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Abstract
We explain the reasons for the interest in flavor physics. We describe flavor
physics and the related CP violation within the Standard Model, and explain
how the B-factories proved that the CKM (KM) mechanism dominates the
flavor changing (CP violating) processes that have been observed in meson
decays. We explain the implications of flavor physics for new physics, with
emphasis on the “new physics flavor puzzle”, and present the idea of min-
imal flavor violation as a possible solution. We explain the “standard model
flavor puzzle”, and present the Froggatt-Nielsen mechanism as a possible solu-
tion. We show that measurements of the Higgs boson decays may provide new
opportunities for making progress on the various flavor puzzles. We briefly
discuss two sets of measurements and their possible theoretical implications:
BR(h→ τµ) and R(D(∗)).
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1 Introduction

1.1 What is flavor?
The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned the same quantum charges. Within the Standard
Model, when thinking of its unbroken SU(3)C × U(1)EM gauge group, there are four different types of
particles, each coming in three flavors:

– Up-type quarks in the (3)+2/3 representation: u, c, t;
– Down-type quarks in the (3)−1/3 representation: d, s, b;
– Charged leptons in the (1)−1 representation: e, µ, τ ;
– Neutrinos in the (1)0 representation: ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Stan-
dard Model, these are the nine masses of the charged fermions and the four “mixing parameters” (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for the W± interactions with lepton-antilepton pairs.

© CERN, 2020, CC-BY-4.0 licence, doi:10.23730/CYRSP-2020-005.79, ISSN 0531-4283.

https://creativecommons.org/licenses/by/4.0/
http://doi.org/10.23730/CYRSP-2020-005.79


The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-
portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal.1 An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)
are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type
flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) muon decay via
µ→ eν̄eνµ, (ii)K− → µ−ν̄µ (which corresponds, at the quark level, to sū→ µ−ν̄µ), and (iii)B → ψK
(b→ cc̄s). Within the Standard Model, these processes are mediated by the W -bosons and occur at tree
level. In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but
not both, and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i)
muon decay via µ→ eγ, (ii) KL → µ+µ− (which corresponds, at the quark level, to sd̄→ µ+µ−), and
(iii) B → φK (b→ ss̄s). Within the Standard Model, these processes do not occur at tree level, and are
often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of
intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.
Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;
– The size of ∆mK led to a successful prediction of the charm mass;
– The size of ∆mB led to a successful prediction of the top mass;
– The measurement of εK led to predicting the third generation;
– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phase δKM [2]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor
puzzle.

– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model
does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

1In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of all flavor physics
in the Yukawa interactions among the gauge-interaction eigenstates.
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2 The Standard Model
A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking (SSB); (ii) The repre-
sentations of fermions and scalars. The Standard Model (SM) is defined as follows:

– The symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y . (1)

– It is spontaneously broken by the VEV of a single Higgs scalar,

φ(1, 2)+1/2, (〈φ0〉 = v/
√

2) , (2)

GSM → SU(3)C × U(1)EM (QEM = T3 + Y ) . (3)

– There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1 . (4)

2.1 The Lagrangian
The most general renormalizable Lagrangian with scalar and fermion fields can be decomposed into

L = Lkin + Lψ + LYuk + Lφ . (5)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, Lψ gives fermion mass
terms, LYuk describes the Yukawa interactions, and Lφ gives the scalar potential. We now find the
specific form of the Lagrangian made of the fermion fields QLi, URi, DRi, LLi and ERi (4), and the
scalar field (2), subject to the gauge symmetry (1) and leading to the SSB of Eq. (3).

2.1.1 Lkin

The local symmetry requires the following gauge boson degrees of freedom:

Gµa(8, 1)0, Wµ
a (1, 3)0, Bµ(1, 1)0 . (6)

The corresponding field strengths are given by

Gµνa = ∂µGνa − ∂νGµa − gsfabcG
µ
bG

ν
c ,

Wµν
a = ∂µW ν

a − ∂νWµ
a − gεabcW

µ
b W

ν
c ,

Bµν = ∂µBν − ∂νBµ . (7)

The covariant derivative is

Dµ = ∂µ + igsG
µ
aLa + igWµ

b Tb + ig′BµY , (8)

where the La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2λa for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2×2 Pauli matrices 1
2τb for doublets, 0 for singlets), and the Y ’s are

the U(1)Y charges. Explicitly, the covariant derivatives acting on the various scalar and fermion fields
are given by

Dµφ =

(
∂µ +

i

2
gWµ

b τb +
i

2
g′Bµ

)
φ ,
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DµQLi =

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gWµ

b τb +
i

6
g′Bµ

)
QLi ,

DµURi =

(
∂µ +

i

2
gsG

µ
aλa +

2i

3
g′Bµ

)
URi ,

DµDRi =

(
∂µ +

i

2
gsG

µ
aλa −

i

3
g′Bµ

)
DRi ,

DµLLi =

(
∂µ +

i

2
gWµ

b τb −
i

2
g′Bµ

)
LLi ,

DµERi =
(
∂µ − ig′Bµ

)
ERi . (9)

Lkin is given by

LSM
kin = −1

4
Gµνa Gaµν −

1

4
Wµν
b Wbµν −

1

4
BµνBµν

−iQLiD/QLi − iURiD/URi − iDRiD/DRi − iLLiD/LLi − iERiD/ERi
−(Dµφ)†(Dµφ) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 Lψ
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
ψ = 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y d

ijQLiφDRj + Y u
ijQLiφ̃URj + Y e

ijLLiφERjh.c. , (12)

where φ̃ = iτ2φ
†, and the Y f are general 3 × 3 matrices of dimensionless couplings. This part of the

Lagrangian is, in general, flavor-dependent (that is, Y f 6∝ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y e → Ŷe = UeLY
eU †eR , (13)

to change the basis to one where Y e is diagonal and real:

Ŷ e = diag(ye, yµ, yτ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:(

νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
; eR, µR, τR, (15)

where e, µ, τ are ordered by the size of ye,µ,τ (from smallest to largest).

Similarly, without loss of generality, we can use a bi-unitary transformation,

Y u → Ŷu = VuLY
uV †uR , (16)
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to change the basis to one where Ŷ u is diagonal and real:

Ŷ u = diag(yu, yc, yt) . (17)

In the basis defined in Eq. (17), we denote the components of the quark SU(2)-doublets, and the quark
up SU(2)-singlets, as follows:(

uL
duL

)
,

(
cL
dcL

)
,

(
tL
dtL

)
; uR, cR, tR, (18)

where u, c, t are ordered by the size of yu,c,t (from smallest to largest).

We can use yet another bi-unitary transformation,

Y d → Ŷd = VdLY
dV †dR , (19)

to change the basis to one where Ŷ d is diagonal and real:

Ŷ d = diag(yd, ys, yb) . (20)

In the basis defined in Eq. (20), we denote the components of the quark SU(2)-doublets, and the quark
down SU(2)-singlets, as follows:(

udL
dL

)
,

(
usL
sL

)
,

(
ubL
bL

)
; dR, sR, bR, (21)

where d, s, b are ordered by the size of yd,s,b (from smallest to largest).

Note that if VuL 6= VdL, as is the general case, then the interaction basis defined by (17) is different
from the interaction basis defined by (20). In the former, Y d can be written as a unitary matrix times a
diagonal one,

Y u = Ŷ u, Y d = V Ŷ d . (22)

In the latter, Y u can be written as a unitary matrix times a diagonal one,

Y d = Ŷ d, Y u = V †Ŷ u . (23)

In either case, the matrix V is given by

V = VuLV
†
dL , (24)

where VuL and VdL are defined in Eqs. (16) and (19), respectively. Note that VuL, VuR, VdL and VdR
depend on the basis from which we start the diagonalization. The combination V = VuLV

†
dL, however,

does not. This is a hint that V is physical. Indeed, below we see that it plays a crucial role in the charged
current interactions.

2.1.4 Lφ
The scalar potential is given by

LSM
φ = −µ2φ†φ− λ(φ†φ)2 . (25)

Choosing µ2 < 0 and λ > 0 leads to the required spontaneous symmetry breaking. This part of the
Lagrangian is also CP conserving.
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Table 1: The SM particles

particle spin color QEM mass [v]

W± 1 (1) ±1 1
2g

Z0 1 (1) 0 1
2

√
g2 + g′2

A0 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
√

2λ

e, µ, τ 1/2 (1) −1 ye,µ,τ/
√

2
νe, νµ, ντ 1/2 (1) 0 0

u, c, t 1/2 (3) +2/3 yu,c,t/
√

2

d, s, b 1/2 (3) −1/3 yd,s,b/
√

2

2.2 The spectrum
The spectrum of the standard model is presented in Table 1.

All masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,
and for the fermions, this is expected: In the absence of spontaneous symmetry breaking, the former
would be protected by the gauge symmetry and the latter by their chiral nature. For the Higgs boson, the
situation is different, as a mass-squared term does not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because they
are in vector-like representations of the SU(3)C × U(1)EM group: The LH and RH charged lepton
fields, e, µ and τ , are in the (1)−1 representation; The LH and RH up-type quark fields, u, c and t, are
in the (3)+2/3 representation; The LH and RH down-type quark fields, d, s and b, are in the (3)−1/3

representation. On the other hand, the neutrinos remain massless in spite of the fact that they are in the
(1)0 representation of SU(3)C × U(1)EM, which allows for Majorana masses. Such masses require a
VEV carried by a scalar field in the (1, 3)+1 representation of the SU(3)C×SU(2)L×U(1)Y symmetry,
but there is no such field in the SM.

The experimental values of the charged fermion masses are [1] 2

me = 0.510998946(3) MeV , mµ = 105.6583745(24) MeV , mτ = 1776.86(12) MeV ,

mu = 2.2+0.5
−0.4 MeV , mc = 1.275+0.025

−0.035 GeV , mt = 173.1± 0.9 GeV ,

md = 4.7+0.5
−0.3 MeV , ms = 95+9

−3 MeV , mb = 4.18+0.04
−0.03 GeV . (26)

2.3 The interactions
Within the SM, the fermions have five types of interactions. These interactions are summarized in Ta-
ble 2. In the next few subsections, we explain the entries of this table.

2.3.1 EM and strong interactions
By construction, a local SU(3)C × U(1)EM symmetry survives the SSB. The SM has thus the photon
and gluon massless gauge fields. All charged fermions interact with the photon:

LQED,ψ = −2e

3
uiA/ui +

e

3
diA/di + e`iA/`i , (27)

2See [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark masses in the
MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).
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Table 2: The SM fermion interactions

interaction fermions force carrier coupling flavor

Electromagnetic u, d, ` A0 eQ universal
Strong u, d g gs universal

NC weak all Z0 e(T3−s2WQ)
sW cW

universal
CC weak ūd/¯̀ν W± gV/g non-universal/universal
Yukawa u, d, ` h yq diagonal

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and `1,2,3 = e, µ, τ . We emphasize the following points:

1. The photon couplings are vector-like and parity conserving.
2. Diagonality: The photon couples to e+e−, µ+µ− and τ+τ−, but not to e±µ∓, e±τ∓ or µ±τ∓

pairs, and similarly in the up and down sectors.
3. Universality: The couplings of the photon to different generations are universal.

All colored fermions (namely, quarks) interact with the gluon:

LQCD,ψ = −gs
2
qλaG/aq , (28)

where q = u, c, t, d, s, b. We emphasize the following points:

1. The gluon couplings are vector-like and parity conserving.
2. Diagonality: The gluon couples to t̄t, c̄c, etc., but not to t̄c or any other flavor changing pair.
3. Universality: The couplings of the gluon to different quark generations are universal.

The universality of the photon and gluon couplings are a result of the SU(3)C × U(1)EM gauge invari-
ance, and thus hold in any model, and not just within the SM.

2.3.2 Z-mediated weak interactions
All SM fermions couple to the Z-boson:

LZ,ψ =
e

sW cW

[
−
(

1

2
− s2

W

)
eLiZ/eLi + s2

W eRiZ/eRi +
1

2
νLαZ/νLα (29)

+

(
1

2
− 2

3
s2
W

)
uLiZ/uLi −

2

3
s2
W uRiZ/uRi −

(
1

2
− 1

3
s2
W

)
dLiZ/dLi +

1

3
s2
W dRiZ/dRi

]
.

where να = νe, νµ, ντ . We emphasize the following points:

1. The Z-boson couplings are chiral and parity violating.
2. Diagonality: The Z-boson couples diagonally and, as a result of this, there are no Z-mediated

flavor changing neutral current (FCNC) processes.
3. Universality: The couplings of the Z-boson to different fermion generations are universal.

The universality is a result of a special feature of the SM: all fermions of given chirality and given charge
come from the same SU(2)L × U(1)Y representation.
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As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z → e+e−) = (3.363± 0.004)% , (30)

BR(Z → µ+µ−) = (3.366± 0.007)% ,

BR(Z → τ+τ−) = (3.367± 0.008)% .

beautifully confirms universality:

Γ(µ+µ−)/Γ(e+e−) = 1.0009± 0.0028 ,

Γ(τ+τ−)/Γ(e+e−) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z → e+µ−) < 7.5× 10−7 ,

BR(Z → e+τ−) < 9.8× 10−6 ,

BR(Z → µ+τ−) < 1.2× 10−5 . (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = − g√
2

(
νeL W/

+e−L + νµL W/
+µ−L + ντL W/

+τ−L + h.c.
)

. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to τ ν̄τ , to µν̄µ and to eν̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ → e+νe) = (10.71± 0.16)× 10−2 ,

BR(W+ → µ+νµ) = (10.63± 0.15)× 10−2 ,

BR(W+ → τ+ντ ) = (11.38± 0.21)× 10−2 . (33)

You must be impressed by the nice agreement!

As concerns quarks, things are more complicated, since there is no interaction basis that is also a
mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = − g√
2

(
udL W/

+dL + usL W/
+sL + ubL W/

+bL + h.c.
)

. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

LuYuk = (udL usL ubL)V †Ŷ u

uRcR
tR

 , (35)
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which tells us straightforwardly how to transform to the mass basis:uLcL
tL

 = V

udLusL
ubL

 . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

− g√
2

(
uL cL tL

)
V W/ +

dLsL
bL

+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL (38)

is basis independent. The matrix V is called the CKM matrix [2, 3].

Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,
consequently, parity is violated by these interactions. But then there is an important difference:

1. TheW couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

Γ(W+ → `+ν`) ∝ 1 ,

Γ(W+ → uidj) ∝ 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
Γ(W → hadrons)/Γ(W → leptons) ≈ 2 . (41)

Experimentally

BR((W → leptons) = (32.40± 0.27)% BR((W → hadrons) = (67.60± 0.27)% , (42)

which leads to
Γ(W → hadrons)/Γ(W → leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

Γ(W → uX) = Γ(W → cX) =
1

2
Γ(W → hadrons) . (44)

Experimentally,
Γ(W → cX)/Γ(W → hadrons) = 0.49± 0.04 . (45)
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2.3.4 Yukawa interactions
The Yukawa interactions are given by

LYuk = − h

v
(me eL eR +mµ µL µR +mτ τL τR

+mu uL uR +mc cL cR +mt tL tR +md dL dR +ms sL sR +mb bL bR + h.c.
)

.

To see that the Higgs boson couples diagonally to the quark mass eigenstates, let us start from an
arbitrary interaction basis:

hDLY
dDR = hDL(V †dLVdL)Y d(V †dRVdR)DR

= h(DLV
†
dL)(VdLY

dV †dR)(VdRDR)

= h(dL sL bL)Ŷ d(dR sR bR)T . (46)

We conclude that the Higgs couplings to the fermion mass eigenstates have the following features:

1. Diagonality.
2. Non-universality.
3. Proportionality to the fermion masses: the heavier the fermion, the stronger the coupling. The

factor of proportionality is mψ/v.

Thus, the Higgs boson decay is dominated by the heaviest particle which can be pair-produced in
the decay. Formh ∼ 125 GeV, this is the bottom quark. Indeed, the SM predicts the following branching
ratios quoted in Table 3 for the leading decay modes. The following comments are in order with regard
to the predicted branching ratios:

1. From the seven branching ratios, three (b, τ, c) stand for two-body tree-level decays. Thus, at tree
level, the respective branching ratios obey BRb̄b : BRτ+τ− : BRcc̄ = 3m2

b : m2
τ : 3m2

c . QCD
radiative corrections somewhat suppress the two modes with the quark final states (b, c) compared
to one with the lepton final state (τ ).

2. The WW ∗ and ZZ∗ modes stand for the three-body tree-level decays, where one of the vector
bosons is on-shell and the other off-shell.

3. The Higgs boson does not have a tree-level coupling to gluons since it carries no color (and the
gluons have no mass). The decay into final gluons proceeds via loop diagrams. The dominant
contribution comes from the top-quark loop.

4. Similarly, the Higgs decays into final two photons via loop diagrams with small (BRγγ ∼ 0.002),
but observable, rate. The dominant contributions come from the W and the top-quark loops which
interfere destructively.

Experimentally, the decays into final ZZ∗, WW ∗, γγ, bb̄ and τ+τ− have been established.

2.4 Global symmetries
The SM has an accidental global symmetry:

GSM
global(Y

u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (47)

This symmetry leads to various testable predictions. Here are a few examples:

– The proton must not decay, e.g. p→ e+π is forbidden.
– FCNC decays of charged leptons must not occur, e.g. µ→ eγ is forbidden.
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW ∗ 0.21 0.99± 0.15 3-body
gg 0.09 loop

τ+τ− 0.06 1.09± 0.23
ZZ∗ 0.03 1.17± 0.23 3-body
cc̄ 0.03
γγ 0.002 1.14± 0.14 loop

– Neutrinos are massless, mν = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
zνij
Λ LiLjφφ terms break U(1)e × U(1)µ × U(1)τ .

– At dimension six, yijkl
Λ2 QiQjQkLl terms break U(1)B .

Thus, given that mν 6= 0, we learn that the SM is, at best, a good low energy effective field theory.

In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

GSM
global(Y

u,d,e = 0) = SU(3)3
q × SU(3)2

` × U(1)5 , (48)

where

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2
` = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3

q × SU(3)2
` , under which

QL → VQQL , UR → VUUR , DR → VDDR , LL → VLLL , ER → VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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One can think of the quark Yukawa couplings as spurions that break the global SU(3)3
q symmetry

(but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3
q

, Y d ∼ (3, 1, 3̄)SU(3)3
q

, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
` symmetry (but are neutral

under U(1)e × U(1)µ × U(1)τ ),
Y e ∼ (3, 3̄)SU(3)2

`
. (52)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.2).

2.5 Counting parameters
How many independent parameters are there in LqYuk? The two Yukawa matrices, Y u and Y d, are 3× 3
and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern ofGglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three 3× 3 unitary matrices minus the phase
related to U(1)B). For example, we can use the unitary transformations QL → VQQL, UR → VUUR
and DR → VDDR, to lead to the following interaction basis:

Y d = λd, Y u = V †λu , (53)

where λd,u are diagonal,

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , (54)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the
nine real parameters as six quark masses and three mixing angles, while the single phase is δKM.

How many independent parameters are there in L`Yuk? The Yukawa matrix Y e is 3 × 3 and
complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,
freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 × 3 unitary
matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL →
VLLL and ER → VEER, to lead to the following interaction basis:

Y e = λe = diag(ye, yµ, yτ ) . (55)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters
as the three charged lepton masses. We must, however, modify the model when we take into account the
evidence for neutrino masses.

3 The CKM matrix
Among the SM interactions, theW -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix
The CKM matrix V is a 3× 3 unitary matrix. Its form, however, is not unique:
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) →
(u, c, t) and (d1, d2, d3)→ (d, s, b). The elements of V are written as follows:

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3× 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since Mdiag

q

remains unchanged by such transformations. However, V does change:

V → PuV P
∗
d . (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase δKM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (58)

where cij ≡ cos θij and sij ≡ sin θij . The θij’s are the three real mixing parameters while δ is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, δ = 74o . (59)

Since s13 � s23 � s12 � 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (λ,A, ρ, η)
with λ = |Vus| ≈ 0.23 playing the role of an expansion parameter and η representing the CP violating
phase [79, 80]:

V =

 1− 1
2λ

2 − 1
8λ

4 λ Aλ3(ρ− iη)
−λ+ 1

2A
2λ5[1− 2(ρ+ iη)] 1− 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ

2)(ρ+ iη)] −Aλ2 + 1
2Aλ

4[1− 2(ρ+ iη)] 1− 1
2A

2λ4

 . (60)

The experimental ranges for the four parameters are given by

λ = 0.2251± 0.0005 , (61)

A = 0.81± 0.03 ,

ρ = +0.160± 0.007 ,

η = +0.350± 0.006 .

3.2 Unitarity triangles
A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (62)
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VtdVtb
*

VcdVcb
*

α=ϕ2
β=ϕ1

γ=ϕ3

VudVub
*

Fig. 1: Graphical representation of the unitarity constraint VudV ∗ub + VcdV
∗
cb + VtdV

∗
tb = 0 as a triangle in the

complex plane.

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (63)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗cb|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (ρ, η). The area of the rescaled unitarity
triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex sides
are

Ru ≡
∣∣∣∣VudVubVcdVcb

∣∣∣∣ =
√
ρ2 + η2 , Rt ≡

∣∣∣∣VtdVtbVcdVcb

∣∣∣∣ =
√

(1− ρ)2 + η2 . (65)

The three angles of the unitarity triangle are defined as follows [81, 82]:

α ≡ arg

[
−
VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−
VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−
VudV

∗
ub

VcdV
∗
cb

]
. (66)

They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

βs ≡ arg

[
−
VtsV

∗
tb

VcsV ∗cb

]
, βK ≡ arg

[
−
VcsV

∗
cd

VusV ∗ud

]
. (67)

3.3 The CKM matrix from tree level processes
The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

λ = 0.2245± 0.0005 , A = 0.84± 0.02 , ρ = 0.14± 0.04 , η = 0.37± 0.03 . (68)
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Table 4: FCCC processes and CKM entries

Process CKM
u→ d`+ν |Vud| = 0.97417± 0.00021
s→ u`−ν̄ |Vus| = 0.2248± 0.0006

c→ d`+ν or νµ + d→ c+ µ− |Vcd| = 0.220± 0.005
c→ s`+ν or cs̄→ `+ν |Vcs| = 0.995± 0.016

b→ c`−ν̄ |Vcb| = 0.0405± 0.0015
b→ u`−ν̄ |Vub| = 0.0041± 0.0004
pp→ tX |Vtb| = 1.01± 0.03

b→ scū and b→ suc̄ γ = 73± 5o

Table 5: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd ∆mK/mK = 7.0× 10−15 εK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.2
bd ∆mB/mB = 6.3× 10−14 SψK = +0.70± 0.02
bs ∆mBs/mBs = 2.1× 10−12 Sψφ = −0.04± 0.06

The λ and A parameters are very well determined. The main effort in CKM measurements is thus aimed
at further improving our knowledge of ρ and η. The present status of our knowledge is best seen in a plot
of the various constraints and the final allowed region in the ρ − η plane. This is shown in Fig. 3. The
present status of our knowledge of the absolute values of the various entries in the CKM matrix can be
summarized as follows:

|V | =

0.97417± 0.00021 0.2248± 0.0006 (4.1± 0.4)× 10−3

0.2249± 0.0005 0.9735± 0.0001 (4.05± 0.15)× 10−2

(8.7± 0.3)× 10−3 (4.03± 0.13)× 10−2 0.99915± 0.00005

 . (69)

4 Flavor changing neutral current (FCNC) processes
A very useful class of FCNC is that of neutral meson mixing. Nature provides us with four pairs of
neutral mesons: K0−K0, B0−B0, B0

s −B0
s, andD0−D0. Mixing in this context refers to a transition

such asK0 → K0 (s̄d→ d̄s).3 The experimental results for CP conserving and CP violating observables
related to neutral meson mixing (mass splittings and CP asymmetries in tree level decays, respectively)
are given in Table 5.

4.1 The SM suppression factors
Our aim in this section is to explain the suppression factors that affect FCNC within the SM.

(a) Loop suppression. The W -boson cannot mediate FCNC processes at tree level, since it cou-
ples to up-down pairs, or to neutrino-charged lepton pairs. Obviously, only neutral bosons can mediate
FCNC at tree level. The SM has four neutral bosons: the gluon, the photon, the Z-boson and the

3These transitions involve four-quark operators. When calculating the matrix elements of these operators between meson-
antimeson states, approximate symmetries of QCD are of no help. Instead, one uses lattice calculations to relate, for example,
the B0 → B0 transition to the corresponding quark process, b̄d→ d̄b.
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Higgs-boson. As concerns the massless gauge bosons, the gluon and the photon, their couplings are
flavor-universal and, in particular, flavor-diagonal. This is guaranteed by gauge invariance. The univer-
sality of the kinetic terms in the canonical basis requires universality of the gauge couplings related to
the unbroken symmetries. Hence neither the gluon nor the photon can mediate flavor changing processes
at tree level. The situation concerning the Z-boson and the Higgs-boson is more complicated. In fact,
the diagonality of their tree-level couplings is a consequence of special features of the SM, and can be
violated with new physics.

The Z-boson, similarly to the W -boson, does not correspond to an unbroken gauge symmetry (as
manifest in the fact that it is massive). Hence, there is no fundamental symmetry principle that forbids
flavor changing couplings. Yet, as mentioned in Section 2.3.2, in the SM this does not happen. The key
point is the following. For each sector of mass eigenstates, characterized by spin, SU(3)C representation
and U(1)EM charge, there are two possibilities:

1. All mass eigenstates in this sector originate from interaction eigenstates in the same SU(2)L ×
U(1)Y representation.

2. The mass eigenstates in this sector mix interaction eigenstates of different SU(2)L × U(1)Y rep-
resentations (but, of course, with the same T3 + Y ).

Let us examine the Z couplings in the interaction basis in the subspace of all states that mix within a
given sector of mass eigenstates:

1. In the first class, the Z couplings in this subspace are universal, namely they are proportional to
the unit matrix (times T3 − Q sin2 θW of the relevant interaction eigenstates). The rotation to the
mass basis maintains the universality: VfM × 1× V †fM = 1 (f = u, d, e; M = L,R).

2. In the second class, the Z couplings are only “block-universal”. In each sub-block i of mi interac-
tion eigenstates that have the same (T3)i, they are proportional to the mi×mi unit matrix, but the
overall factor of (T3)i − Q sin2 θW is different between the sub-blocks. In this case, the rotation
to the mass basis, VfM × diag{[(T3)1 − Qs2

W ]1m1 , [(T3)2 − Qs2
W ]1m2 , . . .} × V †fM , does not

maintain the universality, nor even the diagonality.

The special feature of the SM fermions is that they belong to the first class: All fermion mass
eigenstates in a given SU(3)C×U(1)EM representation come from the same SU(3)C×SU(2)L×U(1)Y
representation.4 For example, all the left-handed up quark mass eigenstates, which are in the (3)+2/3

representation, come from interaction eigenstates in the (3, 2)+1/6 representation. This is the reason that
the SM predicts universal Z couplings to fermions. If, for example, Nature had left-handed quarks in the
(3, 1)+2/3 representation, then the Z couplings in the left-handed up sector would be non-universal and
the Z could mediate FCNC.

The Yukawa couplings of the Higgs boson are not universal. In fact, in the interaction basis, they
are given by completely general 3 × 3 matrices. Yet, as explained in Section 2.3.4, in the fermion mass
basis they are diagonal. The reason is that the fermion mass matrix is proportional to the corresponding
Yukawa matrix. Consequently, the mass matrix and the Yukawa matrix are simultaneously diagonalized.
The special features of the SM in this regard are the following:

1. All the SM fermions are chiral, and therefore there are no bare mass terms.
2. The scalar sector has a single Higgs doublet.

In contrast, either of the following possible extensions would lead to flavor changing Higgs couplings:

1. There are quarks or leptons in vector-like representations, and thus there are bare mass terms.
4This is not true for the SM bosons. The vector boson mass eigenstates in the (1)0 representation come from interaction

eigenstates in the (1, 3)0 and (1, 1)0 representations (W3 and B, respectively).
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2. There is more than one SU(2)L-doublet scalar.

We conclude that within the SM, all FCNC processes are loop suppressed. However, in extensions
of the SM, FCNC can appear at the tree level, mediated by the Z boson or by the Higgs boson or by new
massive bosons.

(b) CKM suppression. Obviously, all flavor changing processes are proportional to off-diagonal
entries in the CKM matrix. A quick look at the absolute values of the off-diagonal entries of the CKM
matrix (69) reveals that they are small. A rough estimate of the CKM suppression can be acquired by
counting powers of λ in the Wolfenstein parametrization (60): |Vus| and |Vcd| are suppressed by λ, |Vcb|
and |Vts| by λ2, |Vub| and |Vtd| by λ3.

For example, the amplitude for b → sγ decay comes from penguin diagrams, dominated by the
intermediate top quark, and suppressed by |VtbVts| ∼ λ2. As another example, the B0 − B0 mix-
ing amplitude comes from box diagrams, dominated by intermediate top quarks, and suppressed by
|VtbVtd|2 ∼ λ6.

(c) GIM suppression. If all quarks in a given sector were degenerate, then there would be no flavor
changingW -couplings. A consequence of this fact is that FCNC in the down (up) sector are proportional
to mass-squared differences between the quarks of the up (down) sector. For FCNC processes that involve
only quarks of the first two generations, this leads to a strong suppression factor related to the light quark
masses, and known as Glashow-Iliopoulos-Maiani (GIM) suppression.

Let us take as an example ∆mK , the mass splitting between the two neutral K-mesons. We have
∆mK = 2|MKK̄ |, where MKK̄ corresponds to the K0 → K0 transition and comes from box diagrams.
The top contribution is CKM-suppressed compared to the contributions from intermediate up and charm,
so we consider only the latter:

MKK̄ '
∑
i,j=u,c

G2
Fm

2
W

16π2
〈K0|(d̄LγµsL)2|K0〉(VisV ∗idVjsV ∗jd)× F (xi, xj) , (70)

where xi = m2
i /m

2
W . If we had mu = mc, the amplitude would be proportional to (VusV

∗
ud + VcsV

∗
cd)

2,
which vanishes in the two generation limit. We conclude that ∆mK ∝ (m2

c −m2
u)/m2

W , which is the
GIM suppression factor.

For the B0−B0 and Bs−Bs mixing amplitudes, the top-mediated contribution is not CKM sup-
pressed compared to the lighter generations. The mass ratio m2

t /m
2
W enhances, rather than suppresses,

the top contribution. Consequently, the MBB̄ amplitude is dominated by the top contribution:

MBB̄ '
G2
Fm

2
W

16π2
〈B0|(d̄LγµbL)2|B0〉(VtbV ∗td)2 × F (xt, xt) . (71)

4.2 SM1.5: FCNC at tree level
Consider a model with the SM gauge group and pattern of SSB, but with only three quark flavors: u, d,
s. Such a situation cannot fit into a model with all left-handed quarks in doublets of SU(2)L. How can
we incorporate the interactions of the strange quark in this picture? The solution that we now describe
is wrong. Yet, it is of historical significance and, moreover, helps us to understand some of the unique
properties of the SM described above. In particular, it leads to FCNC at tree level. We define the three
flavor Standard Model (SM1.5) as follows (we ignore the lepton sector):

– The symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y . (72)

– It is spontaneously broken by the VEV of a single Higgs scalar,

φ(1, 2)+1/2 , (〈φ0〉 = v/
√

2) , (73)
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GSM → SU(3)C × U(1)EM (QEM = T3 + Y ) . (74)

– The colored fermion representations are the following:

QL(3, 2)+1/6 , DL(3, 1)−1/3 , UR(3, 1)+2/3 , DRi(3, 1)−1/3 (i = 1, 2) . (75)

We point out two important ingredients that are different from the SM:

1. There are quarks in a vector-like representation (DL +DR);
2. Not all (3)−1/3 quarks come from the same type of SU(2)L × U(1)Y representations.

We first note that DL does not couple to the W -bosons:

LW =
g

2
QLW/bτbQL . (76)

The Yukawa interactions are given by

LYuk = −yuQLφ̃UR − Y d
i QLφDRi + h.c. . (77)

Unlike the SM, we now have bare mass terms for fermions:

Lq = −mdiDLDRi + h.c. . (78)

Given that there is a single up generation, the interaction basis is also the up mass basis. Explicitly,
we identify the up-component of QL with uL (and denote the down component of the doublet as duL),
and UR with uR. With the SSB, we have the following mass terms:

− Lmass = (duL DL)

(
Yd1

v√
2

Yd2
v√
2

md1 md2

)(
DR1

DR2

)
+ yu

v√
2
uLuR + h.c. . (79)

We now rotate to the down mass basis:

VdL

(
Yd1

v√
2

Yd2
v√
2

md1 md2

)
V †dR =

(
md

ms

)
. (80)

The resulting mixing matrix for the charged current interactions is a 1× 2 matrix:

− LW,q =
g√
2
uLW/

+(cos θC sin θC)

(
dL
sL

)
+ h.c. , (81)

where θC is the rotation angle of VdL. The neutral current interactions in the left-handed down sector are
neither universal nor diagonal:

LZ,q =
g

cW

[(
1

2
− 2

3
s2
W

)
uLZ/uL −

2

3
s2
W uRZ/uR +

1

3
s2
W (dLZ/dL + sLZ/sL + dRZ/dR + sRZ/sR)

]
− g

2cW
(dL sL)Z/

(
cos2 θC cos θC sin θC

cos θC sin θC sin2 θC

)(
dL
sL

)
. (82)

The Higgs interactions in the down sector are neither proportional to the mass matrix nor diagonal:

LqYuk = yuhuLuR + h(dL sL)

[
VdL

(
Yd1 Yd2

0 0

)
V †dR

](
dR
sR

)
+ h.c. . (83)

Thus, in this model, both the Z-boson and the h-boson mediate FCNC at tree level. For example,
KL → µ+µ− and K0 −K0 mixing get Z- and h-mediated tree-level contributions.
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4.3 2HDM: FCNC at tree level
Consider a model with two Higgs doublets. The symmetry structure, the pattern of spontaneous symme-
try breaking, and the fermion content are the same as in the SM. However, the scalar content is extended:

– The scalar representations are
φi(1, 2)+1/2, i = 1, 2 . (84)

We are particularly interested in the modification of the Yukawa terms:

LYuk = (Y u
k )ijQLiURj φk + (Y d

k )ijQLiDRj φk + (Y e
k )ijLLiERj φk + h.c. . (85)

Without loss of generality, we can work in a basis (commonly called ”the Higgs basis") (φA, φM ), where
one the Higgs doublets carries the VEV, 〈φM 〉 = v, while the other has zero VEV, 〈φA〉 = 0. In this
basis, Y f

M is known and related to the fermions masses in the same way as the Yukawa matrices of the
SM:

Y f
M =

√
2Mf/v . (86)

The entries Yukawa matrices Y f
A are, however, free parameters and, in general, unrelated to the fermion

masses. The rotation angle from the Higgs basis to the basis of neutral CP-even Higgs states, (φh, φH),
is denoted by (α− β). The Yukawa matrix of the light Higgs field h is given by

Y f
h = cα−βY

f
A − sα−βY

f
M . (87)

Given the arbitrary structure of Y f
A , the Higgs boson can have couplings that are neither proportional to

the mass matrix nor diagonal.

It is interesting to note, however, that not all multi Higgs doublet models lead to flavor changing
Higgs couplings. If all the fermions of a given sector couple to one and the same doublet, then the Higgs
couplings in that sector would still be diagonal. For example, in a model with two Higgs doublets, φ1

and φ2, and Yukawa terms of the form

LYuk = Y u
ijQLiURj φ2 + Y d

ijQLiDRj φ1 + Y e
ijLLiERj φ1 + h.c. , (88)

the Higgs couplings are flavor diagonal:

Y u
h = (cα/sβ)Y u

M , Y d
h = −(sα/cβ)Y d

M , Y e
h = −(sα/cβ)Y e

M , (89)

where β [α] is the rotation angle from the (φ1, φ2) basis to the (φA, φM ) [(φh, φH)] basis. In the physics
jargon, we say that such models have natural flavor conservation (NFC).

5 CP violation
There are two main reasons for the interest in CP violation:

– CP asymmetries provide some of the theoretically cleanest probes of flavor physics. The reason
for that is that CP is a good symmetry of the strong interactions. Consequently, for some hadronic
decays, QCD-related uncertainties cancel out in the CP asymmetries.

– There is a cosmological puzzle related to CP violation. The baryon asymmetry of the Universe is a
CP violating observable, and it is many orders of magnitude larger than the SM prediction. Hence,
there must exist new sources of CP violation beyond the single phase of the CKM matrix.

In this section we explain why CP violation is related to complex parameters of the Lagrangian.
Based on this fact, we prove that CP violation in a two generation SM is impossible, while CP violation
in a three generation SM requires a long list of conditions on its flavor parameters in order to occur.
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5.1 CP violation and complex couplings
The CP transformation combines charge conjugation C with parity P. Under C, particles and antiparticles
are interchanged by conjugating all internal quantum numbers, e.g., Q→ −Q. Under P, the handedness
of space is reversed, ~x → −~x. Thus, for example, a left-handed electron e−L is transformed under CP
into a right-handed positron e+

R.

At the Lagrangian level, CP is a good symmetry if there is a basis where all couplings are real. Let
us provide a simple explanation of this statement. Consider fields Φi. We can define the CP transforma-
tion of the fields as

Φi → Φ†i . (90)

Take, for example, terms in the Lagrangian that consist of three fields. (These could be Yukawa terms, if
two of the Φi’s are fermions and one is a scalar, or terms in the scalar potential, if all three are scalars,
etc.) The hermiticity of the Lagrangian dictates that the following two terms should be included:

YijkΦiΦjΦk + Y ∗ijkΦ
†
iΦ
†
jΦ
†
k . (91)

Under the CP transformation, the field content of the two terms is exchanged, but the couplings remain
the same. Thus, CP is a good symmetry if Yijk = Y ∗ijk, i.e., the coupling is real.

In practice, things are more subtle, since one can define the CP transformation as Φi → eiθiΦ†i ,
with θi a convention dependent phase. Then, there can be complex couplings, yet CP would be a good
symmetry. Therefore, the correct statement is that CP is violated if, using all freedom to redefine the
phases of the fields, one cannot find any basis where all couplings are real.

Let us examine the situation in the mass basis of the SM. The couplings of the gluons, the photon
and the Z-boson are all real, as are the two parameters of the scalar potential. As concerns the fermion
mass terms (or, equivalently, the Yukawa couplings) and the weak gauge interactions, the relevant CP
transformation laws are

ψ̄iψj → ψ̄jψi , ψ̄iγ
µW+

µ (1− γ5)ψj → ψ̄jγ
µW−µ (1− γ5)ψi . (92)

Thus the mass terms and CC weak interaction terms are CP invariant if all the masses and couplings are
real. We can always choose the masses to be real. Then, let us focus on the couplings of W± to quarks:

− g√
2

(
Vij ūiγ

µW+
µ (1− γ5)dj + V ∗ij d̄jγ

µW−µ (1− γ5)ui
)

. (93)

The CP operation exchanges the two terms, except that Vij and V ∗ij are not interchanged. Thus CP would
be a good symmetry of the SM only if there were a mass basis and choice of phase convention where all
masses and entries of the CKM matrix are real.

5.2 SM2: CP conserving
Consider a two generation Standard Model, SM2. This model is similar to the one defined in Section 2,
which in this section will be referred to as SM3, except that there are two, rather than three fermion
generations. Many features of SM2 are similar to SM3, but there is one important difference: CP is a
good symmetry of SM2, but not of SM3. To see how this difference comes about, let us examine the
accidental symmetries of SM2. We follow here the line of analysis of SM3 in Section 2.5.

If we set the Yukawa couplings to zero, LSM2
Yuk = 0, SM2 gains an accidental global symmetry:

Gglobal
SM2 (Y u,d,e = 0) = U(2)Q × U(2)U × U(2)D × U(2)L × U(2)E , (94)

where the two generations of each gauge representation are a doublet of the corresponding U(2). The
Yukawa couplings break this symmetry into the subgroup

Gglobal
SM2 = U(1)B × U(1)e × U(1)µ . (95)
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A-priori, the Yukawa terms depend on three 2× 2 complex matrices, namely 12R + 12I parameters. The
global symmetry breaking, [U(2)]5 → [U(1)]3, implies that we can remove 5× (1R + 3I)− 3I = 5R +
12I parameters. Thus the number of physical flavor parameters is 7 real parameters and no imaginary
parameter. The real parameters can be identified as two charged lepton masses, four quark masses, and
the single real mixing angle, sin θc = |Vus|.

The important conclusion for our purposes is that all imaginary couplings can be removed from
SM2, and CP is an accidental symmetry of the model.

5.3 SM3: Not necessarily CP violating
A-priori, CP is not necessarily violated in SM3. If two quarks of the same charge had equal masses, one
mixing angle and the phase could be removed from V . This can be written as a condition on the quark
mass differences. CP violation requires

(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) 6= 0 . (96)

Likewise, if the value of any of the three mixing angles were 0 or π/2, then the phase can be removed.
Finally, CP would not be violated if the value of the single phase were 0 or π. These last eight conditions
are elegantly incorporated into one, parametrization-independent condition. To find this condition, note
that the unitarity of the CKM matrix, V V † = 1, requires that for any choice of i, j, k, l = 1, 2, 3,

Im[VijVklV
∗
ilV
∗
kj ] = J

3∑
m,n=1

εikmεjln . (97)

Then the conditions on the mixing parameters are summarized by

J 6= 0 . (98)

The quantity J is of much interest in the study of CP violation from the CKM matrix. The maximum
value that J could assume in principle is 1/(6

√
3) ≈ 0.1, but it is found to be ∼ 4× 10−5.

The fourteen conditions incorporated in Eqs. (96) and (98) can all be written as a single require-
ment on the quark mass matrices in the interaction basis:

XCP ≡ Im
{

det
[
MdM

†
d ,MuM

†
u

]}
6= 0 ⇔ CP violation . (99)

This is a convention independent condition.

5.4 SψKS

As an example of a CP violating observable, we take the CP asymmetry in B → ψKS decays, which
plays a major role in testing the KM mechanism. Before we explain the test itself, we should understand
why the theoretical interpretation of the asymmetry is exceptionally clean, and what are the theoretical
parameters on which it depends.

The CP asymmetry in neutralB meson decays into final CP eigenstates fCP is defined as follows:

AfCP (t) ≡
dΓ/dt[B0

phys(t)→ fCP ]− dΓ/dt[B0
phys(t)→ fCP ]

dΓ/dt[B0
phys(t)→ fCP ] + dΓ/dt[B0

phys(t)→ fCP ]
. (100)

A detailed evaluation of this asymmetry is given in Appendix A. It leads to the following form:

AfCP (t) = SfCP sin(∆mBt)− CfCP cos(∆mBt) ,

99



SfCP ≡
2 Im(λfCP )

1 + |λfCP |2
, CfCP ≡

1− |λfCP |2

1 + |λfCP |2
, (101)

where
λfCP = e−iφB (AfCP /AfCP ) . (102)

Here φB refers to the phase of MBB̄ [see Eq. (A.23)]. Within the Standard Model, the corresponding
phase factor is given by

e−iφB = (V ∗tbVtd)/(VtbV
∗
td) . (103)

The decay amplitudes Af and Af are defined in Eq. (A.1).

Fig. 2: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or Bs → f via a
b̄→ q̄qq̄′ quark-level process.
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TheB0 → J/ψK0 decay [4,5] proceeds via the quark transition b̄→ c̄cs̄. There are contributions
from both tree (t) and penguin (pqu , where qu = u, c, t is the quark in the loop) diagrams (see Fig. 2)
which carry different weak phases:

Af = (V ∗cbVcs) tf +
∑

qu=u,c,t

(
V ∗qubVqus

)
pquf . (104)

(The distinction between tree and penguin contributions is a heuristic one, the separation by the operator
that enters is more precise. For a detailed discussion of the more complete operator product approach,
which also includes higher order QCD corrections, see, for example, Ref. [6].) Using CKM unitarity,
these decay amplitudes can always be written in terms of just two CKM combinations:

AψK = (V ∗cbVcs)TψK + (V ∗ubVus)P
u
ψK , (105)

where TψK = tψK + pcψK − ptψK and P uψK = puψK − ptψK . A subtlety arises in this decay that is

related to the fact that B0 → J/ψK0 and B0 → J/ψK0. A common final state, e.g. J/ψKS , can
be reached via K0 − K0 mixing. Consequently, the phase factor corresponding to neutral K mixing,
e−iφK = (V ∗cdVcs)/(VcdV

∗
cs), plays a role:

AψKS
AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK(

V ∗cbVcs
)
TψK +

(
V ∗ubVus

)
P uψK

×
V ∗cdVcs
VcdV

∗
cs

. (106)

The crucial point is that, for B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect the P u

contribution to AψK , in the SM, to an approximation that is better than one percent:

|P uψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1× 0.23 ∼< 0.005 . (107)
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Thus, to an accuracy better than one percent,

λψKS =

(
V ∗tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗cbVcd

)
= −e−2iβ , (108)

where β is defined in Eq. (66), and consequently

SψKS = sin 2β, CψKS = 0 . (109)

(Below the percent level, several effects modify this equation [7–10].)

Exercise 3: Show that, if the B → ππ decays were dominated by tree diagrams, then Sππ =
sin 2α.

Exercise 4: Estimate the accuracy of the predictions SφKS = sin 2β and CφKS = 0.

6 Testing CKM
Measurements of rates, mixing, and CP asymmetries inB decays in the two B factories, BaBar and Belle,
and in the two Tevatron detectors, CDF and D0, signified a new era in our understanding of flavor physics
and CP violation. The progress has been both qualitative and quantitative. Various basic questions
concerning CP and flavor violation have received, for the first time, answers based on experimental
information. These questions include, for example,

– Is the Kobayashi-Maskawa mechanism at work (namely, is δKM 6= 0)?
– Does the KM phase dominate the observed CP violation?
– Does the CKM mechanism dominate FCNC?

As a first step, one may assume the SM and test the overall consistency of the various measurements.
However, the richness of data from the B factories allow us to go a step further and answer these questions
model independently, namely allowing new physics to contribute to the relevant processes. We here
explain the way in which this analysis proceeds.

6.1 Is the CKM assumption self-consistent?
The three generation standard model has room for CP violation, through the KM phase in the quark
mixing matrix. Yet, one would like to make sure that indeed CP is violated by the SM interactions,
namely that sin δKM 6= 0. If we establish that this is the case, we would further like to know whether the
SM contributions to CP violating observables are dominant. More quantitatively, we would like to put
an upper bound on the ratio between the new physics and the SM contributions.

As a first step, one can assume that flavor changing processes are fully described by the SM, and
check the consistency of the various measurements with this assumption. There are four relevant mixing
parameters, which can be taken to be the Wolfenstein parameters λ, A, ρ and η defined in Eq. (60). The
values of λ and A are known rather accurately [1] from, respectively, K → π`ν and b→ c`ν decays:

λ = 0.2251± 0.0005 , A = 0.81± 0.03 . (110)

Then, one can express all the relevant observables as a function of the two remaining parameters, ρ and
η, and check whether there is a range in the ρ− η plane that is consistent with all measurements. The list
of observables includes the following:

– The rates of inclusive and exclusive charmless semileptonic B decays depend on |Vub|2 ∝ ρ2 + η2

– The CP asymmetry in B → ψKS , SψKS = sin 2β = 2η(1−ρ)
(1−ρ)2+η2

– The rates of various B → DK decays depend on the phase γ, where eiγ = ρ+iη√
ρ2+η2
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Fig. 3: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B0 (∆md) and Bs (∆ms) neutral meson systems, and CP violation in
K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK (γ). Taken from [12].

– The rates of various B → ππ, ρπ, ρρ decays depend on the phase α = π − β − γ
– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
λ2[(1− ρ)2 + η2]

– The CP violation in K → ππ decays, εK , depends in a complicated way on ρ and η .

The resulting constraints are shown in Fig. 3.

The consistency of the various constraints is impressive. In particular, the following ranges for ρ
and η can account for all the measurements [1]:

ρ = +0.160± 0.007 , η = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-
nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-
Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 SψKS

As an example of how to use FCNC in probing new physics, we take SψKS . When we consider extensions
of the SM, we still do not expect any significant new contribution to the tree level decay, b → cc̄s,
beyond the SM W -mediated diagram. Thus, the expression ĀψKS/AψKS = (VcbV

∗
cd)/(V

∗
cbVcd) remains
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valid, though the approximation of neglecting sub-dominant phases can be somewhat less accurate than
Eq. (107). On the other hand,since B0−B0 mixing is an FCNC process, MBB̄ can in principle get large
and even dominant contributions from new physics. We can parameterize the modification to the SM in
terms of a complex parameter ∆d:

MBB̄ = ∆d M
SM
BB̄(ρ, η) . (112)

This leads to the following generalization of Eq. (109):

SψKS = sin [2arctan (η/(1− ρ)) + arg(∆d)] , CψKS = 0 . (113)

The experimental measurements give the following ranges [11]:

SψKS = +0.70± 0.02, CψKS = −0.005± 0.015 . (114)

6.3 Is the KM mechanism at work?
In proving that the KM mechanism is at work, we assume that charged-current tree-level processes are
dominated by theW -mediated SM diagrams (see, for example, [14]). This is a very plausible assumption.
It is difficult to construct a model where new physics competes with the SM in flavor changing charged
current processes, and does not violate the constraints from flavor changing neutral current processes.
Thus we can use all tree level processes and fit them to ρ and η, as we did before. The list of such
processes includes the following:

1. Charmless semileptonic B-decays, b→ u`ν, measure Ru [see Eq. (65)].
2. B → DK decays, which go through the quark transitions b → cūs and b → uc̄s, measure the

angle γ [see Eq. (66)].
3. B → ρρ decays (and, similarly, B → ππ and B → ρπ decays) go through the quark transition
b → uūd. With an isospin analysis, one can determine the relative phase between the tree decay
amplitude and the mixing amplitude. By incorporating the measurement of SψKS , one can subtract
the phase from the mixing amplitude, finally providing a measurement of the angle γ [see Eq. (66)].

In addition, we can use loop processes, but then we must allow for new physics contributions, in
addition to the (ρ, η)-dependent SM contributions. Of course, if each such measurement adds a separate
mode-dependent parameter, then we do not gain anything by using this information. However, there is a
number of observables where the only relevant loop process is B0−B0 mixing. The list includes SψKS ,
∆mB and the CP asymmetry in semileptonic B decays:

SψKS = sin [2arctan (η/(1− ρ)) + arg(∆d)] ,

∆mB = 2|MSM
BB̄(ρ, η)| × |∆d| ,

ASL = −Re
(

ΓBB̄
MBB̄

)SM sin[arg(∆d)]

|∆d|
+ Im

(
ΓBB̄
MBB̄

)SM cos[arg(∆d)]

|∆d|
. (115)

As explained above, such processes involve two new parameters [see Eq. (112)]. Since there are three
relevant observables, we can further tighten the constraints in the (ρ, η)-plane. Similarly, one can use
measurements related to Bs − Bs mixing. One gains three new observables at the cost of two new
parameters (see, for example, [15]).

The results of such fit, projected on the ρ− η plane, can be seen in Fig. 4. It gives [12]

η = 0.38± 0.02 . (116)

It is clear that η 6= 0 is well established:
The Kobayashi-Maskawa mechanism of CP violation is at work.

The consistency of the experimental results (114) with the SM predictions (109) means that the
KM mechanism of CP violation dominates the observed CP violation. In the next subsection, we make
this statement more quantitative.

103



)α(γ

ubV

α

βγ

ρ

­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
x
c
lu

d
e

d
 a

re
a

 h
a

s
 C

L
 >

 0
.9

5

ICHEP 16

CKM
f i t t e r

Fig. 4: The allowed region in the ρ− η plane, assuming that tree diagrams are dominated by the Standard Model
[12].

6.4 How much can new physics contribute toB0 −B0 mixing?
All that we need to do in order to establish whether the SM dominates the observed CP violation, and to
put an upper bound on the new physics contribution to B0−B0 mixing, is to project the results of the fit
performed in the previous subsection on the Re(∆d) − Im(∆d) plane. If we find that |Im(∆d)| � 1,
then the SM dominance in the observed CP violation will be established. The constraints are shown in
Fig. 5.
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Fig. 5: Constraints in the Re(∆d) − Im(∆d) plane, assuming that NP contributions to tree level processes are
negligible [12].

We obtain:

Re(∆d) = +0.94+0.18
−0.15 ,
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Im(∆d) = −0.11+0.11
−0.05 . (117)

This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄/M

SM
BB̄ | ∼< 0.2 ,

Im(MNP
BB̄/M

SM
BB̄) ∼< 0.1 . (118)

We can make the following two statements:

1. A new physics contribution to B0 −B0 mixing amplitude that carries a phase that is signifi-
cantly different from the KM phase is constrained to lie below the 10% level.

2. A new physics contribution to the B0 − B0 mixing amplitude which is aligned with the KM
phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to theK0−K0, B0
s −B0

s,
and D0 −D0 mixing amplitudes.

7 The new physics flavor puzzle
7.1 A model independent discussion
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼ 1019

GeV;
2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV;

3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, mtop−partners,
mwimp ∼< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that
are inversely proportional to the scale of new physics ΛNP.

The lowest dimension non-renormalizable terms are dimension-five:

− Ldim−5
Seesaw =

Zνij
ΛNP

LLiLLjφφ+ h.c. . (119)

These are the seesaw terms, leading to neutrino masses.

Exercise 5: How does the global symmetry breaking pattern (47) change when (119) is taken into
account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-
ators:

Ldim−6
∆F=2 =

∑
i 6=j

zij
Λ2

(QLiγµQLj)
2 , (120)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the
corresponding two neutral mesons. For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB ,
the mass difference between the two neutral B-mesons. We use

MNP
BB̄ =

1

6

zdb
Λ2
mBf

2
BBB . (121)
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Table 6: Lower bounds on the scale of new physics Λ, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming Λ = 1 TeV.

Operator Λ [TeV] CPC Λ [TeV] CPV |zij | Im(zij) Observables
(s̄Lγ

µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; εK
(s̄RdL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; εK

(c̄Lγ
µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; AΓ

(c̄RuL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; AΓ

(b̄Lγ
µdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6 ∆mB; SψK

(b̄RdL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7 ∆mB; SψK
(b̄Lγ

µsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5 ∆mBs ; Sψφ
(b̄RsL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6 ∆mBs ; Sψφ

Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain

|zdb|
Λ2

<
2.3× 10−6

TeV2 ,
Im(zdb)

Λ2
<

1.1× 10−6

TeV2 . (122)

A more detailed list of the bounds derived from the ∆F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on Λ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 − 105 TeV (or, if the leading contributions involve
electroweak loops, above 103− 104 TeV). If indeed Λ� TeV , it means that we have misinterpreted the
hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics
is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by α2

2. To identify the relevant flavor suppression factor, one
can employ the spurion formalism. For example, the flavor transition that is relevant to B0 −B0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3

q
. The leading contribution must then be proportional to

(Y uY u†)13 ∝ y2
t VtbV

∗
td. Indeed, an explicit calculation (using VIA for the matrix element and neglecting

QCD corrections) gives5

2MBB̄

mB
≈ −α

2
2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2 , (123)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1− x)

]
. (124)

5A detailed derivation can be found in Appendix B of [16].
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Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor suppression
factors that apply in the SM:

Im(zSM
sd ) ∼ α2

2y
2
t |VtdVts|2 ∼ 1× 10−10 ,

zSM
sd ∼ α2

2y
2
c |VcdVcs|2 ∼ 5× 10−9 ,

Im(zSM
cu ) ∼ α2

2y
2
b |VubVcb|2 ∼ 2× 10−14 ,

zSM
bd ∼ α2

2y
2
t |VtdVtb|2 ∼ 7× 10−8 ,

zSM
bs ∼ α2

2y
2
t |VtsVtb|2 ∼ 2× 10−6 . (125)

(We did not include zSM
cu in the list because it requires a more detailed consideration. The naively leading

short distance contribution is∝ α2
2(y4

s/y
2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2
s factor with (Λ/mD)2 [17]. Moreover, long distance contributions are expected to dominate.

In particular, peculiar phase space effects [18, 19] have been identified which are expected to enhance
∆mD to within an order of magnitude of the its measured value. The CP violating part, on the other
hand, is dominated by short distance physics.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable or smaller than the SM ones. Why does that happen? This is the new physics
flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic means that
flavor measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

7.2 Minimal flavor violation (MFV)
Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example of a large
class of models that obey a simple principle called minimal flavor violation (MFV) [28]. This principle
guarantees that low energy flavor changing processes deviate only very little from the SM predictions.
The basic idea can be described as follows. The gauge interactions of the SM are universal in flavor
space. The only breaking of this flavor universality comes from the three Yukawa matrices, Y u, Y d and
Y e. If this remains true in the presence of the new physics, namely Y u, Y d and Y e are the only flavor
non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions that
we presented in Section 2.4. The Standard Model with vanishing Yukawa couplings has a large global
symmetry (48,49). In this section we concentrate only on the quarks. The non-Abelian part of the flavor
symmetry for the quarks is SU(3)3

q of Eq. (49) with the three generations of quark fields transforming as
follows:

QL(3, 1, 1) , UR(1, 3, 1) , DR(1, 1, 3) . (126)

The Yukawa interactions,
LqYuk = QLY

dDRH +QLY
uURHc , (127)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties under SU(3)3
q [see Eq. (51)]:

Y u ∼ (3, 3̄, 1) , Y d ∼ (3, 1, 3̄) . (128)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields which transform
under the flavor symmetry, and then require that all the Lagrangian terms, constructed from the SM
fields, Y d and Y u, must be (formally) invariant under the flavor group SU(3)3

q . Of course, in reality,
LqYuk breaks SU(3)3

q precisely because Y d,u are not fields and do not transform under the symmetry.
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Table 7: The MFV values and the experimental bounds on the coefficients of ∆F = 1 operators

Operator zij ∝ CKM+GIM |zij | < (Λ/TeV)2×
(s̄Lγ

µdL)2 y4
t (VtsV

∗
td)

2 10−7 9.0× 10−7

(s̄RdL)(s̄LdR) y4
t ysyd(VtsV

∗
td)

2 10−14 6.9× 10−9

(c̄Lγ
µuL)2 y4

b (VcbV
∗
ub)

2 10−14 5.6× 10−7

(c̄RuL)(c̄LuR) y4
bycyu(VcbV

∗
ub)

2 10−20 5.7× 10−8

(b̄Lγ
µdL)2 y4

t (VtbV
∗
td)

2 10−4 2.3× 10−6

(b̄RdL)(b̄LdR) y4
t ybyd(VtbV

∗
td)

2 10−9 3.9× 10−7

(b̄Lγ
µsL)2 y4

t (VtbV
∗
ts)

2 10−3 5.0× 10−5

(b̄RsL)(b̄LsR) y4
t ybys(VtbV

∗
ts)

2 10−6 8.8× 10−6

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in two
ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension operators, con-
structed from SM-fields and Y -spurions, are formally invariant under Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from
SM and the new fields, and from Y -spurions, are formally invariant under Gglobal.

That MFV allows new physics at the TeV scale is demonstrated in Table 7.

Exercise 10: Use the spurion formalism to argue that, in MFV models, the KL → π0νν̄ decay
amplitude is proportional to y2

t VtdV
∗
ts.

Examples of MFV models include models of supersymmetry with gauge-mediation or with anomaly-
mediation of its breaking.

8 The Standard Model flavor puzzle
The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three angles
and a phase), and three charged lepton Yukawa couplings. (One can use fermions masses instead of the
fermion Yukawa couplings, yf =

√
2mf/v.) The orders of magnitudes of these thirteen dimensionless

parameters are as follows:

yt ∼ 1, yc ∼ 10−2, yu ∼ 10−5,

yb ∼ 10−2, ys ∼ 10−3, yd ∼ 10−4,

yτ ∼ 10−2, yµ ∼ 10−3, ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1 . (129)

Only two of these parameters are clearly of O(1), the top-Yukawa and the KM phase. The other flavor
parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may be that
this set of numerical values are just accidental. More likely, the smallness and the hierarchy have a
reason. The question of why there is smallness and hierarchy in the SM flavor parameters constitutes
“The Standard Model flavor puzzle.”

The motivation to think that there is indeed a structure in the flavor parameters is strengthened by
considering the values of the four SM parameters that are not flavor parameters, namely the three gauge
couplings and the Higgs self-coupling:

gs ∼ 1 , g ∼ 0.6 , e ∼ 0.3 , λ ∼ 0.12 . (130)
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This set of values does seem to be a random distribution of order-one numbers, as one would naively
expect.

A few examples of mechanisms that were proposed to explain the observed structure of the flavor
parameters are the following:

– An approximate Abelian symmetry (“The Froggatt-Nielsen mechanism” [29]);
– An approximate non-Abelian symmetry (see e.g. [30]);
– Conformal dynamics (“The Nelson-Strassler mechanism” [31]);
– Location in an extra dimension [32];
– Loop corrections (see e.g. [33]).

We take as an example the Froggatt-Nielsen mechanism.

8.1 The Froggatt-Nielsen (FN) mechanism
Small numbers and hierarchies are often explained by approximate symmetries. For example, the small
mass splitting between the charged and neural pions finds an explanation in the approximate isospin
(global SU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations from the
symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Froggatt-
Nielsen mechanism postulates a U(1)H symmetry, that is broken by a small spurion εH . Without loss of
generality, we assign εH a U(1)H charge ofH(εH) = −1. Each SM field is assigned a U(1)H charge. In
general, different fermion generations are assigned different charges, hence the term ‘horizontal symme-
try.’ The rule is that each term in the Lagrangian, made of SM fields and the spurion, should be formally
invariant under U(1)H .

The approximate U(1)H symmetry thus leads to the following selection rules:

Y u
ij = ε

|H(Q̄i)+H(Uj)+H(φu)|
H ,

Y d
ij = ε

|H(Q̄i)+H(Dj)+H(φd)|
H ,

Y e
ij = ε

|H(L̄i)+H(Ej)−H(φd)|
H . (131)

The consequent parametric suppression of the physical parameters is then

yf ∝ ε
H(fL)+H(fR)+H(φ)
H ,

|Vij | ∝ ε
H(QLi)−H(QLj)
H . (132)

As a concrete example, we take the following set of charges:

H(Q̄i) = H(Ui) = H(Ei) = (2, 1, 0) ,

H(L̄i) = H(Di) = (0, 0, 0) ,

H(φu) = H(φd) = 0 . (133)

It leads to the following parametric suppressions of the Yukawa couplings:

Y u ∼

ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1

 , Y d ∼ (Y e)T ∼

ε2 ε2 ε2

ε ε ε
1 1 1

 . (134)

We emphasize that for each entry we give the parametric suppression (that is the power of ε), but each
entry has an unknown (complex) coefficient of order one, and there are no relations between the order
one coefficients of different entries.
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The structure of the Yukawa matrices dictates the parametric suppression of the physical observ-
ables:

yt ∼ 1 , yc ∼ ε2 , yu ∼ ε4,
yb ∼ 1 , ys ∼ ε , yd ∼ ε2 ,
yτ ∼ 1 , yµ ∼ ε , ye ∼ ε2 ,

|Vus| ∼ ε , |Vcb| ∼ ε , |Vub| ∼ ε2 , δKM ∼ 1 . (135)

For ε ∼ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In partic-
ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, while the
up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 13: Derive the parametric suppression and approximate numerical values of Y u, its
eigenvalues, and the three angles of V u

L , for H(Qi) = 4, 2, 0, H(Ui) = 3, 2, 0 and εH = 0.2

Could we explain any set of observed values with such an approximate symmetry? If we could,
then the FN mechanism cannot be really tested. The answer however is negative. Consider, for example,
the quark sector. Naively, we have 11 U(1)H charges that we are free to choose. However, the U(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of
the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be a single
relation between the physical parameters that is independent of the choice of charges. Assuming that the
sum of charges in the exponents of Eq. (131) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb| , (136)

which is fulfilled to within a factor of 2. There are also interesting inequalities (here i < j):

|Vij | ∼> m(Ui)/m(Uj) , m(Di)/m(Dj) . (137)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then
the CKM matrix is predicted to be ∼ 1, namely the diagonal entries are not parametrically suppressed.
This structure is also consistent with the observed CKM structure.

8.2 The flavor of neutrinos
Five neutrino flavor parameters have been measured in recent years (see e.g. [34]): two mass-squared
differences,

∆m2
21 = (7.5± 0.2)× 10−5 eV2 , |∆m2

32| = (2.5± 0.1)× 10−3 eV2 , (138)

and the three mixing angles,

|Ue2| = 0.55± 0.01, |Uµ3| = 0.67± 0.03, |Ue3| = 0.148± 0.003 . (139)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij | ;
– |Ue2| > any |Vij | ;
– |Ue3| is not particularly small (|Ue3| 6� |Ue2Uµ3|) ;
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.
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These features can be summarized by the statement that, in contrast to the charged fermions, neither
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy
[35–37]. It postulates that the neutrino mass matrix has no special structure, namely all entries are of
the same order of magnitude. Normalized to an effective neutrino mass scale, v2/Λseesaw, the various
entries are random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.

If true, the contrast between neutrino mass anarchy and quark and charged lepton mass hierarchy
may be a deep hint for a difference between the flavor physics of Majorana and Dirac fermions. The
source of both anarchy and hierarchy might, however, be explained by a much more mundane mech-
anism. In particular, neutrino mass anarchy could be a result of a FN mechanism, where the three
left-handed lepton doublets carry the same FN charge. In that case, the FN mechanism predict paramet-
ric suppression of neither neutrino mass ratios nor leptonic mixing angles, which is quite consistent with
(138) and (139). Indeed, the viable FN model presented in Section 8.1 belongs to this class.

Another possible interpretation of the neutrino data is to take m2/m3 ∼ |Ue3| ∼ 0.15 to be small,
and require that they are parametrically suppressed (while the other two mixing angles are order one).
Such a situation is impossible to accommodate in a large class of FN models [38].

The same data, and in particular the proximity of (|Uµ3|, |Uτ3|) to (1/
√

2, 1/
√

2), and the proxim-
ity of |Ue2| to 1/

√
3 ' 0.58, led to a very different interpretation. This interpretation, termed ‘tribimax-

imal mixing’ (TBM), postulates that the leptonic mixing matrix is parametrically close to the following
special form [39]:

|U |TBM =


2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2

 . (140)

Such a form is suggestive of discrete non-Abelian symmetries, and indeed numerous models based on an
A4 symmetry have been proposed [40,41]. A significant feature of of TBM is that the third mixing angle
should be close to |Ue3| = 0. Until 2012, there have been only upper bounds on |Ue3|, consistent with the
models in the literature. In recent years, however, a value of |Ue3| close to the previous upper bound has
been established [42], see Eq. (139). Such a large value (and the consequent significant deviation of |Uµ3|
from maximal bimixing) puts in serious doubt the TBM idea. Indeed, it is difficult in this framework, if
not impossible, to account for ∆m2

12/∆m
2
23 ∼ |Ue3|2 without fine-tuning [43].

9 Higgs physics: the new flavor arena
The SM relates the Yukawa couplings to the corresponding mass matrices:

Y f =
√

2Mf/v . (141)

This simple equation implies three features:

1. Proportionality: yi ≡ Y f
ii ∝ mi ;

2. Factor of proportionality: yi/mi =
√

2/v ;

3. Diagonality: Y f
ij = 0 for i 6= j .

In extensions of the SM, each of these three features might be violated. Thus, testing these features might
provide a window to new physics and to allow progress in understanding the flavor puzzles.

A Higgs-like boson h has been discovered by the ATLAS and CMS experiments at the LHC [44,
45]. The experiments normalize their results to the SM rates:

µf ≡
σ(pp→ h)BR(h→ f)

[σ(pp→ h)BR(h→ f)]SM
. (142)
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The measurements give [46–50]:

µγγ = 1.14± 0.14 ,

µZZ∗ = 1.17± 0.23 ,

µWW ∗ = 0.99± 0.15 ,

µbb̄ = 0.98± 0.20 ,

µττ = 1.09± 0.23 ,

µtt̄h = 1.29± 0.18 . (143)

(Here µtt̄h ≡ σ(pp → tt̄h)/σ(pp → tt̄h)SM.) In addition, there are upper bounds on decays into the
first two generation charged leptons [51–53]:

µµµ < 2.8 ,

µee < 4× 105 . (144)

As concerns quark flavor changing Higgs couplings, these have been searched for in t → qh
decays (q = c, u) [54, 55]:

BR(t→ ch) < 2.2× 10−3 ,

BR(t→ uh) < 2.4× 10−3 , (145)

and for lepton flavor violating (LFV) decays [56–58]:

BR(h→ τµ) < 2.5× 10−3 ,

BR(h→ τe) < 6.1× 10−3 ,

BR(h→ µe) < 3.4× 10−4 . (146)

The measurements quoted in Eqs. (143) and (144) can be presented in the yi − mi plane. We
do so in Fig. 6. The first two features quoted above are already being tested. The upper bounds on
flavor violating decays quoted in Eqs. (145) and (146) test the third feature. We can make the following
statements:

– ye, yµ < yτ . This goes in the direction of proportionality.
– The third generation Yukawa couplings, yt, yb, yτ , obey y3/m3 ≈

√
2/v. This is in agreement

with the predicted factor of proportionality.
– There are strong upper bounds on violation of diagonality: Ytq/Yyy ∼< 0.1 and Yτ`/Yττ ∼< 0.1.
– The era of Higgs flavor physics has begun.

Beyond the search for new physics via Higgs decays, it is interesting to ask whether the measure-
ments of the Higgs couplings to quarks and leptons can shed light on the standard model and/or new
physics flavor puzzles. If eventually the values of yb and/or yτ deviate from their SM values, the most
likely explanation of such deviations will be that there are more than one Higgs doublets, and that the
doublet(s) that couple to the down and charged lepton sectors are not the same as the one that couples
to the up sector. A more significant test of our understanding of flavor physics, which might provide a
window into new flavor physics, will come further in the future, when µµ+µ− is measured. The ratio

Xµ+µ− ≡
BR(h→ µ+µ−)

BR(h→ τ+τ−)
, (147)

is predicted within the SM with impressive theoretical cleanliness. To leading order, it is given by
Xµ+µ− = m2

µ/m
2
τ , and the corrections of order αW and of order m2

µ/m
2
τ to this leading result are
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Fig. 6: The allowed ranges for the Higgs couplings. The SM prediction is presented by the dashed line (Avital
Dery, private communication).

known. It is an interesting question to understand what can be learned from a test of this relation [59]. In
fact, as mentioned above, the bound (144) already shows thatXµ+µ− < 1, namely that second generation
Yukawa couplings are smaller than third generation ones. It is also interesting to test diagonality via the
search for the SM-forbidden decay modes, h → µ±τ∓ [60–63]. A measurement of, or an upper bound
on

Xµτ ≡
BR(h→ µ+τ−) + BR(h→ µ−τ+)

BR(h→ τ+τ−)
, (148)

would provide additional information relevant to flavor physics. We demonstrate below the potential
power of Higgs flavor physics to lead to progress in our understanding of the flavor puzzles by focussing
on the measurements of µτ+τ− , Xµ+µ− and Xµτ [59].

Let us take as an example how we can use the set of these three measurements if there is a single
light Higgs boson. A violation of the SM relation Y SM

ij =
√

2mi
v δij , is a consequence of nonrenormaliz-

able terms. The leading ones are the d = 6 terms. In the interaction basis, we have

Ld=4
Y = −λij f̄ iLf

j
Rφ+ h.c. , (149)

Ld=6
Y = −

λ′ij
Λ2
f̄ iLf

j
Rφ(φ†φ) + h.c. ,

where expanding around the vacuum we have φ = (v + h)/
√

2. Defining VL,R via

√
2m = VL

(
λ+

v2

2Λ2
λ′
)
V †Rv , (150)

where m = diag(me,mµ,mτ ), and defining λ̂ via

λ̂ = VLλ
′V †R , (151)

we obtain

Yij =

√
2mi

v
δij +

v2

Λ2
λ̂ij . (152)

To proceed, one has to make assumptions about the structure of λ̂. In what follows, we consider
first the assumption of minimal flavor violation (MFV) and then a Froggatt-Nielsen (FN) symmetry.

Exercise 14:
Find the predictions of models with Natural Flavor Conservation (NFC) for µτ+τ− , Xµ+µ− and Xτµ.
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9.1 MFV
MFV requires that the leptonic part of the Lagrangian is invariant under an SU(3)L × SU(3)E global
symmetry, with the left-handed lepton doublets transforming as (3, 1), the right-handed charged lepton
singlets transforming as (1, 3) and the charged lepton Yukawa matrix Y is a spurion transforming as
(3, 3̄).

Specifically, MFV means that, in Eq. (149),

λ′ = aλ+ bλλ†λ+O(λ5) , (153)

where a and b are numbers. Note that, if VL and VR are the diagonalizing matrices for λ, VLλV
†
R = λdiag,

then they are also the diagonalizing matrices for λλ†λ, VLλλ†λV
†
R = (λdiag)3. Then, Eqs. (150), (151)

and (152) become

√
2m

v
=

(
1 +

av2

2Λ2

)
λdiag +

bv2

2Λ2
(λdiag)3 ,

λ̂ = aλdiag + b(λdiag)3 = a

√
2m

v
+

2
√

2bm3

v3
,

Yij =

√
2mi

v
δij

[
1 +

av2

Λ2
+

2bm2
i

Λ2

]
, (154)

where, in the expressions for λ̂ and Y , we included only the leading universal and leading non-universal
corrections to the SM relations.

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has no flavor off-diagonal couplings:

Yµτ , Yτµ = 0 . (155)

2. The values of the diagonal couplings deviate from their SM values. The deviation is small, of order
v2/Λ2:

yτ ≈
(

1 +
av2

Λ2

) √
2mτ

v
. (156)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value. The deviation is, however, very small, of order m2

`/Λ
2:

yµ
yτ

=
mµ

mτ

(
1−

2b(m2
τ −m2

µ)

Λ2

)
. (157)

The predictions of the SM with MFV non-renormalizable terms are then the following:

µτ+τ− = 1 + 2av2/Λ2 ,

Xµ+µ− = (mµ/mτ )2(1− 4bm2
τ/Λ

2) ,

Xτµ = 0 . (158)

Thus, MFV will be excluded if experiments observe the h→ µτ decay. On the other hand, MFV allows
for a universal deviation of O(v2/Λ2) of the flavor-diagonal dilepton rates, and a smaller non-universal
deviation of O(m2

τ/Λ
2).
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9.2 FN
An attractive explanation of the smallness and hierarchy in the Yukawa couplings is provided by the
Froggatt-Nielsen (FN) mechanism [29]. In this framework, a U(1)H symmetry, under which different
generations carry different charges, is broken by a small parameter εH . Without loss of generality, εH is
taken to be a spurion of charge −1. Then, various entries in the Yukawa mass matrices are suppressed
by different powers of εH , leading to smallness and hierarchy.

Specifically for the leptonic Yukawa matrix, taking h to be neutral under U(1)H , H(h) = 0, we
have

λij ∝ ε
H(Ej)−H(Li)
H . (159)

We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [64]

m`i/v ∼ ε
H(Ei)−H(Li)
H , |Uij | ∼ ε

H(Lj)−H(Li)
H . (160)

Since H(φ†φ) = 0, the entries of the matrix λ′ have the same parametric suppression as the
corresponding entries in λ [65], though the order one coefficients are different:

λ′ij = O(1)× λij . (161)

This structure allows us to estimate the entries of λ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v ,

λ̂22 ∼ mµ/v ,

λ̂23 ∼ |U23|(mτ/v) ,

λ̂32 ∼ (mµ/v)/|U23| . (162)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
(
|U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (163)

2. The values of the diagonal couplings deviate from their SM values:

yτ ≈
√

2mτ

v

[
1 +O

(
v2

Λ2

)]
. (164)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

yµ
yτ

=
mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (165)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:

µτ+τ− = 1 +O(v2/Λ2) ,

Xµ+µ− = (mµ/mτ )2(1 +O(v2/Λ2)) ,
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Xτµ = O(v4/Λ4) . (166)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both
flavor-diagonal and flavor-changing h decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation of O(v4/Λ4) in the off-diagonal
rate.

10 Anomalies inB-meson decays?
In this section we discuss two sets of recent measurements of flavor changing processes that arouse
much interest: B → K(∗)µ+µ− and B → D(∗)τν. Both classes of decays test lepton flavor universality
(LFU).

10.1 B → K(∗)µµ

Within the SM, lepton flavor universality (LFU) is respected by the weak interactions. Consequently,
LFU is predicted to hold – up to (calculable) phase-space effects – in processes where the Yukawa inter-
actions are negligible. Hints of violation of LFU have, however, been observed by the LHCb experiment
in B → K(∗)`+`− decays. While LFU implies that the ratios

RK(∗),[a,b] =

∫ b
a dq

2[dΓ(B → K(∗)µ+µ−)/dq2]∫ b
a dq

2[dΓ(B → K(∗)e+e−)/dq2]
(167)

(q2 is the invariant dilepton mass-squared) should be very close to unity,

RSM
K,[1,6]GeV2 = 1.00± 0.01 ,

RSM
K∗,[1.1,6.0]GeV2 = 1.00± 0.01 ,

RSM
K∗,[0.045,1.1]GeV2 = 0.91± 0.03 , (168)

the measurements give [67, 68]

RK,[1,6]GeV2 = 0.745+0.090
−0.074 ± 0.036 ,

RK∗,[1.1,6.0]GeV2 = 0.69+0.11
−0.07 ± 0.05 ,

RK∗,[0.045,1.1]GeV2 = 0.66+0.11
−0.07 ± 0.03 , (169)

which stand in a 2.2− 2.6σ discrepancy with the SM predictions.

Given various additional measurements, it is plausible that, if indeed the discrepancy is due to
new physics, it is related to modification of the muon mode, rather than to the electron mode. In this
case, there should be destructive interference between the SM and the NP contributions. We assume
that the new physics that affects the b → sµµ transition takes place at an energy scale larger than the
electroweak breaking scale, in which case it can be represented by higher dimensional operators. There
are two dimension-six operators that interfere with the SM contribution:

Leff =
GFα√

2π
VtbV

∗
ts [CLL(sγµPLb)(µγ

µPLµ) + CRL(sγµPRb)(µγ
µPLµ)] + h.c. . (170)

To leading order in CNP
AB , we have

RK,[1,6]GeV2 = 1 + 2Re
(
CNP
LL + CNP

RL

CSM
LL

)
,

RK∗,[0.045,1.1]GeV2 ≈ 1 + 2Re
(
CNP
LL − CNP

RL

CSM
LL

)
, (171)
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where we approximated the polarization fraction p by p = 1. Given that both RK and RK∗ are smaller
than the SM value, CNP

LL /C
SM
LL ∼ −0.15 is singled out as the prime candidate to explain the anomalies.

New physics that generates CLL can do so at tree level or at the loop level. We focus on the first
class. The mediator can be a scalar or a vector. We focus on scalar leptoquarks. There are four scalar
leptoquark representations that couple to a down-type quark and a charged lepton:

– (3, 1)−4/3 couples to D̄Ē and generates CRR.
– (3, 2)+1/6 couples to D̄L and generates CRL.
– (3, 2)+7/6 couples to Q̄E and generates CLR.
– (3, 3)−1/3 couples to Q̄L̄ and generates CLL.

Thus, only T (3, 3)−1/3 can account for both RK and RK∗ . To do so, its mass and couplings have to
obey

Re(Y T
µsY

T∗
µb )

m2
T

∼ −0.004

TeV2 . (172)

ForRe(Y T
µsY

T∗
µb ) ∼< 1, we have mT ∼< 15 TeV.

The same couplings as those modifying RK(∗) modify also other processes. In particular, when
the only operator generated by the NP is CLL, we find the interesting predictions

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
=

BR(Bs → φµ+µ−)

BR(Bs → φµ+µ−)SM
= RK = RK∗ . (173)

The T (3, 3)−1/3 contributes also to Bs −Bs mixing via box diagrams. The resulting constraint is

|Y T
µsY

T∗
µb |2

m2
T

∼< −
0.06

TeV2 . (174)

Let us now consider subjecting this model to the MFV principle [69]. To have a TQ̄L̄ coupling,
T can transform under SU(3)L × SU(3)E as either (3̄, 1) or (1, 3̄). In the first case,

Y T
τsY

T∗
τb

Y T
µsY

T∗
µb

=
y4
τ

y4
µ

, (175)

and the experimental upper bound on B → Kττ is violated. In the latter case,

Y T
τsY

T∗
τb

Y T
µsY

T∗
µb

=
y2
τ

y2
µ

. (176)

The requirement from RK and the constraint from Bs −Bs mixing can be simultaneously satisfied only
for mT ∼< 0.5 TeV, which is excluded by LHC direct searches. We conclude that if the RK(∗) anomaly is
generated by a T (3, 3)−1/3 leptoquark, then MFV will be excluded [69].

10.2 B → D(∗)τν

One can use the following ratios to test lepton flavor universality (LFU):

R(D(∗)) ≡ Γ(B → D(∗)τν)

Γ(B → D(∗)`ν)
, (177)

where ` = e, µ. Babar [70, 71], Belle [72, 73] and LHCb [74] have measured R(D(∗)). The HFAG
average of these measurements gives [75]

R(D∗) = 0.306± 0.015 ,
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R(D) = 0.407± 0.046 . (178)

The SM values (averaged over several calculations) are given by

R(D∗)SM = 0.258± 0.005 ,

R(D)SM = 0.299± 0.003 . (179)

Thus

R(D∗)/R(D∗)SM = 1.19± 0.06 ,

R(D)/R(D)SM = 1.36± 0.15 . (180)

The p-value is 1.57×10−4. In this section we entertain the idea that a deviation from the SM will indeed
be established. We follow mainly the analyses of Refs. [76, 77].

We assume that the new physics that affects the b→ cτν transition takes place at an energy scale
larger than the electroweak breaking scale, in which case it can be represented by higher dimensional
operators. The most general d = 6 terms are [76]

Leff = cijklQQLL(Q̄iγµσ
aQj)(L̄kγ

µσaLl) + cijklQuLe(Q̄iUj)iσ
2(L̄kEl)

+cijkldQLe(d̄iQj)(L̄kEl) + cijkldQLe′(d̄iσµνQj)(L̄kσ
µνEl) + h.c. . (181)

It has been shown that a non-zero cQuLe alone cannot accommodate bothR(D(∗)) and be consistent with
the measurements of the corresponding decay spectra.

In what follows, we write the Wilson coefficients in the down and charged lepton mass bases, e.g.
Q3 = (VibuiL, bL)T and L3 = (ντ , τL)T .

Given that the deviation from the SM is large, of order 30%, and that within the SM the semilep-
tonic decay b → cτν is a W -mediated tree-level decay, it is likely that the new physics contribution is
also a tree-level one. The mediator can be a Lorentz scalar or vector, and a color singlet or triplet, for
example:

– A scalar H ′(1, 2)+1/2 ;
– A vector W ′aµ (1, 3)0 ;
– A vector Uµ(3, 1)+2/3 ;
– A scalar ∆(3, 2)+7/6 .

We discuss the first three.

The scalar H ′ with Yukawa couplings

LH′ = −YbQ̄3H
′bR − YcQ̄3H̃

′cR − Yτ L̄3H
′τR + h.c. (182)

generates
c3333
dQLe = YbY

∗
τ /M

2
H+ , c3233

Qule = YcYτ/M
2
H+ . (183)

It can account for (180) with c3333
dQLe = (50± 14)TeV−2 and c3233

QuLe = (−1.6± 0.5)TeV−2.

The vector W ′aµ with couplings

LW ′ = W ′aµ

(
λqijQ̄iγ

µσaQj + λ`ijL̄iγ
µσaLj

)
(184)

generates
c3333
QQLL = −λq33λ

`
33/M

2
W ′ . (185)
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It can account for (180) (note a Vcb suppression factor) with c3333
QQLL = (−2.1± 0.5)TeV−2. At the same

time, this operator leads to bb̄→W ′0 → τ+τ− at unacceptably large rate.

The vector leptoquark Uµ with couplings

LU = gUUµQ̄3γ
µL3 + h.c. (186)

generates
c3333
QQLL = g2

U/(2M
2
U ) . (187)

It can account for (180) (note a Vcb suppression factor) with c3333
QQLL = (−2.1± 0.5)TeV−2.

The presence of a quark doublet Qi and a lepton doublet Lj in all operators implies that, in
parallel to the charged current operator of interest, there are unavoidably also neutral current four fermion
operators of the type ūu`−`+ or d̄d`−`+. Let us take as an example the case of W ′aµ with only λq33 6= 0
among the quark couplings. Even in this case, a potentially large contribution to ∆C = 2 transition is
generated [77]:

LW ′∆C=2 = −
(λq33VubV

∗
cb)

2

2M2
W ′

(ūLγµcL)2 + h.c. . (188)

The experimental bounds on CP violation in D0 −D0 mixing require [77]

λq233

M2
W ′
≤ 10 TeV−2 , (189)

to be compared with the R(D(∗)) constraint [76, 77],

λq33λ
`
33

M2
W ′
∼ 2 TeV−2 . (190)

Thus, the model is viable for λq33/λ
`
33 < 5.

11 Conclusions
(i) Measurements of CP violating B-meson decays have established that the Kobayashi-Maskawa mech-
anism is the dominant source of the observed CP violation.

(ii) Measurements of flavor changingB-meson decays have established the Cabibbo-Kobayashi-Maskawa
mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKM predictions sharpens the new physics
flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor structure must be highly
non-generic.

(iv) Measurements of neutrino flavor parameters have not only not clarified the standard model flavor
puzzle, but actually deepened it. Whether they imply an anarchical structure, or a tribimaximal mixing,
it seems that the neutrino flavor structure is very different from that of quarks.

(v) If the LHC experiments discover new particles that couple to the Standard Model fermions, then,
in principle, they will be able to measure new flavor parameters. Consequently, the new physics flavor
puzzle is likely to be understood.

(vi) If the flavor structure of such new particles is affected by the same physics that sets the flavor
structure of the Yukawa couplings, then the LHC experiments (and future flavor factories) may be able
to shed light also on the standard model flavor puzzle.

(vii) The recently discovered Higgs-like boson provides an opportunity to make progress in our under-
standing of the flavor puzzle(s).
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(viii) Extensions of the SM where new particles couple to quark- and/or lepton-pairs are constrained by
flavor.

The huge progress in flavor physics in recent years has provided answers to many questions. At
the same time, new questions arise. The LHC era is likely to provide more answers and more questions.
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Appendices
A CPV inB decays to final CP eigenstates
We define decay amplitudes of B (which could be charged or neutral) and its CP conjugate B to a
multi-particle final state f and its CP conjugate f as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (A.1)

where H is the Hamiltonian governing weak interactions. The action of CP on these states introduces
phases ξB and ξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,
CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (A.2)

so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor symmetry
of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then Af and Af have the
same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (A.3)

A state that is initially a superposition of B0 and B0, say

|ψ(0)〉 = a(0)|B0〉+ b(0)|B0〉 , (A.4)

will evolve in time acquiring components that describe all possible decay final states {f1, f2, . . .}, that
is,

|ψ(t)〉 = a(t)|B0〉+ b(t)|B0〉+ c1(t)|f1〉+ c2(t)|f2〉+ · · · . (A.5)

If we are interested in computing only the values of a(t) and b(t) (and not the values of all ci(t)), and
if the times t in which we are interested are much larger than the typical strong interaction scale, then
we can use a much simplified formalism [83]. The simplified time evolution is determined by a 2 × 2
effective Hamiltonian H that is not Hermitian, since otherwise the mesons would only oscillate and not
decay. Any complex matrix, such asH, can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (A.6)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements of M and Γ are associated with the
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flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal elements are associated with
flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex pa-
rameters p and q to specify the components of the strong interaction eigenstates, B0 and B0, in the light
(BL) and heavy (BH ) mass eigenstates:

|BL,H〉 = p|B0〉 ± q|B0〉 (A.7)

with the normalization |p|2 + |q|2 = 1. The special form of Eq. (A.7) is related to the fact that CPT
imposes M11 = M22 and Γ11 = Γ22. Solving the eigenvalue problem gives(

q

p

)2

=
M∗12 − (i/2)Γ∗12

M12 − (i/2)Γ12
. (A.8)

If either CP or T is a symmetry ofH, then M12 and Γ12 are relatively real, leading to(
q

p

)2

= e2iξB ⇒
∣∣∣∣qp
∣∣∣∣ = 1 , (A.9)

where ξB is the arbitrary unphysical phase introduced in Eq. (A.2).

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H〉 represent their
masses and decay-widths, respectively. The mass difference ∆mB and the width difference ∆ΓB are
defined as follows:

∆mB ≡MH −ML , ∆ΓB ≡ ΓH − ΓL . (A.10)

Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally determined.
The average mass and width are given by

mB ≡
MH +ML

2
, ΓB ≡

ΓH + ΓL
2

. (A.11)

It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (A.12)

Solving the eigenvalue equation gives

(∆mB)2 − 1

4
(∆ΓB)2 = (4|M12|2 − |Γ12|2) , ∆mB∆ΓB = 4Re(M12Γ∗12) . (A.13)

All CP-violating observables in B and B decays to final states f and f can be expressed in terms
of phase-convention-independent combinations of Af , Af , Af and Af , together with, for neutral-meson
decays only, q/p. CP violation in charged-meson decays depends only on the combination |Af/Af |,
while CP violation in neutral-meson decays is complicated by B0 ↔ B0 oscillations and depends,
additionally, on |q/p| and on λf ≡ (q/p)(Af/Af ).

For neutral D, B, and Bs mesons, ∆Γ/Γ � 1 and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure |B0〉 or |B0〉 after an elapsed proper time t as
|B0

phys(t)〉 or |B0
phys(t)〉, respectively. Using the effective Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉 ,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (A.14)
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where
g±(t) ≡ 1

2

(
e−imH t−

1
2

ΓH t ± e−imLt−
1
2

ΓLt
)

. (A.15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t)→ f ]/dt

e−ΓtNf
=

(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)

+ 2Re((q/p)A∗fAf ) sinh(yΓt)− 2 Im((q/p)A∗fAf ) sin(xΓt) ,(A.16)

dΓ[B0
phys(t)→ f ]/dt

e−ΓtNf
=

(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA
∗
f ) sinh(yΓt)− 2 Im((p/q)AfA

∗
f ) sin(xΓt) ,(A.17)

where Nf is a common normalization factor. Decay rates to the CP-conjugate final state f are obtained
analogously, with Nf = Nf and the substitutions Af → Af and Af → Af in Eqs. (A.16,A.17). Terms
proportional to |Af |2 or |Af |2 are associated with decays that occur without any net B ↔ B oscilla-
tion, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2 are associated with decays following a net
oscillation. The sinh(yΓt) and sin(xΓt) terms of Eqs. (A.16,A.17) are associated with the interference
between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-space vari-
ables. Interference may be present in some regions but not others, and is strongly influenced by resonant
substructure.

One possible manifestation of CP-violating effects in meson decays [84] is in the interference
between a decay without mixing, B0 → f , and a decay with mixing, B0 → B0 → f (such an effect
occurs only in decays to final states that are common to B0 and B0, including all CP eigenstates). It is
defined by

Im(λf ) 6= 0 , (A.18)

with

λf ≡
q

p

Af
Af

. (A.19)

This form of CP violation can be observed, for example, using the asymmetry of neutral meson decays
into final CP eigenstates fCP

AfCP (t) ≡
dΓ/dt[B0

phys(t)→ fCP ]− dΓ/dt[B0
phys(t)→ fCP ]

dΓ/dt[B0
phys(t)→ fCP ] + dΓ/dt[B0

phys(t)→ fCP ]
. (A.20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation for B mesons), AfCP has a particularly
simple form [85–87]:

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) ,

Sf ≡
2 Im(λf )

1 + |λf |2
, Cf ≡

1− |λf |2

1 + |λf |2
, (A.21)

Consider the B → f decay amplitude Af , and the CP conjugate process, B → f , with decay
amplitude Af . There are two types of phases that may appear in these decay amplitudes. Complex
parameters in any Lagrangian term that contributes to the amplitude will appear in complex conjugate
form in the CP-conjugate amplitude. Thus their phases appear in Af and Af with opposite signs. In the
Standard Model, these phases occur only in the couplings of the W± bosons and hence are often called
“weak phases”. The weak phase of any single term is convention dependent. However, the difference
between the weak phases in two different terms inAf is convention independent. A second type of phase
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can appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is the possible
contribution from intermediate on-shell states in the decay process. Since these phases are generated by
CP-invariant interactions, they are the same in Af and Af . Usually the dominant rescattering is due to
strong interactions and hence the designation “strong phases” for the phase shifts so induced. Again,
only the relative strong phases between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-transformation
phases of Eq. (A.3). Those spurious phases are due to an arbitrary choice of phase convention, and do
not originate from any dynamics or induce any CP violation. For simplicity, we set them to zero from
here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its weak phase φi,
and its strong phase δi. If, for example, there are two such contributions, Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) ,

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) . (A.22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (A.23)

Each of the phases appearing in Eqs. (A.22,A.23) is convention dependent, but combinations such as
δ1−δ2, φ1−φ2, φM −φΓ and φM +φ1−φ1 (where φ1 is a weak phase contributing toAf ) are physical.

In the approximations that only a single weak phase contributes to decay, Af = |af |ei(δf+φf ), and
that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays to a final CP eigenstate f
[Eq. (A.20)] with eigenvalue ηf = ±1 are given by

AfCP (t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf ) . (A.24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involved in the
extraction of its value from Im(λf ).
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