
Flavour Dynamics and Violations of the CP Symmetry

A. Pich
IFIC, University of Valencia – CSIC, E-46071 Valencia, Spain

Abstract
An overview of flavour physics and CP-violating phenomena is presented. The
Standard Model quark-mixing mechanism is discussed in detail and its many
successful experimental tests are summarized. Flavour-changing transitions
put very stringent constraints on new-physics scenarios beyond the Standard
Model framework. Special attention is given to the empirical evidences of CP
violation and their important role in our understanding of flavour dynamics.
The current status of the so-called flavour anomalies is also reviewed.
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1 Fermion families
We have learnt experimentally that there are six different quark flavours; three of them, u , c , t , with

electric charge Q = +2
3 (up-type), and the other three, d , s , b , with Q = −1

3 (down-type). There are
also three different charged leptons, e , µ , τ , with Q = −1 and their corresponding neutrinos, νe , νµ ,
ντ , withQ = 0. We can include all these particles into the SU(3)C⊗SU(2)L⊗U(1)Y Standard Model
(SM) framework [1–3], by organizing them into three families of quarks and leptons:[

νe u

e− d ′

]
,

[
νµ c

µ− s ′

]
,

[
ντ t

τ− b′

]
, (1)

where (each quark appears in three different colours)[
νi ui
`−i d ′i

]
≡

(
νi
`−i

)
L

,

(
ui
d ′i

)
L

, `−iR , uiR , d ′iR , (2)

plus the corresponding antiparticles. Thus, the left-handed fields are SU(2)L doublets, while their right-
handed partners transform as SU(2)L singlets. The three fermionic families appear to have identical
properties (gauge interactions); they differ only by their mass and their flavour quantum numbers.

The fermionic couplings of the photon and the Z boson are flavour conserving, i.e., the neutral
gauge bosons couple to a fermion and its corresponding antifermion. In contrast, the W± bosons couple
any up-type quark with all down-type quarks because the weak doublet partner of ui turns out to be a
quantum superposition of down-type mass eigenstates: d ′i =

∑
j Vij dj . This flavour mixing generates a

rich variety of observable phenomena, including CP-violation effects, which can be described in a very
successful way within the SM [4, 5].

In spite of its enormous phenomenological success, The SM does not provide any real understand-
ing of flavour. We do not know yet why fermions are replicated in three (and only three) nearly identical
copies. Why the pattern of masses and mixings is what it is? Are the masses the only difference among
the three families? What is the origin of the SM flavour structure? Which dynamics is responsible for the
observed CP violation? The fermionic flavour is the main source of arbitrary free parameters in the SM:
9 fermion masses, 3 mixing angles and 1 complex phase, for massless neutrinos. Another 7 (9) additional
parameters arise with non-zero Dirac (Majorana) neutrino masses: 3 masses, 3 mixing angles and 1 (3)
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Fig. 1: Flavour-changing transitions through the charged-current couplings of the W± bosons.

phases. The problem of fermion mass generation is deeply related with the mechanism responsible for
the electroweak Spontaneous Symmetry Breaking (SSB). Thus, the origin of these parameters lies in the
most obscure part of the SM Lagrangian: the scalar sector. Clearly, the dynamics of flavour appears to
be “terra incognita” which deserves a careful investigation.

The following sections contain a short overview of the quark flavour sector and its present phe-
nomenological status. The most relevant experimental tests are briefly described. A more pedagogic
introduction to the SM can be found in Ref. [4].

2 Flavour structure of the Standard Model
In the SM flavour-changing transitions occur only in the charged-current sector (Fig. 1):

LCC = − g

2
√

2

W †µ
∑

ij

ūi γ
µ(1− γ5)Vij dj +

∑
`

ν̄` γ
µ(1− γ5) `

 + h.c.

 . (3)

The so-called Cabibbo–Kobayashi–Maskawa (CKM) matrix V [6, 7] is generated by the same Yukawa
couplings giving rise to the quark masses. Before SSB, there is no mixing among the different quarks,
i.e., V = I. In order to understand the origin of the matrix V , let us consider the general case of NG

generations of fermions, and denote ν ′j , `
′
j , u
′
j , d
′
j the members of the weak family j (j = 1, . . . , NG),

with definite transformation properties under the gauge group. Owing to the fermion replication, a large
variety of fermion-scalar couplings are allowed by the gauge symmetry. The most general Yukawa
Lagrangian has the form

LY = −
∑
jk

{(
ū′j , d̄

′
j

)
L

[
c

(d)
jk

(
φ(+)

φ(0)

)
d ′kR + c

(u)
jk

(
φ(0)∗

−φ(−)

)
u′kR

]

+
(
ν̄ ′j , ¯̀′

j

)
L
c

(`)
jk

(
φ(+)

φ(0)

)
` ′kR

}
+ h.c., (4)

where φT (x) ≡
(
φ(+), φ(0)

)
is the SM scalar doublet and c(d)

jk , c(u)
jk and c(`)

jk are arbitrary coupling

constants. The second term involves the charge-conjugate scalar field φc(x) = i σ2 φ
∗(x).

In the unitary gauge φT (x) ≡ 1√
2

(0, v +H(x)), where v is the electroweak vacuum expectation
value and H(x) the Higgs field. The Yukawa Lagrangian can then be written as

LY = −
(

1 +
H

v

) {
d′LM

′
d d
′
R + u′LM

′
u u
′
R + `′LM

′
` `
′
R + h.c.

}
. (5)

Here, d′, u′ and `′ denote vectors in the NG-dimensional flavour space, with components d ′j , u
′
j and ` ′j ,

respectively, and the corresponding mass matrices are given by

(M′d)ij ≡ c
(d)
ij

v√
2
, (M′u)ij ≡ c

(u)
ij

v√
2
, (M′`)ij ≡ c

(`)
ij

v√
2
. (6)
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Fig. 2: Tree-level FCNC couplings (green solid vertices) are absent in the SM. Therefore, very suppressed (exper-
imentally) transitions such as K0 → µ+µ− or K0–K̄0 mixing cannot occur through tree-level exchange.

The diagonalization of these mass matrices determines the mass eigenstates dj , uj and `j , which are
linear combinations of the corresponding weak eigenstates d ′j , u

′
j and ` ′j , respectively.

The matrix M′d can be decomposed as1 M′d = HdUd = S†dMd SdUd, where Hd ≡
√
M′dM

′†
d

is an Hermitian positive-definite matrix, while Ud is unitary. Hd can be diagonalized by a unitary
matrix Sd; the resulting matrix Md is diagonal, Hermitian and positive definite. Similarly, one has
M′u = HuUu = S†uMu SuUu and M′` = H`U` = S†`M` S`U`. In terms of the diagonal mass
matrices

Md = diag(md,ms,mb, . . .) , Mu = diag(mu,mc,mt, . . .) , M` = diag(me,mµ,mτ , . . .) ,
(7)

the Yukawa Lagrangian takes the simpler form

LY = −
(

1 +
H

v

) {
dMd d + uMu u + `M` `

}
, (8)

where the mass eigenstates are defined by

dL ≡ Sd d
′
L , uL ≡ Su u

′
L , `L ≡ S` `

′
L ,

dR ≡ SdUd d
′
R , uR ≡ SuUu u

′
R , `R ≡ S`U` `

′
R . (9)

Note, that the Higgs couplings are flavour-conserving and proportional to the corresponding fermion
masses.

Since, f ′L f
′
L = fL fL and f ′R f ′R = fR fR (f = d, u, `), the form of the neutral-current part of the

SU(3)C ⊗ SU(2)L ⊗U(1)Y Lagrangian does not change when expressed in terms of mass eigenstates.
Therefore, there are no flavour-changing neutral currents (FCNCs) in the SM. This is a consequence
of treating all equal-charge fermions on the same footing (GIM mechanism [8]), and guarantees that
weak transitions such as B0

s,d → `+`−, K0 → µ+µ− or K0–K̄0 mixing (Fig. 2), which are known
experimentally to be very suppressed, cannot happen at tree level. The absence of FCNCs is crucial for
the phenomenological success of the SM. However, u ′L d

′
L = uL Su S

†
d dL ≡ uLVdL. In general,

Su 6= Sd ; thus, if one writes the weak eigenstates in terms of mass eigenstates, a NG × NG unitary
mixing matrix V appears in the quark charged-current sector as indicated in Eq. (3).

If neutrinos are assumed to be massless, we can always redefine the neutrino flavours, in such
a way as to eliminate the mixing in the lepton sector: ν ′L `

′
L = ν ′L S

†
` `L ≡ νL `L. Thus, we have

lepton-flavour conservation in the minimal SM without right-handed neutrinos. If sterile νR fields are
included in the model, one has an additional Yukawa term in Eq. (4), giving rise to a neutrino mass matrix
(M′ν)ij ≡ c

(ν)
ij v/

√
2 . Thus, the model can accommodate non-zero neutrino masses and lepton-flavour

violation through a lepton mixing matrix VL analogous to the one present in the quark sector. Note,
however, that the total lepton number L ≡ Le + Lµ + Lτ is still conserved. We know experimentally

1The condition detM
′
f 6= 0 (f = d, u, `) guarantees that the decomposition M

′
f = HfUf is unique: Uf ≡ H

−1
f M

′
f .

The matrices Sf are completely determined (up to phases) only if all diagonal elements of Mf are different. If there is some
degeneracy, the arbitrariness of Sf reflects the freedom to define the physical fields. When detM

′
f = 0, the matrices Uf and

Sf are not uniquely determined, unless their unitarity is explicitly imposed.
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Table 1: Best published limits on lepton-flavour-violating transitions [9].

Br(µ− → X−) · 1012 (90% CL)

e−γ 0.42 e−2γ 72 e−e−e+ 1.0

Γ(µ− +N → e− +N)/Γ(µ− +N → capture) · 1012 (90% CL)

Au 0.7 Ti 4.3 Pb 46

Br(τ− → X−) · 108 (90% CL)

e−γ 3.3 e−e+e− 2.7 e−µ+µ− 2.7 e−e−µ+ 1.5

µ−γ 4.4 µ−e+e− 1.8 µ−µ+µ− 2.1 µ−µ−e+ 1.7

e−π0 8.0 µ−π0 11 e−φ 3.1 µ−φ 8.4

e−η 9.2 e−η′ 16 e−ρ0 1.8 e−ω 4.8

µ−η 6.5 µ−η′ 13 µ−ρ0 1.2 µ−ω 4.7

e−KS 2.6 e−K∗0 3.2 e−K̄∗0 3.4 e−K+π− 3.1

µ−KS 2.3 µ−K∗0 5.9 µ−K̄∗0 7.0 µ−K+π− 4.5

e−KSKS 7.1 e−K+K− 3.4 e−π+π− 2.3 e−π+K− 3.7

µ−KSKS 8.0 µ−K+K− 4.4 µ−π+π− 2.1 µ−π+K− 8.6

e−f0(980)→ e−π+π− 3.2 µ−f0(980)→ µ−π+π− 3.4

Br(Z→ X0) · 106 (95% CL)

e±µ∓ 0.75 e±τ∓ 9.8 µ±τ∓ 12

Br(H→ X0) · 103 (95% CL)

e±µ∓ 0.061 e±τ∓ 4.7 µ±τ∓ 2.5

Br(π0 → X0) · 109 (90% CL) Br(K+ → X+) · 1011 (90% CL)

µ+e− 0.38 µ−e+ 3.4 π+µ+e− 1.3 π+µ−e+ 52

Br(K0
L → X0) · 1011 (90% CL)

e±µ∓ 0.47 e±e±µ∓µ∓ 4.12 π0µ±e∓ 7.6 π0π0µ±e∓ 17

Br(B0
(s) → X0) · 109 (90% CL) Br(B+ → X+) · 109 (90% CL)

B0 → e±µ∓ 1.0 B0
s → e±µ∓ 5.4 K+e−µ+ 6.4 K+e+µ− 7.0

that neutrino masses are tiny and, as shown in Table 1, there are strong bounds on lepton-flavour violating
decays. However, we do have a clear evidence of neutrino oscillation phenomena [9]. Moreover, since
right-handed neutrinos are singlets under SU(3)C ⊗ SU(2)L ⊗ U(1)Y , the SM gauge symmetry group
allows for a right-handed Majorana neutrino mass term, violating lepton number by two units. Non-zero
neutrino masses clearly imply interesting new phenomena [4].

The fermion masses and the quark mixing matrix V are all generated by the Yukawa couplings in
Eq. (4). However, the complex coefficients c(f)

ij are not determined by the gauge symmetry; therefore,
we have a large number of arbitrary parameters. A general NG ×NG unitary matrix is characterized by
N2
G real parameters: NG(NG − 1)/2 moduli and NG(NG + 1)/2 phases. In the case of V, many of
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these parameters are irrelevant because we can always choose arbitrary quark phases. Under the phase
redefinitions ui → eiφi ui and dj → eiθj dj , the mixing matrix changes as Vij → Vij ei(θj−φi); thus,
2NG − 1 phases are unobservable. The number of physical free parameters in the quark-mixing matrix
then gets reduced to (NG − 1)2: NG(NG − 1)/2 moduli and (NG − 1)(NG − 2)/2 phases.

In the simpler case of two generations, V is determined by a single parameter. One then recovers
the Cabibbo rotation matrix [6]

V =

(
cos θC sin θC
− sin θC cos θC

)
. (10)

With NG = 3, the CKM matrix is described by three angles and one phase. Different (but equivalent)
representations can be found in the literature. The Particle data Group [9] advocates the use of the
following one as the ‘standard’ CKM parametrization:

V =

 1 0 0

0 c23 s23

0 −s23 c23

 ·
 c13 0 s13 e−iδ13

0 1 0

−s13 eiδ13 0 c13

 ·
 c12 s12 0

−s12 c12 0

0 0 1



=

 c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13

 . (11)

Here cij ≡ cos θij and sij ≡ sin θij , with i and j being generation labels (i, j = 1, 2, 3). The real
angles θ12, θ23 and θ13 can all be made to lie in the first quadrant, by an appropriate redefinition of quark
field phases; then, cij ≥ 0 , sij ≥ 0 and 0 ≤ δ13 ≤ 2π . Notice that δ13 is the only complex phase in
the SM Lagrangian. Therefore, it is the only possible source of CP-violation phenomena. In fact, it was
for this reason that the third generation was assumed to exist [7], before the discovery of the b and the τ .
With two generations, the SM could not explain the observed CP violation in the K system.

3 Lepton decays

W

e

μ

−

ν

ν

e−

μ−

W

e

e  ,   , d , s

,      , u

τ

ν

μ

τ

−

−

− μ−

ν ν  , u

Fig. 3: Tree-level Feynman diagrams for µ− → e−ν̄e νµ and τ− → ντX
− (X− = e−ν̄e, µ

−ν̄µ, dū, sū).

The simplest flavour-changing process is the leptonic decay of the muon, which proceeds through
theW -exchange diagram shown in Fig. 3. The momentum transfer carried by the intermediateW is very
small compared to MW . Therefore, the vector-boson propagator reduces to a contact interaction,

−gµν + qµqν/M
2
W

q2 −M2
W

q
2�M2

W−→ gµν

M2
W

. (12)

The decay can then be described through an effective local four-fermion Hamiltonian,

Heff =
GF√

2
[ēγα(1− γ5)νe]

[
ν̄µγα(1− γ5)µ

]
, (13)
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Table 2: Experimental determinations of the ratios g`/g`′ [9, 17].

Γτ→µ/Γτ→e Γπ→µ/Γπ→e ΓK→µ/ΓK→e ΓK→πµ/ΓK→πe ΓW→µ/ΓW→e

|gµ/ge| 1.0017 (16) 1.0010 (9) 0.9978 (18) 1.0010 (25) 0.993 (7)

Γτ→e/Γµ→e Γτ→π/Γπ→µ Γτ→K/ΓK→µ ΓW→τ/ΓW→µ

|gτ/gµ| 1.0011 (14) 0.9965 (26) 0.9860 (73) 1.034 (13)

Γτ→µ/Γµ→e ΓW→τ/ΓW→e

|gτ/ge| 1.0028 (14) 1.021 (12)

where
GF√

2
=

g2

8M2
W

=
1

2v2 (14)

is called the Fermi coupling constant. GF is fixed by the total decay width,

1

τµ
= Γ[µ− → e−ν̄eνµ (γ)] =

G2
Fm

5
µ

192π3 (1 + δRC) f
(
m2
e/m

2
µ

)
, (15)

where f(x) = 1−8x+ 8x3−x4−12x2 lnx , and δRC ≈ α
2π (25

4 −π
2) takes into account higher-order

QED corrections, which are known toO(α2) [10–12]. The tiny neutrino masses can be safely neglected.
The measured lifetime [13], τµ = (2.196 981 1± 0.000 002 2) · 10−6 s, implies the value

GF = (1.166 378 7± 0.000 000 6) · 10−5 GeV−2 ≈ 1

(293 GeV)2 . (16)

The decays of the τ lepton proceed through the same W -exchange mechanism. The only differ-
ence is that several final states are kinematically allowed: τ− → ντe

−ν̄e, τ
− → ντµ

−ν̄µ, τ− → ντdū

and τ− → ντsū. Owing to the universality of the W couplings in LCC, all these decay modes have
equal amplitudes (if final fermion masses and QCD interactions are neglected), except for an additional
NC |Vui|2 factor (i = d, s) in the semileptonic channels, where NC = 3 is the number of quark colours.
Making trivial kinematical changes in Eq. (15), one easily gets the lowest-order prediction for the total
τ decay width:

1

ττ
≡ Γ(τ) ≈ Γ(µ)

(
mτ

mµ

)5 {
2 +NC

(
|Vud|2 + |Vus|2

)}
≈ 5

τµ

(
mτ

mµ

)5

, (17)

where we have used the CKM unitarity relation |Vud|2 + |Vus|2 = 1− |Vub|2 ≈ 1 (we will see later that
this is an excellent approximation). From the measured muon lifetime, one has then ττ ≈ 3.3 ·10−13 s, to
be compared with the experimental value τ exp

τ = (2.903±0.005) ·10−13 s [9]. The numerical difference
is due to the effect of QCD corrections, which enhance the hadronic τ decay width by about 20%. The
size of these corrections has been accurately predicted in terms of the strong coupling [14], allowing us
to extract from τ decays one of the most precise determinations of αs [15, 16].

In the SM all lepton doublets have identical couplings to the W boson. Comparing the measured
decay widths of leptonic or semileptonic decays which only differ in the lepton flavour, one can test
experimentally that the W interaction is indeed the same, i.e., that ge = gµ = gτ ≡ g. As shown in
Table 2, the present data verify the universality of the leptonic charged-current couplings to the 0.2%
level.

100



W
+

W
+

c c

d , s d , s

e  ,+ μ+

ν
e νμ, u

d , s
_ _

Fig. 4: Vij are measured in semileptonic decays (left), where a single quark current is present. Hadronic decays
(right) involve two different quark currents and are more affected by QCD effects (gluons can couple everywhere).

4 Quark mixing
In order to measure the CKM matrix elements Vij , one needs to study hadronic weak decays of the
type H → H ′ `−ν̄` or H ′ → H `+ν` that are associated with the corresponding quark transitions
dj → ui `

−ν̄` and ui → dj `
+ν` (Fig. 4). Since quarks are confined within hadrons, the decay amplitude

T [H → H ′ `−ν̄`] =
GF√

2
Vij 〈H ′| ūi γµ(1− γ5) dj |H〉

[
¯̀γµ(1− γ5) ν`

]
(18)

always involves an hadronic matrix element of the weak left current. The evaluation of this matrix
element is a non-perturbative QCD problem, which introduces unavoidable theoretical uncertainties.

One usually looks for a semileptonic transition where the matrix element can be fixed at some spe-
cific kinematic point by a symmetry principle. This has the virtue of reducing the theoretical uncertainties
to the level of symmetry-breaking corrections and kinematic extrapolations. The standard example is a
0− → 0− decay such as K → π`ν` , D → K`ν` or B → D`ν` , where, owing to parity (the vector
and axial-vector currents have JP = 1− and 1+, respectively), only the vector current contributes. The
most general Lorentz decomposition of the hadronic matrix element contains two terms:

〈P ′(k′)| ūi γµ dj |P (k)〉 = CPP ′
{

(k + k′)µ f+(t) + (k − k′)µ f−(t)
}
. (19)

Here, CPP ′ is a Clebsh–Gordan factor relating P → P ′ transitions that only differ by the meson electro-
magnetic charges, and t = (k − k′)2 ≡ q2 is the momentum transfer. The unknown strong dynamics is
fully contained in the form factors f±(t).

In the limit of equal quark masses, mui
= mdj

, the divergence of the vector current is zero. Thus
qµ
[
ūiγ

µdj
]

= 0, which implies f−(t) = 0. Moreover, as shown in the appendix, f+(0) = 1 to all
orders in the strong coupling because the associated flavour charge is a conserved quantity.2 Therefore,
one only needs to estimate the corrections induced by the quark mass differences.

Since qµ
[
¯̀γµ(1− γ5)ν`

]
∼ m`, the contribution of f−(t) is kinematically suppressed in the

electron and muon decay modes. The decay width can then be written as (` = e, µ)

Γ(P → P ′`ν) =
G2
FM

5
P

192π3 |Vij |
2 C2

PP
′ |f+(0)|2 I (1 + δRC) , (20)

where δRC is an electroweak radiative correction factor and I denotes a phase-space integral, which in
the limit m` = 0 takes the form

I ≈
∫ (MP−MP

′ )
2

0

dt

M8
P

λ3/2(t,M2
P ,M

2
P
′)

∣∣∣∣ f+(t)

f+(0)

∣∣∣∣2 . (21)

The usual procedure to determine |Vij | involves three steps:
2This is completely analogous to the electromagnetic charge conservation in QED. The conservation of the electromagnetic

current implies that the proton electromagnetic form factor does not get any QED or QCD correction at q2 = 0 and, therefore,
Qp = 2Qu +Qd = |Qe|. An explicit proof can be found in Ref. [18].
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1. Measure the shape of the t distribution. This fixes |f+(t)/f+(0)| and therefore determines I.
2. Measure the total decay width Γ. Since GF is already known from µ decay, one gets then an

experimental value for the product |f+(0)Vij |, provided the radiative correction δRC is known to
the needed accuracy.

3. Get a theoretical prediction for f+(0).

It is important to realize that theoretical input is always needed. Thus, the accuracy of the |Vij | determi-
nation is limited by our ability to calculate the relevant hadronic parameters and radiative corrections.

4.1 Determination of |Vud| and |Vus|
The conservation of the vector QCD currents in the massless quark limit allows for precise determinations
of the light-quark mixings. The most accurate measurement of Vud is done with superallowed nuclear β
decays of the Fermi type (0+ → 0+), where the nuclear matrix element 〈N ′|ūγµd|N〉 can be fixed by
vector-current conservation. The CKM factor is obtained through the relation [19]

|Vud|2 =
π3 ln 2

ftG2
Fm

5
e (1 + δRC)

=
(2984.430± 0.003) s

ft (1 + δRC)
=

(2984.430± 0.003) s

Ft (1 + ∆V
R)

, (22)

where ft denotes the product of a phase-space statistical decay-rate factor and the measured half-life
of the transition. In order to determine |Vud|, one needs to perform a careful analysis of radiative cor-
rections, including electroweak contributions, nuclear-structure corrections and isospin-violating nuclear
effects. The nucleus-dependent corrections, which are reabsorbed into an effective nucleus-independent
Ft-value, have a crucial role in bringing the results from different nuclei into good agreement. The
weighted average of the fourteen most precise determinations yields Ft = (3072.07 ± 0.63) s [19, 20].
The remaining universal correction ∆V

R is sizeable and its previously accepted value [21] has been ques-
tioned by recent re-evaluations [22, 23]. Taking ∆V

R = 0.02426± 0.00032 [24], one gets

|Vud| = 0.97389± 0.00018 . (23)

An independent determination of |Vud| can be obtained from neutron decay, n → p e−ν̄e. The
axial current also contributes in this case; therefore, one needs to use the experimental value of the
axial-current matrix element at q2 = 0, 〈p | ūγµγ5d |n〉 = GA p̄γµn, which can be extracted from
the distribution of the neutron decay products. Using the current world averages, gA ≡ GA/GV =
−1.2732± 0.0023 and τn = (879.4± 0.6) s [9], and the estimated radiative corrections [24], one gets

|Vud| =

{
(4906.4± 1.7) s

τn (1 + 3g2
A)

}1/2

= 0.9755± 0.0015 , (24)

which is 1.1σ larger than (23) but less precise. The uncertainty on the input value of gA has been inflated
because the most recent and accurate measurements of gA disagree with the older experiments. Using
instead the post-2002 average gA = −1.2762 ± 0.0005 [24], results in |Vud| = 0.9736 ± 0.0005; three
times more precise and in better agreement with (23).

The pion β decay π+ → π0e+νe offers a cleaner way to measure |Vud|. It is a pure vector
transition, with very small theoretical uncertainties. At q2 = 0, the hadronic matrix element does not
receive isospin-breaking contributions of first order in md − mu, i.e., f+(0) = 1 + O[(md − mu)2]
[25]. The small available phase space makes it possible to theoretically control the form factor with
high accuracy over the entire kinematical domain [26]; unfortunately, it also implies a very suppressed
branching fraction of O(10−8). From the currently measured value [27], one gets |Vud| = 0.9749 ±
0.0026 [9]. A tenfold improvement of the experimental accuracy would be needed to get a determination
competitive with (23).
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The standard determination of |Vus| takes advantage of the theoretically well-understood decay
amplitudes in K → π`ν`. The high accuracy achieved in high-statistics experiments [9], supplemented
with theoretical calculations of electromagnetic and isospin corrections [28, 29], allows us to extract the
product |Vus f+(0)| = 0.2165 ± 0.0004 [30, 31], with f+(0) = 1 + O[(ms − mu)2] the vector form
factor of the K0 → π−`+ν` decay [25, 32]. The exact value of f+(0) has been thoroughly investigated
since the first precise estimate by Leutwyler and Roos, f+(0) = 0.961 ± 0.008 [33]. The most recent
and precise lattice determinations exhibit a clear shift to higher values [34, 35], in agreement with the
analytical chiral perturbation theory predictions at two loops [36–38]. Taking the current lattice average
(with 2 + 1 + 1 active fermions), f+(0) = 0.9706± 0.0027 [39], one obtains

|Vus| = 0.2231± 0.0007 . (25)

The ratio of radiative inclusive decay rates Γ[K → µν(γ)]/Γ[π → µν(γ)] provides also infor-
mation on Vus [30, 40]. With a careful treatment ot electromagnetic and isospin-violating corrections,
one extracts |Vus/Vud| |fK/fπ| = 0.2760 ± 0.0004 [31, 41, 42]. Taking for the ratio of meson decay
constants the lattice average fK/fπ = 1.1932± 0.0019 [39], one finally gets

|Vus|
|Vud|

= 0.2313± 0.0005 . (26)

With the value of |Vud| in Eq. (23), this implies |Vus| = 0.2253 ± 0.0005 that is 2.6σ larger than
Eq. (25).

Hyperon decays are also sensitive to Vus [43]. Unfortunately, in weak baryon decays the theoreti-
cal control on SU(3)-breaking corrections is not as good as for the meson case. A conservative estimate
of these effects leads to the result |Vus| = 0.226± 0.005 [44].

The accuracy of all previous determinations is limited by theoretical uncertainties. The ratio of
the inclusive ∆S = 0 (τ− → ντ ūd) and |∆S| = 1 (τ− → ντ ūs) tau decay widths provides a very clean
observable to directly measure |Vus| [17,45] because SU(3)-breaking corrections are suppressed by two
powers of the τ mass. The present τ decay data imply |Vus| = 0.2195 ± 0.0019 [46], which is 1.8σ
lower than Eq. (25), and 3.0σ lower than the value extracted from Eqs. (26) and (23).

4.2 Determination of |Vcb| and |Vub|
In the limit of very heavy quark masses, QCD has additional flavour and spin symmetries [47–50] that
can be used to make precise determinations of |Vcb|, either from exclusive semileptonic decays such as
B → D`ν̄` and B → D∗`ν̄` [51, 52] or from the inclusive analysis of b → c ` ν̄` transitions. In the rest
frame of a heavy-light meson Q̄q, with MQ � (mq,ΛQCD), the heavy quark Q is practically at rest and
acts as a static source of gluons (λQ ∼ 1/MQ � Rhad ∼ 1/ΛQCD). At MQ → ∞, the interaction
becomes then independent of the heavy-quark mass and spin. Moreover, assuming that the charm quark
is heavy enough, the b→ c`ν̄` transition within the meson does not modify the interaction with the light
quark at zero recoil, i.e., when the meson velocity remains unchanged (vD = vB).

Taking the limit mb > mc → ∞, all form factors characterizing the decays B → D`ν̄` and
B → D∗`ν̄` reduce to a single function [47], which depends on the product of the four-velocities of the
two mesons w ≡ vB · vD(∗) = (M2

B +M2

D
(∗) − q2)/(2MBMD

(∗)). Heavy quark symmetry determines
the normalization of the rate at w = 1, the maximum momentum transfer to the leptons, because the
corresponding vector current is conserved in the limit of equalB andD(∗) velocities. TheB → D∗ mode
has the additional advantage that corrections to the infinite-mass limit are of second order in 1/mb−1/mc

at zero recoil (w = 1) [52].

The exclusive determination of |Vcb| is obtained from an extrapolation of the measured spectrum to
w = 1. Using the CLN parametrization of the relevant form factors [53], which is based on heavy-quark
symmetry and includes 1/MQ corrections, the Heavy Flavor Averaging group (HFLAV) [46] quotes the
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experimental value ηEW F(1) |Vcb| = (35.27±0.38) ·10−3 from B → D∗`ν̄` data, while the measured
B → D`ν̄` distribution results in ηEW G(1) |Vcb| = (42.00 ± 1.00) · 10−3, where F(1) and G(1) are
the corresponding form factors at w = 1 and ηEW accounts for small electroweak corrections. Lattice
simulations are used to estimate the deviations from unity of the two form factors at zero recoil. Using
ηEW F(1) = 0.910± 0.013 [39] and ηEW G(1) = 1.061± 0.010 [54], one gets [46]

|Vcb| =

{
(38.76± 0.42exp ± 0.55th) · 10−3 (B → D∗`ν̄`)

(39.58± 0.94exp ± 0.37th) · 10−3 (B → D`ν̄`)
= (39.02± 0.57) · 10−3 . (27)

It has been pointed out recently that the CLN parametrization is only valid within 2% and this
uncertainty has not been properly taken into account in the experimental extrapolations [55–58]. Using
instead the more general BGL parametrization [59], combined with lattice and light-cone sum rules
information, the analysis of the most recent B → D∗`ν̄` Belle data [60, 61] gives [62]

|Vcb| = (39.6 + 1.1
− 1.0) · 10−3 , (28)

while a similar analysis of BaBar [63] and Belle [64] B → D`ν̄` data obtains [55]

|Vcb| = (40.49± 0.97) · 10−3 . (29)

These numbers are significantly higher than the corresponding HFLAV results in Eq. (27) and indicate
the presence of underestimated uncertainties.

The inclusive determination of |Vcb| uses the Operator Product Expansion [65, 66] to express the
total b → c ` ν̄` rate and moments of the differential energy and invariant-mass spectra in a double
expansion in powers of αs and 1/mb, which includes terms of O(α2

s) and up to O(1/m5
b) [12, 67–77].

The non-perturbative matrix elements of the corresponding local operators are obtained from a global fit
to experimental moments of inclusive lepton energy and hadronic invariant mass distributions. The most
recent analyses find [78, 79]

|Vcb| = (42.00± 0.64) · 10−3 . (30)

This value, which we will adopt in the following, agrees within errors with the exclusive B → D
determination in Eq. (29) and it is only 1.9σ away from the B → D∗ value in Eq. (28).

The presence of a light quark makes more difficult to control the theoretical uncertainties in the
analogous determinations of |Vub|. Exclusive B → π`ν` decays involve a non-perturbative form factor
f+(t) which is estimated through light-cone sum rules [80–83] and lattice simulations [84, 85]. The
inclusive measurement requires the use of stringent experimental cuts to suppress the b → Xc`ν` back-
ground that has fifty times larger rates. This induces sizeable errors in the theoretical predictions [86–94],
which become sensitive to non-perturbative shape functions and depend much more strongly onmb. The
HFLAV group quotes the values [46]

|Vub| =

{
(3.67± 0.09exp ± 0.12th) · 10−3 (B → π`ν̄`)

(4.32± 0.12exp
+ 0.12
− 0.13 th) · 10−3 (B → Xu`ν̄`)

= (3.95± 0.32) · 10−3 . (31)

Since the exclusive and inclusive determinations of |Vub| disagree, we have averaged both values scaling

the error by
√
χ2/dof = 2.8.

LHCb has extracted |Vub|/|Vcb| from the measured ratio of high-q2 events between the Λb decay
modes into pµν (q2 > 15 GeV2) and Λcµν (q2 > 7 GeV2) [46, 95]:

|Vub|
|Vcb|

= 0.079± 0.004exp ± 0.004FF , (32)
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where the second error is due to the limited knowledge of the relevant form factors. This ratio is com-
patible with the values of |Vcb| and |Vub| in Eqs. (30) and (31), at the 1.6σ level.

|Vub| can be also extracted from the B− → τ−ν̄τ decay width, taking the B-meson decay con-
stant fB from lattice calculations [39]. Unfortunately, the current tension between the BaBar [96] and
Belle [97] measurements does not allow for a very precise determination. The particle data group quotes
|Vub| = (4.01± 0.37) · 10−3 [9], which agrees with either the exclusive or inclusive values in Eq. (31).

4.3 Determination of the charm and top CKM elements
The analytic control of theoretical uncertainties is more difficult in semileptonic charm decays, because
the symmetry arguments associated with the light and heavy quark limits get corrected by sizeable
symmetry-breaking effects. The magnitude of |Vcd| can be extracted from D → π`ν` and D → `ν`
decays, while |Vcs| is obtained from D → K`ν` and Ds → `ν`, using the lattice determinations of
the relevant form factor normalizations and decay constants [39]. The HFLAV group quotes the aver-
ages [46]

|Vcd| = 0.2204± 0.0040 , |Vcs| = 0.969± 0.010 . (33)

The difference of the ratio of double-muon to single-muon production by neutrino and antineutrino
beams is proportional to the charm cross section off valence d quarks and, therefore, to |Vcd| times the
average semileptonic branching ratio of charm mesons. This allows for an independent determination of
|Vcd|. Averaging data from several experiments, the PDG quotes [9]

|Vcd| = 0.230± 0.011 , (34)

which agrees with (33) but has a larger uncertainty. The analogous determination of |Vcs| from νs→ cX
suffers from the uncertainty of the s-quark sea content.

The top quark has only been seen decaying into bottom. From the ratio of branching fractions
Br(t→Wb)/Br(t→Wq), CMS has extracted [98]

|Vtb|√∑
q |Vtq|

2
> 0.975 (95%CL) , (35)

where q = b, s, d. A more direct determination of |Vtb| can be obtained from the single top-quark
production cross section, measured at the LHC and the Tevatron. The PDG quotes the world average [9]

|Vtb| = 1.019± 0.025 . (36)

4.4 Structure of the CKM matrix
Using the previous determinations of CKM elements, we can check the unitarity of the quark mixing
matrix. The most precise test involves the elements of the first row:

|Vud|2 + |Vus|2 + |Vub|2 = 0.99825± 0.00047 , (37)

where we have taken as reference values the determinations in Eqs. (23), (25) and (31). Radiative cor-
rections play a crucial role at the quoted level of uncertainty, while the |Vub|2 contribution is negligible.
This relation exhibits a 3.7σ violation of unitarity, at the per-mill level, which calls for an independent
re-evaluation of the very precise |Vud| value in Eq. (23) and improvements on the |Vus| determination.

With the |Vcq|2 values in Eqs. (30) and (33) we can also test the unitarity relation in the second
row,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 0.989± 0.019 , (38)
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and, adding the information on |Vtb| in Eq. (36), the relation involving the third column,

|Vub|2 + |Vcb|2 + |Vtb|2 = 1.040± 0.051 . (39)

The ratio of the total hadronic decay width of the W to the leptonic one provides the sum [99, 100]∑
j= d,s,b

(
|Vuj |2 + |Vcj |2

)
= 2.002± 0.027 , (40)

which involves the first and second rows of the CKM matrix. Although much less precise than Eq. (37),
these three results test unitarity at the 2%, 5% and 1.4% level, respectively.

From Eq. (40) one can also obtain an independent estimate of |Vcs|, using the experimental
knowledge on the other CKM matrix elements, i.e., |Vud|2 + |Vus|2 + |Vub|2 + |Vcd|2 + |Vcb|2 =
1.0486± 0.0018 . This gives

|Vcs| = 0.976± 0.014 , (41)

which agrees with the slightly more accurate direct determination in Eq. (33).

The measured entries of the CKM matrix show a hierarchical pattern, with the diagonal elements
being very close to one, the ones connecting the first two generations having a size

λ ≈ |Vus| = 0.2231± 0.0007 , (42)

the mixing between the second and third families being of order λ2, and the mixing between the first
and third quark generations having a much smaller size of about λ3. It is then quite practical to use the
approximate parametrization [101]:

V =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 + O
(
λ4
)
, (43)

where

A ≈ |Vcb|
λ2 = 0.844± 0.014 ,

√
ρ2 + η2 ≈

∣∣∣∣ VubλVcb

∣∣∣∣ = 0.422± 0.035 . (44)

Defining to all orders in λ [102] s12 ≡ λ, s23 ≡ Aλ2 and s13 e−iδ13 ≡ Aλ3(ρ − iη), Eq. (43) just
corresponds to a Taylor expansion of Eq. (11) in powers of λ.

5 Meson-antimeson mixing
Additional information on the CKM parameters can be obtained from FCNC transitions, occurring at
the one-loop level. An important example is provided by the mixing between the B0

d meson and its
antiparticle. This process occurs through the box diagrams shown in Fig. 5, where two W bosons are
exchanged between a pair of quark lines. The mixing amplitude is proportional to

〈B̄0
d |H∆B=2|B0

d〉 ∼
∑
ij

VidV
∗
ibVjdV

∗
jb S(ri, rj) ∼ V2

td S(rt, rt) , (45)

where S(ri, rj) is a loop function [103] which depends on ri ≡ m2
i /M

2
W , with mi the masses of the

up-type quarks running along the internal fermionic lines. Owing to the unitarity of the CKM matrix,
the mixing vanishes for equal (up-type) quark masses (GIM mechanism [8]); thus the flavour-changing
transition is governed by the mass splittings between the u, c and t quarks. Since the different CKM
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u, c, t u, c, tW

Fig. 5: Box diagrams contributing to B0
q–B̄0

q mixing (q = d, s).

factors have all a similar size, VudV
∗
ub ∼ VcdV

∗
cb ∼ VtdV

∗
tb ∼ Aλ3, the final amplitude is completely

dominated by the top contribution. This transition can then be used to perform an indirect determination
of Vtd.

Notice that this determination has a qualitatively different character than the ones obtained before
from tree-level weak decays. Now, we are going to test the structure of the electroweak theory at the
quantum level. This flavour-changing transition could then be sensitive to contributions from new physics
at higher energy scales. Moreover, the mixing amplitude crucially depends on the unitarity of the CKM
matrix. Without the GIM mechanism embodied in the CKM mixing structure, the calculation of the
analogous K0 → K̄0 transition (replace the b by a strange quark s in the box diagrams) would have
failed to explain the observed K0–K̄0 mixing by several orders of magnitude [104].

5.1 Mixing formalism
Since weak interactions can transform a P 0 state (P = K, D, B) into its antiparticle P̄ 0, these flavour
eigenstates are not mass eigenstates and do not follow an exponential decay law. Let us consider an
arbitrary mixture of the two flavour states,

|ψ(t)〉 = a(t) |P 0〉+ b(t) |P̄ 0〉 ≡
(
a(t)
b(t)

)
, (46)

with the time evolution (in the meson rest frame)

i
d

dt
|ψ(t)〉 = M|ψ(t)〉 . (47)

Assuming CPT symmetry to hold, the 2× 2 mixing matrix can be written as

M =

(
M M12

M∗12 M

)
− i

2

(
Γ Γ12

Γ∗12 Γ

)
. (48)

The diagonal elements M and Γ are real parameters, which would correspond to the mass and width of
the neutral mesons in the absence of mixing. The off-diagonal entries contain the ∆F = 2 transition
amplitude (F = S,C,B):

M12 −
i

2
Γ12 =

1

2M

{
〈P 0|H∆F=2(0)|P̄ 0〉 − 1

2

∫
d4x 〈P 0|T (H∆F=1(x)H∆F=1(0)) |P̄ 0〉

}
.

(49)
In addition to the short-distance ∆F = 2 Hamiltonian generated by the box diagrams, the mixing ampli-
tude receives non-local contributions involving two ∆F = 1 transitions, which contain both dispersive
and absorptive components, contributing to M12 and Γ12, respectively. The absorptive contribution Γ12

arises from on-shell intermediate states:

Γ12 =
1

2M
(2π)4

∑
n

δ(4)(p
P

0 − pn) 〈P 0|H∆F=1(0)|n〉 〈n|H∆F=1(0)|P̄ 0〉 . (50)
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The sum extends over all possible intermediate states |n〉 into which the |P̄ 0〉 and |P 0〉 can both decay:
P̄ 0 → f → P 0. In the SM, the ∆F = 1 Hamiltonian is generated through a single W± emission,
as shown in Fig. 4 for charm decay. If CP were an exact symmetry, M12 and Γ12 would also be real
parameters.

The physical eigenstates ofM are

|P∓〉 =
1√

|p|2 + |q|2
[
p |P 0〉 ∓ q |P̄ 0〉

]
, (51)

with
q

p
≡ 1− ε̄

1 + ε̄
=

(
M∗12 − i

2Γ∗12

M12 − i
2Γ12

)1/2

. (52)

The corresponding eigenvalues are

MP∓
− i

2
ΓP∓ =

(
M ∓ 1

2
∆M

)
− i

2

(
Γ∓ 1

2
∆Γ

)
, (53)

where3 ∆M ≡MP+
−MP−

and ∆Γ ≡ ΓP+
− ΓP− satisfy

(∆M)2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2 (54)

and
∆M ∆Γ = 4 Re (M12Γ∗12) = 4 |M12| |Γ12| cosφ , (55)

with φ ≡ arg (−M12/Γ12).

If M12 and Γ12 were real then q/p = 1 and the mass eigenstates |P∓〉 would correspond to the
CP-even and CP-odd states (we use the phase convention4 CP|P 0〉 = −|P̄ 0〉)

|P1,2〉 ≡
1√
2

(
|P 0〉 ∓ |P̄ 0〉

)
, CP |P1,2〉 = ± |P1,2〉 . (56)

The two mass eigenstates are no longer orthogonal when CP is violated:

〈P−|P+〉 =
|p|2 − |q|2

|p|2 + |q|2
=

2 Re (ε̄)

(1 + |ε̄|2)
. (57)

The time evolution of a state which was originally produced as a P 0 or a P̄ 0 is given by(
|P 0(t)〉
|P̄ 0(t)〉

)
=

(
g1(t) q

p g2(t)
p
q g2(t) g1(t)

) (
|P 0〉
|P̄ 0〉

)
, (58)

where (
g1(t)
g2(t)

)
= e−iMt e−Γt/2

(
cos [(x− iy)Γt/2]

−i sin [(x− iy)Γt/2]

)
, (59)

with
x ≡ ∆M

Γ
, y ≡ ∆Γ

2Γ
. (60)

3Be aware of the different sign conventions in the literature. Quite often, ∆M and ∆Γ are defined to be positive.
4Since flavour is conserved by strong interactions, there is some freedom in defining the phases of flavour eigenstates. One

could use |P 0
ζ 〉 ≡ e

−iζ |P 0〉 and |P̄ 0
ζ 〉 ≡ e

iζ |P̄ 0〉, which satisfy CP |P 0
ζ 〉 = −e−2iζ |P̄ 0

ζ 〉. Both basis are trivially related:
M

ζ
12 = e

2iζ
M12, Γ

ζ
12 = e

2iζ
Γ12 and (q/p)ζ = e

−2iζ
(q/p). Thus, q/p 6= 1 does not necessarily imply CP violation. CP

is violated if |q/p| 6= 1; i.e., Re(ε̄) 6= 0 and 〈P−|P+〉 6= 0. Note that 〈P−|P+〉ζ = 〈P−|P+〉. Another phase-convention-
independent quantity is (q/p) (Āf/Af ), where Af ≡ A(P

0→f) and Āf ≡ −A(P̄
0→f), for any final state f .
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5.2 Experimental measurements
The main difference between the K0–K̄0 and B0–B̄0 systems stems from the different kinematics
involved. The light kaon mass only allows the hadronic decay modes K0 → 2π and K0 → 3π.
Since CP |ππ〉 = +|ππ〉, for both π0π0 and π+π− final states, the CP-even kaon state decays into
2π whereas the CP-odd one decays into the phase-space-suppressed 3π mode. Therefore, there is a
large lifetime difference and we have a short-lived |KS〉 ≡ |K−〉 ≈ |K1〉 + ε̄K |K2〉 and a long-lived
|KL〉 ≡ |K+〉 ≈ |K2〉 + ε̄K |K1〉 kaon, with ΓKL � ΓKS ≈ 2 Γ

K
0 . One finds experimentally that

∆Γ
K

0 ≈ −ΓKS ≈ −2 ∆M
K

0 [9]:

∆M
K

0 = (0.5293± 0.0009) · 1010 s−1 , ∆Γ
K

0 = −(1.1149± 0.0005) · 1010 s−1 . (61)

Thus, the twoK0–K̄0 oscillations parameters are sizeable and of similar magnitudes: x
K

0 ≈ −y
K

0 ≈ 1.

In the B system, there are many open decay channels and a large part of them are common to
both mass eigenstates. Therefore, the |B∓〉 states have a similar lifetime; i.e., |∆Γ

B
0 | � Γ

B
0 . More-

over, whereas the B0–B̄0 transition is dominated by the top box diagram, the decay amplitudes get
obviously their main contribution from the b → c process. Thus, |∆Γ

B
0/∆M

B
0 | ∼ m2

b/m
2
t � 1.

To experimentally measure the mixing transition requires the identification of the B-meson flavour
at both its production and decay time. This can be done through flavour-specific decays such as
B0 → X`+ν` and B̄0 → X`−ν̄`, where the lepton charge labels the initial B meson. In general,
mixing is measured by studying pairs of B mesons so that one B can be used to tag the initial flavour
of the other meson. For instance, in e+e− machines one can look into the pair production process
e+e− → B0B̄0 → (X`ν`) (Y `ν`). In the absence of mixing, the final leptons should have opposite
charges; the amount of like-sign leptons is then a clear signature of meson mixing.

Evidence for a large B0
d–B̄0

d mixing was first reported in 1987 by ARGUS [105]. This provided
the first indication that the top quark was very heavy. Since then, many experiments have analysed the
mixing probability. The present world-average values are [9, 46]:

∆M
B

0
d

= (0.5065± 0.0019) · 1012 s−1 , x
B

0
d

= 0.769± 0.004 , (62)

while y
B

0
d

= 0.001± 0.005 confirms the expected suppression of ∆Γ
B

0
d
.

The first direct evidence of B0
s–B̄0

s oscillations was obtained by CDF [106]. The large measured
mass difference reflects the CKM hierarchy |Vts|2 � |Vtd|2, implying very fast oscillations [9, 46]:

∆M
B

0
s

= (17.757± 0.021) · 1012 s−1 , x
B

0
s

= 26.81± 0.08 ,

∆Γ
B

0
s

= −(0.090± 0.005) · 1012 s−1 , y
B

0
s

= −0.068± 0.004 . (63)

Evidence of mixing has been also obtained in theD0–D̄0 system. The present world averages [46],

x
D

0 = −
(

0.39 + 0.11
− 0.12

)
· 10−2 , y

D
0 = −

(
0.65 + 0.06

− 0.07

)
· 10−2 , (64)

confirm the SM expectation of a very slow oscillation, compared with the decay rate. Since the short-
distance mixing amplitude originates in box diagrams with down-type quarks in the internal lines, it is
very suppressed by the relevant combination of CKM factors and quark masses.

5.3 Mixing constraints on the CKM matrix
Long-distance contributions arising from intermediate hadronic states completely dominate the D0–D̄0

mixing amplitude and are very sizeable for ∆M
K

0 , making difficult to extract useful information on the
CKM matrix. The situation is much better for B0 mesons, owing to the dominance of the short-distance
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top contribution which is known to next-to-leading order (NLO) in the strong coupling [107, 108]. The
main uncertainty stems from the hadronic matrix element of the ∆B = 2 four-quark operator

〈B̄0
d | (b̄γµ(1− γ5)d) (b̄γµ(1− γ5)d) |B0

d〉 ≡
8

3
M2
B

0 ξ
2
B , (65)

which is characterized through the non-perturbative parameter ξB(µ) ≡ fB
√
BB(µ) [109]. The current

(2 + 1) lattice averages [39] are ξ̂Bd = (225 ± 9) MeV, ξ̂Bs = (274 ± 8) MeV and ξ̂Bs/ξ̂Bd =

1.206 ± 0.017, where ξ̂B ≈ αs(µ)−3/23ξB(µ) is the corresponding renormalization-group-invariant
quantity. Using these values, the measured mass differences in Eq. (62) and Eq. (63) imply

|V∗tbVtd| = 0.0080±0.0003 , |V∗tbVts| = 0.0388±0.0012 ,
|Vtd|
|Vts|

= 0.205±0.003 . (66)

The last number takes advantage of the smaller uncertainty in the ratio ξ̂Bs/ξ̂Bd . Since |Vtb| ≈ 1, the
mixing of B0

d,s mesons provides indirect determinations of |Vtd| and |Vts|. The resulting value of |Vts|
is in agreement with Eq. (30), satisfying the unitarity constraint |Vts| ≈ |Vcb|. In terms of the (ρ, η)
parametrization of Eq. (43), one obtains

√
(1− ρ)2 + η2 =


∣∣∣∣ VtdλVcb

∣∣∣∣ = 0.86± 0.04∣∣∣∣ VtdλVts

∣∣∣∣ = 0.920± 0.013

. (67)

6 CP violation
While parity (P) and charge conjugation (C) are violated by the weak interactions in a maximal way, the
product of the two discrete transformations is still a good symmetry of the gauge interactions (left-handed
fermions ↔ right-handed antifermions). In fact, CP appears to be a symmetry of nearly all observed
phenomena. However, a slight violation of the CP symmetry at the level of 0.2% is observed in the
neutral kaon system and more sizeable signals of CP violation have been established at the B factories.
Moreover, the huge matter–antimatter asymmetry present in our Universe is a clear manifestation of CP
violation and its important role in the primordial baryogenesis.

The CPT theorem guarantees that the product of the three discrete transformations is an exact
symmetry of any local and Lorentz-invariant quantum field theory, preserving micro-causality. A vi-
olation of CP implies then a corresponding violation of time reversal (T ). Since T is an antiunitary
transformation, this requires the presence of relative complex phases between different interfering am-
plitudes.

The electroweak SM Lagrangian only contains a single complex phase δ13 (η). This is the sole
possible source of CP violation and, therefore, the SM predictions for CP-violating phenomena are
quite constrained. The CKM mechanism requires several necessary conditions in order to generate an
observable CP-violation effect. With only two fermion generations, the quark mixing matrix cannot give
rise to CP violation; therefore, for CP violation to occur in a particular process, all three generations
are required to play an active role. In the kaon system, for instance, CP violation can only appear at
the one-loop level, where the top quark is present. In addition, all CKM matrix elements must be non-
zero and the quarks of a given charge must be non-degenerate in mass. If any of these conditions were
not satisfied, the CKM phase could be rotated away by a redefinition of the quark fields. CP-violation
effects are then necessarily proportional to the product of all CKM angles, and should vanish in the limit
where any two (equal-charge) quark masses are taken to be equal. All these necessary conditions can be
summarized as a single requirement on the original quark mass matrices M′u and M′d [110]:

CP violation ⇐⇒ Im
{

det
[
M′uM

′†
u , M

′
dM

′†
d

]}
6= 0 . (68)
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Without performing any detailed calculation, one can make the following general statements on
the implications of the CKM mechanism of CP violation:

– Owing to unitarity, for any choice of i, j, k, l (between 1 and 3),

Im
[
VijV

∗
ikVlkV

∗
lj

]
= J

3∑
m,n=1

εilmεjkn , (69)

J = c12 c23 c
2
13 s12 s23 s13 sin δ13 ≈ A2λ6η < 10−4 . (70)

Any CP-violation observable involves the product J [110]. Thus, violations of the CP symmetry
are necessarily small.

– In order to have sizeable CP-violating asymmetries A ≡ (Γ − Γ)/(Γ + Γ), one should look for
very suppressed decays, where the decay widths already involve small CKM matrix elements.

– In the SM, CP violation is a low-energy phenomenon, in the sense that any effect should disappear
when the quark mass difference mc −mu becomes negligible.

– B decays are the optimal place for CP-violation signals to show up. They involve small CKM
matrix elements and are the lowest-mass processes where the three quark generations play a direct
(tree-level) role.

The SM mechanism of CP violation is based on the unitarity of the CKM matrix. Testing the
constraints implied by unitarity is then a way to test the source of CP violation. The unitarity tests in
Eqs. (37), (38), (39) and (40) involve only the moduli of the CKM parameters, while CP violation has to
do with their phases. More interesting are the off-diagonal unitarity conditions:

V∗udVus + V∗cdVcs + V∗tdVts = 0 ,

V∗usVub + V∗csVcb + V∗tsVtb = 0 ,

V∗ubVud + V∗cbVcd + V∗tbVtd = 0 . (71)

These relations can be visualized by triangles in a complex plane which, owing to Eq. (69), have the
same area |J |/2. In the absence of CP violation, these triangles would degenerate into segments along
the real axis.

In the first two triangles, one side is much shorter than the other two (the Cabibbo suppression
factors of the three sides are λ, λ and λ5 in the first triangle, and λ4, λ2 and λ2 in the second one). This
is why CP effects are so small for K mesons (first triangle), and why certain asymmetries in B0

s decays
are predicted to be tiny (second triangle). The third triangle looks more interesting, since the three sides
have a similar size of about λ3. They are small, which means that the relevant b-decay branching ratios
are small, but once enough B0

d mesons have been produced, the CP-violation asymmetries are sizeable.
The present experimental constraints on this triangle are shown in Fig. 6, where it has been scaled by
dividing its sides by V∗cbVcd. This aligns one side of the triangle along the real axis and makes its length
equal to 1; the coordinates of the 3 vertices are then (0, 0), (1, 0) and (ρ̄, η̄) ≈ (1− λ2/2) (ρ, η).

We have already determined the sides of the unitarity triangle in Eqs. (44) and (67), through two
CP-conserving observables: |Vub/Vcb| and B0

d,s mixing. This gives the circular rings shown in Fig. 6,
centered at the vertices (0, 0) and (1, 0). Their overlap at η 6= 0 establishes that CP is violated (assuming
unitarity). More direct constraints on the parameter η can be obtained from CP-violating observables,
which provide sensitivity to the angles of the unitarity triangle (α+ β + γ = π):

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (72)
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Fig. 6: Experimental constraints on the SM unitarity triangle [111]. (Copyright CKMfitter group, reused with
permission.)

6.1 Indirect and direct CP violation in the kaon system
Any observable CP-violation effect is generated by the interference between different amplitudes con-
tributing to the same physical transition. This interference can occur either through meson-antimeson
mixing or via final-state interactions, or by a combination of both effects.

The flavour-specific decays K0 → π−`+ν` and K̄0 → π+`−ν̄` provide a way to measure the
departure of the K0–K̄0 mixing parameter |p/q| from unity. In the SM, the decay amplitudes satisfy
|A(K̄0 → π+`−ν̄`)| = |A(K0 → π−`+ν`)|; therefore (` = e, µ),

AL ≡
Γ(KL → π−`+ν`)− Γ(KL → π+`−ν̄`)

Γ(KL → π−`+ν`) + Γ(KL → π+`−ν̄`)
=
|p|2 − |q|2

|p|2 + |q|2
=

2 Re (ε̄K)

(1 + |ε̄K |2)
. (73)

The experimental measurement [9], AL = (3.32± 0.06) · 10−3, implies

Re (ε̄K) = (1.66± 0.03) · 10−3 , (74)

which establishes the presence of indirect CP violation generated by the mixing amplitude.

If the flavour of the decaying meson P is known, any observed difference between the decay rate
Γ(P → f) and its CP conjugate Γ(P̄ → f̄) would indicate that CP is directly violated in the decay
amplitude. One could study, for instance, CP asymmetries in decays such as K± → π±π0 where the
pion charges identify the kaon flavour; however, no positive signals have been found in charged kaon
decays. Since at least two interfering contributions are needed, let us write the decay amplitudes as

A[P → f ] = M1 e
iφ1 eiδ1 + M2 e

iφ2 eiδ2 , A[P̄ → f̄ ] = M1 e
−iφ1eiδ1 + M2 e

−iφ2eiδ2 , (75)

where φi denote weak phases, δi strong final-state interaction phases and Mi the moduli of the matrix
elements. Notice that the weak phase gets reversed under CP , while the strong one remains of course
invariant. The rate asymmetry is given by

ACPP→f ≡
Γ[P → f ]− Γ[P̄ → f̄ ]

Γ[P → f ] + Γ[P̄ → f̄ ]
=

−2M1M2 sin (φ1 − φ2) sin (δ1 − δ2)

|M1|2 + |M2|2 + 2M1M2 cos (φ1 − φ2) cos (δ1 − δ2)
. (76)

Thus, to generate a direct CP asymmetry one needs: 1) at least two interfering amplitudes, which
should be of comparable size in order to get a sizeable asymmetry; 2) two different weak phases
[sin (φ1 − φ2) 6= 0], and 3) two different strong phases [sin (δ1 − δ2) 6= 0].
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Fig. 7: ∆S = 1 penguin diagrams.

Direct CP violation has been searched for in decays of neutral kaons, where K0–K̄0 mixing is
also involved. Thus, both direct and indirect CP violation need to be taken into account simultaneously.
A CP-violation signal is provided by the ratios:

η+− ≡
A(KL → π+π−)

A(KS → π+π−)
= εK + ε′K , η00 ≡

A(KL → π0π0)

A(KS → π0π0)
= εK − 2ε′K . (77)

The dominant effect from CP violation in K0–K̄0 mixing is contained in εK , while ε′K accounts for
direct CP violation in the decay amplitudes [42]:

εK = ε̄K + iξ0 , ε′K =
i√
2
ω (ξ2 − ξ0) , ω ≡ Re (A2)

Re (A0)
ei(δ2−δ0) , ξI ≡

Im (AI)

Re (AI)
. (78)

AI are the transition amplitudes into two pions with isospin I = 0, 2 (these are the only two values
allowed by Bose symmetry for the final 2π state) and δI their corresponding strong phase shifts. Although
ε′K is strongly suppressed by the small ratio |ω| ≈ 1/22, a non-zero value has been established through
very accurate measurements, demonstrating the existence of direct CP violation in K decays [112–115]:

Re
(
ε′K/εK

)
=

1

3

(
1−

∣∣∣∣∣ η00η
+−

∣∣∣∣∣
)

= (16.6± 2.3) · 10−4 . (79)

In the SM the necessary weak phases are generated through the gluonic and electroweak penguin di-
agrams shown in Fig. 7, involving virtual up-type quarks of the three generations in the loop. These
short-distance contributions are known to NLO in the strong coupling [116, 117]. However, the the-
oretical prediction involves a delicate balance between the two isospin amplitudes and is sensitive
to long-distance and isospin-violating effects. Using chiral perturbation theory techniques, one finds
Re
(
ε′K/εK

)
= (14± 5) · 10−4 [118–122], in agreement with Eq. (79) but with a large uncertainty.5

Since Re
(
ε′K/εK

)
� 1, the ratios η

+−
and η

00
provide a measurement of εK = |εK | eiφε [9]:

|εK | =
1

3

(
2|η

+−
|+ |η

00
|
)

= (2.228± 0.011) · 10−3, φε = (43.52± 0.05)◦ , (80)

in perfect agreement with the semileptonic asymmetry AL. In the SM εK receives short-distance contri-
butions from box diagrams involving virtual top and charm quarks, which are proportional to

εK ∝
∑
i,j=c,t

ηij Im
[
VidV

∗
isVjdV

∗
js

]
S(ri, rj) ∝ A2λ6η̄

{
ηttA

2λ4(1− ρ̄) + Pc

}
. (81)

The first term shows the CKM dependence of the dominant top contribution, Pc accounts for the charm
corrections [124] and the short-distance QCD corrections ηij are known to NLO [107, 108, 125]. The

measured value of |εK | determines an hyperbolic constraint in the (ρ̄, η̄) plane, shown in Fig. 6, taking
into account the theoretical uncertainty in the hadronic matrix element of the ∆S = 2 operator [39].

5A very recent lattice calculation gives Re
(
ε
′
K/εK

)
= (22 ± 8) · 10

−4 [123], with an even larger error. However, this
result does not include yet important isospin-breaking corrections that are known to be negative [122].
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6.2 CP asymmetries in B decays
The semileptonic decays B0

q → X−`+ν` and B̄0
q → X+`−ν̄` (q = d, s) provide the most direct way

to measure the amount of CP violation in the B0–B̄0 mixing matrix, through

aqsl ≡
Γ(B̄0

q → X−`+ν`)− Γ(B0
q → X+`−ν̄`)

Γ(B̄0
q → X−`+ν`) + Γ(B0

q → X+`−ν̄`)
=
|p|4 − |q|4

|p|4 + |q|4
≈ 4 Re (ε̄

B
0
q
)

≈ |Γ12|
|M12|

sinφq ≈
|∆Γ

B
0
q
|

|∆M
B

0
q
| tanφq . (82)

This asymmetry is expected to be tiny because |Γ12/M12| ∼ m2
b/m

2
t � 1. Moreover, there is an

additional GIM suppression in the relative mixing phase φq ≡ arg (−M12/Γ12) ∼ (m2
c − m2

u)/m2
b ,

implying a value of |q/p| very close to 1. Therefore, aqsl could be very sensitive to new sources of CP
violation beyond the SM, contributing to φq. The present measurements give [9, 46]

Re(ε̄
B

0
d
) = (−0.5± 0.4) · 10−3 , Re(ε̄

B
0
s
) = (−0.15± 0.70) · 10−3 . (83)

The large B0–B̄0 mixing provides a different way to generate the required CP-violating interfer-
ence. There are quite a few nonleptonic final states which are reachable both from a B0 and a B̄0. For
these flavour non-specific decays theB0 (or B̄0) can decay directly to the given final state f , or do it after
the meson has been changed to its antiparticle via the mixing process; i.e., there are two different ampli-
tudes, A(B0 → f) and A(B0 → B̄0 → f), corresponding to two possible decay paths. CP-violating
effects can then result from the interference of these two contributions.

The time-dependent decay probabilities for the decay of a neutral B meson created at the time
t0 = 0 as a pure B0 (B̄0) into the final state f (f̄ ≡ CP f ) are:

Γ[B0(t)→ f ] ∝ 1

2
e
−Γ

B
0 t
(
|Af |2 + |Āf |2

) {
1 + Cf cos (∆M

B
0t)− Sf sin (∆M

B
0t)
}
,

Γ[B̄0(t)→ f̄ ] ∝ 1

2
e
−Γ

B
0 t
(
|Āf̄ |2 + |Af̄ |2

) {
1− Cf̄ cos (∆M

B
0t) + Sf̄ sin (∆M

B
0t)
}
, (84)

where the tiny ∆Γ
B

0 corrections have been neglected and we have introduced the notation

Af ≡ A[B0 → f ] , Āf ≡ −A[B̄0 → f ] , ρ̄f ≡ Āf/Af ,

Af̄ ≡ A[B0 → f̄ ] , Āf̄ ≡ −A[B̄0 → f̄ ] , ρf̄ ≡ Af̄/Āf̄ , (85)

Cf ≡
1− |ρ̄f |2

1 + |ρ̄f |2
, Sf ≡

2 Im
(
q
p ρ̄f

)
1 + |ρ̄f |2

, Cf̄ ≡ −
1− |ρf̄ |2

1 + |ρf̄ |2
, Sf̄ ≡

−2 Im
(
p
q ρf̄

)
1 + |ρf̄ |2

.

CP invariance demands the probabilities of CP-conjugate processes to be identical. Thus, CP
conservation requires Af = Āf̄ , Af̄ = Āf , ρ̄f = ρf̄ and Im( qp ρ̄f ) = Im(pq ρf̄ ), i.e., Cf = −Cf̄ and
Sf = −Sf̄ . Violation of any of the first three equalities would be a signal of direct CP violation. The
fourth equality tests CP violation generated by the interference of the direct decay B0 → f and the
mixing-induced decay B0 → B̄0 → f .

For B0 mesons
q

p

∣∣∣∣
B

0
q

≈
√
M∗12

M12
≈ V∗tbVtq

VtbV
∗
tq

≡ e−2iφ
M
q , (86)
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where φMd = β + O(λ4) and φMs = −βs + O(λ6). The angle β is defined in Eq. (72), while βs ≡
arg
[
−
(
VtsV

∗
tb

)
/
(
VcsV

∗
cb

)]
= λ2η +O(λ4) is the equivalent angle in the B0

s unitarity triangle, which
is predicted to be tiny. Therefore, the mixing ratio q/p is given by a known weak phase.

An obvious example of final states f which can be reached both from the B0 and the B̄0 are CP
eigenstates; i.e., states such that f̄ = ζff (ζf = ±1). In this case, Af̄ = ζfAf , Āf̄ = ζf Āf , ρf̄ = 1/ρ̄f ,
Cf̄ = Cf and Sf̄ = Sf . A non-zero value of Cf or Sf signals then CP violation. The ratios ρ̄f and ρf̄
depend in general on the underlying strong dynamics. However, for CP self-conjugate final states, all
dependence on the strong interaction disappears if only one weak amplitude contributes to the B0 → f

and B̄0 → f transitions [126, 127]. In this case, we can write the decay amplitude as Af = Meiφ
D

eiδs ,
with M = M∗ and φD and δs weak and strong phases. The ratios ρ̄f and ρf̄ are then given by

ρf̄ = ρ̄∗f = ζf e
2iφ

D

. (87)

The modulus M and the unwanted strong phase cancel out completely from these two ratios; ρf̄ and
ρ̄f simplify to a single weak phase, associated with the underlying weak quark transition. Since |ρf̄ | =
|ρ̄f | = 1, the time-dependent decay probabilities become much simpler. In particular, Cf = 0 and there
is no longer any dependence on cos (∆M

B
0t). Moreover, the coefficients of the sinusoidal terms are then

fully known in terms of CKM mixing angles only: Sf = Sf̄ = −ζf sin [2(φMq + φD)] ≡ −ζf sin (2Φ).
In this ideal case, the time-dependent CP-violating decay asymmetry

ACP
B̄

0→f̄ ≡
Γ[B̄0(t)→ f̄ ]− Γ[B0(t)→ f ]

Γ[B̄0(t)→ f̄ ] + Γ[B0(t)→ f ]
= −ζf sin (2Φ) sin (∆M

B
0t) (88)

provides a direct and clean measurement of the CKM parameters [128].

When several decay amplitudes with different phases contribute, |ρ̄f | 6= 1 and the interference
term will depend both on CKM parameters and on the strong dynamics embodied in ρ̄f . The leading
contributions to b̄→ q̄′q′q̄ are either the tree-levelW exchange or penguin topologies generated by gluon
(γ, Z) exchange. Although of higher order in the strong (electroweak) coupling, penguin amplitudes are
logarithmically enhanced by the virtual W loop and are potentially competitive. Table 3 contains the
CKM factors associated with the two topologies for different B decay modes into CP eigenstates.

Table 3: CKM factors and relevant angle Φ for some B decays into CP eigenstates.

Decay Tree-level CKM Penguin CKM Exclusive channels Φ

b̄→ c̄cs̄ Aλ2 −Aλ2 B0
d → J/ψKS , J/ψKL β

B0
s → D+

s D
−
s , J/ψ φ −βs

b̄→ s̄ss̄ −Aλ2 B0
d → KSφ,KLφ β

B0
s → φφ −βs

b̄→ d̄ds̄ −Aλ2 B0
s → KSKS ,KLKL −βs

b̄→ c̄cd̄ −Aλ3 Aλ3(1− ρ− iη) B0
d → D+D−, J/ψ π0 ≈ β

B0
s → J/ψKS , J/ψKL ≈ −βs

b̄→ ūud̄ Aλ3(ρ+ iη) Aλ3(1− ρ− iη) B0
d → π+π−, ρ0π0, ωπ0 ≈ β + γ

B0
s → ρ0KS,L, ωKS,L, π

0KS,L 6= γ − βs
b̄→ s̄sd̄ Aλ3(1− ρ− iη) B0

d → KSKS ,KLKL, φπ
0 0

B0
s → KSφ,KLφ −β − βs

The gold-plated decay mode is B0
d → J/ψKS . In addition of having a clean experimental sig-

nature, the two topologies have the same (zero) weak phase. The CP asymmetry provides then a clean
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Fig. 8: Time-dependent asymmetries for CP-odd (B0
d → J/ψKS , B0

d → ψ′KS , B0
d → χc1KS ; ζf = −1; left)

and CP-even (B0
d → J/ψKL; ζf = +1; right) final states, measured by Belle [129].

measurement of the mixing angle β, without strong-interaction uncertainties. Fig. 8 shows the Belle
measurement [129] of time-dependent b̄→ cc̄s̄ asymmetries for CP-odd (B0

d → J/ψKS , B0
d → ψ′KS ,

B0
d → χc1KS) and CP-even (B0

d → J/ψKL) final states. A very nice oscillation is manifest, with
opposite signs for the two different choices of ζf = ±1. Including the information obtained from other
b̄→ cc̄s̄ decays, one gets the world average [46]:

sin (2β) = 0.699± 0.017 . (89)

Fitting an additional cos (∆M
B

0t) term in the measured asymmetries results in Cf = −0.005 ±
0.015 [46], confirming the expected null result. An independent measurement of sin 2β can be ob-
tained from b̄ → ss̄s̄ and b̄ → dd̄s̄ decays, which only receive penguin contributions and, there-
fore, could be more sensitive to new-physics corrections in the loop diagram. These modes give
sin (2β) = 0.648± 0.038 [46], in good agreement with (89).

Eq. (89) determines the angle β up to a four-fold ambiguity: β, π2 − β, π + β and 3π
2 − β. The

solution β = (22.2 ± 0.7)◦ is in remarkable agreement with the other phenomenological constraints on
the unitarity triangle in Fig. 6. The ambiguity has been resolved through a time-dependent analysis of the
Dalitz plot distribution in B0

d → D(∗)h0 decays (h0 = π0, η, ω), showing that cos (2β) = 0.91 ± 0.25
and β = (22.5 ± 4.6)◦ [130]. This proves that cos (2β) is positive with a 3.7σ significance, while the
multifold solution π

2 − β = (67.8± 0.7)◦ is excluded at the 7.3σ level.

A determination of β + γ = π − α can be obtained from b̄ → ūud̄ decays, such as B0
d → ππ

or B0
d → ρρ. However, the penguin contamination that carries a different weak phase can be sizeable.

The time-dependent asymmetry in B0
d → π+π− shows indeed a non-zero value for the cos (∆M

B
0t)

term, Cf = −0.32 ± 0.04 [46], providing evidence of direct CP violation and indicating the presence
of an additional decay amplitude; therefore, Sf = −0.63 ± 0.04 6= sin 2α. One could still extract use-
ful information on α (up to 16 mirror solutions), using the isospin relations among the B0

d → π+π−,
B0
d → π0π0 and B+ → π+π0 amplitudes and their CP conjugates [131]; however, only a loose con-

straint is obtained, given the limited experimental precision on B0
d → π0π0. Much stronger constraints

are obtained from B0
d → ρ+ρ−, ρ0ρ0 because one can use the additional polarization information of two

vectors in the final state to resolve the different contributions and, moreover, the small branching fraction
Br(B0

d → ρ0ρ0) = (9.6 ± 1.5) · 10−7 [9] implies a very small penguin contribution. Additional infor-
mation can be obtained from B0

d , B̄
0
d → ρ±π∓, a±1 π

∓, although the final states are not CP eigenstates.
Combining all pieces of information results in [46]

α = (84.9 + 5.1
− 4.5)◦ . (90)
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s mesons [46]. The

vertical black line shows the SM prediction [135–137].

The angle γ cannot be determined in b̄ → uūd̄ decays such as B0
s → ρ0KS because the colour

factors in the hadronic matrix element enhance the penguin amplitude with respect to the tree-level
contribution. Instead, γ can be measured through the tree-level decays B → D(∗)K(∗) (b̄ → ūcs̄) and
B → D̄(∗)K(∗) (b̄→ c̄us̄), using final states accessible in both D(∗)0 and D̄(∗)0 decays and playing with
the interference of both amplitudes [132–134]. The sensitivity can be optimized with Dalitz-plot analyses
of the D0, D̄0 decay products. The extensive experimental studies performed so far result in [46]

γ = (71.1 + 4.6
− 5.3)◦ . (91)

Another ambiguous solution with γ ↔ γ + π also exists.

Mixing-induced CP violation has been also searched for in the decays of B0
s and B̄0

s mesons
into J/ψ φ, ψ(2S)φ, J/ψK+K−, J/ψ π+π− and D+

s D
−
s . From the corresponding time-dependent CP

asymmetries,6 one extracts correlated constraints on ∆Γs and the weak phase φcc̄ss ≡ 2Φcc̄s
s ≈ 2φMs ≈

−2βs in Eq. (88), which are shown in Fig. 9. They lead to [46]

βs = (0.60± 0.89)◦ , (92)

in good agreement with the SM prediction βs ≈ ηλ2 ≈ 1◦.

6.3 Global fit of the unitarity triangle
The CKM parameters can be more accurately determined through a global fit to all available measure-
ments, imposing the unitarity constraints and taking properly into account the theoretical uncertainties.
The global fit shown in Fig. 6 uses frequentist statistics and gives [111]

λ = 0.22484 + 0.00025
− 0.00006 , A = 0.824 + 0.006

− 0.015 , ρ̄ = 0.157 + 0.010
− 0.006 , η̄ = 0.350 + 0.008

− 0.007 .
(93)

This implies J = (3.06 + 0.07
− 0.08)·10−5, α = (91.7 + 1.7

− 1.1)◦, β = (22.6 + 0.5
− 0.4)◦ and γ = (65.8 + 0.9

− 1.3)◦. Similar
results are obtained by the UTfit group [138], using instead a Bayesian approach and a slightly different
treatment of theoretical uncertainties.

6The ∆Γ
B

0
s

corrections to Eq. (84) must be taken into account at the current level of precision.
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6.4 Direct CP violation inB decays
The big data samples accumulated at the B factories and the collider experiments have established the
presence of direct CP violation in several decays of B mesons. The most significative signals are [9,46]

ACP
B̄

0
d→K

−
π
+ = −0.083± 0.004 , ACP

B̄
0
d→K̄

∗0
η

= 0.19± 0.05 , ACP
B̄

0
d→K

∗−
π
+ = −0.27± 0.04 ,

C
B

0
d→π

+
π
− = −0.32± 0.04 , γ

B→D(∗)
K

(∗) = (71.1 + 4.6
− 5.3)◦ , ACP

B̄
0
s→K

+
π
− = 0.221± 0.015 ,

ACP
B
−→K−ρ0 = 0.37± 0.10 , ACP

B
−→K−η = −0.37± 0.08 , ACP

B
−→π−π+

π
− = 0.057± 0.013 ,

ACP
B
−→K−K+

K
− = −0.033± 0.008 , ACP

B
−→K−K+

π
− = −0.122± 0.021 .

ACP
B
−→K−f2(1270)

= −0.68 + 0.19
− 0.17 , ACP

B
−→π−f2(1270)

= 0.40± 0.06 , (94)

Another prominent observation of direct CP violation has been done recently in charm decays [139]:

Adirect CP
D

0→K−K+ −Adirect CP
D

0→π−π+ = (−15.7± 2.9) · 10−4 , (95)

where the small contribution from D0–D̄0 mixing has been subtracted, using the measured difference
of reconstructed mean decay times of the two modes. Unfortunately, owing to the unavoidable presence
of strong phases, a real theoretical understanding of the corresponding SM predictions is still lacking.
Progress in this direction is needed to perform meaningful tests of the CKM mechanism of CP violation
and pin down any possible effects from new physics beyond the SM framework.

7 Rare decays
Complementary and very valuable information can be obtained from rare decays that in the SM are
strongly suppressed by the GIM mechanism. These processes are then sensitive to new-physics contribu-
tions with a different flavour structure. Well-known examples are the K̄0 → µ+µ− decay modes [9,140],

Br(KL → µ+µ−) = (6.84± 0.11) · 10−9 , Br(KS → µ+µ−) < 2.1 · 10−10 (90% CL) ,
(96)

which tightly constrain any hypothetical flavour-changing (s→ d) tree-level coupling of the Z boson. In
the SM, these decays receive short-distance contributions from the penguin and box diagrams displayed
in Fig. 10. Owing to the unitarity of the CKM matrix, the resulting amplitude vanishes for equal up-type
quark masses, which entails a heavy suppression:

M ∝
∑
i=u,c,t

VisV
∗
id F (m2

i /M
2
W ) = VcsV

∗
cd F̃ (m2

c/M
2
W ) + VtsV

∗
td F̃ (m2

t /M
2
W ) , (97)

where F (x) is a loop function and F̃ (x) ≡ F (x) − F (0). In addition to the loop factor g4/(16π2),
the charm contribution carries a mass suppression λm2

c/M
2
W , while the top term is proportional to

λ5A2(1 − ρ + iη)m2
t /M

2
W . The large top mass compensates the strong Cabibbo suppression so that

the top contribution is finally larger than the charm one. However, the total short-distance contribution to
the KL decay, Br(KL → µ+µ−)sd = (0.79± 0.12) · 10−9 [124, 141], is nearly one order of magnitude
below the experimental measurement (96), while Br(KS → µ+µ−)sd ≈ 1.7 · 10−13 [42].

The decays KL → µ+µ− and KS → µ+µ− are actually dominated by long-distance contribu-
tions, through KL → π0, η, η′ → γγ → µ+µ− and KS → π+π− → γγ → µ+µ−. The absorptive
component from two on-shell intermediate photons nearly saturates the measured Br(KL → µ+µ−)
[142], while the KS decay rate is predicted to be Br(KS → µ+µ−) = 5.1 · 10−12 [42, 143]. These
decays can be rigorously analised with chiral perturbation theory techniques [42], but the strong sup-
pression of their short-distance contributions does not make possible to extract useful information on the
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Fig. 10: Short-distance penguin (left) and box (right) SM contributions to K̄0 → µ+µ−.

CKM parameters. Nevertheless, it is possible to predict the longitudinal polarization PL of either muon
in the KL decay, a CP-violating observable which in the SM is dominated by indirect CP violation from
K0–K̄0 mixing: |PL| = (2.6± 0.4) · 10−3 [143].

Other interesting kaon decay modes such as K0 → γγ, K → πγγ and K → π`+`− are also
governed by long-distance physics [42, 144]. Of particular interest is the decay KL → π0e+e−, since it
is sensitive to new sources of CP violation. At lowest order in α the decay proceeds throughK0

2 → π0γ∗

that violates CP , while the CP-conserving contribution through K0
L → π0γ∗γ∗ is suppressed by an

additional power of α and it is found to be below 10−12 [42]. The KL → π0e+e− transition is then
dominated by the O(α) CP-violating contributions [144], both from K0–K̄0 mixing and direct CP
violation. The estimated rate Br(KL → π0e+e−) = (3.1 ± 0.9) · 10−11 [42, 145, 146] is only a factor
ten smaller than the present (90% CL) upper bound of 2.8 · 10−10 [147] and should be reachable in the
near future.

The decays K± → π±νν̄ and KL → π0νν̄ provide a more direct access to CKM information
because long-distance effects play a negligible role. The decay amplitudes are dominated by Z-penguin
and W -box loop diagrams of the type shown in Fig. 10 (replacing the final muons by neutrinos), and
are proportional to the hadronic Kπ matrix element of the ∆S = 1 vector current, which (assuming
isospin symmetry) is extracted from K → π`ν` decays. The small long-distance and isospin-violating
corrections can be estimated with chiral perturbation theory. The neutral decay is CP violating and
proceeds almost entirely through direct CP violation (via interference with mixing). Taking the CKM
inputs from other observables, the predicted SM rates are [148–150]:

Br(K+ → π+νν̄)th = (8.5± 0.6) · 10−11 , Br(KL → π0νν̄)th = (2.9± 0.3) · 10−11 . (98)

The uncertainties are largely parametrical, due to CKM input, the charm and top masses and αs(MZ).
On the experimental side, the current upper bounds on the charged [151] and neutral [152] modes are

Br(K+ → π+νν̄) < 1.85 · 10−10 , Br(KL → π0νν̄) < 3.0 · 10−9 (90% CL). (99)

The ongoing CERN NA62 experiment aims to reach O(100) K+ → π+νν̄ events (assuming SM rates),
while increased sensitivities on the KL → π0νν̄ mode are expected to be achieved by the KOTO ex-
periment at J-PARC. These experiments will start to seriously probe the new-physics potential of these
decays.

The inclusive decay B̄ → Xsγ provides another powerful test of the SM flavour structure at the
quantum loop level. It proceeds through a b → sγ penguin diagram with an on-shell photon. The
present experimental world average, Br(B̄ → Xsγ)Eγ≥1.6 GeV = (3.32± 0.15) · 10−4 [46], agrees very

well with the SM theoretical prediction, Br(B̄ → Xsγ)th
Eγ≥1.6 GeV = (3.40 ± 0.17) · 10−4 [153–155],

obtained at the next-to-next-to-leading order.

The LHC experiments have recently reached the SM sensitivity for the B0
d and B0

s decays into
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µ+µ− pairs [156–158]. The current world averages [9],7

Br(B0
d → µ+µ−) = (1.4 + 1.6

− 1.4) · 10−10 , Br(B0
s → µ+µ−) = (3.0± 0.4) · 10−9 , (100)

agree with the SM predictions Br(B0
d → µ+µ−) = (1.06 ± 0.09) · 10−10 and Br(B0

s → µ+µ−) =

(3.65 ± 0.23) · 10−9 [160]. Other interesting FCNC decays with B mesons are B̄ → K(∗)l+l− and
B̄ → K(∗)νν̄ [86].

8 Flavour constraints on new physics
The CKM matrix provides a very successful description of flavour phenomena, as it is clearly exhibited
in the unitarity test of Fig. 6, showing how very different observables converge into a single choice of
CKM parameters. This is a quite robust and impressive result. One can perform separate tests with
different subsets of measurements, according to their CP-conserving or CP-violating nature, or splitting
them into tree-level and loop-induced processes. In all cases, one finally gets a closed triangle and similar
values for the fitted CKM entries [111, 138]. However, the SM mechanism of flavour mixing and CP
violation is conceptually quite unsatisfactory because it does not provide any dynamical understanding
of the numerical values of fermion masses, and mixings. We completely ignore the reasons why the
fermion spectrum contains such a hierarchy of different masses, spanning many orders of magnitude,
and which fundamental dynamics is behind the existence of three flavour generations and their observed
mixing structure.

The phenomenological success of the SM puts severe constraints on possible scenarios of new
physics. The absence of any clear signals of new phenomena in the LHC searches is pushing the hy-
pothetical new-physics scale at higher energies, above the TeV. The low-energy implications of new
dynamics beyond the SM can then be analysed in terms of an effective Lagrangian, containing only the
known SM fields:

Leff = LSM +
∑
d>4

∑
k

c
(d)
k

Λd−4
NP

O
(d)
k . (101)

The effective Lagrangian is organised as an expansion in terms of dimension-d operators O(d)
k , invariant

under the SM gauge group, suppressed by the corresponding powers of the new-physics scale ΛNP. The
dimensionless couplings c(d)

k encode information on the underlying dynamics. The lowest-order term in
this dimensional expansion is the SM Lagrangian that contains all allowed operators of dimension 4.

At low energies, the terms with lower dimensions dominate the physical transition amplitudes.
There is only one operator with d = 5 (up to Hermitian conjugation and flavour assignments), which
violates lepton number by two units and is then related with the possible existence of neutrino Majo-
rana masses [161]. Taking mν

>∼ 0.05 eV, one estimates a very large lepton-number-violating scale
ΛNP/c

(5) <∼ 1015 GeV [17]. Assuming lepton-number conservation, the first signals of new phenomena
should be associated with d = 6 operators.

One can easily analyse the possible impact of ∆F = 2 (F = S,C,B) four-quark operators
(d = 6), such as the SM left-left operator in Eq. (65) that induces a ∆B = 2 transition. Since the SM box
diagram provides an excellent description of the data, hypothetical new-physics contributions can only be
tolerated within the current uncertainties, which puts stringent upper bounds on the corresponding Wilson
coefficients c̃k ≡ c

(6)
k /Λ2

NP. For instance, ∆M
B

0
d

and SJ/ψKS imply that the real (CP-conserving) and

imaginary (CP-violating) parts of c̃k must be below 10−6 TeV−2 for a (b̄Lγ
µdL)2 operator, and nearly

one order of magnitude smaller (10−7) for (b̄RdL)(b̄LdR) [162]. Stronger bounds are obtained in the
kaon system from ∆M

K
0 and εK . For the (s̄Lγ

µdL)2 operator the real (imaginary) coefficient must be
below 10−6 (3 · 10−9), while the corresponding bounds for (s̄RdL)(s̄LdR) are 7 · 10−9 (3 · 10−11), in the

7
Br is the time-integrated branching ratio, which for B0

s is slightly affected by the sizeable value of ∆Γs [159].
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same TeV−2 units [162]. Taking the coefficients c(6)
k ∼ O(1), this would imply ΛNP > 3 · 103 TeV for

B0
d and ΛNP > 3 · 105 TeV for K0. Therefore, two relevant messages emerge from the data:

1. A generic flavour structure with coefficients c(6)
k ∼ O(1) is completely ruled out at the TeV scale.

2. New flavour-changing physics at ΛNP ∼ 1 TeV could only be possible if the corresponding Wilson
coefficients c(6)

k inherit the strong SM suppressions generated by the GIM mechanism.

The last requirement can be satisfied by assuming that the up and down Yukawa matrices are the
only sources of quark-flavour symmetry breaking (minimal flavour violation) [163–165]. In the absence
of Yukawa interactions, the SM Lagrangian has a G ≡ U(3)LL ⊗U(3)QL ⊗U(3)`R ⊗U(3)uR ⊗U(3)dR
global flavour symmetry, because one can rotate arbitrarily in the 3-generation space each one of the
five SM fermion components in Eq. (2). The Yukawa matrices are the only explicit breakings of this
large symmetry group. Assuming that the new physics does not introduce any additional breakings of
the flavour symmetry G (beyond insertions of Yukawa matrices), one can easily comply with the flavour
bounds. Otherwise, flavour data provide very strong constraints on models with additional sources of
flavour symmetry breaking and probe physics at energy scales not directly accessible at accelerators.

The subtle SM cancellations suppressing FCNC transitions could be easily destroyed in the pres-
ence of new physics contributions. To better appreciate the non-generic nature of the flavour structure, let
us analyse the simplest extension of the SM scalar sector with a second Higgs doublet, which increases
the number of quark Yukawas:

LY = −
2∑

a=1

{
Q̄′L Y(a)′

d φa d
′
R + Q̄′L Y(a)′

u φca u
′
R + L̄′L Y(a)′

` φa `
′
R

}
+ h.c. , (102)

where φTa = (φ(+)
a , φ(0)

a ) are the two scalar doublets, φca their C-conjugate fields, and Q′L and L′L the
left-handed quark and lepton doublets, respectively. All fermion fields are written as three-dimensional
flavour vectors andY(a)′

f are 3×3 complex matrices in flavour space. With an appropriate scalar potential,

the neutral components of the scalar doublets acquire vacuum expectation values 〈0|φ(0)
a |0〉 = va eiθa . It

is convenient to make a U(2) transformation in the space of scalar fields, (φ1, φ2) → (Φ1,Φ2), so that
only the first doublet has a non-zero vacuum expectation value v = (v2

1 +v2
2)1/2. Φ1 plays then the same

role as the SM Higgs doublet, while Φ2 does not participate in the electroweak symmetry breaking. In
this scalar basis the Yukawa interactions become more transparent:

2∑
a=1

Y(a)′

d,` φa =

2∑
a=1

Y
(a)′

d,` Φa ,

2∑
a=1

Y(a)′

u φca =

2∑
a=1

Y (a)′

u Φc
a . (103)

The fermion masses originate from the Φ1 couplings, because Φ1 is the only field acquiring a vacuum
expectation value:

M ′f = Y
(1)′

f

v√
2
. (104)

The diagonalization of these fermion mass matrices proceeds in exactly the same way as in the SM,
and defines the fermion mass eigenstates di, ui, `i, with diagonal mass matrices Mf , as described in
Section 2. However, in general, one cannot diagonalize simultaneously all Yukawa matrices, i.e., in the
fermion mass-eigenstate basis the matrices Y (2)

f remain non-diagonal, giving rise to dangerous flavour-
changing transitions mediated by neutral scalars. The appearance of FCNC interactions represents a
major phenomenological shortcoming, given the very strong experimental bounds on this type of phe-
nomena.

To avoid this disaster, one needs to implement ad-hoc dynamical restrictions to guarantee the
suppression of FCNC couplings at the required level. Unless the Yukawa couplings are very small or
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the scalar bosons very heavy, a specific flavour structure is required by the data. The unwanted non-
diagonal neutral couplings can be eliminated requiring the alignment in flavour space of the Yukawa
matrices [166]:

Y
(2)
d,` = ςd,` Y

(1)
d,` =

√
2

v
ςd,`Md,` , Y (2)

u = ς∗u Y
(1)
u =

√
2

v
ς∗uMu , (105)

with ςf arbitrary complex proportionality parameters.8

Flavour alignment constitutes a very simple implementation of minimal flavour violation. It results
in a very specific dynamical structure, with all fermion-scalar interactions being proportional to the
corresponding fermion masses. The Yukawas are fully characterized by the three complex alignment
parameters ςf , which introduce new sources of CP violation. The aligned two-Higgs doublet model
Lagrangian satisfies the flavour constraints [168–178], and leads to a rich collider phenomenology with
five physical scalar bosons [179–186]: h, H , A and H±.

9 Flavour anomalies
The experimental data exhibit a few deviations from the SM predictions [187]. For instance, Table 2
shows a 2.6σ violation of lepton universality in |gτ/gµ| at the 1% level, from W → `ν decays, that is
difficult to reconcile with the precise 0.15% limits extracted from virtual W± transitions, shown also in
the same table. In fact, it has been demonstrated that it is not possible to accommodate this deviation
from universality with an effective Lagrangian and, therefore, such a signal could only be explained
by the introduction of new light degrees of freedom that so far remain undetected [188]. Thus, the
most plausible explanation is a small problem (statistical fluctuation or underestimated systematics) in
the LEP-2 measurements that will remain unresolved until more precise high-statistics W → `ν data
samples become available.

Some years ago BaBar reported a non-zero CP asymmetry in τ± → π±KSν decays at the level
of 3.6 · 10−3 [189], the same size than the SM expectation from K0–K̄0 mixing [190, 191] but with
the opposite sign, which represents a 2.8σ anomaly. So far, Belle has only reached a null result with
a smaller 10−2 sensitivity and, therefore, has not been able to either confirm or refute the asymmetry.
Nevertheless, on very general grounds, it has been shown that the BaBar signal is incompatible with
other sets of data (K0 and D0 mixing, neutron electric dipole moment) [192].

Another small flavour anomaly was triggered by the unexpected large value of Br(B− → τ−ν̄),
found in 2006 by Belle [193] and later confirmed by BaBar [96], which implied values of |Vub| higher
than the ones measured in semileptonic decays or extracted from global CKM fits. While the BaBar
results remain unchanged, the reanalysis of the full Belle data sample resulted in a sizeable ∼ 40%
reduction of the measured central value [97], eliminating the discrepancy with the SM but leaving a
pending disagreement with the BaBar results.

In the last few years a series of anomalies have emerged in b→ cτν and b→ sµ+µ− transitions.
Given the difficulty of the experimental analyses, the results should be taken with some caution and
further studies with larger data sets are still necessary. Nevertheless, these anomalies exhibit a quite
consistent pattern that makes them intriguing.

9.1 b → cτν decays
In 2012 the BaBar collaboration [194] observed an excess in B → D(∗)τντ decays with respect to
the SM predictions [195], indicating a violation of lepton-flavour universality at the 30% level. The

8Actually, since one only needs that Y (1)
′

f and Y (2)
′

f can be simultaneously diagonalized, in full generality the factors ςf
could be 3-dimensional diagonal matrices in the fermion mass-eigenstate basis (generalized alignment) [167]. The fashionable
models of types I, II, X and Y, usually considered in the literature, are particular cases of the flavour-aligned Lagrangian with
all ςf parameters real and fixed in terms of tanβ = v2/v1 [166].
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measured observables are the ratios

R(D) ≡ Br(B → Dτν)

Br(B → D`ν)
, R(D∗) ≡ Br(B → D∗τν)

Br(B → D∗`ν)
, (106)

with ` = e, µ, where many sources of experimental and theoretical errors cancel. The effect has been
later confirmed by LHCb [196] (D∗ mode only) and Belle [197] (Fig. 11). Although the results of
the last two experiments are slightly closer to the SM expected values, R(D) = 0.302 ± 0.004 and
R(D∗) = 0.258 + 0.006

− 0.005 [55, 58, 198–202], the resulting world averages [46]

R(D) = 0.340± 0.027± 0.013 , R(D∗) = 0.295± 0.011± 0.008 , (107)

deviate at the 3.2σ level (considering their correlation of −0.38) from the SM predictions, which is a
very large effect for a tree-level SM transition.
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Fig. 11: Measurements of R(D) and R(D∗) and their average compared with the SM predictions. Filled contours
correspond to ∆χ2 = 1 (68% CL for the bands and 39% CL for the ellipses), while the dashed ellipse displays the
3σ region [46].

Different new-physics explanations of the anomaly have been put forward: new charged vector
or scalar bosons, leptoquarks, right-handed neutrinos, etc.9 The normalized q2 distributions measured
by BaBar [194] and Belle [197] do not favour large deviations from the SM [203]. One must also take
into account that the needed enhancement of the b → cτν transition is constrained by the cross-channel
bc̄ → τν. A conservative (more stringent) upper bound Br(Bc → τν) < 30% (10%) can be extracted
from the Bc lifetime [203, 204] (LEP data [205]). A global fit to the data, using a generic low-energy
effective Hamiltonian with four-fermion effective operators [201, 202], finds several viable possibilities.
However, while the fitted results clearly indicate that new-physics contributions are needed (much lower
χ2 than in the SM), they don’t show any strong preference for a particular Wilson coefficient. The
simplest solution would be some new-physics contribution that only manifests in the Wilson coefficient
of the SM operator (c̄Lγ

µbL)(τ̄LγµνL). This would imply a universal enhancement of all b → cτν
transitions, in agreement with the recent LHCb observation of the Bc → J/ψ τν decay [206],

R(J/ψ) ≡ Br(Bc → J/ψ τν)

Br(Bc → J/ψ `ν)
= 0.71± 0.17± 0.18 , (108)

which is 2σ above the SM expected value R(J/ψ) ∼ 0.25–0.28 [207–210]. Writing the four-fermion
left-left operator in terms of SU(2)L⊗U(1)Y invariant operators at the electroweak scale, and imposing
that the experimental bounds on Br(b → sνν̄) are satisfied, this possibility would imply rather large
rates in b→ sτ+τ− transitions [211–213], but still safely below the current upper limits [214].

9A long, but not exhaustive, list of relevant references is given in Refs. [201, 202].
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Fig. 12: Comparison between the SM predictions for P ′5 [226–228] and the experimental measurements [229].

9.2 b → s`+`− decays
The rates of several b → sµ+µ− transitions have been found at LHCb to be consistently lower than
their SM predictions: B+ → K+µ+µ− [215, 216], B+ → K∗+µ+µ− [215], B0

d → K0µ+µ− [215],
B0
d → K∗0µ+µ− [217], B0

s → φµ+µ− [218] and Λ0
b → Λµ+µ− [219]. The angular and invariant-

mass distributions of the final products in B → K∗µ+µ− have been also studied by ATLAS [220],
BaBar [221], Belle [222], CDF [223], CMS [224] and LHCb [217]. The rich variety of angular depen-
dences in the four-body Kπµ+µ− final state allows one to disentangle different sources of dynamical
contributions. Particular attention has been put in the so-called optimised observables P ′i (q

2), where q2

is the dilepton invariant-mass squared, which are specific combinations of angular observables that are
free from form-factor uncertainties in the heavy quark-mass limit [225]. A sizeable discrepancy with the
SM prediction [226–228], shown in Fig. 12, has been identified in two adjacent bins of the P ′5 distribu-
tion, just below the J/Ψ peak. Belle has also includedK∗e+e− final states in the analysis, but the results
for this electron mode are compatible with the SM expectations [222].

The SM predictions for the previous observables suffer from hadronic uncertainties that are not
easy to quantify. However, LHCb has also reported sizeable violations of lepton flavour universality, at
the 2.1-2.6σ level, through the ratios [230]

R
K
∗0 ≡ Br(B0

d → K∗0µ+µ−)

B0
d → K∗0e+e−)

=

{
0.66 + 0.11

− 0.07 ± 0.03 , q2 ∈ [0.045 , 1.1] GeV2 ,

0.69 + 0.11
− 0.07 ± 0.05 , q2 ∈ [1.1 , 6.0] GeV2 ,

(109)

and [231]

RK ≡
Br(B+ → K+µ+µ−)

Br(B+ → K+e+e−)

∣∣∣∣∣
q
2∈ [1.1 , 6.0] GeV

2

= 0.846 + 0.060
− 0.054

+ 0.016
− 0.014 . (110)

These observables constitute a much cleaner probe of new physics because most theoretical uncertainties
cancel out [232–235]. In the SM, the only difference between the muon and electron channels is the
lepton mass. The SM theoretical predictions,RK = 1.00±0.01QED,R

K
∗0 [0.045, 1.1] = 0.906±0.028th

andR
K
∗0 [1.1, 6] = 1.00±0.01QED [236], deviate from these experimental measurements by 2.4σ, 2.1σ

and 2.6σ, respectively. Owing to their larger uncertainties, the recent Belle measurements of RK∗ [237]
and RK [238] are compatible with the SM as well as with LHCb.
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Global fits to the b→ s`+`− data with an effective low-energy Lagrangian

Leff =
GF√

2
VtbV

∗
ts
α

π

∑
i,`

Ci,`O
`
i (111)

show a clear preference for new-physics contributions to the operators O`9 = (s̄LγµbL)(¯̀γµ`) and
O`10 = (s̄LγµbL)(¯̀γµγ5`), with ` = µ [239–245]. Although the different analyses tend to favour
slightly different solutions, two main common scenarios stand out: either δCNP

9,µ ≈ −0.98 or δCNP
9,µ =

−δCNP
10,µ ≈ −0.46. Both constitute large shifts (−24% and −11%, respectively) from the SM values:

CSM
9,µ (µb) ≈ 4.1 and CSM

10,µ(µb) ≈ −4.3, at µb = 4.8 GeV. The first possibility is slightly preferred
by the global analysis of all data, while the left-handed new-physics solution accommodates better the
lepton-flavour-universality-violating observables [240].

The left-handed scenario is theoretically appealing because it can be easily generated through
SU(2)L⊗U(1)Y -invariant effective operators at the electroweak scale that, moreover, could also provide
an explanation to the b→ cτν anomaly. This possibility emerges naturally from the so-called U1 vector
leptoquark model [246], and can be tested experimentally, since it implies a b→ sτ+τ− rate three orders
of magnitude larger than the SM expectation [213]. For a recent review of theoretical models with a quite
complete list of references, see Ref. [247].

10 Discussion
The flavour structure of the SM is one of the main pending questions in our understanding of weak
interactions. Although we do not know the reasons of the observed family replication, we have learnt
experimentally that the number of SM generations is just three (and no more). Therefore, we must study
as precisely as possible the few existing flavours, to get some hints on the dynamics responsible for their
observed structure.

In the SM all flavour dynamics originate in the fermion mass matrices, which determine the mea-
surable masses and mixings. Thus, flavour is related through the Yukawa interactions with the scalar
sector, the part of the SM Lagrangian that is more open to theoretical speculations. At present, we to-
tally ignore the underlying dynamics responsible for the vastly different scales exhibited by the fermion
spectrum and the particular values of the measured mixings. The SM Yukawa matrices are just a bunch
of arbitrary parameters to be fitted to data, which is conceptually unsatisfactory.

The SM incorporates a mechanism to generate CP violation, through the single phase naturally
occurring in the CKM matrix. This mechanism, deeply rooted into the unitarity structure of V, im-
plies very specific requirements for CP violation to show up. The CKM matrix has been thoroughly
investigated in dedicated experiments and a large number of CP-violating processes have been studied
in detail. The flavour data seem to fit into the SM framework, confirming that the fermion mass matri-
ces are the dominant source of flavour-mixing phenomena. However, a fundamental explanation of the
flavour dynamics is still lacking.

At present, a few flavour anomalies have been identified in b → cτν and b → sµ+µ− transi-
tions. Whether they truly represent the first signals of new phenomena, or just result from statistical
fluctuations and/or underestimated systematics remains to be understood. New experimental input from
LHC and Belle-II should soon clarify the situation. Very valuable information on the flavour dynam-
ics is also expected from BESS-III and from several kaon (NA62, KOTO) and muon (MEG-II, Mu2e,
Mu3e, COMET) experiments, complementing the high-energy searches for new phenomena at LHC.
Unexpected surprises may well be discovered, probably giving hints of new physics at higher scales and
offering clues to the problems of fermion mass generation, quark mixing and family replication.
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Appendices
A Conservation of the vector current
In the limit where all quark masses are equal, the QCD Lagrangian remains invariant under global
SU(Nf ) transformations of the quark fields in flavour space, where Nf is the number of (equal-mass)
quark flavours. This guarantees the conservation of the corresponding Noether currents V µ

ij = ūiγ
µdj .

In fact, using the QCD equations of motion, one immediately finds that

∂µV
µ
ij ≡ ∂µ

(
ūiγ

µdj
)

= i
(
mui
−mdj

)
ūidj , (A.1)

which vanishes when mui
= mdj

. In momentum space, this reads qµV
µ
ij = O(mui

−mdj
), with qµ the

corresponding momentum transfer.

Let us consider a 0−(k)→ 0−(k′) weak transition mediated by the vector current V µ
ij . The relevant

hadronic matrix element is given in Eq. (19) and contains two form factors f±(q2). The conservation of
the vector current implies that f−(q2) is identically zero when mui

= mdj
. Therefore,

〈P ′i (k′)|V µ
ij (x)|Pj(k)〉 = eiq·x CPP ′ (k + k′)µ f+(q2) . (A.2)

We have made use of translation invariance to write V µ
ij (x) = eiP ·x V µ

ij (0) e−iP ·x, with Pµ the four-
momentum operator. This determines the dependence of the matrix element on the space-time coordi-
nate, with qµ = (k′ − k)µ.

The conserved Noether charges

Nij =

∫
d3x V 0

ij(x) =

∫
d3x u†i (x) dj(x) , (A.3)

annihilate one quark dj and create instead one ui (or replace ūi by d̄j), transforming the meson P into
P ′ (up to a trivial Clebsh-Gordan factor CPP ′ that, for light-quarks, takes the value 1/

√
2 when P ′ is a

π0 and is 1 otherwise). Thus,

〈P ′(k′)|Nij |P (k)〉 = CPP ′ 〈P
′(k′)|P ′(k)〉 = CPP ′ (2π)3 2k0 δ(3)(~k′ − ~k ) . (A.4)

On the other side, inserting in this matrix element the explicit expression for Nij in (A.3) and making
use of (A.2),

〈P ′(k′)|Nij |P (k)〉 =

∫
d3x 〈P ′(k′)|V 0

ij(x)|P (k)〉 = CPP ′ (2π)3 2k0 δ(3)(~q ) f+(0) . (A.5)

Comparing Eqs. (A.4) and (A.5), one finally obtains the result

f+(0) = 1 . (A.6)

Therefore, the flavour symmetry SU(Nf ) determines the normalization of the form factor at q2 = 0,
when mui

= mdj
. It is possible to prove that the deviations from 1 are of second order in the symmetry-

breaking quark mass difference, i.e., f+(0) = 1 +O[(mui
−mdj

)2] [25].
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