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Abstract
The purpose of these lectures is to quantitatively summarize the present status
of the phenomenology of massive neutrinos. In the first lecture I will present
the low energy formalism for adding neutrino masses to the Standard Model
and the induced leptonic mixing, and I will describe the status of the exist-
ing probes of the absolute neutrino mass scale. The second lecture is devoted
to describing the phenomenology associated with neutrino flavour oscillations
in vacuum and in matter and the corresponding experimental results observing
these phenomena. In the third lecture I will present the minimal 3ν mixing pic-
ture emerging from the global description of the data. I will briefly comment
on the status of extensions of this picture with additional light states and the
possibility of non-standard neutrino interactions. I will also discuss some the-
oretical implications of these results, such as the existence of new physics, the
estimate of the scale of this new physics, leptogenesis and collider signatures.
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1 LECTURE I: Neutrino properties
1.1 Introduction
In 1930 Wolfgang Pauli postulated the existence of a new particle in order to reconcile the observed
continuous spectrum of nuclear beta decay with energy conservation. The postulated particle had no
electric charge and, in fact, Pauli himself pointed out that in order to do the job it had to weight less than
one percent of the proton mass, thus establishing the first limit on the neutrino mass. It was Fermi, who,
in 1934 [1], gave its name to the neutrino and first proposed the four-fermion theory of beta decay. The
neutrino was first observed by Cowan, Reines and collaborators [2] in 1956 in a reactor experiment. Soon
after, in 1958 its helicity was determined by Goldhaber and collaborators [3] to be always -1 (left-handed)
and as such were introduced in the Standard Model (SM).

Neutrinos are copiously produced in natural sources: in the burning of the stars, in the interaction
of cosmic rays, in the Earth radioactivity... even as relics of the Big Bang. In the 1960’s, neutrinos
produced in the sun and in the atmosphere were first observed. In 1987, neutrinos from a supernova
in the Large Magellanic Cloud were also detected. In 2013 the ICECUBE experiment detected high
energy neutrinos from extragalactic sources. Neutrinos are also produced in man-made facilities, start-
ing with the nuclear reactors which were the first source to be detected, and continuing with dedicated
beams produced with particle accelerators. All these observations play an important role in understand-
ing the properties of the neutrinos. In particular they allowed to establish that neutrinos carry lepton
flavour characterizing them by the charged lepton with which they are produced in a SM weak current
interaction.

The properties of the neutrino and in particular the question of its mass have intrigued physicists’
minds ever since it was proposed. In the laboratory, neutrino masses have been kinematically searched



for without any positive result. Experiments achieved higher and higher precision, reaching upper limits
for the electron-neutrino mass of 10−9 the proton mass, rather than the 10−2 originally obtained by Pauli.
This raised the question of whether neutrinos are truly massless like photons.

It is clear that the answer to this question is limited by our capability of detecting the effect of
a non-zero neutrino mass. This is a very difficult task in direct kinematic measurements. In 1957,
however, Bruno Pontecorvo [4, 5] realized that the existence of neutrino masses may not only reveal
itself in kinematic effects but it implies also the possibility of neutrino oscillations. Flavor oscillations
of neutrinos were searched for using either neutrino beams from reactors or accelerators, or natural
neutrinos generated at astrophysical sources (the Sun giving the largest flux) or in the atmosphere. The
longer the distance that the neutrinos travel from their production point to the detector, the smaller masses
that can be signaled by their oscillation. Indeed, the solar neutrinos allow us to search for masses that
are as small as 10−5 eV, that is 10−14 of the proton mass!

Experiments studying natural neutrino fluxes were the first to provide us with strong evidence of
neutrino masses and lepton flavour mixing. Experiments that measure the flux of atmospheric neutrinos
found results that suggested the disappearance of muon-neutrinos when propagating over distances of
order hundreds (or more) kilometers. Experiments that measured the flux of solar neutrinos found results
that eventually demonstrated the disappearance of electron-neutrinos while propagating within the Sun.
The disappearance of both atmospheric νµ’s and solar νe’s was most easily explained in terms of neutrino
flavour transitions associated to neutrino masses and mixing. These results were tested and eventually
confirmed with increasing precision in experiments using laboratory beams from nuclear reactors and
accelerators. With the exception of a set of unconfirmed “hints” of possible eV scale mass states, all the
oscillation signatures can be explained with the three flavor neutrinos (νe, νµ, ντ ) expressed as quantum
superposition of three massive states νi (i = 1, 2, 3) with different masses mi.

In these lectures I first discuss some generic properties of the neutrinos related to the question
of their mass and describe the low energy formalism for adding neutrino masses to the SM and the
induced leptonic mixing. In the second lecture I describe the phenomenology associated with neutrino
flavour oscillations in vacuum and transitions in matter and present the experimental evidence of neutrino
oscillations. In the third lecture I will first present the derived values of neutrino masses and mixing when
the bulk of data is consistently analyzed in the framework of mixing between the three active neutrinos.
I will briefly comment on the status of extensions of this picture with additional light states and the
possibility of non-standard neutrino interactions. I will also discuss some theoretical implications and
some avenues open by these results: the existence of new physics, the estimate of the scale of this new
physics, leptogenesis, collider signatures, etc. . .

In preparing these lectures, I have benefited from the many excellent books, such as Refs. [6–10],
and several review articles. In the writing of these notes, I have used material from my review arti-
cles [11–13].

1.2 Standard Model of massless neutrinos
The Standard Model (SM) is based on the gauge group

GSM = SU(3)C × SU(2)L × U(1)Y, (1)

with three fermion generations, where a single generation consists of five different representations of the
gauge group,

QL(3, 2,
1

6
) , UR(3, 1,

2

3
) , DR(3, 1,−

1

3
) , LL(1, 2,−

1

2
) , ER(1, 1,−1). (2)

where the numbers in parenthesis represent the corresponding charges under the group (1).
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The model contains a single Higgs boson doublet, ϕ(1, 2, 1/2), whose vacuum expectation value
breaks the gauge symmetry,

⟨ϕ⟩ =

(
0
v√
2

)
=⇒ GSM → SU(3)C × U(1)EM. (3)

Neutrinos are fermions that have neither strong nor electromagnetic interactions, i.e. they are
singlets of SU(3)C × U(1)EM. Active neutrinos have weak interactions, that is, they are not singlets
of SU(2)L. They reside in the lepton doublets LL. Sterile neutrinos are define as having no SM gauge
interactions, this is, they are singlets of the SM gauge group..

The SM has three active neutrinos accompanying the charged lepton mass eigenstates, e, µ and τ :

LLℓ =

(
νLℓ
ℓ−L

)
, ℓ = e, µ, τ. (4)

Thus the charged current interaction terms for leptons read

− LCC =
g√
2

∑
ℓ

νLℓγ
µℓ−LW

+
µ + h.c.. (5)

In addition, the SM neutrinos have neutral current (NC) interactions,

− LNC =
g

2 cos θW

∑
ℓ

νLℓγ
µνLℓZ

0
µ. (6)

Equations (5) and (6) give all the neutrino interactions within the SM. In particular, Eq. (6) determines
the decay width of the Z0 boson into neutrinos which is proportional to the number of light left-handed
neutrinos. At present the measurement of the invisible Z width yields Nν = 2.984± 0.008 [14] making
the existence of three, and only three, light (that is, mν ≤ mZ/2) active neutrinos an experimental fact.

An important feature of the SM, which is relevant to the question of the neutrino mass is the fact
that the SM with the gauge symmetry of Eq. (1) and the particle content of Eq. (2) presents an accidental
global symmetry:

Gglobal
SM = U(1)B × U(1)e × U(1)µ × U(1)τ . (7)

U(1)B is the baryon number symmetry, and U(1)e,µ,τ are the three lepton flavor symmetries, with total
lepton number given by L = Le + Lµ + Lτ . It is an accidental symmetry because we do not impose it.
It is a consequence of the gauge symmetry and the representations of the physical states.

In the SM fermion masses arise from the Yukawa interactions which couple a right-handed fermion
with its left-handed doublet and the Higgs field (i, j are generation index),

− LYukawa = Y d
ijQLiϕDRj + Y u

ijQLiϕ̃URj + Y ℓ
ijLLiϕERj + h.c., (8)

(where ϕ̃ = iτ2ϕ
⋆) and after spontaneous symmetry breaking generates a mass for fermions f

mf
ij = Y f

ij

v√
2
. (9)

However, since no right-handed neutrinos exist in the model, the Yukawa interactions of Eq. (8) leave
the neutrinos massless.

One may wonder if neutrino masses could arise from loop corrections or even by nonperturbative
effects, however this cannot happen because any neutrino mass term that can be constructed with the SM
fields would violate the total lepton symmetry, which, as mentioned above, is a global symmetry of the
model so this is not allowed. I will return to this point in the last lecture.

It follows that the SM predicts that neutrinos are precisely massless. In order to add a mass to the
neutrino the SM has to be extended.
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1.3 Introducing massive neutrinos
As discussed above with the fermionic content and gauge symmetry of the SM one cannot construct a
renomalizable mass term for the neutrinos. So in order to introduce a neutrino mass one must either
extend the particle contents of the model or abandon gauge invariance and/or renormalizability. I will go
back to this point in the last lecture.

Here I will assume that we want to keep the gauge symmetry and the renormalizability condition
and we are going to explore the possibilities that we have to introduce a neutrino mass term if one adds
to the SM an arbitrary number m of sterile neutrinos νsi(1, 1, 0).

As we are going to see, related to the way we introduce the neutrino mass, it comes the fact that
for the neutrino because it is the only neutral fermion, one can ask the question of whether a neutrino is
a different particle than the antineutrino or they are both the same state.

If the neutrino is a different particle than the antineutrino we say that the neutrino is a Dirac-type
particle, similar to any of the other charged fermions in the theory. Neutrino and antineutrino are then
described by two different fields which involve two sets of creation-annihilation operators. If the neutrino
and antineutrino are the same particle we say that the neutrino is a Majorana-type particle. This implies
that there is only one field which describes both states and involves only one set of creation-annihilation
operators. Mathematically this implies that it must be verified that:

ν(x) = νc(x) (10)

Here νc indicates a charge conjugated field, νc ≡ CνT and C is the charge conjugation matrix. No-
tice that this condition implies that there is only one field which describes both neutrino and antineu-
trino states. Thus a Majorana neutrino can be described by a two-component spinor unlike the charged
fermions, which are Dirac particles, and are represented by four-component spinors.

With the particle contents of the SM and the addition of an arbitrary m number of sterile neutrinos
one can construct two types of mass terms that arise from renormalizable terms:

− LMν = MDij ν̄siνLj +
1

2
MNij ν̄siν

c
sj + h.c.. (11)

MD is a complex m× 3 matrix and MN is a symmetric matrix of dimension m×m.

The first term is a Dirac mass term. It is generated after spontaneous electroweak symmetry
breaking from Yukawa interactions

Y ν
ij ν̄siϕ̃

†LLj ⇒ MDij = Y ν
ij

v√
2

(12)

similarly to the charged fermion masses. It conserves total lepton number but it breaks the lepton flavor
number symmetries.

The second term in Eq. (11) is a Majorana mass term. It is different from the Dirac mass terms in
many important aspects. It is a singlet of the SM gauge group. Therefore, it can appear as a bare mass
term. Furthermore, since it involves two neutrino fields, it breaks lepton number by two units. More
generally, such a term is allowed only if the neutrinos carry no additive conserved charge.

In general Eq. (11) can be rewritten as:

− LMν =
1

2
ν⃗cMν ν⃗ + h.c. , (13)

where

Mν =

(
0 MT

D

MD MN

)
, (14)
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and ν⃗ = (ν⃗L, ν⃗cs)
T is a (3 +m)-dimensional vector. The matrix Mν is complex and symmetric. It can

be diagonalized by a unitary matrix of dimension (3 +m), V ν , so that

(V ν)TMνV
ν = diag(m1,m2, . . . ,m3+m) . (15)

In terms of the resulting 3 +m mass eigenstates

ν⃗mass = (V ν)†ν⃗ , (16)

Eq. (13) can be rewritten as:

− LMν =
1

2

3+m∑
k=1

mk

(
ν̄cmass,kνmass,k + ν̄mass,kν

c
mass,k

)
=

1

2

3+m∑
k=1

mkν̄MkνMk , (17)

where
νMk = νmass,k + νcmass,k = (V ν†ν⃗)k + (V ν†ν⃗)ck (18)

which clearly obey the Majorana condition Eq. (10).

From Eq. (18) we find that the weak-doublet components of the neutrino fields are:

νLi = PL

3+m∑
j=1

V ν
ijνMj i = 1, 2, 3 , (19)

where PL is the left-handed projector.

There are three interesting cases, differing in the hierarchy of scales between MN and MD:

(1) The scale of the mass eigenvalues of MN is much higher than the scale of electroweak sym-
metry breaking ⟨ϕ⟩. In this case the scale of the mass eigenvalues of MN is much higher than the scale
of electroweak symmetry breaking ⟨ϕ⟩. The diagonalization of Mν leads to three light, νl, and m heavy,
N , neutrinos:

− LMν =
1

2
ν̄lM

lνl +
1

2
N̄MhN (20)

with
M l ≃ −V T

l MT
DM

−1
N MDVl, Mh ≃ V T

h MNVh (21)

and

V ν ≃

(1− 1
2M

†
DM

∗
N

−1M−1
N MD

)
Vl M †

DM
∗
N

−1Vh

−M−1
N MDVl

(
1− 1

2MN
−1MDM

†
DM

∗
N

−1
)
Vh

 (22)

where Vl and Vh are 3× 3 and m×m unitary matrices respectively. So the heavier are the heavy states,
the lighter are the light ones. This is the see-saw mechanism [15–19]. Also, as seen from Eq. (22), the
heavy states are mostly right-handed while the light ones are mostly left-handed. Both the light and
the heavy neutrinos are Majorana particles. Two well-known examples of extensions of the SM leading
to a see-saw mechanism for neutrino masses are SO(10) Grand Unified Theories [16, 17] and left-right
symmetry [19]. In this case the SM is a good effective low energy theory.

(2) The scale of some eigenvalues of MN is not higher than the electroweak scale. Now the SM
is not even a good low energy effective theory: there are more than three light neutrinos, and they are
mixtures of doublet and singlet fields. Again both light fields and the heavy ones are all of the Majorana-
type.

(3) MN = 0. This is equivalent to imposing lepton number symmetry on this model. Again, the
SM is not even a good low energy theory: both the fermionic content and the assumed symmetries are
different. Now only the first term in Eq. (11) is present, which is a Dirac mass term. It is generated by
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the Higgs mechanism in the same way that charged fermions masses are generated. If indeed it is the
only neutrino mass term present and m = 3, the six massive Majorana neutrinos combine to form three
massive neutrino Dirac states, equivalently to the charged fermions. Technically in this particular case
the 6 × 6 diagonalizing matrix in Eq. (15) is block diagonal and it can be written in terms of two 3 × 3
unitary matrices, here denoted by V ν and V ν

R , such that

V ν
R
†MDV

ν = diag(m1,m2,m3) . (23)

So the neutrino mass term can be written as:

− LMν =
3∑

k=1

mkν̄DkνDk (24)

where
νDk = (V ν†ν⃗L)k + (V ν

R
†ν⃗s)k . (25)

So in this we identify the three sterile neutrinos with the right handed component of a four-component
spinor neutrino field while the weak-doublet components of the neutrino fields are

νLi = PL

3∑
j=1

V ν
ijνDj , i = 1, 2, 3 . (26)

As we will see the analysis of neutrino oscillations is the same whether the light neutrinos are of
the Majorana- or Dirac-type. Only in the discussion of neutrinoless double beta decay the question of
Majorana versus Dirac neutrinos is crucial.

1.4 Lepton mixing
The possibility of arbitrary mixing between two massive neutrino states was first introduced in Ref. [20].
In the general case general, we denote the neutrino mass eigenstates by (ν1, ν2, ν3, . . . , νn) where n =
3 +m, and the charged lepton mass eigenstates by (e, µ, τ). The corresponding interaction eigenstates
are denoted by (eI , µI , τ I) and ν⃗ = (νLe, νLµ, νLτ , νs1, . . . , νsm). In the mass basis, leptonic charged
current interactions are given by

− LCC =
g√
2
(eL µL τL)γ

µU



ν1
ν2
ν3
.
.
νn

W+
µ − h.c.. (27)

Here U is a 3× n matrix which verifies
UU † = I3×3 (28)

but in general U †U ̸= In×n.

Given the charged lepton mass matrix Mℓ and the neutrino mass matrix Mν in some interaction
basis,

− LM = (eIL µI
L τ IL) Mℓ

eIR
µI
R

τ IR

+
1

2
ν⃗cMν ν⃗ + h.c. , (29)

we can find the diagonalizing matrices V ℓ and V ν :

V ℓ†MℓM
†
ℓ V

ℓ = diag(m2
e,m

2
µ,m

2
τ ), V ν†M †

νMνV
ν = diag(m2

1,m
2
2,m

2
3, . . . ,m

2
n). (30)
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Here V ℓ is a unitary 3×3 matrix while V ν the n×n unitary matrix in Eq. (15). The 3×n mixing matrix
U can be found from these diagonalizing matrices:

Uij = Pℓ,ii V
ℓ
ik

†
V ν
kj (Pν,jj). (31)

Pℓ is a diagonal 3 × 3 phase matrix, that is introduce to reduce by three the number of phases in U . Pν

is a diagonal matrix with additional arbitrary phases (chosen to reduce the number of phases in U ) only
for Dirac states. For Majorana neutrinos, this matrix is simply a unit matrix. The reason for that is that if
one rotates a Majorana neutrino by a phase, this phase will appear in its mass term which will no longer
be real. Thus, the number of phases that can be absorbed by redefining the mass eigenstates depends
on whether the neutrinos are Dirac or Majorana particles. In particular, if there are only three Majorana
neutrinos, U is a 3 × 3 matrix analogous to the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the
quarks [21,22] but due to the Majorana nature of the neutrinos it depends on six independent parameters:
three mixing angles and three phases. This is to be compared to the case of three Dirac neutrinos 1

where the number of physical phases is one, similarly to the CKM matrix. Note, however, that the two
extra Majorana phases are very hard to measure since they are only physical if neutrino mass is non-
zero and therefore the amplitude of any process involving them is suppressed a factor mν/E to some
power where E is the energy involved in the process which is typically much larger than the neutrino
mass. The most sensitive experimental probe of Majorana phases is the rate of neutrinoless ββ decay.
If no new interactions for the charged leptons are present we can identify their interaction eigenstates
with the corresponding mass eigenstates after phase redefinition. In this case the charged current lepton
mixing matrix U is simply given by a 3 × n sub-matrix of the unitary matrix V ν . It worth noticing that
while for the case of 3 light Dirac neutrinos the procedure leads to a fully unitary U matrix for the light
states, generically for three light Majorana neutrinos this is not the case when the full spectrum contains
heavy neutrino states which have been integrated out as can be seen, from Eq. (22). However, as seen in
Eq. (22), the unitarity violation is of the order O(MD/MN ) and it is expected to be very small (at it is
also severely constrained experimentally). Consequently in the analysis of oscillation data presented in
next lectures the U matrix is assumed to be unitary.

1.5 Laboratory probes of ν mass scale and its nature
Kinematic constraints from weak decays
It was Fermi who first proposed a kinematic search for the neutrino mass from the hard part of the beta
spectra in 3H beta decay 3H→3He+e− + νe. This is a superallowed transition, which means that the
nuclear matrix elements do not generate any energy dependence, so that the electron spectrum is given
by the phase space alone

dN

dT
= CpE(Q− T )

√
(Q− T )2 −m2

ν F (E) . (32)

where E = T +me, Q is the maximum energy and F (E) is the Fermi function which incorporates final
state Coulomb interactions.

Plotted in terms of the Kurie function K(T ) ≡
√

dN
dT

1
pEF (E) a non-vanishing neutrino mass mν

provokes a distortion from the straight-line T-dependence at the end point: for mν = 0 → Tmax = Q
whereas for mν ̸= 0 → Tmax = Q−mν as illustrated in Fig. 1. 3H beta decay has a a very small energy
release Q = 18.6 KeV which makes it particularly sensitive to this kinematic effect. In the presence of
mixing these limits have to be modified and in general they involve more than one flavor parameter. For
neutrinos with small mass differences the distortion of the beta spectrum can be described by the single

1In this case, as discussed above the 6 × 6 neutrino diagonalizing matrix is block diagonal and the V ν in Eq. (31) is the
3× 3 block introduced in Eq. (23).
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νm

K (T)

Q
T

Fig. 1: Kinematic determination of mν

parameter substituting mν by (
meff

νe

)2
=
∑
i

m2
i |Uei|2 (33)

The most recent result on the kinematic search for neutrino mass in tritium decay is from KA-
TRIN [23], an experiment that so far has found no indication of mνe ̸= 0 and sets an upper limit

meff
νe < 1.1 eV , (34)

at 90% CL improving over the previous bound from the Mainz [24, 25] and Troitsk [26] experiments
which constrained meff

νe < 2.2 eV at 95% CL. KATRIN continues running with an estimated sensitivity
limit of meff

νe ∼ 0.2 eV.

For the other flavours the present limits are [14]

meff
νµ =

√∑
i

m2
i |Uµi|2 < 190 keV (90% CL) from π− → µ− + νµ (35)

meff
ντ =

√∑
i

m2
i |Uτi|2 < 18.2 MeV (95% CL) from τ− → nπ + ντ (36)

Thus, in the presence of non-vanishing mixing the most stringent constraint on the absolute mass of any
of the neutrinos is set by the limit from tritium beta decay in Eq. (34).

Dirac vs Majorana: neutrinoless double-beta decay
The most sensitive probe to whether neutrinos are Dirac or Majorana states is the neutrinoless double
beta decay (0νββ):

(A,Z) → (A,Z + 2) + e− + e−. (37)

In the presence of neutrino masses and mixing the process in Eq.(37) can be generated at lower order
in perturbation theory by the term represented by the diagram in Fig. 2 The amplitude of this process is
proportional to the product of the two leptonic currents

Mαβ ∝ [ēγα(1− γ5)νe] [ēγβ(1− γ5)νe] ∝
∑
i

(Uei)
2 [ēγα(1− γ5)νi] [ēγβ(1− γ5)νi] . (38)

The neutrino propagator in Fig. 2 can only arise from the contraction ⟨0 | νi(x)νi(y)T | 0⟩. But if the
neutrino is a Dirac particle νi field annihilates a neutrino states and creates an antineutrino state which
are different, so the contraction ⟨0 | νi(x)νi(y)T | 0⟩ = 0 and Mαβ = 0. On the other hand, if νi is a
Majorana particle, neutrino and antineutrino are described by the same field and ⟨0 | νi(x)νi(y)T | 0⟩ ≠ 0.
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p

W

n

p

W
ν

e−

e−

Fig. 2: Feynman diagram for neutrinoless double-beta decay.

The conclusion is that in order to induce the 0νββ decay, neutrinos must be Majorana particles.
This is consistent with the fact that the process (37) violates total lepton number by two units. Conversely,
if 0νββ decay is observed, massive neutrinos cannot be exact Dirac states [27].

After some algebra one finds that the rate of the process is proportional to the effective Majorana
mass of νe,

mee =

∣∣∣∣∣ ∑
i

miU
2
ei

∣∣∣∣∣ (39)

which, in addition to the masses and mixing parameters that affect the tritium beta decay spectrum,
depends also on the leptonic CP violating phases.

The observable determined by the experiments is the half-life of the decay. Under the assumption
that the Majorana neutrino mass is the only source of lepton number violation at low energies, the decay
half-life is given by:

(T 0ν
1/2)

−1 = G0ν
∣∣M0ν

∣∣2(mee

me

)2

, (40)

where G0ν is the phase space integral taking into account the final atomic state, and |M0ν | is the nuclear
matrix element of the transition.

At present the strongest bound on 0νββ decay lifetime comes from the search in KamLAND-
Zen experiment [28] which uses 13 Tons of Xe-loaded liquid scintillator to search for the decay 0νββ of
136Xe and has set a bound on the half-life of T 0ν

1/2 > 1.07×1026 yr at 90% CL. From Eq. (40) we see that
nuclear structure details enter relation between the decay rate (or lifetime) and the effective Majorana
mass. As a consequence uncertainties in the nuclear structure calculations result in a spread of mee

values for a given T 0ν
1/2 by a factor of 2–3 [29]. Using a variety of nuclear matrix element calculations,

the corresponding upper bound on the effective Majorana mass is

mee < 61− 165 meV . (41)

This bound is stronger than the one from tritium beta decay but it is model dependent because it requires
that neutrinos are Majorana particles and that their mass is the only source of lepton number violation
generating neutrinoless double beta decay.

Cosmological bounds
Neutrinos, like any other particles, contribute to the total energy density of the Universe. Furthermore
light neutrinos are relativist through most of the evolution of the Universe. As a consequence they can
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play a relevant role in large scale structure formation and leave clear signatures in several cosmological
observables.

Within what we presently know of their masses, neutrinos are relativistic through most of the
evolution of the Universe and being very weakly interacting they decoupled early in cosmic history.
Depending on their exact masses they can impact the cosmic microwave background spectra, in particular
by altering the value of the redshift for matter-radiation equality. More importantly, their free streaming
suppresses the growth of structures on scales smaller than the horizon at the time when they become non-
relativistic and therefore affects the matter power spectrum which is probed from surveys of the Large
Scale Structure distribution. Because of these effects it is possible to infer constraints, although indirect,
on the neutrino masses by comparing the most recent cosmological data with the current theoretical
predictions.

The relevant quantity in these studies is the total neutrino energy density in our Universe, Ωνh
2

(where h is the Hubble constant normalized to H0 = 100 km s−1 Mpc−1). At present Ωνh
2 is related to

the total mass in the form of neutrinos

Ωνh
2 =

∑
i

mi/(94eV) . (42)

Therefore cosmological data gives information on the sum of the neutrino masses and has very little to
say on their mixing.

Because of these effects, the recent precise astrophysical and cosmological observations can pro-
vide indirect upper limits on absolute neutrino masses competitive with those from laboratory experi-
ments. At present the most robust bounds come from the analysis of Planck results which within the
Λ-Cold-Dark-Matter model imply

∑
i

mi ≤ 0.17 − 0.74 eV where the range includes variations of the

data sets included in the analysis. One must always keep in mind that these bounds apply within a given
cosmological model and consequently variations of the model can relax the bounds.

1.6 Summary
In the SM neutrinos are purely left-handed and strictly massless. Neutrino masses can be introduced
in the model at the expense of adding new right-handed – hence sterile – states, and/or breaking total
lepton number. Depending on the way the mass term is introduced, the massive neutrinos are Dirac
particles, as any other fermions of the SM for which neutrinos and antineutrinos are different states, or
Majorana particles, being their own antiparticles. In this second case one may gain an understanding of
why neutrino masses are smaller than other fermion masses. Massive neutrinos open up the possibility
of flavour mixing and CP violation in the lepton sector similar to the quark sector. So far direct searches
for neutrino masses have result only into limits, the strongest model independent bound is ∼ eV from
tritium β decay.
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2 LECTURE II: Flavour oscillations
2.1 Mass-induced flavour oscillations in vacuum
If neutrinos have masses and lepton flavours are mixed in the weak CC interactions, lepton flavour is not
conserved in neutrino propagation [4,5]. This phenomenon is usually referred to as neutrino oscillations.
In brief, a weak eigenstates, να, which by default is the state produced in the weak CC interaction of a
charged lepton ℓα, is the linear combination determined by the mixing matrix U

|να⟩ =
n∑

i=1

U∗
αi|νi⟩ , (43)

where νi are the mass eigenstates and here n is the number of light neutrino species (implicit in our
definition of the state |ν⟩ is its energy-momentum and space-time dependence). After traveling a distance
L (L ≃ ct for relativistic neutrinos), that state evolves as:

|να(t)⟩ =
n∑

i=1

U∗
αi|νi(t)⟩ . (44)

This neutrino can then undergo a charged-current (CC) interaction producing a charge lepton ℓβ ,
να(t)N

′ → ℓβN , with a probability

Pαβ = |⟨νβ|να(t)⟩|2 = |
n∑

i=1

n∑
j=1

U∗
αiUβj⟨νj |νi(t)⟩|2 . (45)

Assuming that |ν⟩ is a plane wave, |νi(t)⟩ = e−i Eit|νi(0)⟩, 2 with Ei =
√
p2i +m2

i and mi being,
respectively, the energy and the mass of the neutrino mass eigenstate νi. In all practical cases neutrinos
are very relativistic ,so pi ≃ pj ≡ p ≃ E. We can then write

Ei =
√
p2i +m2

i ≃ p+
m2

i

2E
, (46)

and use the orthogonality of the mass eigenstates, ⟨νj |νi⟩ = δij , to arrive to the following form for Pαβ:

Pαβ = δαβ − 4
n∑

i<j

Re[UαiU
∗
βiU

∗
αjUβj ] sin

2Xij + 2
n∑

i<j

Im[UαiU
∗
βiU

∗
αjUβj ] sin 2Xij , (47)

where

Xij =
(m2

i −m2
j )L

4E
= 1.267

∆m2
ij

eV2

L/E

m/MeV
. (48)

If we had made the same derivation for antineutrino states we would have ended with a similar expression
but with the exchange U → U∗. Consequently we conclude that the first term in the right-hand-side of
Eq. (47) is CP conserving since it is the same for neutrinos and antineutrinos, while the last one is CP
violating because it has opposite sign for neutrinos and antineutrinos.

Equation (47) oscillates in distance with oscillation lengths

Losc
0,ij =

4πE

|∆m2
ij |

, (49)

2For a pedagogical discussion of the quantum mechanical description of flavour oscillations in the wave package approach
see for example Ref. [8]. A recent review of the quantum mechanical aspects and subtleties on neutrino oscillations can be
found in in Ref. [30].
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and with amplitudes proportional to products of elements in the mixing matrix. Thus, neutrinos must
have different masses (∆m2

ij ̸= 0) and they must have not vanishing mixing (UαiUβi ̸= 0) in order
to undergo flavour oscillations. Also, from Eq. (47) we see that the Majorana phases cancel out in the
oscillation probability. This is expected because flavour oscillation is a total lepton number conserving
process.

Ideally, a neutrino oscillation experiment would like to measure an oscillation probability over
a distance L between the source and the detector, for neutrinos of a definite energy E. In practice,
neutrino beams, both from natural or artificial sources, are never monoenergetic, but have an energy
spectrum Φ(E). In addition each detector has a finite energy resolution. Under these circumstances what
is measured is an average probability

⟨Pαβ⟩ =
∫
dE dΦ

dEσ(E)Pαβ(E)ϵ(E)∫
dE dΦ

dEσCC(E)ϵ(E)

= δαβ − 4

n∑
i<j

Re[UαiU
∗
βiU

∗
αjUβj ]⟨sin2Xij⟩+ 2

n∑
i<j

Im[UαiU
∗
βiU

∗
αjUβj ]⟨sin 2Xij⟩ .

(50)

σ is the cross section for the process in which the neutrino flavour is detected, and ϵ(E) is the detec-
tion efficiency. The minimal range of the energy integral is determined by the energy resolution of the
experiment.

It is clear from the above expression that if (E/L) ≫ |∆m2
ij | (L ≪ Losc

0,ij) so sin2Xij ≪ 1, the
oscillation phase does not give any appreciable effect. Conversely if L ≫ Losc

0,ij , many oscillation cycles
occur between production and detection so the oscillating term is averaged to ⟨sin2Xij⟩ = 1/2.

We summarize in Table 1. the typical values of L/E for different types of neutrino sources and
experiments and the corresponding ranges of ∆m2 to which they can be most sensitive.

Table 1: Characteristic values of L and E for experiments performed using various neutrino sources and the
corresponding ranges of |∆m2| to which they can be most sensitive to flavour oscillations in vacuum. SBL stands
for short baseline and LBL for long baseline.

Experiment L (m) E (MeV) |∆m2| (eV2)
Solar 1010 1 10−10

Atmospheric 104 − 107 102–105 10−1 − 10−4

Reactor SBL 102 − 103 1 10−2 − 10−3

LBL 104 − 105 10−4 − 10−5

Accelerator SBL 102 103–104 > 0.1
LBL 105 − 106 103 − 104 10−2 − 10−3

Historically, the results of neutrino oscillation experiments were interpreted assuming two-
neutrino states so there is only one oscillating phase, the mixing matrix depends on a single mixing
angle θ and no CP violation effect in oscillations is possible. At present, as we will discuss in the third
lecture we need at least the mixing among three-neutrino states to fully describe the bulk of experi-
mental results. However, in many cases, the observed results can be understood in terms of oscillations
dominantly driven by one ∆m2. In this limit Pαβ of Eq. (47) takes the form [5]

Pαβ = δαβ − (2δαβ − 1) sin2 2θ sin2X . (51)

In this effective 2 − ν limit, changing the sign of the mass difference, ∆m2 → −∆m2, and changing
the octant of the mixing angle, θ → π

2 − θ, is just redefining the mass eigenstates, ν1 ↔ ν2: Pαβ

must be invariant under such transformation. So the physical parameter space can be covered with either
∆m2 ≥ 0 with 0 ≤ θ ≤ π

2 , or, alternatively, 0 ≤ θ ≤ π
4 with either sign for ∆m2.

96



However, from Eq. (51) we see that Pαβ is actually invariant under the change of sign of the mass
splitting and the change of octant of the mixing angle separately. This implies that there is a two-fold
discrete ambiguity since the two different sets of physical parameters, (∆m2, θ) and (∆m2, π2 − θ), give
the same transition probability in vacuum. In other words, one could not tell from a measurement of, say,
Peµ in vacuum whether the larger component of νe resides in the heavier or in the lighter neutrino mass
eigenstate. This symmetry is broken when one considers mixing of three or more neutrinos in the flavour
evolution and/or when the neutrinos traverse regions of dense matter as we describe in the following.

2.2 Propagation of massive neutrinos in matter
When neutrinos propagate in dense matter, the interactions with the medium affect their properties. These
effects are either coherent or incoherent. For purely incoherent inelastic ν-p scattering, the characteristic
cross section is very small:

σ ∼
G2

F s

π
∼ 10−43cm2

(
E

1 MeV

)2

. (52)

The smallness of this cross section is demonstrated by the fact that if a beam of 1010 neutrinos with
E ∼ 1 MeV was aimed at the Earth, only one would be deflected by the Earth matter. It may seem
then that for neutrinos matter is irrelevant. However, one must take into account that Eq. (52) does
not contain the contribution from forward elastic coherent interactions. In coherent interactions, the
medium remains unchanged and it is possible to have interference of scattered and unscattered neutrino
waves which enhances the effect. Coherence further allows one to decouple the evolution equation of the
neutrinos from the equations of the medium. In this approximation, the effect of the medium is described
by an effective potential which depends on the density and composition of the matter [31].

For example the effective potential for the evolution of νe in a medium with electrons, protons
and neutrons due to its CC interactions is given by (a detailed derivation of this result can be found, for
instance, in Refs. [8, 11, 12])

VC =
√
2GFNe . (53)

where Ne is the electron number density. For νe the sign of VC is reversed. This potential can also be
expressed in terms of the matter density ρ:

VC =
√
2GFNe ≃ 7.6Ye

ρ

1014g/cm3 eV , (54)

where Ye =
Ne

Np+Nn
is the relative number density. Three examples that are relevant to observations are

the following:
• At the Earth core ρ ∼ 10 g/cm3 and VC ∼ 10−13 eV;
• At the solar core ρ ∼ 100 g/cm3 and VC ∼ 10−12 eV

In the same way we can obtain the effective potentials for any flavour neutrino or antineutrino due
to interactions with different particles in the medium. For νµ and ντ , VC = 0 for most media while for any
active neutrino the effective potential due to NC interactions in neutral medium is VN = −1/

√
2GFNn

where Nn is the number density of neutrons.

There are several derivations in the literature of the evolution equation of a neutrino system in
matter (see, for instance, Refs. [32–34]). In here we start by considering a state which is an admixture of
two neutrino species |να⟩ and |νβ⟩ or, equivalently, of |ν1⟩ and |ν2⟩:

|Φ(x)⟩ = Φα(x)|να⟩+Φβ(x)|νβ⟩ = Φ1(x)|ν1⟩+Φ2(x)|ν2⟩ (55)

We decompose the neutrino wave function: Φi(x) = νi(x)ϕi(x) where ϕi(x) is the spinor part.

The evolution of Φ in a medium is described by a system of coupled Dirac equations, but after
several approximations the spinorial part can be drop out and we end up with an equation which can be
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written in matrix form as [31]:

− i
∂

∂x

(
να
νβ

)
=

(
−M2

w

2E

)(
να
νβ

)
, (56)

where we have defined an effective mass matrix in matter:

M2
w =

(
m2

1+m2
2

2 + 2EVα − ∆m2

2 cos 2θ ∆m2

2 sin 2θ
∆m2

2 sin 2θ
m2

1+m2
2

2 + 2EVβ + ∆m2

2 cos 2θ

)
. (57)

Here ∆m2 = m2
2 −m2

1.

We define the instantaneous mass eigenstates in matter, νmi , as the eigenstates of Mw for a fixed
value of x (or t). They are related to the interaction eigenstates through a unitary rotation,(

να
νβ

)
= U(θm)

(
νm1
νm2

)
=

(
cos θm sin θm
−sin θm cos θm

)(
νm1
νm2

)
. (58)

The eigenvalues of Mw, that is, the effective masses in matter are given by [31, 35]:

µ2
1,2(x) =

m2
1 +m2

2

2
+ E(Vα + Vβ)∓

1

2

√
(∆m2 cos 2θ −A)2 + (∆m2 sin 2θ)2 , (59)

while the mixing angle in matter is given by

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ −A
. (60)

The quantity A is defined by
A ≡ 2E(Vα − Vβ). (61)

In Fig. 3 we plot the effective masses and the mixing angle in matter as functions of the potential A, for
A > 0 and ∆m2 cos 2θ > 0. Notice that even massless neutrinos acquire non-vanishing effective masses
in matter. Also the sign of A depends on the composition of the medium and on the flavour composition
of the neutrino state considered. From the expressions above we see that for a given sign of A the mixing
angle in matter is larger(smaller) than in vacuum if this last one is in the first (second) octant. Therefore
the symmetry about 45 degrees which existing in vacuum oscillations between two neutrino states is
broken by the matter potential in propagation in a medium.

The expressions above show that very important effects are present when A, is close to
∆m2 cos 2θ. In particular, as seen in Eq. (60), the tangent of the mixing angle changes sign if, along
its path, the neutrino passes by some matter density region satisfying, for its energy, the resonance con-
dition

AR = ∆m2 cos 2θ . (62)

This implies that if the neutrino is created in a region where the relevant potential satisfies A0 > AR (A0

here is the value of the relevant potential at the production point), then the effective mixing angle in matter
at the production point is such that sgn(cos 2θm,0) = −sgn(cos 2θ). So the flavour component of the
mass eigenstates is inverted as compared to their composition in vacuum. In particular, if at production
point we have A0 = 2AR, then θm,0 = π

2 − θ. Asymptotically, for A0 ≫ AR, θm,0 → π
2 . In other

words, if in vacuum the lightest (heaviest) mass eigenstate has a larger projection on the flavour α (β),
inside a matter with density and composition such that A > AR, the opposite holds. So if the neutrino
system is traveling across a monotonically varying matter potential, the dominant flavour component of
a given mass eigenstate changes when crossing the region with A = AR. This phenomenon is known as
level crossing.
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Fig. 3: Effective masses (left) and mixing(right) acquired in the medium by a system of two massive neutrinos as
a function of the potential A [see Eq. (59)].

From the expression above we see that the oscillation length in matter,

Losc =
Losc
0 ∆m2√

(∆m2 cos 2θ −A)2 + (∆m2 sin 2θ)2
, (63)

where the oscillation length in vacuum, Losc
0 , was defined in Eq. (49), presents a resonant behaviour. At

the resonance point the oscillation length is

Losc
R =

Losc
0

sin 2θ
. (64)

The width (in distance) of the resonance, δrR, corresponding to δAR = 2∆m2 sin2 2θ is

δrR =
δAR

|dAdr |R
(65)

For constant A, i.e., for constant matter density, the evolution of the neutrino system is described just in
terms of the masses and mixing in matter. But for varying A, this is in general not the case.

In the general case, taking the time derivative of Eq. (58), we find:

∂

∂t

(
να
νβ

)
= U̇(θm)

(
νm1
νm2

)
+ U(θm)

(
ν̇m1
ν̇m2

)
. (66)

Using the evolution equation in the flavor basis, Eq. (56), we get

i

(
ν̇m1
ν̇m2

)
=

1

2E
U †(θm)M2

wU(θm)

(
νm1
νm2

)
− i U †U̇(θm)

(
νm1
νm2

)
. (67)

For constant matter density, θm is constant and the second term vanishes. In general, using the definition
of the effective masses µi(t) in Eq. (59), and subtracting a diagonal piece (µ2

1 + µ2
2)/2E × I , we can

rewrite the evolution equation as:

i

(
ν̇m1
ν̇m2

)
=

1

4E

(
−∆(t) −4iEθ̇m(t)

4iEθ̇m(t) ∆(t)

)(
νm1
νm2

)
(68)
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where we defined ∆(t) ≡ µ2
2(t)− µ2

1(t).

The evolution equations, Eq. (68), constitute a system of coupled equations: the instantaneous
mass eigenstates, νmi , mix in the evolution and are not energy eigenstates. The importance of this effect
is controlled by the relative size of the off-diagonal piece 4E θ̇m(t) with respect to the diagonal one
∆(t). When ∆(t) ≫ 4E θ̇m(t), the instantaneous mass eigenstates, νmi , behave approximately as
energy eigenstates and they do not mix in the evolution. This is the adiabatic transition approximation.
From the definition of θm in Eq. (60) we find that the adiabaticity condition can be expressed in terms of
the adiabaticity parameter Q as

Q

2
≡ ∆(t)

4Eθ̇m(t)
=

∆(t)3

2EA∆m2 sin 2θ

∣∣∣∣AȦ
∣∣∣∣≫ 1 . (69)

Since for small mixing angles the maximum of ˙θm occurs at the resonance point (as seen in Fig. 3), the
strongest adiabaticity condition is obtained when Eq. (69) is evaluated at the resonance

Q =
2 π δrR
Losc
R

, (70)

where we used the definitions of AR and δrR in Eqs. (62) and (65). Written in this form, we see that
the adiabaticity condition, Q ≫ 1, implies that many oscillations take place in the resonant region.
Conversely, when Q ≤ 1 the transition is non-adiabatic.

From the expressions above we see that, for example, the amplitude of a να produced in matter at
t0 and exiting the matter at t > t0 as νβ can be written as follows:

A(να → νβ; t) =
∑
i,j

A(να(t0) → νi(t0)) A(νi(t0) → νj(t)) A(νj(t) → νβ(t))

A(να(t0) → νi(t0)) = ⟨νi(t0)|να(t0)⟩ = U∗
αi(θm,0)

A(νj(t) → νβ(t)) = ⟨νβ(t)|νj(t)⟩ = Uβj(θ)

(71)

where U∗
αi(θm,0) is the (αi) element of the mixing matrix in matter at the production point and Uβj(θ)

is the (βj) element of the mixing matrix in vacuum.

In the adiabatic approximation the mass eigenstates do not mix so

A(νi(t0) → νj(t)) = δij ⟨νi(t)|νi(t0)⟩ = δij exp

{
i

∫ t

t0

Ei(t
′)dt′

}
. (72)

Note that Ei is a function of time because the effective mass µi is a function of time,

Ei(t
′) ≃ p+

µ2
i (t

′)

2p
. (73)

Thus the transition probability for the adiabatic case is given by

P (να → νβ; t) =

∣∣∣∣∣∑
i

Uβi(θ)U
⋆
αi(θm,0) exp

(
− i

2E

∫ t

t0

µ2
i (t

′)dt′
)∣∣∣∣∣

2

. (74)

For the case of two-neutrino mixing Eq. (74) for α = β takes the form

P (να → να; t) = cos2 θm,0 cos
2 θ + sin2 θm,0 sin

2 θ +
1

2
sin 2θm,0 sin 2θ cos

(
δ(t)

2E

)
, (75)

where

δ(t) =

∫ t

t0

∆(t′)dt′ =

∫ t

t0

√
(∆m2 cos 2θ −A(t′))2 + (∆m2 sin 2θ)2dt′ ,
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which, in general, has to be evaluated numerically. There are some analytic approximations for specific
forms of A(t′): exponential, linear . . . (see, for instance, Ref. [36]). For δ(t) ≫ E the last term in
Eq. (75) is averaged and the survival probability takes the form

P (να → να; t) =
1

2
[1 + cos 2θm,0 cos 2θ] (76)

The Mihheev-Smirnov-Wolfenstein effect for solar neutrinos
The matter effects discussed in the previous section are of special relevance for solar neutrinos. As the
Sun produces νe’s in its core, here we shall consider the propagation of a νe − νX neutrino system (X is
some superposition of µ and τ , which is arbitrary because νµ and ντ have only and equal neutral current
interactions) in the matter density of the Sun.

The density of solar matter is a monotonically decreasing function of the distance R from the
center of the Sun, and it can be approximated by an exponential for R < 0.9R⊙

ne(R) = ne(0) exp (−R/r0) , (77)

with r0 = R⊙/10.54 = 6.6× 107 m = 3.3× 1014 eV−1.

As mentioned above, the nuclear reactions in the Sun produce electron neutrinos. After cross-
ing the Sun, the composition of the neutrino state exiting the Sun will depend on the relative size of
∆m2 cos 2θ versus A0 = 2EGF ne,0 (here 0 refers to the neutrino production point which is near but
no exactly at the center of the Sun, R = 0).

If the relevant matter potential at production is well below the resonant value, AR =
∆m2 cos 2θ ≫ A0, matter effects are negligible. With the characteristic matter density and energy of the
solar neutrinos, this condition is fulfilled for values of ∆m2 such that ∆m2/E ≫ LSun−Earth. So the
propagation occurs as in vacuum with the oscillating phase averaged to 1/2 and the survival probability
at the exposed surface of the Earth is

Pee(∆m2 cos 2θ ≫ A0) = 1− 1

2
sin2 2θ >

1

2
. (78)

If the relevant matter potential at production is only slightly below the resonant value, AR =
∆m2 cos 2θ ≳ A0, the neutrino does not cross a region with resonant density, but matter effects are
sizable enough to modify the mixing. The oscillating phase is averaged in the propagation between the
Sun and the Earth. This regime is well described by an adiabatic propagation, Eq. (76)

Pee(∆m2 cos 2θ ≥ A0) =
1

2
[1 + cos 2θm,0 cos 2θ] . (79)

This expression reflects that an electron neutrino produced at A0 is an admixture of ν1 with fraction
Pe1,0 = cos2 θm,0 and ν2 with fraction Pe2,0 = sin2 θm,0. On exiting the Sun, ν1 consists of νe with
fraction P1e = cos2 θ, and ν2 consists of νe with fraction P2e = sin2 θ so Pee = Pe1,0P1e + Pe2,0P2e =
cos2 θm,0 cos

2 θ + sin2 θm,0 sin
2 θ [37–39], exactly as given in Eq. (79). Since A0 < AR the resonance

is not crossed so cos 2θm,0 has the same sign as cos 2θ and still Pee ≥ 1/2.

Finally, in the case that AR = ∆m2 cos 2θ < A0, the neutrino can cross the resonance on its way
out. In the convention of ∆m2 > 0 this occurs if cos 2θ > 0 (θ < π/4). which means that in vacuum νe
is a combination of ν1 and ν2 with larger ν1 component, while at the production point νe is a combination
of νm1 and νm2 with larger νm2 component. In particular, if the density at the production point is much
higher than the resonant density, ∆m2 cos 2θ ≪ A0,

θm,0 =
π

2
⇒ cos 2θm,0 = −1 , (80)
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Fig. 4: Electron neutrino survival probability as function of neutrino energy. The points represent, from left to
right, the Borexino pp, 7Be, pep, and 8B data (red points) and the SNO+SK 8B data (black point). The three
Borexino [40] 8B data points correspond, from left to right, to the low-energy (LE) range, LE+HE range, and
the high-energy (HE) range. The electron neutrino survival probabilities from experimental points are determined
using a high metalliticy SSM from Ref. [41]. The error bars represent the ±1σ experimental + theoretical uncer-
tainties. The curve corresponds to the ±1σ prediction of the MSW-LMA solution using the parameter values given
in Ref. [42]. This figure is taken from Ref. [13] and it was provided by A. Ianni.

and the produced νe is purely νm2 .

In this regime, the evolution of the neutrino ensemble can be adiabatic or non-adiabatic depending
on the particular values of ∆m2 and the mixing angle. We now know that the neutrino masses and
mixing happen to be such that the transition is adiabatic in all ranges of solar neutrino energies. Thus the
survival probability at the exposed surface of the Earth is given by Eq. (79) but now with mixing angle,
Eq. (80), so

Pee(∆m2 cos 2θ < A0) =
1

2
[1 + cos 2θm,0 cos 2θ] = sin2 θ . (81)

So in this case Pee can be much smaller than 1/2 because cos 2θm,0 and cos 2θ have opposite signs. This
is referred to as the Mihheev-Smirnov-Wolfenstein (MSW) effect [31, 35] which plays a fundamental
role in the interpretation of the solar neutrino data.

The resulting energy dependence of the survival probability of solar neutrinos is shown in Fig. 4
(together with a compilation of data from solar experiments). The plotted curve corresponds to ∆m2 ∼
7.5×10−5 eV2 and sin2 θ ∼ 0.3 (the so-called large mixing angle, LMA, solution). The figure illustrates
the regimes described above. For these values of the oscillation parameters, neutrinos with E ≪ 1 MeV
are in the regime with ∆m2 cos 2θ ≫ A0 so the curve represents the value of vacuum averaged survival
probability, Eq. (78), and therefore Pee > 0.5. For E > 10 MeV, on the contrary, ∆m2 cos 2θ ≪ A0 and
the survival probability is given by Eq. (81), so Pee = sin2 θ ∼ 0.3. In between, the survival probability
is given by Eq. (79) with θ0 changing rapidly from its vacuum value to the asymptotic matter value,
Eq. (80), 90◦.

2.3 Experimental evidence of neutrino oscillations
Neutrino flavour transitions have been searched for and observed in a variety of experiments using dif-
ferent neutrino sources and detection techniques. Generically the signatures can be classified in disap-
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Fig. 5: Neutrino fluxes predicted by the SSM [41] as a function of the neutrino energy.

pearance signals, in which the number of observed neutrino events with the flavour of the original beam
is below expectation, and appearance signals, in which neutrino events with different flavour than the ex-
pected in the beam are observed. Furthermore, to fully establish that the mechanism of flavour transition
is that of mass-induced flavour oscillations and to best determine the corresponding mass difference and
mixing angles, the experiments study the dependence of the event rates with the distance from the source
or with the neutrino energy as well reconstructed as possible.

Solar neutrinos
Solar neutrinos are electron neutrinos produced in the thermonuclear reactions which generate the solar
energy. These reactions occur via two main chains, the pp chain and the CNO cycle. There are five
reactions which produce νe in the pp chain and three in the CNO cycle. Both chains result in the overall
fusion of protons into 4He:

4p → 4He + 2e+ + 2νe + γ, (82)

where the energy released in the reaction, Q = 4mp−m4He−2me ≃ 26 MeV, is mostly radiated through
the photons and only a small fraction is carried by the neutrinos, ⟨E2νe⟩ = 0.59 MeV.

In order to precisely determine the rates of the different reactions in the two chains which would
give us the final neutrino fluxes and their energy spectrum, a detailed knowledge of the Sun and its evolu-
tion is needed. Solar Models (SSM) describe the properties of the Sun and its evolution after entering the
main sequence. The models are based on a set of observational parameters and on several basic assump-
tions: spherical symmetry, hydrostatic and thermal equilibrium, equation of state of an ideal gas, and
present surface abundances of elements similar to the primordial composition. I show in Fig. 5 the en-
ergy spectrum of the neutrino fluxes from the different reactions together with their present uncertainties
as predicted by the SSM in Ref. [41] which is the last version of the Solar Model calculations initiated by
Bahcall et. al [43]. It is customary to refer to the neutrino fluxes by the corresponding source reaction,
so, for instance, the neutrinos produced from 8B decay are called 8B neutrinos.

Solar neutrinos were observed for the first time in 1968 in the Chlorine experiment located in
the Homestake mine [44]. Since then they have been detected in a variety of experiments. They can
generically be classified as:

– Radiochemical detectors, which detect solar ν ′es by capture in some inverse β decay reaction which
leaves as signal the daughter nucleus which are recounted every certain period of time.

– Chlorine in which νe’s are captured via 37Cl (ν, e−) 37Ar. The energy threshold for this
reaction is 0.814 MeV, so the relevant fluxes are the 7Be and 8B neutrinos. For the SSM
fluxes, 78% of the expected number of events are due to 8B neutrinos while 13% arise from
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7Be neutrinos. The average νe event rate measured during the more than 20 years of operation
was ∼ 30% of that expected in the SSM [45].

– Gallium experiments: SAGE [46] and GALLEX/GNO [47, 48]. In these experiments the
solar neutrinos are captured via 71Ga(ν, e−)71Ge. The special properties of this target include
a low threshold (0.233 MeV) and a strong transition to the ground level of 71Ge, which gives a
large cross section for the lower energy pp neutrinos. According to the SSM, approximately
54% of the events are due to pp neutrinos, while 26% and 11% arise from 7Be and 8B
neutrinos, respectively. The average νe event rate measured in both experiments is ∼ 55% of
that expected in the SSM.

– Real time detectors in which the interaction of the solar neutrino is recorded in real time.

– Water Cherenkov detectors: Kamiokande [49,49] and SuperKamiokande (SK) [50,51]. They
are able to detect in real time the electrons which are emitted from the water by the elastic
scattering (ES) of the solar neutrinos, νa + e− → νa + e−. The detection threshold is above
∼ 5 MeV. This means that these experiments are able to measure only the 8B neutrinos (and
the very small hep neutrino flux). They observe a rate of about ∼ 40% of the SSM prediction.
Notice that, while the detection process in radiochemical experiments is purely a CC (W -
exchange) interaction, the detection ES process goes through both CC NC (Z-exchange)
interactions. Consequently, the ES detection process is sensitive to all active neutrino flavors,
although νe’s (which are the only ones to scatter via W -exchange) give a contribution that is
about 6 times larger than that of νµ’s or ντ ’s.

– SNO: The Sudbury Neutrino Observatory (SNO) is a Cherenkov detector using heavy water
D2O as target. Solar neutrinos can interact in the D2O of via three different reactions. Elec-
tron neutrinos may interact via the CC reaction νe + d → p + p + e−, and can be detected
above an energy threshold of a few MeV. All active neutrinos (νa = νe, νµ, ντ ) interact via
the NC reaction νa+d → n+p+νa with an energy threshold of 2.225 MeV. The non-sterile
neutrinos can also interact via ES, νa + e− → νa + e−, but with smaller cross section. The
comparison of the observed event rates in the different reactions allow to address the flavour
dependence of the solar neutrinos arriving at the Earth. The reactions in the Sun only pro-
duce νe’, however SNO observed rates which could only be understood if other flavours were
present, confirming the flavour transition of solar ν ′e.

These real time experiments have provided us also with information on the time, direction and
energy for each event. Signatures of neutrino oscillations might include distortion of the recoil
electron energy spectrum, difference between the night-time solar neutrino flux and the day-time
flux, or a seasonal variation in the neutrino flux. Observation of these effects were searched for
and generically no significant energy or time dependence of the event rates beyond the expected
ones in the SSM was observed.
With all the data collected in these experiments it was established that solar neutrinos undergo
flavour transitions and they have to be due to the MSW effect in the Sun matter in the adiabatic
regime, the so-called Large Mixing Angle (LMA) solution. In Fig. 6 I show the region of masses
and mixing which better describe the bulk of solar neutrino data when interpreted in terms of
mixing between 2ν states. As seen from the figure these results determine a non-zero ∆m2 ∼
O(10−5) eV2 and a mixing angle ∼ 32◦.

– Borexino employs a liquid scintillator that produces sufficient light to observe low energy
neutrino events via elastic scattering by electrons. The reaction is sensitive to all neutrino
flavors by the neutral current interaction, but the cross section for νe is larger due to the
combination of charged and neutral currents. It has a much lower threshold and better energy
resolution than Cherenkov detectors which allows for detail determination of the observed
spectrum rates and disentangling the different components once the oscillation parameters
are known [40]. A compilation of their results is shown in Fig. 4.
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Fig. 6: Left: Allowed region of ∆m2 and sin2 θ which better describe the bulk observation of solar data (full
regions) and KamLAND spectral data (void regions) at different Confidence Levels (CL) as indicated in the figure
when interpreted in terms of flavour oscillations driven by the mixing between 2ν states. Right: Ratio of the
observed spectrum to the expectation for no-oscillation versus L0/E for the KamLAND data. L0 = 180 km is the
flux-weighted average reactor baseline. The blue line corresponds to the expectation from oscillations of νe, taken
from Ref. [52].

Reactor neutrinos at long baseline: KamLAND
Neutrino oscillations are also searched for using neutrino beams from nuclear reactors. Nuclear reactors
produce ν̄e beams with Eν ∼ MeV. Due to the low energy, e+’s are the only charged leptons which can
be produced in the ν̄e CC interaction. If the ν̄e oscillated to another flavor, its CC interaction could not be
observed. Therefore oscillation experiments performed at reactors are disappearance experiments. They
have the advantage that small values of ∆m2 can be accessed due to the low beam energy. In particular
values of ∆m2 as small as O(10−5) eV2 can be accessed in a reactor experiment using a O(100) km
baseline. Pursuing this idea, the KamLAND experiment, a 1000 ton liquid scintillation detector oper-
ated in the Kamioka mine in Japan which is located at an average distance of 150–210 km from several
Japanese nuclear power stations. The measurement of the energy spectrum of the ν̄e’s detected in Kam-
LAND [52] is shown in the left panel of Fig. 6 and confirms ν̄e oscillations with parameters compatible
with those observed in MSW flavour conversion of solar νe’s. In the left panel of the same figure I show
the parameters region obtained from the fit of KamLAND data in comparison with that from the analysis
of solar neutrino data. The figure illustrates the compatibility of the observations. It also illustrates the
degeneracy of solutions associated to θ and π

2 − θ in 2ν oscillations in vacuum which is broken in the
case of flavor transitions in matter as discussed in the previous sections.

Atmospheric neutrinos
Cosmic rays interacting with the nitrogen and oxygen in the Earth’s atmosphere at an average height of
15 kilometers produce mostly pions and some kaons that decay into electron and muon neutrinos and
anti-neutrinos.

Since νe is produced mainly from the decay chain π → µνµ followed by µ → eνµνe, one
naively expects a 2 : 1 ratio of νµ to νe. For higher energy events the expected ratio is larger because
some of the muons arrive to Earth before they had time to decay. In practice, however, the theoret-
ical calculation of the ratio of muon-like interactions to electron-like interactions in each experiment
is more complicated. A set of increasingly more sophisticated calculations of the atmospheric fluxes
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Fig. 7: Left: The zenith angle distribution of different event samples from SK experiment [13]. The points show
the data, blue histograms show the non-oscillated expectations and the lines show the best-fit expectations for
oscillations.Right: The allowed regions (same CL as Fig. 6) of ∆m2 and sin2 θ by the global analysis of SK
atmospheric data in the framework of νµ → ντ vacuum oscillations .

have been performed [53–56] over the years showing that the predicted absolute fluxes of neutrinos
produced by cosmic-ray interactions in the atmosphere can vary at the 20% level among the different
simulations while their zenith angular dependence, the ratio of neutrinos of different flavor, and the
neutrino/antineutrino ratio are much more precisely determined.

Atmospheric neutrinos were first detected in the 1960’s by the underground experiments in South
Africa [57] and the Kolar Gold Field experiment in India [58]. A set of modern experiments were
proposed and built starting the 1970’s. The original purpose was to search for nucleon decay, for which
atmospheric neutrinos constitute a background. But eventually the study of atmospheric neutrino events
turned out to be a focus of study following a set of anomalies observed. This culminated with the first
evidence of νµ oscillation presented by SK. in 1998 [59].

In Fig. 7 [13] I show the data accumulated in SK in its four phases of operation in different
event categories and plotted as function of the zenith angle which defines the direction of the observed
charged lepton produced in the interaction and which for energies above GeV is very well aligned with
the neutrino direction. Upgoing stopping muons arise from neutrinos Eν ∼ 10 GeV, and Upthrough-
going muons are originated by neutrinos with energies of the order of hundreds of GeV. Comparing the
observed and the expected distributions, we can make the following statements:

– νe distributions are well described by the expectations while νµ presents a deficit. Thus the atmo-
spheric neutrino deficit is mainly due to disappearance of νµ and not the appearance of νe.

– The suppression of contained µ-like events is stronger for larger cos θ, which implies that the
deficit grows with the distance traveled by the neutrino from its production point to the detector
which ranges from L ∼ 10 km for cos(zenith) = 1 to L ∼ 104 km for cos(zenith) = −1. This
effect is more obvious for multi-GeV events because at higher energy the direction of the charged
lepton is more aligned with the direction of the neutrino.

– There is very little deficit on the number of through-going muons which implies that at larger
energy the neutrino is less likely to disappear.

The simplest and most direct interpretation of the atmospheric neutrino anomaly is that of muon neutrino
oscillations νµ → ντ with parameters as shown in the right of Fig. 7 As seen from the figure these results
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.

determine a non-zero ∆m2 ∼ O(10−3) eV2 and a mixing angle ∼ 45◦.

The neutrino telescopes primarily built for the high energy neutrino astronomy such as ANTARES
and IceCube can also measure neutrino oscillations with atmospheric neutrinos. IceCube DeepCore [60]
provided a precision comparable to the measurements by Super-Kamiokande.

Accelerator neutrinos at long baselines
Conventional neutrino beams from accelerators are mostly produced by π decays (and some K decays),
with the pions produced by the scattering of the accelerated protons on a fixed target:

p+ target → π± +X
π± → µ± + νµ(ν̄µ)

µ± → e± + νe(ν̄e) + ν̄µ(νµ)
(83)

Thus the beam can contain both µ- and e-neutrinos and antineutrinos. The final composition and
energy spectrum of the neutrino beam is determined by selecting the sign of the decaying π and by
stopping the produced µ in the beam line. There is an additional contribution to the electron neutrino and
antineutrino flux from kaon decay.

Indeed the accelerator neutrino beams are very similar in nature to the atmospheric neutrinos and
they can be used to test the observed oscillation signal with a controlled beam. Given the characteristic
∆m2 involved in the interpretation of the atmospheric neutrino signal, the intense neutrino beam from the
accelerator must be aimed at a detector located underground at a distance of several hundred kilometers.

The first LBL accelerator experiment was the K2K experiment [61] which run with a baseline of
about 235 km from KEK to SK. The MINOS experiment used a beam from Fermilab and a detector in
Soudan mine 735 km away [62]. The results from both K2K and MINOS both in the observed deficit of
events and in their energy dependence confirmed that accelerator νµ oscillate over distances of several
hundred kilometers as expected from oscillations with the parameters compatible with those inferred
from the atmospheric neutrino data.

In the last decade a second generation of LBL experiments came to operation with the aim at
precise determination of the νµ disappearance, looking for νe appearance and testing the possibility of
CP violation. T2K uses the high-intensity beam from the new constructed proton synchrotron J-PARC
and the Super-Kamiokande detector at 295 km. The NOvA experiment uses the NuMI beamline with an
off-axis configuration. The far detector is located in Minnesota, at 810 km from the source.
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Fig. 9: Spectrum of νe and ν̄e events observed in T2K [13] (left panels). and NOvA [63].

Both experiments have taken data with ν and with ν̄ beam. Their measured spectrum of µ events
allow for precise determination of the same oscillation parameters measured with atmospheric neutrinos.
We show in Fig. 8 the observed spectrum of νµ and ν̄µ events in T2K together with the allowed regions at
95% CL from the analysis of the data from the different LBL experiments in terms of ν̄µ disappearance
due to oscillations in the 2ν approximation compared to those from atmospheric neutrino experiments
SK and ICECUBE.

Both experiments have also observed νµ → νe and ν̄µ → ν̄e transitions. In Fig. 9 I show the spec-
trum of νe and ν̄e events in both experiments. If due to oscillations, these results could be explained with
a ∆m2 ∼ O(10−3) eV2 is compatible with that inferred from the analysis of νµ → ντ in atmospheric
and LBL neutrinos but with a much smaller mixing angle. Also comparison of the observations in neu-
trino and antineutrino mode allow for test of CP symmetry. The present situation is that T2K claims a
CP violation effect. NOvA indication of leptonic CP violation is less conclusive.

Reactor neutrinos at O(km) baseline
Over several decades neutrino oscillations were also searched with ν̄e fluxes produced by reactors but at
baselines of order of kilometer or shorter. Originally they all reported negative results when compared
with the expected reactor fluxes obtained with the best calculations of the time. The strongest bounds
were established by CHOOZ [64] and Palo Verde [65]. which searched for neutrino oscillations in the
∆m2 ∼ 10−2–10−3 eV2 range and set a limit on the corresponding mixing angle sin2 θ ≲ 0.025 at 90%
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.

This changed over the last decade with three experiments, Double Chooz [68] in France, Daya
Bay [66], in China, and RENO [67] in Korea, which to achieve better precision made use of at least
two detectors – one near the reactor and other at kilometer distance – allowing to minimize systematics
and flux calculation uncertainties. All three report a deficit of events in the far detectors compared with
expectation from the observation in the near detector in the absence of oscillations. Furthermore they
all measure a distortion of the observed spectrum in the far detectors consistent with oscillations. We
show in Fig. 10 the spectrum of events observed in the far detectors in Daya Bay (left) and RENO
(center). In the right panel I show the allowed regions at 95% CL from the analysis of this data in terms
of ν̄e disappearance due to oscillations in the 2ν approximation. As see the ∆m2 ∼ O(10−3) eV2 is
compatible with that inferred from the analysis of νµ → ντ in atmospheric and LBL neutrinos. But
the mixing angle ∼ 9◦ is different, and also, unlike in atmospheric and LBL νµ disappearance, νe’s are
involved.

2.4 Summary
Neutrino masses and mixing imply flavour oscillation in vacuum and flavour transitions in matter with a
well determined dependence on the distance from the source and the energy of the neutrino. Presently
these phenomena have been observed in a variety of experiments. In brief:

– Atmospheric νµ and ν̄µ disappear most likely converting to ντ and ν̄τ . The results show an energy
and distance dependence perfectly described by mass-induced oscillations.

– Accelerator νµ and ν̄µ disappear over distances of ∼ 200 to 800 km. The energy spectrum of the
results show a clear oscillatory behaviour also in accordance with mass-induced oscillations with
wavelength in agreement with the effect observed in atmospheric neutrinos.

– Accelerator νµ and ν̄µ appear as νe and ν̄e at distances ∼ 200 to 800 km.
– Solar νe convert to νµ and/or ντ . The observed energy dependence of the effect is well described

by massive neutrino conversion in the Sun matter according to the MSW effect.
– Reactor ν̄e disappear over distances of ∼ 200 km and ∼ 1.5 km with different probabilities. The

observed energy spectra show two different mass-induced oscillation wavelengths: at short dis-
tances in agreement with the one observed in accelerator νµ disappearance, and at long distance
compatible with the required parameters for MSW conversion in the Sun.
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3 LECTURE III: Implications
3.1 The new minimal Standard Model
From the experimental situation described in the second lecture we conclude that the description of
all the data requires an effective model consisting of the SM minimally extended to include neutrino
masses with mixing between the three flavour neutrinos of the SM in three distinct mass eigenstates. As
mentioned in the first lecture this can be effectively achieved in two different ways:

• Introduce νR and impose L conservation so after spontaneous electroweak symmetry breaking

LD = LSM −Mν ν̄LνR + h.c. (84)

In this case mass eigenstate neutrinos are Dirac fermions, ie νC ̸= ν.

• Construct a mass term only with the SM left-handed neutrinos by allowing L violation

LM = LSM − 1

2
Mν ν̄Lν

c
L + h.c. (85)

In this case the mass eigenstates are Majorana fermions.

In either case U is a 3× 3 matrix but which for Majorana (Dirac) neutrinos depends on six (four)
independent parameters: three mixing angles and three (one) phases

U =

 1 0 0
0 c23 s23
0 −s23 c23

·

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

·

 c21 s12 0
−s12 c12 0
0 0 1

·

 eiη1 0 0
0 eiη2 0
0 0 1

 ,

(86)
where cij ≡ cos θij and sij ≡ sin θij . In addition to the Dirac-type phase δCP, analogous to that of the
quark sector, there are two physical phases ηi associated to the Majorana character of neutrinos.

There are several possible conventions for the ranges of the angles and ordering of the states.
The community finally agreed to a parametrization of the leptonic mixing matrix as in Eq. (86). The
angles θij can be taken without loss of generality to lie in the first quadrant, θij ∈ [0, π/2], and the
phase δCP ∈ [0, 2π]. Values of δCP different from 0 and π imply CP violation in neutrino oscillations in
vacuum [69–71]. The Majorana phases η1 and η2 play no role in neutrino oscillations [70, 72].

In this convention there are two non-equivalent orderings for the spectrum of neutrino masses:

– Spectrum with Normal Ordering (NO) with m1 < m2 < m3 ⇒ ∆m2
31,32 > 0.

– Spectrum Inverted ordering (IO) with m3 < m1 < m2 ⇒ ∆m2
31,32 < 0.

Furthermore the data show a hierarchy between the mass splittings, ∆m2
21 ≪ |∆m2

31| ≃ |∆m2
32|. So in

total, the 3-ν oscillation analysis of the existing data involves six parameters: 2 mass differences (one of
which can be positive or negative), 3 mixing angles, and the CP phase. I summarize in Table 2 the dif-
ferent experiments which dominantly contribute to the present determination of the different parameters
in the chosen convention. The table illustrates that the determination of the leptonic parameters requires
global analysis of the data from the different experiments. Over the years these analyses have been in the
hands of a few phenomenological groups (see for example Refs. [73–76]). In Fig. 11 I show the deter-
mination of the six parameters from the updated analysis in Ref. [73]. Defining the 1σ relative precision
of the parameter by 2(xup − xlow)/3(xup + xlow), where xup (xlow) is the upper (lower) bound on a
parameter x at the 3σ level, one reads the following 1σ relative precision (marginalizing over ordering)
for the better determined parameters:

4% (sin2 θ12) , 2.3% (sin2 θ13) , 16% (∆m2
21) . 1.3% (|∆m2

3ℓ|) (87)

The issues which still require clarification are: the mass ordering discrimination, the determination of
θ23 and the leptonic CP phase δCP:
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Table 2: Experiments contributing to the present determination of the oscillation parameters.

Experiment Dominant Important
Solar Experiments θ12 ∆m2

21 , θ13
Reactor LBL (KamLAND) ∆m2

21 θ12 , θ13
Reactor MBL (Daya-Bay, Reno, D-Chooz) θ13, |∆m2

31,32|
Atmospheric Experiments (SK, IC-DC) θ23,|∆m2

31,32|, θ13,δCP

Accel LBL νµ,ν̄µ, Disapp (K2K, MINOS, T2K, NOνA) |∆m2
31,32|, θ23

Accel LBL νe,ν̄e App (MINOS, T2K, NOνA) δCP θ13 , θ23
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Fig. 11: Global 3ν oscillation analysis. The red (blue) curves are for Normal (Inverted) Ordering. Results for
different assumptions concerning the analysis of data from reactor experiments are shown as explained in the text.

– The best fit is for the normal mass ordering. Inverted ordering is disfavoured with a ∆χ2 which
ranges from slightly above 2σ – driven by the interplay of long-baseline accelerator and short-
baseline reactor data – to 3σ when adding the atmospheric χ2 (not shown in the figure) from
Ref. [77].

– The analysis find some preference for the second octant of θ23 but with statistical significance still
well below 3σ.

– The best fit for the complex phase in NO is at δCP ∼ 120◦ but CP conservation (for δCP ∼ 180◦)
is still allowed at a confidence level (CL) of 1-2σ. We notice that, at present, the significance of
CP violation in the global analysis is reduced with respect to that reported by T2K [78] because
NOvA data does not show a significant indication of CP violation.
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These results yield the present determination of the modulus of the leptonic mixing matrix

|U |3σ =

0.797 → 0.842 0.518 → 0.585 0.143 → 0.156
0.233 → 0.495 0.448 → 0.679 0.639 → 0.783
0.287 → 0.532 0.486 → 0.706 0.604 → 0.754

 , (88)

which is still much less precisely known than the corresponding quark CKM mixing matrix [14]

|V |CKM =

0.97427± 0.00015 0.22534± 0.0065 (3.51± 0.15)× 10−3

0.2252± 0.00065 0.97344± 0.00016 (41.2+1.1
−5 )× 10−3

(8.67+0.29
−0.31)× 10−3 (40.4+1.1

−0.5)× 10−3 0.999146+0.000021
−0.000046

 . (89)

It is also clear by comparing them that they are very different in structure. Quark CKM matrix is rather
hierarchical with mixing angles relatively small and smaller for the heavier generation. On the contrary
two leptonic mixings are large and even the smaller one, θ13 ∼ 9◦, is not very small.

In the framework of 3ν mixing leptonic CP violation can be quantified in terms of a unique leptonic
Jarlskog invariant [79], defined by:

JCP ≡ Im
[
UαiU

∗
αjU

∗
βiUβj

]
≡ Jmax

CP sin δCP = cos θ12 sin θ12 cos θ23 sin θ23 cos
2 θ13 sin θ13 sin δCP .

(90)

For example from the analysis in Refs. [73, 74]

Jmax
CP = 0.03359± 0.0006 (±0.0019) , (91)

at 1σ (3σ) for both orderings, and the preference of the present data for non-zero δCP implies a non-
zero best fit value Jbest

CP = −0.019. This can be directly compared with the value of the corresponding
invariant in the quark sector Jquarks

CP = (3.18± 0.15)× 10−5 [14].

The status of the determination of leptonic CP violation can also be graphically displayed by
projecting the results of the global analysis in terms of leptonic unitarity triangles [80–82]. Since in the
analysis U is unitary by construction, any given pair of rows or columns can be used to define a triangle
in the complex plane. There a total of six possible triangles corresponding to the unitary conditions∑

i=1,2,3

UαiU
∗
βi = 0 with α ̸= β ,

∑
α=e,µ,τ

UαiU
∗
αj = 0 with i ̸= j . (92)

As illustration we show in Fig. 12 the recasting of the allowed regions of the analysis in Refs. [73,74] in
terms of one leptonic unitarity triangle. We show the triangle corresponding to the unitarity conditions
on the first and third columns (after the shown rescaling) which is the equivalent to the one usually shown
for the quark sector. In this figure the absence of CP violation would imply a flat triangle, i.e., Im(z) = 0.
So the CL at which leptonic CP violation is being observed would be given by the CL at which the region
crosses the horizontal axis. For comparison we show in the right panel the present determination of the
corresponding unitary triangle in the quark sector as given in Ref. [14]. Notice that the tiny yellow region
in the apex of the triangle in the quark sector is the equivalent to the whole blue region in the leptonic
sector.

Projections on neutrino mass scale observables
As discussed in the first lecture, information on the neutrino masses, rather than mass differences, can
be extracted from kinematic studies of reactions in which a neutrino or an anti-neutrino is involved. In
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the presence of mixing the most relevant constraint comes from the study of the end point of the electron
spectrum in Tritium beta decay and for 3ν mixing the meff

νe introduced in Eq. (33) reads:

meff
νe =

∑
im

2
i |Uei|2∑

i |Uei|2
=
∑
i

m2
i |Uei|2 = c213c

2
12m

2
1 + c213s

2
12m

2
2 + s213m

2
3

=

{
NO: m2

0 +∆m2
21c

2
13s

2
12 +∆m2

3ℓs
2
13 ,

IO: m2
0 −∆m2

21c
2
13c

2
12 −∆m2

3ℓc
2
13

(93)

where the second equality holds if unitarity is assumed and m0 = m1 (m3) in NO (IO) denotes the
lightest neutrino mass.
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In what respects the effective Majorana mass of the νe which determines the rate of the rate of
0νββ decay in the 3ν scenario reads:

mee =
∣∣∣∑

i

miU
2
ei

∣∣∣ = ∣∣∣m1c
2
13c

2
12e

i2α1 +m2c
2
13s

2
12e

i2α2 +m3s
2
13e

−i2δCP

∣∣∣
=


NO: m0

∣∣∣c213c212ei2(α1−δCP) +

√
1 +

∆m2
21

m2
0

c213s
2
12e

i2(α2−δCP) +

√
1 +

∆m2
3ℓ

m2
0

s213

∣∣∣
IO: m0

∣∣∣√1− ∆m2
3ℓ+∆m2

21

m2
0

c213c
2
12e

i2(α1−δCP) +

√
1− ∆m2

3ℓ

m2
0

c213s
2
12e

i2(α2−δCP) + s213

∣∣∣ (94)

which, unlike Eq. (93), depends also on the CP violating phases. Finally, as discussed in the first lecture,
neutrino masses have also interesting cosmological effects and cosmological data mostly give informa-
tion on the sum of the neutrino masses,

∑
imi, while they have very little to say on their mixing structure

and on the ordering of the mass states.

Correlated information on these three probes of the neutrino mass scale can be obtained by map-
ping the results from the global analysis of oscillations presented previously and from the expressions
above one finds that the correlations are different for NO and IO. We show in Fig. 13 the present status
of this exercise. Also, the relatively large width of the regions in the right panel are due to the unknown
Majorana phases. Thus, in principle, from a positive determination of two of these probes, information
can be obtained on the the mass ordering [83, 84] and on the value the Majorana phases.

3.2 Beyond the 3ν paradigm: Light sterile neutrinos
Besides the huge success of three-flavour oscillations described above, there are some anomalies which
cannot be explained within the 3ν framework and which might point towards the existence of additional
neutrino states with masses at the eV scale. In brief:

– the LSND experiment [85] reported evidence for ν̄µ → ν̄e transitions with E/L ∼ 1 eV2, where
E and L are the neutrino energy and the distance between source and detector.

– this effect has also been searched for by the MiniBooNE experiment [86], which reports a yet
unexplained event excess in the low-energy region of the electron neutrino and anti-neutrino event
spectra. No significant excess is found at higher neutrino energies. Interpreting the data in terms
of oscillations, parameter values consistent with the ones from LSND are obtained, but the test is
not definitive;

– radioactive source experiments at the Gallium solar neutrino experiments both in SAGE and
GALLEX/GNO have obtained an event rate which is somewhat lower than expected. If not due to
uncertainties in the interaction cross section, this effect can be explained by the hypothesis of νe
disappearance due to oscillations with ∆m2 ≳ 1 eV2 (“Gallium anomaly”) [87, 88];

– new calculations of the neutrino flux emitted by nuclear reactors [89, 90] predict a neutrino rate
which is a few percent higher than observed in short-baseline (L ≲ 100 m) reactor experi-
ments. If not due to systematic or theoretical uncertainties, a decrease rate at those distances
can be explained by assuming ν̄e disappearance due to oscillations with ∆m2 ∼ 1 eV2 (“reactor
anomaly”) [91]. This reactor anomaly is under study both by the experimental community – with
a set of follow-up measurements performed at SBL both at reactors and accelerators – , and by the
theory community for improvements of the reactor flux calculations.

As mentioned in the first lecture, whatever the extension of the SM we want to consider it must contain
only three light active neutrinos. Therefore if we need more than three light massive states we must add
sterile neutrinos to the particle content of the model.

The most immediate question as these anomalies were reported was whether they could all be
consistently described in combination with the rest of the neutrino data – in particular with the negative
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results on disappearance of νµ at short distances – if one adds those additional sterile states. Quantita-
tively one can start by adding a fourth massive neutrino state to the spectrum, and perform a global data
analysis to answer this question. Although the answer is always the same the physical reason behind it
depends on ordering assumed for the states. In brief, there are six possible four-neutrino schemes which
can in principle accommodate the results of solar+KamLAND and atmospheric+LBL neutrino experi-
ments as well as the SBL result. They can be divided in two classes: (2+2) and (3+1). In the (3+1)
schemes, there is a group of three close-by neutrino masses (as on the 3ν schemes described in the previ-
ous section) that is separated from the fourth one by a gap of the order of 1 eV, which is responsible for
the SBL oscillations. In (2+2) schemes, there are two pairs of close masses (one pair responsible for solar
results and the other for atmospheric [92]) separated by the O(eV) gap. The main difference between
these two classes is the following: if a (2+2)-spectrum is realized in nature, the transition into the sterile
neutrino is a solution of either the solar or the atmospheric neutrino problem, or the sterile neutrino takes
part in both. Consequently a (2+2)-spectrum is easier to test because the required mixing of sterile neu-
trinos in either solar and/or atmospheric oscillations would modify their effective matter potential in the
Sun and in the Earth and giving distinctive effects in the solar and/or atmospheric neutrino observables.
Those distinctive effects were not observed so oscillations into sterile neutrinos did not describe well
either solar or atmospheric data. Consequently as soon as the early 2000’s 2+2 spectra could be ruled
out already beyond 3-4 σ as seen in the left panel in Fig.14 taken from Ref. [93]. On the contrary, for a
(3+1)-spectrum (and more generally for a 3 +N -spectrum with an arbitrary N number of sterile states),
the sterile neutrino(s) could be only slightly mixed with the active ones and mainly provide a description
of the SBL results. In this case the oscillation probabilities for experiments working at E/L ∼ 1 eV2

take a simple form:

Pαα = 1− sin2 2θαα sin
2∆ , Pµe = sin2 2θµe sin

2∆ , (95)

where ∆ ≡ ∆m2
41L/4E and one can define effective mixing angles

sin2 2θαα ≡ 4|Uα4|2(1− |Uα4|2) , sin2 2θµe ≡ 4|Uµ4|2|Ue4|2 . (96)

In here α = e, µ and Uα4 are the elements of the lepton mixing matrix describing the mixing of the
4th neutrino mass state with the electron and muon flavour. In this scenario there is no sensitivity to
CP violation in the the ∆ driven oscillations, so the relations above are valid for both neutrinos and

115



antineutrinos. At linear order in the mixing elements one can derive a relation between the amplitudes of
appearance and disappearance probabilities:

4 sin2 2θµe ≈ sin2 2θee sin
2 2θµµ . (97)

This relation implies a constraint between the possible results in disappearance and appearance exper-
iments. Consequently it is not trivial to find a consistent description to all the SBL anomalies. Over
the years, different groups have performed a variety of such global analysis leading to quantitative dif-
ferent conclusions on the statistical quality of the global fit (see for example Refs. [94–99], see also
Refs. [100, 101] for recent reviews on the subject). Generically the results of the global analysis show
that there is significant tension between groups of different data sets – in particular between appearance
and disappearance results – and Eq. (97) makes it difficult to obtain a good global fit as illustrated in the
right panel in Fig.14 taken from Ref. [94] which concluded that 3+1 scenario is excluded at 4.7σ level.

A straightforward question to ask is whether the situation improves if more neutrino states at the
eV scale are introduced. Simplest extension is the introduction of 2 states with eV scale mass splittings,
ν4 and ν5. The ordering of the states can be such that ∆m2

41 and ∆m2
51 are both positive (“3+2”) or one of

them is negative (“1+3+1”). From the point of view of the description of the data the most important new
qualitative feature in that now non-zero CP violation at E/L ∼ eV2 is possibly observable [97, 102–104].
This allows some additional freedom in fitting neutrino versus anti-neutrino data from LSND and Mini-
BooNE together. However, it still holds that a non-zero νµ → νe appearance at SBL necessarily predicts
SBL disappearance for both νe and νµ. So, generically, the tension between appearance and disappear-
ance results remains, thought differences in the methodology of statistical quantification of the degree of
agreement/disagreement in these scenarios can lead to different conclusions on whether they can provide
a successful description of all the data [94, 100, 101].

At present there is an active experimental program to further test these anomalies but the results
are still inconclusive.

Cosmological observations can provide complementary information on the number of relativistic
neutrino states in thermal equilibrium in the early Universe and on the sum of their masses which sets
further constrains on light sterile neutrinos scenarios.

3.3 Beyond the 3ν paradigm: Non-standard interactions
Another extension of the 3ν flavour transitions scenario is that of non-standard neutrino interactions
(NSI) with matter. In particular, neutral current NSI’s, which can impact the coherent scattering of
neutrinos in matter. They can be parametrized by effective four-fermion operators of the form

LNSI = −2
√
2GF ε

fP
αβ (ν̄αγ

µLνβ)(f̄γµPf) , (98)

where f = e, u, d is a charged fermion, P = (L,R) and εfPαβ are dimensionless parameters encoding the
deviation from standard interactions. These operators contribute to the effective matter potential in the
Hamiltonian describing the evolution of the neutrino flavour state:

Hmat =
√
2GFNe(x)

1 + ϵee ϵeµ ϵeτ
ϵ∗eµ ϵµµ ϵµτ
ϵ∗eτ ϵ∗µτ ϵττ

 , with ϵαβ(x) =
∑

f=e,u,d

Nf (x)

Ne(x)
ϵf,Vαβ , (99)

with Nf (x) being the density of fermion f along the neutrino path and ϵf,Vαβ = ϵf,Lαβ + ϵf,Rαβ . The “1” in
the ee entry in Eq. (99) corresponds to the SM matter potential. Therefore, the effective NSI parameters
entering oscillations, ϵαβ , may depend on x and will be generally different for neutrinos crossing the
Earth or the solar medium and as such can be constrained by the global analysis of neutrino oscillation
data.
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The task becomes troubled by an intrinsic degeneracy in the Hamiltonian governing neutrino os-
cillations which is introduced by the NSI-induced matter potential. In general, CPT implies that neutrino
evolution is invariant if the relevant Hamiltonian is transformed as H → −H∗. In vacuum this transfor-
mation can be realized by changing the oscillation parameters as

∆m2
31 → −∆m2

31 +∆m2
21 = −∆m2

32 , sin θ12 ↔ cos θ12 , δCP → π − δCP . (100)

In the standard 3ν oscillation scenario, this symmetry is broken by the standard matter potential, and
this allows for the determination of the octant of θ12 and (in principle) of the sign of ∆m2

31. However,
in the presence of NSI, the symmetry can be restored if in addition to the transformation Eq. (100), NSI
parameters are transformed as

(εee−εµµ) → −(εee−εµµ)−2 , (εττ −εµµ) → −(εττ −εµµ) , εαβ → −ε∗αβ (α ̸= β) . (101)
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Fig. 15: Two-dimensional projections of the allowed regions onto different vacuum parameters (on the right
∆m2

µµ ≃ ∆m2
31) after marginalizing over the matter potential parameters and the not displayed oscillation pa-

rameters. The solid colored regions correspond to the global analysis of all oscillation data, and show the 1σ, 90%,
2σ, 99% and 3σ CL allowed regions; the best fit point is marked with a star. The black void regions correspond
to the analysis with the standard matter potential (i.e., without NSI) and its best fit point is marked with an empty
dot. For comparison, in the left panel we show in red the 90% and 3σ allowed regions including only solar and
KamLAND results, while in the right panels we show in green the 90% and 3σ allowed regions excluding solar
and KamLAND data, and in yellow the corresponding ones excluding also IceCube and reactor data.

This degeneracy can be seen in Fig. 15 where I show the two-dimensional projections of the
allowed regions onto different sets of oscillation parameters from the global analysis in Ref. [105] in the
presence of this generalized matter potential, Eq. (99). These regions are obtained after marginalizing
over the not displayed vacuum parameters as well as the NSI couplings. For comparison its also shown
as black-contour void regions the corresponding results with the standard matter potential, i.e., in the
absence of NSI.

From the figure we read the following:

• The determination of the oscillation parameters discussed in the previous section is robust under
the presence of NSI as large as allowed by the oscillation data itself with the exception of the octant of
θ12. This result relies on the complementarity and synergies between the different data sets, which allows
to constrain those regions of the parameter space where cancellations between standard and non-standard
effects occur in a particular data set.
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• A solution with θ12 > 45◦ still provides a good fit. This is the so-called LMA Dark (LMA-D)
solution and it was first found in Ref. [106]. It is is a consequence of the intrinsic degeneracy in the
Hamiltonian described above. Eq. (100) shows that this degeneracy implies a change in the octant of θ12
(as manifest in the LMA-D). As such it cannot be ruled out by oscillation data only. Scattering data, in
particular from the finally-observed coherent scattering in nuclei [107] disfavoured it at more then 3σ for
NSI coupling neutrinos with either up or down quarks [108]. But it is still allowed for more general NSI
couplings [105, 109].

The results of the oscillation analysis show that LMA-D requires large εee − εµµ ∼ O(2) which
are therefore still allowed. But for all other couplings the same global analysis sets strong constrains on
εαβ yielding the most restrictive bounds on the NSI parameters, in particular those involving τ flavour.

3.4 Some implications
The need of new physics and its scale
As we discussed in the first lecture, the SM is a gauge theory based on the gauge symmetry SU(3)C ×
SU(2)L × U(1)Y spontaneously broken to SU(3)C × U(1)EM by the the vacuum expectations value
(VEV), v, of the a Higgs doublet field ϕ with three fermion generations which reside in chiral represen-
tations of the gauge group as required by the interactions. No right-handed neutrino is included in the
model since neutrinos are neutral.

In the SM, fermion masses arise from the Yukawa interactions, Eq. (8). But mo Yukawa interaction
can be written that would give mass to the neutrino because no right-handed neutrino field exists in
the model. We also argue that neutrino masses could not arise from loop corrections or from non-
perturbative effects on the basis of the global symmetries of the model. More precisely, the SM, presents
the accidental global symmetry in Eq. (7) which implies that total lepton number L = Le + Lµ + Lτ

is a global symmetry of the SM. Therefore any term form from loop corrections within this model must
conserve total lepton number.

But with the SM particle content the only mass term (that is, the only operator involving a left-
handed and a right-handed fermion field) for the neutrino which could be generated would be of the
form (

L̄Liϕ̃
) (

ϕ+LC
Lj

)
+ h.c., (102)

(LC
Li = CL̄T

Li) which violates Gglobal
SM (in particular in violates total lepton number). Therefore it cannot

be generated by SM loop corrections. Also, it cannot be generated by non-perturbative effects.

In other words, the SM predicts that neutrinos are precisely massless and consequently, there is
neither mixing nor CP violation in the leptonic sector. Thus the simplest and most straightforward lesson
of the experimental evidence for neutrino masses is also the most striking one: there is new physics
beyond the SM. This has been the first experimental result that is inconsistent with the SM.

Furthermore the determined ranges of neutrino masses and leptonic mixing raise two main ques-
tions:

• Why are neutrinos so light?, which is directly related to issue of the origin of neutrino mass.

• Why is lepton mixing so different from quark mixing?, which is related to the flavour puzzle.

A possible way to address these questions it to realize that if the SM is not a complete picture of
Nature, then new physics (NP) is expected to appear at some higher energies. In this case the SM is an
effective low energy theory valid up to the scale ΛNP which characterizes the NP. In this approach, the
gauge group, the fermionic spectrum, and the pattern of spontaneous symmetry breaking are still valid
ingredients to describe Nature at energies E ≪ ΛNP. The difference between the SM as a complete
description of Nature and as a low energy effective theory is that in the latter case we must consider
also non-renormalizable (dim> 4) terms in the Lagrangian whose effect will be suppressed by powers
1/Λdim−4

NP . In this approach the largest effects at low energy are expected to come from dim= 5 operators
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There is a single set of dimension-five terms that is made of SM fields and is consistent with the
gauge symmetry given by

O5 =
c5ij
2ΛNP

(
L̄Liϕ̃

)(
ϕ̃TLC

Lj

)
+ h.c., (103)

which violates total lepton number by two units and leads, upon spontaneous symmetry breaking, to:

− LMν =
c5ij
4

v2

ΛNP
νciνj + h.c. . (104)

Comparing with Eqs. (13) (85) we see that this is a Majorana neutrino mass with:

(Mν)ij =
c5ij
2

v2

ΛNP
. (105)

Equation (105) arises in a generic extension of the SM which means that neutrino masses are
very likely to appear if there is NP. Furthermore comparing Eq. (105) and Eq. (9) we find that the scale
of neutrino masses is suppressed by v/ΛNP when compared to the scale of charged fermion masses
providing an explanation not only for the existence of neutrino masses but also for their smallness.
Finally, Eq. (105) breaks not only total lepton number but also the lepton flavor symmetry U(1)e ×
U(1)µ × U(1)τ . Therefore we should expect lepton mixing and CP violation.

Given the relation (105), mν ∼ v2/ΛNP, it is straightforward to use the measured neutrino
masses to estimate the scale of NP that is relevant to their generation. In particular, if there is
no quasi-degeneracy in the neutrino masses, the heaviest of the active neutrino masses can be esti-
mated, mh = m3 ∼

√
∆m2

31 ≈ 0.05 eV (in the case of inverted hierarchy the implied scale is
mh = m2 ∼

√
|∆m2

31| ≈ 0.05 eV). It follows that the scale in the non-renormalizable term (103)
is given by

ΛNP ∼ v2/mh ≈ 1015 GeV. (106)

We should clarify two points regarding Eq. (106):

1. There could be some level of degeneracy between the neutrino masses that are relevant to the
atmospheric neutrino oscillations. In such a case Eq. (106) becomes an upper bound on the scale of NP.

2. It could be that the c5αβ couplings of Eq. (103) are much smaller than one. In such a case,
again, Eq. (106) becomes an upper bound on the scale of NP.

The estimate Eq. (106) is very exciting. First, the upper bound on the scale of NP is well below
the Planck scale. This means that there is a new scale in Nature which is intermediate between the two
known scales, the Planck scale mPl ∼ 1019 GeV and the electroweak breaking scale, v ∼ 102 GeV.
Second, the scale ΛNP ∼ 1015 GeV is intriguingly close to the scale of gauge coupling unification.

In simple renormalizable realizations of NP this dimension-5 operator can be generated by the
tree-level exchange of three types of new particles (see Fig. 16):

• Type-I and Type-III see–saw : One adds at least two fermionic singlets (Type-I) or triplets
(Type-III) of mass M and Yukawa couplings λ. The neutrino masses are as Eq. (105) with ΛNP = M
and c5 ∼ λ2.

• Type-II see–saw: One adds an SU(2)L Higgs triplet ∆ of mass M which couples to the SM
SU(2)L leptons with coupling f , with a neutral component and scalar doublet-triplet mixing µ term in
the scalar potential. The neutrino masses are as Eq. (105) with ΛNP = M2/µ and c5 ∼ f .

Of course, neutrinos could be conventional Dirac particles described as in Eq. (84) and we would
be left in the darkness on the reason of the smallness of the neutrino mass.
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Fig. 16: Tree level diagrams for the Type-I,II and III see–saw, leading to the dim-5 operator for neutrino mass after
integrating out the intermediate state

The possibility of leptogenesis
An interesting consequence of neutrinos acquiring their mass via the generic scenario described above
is the possibility of explaining the cosmic matter-antimatter asymmetry via the process of leptogene-
sis [110] in the early Universe.

From what we see and measure, the Universe is made of particles and not of antiparticles. This fact
can be quantified in terms of the difference between the density of baryons and antibaryons normalized
to the density of photons:

YB =
nB − nB̄

nγ
∼ nB

nγ
(107)

From the Big-Bang nucleosynthesis and from the precise data on measurements of the cosmic microwave
background, we know that this asymmetry is tiny:

YB ≈ 5× 10−10 (108)

In a seminal paper, Sakharov [111] established the three conditions that any particle physics theory
should verify to be able to generate this asymmetry

– Total baryon number B must be violated,
– C and CP must be violated,
– The process which violate these symmetries must occur out of thermal equilibrium.

In principle the SM verifies these conditions because B +L are violated by non-perturbative effects, CP
is violated by the CP phase of the CKM quark mixing matrix, and there is departure from thermal equilib-
rium at the electroweak phase transition provided it is a first order transition. However within the present
bounds of the Higgs mass the electroweak phase transition is not strong first order and furthermore the
CKM CP violation is too suppressed. As a consequence YB,SM ≪ 10−10.

Leptogenesis [110] is the possible origin of such a small asymmetry related to neutrino physics.
In a possible realization of leptogenesis, L ̸= 0 is generated in the Early Universe by the decay of one of
the heavy right-handed neutrinos of the type-I see-saw mechanism with CP being violated in the decay.
In this case we have:

– Total lepton number is violated by the Majorana mass term of the right-handed neutrinos.
– Due to the interference between the tree-level and one-loop diagrams shown in Fig. 17 the decay

rates of the right-handed neutrino into leptons and anti-leptons can be different, so C and CP can
be violated

120



Nj

νi

H

+ Nj

H

νl

Nk

H

νi

+

νl

H
NkNj

νj

H
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Fig. 18: Compilation in Ref. [113] of the prediction of the value of θ13 in several flavour models compared with
the present determination.

– The decay can be be out of equilibrium if ΓνR ≪ Universe expansion rate.

Therefore we have all the conditions to generate total lepton number L in the early Universe.

Non perturbative effects known as sphaleron [112] processes transform the lepton asymmetry into
a baryon asymmetry and below the electroweak phase transition a net baryon asymmetry is generated
∆B ≃ −∆L

2 (the exact coefficient relating ∆B to ∆L is model dependent.)

The details of the leptogenesis scenario are model dependent and much work has been done in the
framework of specific neutrino models. Generically the resulting asymmetry depends on the size of the
CP violating phases, the mass of the lightest heavy neutrino and the light neutrino masses. It has been
shown that with the present bounds of the neutrino masses and mixing a right-handed neutrino of about
1010 GeV can account for the cosmic baryon asymmetry from its out-of-equilibrium decay.

Implications for flavour models
The relevance of the precise determination of the leptonic mixing matrix to address the flavour puzzle is
illustrated in Fig. 18 where I show the compilation in Ref. [113] of the predictions of the expected values
of θ13 is 63 types of flavour models in 2006. As seen from the figure only about 10% of the models
survived the precise determination of θ13 in 2012.

Among those which did not survive the test of the precise determination of the mixing parameters
were the models predicting bimaximal mixing (θ12 = θ23 = 45◦, θ13 = 0), tri-bimaximal mixing
(θ12 = 35.2◦ θ23 = 45◦, θ13 = 0), and the golden ratio (θ12 = 31.7◦ θ23 = 45◦, θ13 = 0). Generically
these structures appear in models with flavour symmetries with the smallest symmetry groups A4, S4

and A5. Consequently either the group has to be enlarged, or corrections to the mixing have to be
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obtained from other sectors. Generically these attempts lead to new sum rules relating the leptonic flavour
parameters among themselves and with those of quarks. Relations which can be testable with enough
experimental precision. In this respect the next frontier is the precise determination of the ordering of
the states.

Neutrino mass models for collider signatures
One may notice that even in the particularly simple forms of NP of the three type of see-saw realizations
represented in Fig. 16, the full theory contains very different high–energy particle contents but they
lead to the same low energy operator O5 which contains only 9 parameters and that are everything we
can measure at neutrino oscillation experiments. This simple example illustrates the limitation of the
“bottom-up” approach in deriving model independent implications of the presently observed neutrino
masses and mixing. This is the challenge of performing measurements at a much lower scale than that
of the NP.

Alternatively one can go “top-down” by studying the low energy effective neutrino masses and
mixing induced by specific high energy models as sketched in the discussion about flavour models above.

The bottom line of this discussion is that in order to advance further in the understanding of the
dynamics underlying neutrino masses in a model independent approach we need more (and more precise)
data. Furthermore synergy among different types of observations such as charge lepton flavour experi-
ments and collider experiments are probably going to be fundamental in this advance. In this respect I
will finish by discussing a possible framework in which this connection between neutrino physics and
collider signatures arises.

Generically, at low energies the Lagrangian of the full theory can be expanded as

L = LSM +
c5

ΛLN
O5 +

∑
i

c6,i
Λ2
FL

O6,i + . . . (109)

where O5 is Weinberg’s operator responsible for neutrino masses given above, and O6,i are flavour-
changing, but lepton number conserving, dimension-6 operators. In writing Eq. (109) we have explicitly
denoted ΛLN as the NP scale for lepton number breaking and ΛFL the NP scale for lepton flavour
breaking. In this context attractive testable scenarios are those for which it is possible to relate the mass
of the new states M ∼ ΛFL ∼ O (TeV) but still keep ΛLN ≫ ΛFL to explain the smallness of the
neutrino mass.

Furthermore to relate the flavour structure of the signals at collider, or low energy charged lepton
flavour experiments with that derived from the neutrino sector one would need some connection between
the coefficients c5 and c6. This is precisely provided by the assumption of minimal lepton flavour vi-
olation (MLFV) of the NP. Indeed these conditions are automatically fulfilled by the simplest Type-II
see–saw model if a light double-triplet mixing µ is assumed. For LHC phenomenology this leads to the
interesting possibility of the production of the triplet scalar states with all their decay modes determined
by the neutrino mass parameters which has been therefore extensively searched for at LHC. The possi-
bility of constructing and observing MLFV scenarios of Type-I and Type-III see-saws was explored in
Refs. [114–116]
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