
Cosmology and dark matter

V.A. Rubakov
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
Department of Particle Physics and Cosmology, Moscow State University, Moscow, Russia

Abstract
Cosmology and astroparticle physics give the strongest possible evidence for
the incompleteness of the Standard Model of particle physics. Leaving aside
the mysterious dark energy, which may or may not be just the cosmological
constant, two properties of the Universe cannot be explained by the Standard
Model: dark matter and matter-antimatter asymmetry. Dark matter particles
may well be discovered in foreseeable future; this issue is under intense ex-
perimental investigation. Theoretical hypotheses on the nature of the dark
matter particles are numerous, so we concentrate on several well motivated
candidates, such as weakly interacting massive particles, axions and sterile
neutrinos, and also give examples of less motivated and more elusive candi-
dates such as fuzzy dark matter. This gives an idea of the spectrum of con-
ceivable dark matter candidates, while certainly not exhausting it. We then
consider the matter-antimatter asymmetry and discuss whether it may result
from physics at 100 GeV–TeV scale. Finally, we turn to the earliest epoch of
the cosmological evolution. Although the latter topic does not appear imme-
diately related to contemporary particle physics, it is of great interest due to
its fundamental nature. We emphasize that the cosmological data, notably, on
cosmic microwave background anisotropies, unequivocally show that the well
understood hot stage was not the earliest one. The best guess for the earlier
stage is inflation, which is consistent with everything known to date; however,
there are alternative scenarios. We discuss the ways to study the earliest epoch,
with emphasis on future cosmological observations.
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1 Introduction
It is a commonplace by now that cosmology and astroparticle physics, on the one side, and particle
physics, on the other, are deeply interrelated. Indeed, the gross properties of the Universe—the existence
of dark matter and the very presence of conventional, baryonic matter—call for the extension of the
Standard Model of particle physics. A fascinating possibility is that the physics behind these phenomena
is within reach of current or future terrestrial experiments. The experimental programs in these directions
are currently intensely pursued.

Another aspect of cosmology, which currently does not appear directly related to terrestrial parti-
cle physics experiments, is the earliest epoch of the evolution of the Universe. On the one hand, there is
no doubt that the usual hot epoch was preceded by another, much less conventional stage. This knowl-
edge comes from the study of inhomogeneities in the Universe through the measurements of cosmic
microwave background (CMB) anisotropies, as well as matter distribution (galaxies, clusters of galaxies,
voids) in the present and recent Universe. On the the other hand, we know only rather general proper-
ties of the cosmological perturbations, which, we are convinced, were generated before the hot epoch.
For this reason, we cannot be sure about the earliest epoch; the best guess is inflation, but alternatives
to inflation have not yet been ruled out. It is conceivable that future cosmological observations will be



able to disentangle between different hypotheses; it is amazing that the study of the Universe at large
will possibly reveal the properties of the very early epoch characterized by enormous energy density and
evolution rate.

Cosmology and astroparticle physics is a large area of research, so we will be unable to cover it
to any level of completeness. On the dark matter side, the number of proposals for dark matter objects
invented by theorists in more than 30 years is enormous, so we do not attempt even to list them. Instead,
we concentrate on a few hypotheses which may or may not have to do with reality. Namely, we study
reasonably well motivated candidates—weakly interacting massive particles (WIMPs), axions, sterile
neutrinos—and also discuss more exotic possibilities. On the baryon asymmetry side, we focus on
scenarios for its generation which employ physics accessible by terrestrial experiments. A particular
mechanism of this sort is the electroweak baryogenesis. The last part of these lectures deals with the
earliest cosmology—inflation and its alternatives.

To end up this introduction, we point out that most of the topics we discuss are studied, in one or
another way, in books [1]. There are of course numerous reviews, some of which will be referred to in
appropriate places.

2 Homogeneous and isotropic Universe
2.1 Friedmann–Lemaître–Robertson–Walker metric
When talking about the Universe, we will always mean its visible part. The visible part is, almost for
sure, a small, and maybe even tiny patch of a huge space; for the time being (at least) we cannot tell
what is outside the part we observe. At large scales the (visible part of the) Universe is homogeneous
and isotropic: all regions of the Universe are the same, and no direction is preferred. Homogeneous and
isotropic three-dimensional spaces can be of three types. These are three-sphere, flat (Euclidean) space
and three-hyperboloid.

A basic property of our Universe is that it expands: the space stretches out. This is encoded in the
space-time metric (Friedmann–Lemaître–Robertson–Walker, FLRW)

ds2 = dt2 − a2(t)dx2 , (1)

where dx2 is the distance on unit three-sphere or Euclidean space or hyperboloid, a(t) is the scale
factor. Observationally, the three-dimensional space is Euclidean (flat) to good approximation (see,
however, Ref. [2] where it is claimed that Planck lensing data prefers a closed Universe), so we will treat
dx2 = δijdx

idxj , i, j = 1, 2, 3, as line interval in three-dimensional Euclidean space.

The coordinates x are comoving. This means that they label positions of free, static particles in
space (one has to check that world lines of free static particles obey x = const; this is indeed the case).
As an example, distant galaxies stay at fixed x (modulo peculiar motions, if any). In our expanding
Universe, the scale factor a(t) increases in time, so the distance between free masses of fixed spatial
coordinates x grows, dl2 = a2(t)dx2. The galaxies run away from each other.

Since the space stretches out, so does the wavelength of a photon; the photon experiences redshift.
If the wavelength at emission (say, by distant star) is λe, then the wavelength we measure is

λ0 = (1 + z)λe , where z =
a(t0)

a(te)
− 1 .

Here te is the time at emission, and z is redshift. Hereafter we denote by subscript 0 the quantities
measured at the present time. We sometimes set a0 ≡ a(t0) = 1 and put ourselves at the origin of
coordinate frame, then |x| is the present distance to a point with coordinates x. We also call this the
comoving distance.

Clearly, the further from us is the source, the longer it takes for light, seen by us today, to travel,
i.e., the larger t0 − te. High redshift sources are far away from us both in space and in time. For not so
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distant sources, we have t0 − te = r, where r is the physical distance to the source1. For z ≪ 1 we thus
have the Hubble law,

z = H0r . (2)

H0 ≡ H(t0) is the Hubble constant, i.e., the present value of the Hubble parameter

H(t) =
ȧ(t)

a(t)
.

The value of the Hubble constant is a subject of some controversy. While the redshift of an object can
be measured with high precision (λe is the wavelength of a photon emitted by an excited atom; one
identifies a series of emission lines, thus determining λe, and measures their actual wavelengths λ0,
both with spectroscopic precision; absorption lines are used as well), absolute distances to astrophysical
sources have considerable systematic uncertainty. The precise value of H0 will not be important for our
semi-quantitative discussions; we quote here the value found by the Planck collaboration [3],

H0 = (67.7± 0.4)
km/s
Mpc

≈ (14.4 · 109 yrs)−1 . (3)

Here Mpc is the length unit used in cosmology and astrophysics,

1 Mpc ≈ 3 · 106 light years ≈ 3 · 1024 cm .

The funny unit used in the first expression in Eq. (3) has to do with (somewhat misleading) interpretation
of redshift as Doppler effect: galaxies run away from us at velocity v = z. To account for uncertainties
in H0 one writes for the present value of the Hubble parameter

H0 = h · 100 km/s
Mpc

. (4)

Thus h ≈ 0.7. We will use this value in estimates.

Concerning length scales characteristic of various objects, we quote the following:

– sizes of visible parts of dwarf galaxies are of order 1 kpc and even smaller;
– sizes of visible parts of galaxies like ours are of order 10 kpc;
– dark halos of galaxies extend to distances of order 100 kpc and larger;
– clusters of galaxies have sizes of order 1− 3 Mpc;
– the homogeneity scale2 today is of order 200 Mpc;
– the size of the visible Universe is 14 Gpc.

2.2 Cosmic microwave background
One of the fundamental discoveries of 1960’s was cosmic microwave background (CMB). These are
photons with black-body spectrum of temperature

T0 = 2.7255± 0.0006 K . (5)

Measurements of this spectrum are quite precise and show no deviation from the Planck spectrum (al-
though some deviations are predicted, see Ref. [4] for review). The energy density of CMB photons is
given by the Stefan–Boltzmann formula

ργ,0 =
π2

15
T 4
0 = 2.7 · 10−10 GeV

cm3
. (6)

1Hereafter we use the natural units, with the speed of light, Planck and Boltzmann constants equal to 1,
c = ℏ = kB = 1. Then Newton’s gravity constant is G = M−2

Pl , where MPl = 1.2 · 1019 GeV is the Planck mass.
2Regions of this size and larger look all the same, while smaller regions differ from each other; they contain different

numbers of galaxies.
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while the number density of CMB photons is nγ,0 = 410 cm−3.

The discovery of CMB has shown that the Universe was hot at early times, and cooled down due
to expansion. As we pointed out, the wavelength of a photon increases in time as a(t), so the energies
and hence temperature of photons scale as

ω(t) ∝ a−1(t) , T (t) =
a0
a(t)

T0 = (1 + z)T0 .

Importantly, the energy density of CMB photons scales as

ργ ∝ T 4 ∝ a−4 .

This is in contrast with the scaling of energy density (mass density) of non-relativistic particles (baryons,
dark matter)

ρM ∝ a−3 ,

which is obtained by simply noting that the mass in comoving volume remains constant.

2.3 Friedmann equation
The expansion of the spatially flat Universe is governed by the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8π

3M2
Pl

ρ , (7)

where ρ is the total energy density in the Universe. This is nothing but the (00)-component of the Einstein
equations of General Relativity, Rµν − 1

2gµνR = 8πTµν , specified to spatially flat FLRW metric and
homogeneous and isotropic matter.

One conventionally defines the parameter (critical density),

ρc =
3

8π
M2

PlH
2
0 ≈ 5 · 10−6 GeV

cm3
. (8)

It is equal to the sum of all forms of energy density in the present Universe.

2.4 Present composition of the Universe
The present composition of the Universe is characterized by the parameters

Ωλ =
ρλ,0
ρc

.

where λ labels various forms of energy: relativistic matter (λ = rad), non-relativistic matter (λ = M ),
dark energy (λ = Λ). Clearly, Eq. (7) gives ∑

λ

Ωλ = 1 .

Let us quote the numerical values:

Ωrad = 8.6 · 10−5 , (9a)

ΩM = 0.31 , (9b)

ΩΛ = 0.69 . (9c)
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The value in Eq. (9a) is calculated for the unrealistic case in which all neutrinos are relativistic today, so
the radiation component even at present consists of CMB photons and three neutrino species. This pre-
scription is convenient for studying the early Universe, since the energy density of relativistic neutrinos
scales in the same way as that of photons,

ρν ∝ T 4 ∝ a−4 ,

and at temperatures above neutrino masses (but below 1 MeV) we have

ρν == Ωνρc

(a0
a

)4
.

Non-relativistic matter consists of baryons and dark matter. Their contributions are [3]

ΩB = 0.049 , (10a)

ΩDM = 0.26 . (10b)

As we pointed out above, energy densities of various species evolve as follows:

– radiation (photons and neutrinos at temperatures above neutrino mass):

ρrad(t) =

(
a0
a(t)

)4

ρrad,0 = (1 + z)4Ωradρc . (11)

– Non-relativistic matter:

ρM(t) =

(
a0
a(t)

)3

ρM,0 = (1 + z)3ΩMρc . (12)

– The dark energy density does not change in time, or changes very slowly. In what follows we take
it constant in time,

ρΛ = ΩΛρc = const . (13)

This assumption is not at all innocent. It means that dark energy is assumed to be a cosmological
constant. However, even slight dependence of ρΛ on time would mean that we are dealing with
something different from the cosmological constant. In that case the dark energy density would
be associated with some field; there are various theoretical proposals concerning the properties of
such a field. Present data is consistent with time-independent ρΛ, but the precision of this statement
is not yet very high. It is extremely important to study the time-(in)dependence of ρΛ with high
precision; several experiments are aimed at that.

2.5 Cosmological epochs
The Friedmann equation (7) is now written as

H2(t) =
8π

3M2
Pl

[ρΛ + ρM(t) + ρrad(t)]

= H2
0

[
ΩΛ +ΩM

(
a0
a(t)

)3

+Ωrad

(
a0
a(t)

)4
]

This shows that the dominant term in the right hand side at early times (small a(t)) was ρrad, i.e., the
expansion was dominated by ultrarelativistic particles (radiation). This is radiation domination epoch.
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Then the term ρM took over, and matter dominated epoch began. The redshift at radiation–matter equal-
ity, when the energy densities of radiation and matter were equal, is

1 + zeq =
a0

a(teq)
=

ΩM

Ωrad
≈ 3500 ,

and using the Friedmann equation one finds the age of the Universe at equality

teq ≈ 50 000 years .

The present Universe is at the end of the transition from matter domination to Λ-domination: the dark
energy density ρΛ will completely dominate over non-relativistic matter in future.

So, we have the following sequence of the regimes of evolution:

· · · =⇒ Radiation domination =⇒ Matter domination =⇒ Λ–domination . (14)

Dots here denote some cosmological epoch preceding the hot stage. We discuss this point later on.

2.6 Radiation domination
2.6.1 Expansion law
The evolution of the scale factor at radiation domination is obtained by using ρrad ∝ a−4 in the Fried-
mann equation (7):

ȧ

a
=

const
a2

.

This gives
a(t) = const ·

√
t . (15)

The constant here does not have physical significance, as one can re-scale the coordinates x at one
moment of time, thus changing the normalization of a.

There are several properties that immediately follow from the result Eq. (15). First, the expansion
decelerates:

ä < 0 .

Second, time t = 0 is the Big Bang singularity (assuming, for the sake of argument, that the Universe
starts right from radiation domination epoch). The expansion rate

H(t) =
1

2t

diverges as t → 0, and so does the energy density ρ(t) ∝ H2(t) and temperature T ∝ ρ1/4. This is
“classical” singularity (singularity in classical General Relativity) which, one expects, is resolved in one
or another way in complete quantum gravity theory. One usually assumes (although this is not necessarily
correct) that the classical expansion begins just after the Planck epoch, when ρ ∼M4

Pl, H ∼MPl, etc.

2.6.2 Particle horizon
The third observation has to do with the causal structure of space-time in the Hot Big Bang Theory
(theory that assumes that the evolution starts from the singularity directly into radiation domination—no
dots in Eq. (14)). Consider signals emitted right after the Big Bang singularity and travelling at the speed
of light. The light cone obeys ds = 0, and hence a(t)dx = dt. So, the coordinate distance that a signal
travels from the Big Bang to time t is

x =

∫ t

0

dt

a(t)
≡ η . (16)
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In the radiation dominated Universe
η = const ·

√
t .

The physical distance from the emission point to the position of the signal is

lH(t) = a(t)x = a(t)

∫ t

0

dt

a(t)
. (17)

This physical distance is finite; it is the size of a causally connected region at time t. It is called the
horizon size (more precisely, the size of particle horizon). In other words, an observer at time t can
have information only on the part of the Universe whose physical size at that time is lH(t). At radiation
domination, one has

lH(t) = 2t .

Note that this horizon size is of the order of the Hubble size,

lH(t) ∼ H−1(t) . (18)

The notion of horizon is straightforwardly extended to the matter dominated epoch and to the present
time: relation Eq. (17) is of general nature, while the scale factor a(t) has to be calculated anew. To give
an idea of numbers, the horizon size at the present epoch is

lH(t0) ≈ 14 Gpc ≃ 4 · 1028 cm .

2.6.3 Energy density
At radiation domination, cosmic plasma is almost always in thermal equilibrium, and interactions be-
tween particles are almost always weak. So, the plasma properties are determined by thermodynamics
of a gas of free relativistic particles. At different times, the number of relativistic species that contribute
to the energy density is different. As an example, at temperatures above 1 MeV, but below 100 MeV,
relativistic are photons, three types of neutrinos, electrons and positrons; while at temperatures of about
200 GeV all Standard Model particles are relativistic. In most cases, one can neglect chemical poten-
tials, i.e., consider cosmic plasma symmetric under interchange of particles with antiparticles (chemical
potential of photons is zero, since photons can be created in processes like e−e− → e−e−γ; since par-
ticle and its antiparticle can annihilate into photons, e.g., e+e− → γγ, chemical potentials of particles
and antiparticles are equal in modulus and opposite in sign, e.g., µe+ = −µe− ; in symmetric plasma
µe+ = −µe− = 0). Then the Stefan–Boltzmann law gives for the energy density

ρrad =
π2

30
g∗T 4 , (19)

where g∗ is the effective number of degrees of freedom,

g∗ =
∑

bosons

gi +
7

8

∑
fermions

gi ,

gi is the number of spin states of a particle i, the factor 7/8 is due to Fermi-statistics. The parameter g∗
depends on temperature, and hence on time: as the temperature decreases below the mass of a particle,
this particle drops out from the sum here. The formula (19) enables one to write the Friedmann equation
(7) as

H =
T 2

M∗
Pl

, M∗
Pl =

MPl

1.66
√
g∗
. (20)

We use this simple result in what follows.
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2.6.4 Entropy
The cosmological expansion is slow, which implies conservation of entropy (modulo quite exotic scenar-
ios with large entropy generation). The entropy density of a free relativistic gas in thermal equilibrium
is given by

s =
2π2

45
g∗T 3 .

The conservation of entropy means that the entropy density scales exactly as a−3,

sa3 = const , (21)

while temperature scales approximately as a−1 (this is because g∗ depends on time). We note for future
reference that the effective number of degrees of freedom in the Standard Model at T ≳ 100 GeV is

g∗(100 GeV) ≈ 100 .

The present entropy density in the Universe, still with the prescription that neutrinos are relativistic, is

s0 ≈ 3000 cm−3 . (22)

The precise meaning of this number is that at high temperatures (when there is thermal equilibrium), the
entropy density is s(t) = (a0/a(t))

3s0.

Notion of entropy is convenient, in particular, for characterizing asymmetries which can exist
if there are conserved quantum numbers, such as the baryon number after baryogenesis. The density
of a conserved number also scales as a−3, so the time independent characteristic of, say, the baryon
abundance is the baryon-to-entropy ratio

∆B =
nB
s
.

At late times, one can use another parameter, baryon-to-photon ratio

ηB =
nB
nγ

, (23)

where nγ is photon number density. It is related to ∆B by a numerical factor, but this factor depends on
time through g∗ and stays constant only after e+e−-annihilation, i.e., at T ≲ 0.5 MeV. Numerically,

∆B = 0.14 ηB,0 = 0.86 · 10−10 . (24)

In what follows we discuss the ways to obtain this number from observations.

2.7 Matter domination
At matter domination, we have ρ ∝ a−3, and the Friedmann equation (7) gives

a(t) = const · t2/3

Qualitatively, matter domination is similar to radiation domination: expansion is decelerated, the size of
the particle horizon is of order of the Hubble size, lH(t) ∼ H−1(t) ∼ t. An important difference between
radiation and matter dominated epochs is that inhomogeneities in energy density (“scalar perturbations”)
grow rapidly at matter domination and slowly at radiation domination. Thus, matter domination is the
epoch of structure formation in the Universe.
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2.8 Dark energy domination
The expansion of the Universe is accelerated today. Within General Relativity this is attributed to dark
energy. We know very little about this “substance”: we know its energy density, Eq. (9c), and also know
that this energy density changes in time very slowly, if at all. The latter fact is quantified in the following
way. Let us denote by p the effective pressure, i.e., spatial component of the energy-momentum tensor
in locally-Lorentz frame Tµν = diag(ρ, p, p, p). Then covariant conservation of the energy-momentum
in an expanding Universe gives for any fraction that does not interact with other fractions

ρ̇ = −3 ȧ
a
(ρ+ p)

(note that relativistic and non-relativistic matter have p = ρ/3 and p = 0, respectively, so this equation
gives for them ρ ∝ a−4 and ρ ∝ a−3, as it should). A simple parametrization of time-dependent dark
energy is pΛ = wΛρΛ with time-independent wΛ. The combination of cosmological data gives [3]

wΛ ≈ −1.03± 0.03 . (25)

Thus, with reasonable precision one has pΛ = −ρΛ, which corresponds to a time-independent dark
energy density.

The solution to the Friedmann equation (7) with constant ρ = ρΛ is

a(t) = eHΛt ,

where HΛ = (8πρΛ/3M
2
Pl)

1/2 = const. This gives an accelerated expansion, ä > 0, unlike at radiation
or matter domination. The transition from decelerated (matter dominated) to accelerated expansion (dark
energy dominated) has been confirmed quite some time ago by combined observational data, see Fig. 1,
which shows the dependence on redshift of the quantity H(z)/(1 + z) = ȧ(t)/a0.
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Fig. 1: Observational data on the time derivative of the scale factor as function of redshift z [5]. The change
of the behavior from decreasing to increasing, as z decreases, means the change from decelerated to accelerated
expansion. The theoretical curve corresponds to spatially flat Universe with h = 0.7 and ΩΛ = 0.73.

In the case of the cosmological constant, the energy-momentum tensor is proportional to the met-
ric, and in a locally-Lorentz frame it reads

Tµν = ρΛηµν ,
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where ηµν is the Minkowski tensor. Hence wΛ = −1. One can view this as the characteristic of the
vacuum, whose energy-momentum tensor must be Lorentz-covariant. As we pointed out above, any
deviation from w = −1 would mean that we are dealing with something other than vacuum energy
density.

The problem with dark energy is that its present value is extremely small by particle physics
standards,

ρDE ≈ 4 GeV/m3 = (2× 10−3eV)4 .

In fact, there are two hard problems. One is that the dark energy density is zero to an excellent approxi-
mation. Another is that it is non-zero nevertheless, and one has to understand its energy scale. We are not
going to discuss these points anymore, and only emphasize that we are not aware of a compelling mech-
anism that solves any of the two cosmological constant problems (with possible exception of anthropic
argument by Weinberg and Linde [6, 7]).

3 Cornerstones of thermal history
3.1 Recombination = photon last scattering
Going back in time, we reach so high temperatures that the usual matter (electrons and protons with rather
small admixture of light nuclei, mainly 4He) is in the plasma phase. In plasma, photons interact with
electrons due to the Thomson scattering and protons have Coulomb interaction with electrons. These
interactions are strong enough to keep photons, electrons and protons in thermal equilibrium. When the
temperature drops to

Trec ≈ 3000 K , zrec ≈ 1090 ,

almost all electrons “recombine” with protons into neutral hydrogen atoms (helium recombined earlier).
The number density of atoms at that time is quite small, 250 cm−3, so from that time on, the Universe is
transparent to photons3. Thus, Trec is the photon last scattering temperature. At that time the age of the
Universe is trec ≈ 380 thousand years (for comparison, its present age is about 13.8 billion years).

CMB photons give us (literally!) the photographic picture of the Universe at the photon last scatter-
ing epoch. The last scattering epoch lasted considerably shorter than the then Hubble time H−1(trec) ∼
trec; to a meaningful (although rather crude) approximation, recombination occurred instantaneously.
This is important, since in the opposite case of long recombination, the photographic picture would be
strongly washed out.

This photographic picture is shown in Fig. 2. Here brighter (darker) regions correspond to higher
(lower) temperatures. The relative temperature fluctuation is of the order of δT/T = 10−4 − 10−5, so
the 380 thousand year old Universe was much more homogeneous than today.

One performs Fourier decomposition of the temperature fluctuations, i.e., decomposition in spher-
ical harmonics:

δT

T
(θ, φ) =

∑
l,m

almYlm(θ, φ) .

Here alm are independent Gaussian random variables (no non-Gaussianities have been found so far) with
⟨alma∗l′m′⟩ ∝ δll′δmm′ and ⟨a∗lmalm⟩ = Cl. The multipoles Cl, or, equivalently,

Dl =
l(l + 1)

2π
Cl

are the main quantities of interest. The larger l, the smaller the angular scales, hence the shorter the
wavelengths of density perturbations producing the temperature anisotropy.

3Modulo effects of re-ionization that occurred much later and affected a small fraction of CMB photons.

138



Fig. 2: CMB sky as seen by Planck.

It is worth noting that averaging here is understood in terms of an ensemble of Universes, while
we have just one Universe. So, there is inevitable uncertainty in Cl, called cosmic variance. For given l,
one has (2l + 1) quantities alm, m = 0,±1, . . . ,±l, so the uncertainty is ∆Cl/Cl ≃ 1/

√
2l.

CMB temperature multipoles are shown in Fig. 3 (error bars there are due to cosmic variance, not
the measurement errors). Also measured are CMB polarization multipoles and temperature-polarization
cross-correlation multipoles. There is a lot of physics behind these quantities, which has to do with:

– primordial perturbations: the perturbations that are built in already at the beginning of the hot
cosmological epoch, see Section 11;

– development of sound waves in the cosmic plasma from the early hot stage to recombination;
gravitational potentials due to dark matter at recombination (which are sensitive to the composition
of cosmic medium);

– propagation of photons after recombination (which is sensitive to expansion history of the Universe
and structure formation).

Clearly, CMB measurements are a major source of the cosmological information. We come back to CMB
in due course.

3.2 Big Bang nucleosynthesis
As we go back further in time, we arrive at a temperature in the Universe in the MeV range. The epoch
characterized by temperatures 1 MeV–30 keV is the epoch of Big Bang nucleosynthesis. That epoch
starts at a temperature of 1 MeV, when the age of the Universe is 1 s. At temperatures above 1 MeV,
there are rapid weak processes like

e− + p←→ n + νe . (26)

These processes keep neutrons and protons in chemical equilibrium; the ratio of their number densities
is determined by the Boltzmann factor, nn/np = exp

(
−mn−mp

T

)
. At Tn ≈ 1 MeV neutron-proton

transitions in Eq. (26) switch off, and neutron-proton ratio is frozen out at the value

ne
np

= e−
mn−mp

Tn .
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Fig. 3: Multipoles Dl as measured by Planck.

Interestingly, mn − mp ∼ Tn, so the neutron-proton ratio at neutron freeze-out and later was
neither equal to 1, nor very small. If it were equal to 1, protons would in the end combine with neutrons
into 4He, and there would remain no hydrogen in the Universe. On the other hand, for very small nn/np,
too few light nuclei would be formed, and we would not have any observable remnants of the Big Bang
nucleosynthesis (BBN) epoch. In either case the Universe would be quite different from what it actually
is. It is worth noting that the approximate relation mn − mp ∼ Tn is a coincidence: mn − mp is
determined by light quark masses and electromagnetic coupling, while Tn is determined by the strength
of weak interactions (the rates of the processes in Eq. (26)) and gravity (the expansion of the Universe).
This is one of numerous coincidences we encounter in cosmology.

At temperatures 100–30 keV, neutrons combined with protons into light elements in thermonuclear
reactions

p+ n → 2H + γ ,
2 H + p → 3 He + γ ,

3He +2 H → 4 He + p , (27)

etc., up to 7Li. The abundances of light elements have been measured, see Fig. 4. The only parameter
relevant for calculating these abundances (assuming negligible neutrino-antineutrino asymmetry) is the
baryon-to-photon ratio ηB ≡ η, see Eq. (23), which determines the number density of baryons. Compar-
ison of the Big Bang nucleosynthesis theory with the observational determination of the composition of
cosmic medium enables one to determine ηB and check the overall consistency of the BBN picture. It
is even more reassuring that a completely independent measurement of ηB that makes use of the CMB
temperature fluctuations is in excellent agreement with BBN. Thus, BBN gives us confidence that we
understand the Universe at T ∼ 1 MeV, t ∼ 1 s. In particular, we are convinced that the cosmological
expansion was governed by general relativity.

3.3 Neutrino decoupling
Another class of processes of interest at temperatures in the MeV range is neutrino production, annihila-
tion and scattering,

να + ν̄α ←→ e+ + e−
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Fig. 4: Abundances of light elements, measured (boxes; larger boxes include systematic uncertainties) and calcu-
lated as functions of baryon-to-photon ratio η [8]. The determination of η ≡ ηB from BBN (vertical range marked
BBN) is in excellent agreement with the determination from the analysis of CMB temperature fluctuations (vertical
range marked CMB).

and crossing processes. Here the subscript α labels neutrino flavors. These processes switch off at
T ∼ 2–3 MeV, depending on the neutrino flavor. Since then neutrinos do not interact with the cosmic
medium other than gravitationally, but they do affect the properties of the CMB and the distribution of
galaxies through their gravitational interactions. Thus, observational data can be used to establish, albeit
somewhat indirectly, the existence of relic neutrinos and set limits on neutrino masses. We quote here
the limit reported by the Planck collaboration [3]∑

mν < 0.12 eV ,

where the sum runs over the three neutrino species. Other analyses give somewhat weaker limits. Also,
the data can be used to determine the effective number of neutrino species that counts the number of
relativistic degrees of freedom [3]:

Nν, eff = 2.99± 0.17 ,

which is consistent with the Standard Model value Nν = 3. We see that cosmology requires relic
neutrinos.

4 Dark matter: evidence
Unlike dark energy, dark matter experiences the same gravitational force as the baryonic matter. Dark
matter is discussed in numerous reviews, see, e.g., Refs. [9–12]. It consists presumably of new stable
massive particles. These make clumps of mass which constitute most of the mass of galaxies and clusters
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of galaxies. Dark matter is characterized by the mass-to-entropy ratio,(ρDM

s

)
0
=

ΩDMρc
s0

≈ 0.26 · 5 · 10−6 GeV · cm−3

3000 cm−3
= 4 · 10−10 GeV . (28)

This ratio is constant in time since the freeze-out of the dark matter density: both, the number density
of dark matter particles nDM (and hence their mass density ρDM = mDMnDM) and the entropy density,
decrease exactly as a−3.

There are various ways of measuring the contribution of non-baryonic dark matter to the total
energy density of various objects and the Universe as a whole.

4.1 Dark matter in galaxies
Dark matter exists in galaxies. Its distribution is measured by the observation of rotation velocities of
distant stars and gas clouds around a galaxy, Fig. 5. If the mass was concentrated in a luminous central
part of a galaxy, the velocities of objects away from the central part would decrease with the distance r
to the center as v ∝ r−1/2—this immediately follows from Newton’s second law

v2

r
= G

M(r)

r2
.

In reality, rotation curves are typically flat up to distances exceeding the size of the bright part by a
factor of 10 or so. The fact that dark matter halos are so large is explained by the defining property of
dark matter particles: they do not lose their energies by emitting photons, and, in general, interact with
conventional matter very weakly.

4.2 Dark matter in clusters of galaxies
Dark matter makes most of the mass of the largest gravitationally bound objects—clusters of galaxies.
There are various methods to determine the gravitating mass of a cluster, and mass distribution in a

Fig. 5: Rotation velocities of hydrogen gas clouds around a galaxy NGC 6503 [13]. Lines show the contributions
of the three main components that produce the gravitational potential. The main contribution at large distances is
due to dark matter, labeled “halo”.
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cluster, which give consistent results. These include measurements of rotational velocities of galaxies
in a cluster (original Zwicky argument that goes back to 1930’s), measurements of temperature of hot
gas (which actually makes most of the baryonic matter in clusters), observations of gravitational lensing
of extended light sources (galaxies) behind the cluster, see Fig. 6. All these determinations show that
baryons (independently measured through their X-ray emission) make less than 1/4 of total mass in
clusters. The rest is dark matter.

Fig. 6: Cluster of galaxies CL0024 + 1654 [14], acting as gravitational lens. Right panel: cluster in visible light.
Round yellow spots are galaxies in the cluster. Elongated blue strips are images of one and the same galaxy behind
the cluster. Left panel: reconstructed distribution of gravitating mass in the cluster; brighter regions have larger
mass density.

Concerning galaxies and clusters of galaxies, we note that there are attempts to attribute the prop-
erties of rotation curves and other phenomena, which are usually considered as evidence for dark matter,
to a modification of gravity, and in this way get rid of dark matter altogether. There are several strong
arguments that rule out this idea. One argument has to do with the Bullet Cluster, Fig. 7. Shown are two
galaxy clusters that passed through each other. The dark matter and galaxies do not experience friction
and thus do not lose their velocities. On the contrary baryons in hot, X-ray emitting gas do experience
friction and hence get slowed down and lag behind the dark matter and galaxies. In this way the baryons
(which are mainly in hot gas) and dark matter are separated in space. Since the baryonic mass and gravi-
tational potentials are not concentric, one cannot attribute gravitational potentials solely to baryons, even
assuming the modification of Newton’s gravity law. As a remark, the fact that dark matter moves after
cluster a collision considerably faster than baryonic gas means that elastic scattering between dark matter
particles is weak. Quantitatively, the limit on the dark matter elastic scattering cross section is

σ
(el)
DM−DM < 1 · 10−24 cm2 . (29)

This limit is not particularly strong, but it does rule out part of the parameter space of strongly interacting
massive particle (SIMP) dark matter models, see Section 5.2.

4.3 Dark matter imprint in CMB
The composition of the Universe strongly affects the CMB angular anisotropy and polarization. Before
recombination, the energy density perturbation is a sum of the perturbation in the baryon-electron-photon
component and the dark matter component,

δρ = δρB + δρDM
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Fig. 7: Observation [15] of the Bulet Cluster 1E0657–558 at z = 0.296. Closed lines show the gravitational
potential produced mainly by dark matter and measured through gravitational lensing. Bright regions in the right
panel show X-ray emission of hot baryon gas, which makes most of the baryonic matter in the clusters. The length
of the white interval is 200 kpc in the comoving frame.

(we simplify things here, as there is also perturbation in the gravitational potentials induced by the density
perturbation). The tightly coupled baryon-electron-photon plasma has high pressure (due to the photon
component with pγ = ργ/3), so the density perturbations in this fraction undergo acoustic oscillations:
every Fourier mode oscillates in time as

δρB(k, t) = A(k)cos
(∫ t

0
vs

k

a(t)
dt

)
, (30)

where k is the comoving momentum (and k/a(t) is the physical momentum which gets redshifted),
vs ≈ 1/

√
3 is the sound speed, and A(k) is the amplitude that varies slowly with k (in statistical sense:

δρ(k) is the Gaussian random field). We comment in Section 11 on the fact that the phase of cosine
in Eq. (30) is well defined. On the contrary, dark matter is pressureless, so its perturbation is almost
independent of time,

δρDM ≈ δρDM(k) ,

where δρDM(k) slowly varies with k. At recombination time tr, the energy density perturbation is a sum

δρ(k, tr) = A(k)cos
(∫ tr

0
vs

k

a(t)
dt

)
+ δρDM(k) . (31)

The first term here oscillates as a function of k, while the second term is a smooth, non-oscillating
function of k.

Now, the behavior of δρ(tr) as function of the spatial momentum k translates into the behavior
of the CMB temperature fluctuation δT as function of the multipole number l. δT at a given point in
space at the recombination epoch is proportional to δρ (here we again simplify things, this time quite
considerably). We see CMB coming from a photon last scattering sphere; a smaller angular scale in this
photographic picture corresponds to a smaller spatial scale at the recombination epoch, hence a larger
multipole l corresponds to a higher three-momentum k. Thus, the oscillatory formula (31) translates into
the oscillatory behavior in Fig. 3. Both, the oscillatory part of the temperature angular spectrum (which
is due to the first, baryonic term in Eq. (31)) and the smooth part (due to the second, dark matter term
in Eq. (31)), are clearly visible in Fig. 3. The detailed analysis of this angular spectrum enables one
to determine the baryon content and the dark matter content in the Universe, ΩB and ΩDM quoted in
Eq. (10).

4.4 Dark matter and structure formation
Dark matter is crucial for our existence, for the following reason: As we discussed above, the density
perturbations in the baryon-electron-photon plasma before recombination do not grow because of high
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pressure; instead, they oscillate with a time-independent amplitudes. Hence, in a Universe without dark
matter, density perturbations in the baryonic component would start to grow only after baryons decouple
from photons, i.e., after recombination. The mechanism of the growth is qualitatively simple: an over-
dense region gravitationally attracts surrounding matter; this matter falls into the overdense region, and
the density contrast increases. In the expanding, matter dominated Universe this gravitational instability
results in the density contrast growing like (δρ/ρ)(t) ∝ a(t). Hence, in a Universe without dark matter,
the growth factor for baryon density perturbations would be at most4

a(t0)

a(trec)
= 1 + zrec =

Trec
T0
≈ 103 . (32)

The initial amplitude of density perturbations is very well known from the CMB anisotropy measure-
ments, (δρ/ρ)i = 5 · 10−5. Hence, a Universe without dark matter would still be nearly homogeneous:
the density contrast would be in the range of a few per cent. No structure would have been formed, no
galaxies, no life. No structure would be formed in future either, as the accelerated expansion due to dark
energy will soon terminate the growth of perturbations.

Since dark matter particles decoupled from the plasma much earlier than baryons, the perturba-
tions in dark matter started to grow much earlier. The corresponding growth factor is larger than Eq. (32),
so that the dark matter density contrast at galactic and sub-galactic scales becomes of order one, the per-
turbations enter a non-linear regime, collapse and form dense dark matter clumps at z = 5 − 10. Baryons
fall into potential wells formed by dark matter, so dark matter and baryon perturbations work together
soon after recombination. Galaxies get formed in the regions where dark matter was overdense origi-
nally. For this picture to hold, dark matter particles must be non-relativistic early enough, as relativistic
particles fly through gravitational wells instead of being trapped there. This means, in particular, that
neutrinos cannot constitute a considerable part of dark matter.

4.5 Digression – Standard ruler: BAO
Before recombination, the sound speed in the baryon-electron-photon component is about vs ≈ 1/

√
3.

After recombination, baryons (atoms) decouple from photons, the sound speed in the baryon component
is practically zero, and baryons no longer move in space. This leads to a feature in the spatial distribution
of matter (galaxies) which is known as Baryon Acoustic Oscillations (BAO). It is worth noting that
similar phenomenon was described by A.D. Sakharov [16] back in 1965, but in the context of a cold
cosmological model (Sakharov’s paper was written before the discovery of CMB).

The physics behind BAO is illustrated in Fig. 8. Suppose there is an overdense region in the very
early Universe (in the beginning of the hot epoch). Importantly, the initial conditions for the baryon-
electron-photon component and dark matter are the same: overdensity exists in both of them in the same
place in space (this is the property of adiabatic scalar perturbations; CMB measurements ensure that
primordial perturbations are indeed adiabatic). This initial condition is shown in the left panel of Fig. 8.
Before recombination, dark matter perturbation stays in the same place, while the perturbation in baryon-
electron-photon component moves away with the sound speed. If the initial perturbation is spherically
symmetric, then the sound wave is spherical, as shown in the right panel. At recombination, the baryon
perturbation is frozen in, and the whole picture expands merely due to the cosmological expansion. The
comoving distance between the dark matter overdensity and the baryon overdensity shell is the comoving
sound horizon at recombination

rs =

∫ tr

0
vs

k

a(t)
dt

(this is precisely the argument of cosine in Eq. (31)); its present value is rs ≃ 150 Mpc (we set a0 = 1
here), and the value at redshift z is rs/(1 + z).

4Because of the presence of dark energy, the growth factor is even somewhat smaller.
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Fig. 8: Schematic picture of Baryon Acoustic Oscillations. Dark regions show dark matter overdensity, less dark
(red) regions are the ones with baryon overdensity. Left: initial condition. Right: at recombination and later.

Due to BAO, there is correlation between the matter densities (dark matter plus baryons) separated
by the comoving distance rs. It shows up as a feature in the galaxy-galaxy correlation function ξ(s),
where s is the comoving distance. This bump in the correlation function was detected in Ref. [17], see
Fig. 9. Clearly, BAO serves as a standard ruler at various redshifts, which can be used to study the
evolution of the Universe in a not so distant past.

Currently, BAO is a very powerful tool of observational cosmology. It is used in particular to study
time (in)dependence of dark energy.

The bump in the spatial correlation function translates into oscillations in momentum space, hence
the name.

Fig. 9: The first detection of BAO: the correlation function ξ (s) determined by the analysis of the Sloan Digital Sky
Survey (SDSS) data on the distribution of distant galaxies. Solid lines show the predictions of various cosmological
models. Green, red and blue lines correspond to ΩMh

2 = 0.12, 0.13, 0.14, respectively, with ΩBh
2 = 0.024,

ns = 0.98 in all cases. The magenta line corresponds to an unrealistic Universe without baryons. The parameter h
is defined in Eq. (4); numerically, h0 ≈ 0.7.
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5 Astrophysics: more hints on dark matter properties
Important information on dark matter properties is obtained by theoretical analysis of structure formation
and its comparison with observational data. Indeed, as we discussed above, dark matter plays the key
role in structure formation, so the properties of galaxies and their distribution in space potentially tell us
a lot about dark matter.

Currently, theoretical studies are made mostly via numerical simulations, many of which ignore
effects due to baryons (dark-matter-only). Thus, these simulations give the dark matter distribution.
To compare it with observed structures, one often assumes that baryons trace dark matter, with the
qualification that baryons are capable of losing their kinetic energy and forming more compact structures
inside dark matter halos. In other words, a simulated dark matter collapsed clump of mass, characteristic
of a galaxy, is associated with a visible galaxy, while heavier dark matter clumps are interpreted as
clusters of galaxies, etc.

Currently, the most popular dark matter scenario is cold dark matter, CDM. It consists of par-
ticles whose velocities are negligible at all stages of structure formation, and whose non-gravitational
interactions with themselves and with baryons are negligible too (from the viewpoint of structure forma-
tion). The CDM numerical simulations (plus the above assumption concerning baryons) are in very good
agreement with observations at relatively large spatial scales. This is an important result that implies
interesting limits on dark matter properties, which we discuss below.

However, there are astrophysical phenomena at shorter scales that may or may not hint towards
something different from weakly interacting CDM. The situation is inconclusive yet, but it is worth
keeping these phenomena in mind, which we now discuss in turn.

5.1 Missing satellite problem: astrophysics vs warm dark matter
It has long been known that CDM-only simulations produce a lot of small mass halos, M ≲ 109M⊙
where M⊙ is the Solar mass. Galaxies like the Milky Way have masses (1011 − 1012)M⊙, so we are
talking about dwarf galaxies. As an example, the left panel of Fig. 10 shows the simulated dark matter
distribution in a ball of radius 250 kpc around a galaxy similar to the Milky Way. Assuming that baryons
trace dark matter, one observes that there must be hundreds of satellite galaxies there. The actual Milky
Way satellites are shown in the right panel of Fig. 10; clearly the number of satellites is a lot smaller.
This is the missing satellite problem.

  Sagittarius dSph

  LMC

  SMC

  Draco
  Ursa Minor

  Sculptor

  Sextans

  Carina

  Fornax

  Leo II

  Leo I

Pawlowski/Bullock/Boylan-Kolchin

Fig. 10: Left: CDM-only simulation of 250 kpc vicinity of a galaxy like the Milky Way; right: actual distribution
of satellite galaxies in 250 kpc vicinity of the Milky Way [12].
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It is conceivable that this problem has astrophysical solution within the CDM model. One point is
that the number of observed faint satellite galaxies around the Milky Way is not that small any longer:
while a few years ago this number was about 20, it is currently about 60, and this is not a complete
sample because of a limited detection efficiency—the expectation [18] for a complete sample is 150–300
with masses exceeding 108M⊙. Another property is that dark matter halos of mass M < 109M⊙ appear
fairly inefficient in forming a luminous component5—this has been suggested by simulations that include
numerous effects due to baryons [19, 20]. Thus, if the CDM model is correct, and the missing satellite
problem has an astrophysical solution, there must be a large number of ultra-faint dwarf galaxies with
masses (108 − 109)M⊙ and even larger number of non-luminous dark matter halos with M ≲ 108M⊙
in the vicinity of the Milky Way. It will be possible to check this prediction in near future, notably, with
the Large Synoptic Survey Telescope, LSST [22].

An alternative, particle physics solution to the missing satellite problem is warm dark matter,
WDM. A reasonably well motivated WDM candidate is a sterile neutrino, which we discuss in Section 8.
Another popular candidate is a light gravitino. In WDM case, dark matter particles decouple from the
kinetic equilibrium with the baryon-photon component when they are relativistic. Let us assume for
definiteness that they are in kinetic equilibrium with the cosmic plasma at a temperature Tf when their
number density freezes out (there is no chemical equilibrium at T = Tf , otherwise the dark matter
would be overabundant). After the kinetic equilibrium breaks down at a temperature Td ≤ Tf , the
spatial momenta decrease as a−1, i.e., the momenta are of the order T all the time after decoupling.
When dark matter particles are relativistic, the density perturbations do not grow: relativistic particles
escape from the gravitational potentials, so they do not experience the gravitational instability; in fact,
the density perturbations, and hence the gravitational wells, get smeared out instead of getting deeper.
WDM particles become non-relativistic at T ∼ m, where m is their mass. Only after that the WDM
perturbations start to grow. Before becoming non-relativistic, WDM particles travel the distance of the
order of the horizon size; the WDM perturbations therefore are suppressed at those scales. The horizon
size at the time tnr when T ∼ m is of order

lH(tnr) ≃ H−1(T ∼ m) =
M∗

Pl

T 2
∼ M∗

Pl

m2
.

Due to the expansion of the Universe, the corresponding length at present is

l0 = lH(tnr)
a0

a(tnr)
∼ lH(tnr)

T

T0
∼ MPl

mT0
, (33)

where we neglected the (rather weak) dependence on g∗. Hence, in WDM scenario, the structures of
comoving sizes smaller than l0 are less abundant as compared to CDM. Let us point out that l0 refers to
the size of the perturbation in the linear regime; in other words, this is the size of the region from which
matter collapses into a compact object.

To solve the missing satellite problem, one requires that the mass of dark matter which was orig-
inally distributed over the volume of comoving size l0, and collapsed later on, is of order of the mass of
the satellite galaxy,

4π

3
l30 ΩDMρc ∼Mdwarf .

With Mdwarf ∼ 108M⊙ we find l0 ∼ 100 kpc, and Eq. (33) gives the estimate for the mass of a dark
matter particle

WDM : mDM = 3 − 10 keV . (34)

On the other hand, this effect is absent, i.e., dark matter is cold, for

CDM : mDM ≳ 10 keV . (35)
5Another effect, important for satellite galaxies close to the center of the Milky Way, is the tidal force due to the gravitational

potential produced by the disk of the host galaxy [21].

148



Let us recall that these estimates apply to particles that are initially in kinetic equilibrium with the cosmic
plasma. They do not apply in the opposite case; an example is axion dark matter, which is cold despite
of very small axion mass.

Reversing the argument, one obtains a limit on the mass of the WDM particle which decouples in
the kinetic equilibrium [18],

m ≳ 4 keV . (36)

5.1.1 Digression: phase space bound
In fact there are other ways to obtain limits on m. One has to do with the phase space density: the
maximum value of the coarse grained phase space density

f(p, x)coarse grained =

(
dN

d3p d3x

)
coarse grained

does not decrease in the course of the evolution (hereN is the number of particles). Indeed, the Liouville
theorem tells that the microscopic phase space density is time-independent. What happens in the course
of evolution is that particles penetrate initially unoccupied regions of phase space, see Fig. 11. While the
maximum value of the microscopic phase space density remains constant in time, the maximum value
of the coarse grained phase space density (average over phase space volume shown by dashed line in
Fig. 11) decreases.

P

X

P

X

Fig. 11: Sketch of the behavior of an ensemble of particles in phase space. As the ensemble evolves, an initial
compact distribution (left panel) becomes less compact.

The initial phase space density of particles in kinetic equilibrium is

fi =
A

(2π)3
1

ep/T + 1
,

where we consider fermions for definiteness. The parameterA is determined by requiring that the number
density n takes the prescribed value, so that

n0 =
ΩDMρc
m

.

We find

n =

∫
fid

3p = A · 3ζ(3)
4π2

T 3 ,

where ζ(3) ≈ 1.2. So, the maximum of the initial phase space density is

fi,max =
n

12πζ(3)T 3
=

ΩDMρc
12πζ(3)mT 3

0 eff

,

where T0 eff depends on the decoupling temperature and is somewhat lower than the present photon
temperature.
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On the other hand, one can measure a quantity

Q =
ρDM, gal

⟨v2gal/3⟩3/2

where ρDM, gal is the mass density (say, in a central part of a dwarf galaxy), ⟨v2gal⟩ is the average velocity
squared, and hence ⟨v2gal/3⟩ is the average velocity squared along the line of sight (of stars, and hence
dark matter particles, in a virialized galaxy). Since vgal = pgal/m and ρDM, gal = mngal, one obtains an
estimate for the phase space density of dark matter particles in a dwarf galaxy,

f ≃ ngal

⟨p2gal⟩3/2
=

Q

33/2m4
.

One requires that
f < fimax

and obtains the bound on the mass of the dark matter particle

m ≳ 3 ·
(

Q

ΩDMρc

)1/3

T0 eff .

The values of Q measured in compact dwarf galaxies are in the range

Q ∼ (5 · 10−3 − 2 · 10−2) · M⊙/pc3

(km/s)3

while for the relic that decouples at T = (1− 100) MeV one has T0 eff = 2.0 K. This gives [23, 24]

m ≳ 6 keV .

Accidentally, this bound is similar to Eq. (36). We note that the bounds coming from the phase space
density considerations are called bounds of Tremain–Gunn type.

We also note that similar (in fact, slightly stronger but less robust) bounds are obtained by the
study of Lyman-α forest, see, e.g., Ref [25].

5.2 Other hints, SIMP and fuzzy DM
There are two other issues that may or may not be problematic for CDM. One is the “core-cusp problem”:
CDM-only simulations show singular mass density profiles (cusps) in the centers of galaxies, ρDM(r) ∝
r−1, while observations imply enhanced but smooth profiles (cores). Another is the “too-big-to-fail”
problem, which currently means that the densities in large satellite galaxies (M ∼ 1010 M⊙), predicted
by CDM-only simulations are systematically higher than the observed mass densities [12].

The astrophysical solutions to these problems again have to do with baryons (supernovae feedback,
etc.), and also with interactions of satellite galaxies with large host galaxy, the Milky Way, see, e.g.,
Refs. [12, 26] for discussion. On the particle physics side, WDM may again help out. Two other particle
physics solutions are strongly interacting massive particles (SIMP) as dark matter, and fuzzy dark matter.

The idea of SIMP [27] is that dark matter is cold, but elastic scattering of dark matter particles
smoothes out the cuspy mass distribution in galactic centers. Elastic scattering can also lead to a decrease
of the dark matter density and thus alleviate the too-big-to-fail problem. To give an idea of the elastic
scattering cross section, we take mass density of dark matter of order ρDM ∼ 1 GeV/cm3 and require that
the mean free path of a dark matter particle is of order l ∼ 1 kpc (typical values, by order of magnitude,
both for centers of large galaxies and for dwarf galaxies),

1 ∼ lσ(el)nDM = lσ(el)
ρDM

m
,

150



and obtain
σ(el)

m
∼ 1

lρDM
∼ 10−24 cm2

GeV
.

This is a very large cross section by particle physics standards, and, in view of Eq. (29), the dark matter
particle must be fairly light,m ≲ 1 GeV. The large elastic cross section may be due to t-channel exchange
of a light mediator withmmed ∼ 10−100 MeV. This mediator must decay into e+e−, γγ, etc., otherwise
it would be dark matter itself. All these features make the SIMP scenario interesting from the viewpoint
of collider (search in Z-decays) and “beyond collider” experiments, such as SHiP.

Yet another proposal is fuzzy dark matter consisting of very light bosons,

m ∼ (10−21 − 10−22) eV .

The mechanism of their production must ensure that all of them are born with zero momenta, i.e., these
particles form a scalar condensate. An oversimplified picture is that the de Broglie wavelength of these
particles at velocities typical for galactic centers and dwarf galaxies, v ∼ 10 km/s, is about 1 kpc:

2π

mv
∼ 1 kpc .

Detailed discussion of advantages of fuzzy dark matter is given, e.g., in Ref. [28]. A way to constrain
this scenario is again to study the Lyman-α forest; current constraints [29] are at the level of 2 ·10−21 eV.
Interestingly, effects of fuzzy dark matter may in the future be detected by the pulsar timing method [30].

From a particle physics viewpoint, fuzzy dark matter particles may emerge as pseudo-Nambu–
Goldstone bosons, similar to axions. We discuss axions later, and here we borrow the main ideas. The
axion-like Lagrangian for the pseudo-Nambu–Goldstone scalar field θ reads

L =
F 2

2
(∂θ)2 − µ4(1− cos2 θ) ≈ F 2

2
(∂θ)2 − µ4

2
θ2 ,

where F is the expectation value of a field that spontaneously breaks approximate U(1) symmetry, and
µ is the parameter of the explicit violation of this symmetry. Then the mass of the axion-like particle is

m =
µ2

F
.

The mechanism that creates the scalar condensate is misalignment. The initial value of θ is an arbitrary
number between −π and π, so that θi ∼ 1. The field starts to oscillate when the expansion rate becomes
small enough, H ∼ m. The calculation of the present mass density is a simplified version of the axion
calculation that we give in Section 7; one finds that ΩDM ∼ 0.25 is obtained for m = 10−22 eV if

F ∼ 1017 GeV .

This is in the ballpark of GUT/string scales, which is intriguing.

5.3 Summary of DM astrophysics
Let us summarize the astrophysics of dark matter.

– Cold dark matter describes remarkably well the distribution and properties of structures in the
Universe at relatively large scales, from galaxies like the Milky Way or somewhat smaller (M ≳
1011M⊙), to larger structures like clusters of galaxies, filaments, etc.; also, CDM is remarkably
consistent with CMB data which probe even larger scales.

– Currently, data and simulations at shorter scales are inconclusive: they may or may not show that
there are “anomalies”, the features that contradict the CDM model.
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– It will become clear fairly soon whether these “anomalies” are real or not. The progress will come
from refined simulations with all effects of baryons included, and from new instruments, notably
LSST.

– If the “anomalies” are real, we will have to give up CDM, and, responding to the data, will narrow
down the set of dark matter models (WDM, or SIMP, or fuzzy dark matter, or something else).
This will have a profound effect on the strategy of search for dark matter particles.

– If the “anomalies” are not there, astrophysics will have to deliver the confirmation of CDM model
by the discoveries of relatively light ultra-faint dwarf galaxies (M = (108 − 109)M⊙) and dark
objects of even smaller mass.

All this makes astrophysics a powerful tool of studying dark matter and directing particle physics
in its search for dark matter particles.

6 Thermal WIMP
6.1 WIMP abundance: annihilation cross section
Thermal WIMP (weakly interacting massive particle) is a scenario featuring a simple mechanism of the
dark matter generation in the early Universe. The WIMP is a cold dark matter candidate. Because of its
simplicity and robustness, it has been considered by many as the most likely one.

Let us not go into all the details of the (fairly straightforward) calculation of the thermal WIMP
abundance. These details are given in several textbooks, and also presented in proceedings of similar
Schools, see, e.g., Ref. [31]. Instead, we give the main assumptions behind this mechanism and describe
the main steps of the calculation.

One assumes that there exists a heavy stable neutral particle χ, and that χ particles can only be
destroyed or created in the cosmic plasma via their pair-annihilation or creation, with the annihilation
products being the particles of the Standard Model6. We note that there is a version of WIMP model
in which the χ particle is not truly neutral, i.e., it does not coincide with its own antiparticle. In that
case one assumes that the production and destruction occurs only via χ − χ̄ annihilation, and there is
no asymmetry between χ and χ̄ in the cosmic plasma, nχ = nχ̄. The calculation in the χ − χ̄ model is
identical to the case of a truly neutral particle, so we consider the latter case only.

One also assumes that the χ particles are not strongly coupled, but the χ − χ annihilation cross
section is sufficiently large, so the χ particles are in complete thermal equilibrium at high temperatures.
The latter assumption is justified in the end of the calculation. The thermal equilibrium means, in partic-
ular, that the abundance of χ particles is given by the standard Bose–Einstein or Fermi–Dirac distribution
formula.

The cosmological behaviour of χ particles is as follows: At high temperatures, T ≫ mχ, the
number density of χ particles is high, nχ(T ) ∼ T 3. As the temperature drops belowmχ, the equilibrium
number density decreases,

n(eq)χ ∝ e−
mχ
T , (37)

At some “freeze-out” temperature Tf the number density becomes so small, that χ particles can no
longer meet each other during the Hubble time, and their annihilation terminates7. After that the number
density of survived χ particles decreases as a−3, and these relic particles form the CDM. The freeze-out

6The latter assumption can be relaxed: decay products of χ particles may be new particles which sufficiently strongly
interact with the Standard Model particles and in the end disappear from the cosmic plasma. Also, destruction and creation
of χ particles may occur via co-annihilation with their nearly degenerate partners and inverse pair creation processes; this
occurs in a class of supersymmetric models where χ is the lightest supersymmetric particle and its partner is the next-to-lightest
supersymmetric particle.

7This is a slightly oversimplified picture, which, however, gives a correct estimate, modulo a factor of order 1 in the argument
of the logarithm.
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temperature Tf is obtained by equating the mean free time of χ particle with respect to the annihilation,

τann(Tf) = (σ0(Tf)nχ(Tf))
−1

to the Hubble time (see Eq. (20))

H−1(Tf) =
M∗

Pl

T 2
f

.

Here we introduced the weighted annihilation cross section

σ0(T ) = ⟨σannv⟩T ,

where v is the relative velocity of χ particles (in the non-relativistic regime relevant here we have v ≪ 1),
and we average over the thermal ensemble.

Thus, freeze-out occurs when

σ0(Tf)nχ(Tf) =
T 2
f

M∗
Pl

.

Because of exponential decay of n(eq)χ with temperature, Eq. (37), the freeze-out temperature is smaller
than the mass by a logarithmic factor only,

Tf ≈
mχ

ln(M∗
Plmχσ0)

. (38)

Note that due to the large logarithm, χ particles are indeed non-relativistic at freeze-out: their velocity
squared is of order of

v2(Tf) ≃ 0.1 .

At freeze-out, the number density is

nχ(Tf) =
T 2
f

M∗
Plσ0(Tf)

, (39)

Note that this density is inversely proportional to the annihilation cross section (modulo logarithm). The
reason is that for a higher annihilation cross section, the creation-annihilation processes are longer in
equilibrium, and less χ particles survive. Up to a numerical factor of order 1, the number-to-entropy
ratio at freeze-out is

nχ
s
≃ 1

g∗(Tf)M∗
PlTfσ0(Tf)

. (40)

This ratio stays constant until the present time, so the present number density of χ particles is nχ,0 =
s0 · (nχ/s)freeze−out, and the mass-to-entropy ratio is

ρχ,0
s0

=
mχnχ,0
s0

≃ ln(M∗
Plmχσ0)

g∗(Tf)M∗
Plσ0(Tf)

≃ ln(M∗
Plmχσ0)√

g∗(Tf)MPlσ0(Tf)
,

where we made use of (38). This formula is remarkable. The mass density depends mostly on one
parameter, the annihilation cross section σ0. The dependence on the mass of χ particle is through the
logarithm and through g∗(Tf); it is very mild. Plugging in g∗(Tf) ∼ 100, as well as a numerical factor
omitted in Eq. (40), and comparing with (28) we obtain the estimate

σ0(Tf) ≡ ⟨σv⟩(Tf) = 1 · 10−36 cm2 = 1 pb . (41)

This is a weak scale cross section, which tells us that the relevant energy scale is 100 GeV–TeV. We note
in passing that the estimate (41) is quite precise and robust.
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The annihilation cross section can be parameterized as σ0 = α2/M2 where α is some coupling
constant, and M is a mass scale responsible for the annihilation processes8 (which may be higher than
mχ). This parametrization is suggested by the picture of χ pair-annihilation via the exchange by another
particle of mass M . With α ∼ 10−2, the estimate for the mass scale is roughly M ∼ 1 TeV. Thus, with
mild assumptions, we find that the WIMP dark matter may naturally originate from the TeV-scale physics.
In fact, what we have found can be understood as an approximate equality between the cosmological
parameter, the mass-to-entropy ratio of dark matter, and the particle physics parameters,

mass-to-entropy ≃ 1

MPl

(
TeV
αW

)2

.

Both are of order 10−10 GeV, and it is very tempting to think that this “WIMP miracle” is not a mere
coincidence. For long time the above argument has been—and still is—a strong motivation for WIMP
searches.

6.2 WIMP candidates: “minimal” and supersymmetry; direct searches
6.2.1 “Minimal” WIMP
Even though the name—weakly interacting massive particle—suggests that this particle participates in
the Standard Model weak interactions, in most theoretical models this is not so. An exception is the
“minimal” WIMP [32]. This is a member of the electroweak multiplet with zero electric charge and zero
coupling to the Z boson (couplings to the photon and Z would yield to too strong interactions with the
Standard Model particles which are forbidden by direct searches). This is possible for vector-like 5-plet
(weak isospin 2) with zero weak hypercharge. Another, albeit fine-tuned option is vector-like triplet
(weak isospin 1) with zero weak hypercharge. Particles in vector-like representations may have “hard”
masses (not given by Englert–Brout–Higgs mechanism). The right annihilation cross section in Eq. (41)
is obtained for masses of these particles

5-plet : m5 = 9.6 TeV , 3-plet : m3 = 3 TeV .

These particles are on the verge of being ruled out by direct searches.

6.2.2 Neutralino
A well motivated WIMP candidate is the neutralino of supersymmetric extensions of the Standard Model.
The situation with the neutralino is rather tense, however. One point is that the pair-annihilation of neu-
tralinos often occurs in p-wave, rather than s-wave. This gives the suppression factor in σ0, proportional
to v2 ∼ 0.1. Hence, neutralinos tend to be overproduced for large part of the parameter space of MSSM
and other supersymmetry (SUSY) models.

Another point is the null results of the direct searches for WIMPs in underground laboratories.
The idea of direct search is that WIMPs orbiting around the center of our Galaxy with velocity of order
10−3 sometimes hit a nucleus in a detector and deposit small energy in it. The relevant parameters for
these searches are WIMP-nucleon elastic scattering cross section and WIMP mass. One distinguishes
spin-independent and spin-dependent scattering. In the former case, the WIMP-nucleus cross section
is proportional to A2, where A is the number of nucleons in the nucleus (this is an effect of coherent
scattering), while in the latter case the cross section is proportional to J(J + 1) where J is the spin of
the nucleus.

To illustrate the progress in direct searches, we show in Fig. 12 the situation for neutralinos and the
direct searches as of 1999, Ref. [33], while Fig. 13 shows the best current limits on the spin-independent
cross section [34].

8For s-wave annihilation, σ0 is independent of the particle velocity, and hence temperature; if the annihilation is in p-wave,
there is an additional suppression by v2(Tf) ∼ 0.1.
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Fig. 12: The situation with neutralinos and the direct searches in 1999 [33]. Shown are theoretical predictions
(crosses and dots) and direct detection limits (open solid line; closed solid line is DAMA hint). Vertical axis:
spin-independent cross section of elastic WIMP-nucleus scattering per nucleon; parameter ξ takes value 1 for a
spin-1/2 neutralino; note that 10−10 nbarn = 10−43 cm2.

Fig. 13: Current results of direct searches for WIMPs: best limits on spin-independent WIMP-nucleus cross section
per nucleon come from the XENON-1T experiment [34]. Note that the cross section 10−10 nbarn = 10−43 cm2 in
the lower part of Fig. 12 is in the upper part of this figure.

Figure 14 shows both current limits (solid lines) and projected sensitivities of future dark matter
detection experiments, again for spin-independent interactions [10]. We see that, on the one hand, the
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progress in experimental search is truly remarkable, and, on the other, the null results of the searches
are becoming alarming. The null results of direct (and also indirect, see below) searches are particularly
worrying in view of the null results of SUSY searches at the Large Hadron Collider (LHC).

Fig. 14: Current limits and projected sensitivities of direct searches for WIMPs (spin-independent WIMP-nucleus
cross section per nucleon). Yellow band in the lower part is the “neutrino floor”, at which interactions of cosmic
neutrinos become an important background.

6.3 Ad hoc WIMP candidates; indirect searches and the LHC
In view of the strong direct detection limits and null results of the SUSY searches at the LHC, it makes
sense to consider less motivated, ad hoc WIMP candidates. The simplest assumption is that the WIMP is
not nearly degenerate with any other new particle, so that the calculation of its abundance outlined above
applies, and that there is one particle that mediates its pair-annihilation. This mediator can be either
a Standard Model particle or a new one; we give examples of both cases. The models of this sort are
often called simplified. We emphasize that the two examples of simplified models which we are going
to discuss do not exhaust all possible WIMPs and mediators. Some of the models that we leave aside are
actually consistent with both cosmology (they give the right value of ΩDM) and experimental limits. The
study of numerous simplified models is given, e.g., in Ref. [11].

With this reservation, it is fair to say that many simplified models are either already ruled out or
will be ruled out soon. As one illustration, we consider the “Higgs portal”, a set of models where the
only field which interacts directly with WIMPs is the Englert–Brout–Higgs field. The lowest dimension
Higgs-WIMP interaction terms in the cases of a spin-0 WIMP χ and spin-1/2 WIMP ψ are

λHχ χ
∗χH†H ,

λHψ
Λ
ψ̄ψH†H ,

where H is the EBH field. Here λHχ , λHψ are dimensionless parameters, while Λ has the dimension of
mass. In both cases χ (ψ) is a Standard Model singlet with zero weak hypercharge; it has a “hard” mass
mχ(ψ). Since the vacuum expectation value of the EBH field H is non-zero, the above terms induce
trilinear WIMP-WIMP-Higgs interactions responsible for s-channel WIMP annihilation via the Higgs
exchange. It is this annihilation that is relevant in the early Universe. The trouble is that almost the
entire parameter space of the Higgs portal is ruled out by direct searches. This is illustrated in Fig. 15,
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Fig. 15: Predictions from dark matter abundance (red solid lines labeled “PLANCK”) and direct detection limits
(shadows) in the Higgs portal models [11]. Left panel: spin-0 WIMP; right panel: spin-1/2 WIMP.

Ref. [11]. Another illustration is the Z ′-portal. One assumes that both WIMP (say, spin-1/2 particle ψ)
and Standard Model fermions interact with a new vector boson Z ′:

gψψ̄(Vψ −Aψγ5)ψZ ′ +
∑
f

gf f̄(Vf −Afγ5)f Z ′ , (42)

where sum runs over all Standard Model fermions (an important role is played by quarks). The coupling
constants gψ, gf are often chosen to be of order 0.5, as suggested by GUTs. Almost all parameter space
of Z ′-portal models with Vψ ̸= 0 is also ruled out by direct searches [11], as shown in Fig. 16.

Fig. 16: Same as in Fig. 15 but for the Z ′-portal in Eq. (42) with gψ = gf = 0.65 and Vψ = Aψ = Vf = Af = 1.

The situation is better in models with axial-vector interactions of a new vector boson (we still call
it Z ′) with both the Standard Model particles and WIMPs,

Vψ = Vf = 0 .
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In that case, the interaction of WIMPs with a nucleons is spin-dependent, the elastic WIMP-nucleus cross
section is not enhanced by A2, so the direct detection limits are not as strong as in the case of a spin-
independent interaction. An important player here is the LHC, whose limits are the most stringent [11],
see Fig. 17. We see from Fig. 17 that models with MZ′ ≳ 2.8 TeV are capable of producing the correct
abundance of dark matter and at the same time are not ruled out experimentally.

Fig. 17: Same as in Fig. 16 but for an axial-vector Z ′-portal in Eq. (42) with and Vψ = Vf = 0, Aψ = Af = 1.

Another way of comparing current sensitivities of direct and LHC searches is given in Figs. 18 and
19. The plots (compiled by the ATLAS collaboration) refer to the model in Eq. (42) with a vector boson
Z ′ and coupling constants with quarks gq, leptons gl and WIMPs gψ ≡ gχ whose values are written in the
figures. Figure 18 shows the limits in the vector case, Aψ = Af = 0, Vψ = Vf = 1, while Fig. 19 refers
to the axial-vector case Aψ = Af = 1, Vψ = Vf = 0. Clearly, the direct searches are more sensitive
than the LHC in the vector case (spin-independent WIMP-nucleon elastic cross section), while the LHC
wins in the axial-vector case (spin-dependent elastic cross section). Overall, the LHC has become an
important source of limits on WIMPs.

Besides direct and LHC searches for cosmic and collider-produced WIMPs, respectively, impor-
tant ways to address WIMPs are indirect searches. One approach is to search for high energy γ-rays
which are produced in annihilations of WIMPs in various cosmic sources, from dwarf galaxies, to the
Galactic center, to clusters of galaxies, and also a diffuse γ-ray flux coming from the entire Universe.
This approach is particularly relevant if the WIMP annihilation proceeds in s-wave: in that case the non-
relativistic annihilation rate is determined by Eq. (41), which is velocity-independent (modulo a possible
Sommerfeld enhancement, see Ref. [35] for a detailed discussion). On the contrary, for p-wave annihi-
lation the rate σv is proportional to v2, and since the velocities in the sources are small (v2 ≲ 10−6 as
compared to v2 ≃ 0.1 relevant to Eq. (41)), the annihilation cross section is strongly suppressed in the
present Universe. Thus, meaningful limits are obtained by γ-ray observatories for WIMPs annihilating
in s-wave. The current situation and future prospects are illustrated in Fig. 20, Ref. [10]. The assumption
that enters this compilation is that the major WIMP annihilation channel is bb̄. Clearly, already existing
instruments, and to even larger extent future experiments are sensitive to a wide class of WIMP models.

Indirect searches for dark matter WIMPs include the search for neutrinos coming from the centers
of the Earth and Sun (WIMPs may concentrate and annihilate there), see, e.g., Ref. [36], positrons and
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Fig. 18: LHC and direct detection limits in the case of spin-independent WIMP-nucleon elastic cross section.

Fig. 19: The same as in Fig. 18 but for spin-dependent WIMP-nucleon elastic cross section.

antiprotons in cosmic rays (produced in WIMP annihilations in our Galaxy), see, e.g., Ref. [37]. These
searches have produced interesting, albeit model-dependent limits on WIMP properties.
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Fig. 20: Limits on WIMP annihilation cross section obtained by γ-ray telescopes (solid lines) and projected
sensitivities of future γ-ray observatories (dashed lines). “NFW” and “Einasto” refer to different dark matter
profiles in galaxies. Dashed line “thermal DM” is the prediction from cosmology in Eq. (41) under assumption of
s-wave annihilation. Note the different units for ⟨σv⟩ used in this figure and in Eq. (41).

6.4 WIMP summary
– While the WIMP hypothesis was very attractive for long time, and the SUSY neutralino was

considered the best candidate, today the WIMP option is highly squeezed. On the one hand, the
parameter space of most of the concrete models is strongly constrained by direct, LHC and indirect
searches. On the other hand, SUSY searches at the LHC have moved colored superpartner masses
into the TeV region, thus making SUSY less attractive from the viewpoint of solving the gauge
hierarchy problem.

– This does not mean too much, however: we would like to discover one theory and one point in its
parameter space.

– Hunt for WIMPs continues in numerous directions. Their potential is far from being exhausted.
Concerning direct searches, we will soon face the neutrino floor problem—the situation where the
cosmic neutrino background will show up. It is time to look into ways to go beneath the neutrino
floor.

– With a null results of WIMP searches, it makes a lot of sense to strengthen also searches for other
dark matter candidates.

7 Axions
An Axion is a consequence of the Peccei–Quinn solution to the strong CP problem. It is a pseudo-
Nambu–Goldstone boson of an approximate Peccei–Quinn symmetry.

7.1 Strong CP problem
To understand the strong CP problem, we begin with considering QCD in the chiral limit mu = md =
ms = 0. The Lagrangian is

LQCD,m=0 = −
1

4
GaµνG

aµν +
∑
i

q̄iiγ
µDµqi
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= −1

4
GaµνG

aµν +
∑
i

(q̄L,iiγ
µDµqL,i + q̄R,iiγ

µDµqR,i) ,

where i = u, d, s. As it stands, it is invariant under independent transformations of left and right quark
fields qL,i and qR,i, each with arbitrary unitary matrices. Naively, this means that the theory possesses a
large symmetry

SU(3)L × U(1)L × SU(3)R × U(1)R = SU(3)L × SU(3)R × U(1)B × U(1)A (43)

where vector U(1)B is baryon number symmetry, qi → eiαqi, while axial U(1)A act as qi → eiβγ
5
qi.

The symmetry in Eq. (43) is spontaneously broken: there exist quark condensates in the QCD
vacuum:

⟨ūLuR⟩ = ⟨d̄LdR⟩ = ⟨s̄LsR⟩ =
1

2
⟨q̄q⟩ ∼ Λ3

QCD (44)

The unbroken symmetry SU(3)V rotates left and right quarks together (this is the well known flavor
SU(3)); U(1)B also remains unbroken.

Spontaneous breaking of a global symmetry always leads to the presence of a Nambu–Goldstone
bosons. Naively, one expects that there are 9 Nambu–Goldstone bosons: 8 of them come from symmetry
breaking SU(3)L × SU(3)R → SU(3)V , and one from U(1)B × U(1)A → U(1)B (since the origi-
nal symmetry is explicitly broken by quark masses, these should be pseudo-Nambu–Goldstone bosons
with non-zero mass). However, there are only 8 light pseudoscalar particles whose properties are well
described by Nambu–Goldstone theory: these are π±, π0, K±, K0, K̄0, η. Indeed, their masses squared
are proportional to quark masses, e.g., m2

π = (mu+md)⟨q̄q⟩/f2π . Importantly, yet another pseudoscalar
η′ is heavy and does not behave like pseudo-Nambu–Goldstone boson.

The reason for this mismatch (absence of the 9th pseudo-Nambu–Goldstone boson) is that U(1)A
is not, in fact, a symmetry of QCD even in the chiral limit. The corresponding axial current suffers, at
the quantum level, an Adler–Bell–Jackiw (triangle, or axial) anomaly,

∂µJ
µ
A ̸= 0 .

This means that the axial charge is not conserved, and thus the U(1)A is explicitly broken. We discuss
this phenomenon in little more detail in Section 10.2 in the context of electroweak baryon number non-
conservation.

The strong CP problem [38–40] emerges in the following way. One considers quark mass terms in
the Standard Model Lagrangian, which are obtained from the Yukawa interaction terms with a non-zero
Higgs expectation value. A common believe is that one can perform unitary rotations of quark fields to
make quark mass terms real (and in this way generate the Cabibbo–Kobayashi–Maskawa (CKM) matrix
in quark interactions with W -bosons). This is not quite true, precisely because one cannot freely use the
U(1)A-rotation. In fact, by performing a SU(3)L × SU(3)R ×U(1)B-rotation, one casts the mass term
of light quarks into the form

Lm = eiθ ·mCKM
ij q̄L,iqR,j + h.c. ,

where mCKM
ij = diag(mu,md,ms) is a real diagonal matrix, and θ is some phase. Naively, this phase

can be rotated away by an axial rotation of all three light quark fields, qi → e−iθγ5/2qi, but, as we
discussed, this is not an innocent field redefinition. What happens instead is that this transformation
generates an extra term in the QCD Lagrangian

∆L =
αs
8π
· θ ·GaµνG̃µν a , (45)

where αs is the SU(3)c gauge coupling, Gaµν is the gluon field strength, G̃µν a = 1
2ϵ
µνλρGaλρ is the dual

tensor. The term (45) is invariant under gauge symmetries of the Standard Model, but it violates P and

161



CP symmetry. A similar term, but with another parameter θ0 instead of θ, can already exist in the initial
QCD Lagrangian. The combined parameter

θ̄ = θ + θ0

is a “coupling constant” that cannot be removed by field redefinition, and QCD with a non-zero θ̄ violates
CP symmetry.

Let us show explicitly that the parameter θ̄ is physical, i.e., some physical quantities depend on θ̄.
To this end, we perform a chiral rotation of light quark fields qi → e+iθ̄γ5/2qi to get rid of the term (45)
and generate the phase in the quark mass terms

Lm =
∑
i

eiθ̄miq̄L,iqR,i + h.c.

Let us consider for simplicity two light quark flavors u and d with equal masses mu = md ≡ mq ∼
4 MeV and calculate the vacuum energy density in such a theory. We use perturbation theory in quark
masses, and work to the leading order. Then the θ̄-dependent part of the vacuum energy density is
V (θ̄) = −⟨Lm⟩. We recall that ⟨q̄q⟩ is non-zero in the chiral limit, see Eq. (44), and observe that it is
real, provided that the term (45) is absent (no spontaneous CP violation in the chiral limit). Importantly,
⟨q̄q⟩ does not have an arbitrary phase, since the arbitrariness of this phase would mean that U(1)A is a
(spontaneously broken) symmetry, which is not the case, as we discussed above. Thus, we obtain

V (θ̄) = −⟨Lm⟩ = −2mq⟨q̄q⟩ cos θ̄ = −
m2
πf

2
π

4
cos θ̄ . (46)

This shows explicitly that θ̄ is a physically relevant parameter. We note in passing that the expression
for V (θ̄) is, in fact, more complicated, especially for mu ̸= md and also for three quark flavors, but the
main property—minimum at θ̄ = 0—is intact.

Thus, θ̄ is a new coupling constant that can take any value in the interval (−π, π). There is no
reason to think that θ̄ = 0. The term (45) has a dramatic phenomenological consequence: it generates a
electric dipole moment (EDM) of the neutron dn, which is estimated as [41]

dn ∼ θ̄ · 10−16 · e · cm . (47)

The neutron EDM is strongly constrained experimentally,

dn ≲ 3 · 10−26 · e · cm . (48)

This leads to the bound on the parameter θ̄,

|θ̄| < 0.3 · 10−9 .

The problem to explain such a small value of θ̄ is precisely the strong CP problem.

A solution to this problem does not exist within the Standard Model. The solution is offered
by models with an axion. The idea of these models is to promote the θ̄-parameter to a field, which is
precisely the axion field. This can be done in various ways. Two well-known ones are Dine–Fischler–
Srednicki–Zhitnitsky [45,46] (DFSZ) and Kim–Shifman–Vainshtein–Zakharov [47,48] (KSVZ) mecha-
nisms9. In either case, one introduces a complex scalar field Φ and makes sure that without QCD effects,
the theory is invariant under global Peccei–Quinn U(1)PQ symmetry. Under this symmetry, the field
Φ transforms as Φ → eiαΦ. One also arranges that the QCD effects make this symmetry anomalous,

9Earlier and even simpler is Weinberg–Wilczek model [43, 44], but it is ruled out experimentally.
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very much like U(1)A, so that under the U(1)PQ-transformation, the Lagrangian obtains an additional
contribution

∆L = C
αs
8π
· α ·GaµνG̃µν a , (49)

where C is a model-dependent constant of order 1. A simple example is the KSVZ model: one adds a
new quark ψ which interacts with Φ as follows:

Lint = hΦψ̄LψR + h.c. (50)

where h is Yukawa coupling. Then the Peccei–Quinn transformation is

Φ→ eiαΦ , ψ → eiαγ
5/2ψ ,

while “our” quark fields are U(1)PQ-singlets. In the same way as above, this transformation induces the
term (49), as required.

Now, one arranges the scalar potential for Φ in such a way that the Peccei–Quinn symmetry is
spontaneously broken at very high energy. If not for QCD effects, the phase of Φ would be a massless
Nambu–Goldstone boson, the axion. At low energies one writes Φ = fPQ · eiθ(x), where fPQ is the
Peccei–Quinn vacuum expectation value. In the absence of QCD, the field θ is rotated away from the
non-derivative part of the action by the Peccei–Quinn rotation, while it reappears in the form of Eq. (49)
when QCD is switched on. We see that the parameter θ̄ is indeed promoted to a field, and this parameter
disappears upon shifting θ(x)→ θ(x)− θ̄; we are free to set θ̄ = 0. Now, there is a potential for the field
θ; it is given precisely by Eq. (46) with θ̄ replaced by θ. Hence, the low energy axion Lagrangian reads

La =
f2PQ
2
∂µθ∂

µθ − V (θ) .

As usual, the first term here comes from the kinetic term for the field Φ. We recall that the minimum of
V (θ) is at θ = 0; at this value CP symmetry is not violated, the strong CP problem is solved! We now
make a field redefinition, θ = a/fPQ and find from Eq. (46) that the quadratic axion Lagrangian is

La =
1

2
∂µa∂

µa− m2
a

2
a2 ,

where
ma =

mπfπ
2fPQ

. (51)

The axion is a pseudo-Nambu-Goldstone boson.

To summarize, for large Peccei–Quinn scale fPQ ≫ MW , the axion is a light particle whose
interactions with the Standard Model fields are very weak. Like for any Nambu–Goldstone field, the
tree-level interactions of the axion with quarks and leptons are described by the generalized Goldberger–
Treiman formula

Laf =
1

fPQ
· ∂µa · JµPQ . (52)

Here
JµPQ =

∑
f

e
(PQ)
f · f̄γµγ5f . (53)

The contributions of fermions to the current JµPQ are proportional to their PQ charges e(PQ)
f ; these

charges are model-dependent. There is necessarily an interaction of axions with gluons, see Eq. (49),

Lag = Cg
αs
8π
· a

fPQ
·GaµνG̃µν a (54)
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Finally, there is an axion-photon coupling

Laγ = gaγγ · aFµνF̃µν , gaγγ = Cγ
α

8πfPQ
, (55)

The dimensionless constants Cg and Cγ are model-dependent and, generally speaking, not very much
different from 1. The main free parameter is fPQ, while the axion mass is related to it via Eq. (51);
numerically,

ma = 6 µeV ·
(
1012 GeV
fPQ

)
. (56)

There are astrophysical bounds on the strength of axion interactions f−1
PQ and hence on the axion mass.

Axions in theories with fPQ ≲ 109 GeV, which are heavier than about 10−2 eV, would be intensely
produced in stars and supernovae explosions. This would lead to contradictions with observations. So,
we are left with very light axions, ma ≲ 10−2 eV. These very light and very weakly interacting axions
are interesting dark matter candidates10.

7.2 Axions in cosmology
Axions can serve as dark matter if they do not decay within the lifetime of the Universe. The main decay
channel of a light axion is the decay into two photons. The axion width is calculated as

Γa→γγ =
m3
a

4π

(
Cγ

θ

8πfPQ

)2

,

where the quantity in parenthesis is the axion-photon coupling, see Eq. (55). We recall the relation in
Eq. (51) and obtain an axion lifetime

τa =
1

Γa→γγ
=

64π3m2
πf

2
π

C2
γα

2m5
a

∼ 1024 s ·
(

eV
ma

)5

.

By requiring that this lifetime exceeds the age of the Universe, τa > t0 ≈ 14 billion years, we find a
very weak bound on the mass of an axion as a dark matter candidate, ma < 25 eV.

Thermal production of axions in the early Universe is not very relevant, since even if they were in
thermal equilibrium at high temperatures, their thermally produced number density at present is substan-
tially smaller than that of photons and neutrinos, and with their tiny mass they do not contribute much
into the energy density11. This is a welcome property, since thermally produced axions, if they composed
substantial part of dark matter, would be hot dark matter, which is ruled out.

There are at least two mechanisms of axion production in the early Universe that can provide not
only the right axion abundance, but also small initial velocities of axions. The latter property makes the
axion a cold dark matter candidate, despite its very small mass.

One mechanism [50–52] is called the misalignment scenario. It assumes that the Peccei–Quinn
symmetry is spontaneously broken before the beginning of the hot epoch, ⟨Φ⟩ ≠ 0. This is indeed the
case in the inflationary framework, if fPQ is higher than both the inflationary Hubble parameter (towards
the inflation end) and the reheat temperature of the Universe. In this case the axion field (the phase of the
field Φ) is homogeneous over the entire visible Universe, and initially it can take any value θ0 between
−π and π. As we have seen in Eq. (46), the axion potential is proportional to the quark condensate ⟨q̄q⟩.
This condensate vanishes at high temperatures, T ≫ ΛQCD, and the axion potential is negligibly small.
As the temperature decreases, the axion potential builds up. This is shown in Fig. 21. Accordingly, the

10We note in passing that axions may be heavy instead [49]. This case is irrelevant for dark matter.
11If axions were in thermal equilibrium, they contribute to the effective number of “neutrino” species Neff . This contribution,

however, is smaller than the current precision [3] of the determination of Neff , which is equal to ±0.17.
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Fig. 21: The axion potential at higher temperature (left) and lower temperature (right). The bullet shows the initial
value of the axion field. The field starts to roll down the potential at the time when m(T ) ∼ H(T ).

axion mass increases from zero toma; hereafterma denotes the zero-temperature axion mass. The axion
field practically does not evolve when ma(T )≪ H(T ) and at the time when ma(T ) ∼ H(T ) it starts to
roll down from the initial value θ0 to the minimum θ = 0 and then it oscillates. During all these stages of
evolution, the axion field is homogeneous in space. The homogeneous oscillating field can be interpreted
as a collection of scalar quanta with zero spatial momenta, the axion condensate. This is indeed cold
dark matter.

Let us estimate the present energy density of the axion field in this picture. The oscillations start
at the time tosc when ma(tosc) ∼ H(tosc). At this time, the energy density of the axion field is estimated
as

ρa(tosc) ∼ m2
a(tosc)a

2
0 = m2

a(tosc)f
2
PQθ

2
0 .

The number density of axions at rest at the beginning of oscillations is estimated to be

na(tosc) ∼
ρa(tosc)

ma(tosc)
∼ ma(tosc)f

2
PQθ

2
0 ∼ H(tosc)f

2
PQθ

2
0 .

This number density, as any number density of non-relativistic particles, then decreases as a−3. The
axion-to-entropy ratio at time tosc is

na
s
∼
H(tosc)f

2
PQ

2π2

45 g∗T
3
osc

· θ20 ≃
f2PQ√

g∗ToscMPl
· θ20 ,

where we use the usual relation H = 1.66
√
g∗T 2/MPl. The axion-to-entropy ratio remains constant

after the beginning of the oscillations, such that the present mass density of axions is

ρa,0 =
na
s
mas0 ≃

maf
2
PQ√

g∗ToscMPl
s0 · θ20 . (57)

To obtain a simple estimate, let us set Tosc ∼ ΛQCD ≃ 200 MeV and make use of Eq. (56). We find

Ωa ≡
ρa,0
ρc
≃

(
10−6 eV
ma

)
θ20 . (58)

The natural assumption about the initial phase is θ0 ∼ π/2. Hence, an axion of mass ma = (a few) ·
10−6 eV is a good dark matter candidate. Note that an axion of lower mass ma < 10−6 eV may also
serve as a dark matter particle, if for some reason the initial phase θ0 is much smaller than π/2.

A more precise estimate is obtained by taking into account the fact that that the axion mass
smoothly depends on temperature:

Ωa ≃ 0.2 · θ20 ·
(
4 · 10−6 eV

ma

)1.2
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We see that our crude estimate in Eq. (58) is fairly accurate.

We note that in the misalignment scenario, and in the inflationary framework, the initial phase θ0
is not quite homogeneous in space. At the inflationary stage, vacuum fluctuations of all massless or light
scalar fields get enhanced. As a result, scalar fields become inhomogeneous on scales exceeding the
inflationary Hubble scale H−1

infl. The amplitudes of these inhomogeneities (for canonically normalized
fields) are equal to Hinfl/(2π). Phase perturbations give rise to perturbations of the axion dark matter
energy density, which are uncorrelated with perturbations of conventional matter. These uncorrelated
dark matter perturbations are called isocurvature (or entropy) modes. Cosmological observations show
that their contribution cannot exceed a few per cent of the dominant adiabatic mode. This leads to a
constraint [53] on the inflationary Hubble parameter Hinfl or, equivalently, on the energy scale of the
inflation (energy density of the inflaton field)

V
1/4
infl ≲ 1013 GeV .

This makes the misalignment mechanism somewhat contrived. Reversing the argument, detection of the
dark matter entropy mode would be an interesting hint towards the nature of dark matter.

Another mechanism of axion production in the early Universe works under the assumption which
is opposite to the main assumption of the misalignment scenario. Namely, one assumes that the Peccei–
Quinn symmetry is restored at the beginning of the hot epoch, and gets spontaneously broken at a tem-
perature of order T ∼ fPQ at the hot stage. Then the phase of the field Φ is uncorrelated at distances
exceeding the size of the horizon at that time. In principle, one should be able to predict the value of
fPQ and hence ma in this scenario, since there is no uncertainty in the initial conditions. However, the
dynamics in this case is quite complicated. Indeed, the uncorrelated phase gives rise to the production of
global cosmic strings [54]—topological defects that exist in theories with a spontaneously broken global
U(1) symmetry (U(1)PQ in our case; for a discussion see, e.g., Ref. [55]). At the QCD transition epoch,
defects of another type, axion domain walls, are created. Then all these defects get destructed, giving
rise to the production of axions. The analysis of this dynamics has been made by various authors, see,
e.g., Refs. [56, 57], but it is fair to say that there is no compelling prediction for ma yet. A reasonable
estimate of the axion mass is (Ref. [56] claims ma = 2.6 · 10−5 eV)

ma = (a few) · 10−5 eV .

To end up with cosmological aspects of axion dark matter, we note that it has interesting phe-
nomenology in the present Universe. Axions tend to form mini-clusters [58] which can be disrupted and
form streams of dark matter [59]. Axions also form Bose-stars [60]. All this exotica is relevant to both
astrophysics and the axion search.

7.3 Axion search
The search for dark matter axions with mass ma ∼ 10−5 − 10−6 eV is difficult, but not impossible.
One way is to search for an axion-photon conversion in a resonant cavity filled with a strong magnetic
field. Indeed, in the background magnetic field, the axion-photon interaction in Eq. (55) leads to the
conversion a → γ, see Fig. 22. Axions of mass 10−5 − 10−6 eV are converted to photons of frequency
ν = m/(2π) = 2− 0.2 GHz (radio waves; m = 10−6 eV←→ ν = 240 MHz). To collect a reasonable
number of conversion photons, one needs cavities of a high quality factor Q, which have a small band-
widths. This means that one goes in small steps in ma, and the whole search takes a long time. This is
illustrated in Fig. 23.

The hunt for dark matter axions has been intensified recently. A new set of resonant cavity experi-
ments, CAPP, is under preparation, see Fig. 24. A new approach to search for heavier dark matter axions
with ma ≳ 4 · 10−5 eV has been suggested by the MADMAX interest group [64]. Other axion search
experiments are reviewed in Refs. [63, 65].
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a γ

B

Fig. 22: Axion-photon conversion in magnetic field.

Fig. 23: Limits on the axion-photon coupling for various axion masses. Lines labeled KSVZ and DSVZ refer to
predictions of the two axion models under the assumption that axions make the whole of dark matter. Shown are
limits published by ADMX collaboration in 2010 [61] (upper panel) and in 2018 [62]. Note the limited ranges of
masses spanned during the long period of time. Note also that the recent limits (lower panel) reach almost entire
range of axion-photon couplings predicted by various axion models.

167



10 6 10 5 10 4 10 3 10 2

mass / eV
10 17

10 16

10 15

10 14

10 13

10 12

10 11

g a
/G

eV
1

QCD Axions (DFSZ)
QCD Axions (KSVZ)
ORGAN Projected
CAPP Prospects (18T)
CAPP Prospects (25T)
HAYSTAC
ADMX
ADMX Prospects

Fig. 24: Future prospects of dark matter axion searches with resonant cavities [63].

7.4 Axion-like particles (ALPs)
There may exist light, weakly interacting scalar or pseudoscalar particles other than axions. They are
called axion-like particles, ALPs, and they may emerge as pseudo-Nambu–Goldstone bosons of some
new approximate global symmetry. We have discussed one example, fuzzy dark matter, in Section 5.2.
Unlike the axion case, where the axion-photon coupling is related, albeit in somewhat model-dependent
way, to its mass via Eqs. (55) and (56), the ALP mass and coupling to photons are both arbitrary pa-
rameters. Also, ALPs may interact with the Standard Model fermions, and that coupling is again a free
parameter. ALPs may or may not be dark matter candidates; searches for them is of interest indepen-
dently of the dark matter problem.

If the ALP is a dark matter candidate, instruments described in previous subsection—“haloscopes”—
are capable for searching for dark matter ALPs, and it makes sense to extend the search to an as wide
mass range as possible. In this regard, it is worth mentioning that the CASPEr experiment [66] is going
to be sensitive to very light ALPs, m ≲ 10−9 eV, and very small ALP-fermion couplings.

Bounds and prospects for search for light ALPs are summarized Fig. 26.

ALPs may be produced in the Sun, and their flux may be detectable by “helioscopes”, instruments
searching for the axion-photon conversion in the magnetic field of a magnet looking at the Sun. One such
instrument, CAST, has been operating for a long time, whereas other experiments, IAXO and TASTE,

γ

B

a γ

B

Fig. 25: “Light shining through a wall”: laser light shining from the left is converted into axions in the magnetic
field of a magnet placed before the wall, axions pass through the wall and are converted into photons by a magnet
behind the wall; the latter photons are detected by a highly sensitive photon detector.
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Fig. 26: Bounds on ALPs: ALP-photon coupling vs ALP mass [65]. The inclined straight strip with lines
labeled “KSVZ” and “DFSZ” is the range of predictions of axion models. Shaded regions are limits from existing
experiments, dashed lines show sensitivities of future searches.

are planned. Another way to search for ALPs makes use of the idea of “light shining through a wall”, see
Fig. 25; this idea is implemented in the ALPS-I, ALPS-II experiments. For a review of these approaches
see, e.g., Ref. [65]. Finally, ALPs can be searched in beam-dump experiments and in decays of K-
and B-mesons. Interesting limits are obtained by the CHARM and BaBar experiments, and a promising
planned experiment is SHiP at CERN [67].

8 Warm dark matter: sterile neutrinos
As we discussed in Section 5.1, there are arguments, albeit not yet conclusive, which favor warm, rather
than cold, dark matter. If WDM particles were in kinetic equilibrium at some epoch in the early Universe,
then their mass should be in the range of 3 − 10 keV. Reasonably well motivated particles of this mass
are sterile neutrinos.

Sterile neutrinos—massive leptons N which do not participate in the Standard Model gauge
interactions—are most probably required for giving masses to ordinary, “active” neutrinos. The masses
of sterile neutrinos cannot be predicted theoretically. Although sterile neutrinos of a mass of mN =
3− 10 keV are not particularly plausible from the particle physics prospective, they are not pathological
either. In the simplest case the creation of sterile neutrino states |N⟩ in the early Universe occurs due to
their mixing with active neutrinos |να⟩, α = e, µ, τ . In the approximation of mixing between two states
only, we have

|να⟩ = cos θ|ν1⟩+ sin θ|ν2⟩ , |N⟩ = − sin θ|ν1⟩+ cos θ|ν2⟩ ,
where |να⟩ and |N⟩ are active and sterile neutrino states, |ν1⟩ and |ν2⟩ are mass eigenstates of masses
m1 and m2, where we order m1 < m2, and θ is the vacuum mixing angle between sterile and active
neutrino. This mixing should be weak, θ ≪ 1, otherwise sterile neutrinos would decay too rapidly, see
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below. The heavy state is mostly the sterile neutrino |ν2⟩ ≈ |N⟩, and m2 ≡ mN is the sterile neutrino
mass.

The calculation of the sterile neutrino abundance is fairly complicated, and we do not reproduce it
here. If there is no sizeable lepton asymmetry in the Universe, the estimate is

ΩN ≃ 0.2 ·
(
sin θ

10−4

)2

·
( mN

1 keV

)2
. (59)

The energy spectrum of sterile neutrinos is nearly thermal. Thus, sterile neutrino of mass mν ≳ 1 keV
and small mixing angle θα ≲ 10−4 would serve as a dark matter candidate. However, this range of
masses and mixing angles is ruled out. The point is that due to its mixing with an active neutrino, the
sterile neutrino can decay into an active neutrino and a photon, see Fig. 27,

N → να + γ .

The sterile neutrino decay width is proportional to sin2 θ. If sterile neutrinos are dark matter particles,

N ν  l ν

W

sin θ

±

±± γ

Fig. 27: Sterile neutrino decay N → να + γ.

their decays would produce a narrow line in X-ray flux from the cosmos (the orbiting velocity of dark
matter particles in galaxies is small, v ≲ 10−3, hence the photons produced in their two-body decays are
nearly monochromatic). Leaving aside a hint towards a 3.5 keV line advocated in Refs. [68, 69] (see the
discussion of its status in Ref. [70]), one makes use of strong limits on such a line and translates them
into limits on sin2 θ. These limits as function of the sterile neutrino mass are shown in Fig. 28; they rule
out the range of masses that are giving the right mass density of dark matter, Eq. (59).

A (rather baroque) way out [71] is to assume that there is a fairly large lepton asymmetry in the
Universe. Then the oscillations of an active neutrino into a sterile neutrino may be enhanced due to the
MSW effect, as at some temperature they occur in the Mikheev–Smirnov resonance regime. In that case
the right abundance of sterile neutrinos is obtained at smaller θ, and may be consistent with the X-ray
bounds. This is also shown in Fig. 28.

Direct laboratory searches for a sterile neutrino are currently sensitive to substantially larger
sterile-active mixing angles. This is shown in Fig. 29 and also in Fig. 28, projected KATRIN limit,
dashed line.

9 Dark matter summary
In the first place, the mechanisms discussed here are by no means the only ones capable of producing
dark matter, and the particles we discussed are by no means the only dark matter candidates. Other dark
matter candidates include gravitinos, Q-balls, very heavy relics produced towards the end of inflation
(wimpzillas), primordial black holes, etc. Hence, even though there are grounds to hope that the dark
matter problem will be solved soon, there is no guarantee at all. Indeed, some of the candidates, like
a gravitino or a sterile wimpzilla, interact with Standard Model particles so weakly that their direct
discovery is hopeless. Concerning the candidates we have presented, we make a few comments:
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Fig. 28: Limits on sterile neutrino parameters (mass M , mixing angle squared θ2) obtained from X-ray tele-
scopes [70]. The straight solid line refers to sterile neutrino dark matter produced in non-resonant oscillations,
Eq. (59). The region between this line and the dotted line corresponds to the resonant mechanism that works in
a Universe with a fairly large lepton asymmetry. Vertical lines show very conservative limits coming from phase
space and Lyman-α considerations, see Section 5.1. Regions left of these lines are disfavored. In fact, for a non-
resonant mechanism, the phase space constraint is M ≳ 6 keV. The bullet with vertical interval shows the point
corresponding to a putative 3.5 keV line.

Fig. 29: Existing laboratory limits on a sterile neutrino mixing with an electron neutrino, |Ue|2 = θ2N νe
, and

projected sensitivity of the Troitsk nu-mass experiment [72].

– With the exception of axions/ALPs, the plausible candidates are strongly constrained already.
However, as we pointed out, this does not mean much, since the actual values of model parameters
may still be in the unexplored region of the parameter space.
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– The null results obtained so far suggest that it makes sense to look for less motivated candidates,
and employ diverse search strategies. This happens already: we note in this regard existing and
proposed experiments like NA64, SHiP, Troitsk nu-mass, Katrin, etc.

– Astrophysics and cosmology may well provide hints towards the nature of dark matter (CDM vs
WDM vs SIMP vs fuzzy DM, etc.)

– WIMPs are attacked from different directions. If dark matter particles are indeed WIMPs, and the
relevant energy scale is of order 1 TeV, then the Hot Big Bang theory will be probed experimentally
up to a temperature of (a few) · (10− 100) GeV and down to an age 10−9 − 10−11 s (compare to
1 MeV and 1 s accessible today through Big Bang nucleosynthesis). With microscopic physics to
be known from collider experiments, the WIMP abundance will be reliably calculated and checked
against the data from observational cosmology. Thus, the WIMP scenario offers a window to a
very early stage of the evolution of the Universe.

– Searches for dark matter axions, ALPs or a signal from a light sterile neutrino make use of com-
pletely different methods. Yet there is a good chance for discovery, if either of these particles make
dark matter.

All this shows that the situation with dark matter is controversial but extremely interesting.

10 Baryon asymmetry of the Universe
As we discussed in Section 2.6, the baryon asymmetry of the Universe is characterized by the baryon-
to-entropy ratio, which at high temperatures is defined as follows,

∆B =
nB − nB̄

s
=

1

3

nq − nq̄
s

,

where nq and nq̄ are the number densities of quarks and antiquarks, respectively (baryon number of a
quark equals 1/3), and s is the entropy density. If the baryon number is conserved and the Universe
expands adiabatically (which is the case at least after the electroweak epoch, T ≲ 100 GeV), ∆B is
time-independent and equal to its present value ∆B ≈ 0.86 · 10−10, see Eq. (24). At early times, at
temperatures well above 100 MeV, the cosmic plasma contained many quark-antiquark pairs, whose
number density was of the order of the entropy density, nq + nq̄ ∼ s. Hence, in terms of quantities
characterizing the very early epoch, the baryon asymmetry may be expressed as

∆B ∼
nq − nq̄
nq + nq̄

.

We see that there was one extra quark per about 10 billion quark-antiquark pairs! It is this tiny excess
that is responsible for the entire baryonic matter in the present Universe: as the Universe expanded and
cooled down, antiquarks annihilated with quarks, and only the excessive quarks remained and formed
baryons.

There is no logical contradiction to suppose that the tiny excess of quarks over antiquarks was
built in as an initial condition. This would be very contrived, however. Furthermore, the inflationary
scenario predicts that the Universe was baryon-symmetric at inflation (no quarks, no antiquarks). Hence,
the baryon asymmetry must be explained dynamically [73, 74], by some mechanism of its generation in
the early Universe.

10.1 Sakharov conditions
There are three necessary conditions for the generation of a baryon asymmetry from an initially baryon-
symmetric state. These are the Sakharov conditions:

(i) baryon number non-conservation;
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(ii) C- and CP violation;

(iii) deviation from a thermal equilibrium.

All three conditions are easily understood. (i) If baryon number were conserved, and the initial
net baryon number in the Universe vanishes, the Universe today would still be baryon-symmetric. (ii)
If C or CP were conserved, then the rate of reactions with particles would be the same as the rate of
reactions with antiparticles, and no asymmetry would be generated. (iii) Thermal equilibrium means that
the system is stationary (no time-dependence at all). Hence, if the initial baryon number is zero, it is zero
forever, unless there are deviations from the thermal equilibrium. Furthermore, if there are processes that
violate baryon number, and the system approaches thermal equilibrium, then the baryon number tends to
be washed out rather than generated (with a qualification, see below).

At the epoch of the baryon asymmetry generation, all three Sakharov conditions have to be met
simultaneously. There is a qualification, however. These conditions would be literally correct if there
were no other relevant quantum numbers that characterize the cosmic medium. In reality, however,
lepton numbers also play a role. As we will see shortly, baryon and lepton numbers are rapidly violated
by anomalous electroweak processes at temperatures above, roughly, 100 GeV. What is conserved in the
Standard Model is the combination (B − L), where L is the total lepton number12. So, there are two
options. One is to generate the baryon asymmetry at or below the electroweak epoch, T ≲ 100 GeV, and
make sure that the electroweak processes do not wash out the baryon asymmetry after its generation. This
leads to the idea of electroweak baryogenesis (another possibility is Affleck–Dine baryogenesis [75]).
Another is to generate (B − L)-asymmetry before the electroweak epoch, i.e., at T ≫ 100 GeV: if the
Universe is (B −L)-asymmetric above 100 GeV, the electroweak physics reprocesses (B −L) partially
into baryon number and partially into lepton number, so that in the thermal equilibrium with conserved
(B − L) one has

B = C · (B − L) , L = (C − 1) · (B − L) , (60)

where C is a constant of order 1 (C = 28/79 in the Standard Model at T ≳ 100 GeV). In the second
scenario, the first Sakharov condition applies to (B − L) rather than baryon number itself.

There are two most commonly discussed mechanisms of baryon number non-conservation. One
emerges in Grand Unified Theories and is due to the exchange of super-massive particles. The scale of
these new, baryon number violating interactions is the Grand Unification scale, presumably of the order
of MGUT ≃ 1016 GeV. It is not very likely, however, that the baryon asymmetry was generated due
to this mechanism: the relevant temperature would have to be of order MGUT , and so a high reheat
temperature after inflation is difficult to obtain.

Another mechanism is non-perturbative [38] and is related to the triangle anomaly in the baryonic
current (a keyword here is “sphaleron” [76, 77]). It exists already in the Standard Model, and, possibly
with mild modifications, operates in all its extensions. The two main features of this mechanism, as
applied to the early Universe, is that it is effective over a wide range of temperatures, 100 GeV < T <
1011 GeV, and, as we pointed out above, that it conserves (B − L). A detailed analysis can be found in
the book [78] and in references therein, as well as in the lecture notes of a similar School [31]. Here we
only sketch its main ingredients.

10.2 Electroweak baryon number non-conservation
Let us consider the baryonic current,

Bµ =
1

3
·
∑
i

q̄iγ
µqi ,

where the sum runs over all quark flavors. Naively, it is conserved, but at the quantum level its diver-
gence is non-zero because of the triangle anomaly (we discussed similar effect in the QCD context in

12Masses of neutrinos, if Majorana, violate lepton number. This effect, however, is by itself negligible.
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Section 7.1; there, the axial current JµA is not conserved even in the chiral limit),

∂µB
µ =

1

3
· 3colors · 3generations ·

g2

16π2
F aµνF̃

aµν ,

where F aµν and g are the field strength of the SU(2)W gauge field and the SU(2)W gauge coupling,
respectively, and F̃ aµν = 1

2ϵ
µνλρF aλρ is the dual tensor, cf. Eq. (45). Likewise, each leptonic current

(α = e, µ, τ ) is anomalous in the Standard Model (we disregard here neutrino masses and mixings,
which violate lepton numbers too),

∂µL
µ
α =

g2

16π2
F aµνF̃

aµν . (61)

A non-trivial fact is that there exist large field fluctuations, F aµν(x, t) ∝ g−1, such that

Q ≡
∫

d3xdt
g2

16π2
· F aµνF̃ aµν ̸= 0 . (62)

Furthermore, for any physically relevant fluctuation, the value of Q is integer (“physically relevant”
means that the gauge field strength vanishes at infinity in space-time). In four space-time dimensions
such fluctuations exist only in non-Abelian gauge theories.

Suppose now that a fluctuation with non-vanishing Q has occurred. Then the baryon numbers in
the end and beginning of the process are different,

Bfin −Bin =

∫
d3xdt ∂µB

µ = 3Q . (63)

Likewise
Lα, fin − Lα, in = Q . (64)

This explains the selection rule mentioned above: B is violated, (B − L) ≡ (B −∑
α Lα) is not.

At zero temperature, the field fluctuations that induce baryon and lepton number violation are
vacuum fluctuations are called instantons [79]. Since these are large field fluctuations, their probability
is exponentially suppressed. The suppression factor in the Standard Model is13

e−
16π2

g2 ∼ 10−165 .

Therefore, the rate of baryon number violating processes at zero temperature is totally negligible. On the
other hand, at high temperatures there are large thermal fluctuations (“sphalerons”) whose rate is not nec-
essarily small. And, indeed, B-violation in the early Universe is rapid as compared to the cosmological
expansion at sufficiently high temperatures, provided that (see Ref. [80] for details)

⟨ϕ⟩T < T , (65)

where ⟨ϕ⟩T is the Englert–Brout–Higgs expectation value at temperature T .

10.3 Electroweak baryogenesis: what can make it work
Rapid electroweak baryon number non-conservation at high temperatures appears to open up an intrigu-
ing possibility that the baryon asymmetry was generated just by these electroweak processes. This should
occur at electroweak temperatures, TEW ∼ 100 GeV, since whatever baryon asymmetry is generated by
electroweak processes at higher temperatures, it would be washed out by the same processes as the
Universe cools down to TEW . There are two obstacles, however:

13Similar fluctuations of the gluon field in QCD are not suppressed, since QCD is strongly coupled at low energies. This
explains why the axial current Jµ

A is not conserved, even approximately.
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– CP violation (2nd Sakharov condition) is too weak in the Standard Model: the CKM mechanism
alone is insufficient to generate an realistic value of the baryon asymmetry.

– Departure from thermal equilibrium (3d Sakharov condition) is problematic as well. At tempera-
tures of order TEW ∼ 100 GeV, the Universe expands very slowly: the cosmological time scale at
these temperatures,

H−1(TEW ) =
M∗

Pl

T 2
EW

∼ 10−10 s , (66)

is very large by the electroweak physics standards.

Let us discuss what can make the electroweak mechanism work. We begin with the second obsta-
cle. It appears that the only way to have strong departure from a thermal equilibrium at TEW ∼ 100 GeV
is a first order phase transition. Indeed, at temperatures well above 100 GeV electroweak symmetry is
restored, and the expectation value of the Englert–Brout–Higgs field ϕ is zero, while it is non-zero in
vacuum.

Veff(φ) Veff(φ)

φ φ

Fig. 30: Effective potential as function of φ at different temperatures. Left: first order phase transition. Right:
second order phase transition. Upper curves correspond to higher temperatures. Black blobs show the expecta-
tion value of φ in thermal equilibrium. The arrow in the left panel illustrates the transition from the metastable,
supercooled state to the ground state.

Continuing to use somewhat sloppy terminology, we recall that in thermal
equilibrium any system is at the global minimum of its free energy. To fig-
ure out the expectation value of φ at a given temperature, one introduces the
temperature-dependent effective potential Veff (φ;T ), which is equal to the
free energy density in the system under the constraint that the average field is
equal to a prescribed value φ, but otherwise there is thermal equilibrium. Then
the global minimum of Veff at given temperature is at the equilibrium value
of φ, while local minima correspond to metastable states.

The interesting case for us is the first order phase transition. In this case, the
system evolves as follows. At high temperatures, there exists one minimum
of Veff at φ = 0, and the expectation value of the Englert–Brout–Higgs field
is zero. As the temperature decreases, another minimum appears at finite φ,
and then becomes lower than the minimum at φ = 0, see left panel of Fig. ??.
However, the minima with φ = 0 and φ != 0 are separated by a barrier of Veff ,
the probability of the transition from the phase φ = 0 to the phase φ != 0 is very
small for some time, and the system gets overcooled. The transition occurs
when the temperature becomes sufficiently low, and the transition probability
sufficiently high. This is to be contrasted to the case, e.g., of the second order
phase transition, right panel of Fig. ??. In the latter case, the field slowly
evolves, as the temperature decreases, from zero to non-zero vacuum value,
and the system remains very close to thermal equilibrium at all times.

The dynamics of the first order phase transition is highly inequilibrium. Ther-
mal fluctuations spontaneously create bubbles of the new phase inside the old
phase. These bubbles then grow, their walls eventually collide, and the new
phase finally occupies entire space. The Universe boils, Fig. ??. In the cos-
mological context, this process happens when the bubble nucleation rate per
Hubble time per Hubble volume is roughly of order 1, i.e., when a few bubbles
are created in Hubble volume in Hubble time. The velocity of the bubble wall
in the relativistic cosmic plasma is roughly of the order of the speed of light
(in fact, it is somewhat smaller, from 0.1 to 0.01). Hence, the bubbles grow
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Fig. 30: Effective potential as function of ϕ at different temperatures. Left: first order phase transition. Right:
second order phase transition. Upper curves correspond to higher temperatures. Black blobs show the expecta-
tion value of ϕ in thermal equilibrium. The arrow in the left panel illustrates the transition from the metastable,
supercooled state to the ground state.

This suggests that there may be a phase transition from the phase with ⟨ϕ⟩ = 0 to the phase with
⟨ϕ⟩ ̸= 0. In fact, the situation is subtle here, as ϕ is not gauge invariant, and hence cannot serve as
an order parameter, so the notion of phases with ⟨ϕ⟩ = 0 and ⟨ϕ⟩ ≠ 0 is vague. This is similar to a
liquid-vapor system, which does not have an order parameter and, depending on the pressure, may or
may not undergo a vapor-liquid phase transition as the temperature decreases.

Continuing to use somewhat sloppy terminology, we recall that in thermal equilibrium any system
is at the global minimum of its free energy. To figure out the expectation value of ϕ at a given temperature,
one introduces the temperature-dependent effective potential Veff(ϕ;T ), which is equal to the free energy
density in the system under the constraint that the average field is equal to a prescribed value ϕ, but
otherwise there is thermal equilibrium. Then the global minimum of Veff at a given temperature is at the
equilibrium value of ϕ, while local minima correspond to metastable states.

The interesting case for us is a first order phase transition. In this case, the system evolves as
follows. At high temperatures, there exists one minimum of Veff at ϕ = 0, and the expectation value of
the Englert–Brout–Higgs field is zero. As the temperature decreases, another minimum appears at finite
ϕ, and then becomes lower than the minimum at ϕ = 0, see left panel of Fig. 30. However, the minima
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Fig. 31: First order phase transition: boiling Universe.

large before their walls collide: their size at collision is roughly of order of
the Hubble size (in fact, one or two orders of magnitude smaller). In other
words, the biblles are born microscopic, their initial sizes are determined by
the electroweak scale and are roughly of order

Rinit ∼ (100 GeV)−1 ∼ 10−16 cm .

Their final sizes at the time the bubble walls collide are of order

Rfin ∼ 10−2 − 10−3 cm ,

as follows from (??). One may hope that the baryon asymmetry may be gen-
erated during this inequilibrium process.

Does this really happen in the Standard Model? Unfortunately, no: with the
Higgs boson mass mH = 125 GeV, there is no phase transition in the Standard
Model at all; there is smooth crossover instead [?].

Nevertheless, the first order phase transition may be characteristic of some
extensions of the Standard Model. Generally speaking, one needs the existence
of new bosonic fields that have large enough couplings to the Englert–Brout–
Higgs field(s). To have an effect on the dynamics of the transition, the new
bosons must be present in the cosmic plasma at the transition temperature,
TEW ∼ 100 GeV, so their masses should not be very much higher than TEW .

Let us turn to the first obstacle, CP-violation. In the course of the first or-
der phase transition, the baryon asymmetry is generated in the interactions of
quarks and leptons with the bubble walls. Therefore, CP-violation must occur
at the walls. Now, the walls are made of the scalar field(s), and this points
towards the necessity of CP-violation in the scalar sector, which may only be
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Fig. 31: First order phase transition: a boiling Universe.

with ϕ = 0 and ϕ ̸= 0 are separated by a barrier of Veff , the probability of the transition from the phase
ϕ = 0 to the phase ϕ ̸= 0 is very small for some time, and the system gets overcooled. The transition
occurs when the temperature becomes sufficiently low, and the transition probability sufficiently high.
This is to be contrasted to the case, e.g., of the second order phase transition, right panel of Fig. 30. In the
latter case, the field slowly evolves, as the temperature decreases, from zero to non-zero vacuum value,
and the system remains very close to thermal equilibrium at all times.

The dynamics of a first order phase transition is highly inequilibrium. Thermal fluctuations spon-
taneously create bubbles of the new phase inside the old phase. These bubbles then grow, their walls
eventually collide, and the new phase finally occupies the entire space. The Universe boils, Fig. 31.
In the cosmological context, this process happens when the bubble nucleation rate per Hubble time per
Hubble volume is roughly of order 1, i.e., when a few bubbles are created in a Hubble volume in Hubble
time. The velocity of the bubble wall in the relativistic cosmic plasma is roughly of the order of the
speed of light (in fact, it is somewhat smaller, a factor from 0.1 to 0.01). Hence, the bubbles grow large
before their walls collide: their size at collision is roughly of order of the Hubble size (in fact, one or
two orders of magnitude smaller). In other words, the bubbles are born microscopic, their initial sizes
are determined by the electroweak scale and are roughly of order

Rinit ∼ (100 GeV)−1 ∼ 10−16 cm .

Their final sizes at the time the bubble walls collide are of order

Rfin ∼ 10−2 − 10−3 cm ,

as follows from (66). One may hope that the baryon asymmetry may be generated during this inequilib-
rium process.

Does this really happen in the Standard Model? Unfortunately, no: with the Higgs boson mass
mH = 125 GeV, there is no phase transition in the Standard Model at all; there is smooth crossover
instead [81].

Nevertheless, the first order phase transition may be characteristic of some extensions of the Stan-
dard Model. Generally speaking, one needs the existence of new bosonic fields that have large enough
couplings to the Englert–Brout–Higgs field(s). To have an effect on the dynamics of the transition, the
new bosons must be present in the cosmic plasma at the transition temperature, TEW ∼ 100 GeV, so
their masses should not be very much higher than TEW .

Let us turn to the first obstacle, CP violation. In the course of the first order phase transition, the
baryon asymmetry is generated in the interactions of quarks and leptons with the bubble walls. There-
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fore, CP violation must occur at the walls. Now, the walls are made of the scalar field(s), and this
points towards the necessity of CP violation in the scalar sector, which may only be the case in a theory
containing scalar fields other than the Standard Model Englert–Brout–Higgs field.

In concrete models with successful electroweak baryogenesis, CP violation responsible for the
baryon asymmetry often leads to sizeable electric dipole moments (EDMs) of neutron and electron. The
limits on EDMs are so strong that many such models are actually ruled out. An example is the non-
minimal split supersymmetric Standard Model, for which only a few years ago successful electroweak
baryogenesis [82] was demonstrated. The predictions of this model for electron EDM are shown in
Fig. 32. In 2016, when Ref. [82] was written, part of the parameter space was still allowed, but the recent
ACME limit [83]

de < 1.1 · 10−29e · cm

rules out the entire parameter space with efficient electroweak baryogenesis.
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Fig. 32: Electron EDM predicted by the Non-Minimal Split Supersymmetric Standard Model with parameters
suitable for electroweak baryogenesis. The current limit de < 1.1 · 10−29e · cm rules out all these models.

To summarize, electroweak baryogenesis requires a considerable extension of the Standard Model,
often with masses of new particles in the TeV range or lower. Hence, this mechanism will most likely
be ruled out or confirmed by the LHC or its successors. Moreover, limits on electron and neutron EDMs
make the design of such an extension very difficult. Still, the issue is not decided yet, and the effort to
construct the models with successful electroweak baryogenesis continues [84].

10.4 Baryogenesis in sterile neutrino oscillations
Let us mention another baryogenesis mechanism interesting from the viewpoint of terrestrial experi-
ments, namely, leptogenesis in oscillations of sterile neutrinos [86, 87]. The general idea of leptoge-
nesis [85] is that one or another mechanism generates a lepton asymmetry in the Universe before the
electroweak transition, and electroweak sphalerons automatically reprocess part of the lepton asymmetry
into a baryon asymmetry, see Eq. (60). The particular version of leptogenesis that we briefly discuss
here assumes that there are at least two heavy Majorana neutrinos in the mass range 1−10 GeV, and that
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there is strong enough CP violation in the sterile neutrino sector. Then asymmetries in the sterile neutrino
sector may be generated and transmitted to active neutrino sector via Yukawa interactions responsible for
see-saw masses of the active neutrinos. In the case when there are effectively two sterile neutrino species
participating in leptogenesis, the correct value of the baryon asymmetry is obtained when the two sterile
neutrinos are nearly degenerate,

|M2
1 −M2

2 |
M2

1,2

≲ 10−6 ,

which makes the model rather contrived. However, with three sterile neutrino species, the degeneracy is
no longer required [88]. The sterile neutrinos of masses in the GeV range and parameters suitable for
leptogenesis in their oscillations are typically accessible through rare decays of B-mesons, Z-bosons, as
well as in future beam dump experiments such as SHiP.

An important point concerning this and virtually all other leptogenesis mechanisms is that CP
violation in the sector of active neutrinos, which will hopefully be discovered in oscillation experiments,
does not have direct relevance to the leptogenesis: the value of lepton and hence baryon asymmetry is
determined by the CP-violating parameters in the sterile neutrino sector.

10.5 Baryogenesis summary
We briefly considered here two mechanisms of baryogenesis which may be directly tested, at least in
principle, in particle physics experiments. These are certainly not the only mechanisms proposed, and,
arguably, not the most plausible mechanisms. One particularly strong competitor is thermal leptogene-
sis [85], for reviews see, e.g., Ref. [89]. Its idea is that the lepton asymmetry is generated in decays of
heavy Majorana sterile neutrinos. The masses of these new particles are well above the experimentally
accessible energies. On the one hand, this is in line with the see-saw idea; on the other, direct proof of
this mechanism does not appear possible. Interestingly, thermal leptogenesis works only with light active
neutrinos: the neutrino masses inferred from cosmology and oscillation experiments are just in the right
ballpark.

There are numerous alternative mechanisms of baryogenesis. To name a few, we have already
mentioned the Affleck–Dine baryogenesis [75]; early discussions concentrated mostly on GUT baryo-
genesis [90]; there is even a possibility to generate the baryon asymmetry at the inflationary epoch [91].
Unfortunately, most of these proposals will be very difficult, if at all possible, to test. So, there is no
guarantee at all that we will understand in foreseeable future the origin of matter in the Universe.

11 Before the hot epoch
With the Big Bang nucleosynthesis theory and observations, and due to evidence, albeit indirect, for
relic neutrinos, we are confident of the theory of the early Universe at temperatures up to T ≃ 1 MeV,
which correspond to age of t ≃ 1 s. With the LHC, we are learning the Universe up to temperatures
T ∼ 100 GeV and down to an age of t ∼ 10−10 s. Are we going to have a handle on even earlier epoch?

Let us summarize the current status of this issue.

– On the one hand, we are confident that the hot cosmological epoch was not the first one; it was
preceded by some other, entirely different stage.

– On the other hand, we do not know for sure what was that earlier epoch; an excellent guess is
inflation, but alternative scenarios are not ruled out.

– It is conceivable (although not guaranteed) that future cosmological observations will enable us to
understand the nature of the pre-hot epoch.

All this makes the situation very interesting. It is fascinating that by studying the Universe at large
we may be able to learn about the earliest cosmological epoch which happened at an extremely high
energy density and expansion rate of our Universe.
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11.1 Cosmological perturbations
The key players in this Section are cosmological perturbations. These are inhomogeneities in the energy
density and associated gravitational potentials, in the first place. It is these inhomogeneities that, among
other things, serve as seeds for structures—galaxies, clusters of galaxies, etc. This type of inhomo-
geneities is called scalar perturbations, as they are described by 3-scalars. There may exist perturbations
of another type, called tensor; these are primordial gravity waves. Tensor modes have not been observed
(yet), so we mostly concentrate on scalar perturbations. While perturbations of a present size of the
order of 10 Mpc and smaller have large amplitudes today and are non-linear, amplitudes of all known
perturbations were small in the past, and a linearized theory is applicable. Indeed, CMB temperature
anisotropy tells us that the perturbations at the recombination epoch were roughly at the level of

δ ≡ δρ

ρ
= 10−4 − 10−5 . (67)

We are sloppy here in characterizing the scalar perturbations by the density contrast δρ/ρ; we are going
to skip technicalities and use this notation in what follows.

Linearized perturbations are most easily studied in momentum space, since the background FLRW
metric in Eq. (1) does not explicitly depend on x. The spatial Fourier transformation reads

δ(x, t) =

∫
eikxδ(k, t) d3k .

Each Fourier mode δ(k, t) obeys its own linearized equation and hence can be treated separately. Note
that the physical distance between neighboring points is a(t)dx. Thus, k is not the physical momentum
(wavenumber); the physical momentum is k/a(t). While for a given mode the comoving (or coordinate)
momentum k remains constant in time, the physical momentum gets redshifted as the Universe expands,
see also Section 2.1. In what follows we set the present value of the scale factor equal to 1, a0 ≡ a(t0) =
1; then k is the present physical momentum and 2π/k is the present physical wavelength, which is also
called comoving wavelength.

Properties of scalar perturbations are measured in various ways. Perturbations of fairly large
spatial scales (fairly low k) give rise to a CMB temperature anisotropy and polarization, so we have
very detailed knowledge of them. Somewhat shorter wavelengths are studied by analysing distributions
of galaxies and quasars at present and in the relatively near past. There are several other methods,
some of which can probe even shorter wavelengths. There is good overall consistency of the results
obtained by different methods, so we have a reasonably good understanding of many aspects of the
scalar perturbations.

The cosmic medium in our Universe has several components that interact only gravitationally:
baryons, photons, neutrinos, dark matter. Hence, there may be and, in fact, there are perturbations in
each of these components. As we pointed out in Section 4, electromagnetic interactions between baryons,
electrons and photons were strong before recombination, so to a reasonable approximation these species
made a single fluid, and it is appropriate to talk about perturbations in this fluid. After recombination,
baryons and photons evolved independently.

11.2 Subhorizon and superhorizon regimes
It is instructive to compare the wavelength of a perturbation with the horizon size. To this end, recall
(see Section 2.6) that the horizon size lH(t) is the size of the largest region which is causally connected
by the time t, and that

lH(t) ∼ H−1(t) ∼ t
at the radiation domination epoch and later, see Eq. (18). The latter relation, however, holds under the
assumption that the hot epoch was the first one in cosmology, i.e., that the radiation domination started
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right after the Big Bang. This assumption is at the heart of what can be called the hot Big Bang theory. We
will find that this assumption in fact is not valid for our Universe; we are going to see this ad absurdum,
so let us stick to the hot Big Bang theory for the time being.

The physical wavelength of a perturbation grows slower than the horizon size. As an example, at
the radiation domination epoch

λ(t) =
2πa(t)

k
∝
√
t ,

while at the matter domination epoch λ(t) ∝ t2/3. For an obvious reason, the modes with λ(t) ≪
H−1(t) and λ(t) ≫ H−1(t) are called subhorizon and superhorizon at the time t, respectively. We
are interested in the modes which are subhorizon today; longer modes are homogeneous throughout
the visible Universe and are not observed. However, the wavelengths which are subhorizon today were
superhorizon at some earlier epoch. In other words, the physical momentum k/a(t) was smaller than
H(t) at early times; at the time t× such that

q(t×) ≡
k

a(t×)
= H(t×) ,

the mode entered the horizon, and after that evolved in the subhorizon regime k/a(t) ≫ H(t). It is
straightforward to see that for all cosmologically interesting wavelengths, the horizon crossing occurs
at temperatures below 1 MeV, i.e., at the time we are confident about (repeating the calculation of Sec-
tion 5.1 we find that the present wavelength of order 100 kpc entered the horizon at T ∼ 4 keV). So,
there is no guesswork at this point.

Another way to look at the superhorizon–subhorizon behaviour of perturbations is to introduce a
new time coordinate (cf. Eq. (16)),

η =

∫ t

0

dt′

a(t′)
. (68)

Note that this integral converges at the lower limit in the hot Big Bang theory. In terms of this time
coordinate, the FLRW metric in Eq. (1) reads

ds2 = a2(η)(dη2 − dx2) .

In coordinates (η,x), the light cones ds = 0 are the same as in Minkowski space, and η is the coordi-
nate size of the horizon, see Fig. 33. Every mode of perturbation has the time-independent coordinate
wavelength 2π/k, and at small η it is in the superhorizon regime, 2π/k ≫ η.

11.3 Hot epoch was not the first
This picture falsifies the hot Big Bang theory. Indeed, within this theory, we see the horizon at recombi-
nation lH(trec) at an angle ∆θ ≈ 2◦, as schematically shown in Fig. 33. By causality, at recombination
there should be no perturbations of larger wavelengths, as any perturbation can be generated within the
causal light cone only. In other words, the CMB temperature must be isotropic when averaged over
angular scales exceeding 2◦; there should be no cold or warm regions of an angular size larger than 2◦.

We now take a look at the CMB photographic picture shown in Fig. 2. It is seen by naked eye that
there are cold and warm regions whose angular size much exceeds 2◦; in fact, there are perturbations of
all angular sizes up to those comparable to the entire sky. We come to an important conclusion: the scalar
perturbations were built in at the very beginning of the hot epoch, i.e., the cosmological perturbations
were generated before the hot epoch.

Another manifestation of the fact that the scalar perturbations were there already at the beginning
of the hot epoch is the existence of peaks in the angular spectrum of the CMB temperature, as seen in
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Fig. 3. In general, perturbations in the baryon-photon medium before recombination are acoustic waves
(cf. Section 4.3),

δB(k, t) = A(k)eikx cos

[∫ t

0
vs

k

a(t′)
dt′ + ψk

]
, (69)

where vs is the sound speed,A(k) is the time-independent amplitude and ψk is a time-independent phase.
This expression is valid, however, in the subhorizon regime only, i.e., at late times. The two solutions in
the superhorizon regime at the radiation domination epoch are

δB(t) = const , (70a)

δ(t)B =
const
t3/2

. (70b)

If the perturbations existed at the very beginning of the hot epoch, they were in the superhorizon regime
at sufficiently early times, and were described by the solutions in Eq. (70). The consistency of the
whole cosmology requires that the amplitude of the perturbations was small at the beginning of the hot
stage. The solution in Eq. (70b) rapidly decays away, and towards the horizon entry the perturbation
is in constant mode in Eq. (70a). So, the initial condition for the further evolution is unique modulo
the amplitude A(k), and hence the phase ψ(k) is uniquely determined: we have ψ(k) = 0 for modes
entering horizon at the radiation domination epoch. As discussed in Section 4.3, this leads to oscillatory
behavior of baryon-photon perturbations at the recombination epoch as function of k, and translates into
oscillations of the CMB temperature multipole Cl as function of multipole number l.

Were the perturbations generated in a causal way at the radiation domination epoch, they would
be always in the subhorizon regime. In that case the solutions in Eq. (70) would be irrelevant, and there
would be no reason for a particular choice of phase ψk in Eq. (69). One would rather expect that ψk is a
random function of k, so δB(k, tr) would not oscillate as function of k, and oscillations of Cl would not
exist. This is indeed the case for specific mechanisms of the generation of density perturbations at hot
epoch [92].

We conclude that the facts that the CMB angular spectrum has oscillatory behavior and that there
are sizeable temperature fluctuations at l < 50 (angular scale greater than the angular size 2◦ of the

Fig. 33: Causal structure of space-time in the hot Big Bang theory. ηr and η0 are conformal times at recombination
and today, respectively.
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horizon at the recombination epoch) unambiguously tell us that the density perturbations were indeed
in the superhorizon regime at the hot cosmological stage. The hot epoch was preceded by some other
epoch—the epoch of the generation of perturbations.

11.4 Inflation or not?
The pre-hot epoch must be long in terms of the time variable η introduced in Eq. (68). What we would
like to have is that the large part of the Universe be causally connected towards the end of that epoch,
see Fig. 34. Long duration in η does not necessarily mean long duration in physical time t; in fact, the

Fig. 34: Causal structure of space-time in the real Universe

pre-hot epoch may be very short in physical time.

An excellent hypothesis on the pre-hot stage is inflation, the epoch of nearly exponential expan-
sion [93],

a(t) = e
∫
Hdt , H ≈ const .

If this epoch lasts many Hubble times, the whole visible Universe, and likely much a greater region of
space, is causally connected already at very early times.

From the viewpoint of perturbations, the physical momentum q(t) = k/a(t) decreases (gets red-
shifted) at the time of inflation, while the Hubble parameter stays almost constant. So, every mode is
first in the subhorizon regime (q(t)≫ H(t)), and later in the superhorizon regime (q(t)≪ H(t)). This
situation is opposite to what happens at the radiation and matter domination epoch; this is precisely the
pre-requisite for generating the density perturbations. Indeed, inflation does generate primordial density
perturbations [94], whose properties are consistent with everything we know about them.

Inflation is not the only hypothesis proposed so far. One alternative option is the bouncing Uni-
verse scenario, which assumes that the cosmological evolution begins from contraction, then the con-
tracting stage terminates at some moment of time (bounce) and is followed by expansion. A version
is the cycling Universe scenario with many cycles of contraction–bounce–expansion, see Ref. [95] for
reviews. Another scenario is that the Universe starts out from nearly flat and static state with nearly van-
ishing energy density. Then the energy density increases (!), and according to the Friedmann equation,
the expansion speeds up. This goes under the name of the Genesis scenario [96]. Theoretical realizations
of these scenarios are surprisingly difficult, but not impossible, as became clear recently.
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12 Towards understanding the earliest epoch
Since cosmological perturbations originate from the earliest epoch that occurred before the hot stage,
properties of these perturbations will hopefully give us a clue on that epoch. Presently, we know only
very basic things about the cosmological perturbations. Let us discuss this point, and at the same time
consider promising directions where further study may lead to breakthrough.

Of course, since the properties we know of are established by observations, they are valid within
certain error bars. Conversely, deviations from the results listed below, if observed, would be extremely
interesting.

12.1 Adiabaticity of scalar perturbations
Primordial scalar perturbations are adiabatic. This means that there are perturbations in the energy
density, but not in composition. More precisely, the baryon to entropy ratio and the dark matter to
entropy ratio are constant in space,

δ
(nB
s

)
= const , δ

(nDM

s

)
= const . (71)

This is consistent with the generation of the baryon asymmetry and of dark matter at the hot cosmological
epoch: in that case, all particles were in thermal equilibrium early at the hot epoch, and as long as physics
behind the baryon asymmetry and dark matter generation is the same everywhere in the Universe, the
baryon and dark matter abundances (relative to the entropy density) are necessarily the same everywhere.
In principle, there may exist entropy (or isocurvature) perturbations that violate (one of) the relations in
Eq. (71). No admixture of the entropy perturbations have been detected so far, but it is worth emphasizing
that even small admixture will show that many popular mechanisms for generating dark matter and/or
baryon asymmetry have nothing to do with reality. One will have to think, instead, that the baryon
asymmetry and/or dark matter were generated before the beginning of the hot stage. A notable example
is the axion misalignment mechanism discussed in Section 7.

12.2 Gaussianity
The primordial scalar perturbations are a Gaussian random field. Gaussianity means that the three-point
and all odd correlation functions vanish, while the four-point and higher order even correlation functions
are expressed through the two-point function via Wick’s theorem:

⟨δ(k1)δ(k2)δ(k3)⟩ = 0

⟨δ(k1)δ(k2)δ(k3)δ(k4)⟩ = ⟨δ(k1)δ(k2)⟩ · ⟨δ(k3)δ(k4)⟩
+ permutations of momenta .

We note that this property is characteristic of vacuum fluctuations of non-interacting (linear) quantum
fields. A free quantum field has the general form

ϕ(x, t) =

∫
d3ke−ikx

(
f
(+)
k (t)a†k + eikxf

(−)
k (t)ak

)
,

where a†k and ak are creation and annihilation operators. For the field in Minkowski space-time one
has f (±)

k (t) = e±iωkt, while enhancement, e.g. due to the evolution in the time-dependent background,
means that f (±)

k are large. But in any case, Wick’s theorem is valid, provided that the state of the system
is the vacuum, ak|0⟩ = 0. Hence, it is quite likely that the density perturbations originate from the
enhanced vacuum fluctuations of non-interacting or weakly interacting quantum field(s).
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Search for non-Gaussianity is an important topic of current research. It would show up as a
deviation from Wick’s theorem. As an example, the three-point function (bispectrum) may be non-
vanishing,

⟨δ(k1)δ(k2)δ(k3)⟩ = δ(k1 + k2 + k3) G(k
2
i ; k1k2; k1k3) ̸= 0 .

The functional dependence of G(k2i ; k1k2; k1k3) on its arguments is different in different models of
generation of primordial perturbations, so this shape is a potential discriminator. In some models the
bispectrum vanishes, e.g., due to symmetries. In that case the trispectrum (connected 4-point function)
may be measurable instead. For the time being, non-Gaussianity has not been detected.

Inflation does the job of producing Gaussian primordial perturbations very well. At the inflationary
epoch, fluctuations of all light fields get enhanced greatly due to the fast expansion of the Universe.
This is true, in particular, for the inflaton, the field that dominates the energy density at the time of
inflation. Enhanced vacuum fluctuations by inflaton are reprocessed into adiabatic perturbations in the
hot medium after the end of inflation. The inflaton field is very weakly coupled, so the non-Gaussianity in
the primordial scalar perturbations is very small [97]. In fact, it is so small that its detection is problematic
even in the distant future. It is worth noting that this refers to the simplest, single field inflationary models.
In models with more than one relevant field the situation may be different, and sizeable non-Gaussianity
may be generated.

The generation of the density perturbations is less automatic in scenarios alternative to inflation.
Most models proposed so far can be adjusted in such a way that non-Gaussianity is not particularly
strong, but potentially observable. In many cases the bispectrum G(k2i ; k1k2; k1k3) and/or trispectrum
are different from inflationary theories.

12.3 Nearly flat power spectrum
Another important property is that the primordial power spectrum of density perturbations is nearly,
but not exactly flat. For homogeneous and anisotropic Gaussian random field, the power spectrum
completely determines its only characteristic, the two-point function. A convenient definition is

⟨δ(k)δ(k′)⟩ = 1

4πk3
P(k)δ(k+ k′) . (72)

The power spectrum P(k) defined in this way determines the fluctuation in a logarithmic interval of
momenta,

⟨δ2(x)⟩ =
∫ ∞

0

dk

k
P(k) .

By definition, the flat, scale-invariant spectrum is such that P is independent of k. The flat spectrum was
conjectured by Harrison [98], Zeldovich [99] and Peebles and Yu [100] in the beginning of 1970’s, long
before realistic mechanisms of the generation of density perturbations have been proposed.

In view of the approximate flatness, a natural parametrization is

P(k) = As

(
k

k∗

)ns−1

, (73)

whereAs is the amplitude, (ns−1) is the tilt and k∗ is a fiducial momentum, chosen at one’s convenience.
The flat spectrum in this parametrization has ns = 1. The cosmological data give [3]

ns = 0.965± 0.004 . (74)

This quantifies what we mean by a nearly, but not exactly flat power spectrum.

The approximate flatness of the primordial power spectrum in an inflationary theory is explained
by the symmetry of the de Sitter space-time, which is the space-time of constant Hubble rate,

ds2 = dt2 − e2Htdx2 , H = const .
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This metric is invariant under spatial dilatations supplemented by time translations,

x→ λx , t→ t− 1

2H
log λ .

Therefore, all spatial scales are alike, as required for the flat power spectrum. At inflation, H and the
inflaton field are almost constant in time, and the de Sitter symmetry is an approximate symmetry. For
this reason inflation automatically generates nearly a flat power spectrum. However, neither H nor
inflaton are exactly time-independent. This naturally leads to the slight tilt in the spectrum. Overall, this
picture is qualitatively consistent with the result in Eq. (74), though the quantitative prediction depends
on the concrete inflationary model.

The situation is not so straightforward in alternatives to inflation: the approximate flatness of the
scalar power spectrum is not at all automatic. So, one has to work hard to obtain this property. Similarly
to an inflationary theory, the flatness of the scalar power spectrum may be due to some symmetry. One
candidate symmetry is conformal invariance [101, 102]. The point is that the conformal group includes
dilatations, xµ → λxµ. This property indicates that the theory possesses no scale, and has good chance
for producing the flat spectrum. This idea is indeed realized at least at the toy model level.

12.4 Statistical isotropy
In principle, the power spectrum of scalar perturbations may depend on the direction of momentum, e.g.,

P(k) = P0(k)
(
1 + wij(k)

kikj
k2

+ . . .

)
,

where wij is a fundamental tensor in our part of the Universe (odd powers of ki would contradict com-
mutativity of the Gaussian random field δ(k)). Such a dependence would imply that the Universe
was anisotropic at the pre-hot stage, when the primordial perturbations were generated. This statisti-
cal anisotropy is rather hard to obtain in inflationary models, though it is possible in inflation with strong
vector fields [103]. On the other hand, statistical anisotropy is natural in some other scenarios, including
conformal models [104]. The statistical anisotropy would show up in correlations [105]

⟨almal′m′⟩ with l′ ̸= l and/or m′ ̸= m .

At the moment, the constraints [106] on statistical anisotropy obtained by analysing the CMB data are
getting into the region, which is interesting from the viewpoint of some (though not many) models of the
pre-hot epoch.

12.5 Tensor modes
The distinguishing property of inflation is the generation of tensor modes (primordial gravity waves)
of sizeable amplitude and a nearly flat power spectrum. The gravity waves are thus smoking guns for
inflation (although there is some debate on this point). Indeed, there seems to be no way of generating a
nearly flat tensor power spectrum in alternatives to inflation; in fact, most, if not all, alternative scenarios
predict unobservably small tensor modes. The reason for their generation at the time of inflation is
that the exponential expansion of the Universe enhances vacuum fluctuations of all fields, including the
gravitational field itself. Particularly interesting are gravity waves whose present wavelengths are huge,
100 Mpc and larger, and periods are of the order of a billion years and larger. Many inflationary models
predict their amplitudes to be very large, of order 10−6 or so. Shorter gravity waves are generated too, but
their amplitudes decay after horizon entry at the radiation domination epoch, and today they have much
smaller amplitudes making them inaccessible to gravity wave detectors like LIGO/VIRGO, eLISA, etc.
A conventional characteristic of the amplitude of primordial gravity waves is the tensor-to-scalar ratio

r =
PT
P ,
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where P is the scalar power spectrum defined in Eq. (72) and PT is the tensor power spectrum defined
in a similar way, but for transverse traceless metric perturbations hij .

Until recently, the most sensitive probe of the tensor perturbations has been the CMB temperature
anisotropy [107]. Nowadays, the best tool is the CMB polarization. The point is that a certain class of
polarization patterns (called B-mode) is generated by tensor perturbations, while scalar perturbations are
unable to create it [108]. Hence, dedicated experiments aiming at measuring the CMB polarization may
well discover the tensor perturbations, i.e., relic gravity waves. Needless to say, this would be a profound
discovery. To avoid confusion, let us note that the CMB polarization has been already observed, but it
belongs to another class of patterns (so called E-mode) and is consistent with the existence of the scalar
perturbations only.

The result of the search for effects of the tensor modes on the CMB temperature anisotropy is
shown in Fig. 35. This search has already ruled out some of the popular inflationary models.
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Fig. 35: Allowed regions (at 68% and 95% CL) in the plane (ns, r), where ns is the scalar spectral index and r is
the tensor-to-scalar ratio [3], obtained by the Planck collaboration alone and by combining the Planck data with the
BAO data and CMB polarization data from the BICEP2/KEK experiments. The right corner (the point (1.0, 0.0))
is the Harrison–Zeldovich point (flat scalar spectrum, no tensor modes). Intervals show predictions of inflationary
models with quadratic and linear inflaton potentials.

13 Conclusion
The present situations in particle physics, on one side, and cosmology, on the other, have much in com-
mon. The Standard Model of particle physics and the Standard Model of cosmology, ΛCDM, have
been shaped. Both fields enjoyed fairly unexpected discoveries: neutrino oscillations and accelerated
expansion of the Universe.

There is strong evidence that the two Standard Models are both incomplete. Therefore, in both
fields one hopes for new, revolutionary discoveries. In the context of these lectures, we hope to learn what
is the dark matter particle; we may learn the origin of the matter-antimatter asymmetry in the Universe;
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the discoveries of new properties of cosmological perturbations will hopefully reveal the nature of the
pre-hot epoch.

However, there is no guarantee of new discoveries in particle physics or cosmology. Nature may
hide its secrets. Whether or not we will be able to reveal these secrets is the biggest open question in
fundamental physics.
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