be affected by large higher-order corrections as a conse-
quence of either large enhancement factors or a suppression of the lowest-order contribution.
Confronting accurate predictions with the available search limits yields important constraints
on the parameter space. Here, we review the evaluation of the decays of the neutral Higgs
bosons of the Z3-conserving NMSSM into SM particles, as presented in Ref. [29].

Current work focusing on NMSSM Higgs decays is part of the effort for developing a
version of FeynHiggs [23, 30–37] dedicated to the NMSSM [38, 39]. The general methodology
relies on a Feynman-diagrammatic calculation of radiative corrections, which employs FeynArts
[40,41], FormCalc [42], and LoopTools , [42]. The renormalization scheme has been implemented
within the NMSSM [39] in such a way that the result in the MSSM limit of the NMSSM exactly
coincides with the MSSM result obtained from FeynHiggs without any further adjustments of
parameters.

3.2 Higgs decays to SM particles in the CP-violating NMSSM
In this section, we review the technical aspects of our calculation of the Higgs decays. Our
notation and the renormalization scheme that we employ for the Z3-conserving NMSSM in the
general case of complex parameters are presented in Section 2 of Ref. [39], and we refer the
reader to that article for further details.

3.2.1 Decay amplitudes for a physical (on-shell) Higgs state—generalities
3.2.1.1 On-shell external Higgs leg
In this section, we consider the decays of a physical Higgs state, i.e., an eigenstate of the inverse
propagator matrix for the Higgs fields, evaluated at the corresponding pole eigenvalue. The
connection between such a physical state and the tree-level Higgs fields entering the Feynman
diagrams is non-trivial in general since the higher-order contributions induce mixing among
the Higgs states and between the Higgs states and the gauge bosons (as well as the associated
Goldstone bosons). The LSZ reduction fully determines the (non-unitary) transition matrix Zmix

between the loop-corrected mass eigenstates and the lowest-order states. Then, the amplitude
describing the decay of the physical state hphys

i (we shall omit the superscript ‘phys’ later on),
into e.g., a fermion pair f f̄, relates to the amplitudes in terms of the tree-level states h0

j according
to (see the following for the mixing with gauge bosons and Goldstone bosons):

A[hphys
i → f f̄ ] = Zmix

ij A[h0
j → f f̄ ] . (3.1)

Here, we characterize the physical Higgs states according to the procedure outlined in Ref. [39]
(see also Refs. [32,43,44]).
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1. The Higgs self-energies include full one-loop and leading O(αtαs, α
2
t ) two-loop corrections

(with two-loop effects obtained in the MSSM approximation via the publicly available
code FeynHiggs†).

2. The pole masses correspond to the zeros of the determinant of the inverse propagator
matrix.

3. The (5 × 5) matrix Zmix is obtained in terms of the solutions of the eigenvector equa-
tion for the effective mass matrix evaluated at the poles, and satisfying the appropriate
normalization conditions (see Section 2.6 of Ref., [39]).

In correcting the external Higgs legs by the full matrix Zmix—instead of employing a simple di-
agrammatic expansion—we resum contributions to the transition amplitudes that are formally
of higher-loop order. This resummation is convenient for taking into account numerically rele-
vant leading higher-order contributions. It can, in fact, be crucial for the frequent case where
radiative corrections mix states that are almost mass-degenerate in order to properly describe
the resonance-type effects that are induced by the mixing. Conversely, care needs to be taken
to avoid the occurrence of non-decoupling terms when Higgs states are well-separated in mass,
since higher-order effects can spoil the order-by-order cancellations with vertex corrections.

We stress that all public tools, with the exception of FeynHiggs, neglect the full effect of
the transition to the physical Higgs states encoded within Zmix, and instead employ the unitary
approximation U0 neglecting external momenta (which is in accordance with leading-order or
QCD-improved leading-order predictions). We refer the reader to Refs. [32,39,44] for the details
of the definition of U0 or Um (another unitary approximation), as well as a discussion of their
impact at the level of Higgs decay widths.

3.2.1.2 Higgs–electroweak mixing
For the mass determination, we do not take into account contributions arising from the mixing
of the Higgs fields with the neutral Goldstone or Z bosons, since these corrections enter at the
subdominant two-loop level (contributions of this kind can also be compensated by appropriate
field-renormalization conditions [47]). We note that, in the CP-conserving case, only external
CP-odd Higgs components are affected by such a mixing. Yet, at the level of the decay ampli-
tudes, the Higgs mixing with the Goldstone and Z bosons already enters at the one-loop order
(even if the corresponding self-energies are cancelled by an appropriate field-renormalization
condition, this procedure will still provide a contribution to the hif f̄ counterterm). There-
fore, for a complete one-loop result of the decay amplitudes, it is, in general, necessary to
incorporate Higgs–Goldstone and Higgs–Z self-energy transition diagrams [43, 48, 49]. In the
following, we evaluate such contributions to the decay amplitudes in the usual diagrammatic
fashion (as prescribed by the LSZ reduction), with the help of the FeynArts model file for
the CP-violating NMSSM [39]. The corresponding one-loop amplitudes (including the associ-
ated counterterms) will be symbolically denoted as A1L

G/Z. These amplitudes can be written in
terms of the self-energies ΣhiG/Z with Higgs and Goldstone or Z bosons in the external legs. In
turn, these self-energies are connected by a Slavnov–Taylor identity (see e.g., Appendix A of

†The Higgs masses in FeynHiggs could be computed with additional improvements, such as additional fixed-
order results [45,46] or the resummation of large logarithms for very heavy SUSY particles [33–35]; for simplicity,
we do not take such refinements into account in this section.

- 249 -

https://arxiv.org/pdf/1706.00437.pdf#subsection.2.6
https://arxiv.org/pdf/0807.4668.pdf#page=29


F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein

Ref. [50]):‡

0 = MZ ΣhiG
(
p2
)

+ i p2 ΣhiZ
(
p2
)

+MZ
(
p2 −m2

hi

)
f
(
p2
)

− e

2 sw cw
∑
j

[(Un)i1(Un)j4 − (Un)i2(Un)j5 − (Un)j1(Un)i4 + (Un)j2(Un)i5]Thj ,
(3.2a)

f
(
p2
)
≡ − α

16 π sw cw

∑
j

[(Un)i1(Un)j4 − (Un)i2(Un)j5 − (Un)j1(Un)i4 + (Un)j2(Un)i5]

× [cβ (Un)j1 + sβ (Un)j2]B0
(
p2,m2

hj
,M2

Z

)
,

(3.2b)

where the Thi correspond to the tadpole terms of the Higgs potential and (Un)ij are the elements
of the transition matrix between the gauge- and tree-level mass-eigenstate bases of the Higgs
bosons—the notation is introduced in Section 2.1 of Ref. [39]. Similar relations in the MSSM
are also provided in Eq. (127) of Ref. [43]. We checked this identity at the numerical level.

3.2.1.3 Inclusion of one-loop contributions
The wave function normalization factors contained in Zmix, together with the described treat-
ment of the mixing with the Goldstone and Z bosons, ensure the correct on-shell properties
of the external Higgs leg in the decay amplitude, so that no further diagrams correcting this
external leg are needed. Moreover, the SM fermions and gauge bosons are also treated as on-
shell particles in our renormalization scheme. Beyond the transition to the loop-corrected states
incorporated by Zmix, we thus compute the decay amplitudes at the one-loop order as the sum
of the tree-level contribution Atree (possibly equal to zero), the Higgs–electroweak one-loop
mixing A1L

G/Z and the (renormalised) one-loop vertex corrections A1L
vert (including counterterm

contributions)—we note that each of these pieces of the full amplitude is separately ultraviolet-
finite. In the example of the f f̄ decay, the amplitudes with a tree-level external Higgs field h0

j—on
the right-hand side of Eq. (3.1)—thus symbolically read

A[h0
j → f f̄ ] = Atree[h0

j → f f̄ ] +A1L
G/Z[h0

j → f f̄ ] +A1L
vert[h0

j → f f̄ ] . (3.3)

All the pieces on the right-hand side of this equation are computed with the help of FeynArts
[40,41], FormCalc [42], and LoopTools [42], according to the prescriptions that are encoded in
the model file for the CP-violating NMSSM. However, we use a specific treatment for some of
the contributions, such as QED and QCD one-loop corrections to Higgs decays into final-state
particles that are electrically or colour charged, or include certain higher-order corrections. We
describe these channel-specific modifications in the following subsections.

3.2.1.4 Goldstone-boson couplings
The cubic Higgs–Goldstone-boson vertices can be expressed as

L 3 − 1√
2 v

∑
j

m2
hj

[cos β (Un)j1 + sin β (Un)j2]h0
j

[
G+G− + 1

2

(
G0
)2
]

+
[∑

j

(
m2

H± −m2
hj

)
(sin β [(Un)j1 + i (Un)j4]− cos β [(Un)j2 − i (Un)j5])h0

jH
+G−+h. c.

]
‡We denote the imaginary unit by i.
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+1
2
∑
j, k

(
m2
hk
−m2

hj

)
[(Un)j1(Un)k4 − (Un)j2(Un)k5 − (j ↔ k)]h0

jh
0
kG

0

 . (3.4)

The doublet vacuum expectation value (VEV), v = MW sw/
√

2 πα, is expressed in terms of the
gauge-boson massesMW andMZ

(
sw =

√
1−M2

W/M
2
Z

)
, as well as the electromagnetic coupling

α. The symbol m2
hj
, (j = 1, . . . , 5), represents the tree-level mass squared of the neutral Higgs

state h0
j , and m2

H± represents the mass squared of the charged Higgs state.
The use of the tree-level couplings of Eq. (3.4), together with a physical (loop-corrected)

external Higgs leg hi = ∑
j Z

mix
ij h0

j , is potentially problematic regarding the gauge properties of
the matrix elements. The structure of the gauge theory and its renormalization indeed guarantee
that the gauge identities are observed at the order of the calculation (one loop). However, the
evaluation of Feynman amplitudes is not protected against a violation of the gauge identities
at the (incomplete) two-loop order. We detected such gauge-violating effects of two-loop order
at several points in our calculation of the neutral Higgs decays.

1. The Ward identity in hi → γγ is not satisfied (see also Ref. [51]).

2. Infrared (IR) divergences of the virtual corrections in hi →W+W− do not cancel their
counterparts in the bremsstrahlung process hi →W+W−

γ (see also Ref. [52]).

3. Computing hi → f f̄ in an Rξ gauge entails non-vanishing dependence of the amplitudes
on the electroweak gauge-fixing parameters ξZ and ξW.

As these gauge-breaking effects could intervene with sizeable and uncontrolled numerical impact,
it is desirable to add two-loop order terms, restoring the gauge identities at the level of the
matrix elements. Technically, there are different possible procedures to achieve this: one would
amount to replacing the kinematic Higgs masses that appear in Higgs–gauge-boson couplings
with tree-level Higgs masses; we prefer the alternative procedure, which involves changing the
Higgs–Goldstone-boson couplings of Eq. (3.4): for the Higgs mass associated to the external
Higgs leg, the loop-corrected Higgs mass Mhi is used instead of the tree-level one. This is ac-
tually the form of the Higgs–Goldstone-boson coupling that would be expected in an effective
field theory of the physical Higgs boson hi. Using the definition of Zmix

ij as an eigenvector of
the loop-corrected mass matrix for the eigenvalue M2

hi
—see Section 2.6 of Ref. [39]—one can

verify that the effective Higgs–Goldstone-boson vertices employing the physical Higgs mass dif-
fer from their tree-level counterparts by a term of one-loop order (proportional to the Higgs
self-energies) so that the alteration of the one-loop amplitudes is indeed of two-loop order.
Employing this shift of the Higgs–Goldstone couplings cures the gauge-related issues that we
mentioned earlier.

Another issue with gauge invariance appears in connection with the amplitudes A1L
G/Z.

The Goldstone and Z boson propagators generate denominators with pole M2
Z (or ξZM

2
Z in an

Rξ gauge): in virtue of the Slavnov–Taylor identity of Eq. (3.2a), these terms should cancel
one another in the total amplitude at the one-loop order—we refer the reader to Section 4.3
of Ref. [43] for a detailed discussion. However, the term (p2 −M2

Z)−1 multiplying f(p2) of
Eq. (3.2a) only vanishes if p2 = m2

hi
: if we employ p2 = M2

hi
(the loop-corrected Higgs mass),

the cancellation is spoilt by a term of two-loop order. To address this problem, we redefine
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A1L
G/Z by adding a two-loop term:

Ã1L
G/Z[hi → f f̄ ] ≡ Zmix

ij · A1L
G/Z[h0

j → f f̄ ] +
Γtree
Gf f̄
M2

hi

∑
j, k

Σ̂hjhk

(
M2

hi

)
· Zmix

ik

f
(
M2

hi

)
ξZ M

2
Z

M2
hi
− ξZM2

Z
, (3.5)

where Γtree
Gff̄ represents the tree-level vertex of the neutral Goldstone boson with the fermion f

(in the particular example of a Higgs decay into f f̄). Then it is straightforward to check that
Ã1L

G/Z is gauge-invariant. The transformation of Eq. (3.5) can also be interpreted as a two-loop
shift redefining ΣhiZ, so that it satisfies a generalised Slavnov–Taylor identity of the form of
Eq. (3.2a), but applied to a physical (loop-corrected) Higgs field, with the term

(
p2 −m2

hi

)
f(p2)

of Eq. (3.2a) replaced with
(
p2 −M2

hi

)
f(p2).

3.2.1.5 Numerical input in the one-loop corrections

As usual, the numerical values of the input parameters need to reflect the adopted renormal-
ization scheme, and the input parameters corresponding to different schemes differ from each
other by shifts of the appropriate loop order (at the loop level, there exists some freedom to
use a numerical value of an input parameter that differs from the tree-level value by a one-
loop shift, since the difference induced in this way is of higher order). Concerning the input
values of the relevant light quark masses, we follow in our evaluation the choice of FeynHiggs
and employ MS quark masses with three-loop QCD corrections evaluated at the scale of the
mass of the decaying Higgs, mMS

q (Mhi), in the loop functions and the definition of the Yukawa
couplings. In addition, the input value for the pole top mass is converted to mMS

t (mt) using
up to two-loop QCD and one-loop top Yukawa or electroweak corrections (corresponding to
the higher-order corrections included in the Higgs boson mass calculation). Furthermore, the
tan β-enhanced contributions are always included in the defining relation between the bottom
Yukawa coupling and the bottom mass (and similarly for all other down-type quarks). Concern-
ing the Higgs VEV appearing in the relation between the Yukawa couplings and the fermion
masses, we parametrize it in terms of α(MZ). Finally, the strong coupling constant employed
in SUSY-QCD diagrams is set to the scale of the supersymmetric particles entering the loop.
We will comment on deviations from these settings if needed.§

3.2.2 Higgs decays into SM fermions

Our calculation of the Higgs decay amplitudes into SM fermions closely follows the procedure
outlined in the previous subsection. However, we include the QCD and QED corrections sepa-
rately, making use of analytical formulae that are well-documented in the literature [54,55]. We
also employ an effective description of the Higgs–bb̄ interactions in order to resum potentially
large effects for large values of tan β. Next, we comment on these two issues and discuss further
the derivation of the decay widths for this class of channel.

§Possibly large contributions by electroweak double-logarithms of the Sudakov type as well as the corres-
ponding counterparts in fermionic Higgs decays with additional real radiation of gauge bosons are investigated
in a separate article [53].
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3.2.2.1 Tree-level amplitude
At the tree level, the decay h0

j → f f̄ is determined by the Yukawa coupling Yf and the decom-
position of the tree-level state h0

j in terms of the Higgs-doublet components:

Atree[h0
j → f f̄] = −i Yf√

2
ūf(pf)

{
δf,dk/ek(Un)j1 + δf,uk(Un)j2 − iγ5

[
δf,dk/ek(Un)j4 + δf,uk(Un)j5

]}
vf(pf̄)

(3.6)
≡ −iūf(pf)

{
gShjff − γ5g

P
hjff

}
vf(pf̄) . (3.7)

The δs are Kronecker symbols selecting the appropriate Higgs matrix element for the fermionic
final state, uk = u, c, t, dk = d, s, b, or ek = e, µ, τ. We have written the amplitude in the Dirac-
fermion convention, separating the scalar part gShjff (first two terms between curly brackets in
the first line) from the pseudo-scalar one gPhjff (last two terms). The fermion and antifermion
spinors are denoted ūf(pf) and vf(pf̄), respectively.

3.2.2.2 Case of the bb̄ final state: tan β-enhanced corrections
In the case of a decay to bb̄ (and analogously for down-type quarks of first and second genera-
tion, but with smaller numerical impact), the loop contributions that receive a tan β enhance-
ment may have a sizeable impact, thus justifying an effective description of the Higgs–bb̄
vertex that provides a resummation of large contributions [43, 56–62]. We denote the neutral
components of H1 and H2 from Eq. (2.2) of Ref. [39] by H0

d and H0
u, respectively. The large

tan β-enhanced effects arise from contributions to the (H0
u)∗ b̄ PL b operator—PL,R are the left-

and right-handed projectors in the Dirac description of the b spinors—and can be parametrized
in the following fashion:

Leff = −Yb b̄
[
H0

d + ∆b

tan β

(
λ

µeff
S H0

u

)∗]
PL b+ h.c. ≡ −

∑
j

gL eff
hjbb h

0
j b̄ PL b+ h. c. (3.8)

Here, ∆b is a coefficient that is determined via the calculation of the relevant (tan β-enhanced)
one-loop diagrams to the Higgs–bb̄ vertex, involving gluino–sbottom, chargino–stop, and
neutralino–sbottom loops.¶ The symbol µeff represents the effective µ term that is generated
when the singlet field acquires a VEV. The specific form of the operator, (S H0

u)∗ b̄ PL b, is
designed so as to preserve the Z3 symmetry, and it can be shown that this operator is the one
that gives rise to leading contributions to the tan β-enhanced effects. We evaluate ∆b at a scale
corresponding to the arithmetic mean of the masses of the contributing SUSY particles: this
choice is consistent with the definition of ∆b employed for the Higgs mass calculation.

From the parametrization of Eq. (3.8), one can derive the non-trivial relation between
the ‘genuine’ Yukawa coupling Yb and the effective bottom mass mb: Yb = mb/(v1 (1 + ∆b)).
Then, the effective couplings of the neutral Higgs fields to bb̄ read:

gL eff
hjbb = mb√

2 v1 (1 + ∆b)

{
(Un)j1 + i (Un)j4 + ∆b

tan β

(
(Un)j2 − i (Un)j5 + λ∗ v2

µ∗eff
[(Un)j3 − i (Un)j6]

)}
.

(3.9)

This can be used to substitute Atree[h0
j → bb̄ ] in Eq. (3.3) for:

Aeff [h0
j → bb̄ ] = −i ūb(pb)

[
gL eff
hjbb PL + gL eff ∗

hjbb PR
]
vb(pb̄) , (3.10)

¶Two-loop corrections to ∆b have also been reported in Refs. [63, 64].
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where this expression resums the effect of tan β-enhanced corrections to the h0
jbb̄ vertex. How-

ever, if one now adds the one-loop amplitude A1L
vert, the one-loop effects associated with the

tan β-enhanced contributions would be included twice. To avoid this double counting, the terms
that are linear in ∆b in Eq. (3.9) need to be subtracted. Employing the ‘subtraction’ couplings

gL sub
hjbb = mb ∆b√

2 v1

{
(Un)j1 + i (Un)j4 −

1
tan β

(
(Un)j2 − i (Un)j5 + λ∗ vu

µ∗eff
[(Un)j3 − i (Un)j6]

)}
,

(3.11)

we define the following ‘tree-level’ amplitude for the Higgs decays into bottom quarks:

Atree[h0
j → bb̄ ] = Aeff [h0

j → bb̄ ] +Asub[h0
j → bb̄ ] , (3.12a)

Asub[h0
j → bb̄ ] ≡ −i ūb(pb)

[
gL sub
hjbb PL + gL sub ∗

hjbb PR
]
vb(pb̄) . (3.12b)

3.2.2.3 QCD and QED corrections
The inclusion of QCD and QED corrections requires a proper treatment of IR effects in the
decay amplitudes. The IR-divergent parts of the virtual contributions by gluons or photons
in A1L

vert are cancelled by their counterparts in processes with radiated photons or gluons. We
directly employ the QCD and QED correction factors that are well-known analytically (see
next) and therefore omit the Feynman diagrams involving a photon or gluon propagator when
computing, with FeynArts and FormCalc, the one-loop corrections to the h0

j f f̄ vertex and to the
fermion mass and wave function counterterms. The QCD and QED correction factors applying
to the fermionic decays of a CP-even Higgs state are given in Ref. [54]. The CP-odd case was
addressed later in Ref. [55]. In the CP-violating case, it is useful to observe that the hjf f̄ scalar
and pseudo-scalar operators do not interfere, so that the CP-even and CP-odd correction factors
can be applied directly at the level of the amplitudes—although they were obtained at the level
of the squared amplitudes:

Atree+QCD/QED[h0
j → f f̄ ] = −i m

MS
f (Mhi)
mf

ūf(pf)
{
gShjff cS − γ5 g

P
hjff cP

}
vf(pf̄) , (3.13a)

cS,P =
√

1 + cQED
S,P + cQCD

S,P , (3.13b)

cQED
S,P ≡

α

π
Q2

f ∆S,P

(√
1− 4m2

f
M2
hi

)
, (3.13c)

cQCD
S,P ≡

αs(Mhi)
π

C2(f)
[
∆S,P

(√
1− 4m2

f
M2
hi

)
+ 2 + 3 log

(
Mhi

mf

)]
. (3.13d)

Here,Qf is the electric charge of the fermion f , C2(f) is equal to 4/3 for quarks and equal to 0 for
leptons, Mhi corresponds to the kinematic (pole) mass in the Higgs decay under consideration
and the functions ∆S,P are explicated in e.g., Section 4 of Ref. [65]. In the limit of Mhi � mf ,
both ∆S,P reduce to

[
−3 log (Mhi/mf) + 9

4

]
. As noted in Ref. [54], the leading logarithm in the

QCD correction factor can be absorbed by the introduction of a running MS fermion mass in
the definition of the Yukawa coupling Yf . Therefore, it is motivated to factorise mMS

f (Mhi), with
higher orders included in the definition of the QCD beta function.

The QCD (and QED) correction factors generally induce a sizeable shift of the tree-level
width of as much as ∼50%. While these effects were formally derived at the one-loop order, we
apply them over the full amplitudes (without the QCD and QED corrections), i.e., we include
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the one-loop vertex amplitude without QCD/QED corrections A1Lwo. QCD/QED
vert and A1L

G/Z in
the definitions of the couplings gS,Phjff that are employed in Eq. (3.13)—we will use the notation
gS,P 1L
hjff in the following. The adopted factorisation corresponds to a particular choice of the
higher-order contributions beyond the ones that have been explicitly calculated.

3.2.2.4 Decay width
Putting together the various pieces discussed before, we can express the decay amplitude at
the one-loop order as

A[hi → f f̄ ] = −i m
MS
f (Mhi)
mf

Zmix
ij ūf(pf)

{
gS 1L
hjff cS − γ5 g

P 1L
hjff cP

}
vf(pf̄) ,

(3.14a)
−i ūf(pf)

{
gS 1L
hjff − γ5 g

P 1L
hjff

}
vf(pf̄) ≡

(
Atree +A1Lwo. QCD/QED

vert +A1L
G/Z

)[
hj → f f̄

]
. (3.14b)

Summing over spinor and colour degrees of freedom, the decay width is then obtained as

Γ
[
hi → f f̄

]
= 1

16 πMhi

√√√√1− 4m2
f

M2
hi

∑
polarisation,

colour

∣∣∣A[hphys.
i → f f̄ ]

∣∣∣2 . (3.15)

At the considered order, we could dismiss the one-loop squared terms in |A[hi → f f̄ ]|2. However,
to tackle the case where the contributions from irreducible one-loop diagrams are numerically
larger than the tree-level amplitude, we keep the corresponding squared terms in the expression
(it should be noted that the QCD and QED corrections have been stripped off from the one-
loop amplitude, which gets squared). The approach of incorporating the squared terms should
give a reliable result in a situation where the tree-level result is significantly suppressed, since
the other missing contribution at this order, consisting of the tree-level amplitude times the
two-loop amplitude, would be suppressed, owing to the small tree-level result. In such a case,
however, the higher-order uncertainties are expected to be comparatively larger than in the
case where one-loop effects are subdominant to the tree level.

The kinematic masses of the fermions are easily identified in the leptonic case. For decays
into top quarks, the ‘pole’ mass mt is used, while for all other decays into quarks we employ the
MS masses evaluated at the scale of the Higgs mass mMS

q (Mhi). We note that these kinematic
masses have little impact on the decay widths, as long as the Higgs state is much heavier. In
the NMSSM, however, singlet-like Higgs states can be very light, in which case the choice of an
MS mass is problematic. Yet, in this case, the Higgs state is typically near threshold so that
the free-parton approximation in the final state is not expected to be reliable. Our current code
is not properly equipped to address decays directly at threshold independently of the issue of
running kinematic masses. Improved descriptions of the hadronic decays of Higgs states close
to the bb̄ threshold or in the chiral limit have been presented in, e.g., Refs. [66–71].

3.2.3 Decays into SM gauge bosons
Now we consider Higgs decays into the gauge bosons of the SM. Almost each of these channels
requires a specific processing in order to include higher-order corrections consistently or to deal
with off-shell effects.
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3.2.3.1 Decays into electroweak gauge bosons
Higgs decays into on-shell Ws and Zs can easily be included at the one-loop order in comparable
fashion to the fermionic decays. However, the notion of WW or ZZ final states usually includes
contributions from off-shell gauge bosons as well, encompassing a wide range of four-fermion
final states. Such off-shell effects mostly impact the decays of Higgs bosons with a mass below
the WW or ZZ thresholds. Instead of a full processing of the off-shell decays at one-loop order,
we pursue two distinct evaluations of the decay widths in these channels.

Our first approach is that already employed in FeynHiggs for the corresponding decays in
the MSSM. It involves exploiting the precise one-loop results of Prophecy4f for the SM Higgs
decays into four fermions [72–74]. For an (N)MSSM Higgs boson hi, the SM decay width is thus
evaluated at the mass Mhi and then rescaled by the squared ratio of the tree-level couplings to
gauge bosons for hi and an SM Higgs boson HSM (V = W,Z):

Γ[hi → V V ] = ΓSM[HSM(Mhi)→ V V ]
∣∣∣∣∣Rij ·

gNMSSM
hjV V

gSM
HV V

∣∣∣∣∣
2

, (3.16a)

gNMSSM
hjV V

gSM
HV V

≡ cos β (Un)j1 + sin β (Un)j2 , (3.16b)

where Γ[hi → V V ] represents the decay width of the physical Higgs state hi in the NMSSM,
while ΓSM[HSM(Mhi)→ V V ] denotes the decay width of an SM Higgs boson with mass Mhi .
The matrix elements Rij reflect the connection between the tree-level Higgs states and the
physical states. This role is similar to Zmix. However, decoupling in the SM limit of the model
yields the additional condition that the ratio in Eq. (3.16a) reduces to 1 in this limit for the
SM-like Higgs boson of the NMSSM. For this reason, FeynHiggs employs the matrix Um (or
U0) as a unitary approximation of Zmix—see Section 2.6 of Ref. [39]. An alternative choice
involves using Xij ≡ Zmix

ij

/√∑
k |Zmix

ik |2 . However, the difference of the widths when employing
U0, Um, Zmix, or X ≡ (Xij) corresponds to effects of higher order, which should be regarded
as part of the higher-order uncertainty. The rescaling of the one-loop SM width should only
be applied for the SM-like Higgs of the NMSSM, where this implementation of the hi → V V
widths is expected to provide an approximation that is relatively close to a full one-loop result
incorporating all NMSSM contributions. However, for the other Higgs states of the NMSSM,
one-loop contributions beyond the SM may well be dominant. Actually, the farther the quantity
[Rij · (Un)j2]

/
[Rij · (Un)j1] departs from tan β, the more inaccurate the prediction based on

SM-like radiative corrections becomes.
Our second approach involves a one-loop calculation of the Higgs decay widths into on-

shell gauge bosons (see Ref. [52] for the MSSM case), including tree-level off-shell effects. This
evaluation is meant to address the case of heavy Higgs bosons at the full one-loop order. The re-
striction to on-shell kinematics is justified above the threshold for electroweak gauge-boson pro-
duction (off-shell effects at the one-loop level could be included via a numerical integration over
the squared momenta of the gauge bosons in the final state—see Refs. [75,76] for a discussion in
the MSSM). For details of our implementation, see Ref. [29], with the noteworthy feature that
contributions from Higgs–electroweak mixing A1L

G/Z vanish. In the case of the W+W− final state,
the QED IR divergences are regularised with a photon mass and cancel with bremsstrahlung
corrections: soft and hard bremsstrahlung are included according to Refs. [77, 78] (see also
Ref. [52]). We stress that the exact cancellation of the IR divergences is only achieved through
the replacement of the hiG+G− coupling with the expression in terms of the kinematic Higgs
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mass (see Ref. [29] for more details). This fact had already been observed in Ref. [52]. To extend
the validity of the calculation below the threshold, we process the Born-order term separately,
applying an off-shell kinematic integration over the squared external momentum of the gauge
bosons—see, e.g., Eq. (37) in Ref. [79]. Thus, this evaluation is performed at tree level below
threshold and at full one-loop order (for the on-shell case) above threshold. The vanishing on-
shell kinematic factor multiplying the contributions of one-loop order ensures the continuity of
the prediction at threshold. Finally, we include the one-loop squared term in the calculation.
Indeed, as we will discuss later, the tree-level contribution vanishes for a decoupling doublet,
meaning that the Higgs decays to WW/ZZ can be dominated by one-loop effects. To this end,
the infrared divergences of two-loop order are regularised in an ad-hoc fashion—which appears
compulsory as long as the two-loop order is incomplete—making use of the one-loop real radi-
ation and estimating the logarithmic term in the imaginary part of the one-loop amplitude.

3.2.3.2 Radiative decays into gauge bosons

Higgs decays into photon pairs, gluon pairs, or γZ appear at the one-loop level—i.e., Atree = 0
for all these channels. We compute the one-loop order using the FeynArts model file, although
the results are well-known analytically in the literature—see, e.g., Ref. [51] or Section III of
Ref. [80] (Ref. [79] for the MSSM). The electromagnetic coupling in these channels is set to the
value α(0), corresponding to the Thomson limit.

The use of tree-level Higgs–Goldstone couplings together with loop-corrected kinematic
Higgs masses Mhi in our calculation would induce an effective violation of Ward identities
by two-loop order terms in the amplitude: we choose to restore the proper gauge structure
by redefining the Higgs–Goldstone couplings in terms of the kinematic Higgs mass Mhi (see
Ref. [29] for more details). Since our calculation is restricted to the leading—here, one-loop—
order, the transition of the amplitude from tree-level to physical Higgs states is performed via
Um or X instead of Zmix in order to ensure the appropriate behaviour in the decoupling limit.

Leading QCD corrections to the diphoton Higgs decays have received substantial at-
tention in the literature. A frequently used approximation for this channel involves multi-
plying the amplitudes driven by quark and squark loops by the factors [1− αs(Mhi)/π] and
[1 + 8αs(Mhi)/(3 π)], respectively—see, e.g., Ref. [81]. However, these simple factors are only
valid in the limit of heavy quarks and squarks (compared with the mass of the decaying Higgs
boson). More general analytical expressions can be found in, e.g., Ref. [82]. In our calculation,
we apply the correction factors [1 + CS(τq)αs(Mhi)/π] and [1 + CP (τq)αs(Mhi)/π] to the con-
tributions of the quark q to the CP-even and the CP-odd hiγγ operators, respectively, and
[1 +C(τQ̃)αs(Mhi)/π] to the contributions of the squark Q̃ (to the CP-even operator). Here, τX
denotes the ratio

[
4m2

X(Mhi/2)/M2
hi

]
. The coefficients CS,P and C are extracted from Refs. [83]

and [84]. To obtain a consistent inclusion of the O(αs) corrections, the quark and squark masses
mX entering the one-loop amplitudes or the correction factors are chosen as defined in Eq. (5)
of Ref. [83] and Eq. (12) of Ref. [84] (rather than MS running masses).

The QCD corrections to the digluon decays include virtual corrections but also gluon and
light quark radiation. They are thus technically defined at the level of the squared amplitudes.
In the limit of heavy quarks and squarks, the corrections are known beyond NLO—see the
discussion in Ref. [79] for a list of references. The full dependence in mass was derived at
NLO in Refs. [83, 84], for both quark and squark loops. In our implementation, we follow the
prescriptions of Eqs. (51), (63), and (67) of Ref. [79] in the limit of light radiated quarks
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and heavy particles in the loop. For consistency, the masses of the particles in the one-loop
amplitude are taken as pole masses. Effects beyond this approximation can be sizeable, as
evidenced by Fig. 20 of Ref. [83] and Fig. 12 of Ref. [84]. As the CP-even and CP-odd Higgs–
gg operators do not interfere, it is straightforward to include both correction factors in the
CP-violating case. Finally, we note that parts of the leading QCD corrections to hi → gg are
induced by the real radiation of quark–antiquark pairs. In the case of the heavier quark flavours
(top, bottom, and possibly charm), the channels are experimentally easily distinguishable from
gluonic decays. Therefore, the partial widths related to these corrections could be attached to
the Higgs decays into quarks instead [85]. The resolution of this ambiguity would involve a
dedicated experimental analysis of the kinematics of the gluon radiation in hi → gqq̄ (collinear
or back-to-back emission).

The QCD corrections to the quark loops of an SM Higgs decay into γZ have been studied
in Refs. [86–88], but we do not consider them here.

3.3 Discussion concerning the remaining theoretical uncertainties
Next, we provide a summary of the main sources of theoretical uncertainties from unknown
higher-order corrections applying to our calculation of the NMSSM Higgs decays. We do not
discuss here the parametric theoretical uncertainties arising from the experimental errors of the
input parameters. For the experimentally known SM-type parameters, the induced uncertainties
can be determined in the same way as for the SM case (see, e.g., Ref. [26]). The dependence
on the unknown SUSY parameters, however, is usually not treated as a theoretical uncertainty
but rather exploited for setting indirect constraints on those parameters.

3.3.1 Higgs decays into quarks (hi → qq̄, q = c, b, t)
In our evaluation, these decays have been implemented at full one-loop order, i.e., at QCD,
electroweak, and SUSY next-to-leading order (NLO). In addition, leading QCD logarithmic
effects have been resummed within the parametrization of the Yukawa couplings in terms of
a running quark mass at the scale of the Higgs mass. The Higgs propagator-type corrections
determining the mass of the considered Higgs particle, as well as the wave function normal-
ization at the external Higgs leg of the process, contain full one-loop and dominant two-loop
contributions.

For an estimate of the remaining theoretical uncertainties, several higher-order effects
should be taken into account.

1. First, we should assess the magnitude of the missing QCD NNLO (two-loop) effects. We
stress that there should be no large logarithms associated with these corrections, since
these are already resummed through the choice of running parameters and the renormal-
ization scale. For the remaining QCD pieces, we can directly consider the situation in the
SM. In the case of the light quarks, the QCD contributions of higher order have been
evaluated and amount to ∼4% at mH = 120GeV (see, e.g., Ref. [89]). For the top quark,
the uncertainty due to missing QCD NNLO effects was estimated at 5% [26].

2. Concerning the electroweak corrections, the numerical analysis in Ref. [29] suggests that
the one-loop contribution is small—at the percentage level—for an SM-like Higgs, which is
consistent with earlier estimates in the SM [26]. For the heavy Higgs states, the numerical
analysis in Ref. [29] indicates a larger impact of such effects—at the level of ∼10% in the
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considered scenario. Assuming that the electroweak NNLO corrections are comparable to
the squared one-loop effects, our estimate for pure electroweak higher orders in decays of
heavy Higgs states reaches the percentage level. In fact, for multiteraelectronvolt Higgs
bosons, the electroweak Sudakov logarithms may require a resummation (see Ref. [53]).
Furthermore, mixed electroweak–QCD contributions are expected to be larger than the
pure electroweak NNLO corrections, adding a few more percent to the uncertainty bud-
get. For light Higgs states, the electroweak effects are much smaller, since the Sudakov
logarithms remain of comparatively modest size.

3. Finally, the variations with the squark masses in the numerical analysis in Ref. [29] for
the heavy doublet states show that the one-loop SUSY effects could amount to 5–10% for
a subteraelectronvolt stop or sbottom spectrum. In such a case, the two-loop SUSY and
the mixed QCD or electroweak–SUSY corrections may reach the percentage level. Con-
versely, for very heavy squark spectra, we expect to recover an effective singlet-extended
two-Higgs-doublet model (an effective SM if the heavy doublet and singlet states also
decouple) at low energy. However, all the parameters of this low-energy effective field
theory implicitly depend on the SUSY radiative effects, since unsuppressed logarithms of
SUSY origin generate terms of dimension ≤4—e.g., in the Higgs potential or the Higgs
couplings to SM fermions. Conversely, the explicit dependence of the Higgs decay widths
on SUSY higher-order corrections is suppressed for a large SUSY scale. In this case, the
uncertainty from SUSY corrections reduces to a parametric effect, that of the matching be-
tween the NMSSM and the low-energy Lagrangian—e.g., in the SM limit, the uncertainty
on the mass prediction for the SM-like Higgs continues to depend on SUSY logarithms
and would indirectly affect the uncertainty on the decay widths.

Considering all these higher-order effects together, we conclude that the decay widths of the
SM-like Higgs should be relatively well-controlled (up to ∼5%), while those of a heavy Higgs
state could receive sizeable higher-order contributions, possibly adding up to the level of ∼10%.

3.3.2 Higgs decays into leptons
Here, QCD corrections appear only at two-loop order in the Higgs propagator-type corrections,
as well as in the counterterms of the electroweak parameters, and only from three-loop order
onwards in the genuine vertex corrections. Thus, the theory uncertainty is expected to be
substantially smaller than in the case of quark final states. For an SM-like Higgs, associated
uncertainties were estimated to be below the percentage level [28]. For heavy Higgs states,
however, electroweak one-loop corrections are enhanced by Sudakov logarithms (see Ref. [53])
and reach the ∼10% level for Higgs masses of the order of 1TeV, so that the two-loop effects
could amount to a few percent. In addition, light status may generate a sizeable contribution
of SUSY origin, where the unknown corrections are of two-loop electroweak order.

3.3.3 Higgs decays into WW/ZZ
The complexity of these channels is illustrated by our presentation of two separate estimates,
expected to perform differently in various regimes.

1. In the SM, the uncertainty of Prophecy4f in the evaluation of these channels was as-
sessed at the subpercentage level below 500GeV, but up to ∼15% at 1TeV [26]. For an
SM-like Higgs, our numerical analysis in Ref. [29] shows that the one-loop electroweak
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corrections are somewhat below 10%, making plausible a subpercentage uncertainty in
the results employing Prophecy4f. Conversely, the assumption that the decay widths for
an NMSSM Higgs boson can be obtained through a simple rescaling of the result for the
width in the SM by tree-level couplings is, in itself, a source of uncertainties. We expect
this approximation to be accurate only in the limit of a decoupling SM-like composition
of the NMSSM Higgs boson. If these SM-like characteristics are altered through radia-
tive corrections of SUSY origins or NMSSM Higgs mixing effects—both of which may
still reach the level of several percentage in a phenomenologically realistic set-up—the
uncertainty in the rescaling procedure for the decay widths should be of corresponding
magnitude.

2. In the case of heavier states, our numerical analysis in Ref. [29] indicates that the previous
procedure is unreliable in the mass range &500GeV. In particular, for heavy doublets in
the decoupling limit, radiative corrections dominate over the—then vanishing—tree-level
amplitude, shifting the widths by orders of magnitude. In such a case, our one-loop
calculation captures only the leading order and one can expect sizeable contributions at
the two-loop level: as discussed in the numerical analysis in Ref. [29], shifting the quark
masses between pole and MS values—two legitimate choices at the one-loop order that
differ in the treatment of QCD two-loop contributions—results in modifications of the
widths of order ∼50%. Conversely, one expects the decays of a decoupling heavy doublet
into electroweak gauge bosons to remain a subdominant channel, so that a less accurate
prediction may be tolerable. It should be noted, however, that the magnitude of the
corresponding widths is sizeably enhanced by the effects of one-loop order; this may be
of interest regarding their phenomenological impact.

3.3.4 Radiative decays into gauge bosons
As these channels appear at the one-loop order, our (QCD-corrected) results represent (only)
an improved leading-order evaluation. Yet the situation is contrasted.

1. In the SM, the uncertainty for a Higgs decay into γγ was estimated at the level of 1% in
Ref. [26]; however, the corresponding calculation includes both QCD NLO and electroweak
NLO corrections. In our case, only QCD NLO corrections (with full mass dependence)
are taken into account. The comparison with NMSSMCALC in Ref. [29] provides us with
a lower bound on the magnitude of electroweak NLO and QCD NNLO effects: both
evaluations are of the same order but differ by a few percent. The uncertainty in the
SUSY contribution should be considered separately, as light charginos or sfermions could
have a sizeable impact. In any case, we expect the accuracy of our calculation to perform
at the level of &4%.

2. In the case of the Higgs decays into gluons, for the SM prediction—including QCD cor-
rections with full mass dependence and electroweak two-loop effects—an uncertainty of
3% from QCD effects and 1% from electroweak effects was estimated in Ref. [26]. In our
case, the QCD corrections are only included in the heavy-loop approximation, and NLO
electroweak contributions have not been considered. Consequently, the uncertainty bud-
get should settle above the corresponding estimate for the SM quoted here. In the case
of heavy Higgs bosons, the squark spectrum could have a significant impact on the QCD
two-loop corrections, as exemplified in Fig. 5 of Ref. [84].
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3. For hi → γZ, QCD corrections are not yet available, so the uncertainty should be above
the ∼5% estimated in the SM [26].

3.3.5 Additional sources of uncertainty from higher orders
For an uncertainty estimate, the following effects apply to essentially all channels and should
be considered as well.

1. The mixing in the Higgs sector plays a central role in the determination of the decay
widths. Following the treatment in FeynHiggs, we have considered Zmix in all our one-
loop evaluations, as prescribed by the LSZ reduction. Most public codes consider a unitary
approximation in the limit of the effective scalar potential (U0, in our notation). The
analysis of Ref. [39] and our most recent analysis in Ref. [29]—employing Um, a more
reliable unitary approximation than U0—indicate that the different choices of mixing
matrices may affect the Higgs decays by a few percent (and far more in contrived cases).
However, even the use of Zmix is, of course, subject to uncertainties from unknown higher-
order corrections. While the Higgs propagator-type corrections determining the mass of
the considered Higgs boson and the wave function normalization contain corrections up
to the two-loop order, the corresponding prediction for the mass of the SM-like Higgs still
has an uncertainty at the level of about 2%, depending on the SUSY spectrum.

2. In this section, we confined ourselves to the evaluation of the Higgs decay widths into
SM particles and did not consider the branching ratios. For the latter, an implementation
at the full one-loop order of many other two-body decays, relevant, in particular, for
the heavy Higgs states, would be desirable, but goes beyond the scope of the present
analysis. Furthermore, to consider the Higgs branching ratios at the one-loop order, we
would have to consider three-body widths at the tree level, for instance hi → bb̄Z, since
these are formally of the same magnitude as the one-loop effects for two-body decays [53].
In addition, these three-body decays—typically real radiation of electroweak and Higgs
bosons—exhibit Sudakov logarithms that would require resummation in the limit of heavy
Higgs states [53].

3. At decay thresholds, the approximation of free particles in the final state is not sufficient,
and a more accurate treatment would require the evaluation of final-state interactions.
Several cases have been discussed in, e.g., Refs. [69, 71,90].

In this discussion, we did not attempt to provide a quantitative estimate of the remaining
theoretical uncertainties from unknown higher-order corrections, as such an estimate would,
in any case, sensitively depend on the considered region in parameter space. Instead, we have
pointed out the various sources of higher-order uncertainties remaining at the level of our state-
of-the-art evaluation of the Higgs decays into SM particles in the NMSSM. For a decoupling
SM-like Higgs boson, one would ideally expect that the level of accuracy of the predictions
approaches that achieved in the SM. However, even in this limit, missing NNLO pieces—which
are known for the SM, but not for the NMSSM—give rise to a somewhat larger theoretical
uncertainty in the NMSSM. Furthermore, uncertainties of parametric nature (for instance,
from the theoretical prediction of the Higgs boson mass) need to be taken into account as well.
For heavy Higgs states, the impact of electroweak Sudakov logarithms and SUSY corrections
add to the theoretical uncertainty to an extent that is strongly dependent on the details of the
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spectrum and the characteristics of the Higgs state (see Ref. [53]). For a decoupling doublet at
∼1TeV, an uncertainty of ∼5–15% may be used as a guideline for the fermionic and radiative
decays, while the uncertainty may be as large as ∼50% in hi →WW/ZZ.
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