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This course covers the main statistical methods used in high-energy physics, focusing in particular
on the techniques currently used in LHC experiments. The proceedings cover the following: first, the
methods used to describe an experimental setup in probabilistic terms (i.e. to write down a statistical
model describing the measurement) are discussed; second, the usage of such a model to produce
the usual statistical results in high-energy physics is presented; lastly, as examples, the discovery
significances for new signals, confidence intervals for model parameters, and upper limits on signal
yields are discussed. The lectures will focus on the use of frequentist techniques.

1 Introduction

In high-energy physics, as in other fields, experimental processes involve an irreducible random com-
ponent. For instance, when counting events originating from collider experiments, one can see that the
arrival times of these events are randomly distributed. Similarly, measurements of continuous variables
are affected by experimental resolution effects that can never be completely removed from the measure-
ment process. This randomness has two underlying sources:

– Experimental noise originating either from the surrounding environment or from imperfections in
the measurement apparatus. Reducing its impact is a crucial part of experimental physics, but this
cannot be completely achieved.

– Quantum randomness that is inherent to the quantum nature of high-energy physics processes.

The impact of these effects, that manifest themselves for instance as the width of a resonance peak,
cannot be accounted for in a deterministic manner: they are described using random processes which
account for statistical fluctuations in the description of the measurement.

These lectures will first cover the methods used to describe an experimental setup in probabilistic
terms, i.e. to write down a statistical model describing the measurement. Secondly, they will present how
to use this model to produce the usual statistical results in high-energy physics: discovery significances
for new signals, confidence intervals for model parameters, and upper limits on signal yields. The lectures
will focus on the use of frequentist techniques. Alternative methods based on Bayesian techniques can
be found, e.g., in Ref. [1].

2 Statistical modeling

We start by presenting the techniques used to build the statistical model of the measurement. This model
consists of two components:
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– the probability distribution function (PDF) of the measurement, which describes the random pro-
cess that is assumed to produce the experimental data;

– the observed data, i.e. the dataset that was obtained when the measurement was performed.

The PDF of the measurement is the key component of the model. It can generally be written as P (n;↵),
where n is the set of measured quantities, denoted as the observables of the measurement (or random
variables in mathematical parlance), and ↵ is a set of parameters that are needed to write down the
model. The parameters ↵ include, for instance, theory quantities such as the value of Standard Model
(SM) constants, and experimental quantities such as resolutions, systematic uncertainties and background
levels. These parameters are usually separated into two classes:

– Parameters of interest (POIs), which are the parameters that the experiment is designed to measure.
These are often, but not always, theory quantities. They will be denoted as µ in the rest of these
notes.

– Nuisance parameters (NPs), which are parameters that need to be included in the model to fully
describe the measurement process, but are not of interest per se. A typical example would be
parameters describing properties of background processes. They will be denoted as ✓ in the rest of
these notes.

The rest of these lectures will be focused on how to obtain information on the POIs µ based on the
knowledge of P (n;µ, ✓) and the observed data nobs. Building P (n;µ, ✓) is the key step in this process,
and this will be the focus of the rest of this section.

2.1 Building blocks

2.1.1 Counting events

In many cases, experiments consist in counting events that pass a given selection. This is particularly
true in high-energy physics, where a selection (often a series of “cuts") is applied to a set of input events
produced in a particle collider or another source process.

In general, each step of the selection can be described using a binomial process. The PDFs for each
of these, together with the PDF of the source process, can then be used to describe the full measurement.
However, in many cases a much simpler description can be used, based on the Poisson approximation.
This applies when:

– the number of input events N to the binomial process is large (N � 1);

– the probability p to pass the selection is small (p � 1).

In this case, each binomial process can be approximated by a Poisson distribution

P (n;�) = e��
�n

n!
(1)

where n is the measured event count and � = Np is the expected yield. Furthermore, it can be shown
that two successive Poisson processes can be described as a single Poisson process, and that the same
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also applies to the combination of a binomial and a Poisson process. If the Poisson approximation holds,
the entire counting process can therefore usually be conveniently described as a single Poisson PDF.

Fortunately, this approximation is often valid in high-energy physics. In the specific example of
LHC experiments, the production rate of events in pp collisions is of order 10

9 Hz, of which 10
3 Hz

are recorded by the experiments, and among which interesting signal events typically make up (much)
less than 1Hz. The Poisson approximation of very large input event rates and a very small selection
probability is therefore well verified in this case.

Finally, let us recall that the mean and the variance of P (n;�) are both equal to �. Its root-mean-
square (RMS), the square root of its variance, is therefore

p
�. An illustration of the Poisson distribution

for � = 1 is shown in Fig. 1a.

0 1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

(a)

10− 8− 6− 4− 2− 0 2 4 6 8 100
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

(b)

Fig. 1: (a) Poisson distribution for an expected yield of 1 and (b) Gaussian distribution for a mean of 1
and a width of 2.

2.1.2 The Gaussian distribution and the central-limit theorem

2.1.2.1 The Gaussian distribution

The Gaussian distribution is a PDF for a single continuous observable x, defined as

G(x;x0;�) =
1

�
p
2⇡

e
� 1

2

⇣
x�x0

�

⌘2

(2)

It takes the shape of a symmetric peak with central value x0 and a width characterized by �. Its mean is
given by x0, and its RMS by �. The shape of the distribution is shown in Fig. 1b.

The Gaussian distribution will play a critical role in much of the rest of these notes. An important
feature to keep in mind is the values of its quantiles, i.e. the fraction of outcomes that fall within a given
interval of the distribution. One can define the pull z = (x � x0)/� of an observable x taken from the
distribution G(x;x0;�): this quantifies the separation between x and the mean x0 of the distribution, in
units of the width �. Simple algebra shows that z follows a normal distribution G(z; 0, 1), i.e. a Gaussian
with mean 0 and width 1, independently of the parameters of the original Gaussian for x. This allows
us to define quantiles for any Gaussian distributions in terms of z, and these are shown in Table 1. Key
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Table 1: Selected quantiles of the Gaussian distribution G(x;x0,�), in terms of the pull z = (x�x0)/�.

Z
Two-sided One-sided

p
���x�x0

�

��  Z
�

p
���x�x0

�

�� � Z
�

p
�
x�x0
�

 Z
�

p
�
x�x0
�

� Z
�

1 0.683 0.317 0.841 0.159
2 0.954 0.046 0.977 0.023
3 0.997 0.0027 0.999 0.0013
5 ⇠ 1 5.7⇥ 10

�7 ⇠ 1 2.9⇥ 10
�7

takeaways include the fact that observations fall within the [�1�,+1�] interval around the mean about
68.3% of the time, and within [�2�,+2�] about 95.5% of the time. Gaussians also have "thin tails" so
that only 0.3% of outcomes fall beyond the ±3� interval, and only about 6⇥10

�7 of the time beyond the
±5� interval. These numbers will all be useful later in these notes. They can all be expressed in terms
of the cumulative distribution function (CDF) of the normal distribution,

�(z) =

zZ

�1

G(z; 0, 1) dz. (3)

For instance the 68.3% quantile corresponding to the ±1� can be obtained as �(+1)� �(�1).

2.1.2.2 The central-limit theorem

Gaussian distributions occur frequently in experimental settings, in particular to describe resolution ef-
fects and uncertainties. The main reason for their ubiquity is a property of the mean of a large number
of identical measurements. Let’s consider a random process with an observable x, described by a PDF
P (x;↵), with mean hxi and RMS �x. Say that we repeat this process a large number of times N , and
compute the average of x̄ =

1
N

P
N

i=1 xi of the observations xi in each case. Then the central-limit
theorem states that for large N

x̄ =
1

N

NX

i=1

xi ⇠ G

✓
x̄, hxi, �xp

N

◆
. (4)

In other words, if we average enough measurements together, then the average will be distributed as a
Gaussian no matter what the distribution was for individual measurements. The only residual feature
of this distribution is its mean, which is carried over as the mean of the Gaussian, and its RMS, which
together with a factor 1/

p
N gives the width of the Gaussian. The factor 1/

p
N encodes the fact that

our knowledge of the mean improves with more measurements, as one would naively expect.

The central-limit theorem is very often applicable in high-energy physics, as long as the measure-
ments involve a sufficiently large number of events. In particular, Poisson distributions tend towards a
Gaussian limit for a sufficiently large expected event yield, so that P (n;�) ⇡ G(n;�,

p
�). As we will

see later, this Gaussian regime is reached for relatively small yields, typically O(5–10), which motivates
the use of Gaussian approximations in a wide range of experimental settings.
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2.1.3 The �2 distribution

Suppose that we produce a histogram of data events, by categorizing events into Nbins independent bins
and counting the number of events ni that fall in each bin i. We also define an expected event count
µi in each bin, for example using Monte Carlo simulation. Illustrative examples with a flat expectation
are shown in Figs. 2a and 2b. In this situation, it is often useful to quantify the agreement between the
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Fig. 2: Measurement histograms in a simple 10-bin measurement in which the expected yields in each
bin are identical. The measurements are shown as points with error bars, and the expectation by shaded
regions. The histogram in (a) was randomly generated from the expectation, while the one in (b) was
produced from a different expectation with decreasing yields at high bin numbers. The �2 and �2 prob-
ability values for each case are overlaid on the figures, and show that the �2 indicates good agreement in
(a) and poor agreement in (b).

observed event counts and the prediction. If one assumes that the measurement in each bin is represented
by an independent Gaussian distribution with width �i, then the discrepancy between observed and
expected counts in each bin can be expressed by the pull zi = (ni � µi)/�i. To quantify the overall
agreement over the entire distribution, one then defines the �2 of the observed with respect to the expected
yields as

�2
=

NbinsX

i=1

✓
ni � µi

�i

◆2

. (5)

This is a positive quantity, and its value is exactly 0 in the case where the observed yields exactly match
the expectations. Conversely, large values of the �2 indicate a disagreement between the two.

The observed yields are, however, affected by statistical fluctuations, which lead to small but non-
zero values of the �2. In fact, one can expect on the order of a 1� deviation in each bin, i.e. zi ⇠ 1,
which leads to �2 ⇠ Nbins overall.

This can be quantified more precisely by introducing the distribution f�2(Nbins) of the �2, under the
hypothesis where the observed yields are produced from the expectation. These distributions are shown
in Fig. 3a and show the expected behavior of a peak near Nbins and a decreasing tail of probabilities to
reach high values. These functions are implemented numerically in frameworks such as ROOT and scipy,
and allow us to compute the �2 probability as the tail integral of the relevant distribution above the
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measured �2 value. Large values of the �2 probability indicate good agreement (since the data is likely
for the given expectation), while small values indicate disagreement (since producing this data from the
expectation is unlikely). One can also use a rule of thumb based on the reduced �2, defined as �2/Nbins:
as shown in Fig. 3b, the distribution of the reduced �2 is roughly independent from Nbins, with values
of about 1 being fairly typical, and values of 2 being increasingly unlikely. One can therefore gauge
agreement by computing the reduced �2 and comparing to a given threshold. For instance a threshold
of 1.5 corresponds to a probability of 10–20%, depending on Nbins. Of course, a more quantitative
assessment can be performed by computing the exact �2 probability from the relevant distribution.
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Fig. 3: Distributions of (a) �2
n and (b) �2

n/n for selected values of the number of degrees of freedom n.

2.2 Describing data

Having introduced a few of the basic PDF building blocks, we now turn to how to use this knowledge to
model data. The first step is defining the observables, i.e. the measured quantities. These often consist of
one or more real numbers that allow us to distinguish signal from background: for instance an invariant
mass, or more complex quantities such as the output of a neural network trained to identify the signal
process. In other cases, the measured quantities can be one or more event yields, for events passing
suitable selection cuts. Some usual modeling choices are described in the following sections.

2.2.1 Single-bin counting

The simplest type of measurement is the case where one counts the number of events passing a selection.
The observable is then that single number of events n. As discussed in Section 2.1.1, the counting process
can usually be described using a Poisson distribution that is parameterized in terms of an expected event
yield (� in the notation above), which usually receives contributions from both signal and background
processes. Assuming we have only one signal process with yield S and one background process with
yield B, one can write the PDF as

p(n;S,B) = e�(S+B) (S +B)
n

n!
. (6)
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Note that, in the formula above, n is the observable, which is associated with random fluctuations, while
S and B are model parameters, which have a fixed value (which can be either known or unknown).
S is typically a parameter of interest (POI), while B is usually a nuisance parameter (NP). The single
observable n cannot be used to determine both S and B, so one needs further assumptions to make this
a valid measurement. Typically one assumes that B can be fixed to a predefined value, possibly up to
systematic uncertainties (see Section 5.2 for details on how to do this). Recall that for large S + B, the
Poisson distribution can be well-approximated by a Gaussian distribution with mean S + B and width
p
S +B, so one can also use a Gaussian description in this case.

2.2.2 Multiple-bin counting

One can go one step further and define a measurement with multiple counting bins. This can occur in
two common situations: first, these bins can correspond to several signal regions sensitive to different
features of the targeted signal; for instance different final states of the same process. Secondly, one can
use a set of contiguous bins to describe the distribution of a continuous observable: one just slices the
range of the observable into discrete bins to get a discrete approximation to the distribution.

In both scenarios, the bins should be non-overlapping, i.e. a selected event should be assigned to
exactly one bin. The bins are then statistically independent, so that the total PDF for the measurement
is the product of the measurements in each bin. Assuming as before that the per-bin measurements can
each be described by a Poisson distribution, the total PDF can be written as

p({ni};S,B) =

NbinsY

k=1

e�(SfS,i+BfB,i)
(SfS,i +BfB,i)

ni

ni!
. (7)

The observed event yields are denoted as ni, for i running from 1 to the number of bins, Nbins. As
before, this assumes a single signal process and a single background process, with overall expected
yields (summed over all bins) respectively S and B. The expected yields in each bins are described
using the bin fraction fS,i and fB,i (with

P
i
fS,i =

P
i
fB,i = 1). One could also have expressed the

PDF in terms of per-bin yields, but often one is interested in the overall signal yield, so that the form
above is more directly useful. Note that in the case where the bins span a continuous distribution, the
fractions fS,i and fB,i provide a discretized description of the distribution of the observable for signal
and background.

Multiple-bin measurements offer a compromise between the simpler single-bin measurements de-
scribed above and the unbinned measurements that will be covered below, and are therefore very com-
monly used in high-energy physics experiments. Compared to the single-bin case, they typically provide
more sensitive measurements thanks to the extra available information. This information can also allow
us to measure the NPs of the model: for instance, with two or more bins one can in principle measure
both S and B, so that external assumptions on B are not required. This data-driven approach can be
built into the design of the measurement, for instance by adding “control region" bins that are specifically
designed to constrain the backgrounds. We will come back to this when discussing nuisance parameters
in Section 5.
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2.2.3 Unbinned description

In the case of continuous observables, one can also describe the measurement using a continuous PDF.
This is in principle the most sensitive approach, since it avoids the information loss that inevitably oc-
curs when performing a discretization into bins (although this loss can be kept quite small by choosing
sufficiently fine bins).

Specializing for simplicity to the case of one signal and one background component, and one
observable x, we need to specify how the events of each type are distributed. This is provided by the
signal PDF fS(x) and the background PDF fB(x), each describing the distribution in x of a single event
of the respective type.

One then defines the total PDF

fS+B(x) =
S

S +B
fS(x) +

B

S +B
fB(x) (8)

which describes the expected single-event distribution in x for the case of a mixture of signal and back-
ground events with total yields S and B, respectively.

Since we typically consider datasets consisting of several (and often many!) events, one more
ingredient is needed: one needs to describe the random distribution of the total number of events n in
the dataset, which can vary from experiment to experiment. In keeping with the arguments made above,
this can be described using the Poisson distribution Pois(n;S + B). Finally, one can put it all together,
making use of the fact that events can usually be considered uncorrelated (since e.g. what happens in one
collision at the LHC is independent of what may or may not have happened in the previous collisions).
The total PDF for the dataset {xi}1in can then be written as

p({xi};S,B) = e�(S+B) (S +B)
n

n!

nY

i=1

fS+B(x) (9)

= e�(S+B) (S +B)
n

n!

nY

i=1


S

S +B
fS(x) +

B

S +B
fB(x)

�
(10)

=
e�(S+B)

n!

nY

i=1

[S fS(x) +B fB(x)] . (11)

This unbinned PDF provides more information than a binned description, but is often more complex to
implement. In particular, describing fS(x) and fB(x) can be technically difficult, relying for instance on
sampling the distributions using large samples of simulated signal and background events. Computing
p({xi};S,B is also more computationally demanding than a binned approximation, since the product
runs over the number of events rather than the number of bins, and the latter is typically much smaller.

In realistic high-energy physics cases, one almost always uses one the three descriptions above to
model the data. The multi-bin description is probably the one used most often, since it often provides
a good compromise between the simplicity of the one-bin counting case and the complexity of the un-
binned description. Several frameworks have been developed to implement multi-bin cases, for instance
the HistFactory package [5] available within the ROOT [6] framework and the pyhf [7, 8] tool. How-
ever, the single-bin case is used in some cases, such as measuring total cross-sections [9]. The unbinned
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description is often useful in situations where the shape of the signal and background are simple to pa-
rameterize, for instance for smooth backgrounds. A well-known example is the study of the H ! ��

decay by the ATLAS and CMS collaborations [10, 11].

3 Introduction to statistical results: the simple Gaussian case

In the previous section we have learned how to build a statistical model for a given experimental setup,
using one of the different options described. The next step is to use this model to obtain information
about the parameters of interest, for instance on the event yield S, in the examples given above. The
good news is that building the model was the hard part; obtaining these statistical results on the POIs
will just involve some mathematics.

Before moving to the general methods of obtaining these statistical results, this section will intro-
duce basic concepts in the context of a simple case: the single-bin counting experiment. For simplicity,
we assume that the measurement is Gaussian, and that only a single signal process (with yield S) and a
single background process (with yield B) are present. The measurement PDF is

p(n;S,B) = G(n;S +B,
p
S +B). (12)

The goal is to determine whether the signal is present or not, and in what amounts, by measuring the
parameter of interest S. As noted before, we need to assume that B is known a priori in this simple
example. We can assume, for instance, B = 100, which by the central limit theorem (see Section 2.1.2.2)
is large enough to give a measurement that is well within the Gaussian regime. Assume now that we
measure n = 120, as is illustrated in Fig. 4a. What can we conclude about S?

3.1 Estimating S

Very naively, we can compute S as
Ŝ = n�B, (13)

since B is known exactly. Note the hat on S: this will be used in the following to refer to estimators
for parameters, i.e. quantities we use to give information on its true value S. Whereas S is fixed (but
unknown), the estimator Ŝ is a function of the data: a different experimental result would lead to a
different Ŝ.

Here, obviously, we have Ŝ = 20, which is in some way an exciting result: we have observed a
positive Ŝ, which seems to indicate that a signal is actually present.

3.2 Significance and p-value

Before getting too excited about this, we need to remember that Ŝ is only an estimator, whose values
reflect the fluctuations that can occur in the measured n. It could well be that S = 0 (note that this is
S without the hat, since here we refer to the true value); i.e. there is in fact no signal and the positive Ŝ

could come from an upward fluctuation in the background, compared to the B = 100 expectation.

How likely is this? Suppose we are indeed in the background-only case, S+B = B = 100. Then
the width of the Gaussian distribution of n is given by

p
S +B =

p
B = 10, and this gives the typical
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size of the fluctuations of n around its mean value of 100. This is very relevant to our decision as to
whether a true signal is indeed present: the observed value of Ŝ is twice the typical size of fluctuations,
which seems to indicate an outcome that is at least somewhat unusual.

(a) (b)

Fig. 4: Distribution of the G(n;S + B,
p
S +B) Gaussian PDF, where S and B are respectively the

signal and background yields and n the observable. (a) Discovery scenario where the S = 0 case is
presented (orange line). The p-value for the case nobs = 120 is the area of the red shaded region. (b)
Upper limit scenario, where nobs = 100. The distribution for the S95+B case is shown (red line), where
S95 corresponds to the 95% CL upper limit on S (here S ⇡ 116). The area of the red shaded region is
the corresponding p-value, which is 5% by definition.

More generally, one can define the Gaussian significance as

z =
Ŝp
B

=
n�Bp

B
(14)

i.e. the ratio of the observed Ŝ to the size of its statistical fluctuations. This has an intuitive meaning:
|z| < 1 corresponds to values of Ŝ well within the statistical noise, while large values of |z| indicate that
the observed Ŝ likely cannot be explained by statistical fluctuations alone.

We can be a bit more precise by recalling the Gaussian quantiles shown in Table 1. From these,
we can conclude that 90  n  110 corresponds to the ±1� interval around the mean, and therefore
should occur about 68.3% of the time. Similarly, we should have 80  n  120 about 95.5% of the
time. In other words, observing |n� 100| � 20 (i.e. |Ŝ| � 20) should occur about 4.5% of the time.

This probability is called the p-value with respect to the S = 0 hypothesis. Generally, it is defined
as the probability to get a result at least as extreme as the one that was observed, under the hypothesis
one wishes to test (the null hypothesis). It is illustrated for the case Ŝ > 0 as the shaded region in Fig. 4a.
This p-value provides a very quantitative way to decide whether signal is present or not: here it indicates
that while Ŝ = 20 is not a typical outcome in the S = 0 case, it is also not particularly rare, occurring
about once every 20 attempts.

Table 1 gives the corresponding numbers for a few other values of n, both in terms of the signifi-
cance and p-value p0 for the S = 0 hypothesis. In the Gaussian case, the two are closely related through
the Gaussian quantiles, since p0 corresponds to the tail probabilities of the normal distribution beyond
±Ŝ/

p
B. In terms of the CDF � of the normal distribution introduced earlier in these lectures, we have
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therefore

p2-sided
0 = 1�

"
�

 
Ŝp
B

!
� �

 
� Ŝp

B

!#
= 2�

 
� Ŝp

B

!
. (15)

The p-value is denoted as two-sided for reasons that will be explained in the next section.

3.3 One-sided and two-sided tests

So far we have treated positive and negative values of Ŝ on the same footing: i.e. we have defined p-
values that apply both to n fluctuating above B (i.e. positive Ŝ) and below B (negative Ŝ). In high-energy
physics, one can often assume that signal will give a positive contribution to the expected event yields
(although negative signal yields can occur in some cases, e.g. due to interference effects).

If one knows a priori that S > 0, then one can restrict the considerations above to only the positive
half of the Gaussian; i.e. consider that only Ŝ > 0 is a bona fide signal, while Ŝ < 0 is just another
manifestation of the background-only hypothesis.

In this case, we consider only the upper tail of the Gaussian in the p-value is calculation, which
now reads

p1-sided
0 = 1� �

 
Ŝp
B

!
= �

 
� Ŝp

B

!
. (16)

This p-value is now denoted as one-sided, by opposition to the expression above, since we consider only
one side of the Gaussian. This one-sided definition of the p-value corresponds to the shaded region in
Fig. 4a. Compared to the two-sided case, one sees a simple factor-of-2 difference. Note also that the
significance is defined in the same way as before. One- and two-sided p-values for specific significance
levels are listed in Table 1.

We will use the one-sided definition of discovery p-values in the rest of the lectures, unless indi-
cated otherwise.

3.4 Significance thresholds

In this Gaussian example, we can now determine how likely a given value of Ŝ is to occur in the
background-only hypothesis: either in terms of the p-value (smaller values indicating lower likelihood
to occur) or significance (higher values indicate lower likelihood to occur).

In principle, this can be used to decide if one has observed a real signal or not, but there is some
arbitrariness on what threshold is used for this purpose. In high-energy physics, one usually defines two
thresholds:

– 3� threshold (z � 3), corresponding to evidence for new phenomena;

– 5� threshold (z � 5), corresponding to the observation (or discovery) of new phenomena.

In each case, one can also define the threshold in terms of the corresponding p-value: about 0.3% for
evidence, and 3 ⇥ 10

�7 for discovery. These thresholds are quite demanding: discovery corresponds
to phenomena that only have about a chance in 3 million to occur in the background-only case. There
are several reasons for these high thresholds [4]. The main one is the look-elsewhere effect: searches
often target a range of signal configurations, for instance by looking for bumps over a range of mass
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values. The probability for a fluctuation to occur anywhere in a spectrum can be much higher than at
one given location, since mass positions separated by an interval larger than the experimental resolution
can be considered largely uncorrelated. For this reason, the global significance accounting for these
possibilities is lower than the local significance computed as described here, and fake “discoveries" due
to fluctuations are more likely than one could naively estimate. One therefore needs to set a relatively
high threshold for the local significance to avoid this. In any case, one should keep in mind that there
always remains a chance (however small) that the observed signal is actually due to a very unlikely
fluctuation.

Coming back to our example, we can conclude that while Ŝ = 20 is an intriguing result, it does
not meet the criterion for evidence (which would require Ŝ � 30), nor the one for discovery (Ŝ � 50).

3.5 Confidence intervals

So far we have discussed the significance of a measured signal, with the aim of establishing a discovery.
Another important class of results is confidence intervals, where we add an uncertainty band around the
best-fit value of a parameter. This usually takes the form µ = µ̂+✏+

�✏� , where µ̂ is the best-fit value of
the measurement of µ and ✏± are the positive and negative uncertainties. This statement is made for a
particular confidence level (CL). For a single parameter this is often set at the “1�" level, i.e. the 68.3%
CL that corresponds to the 1� interquantile of a Gaussian distribution. The confidence interval is then
defined as

p(µ̂� ✏�  µ  µ̂+ ✏+) = 68.3%. (17)

This states that there is a 68.3% chance that the true value µ is contained in the confidence interval ob-
tained in the measurement. A very important point is that the probability statement is about the interval,
and not the true value µ: recall that µ is a fixed (unknown) value, with no associated probability distribu-
tion. What changes randomly from experiment to experiment is the data, and therefore the interval that
we compute. Another way to state Eq. (17) is therefore that if we repeat our measurement many times,
then the confidence intervals that we computed from each set of observed data will contain the true µ

68.3% of the time.

Consider a simple Gaussian case where we measure a parameter µ using the observable m. The
measurement PDF is G(m;µ,�), and the Gaussian width � is a known fixed value. Suppose that we
observe m = mobs, what is the 1� confidence interval on µ?

One knows from Gaussian quantiles that

p(µ� �  mobs  µ+ �) = 68.3%. (18)

This can be rewritten as
p(|µ�mobs|  �) = 68.3%, (19)

which one can re-expand in the other direction as

p(mobs � �  µ  mobs + �) = 68.3%. (20)
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This is exactly the statement we were looking for: from mobs we have computed the interval mobs �� 
µ  mobs + �, which covers µ 68.3% of the time. In the usual notation, we can write it as µ = mobs ± �

at 68.3% CL.

3.6 Upper limits on a signal yield

The last class of results covered in these lectures is upper limits on signal yields. This is usually reported
in the case where a search for new phenomena finds no evidence of its targeted signal, so that reporting a
significance is not particularly useful. It allows us to set constraints on physics models that predict such
signals, by stating that the true signal cannot be very large since we have not seen evidence of it. These
upper limits are in fact one-sided confidence intervals on the true signal yield, with no lower bound. By
convention, they are usually reported with a confidence level of 95%.

We can obtain such an upper limit by modifying slightly the example described in the previous
section. First, we perform a small computation to determine the point at which the cumulative integral
of a normal distribution reaches 5%. Using �

�1, the inverse function of the Gaussian CDF, we find that
�
�1

(0.05) ⇡ �1.64, which means that the integral from a point located about 1.64� below the Gaussian
mean corresponds to 5% of the total integral. We can write this statement as

p(mobs � µ� 1.64�) = 95% (21)

which can be flipped into
p(µ  mobs + 1.64�) = 95%. (22)

This corresponds to the desired upper limit, i.e. µ  mobs+1.64� at 95% CL. In other words, if we set an
upper limit on the signal yield µ at a value of mobs plus 1.64 times the uncertainty �, then we know that
the true value µ will be below this upper limit 95% of the time on average. This is illustrated graphically
in Fig. 4b: the Gaussian distribution for the S95 + B scenario, where S95 is the 95% CL upper limit,
is shown in red. The shaded region on the left side of the curve amounts to 5% of the outcomes in this
scenario, and this shows graphically that this S95 does correspond to a 95% CL upper limit as advertised.

4 Computing statistical results

In the previous section, we introduced the main classes of statistical results: parameter estimation (i.e.
computing Ŝ); discovery significances and p-value; confidence intervals; and upper limits on signal
yields. We also showed that in the simple one-bin Gaussian case, these quantities can be computed rather
intuitively. However, we have seen in Section 2 that measurements are often described using much more
complex statistical models, for instance with multiple bins and non-Gaussian behavior. The objective
of this section is to present a general framework for computing these results, in principle applicable
to models of arbitrary complexity. Of course, we will also check that it does give the same results as
obtained above for the simple one-bin Gaussian case! The first two sub-sections below will present
the general computation framework, while the rest of this section will focus on how to apply this to
computing significances, confidence intervals and upper limits.
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4.1 Maximum-likelihood estimation

4.1.1 Likelihood

The statistical models described in Section 2 consist in two quantities: the PDF P (n;↵) for the measure-
ment, where n represents the observables and ↵ the parameters; and the observed data nobs. From these
inputs, we would like to obtain an estimator ↵̂ of the true parameter value ↵.

We start by defining the likelihood function of ↵ as

L(↵) = P (nobs;↵). (23)

This is in a sense purely formal: the likelihood function is the same as the PDF but seen as a function
only of the parameters (here ↵), and for the observables set to their observed values (here n = nobs). It
is however an extremely useful quantity that will be used throughout the rest of these lectures.

The likelihood L(↵0) can be understood as the probability to obtain the data that was observed,
if the parameters have the value ↵ = ↵0. As illustrated in Figs. 5a and 5b, this allows us to assign a
probability to the parameter values: some parameter values are likely in the sense that in this scenario
would give rise to nobs with a high probability; and other values are unlikely in the sense that nobs would
have a small probability of occurring in this case.
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Fig. 5: (a) Poisson distributions Pois(n,�) for expected yields � = 0.5 (orange), � = 5 (blue) and
� = 20 (red), highlighting that the probability to obtain n = 5 (i.e. the likelihood L(�;n = 5)) is highest
for � = 5. (b) Graph of L(�;n = 5) as a function of �.

4.1.2 Maximum-likelihood estimator

This suggests a general method for estimating ↵: simply pick the value that gives the highest possible
L(↵). More formally,

↵̂ = arg max L(↵). (24)

This defines the maximum-likelihood estimator (MLE) for ↵, which we denote again with a hat.1 Intu-
itively, we can already guess that the MLE will have good properties: by definition the nobs that occur

1There is no ambiguity with the previous usage of the hat notation since, as we will see, those instances were, in fact, MLEs.
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often are the ones with high P (nobs;↵true) for the true values ↵true of the parameters. The likelihood
L(↵true) will therefore be high in general and therefore ↵̂ should generally come out quite close to ↵true.
The cases where this works less well are those where the observed data is atypical due to a large sta-
tistical fluctuation, which translates into low values of P (nobs;↵true). However, these cases are rare by
definition, so that the MLE ↵̂ remains a good guess on average.

More formally, the MLE has good statistical properties for very general classes of likelihoods.
One can show, in particular, that in the limit of sufficiently large event samples, the MLE is efficient, in
the sense that its uncertainty is as small as it can get (i.e. matches the limit given by the Cramér-Rao
bound); and it is also unbiased, i.e. its average over many trials tends toward the true parameter values.
More details on the properties of MLEs can be found, for instance, in Ref. [3].

Given these good properties, we will use MLEs to estimate parameter values throughout the rest
of these lectures. Before moving to the next topic, we provide examples of MLEs in two simple cases.

4.1.3 Application to the one-bin Gaussian example

Going back to the one-bin Gaussian example of Section 2.1.2.1, the likelihood is defined in this case as

L(S) = P (nobs;S,B) = G(nobs;S +B,
p
S +B). (25)

Since the Gaussian has a maximum at S + B = nobs, one concludes that the MLE corresponds to the
value Ŝ such that

Ŝ = nobs �B, (26)

which matches the naive estimation in this case. In other words, the general framework of the MLE
provides the same numerical answer as obtained in Section 3.1.

4.1.4 Application to multi-bin Gaussian measurements

We now consider the case of a measurement in Nbins independent bins. Each bin i consists in a Gaussian
measurement with an observed value ni, a width �i and an expected value given by ⌫i(↵) as a function
of the model parameters ↵. The total PDF is

P ({ni};↵) =
NbinsY

i=1

G(ni; ⌫i(↵),�i). (27)

It is often useful to define the negative twice log-likelihood (N2LL) as

�(↵) = �2 logL(↵). (28)

Since �2 log is a monotonically decreasing function, the MLE can be equivalently obtained by minimiz-
ing �(↵).

This is a useful procedure in particular for Gaussian PDFs such as the one considered here, since
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we have2

�(↵) = �2 logL(↵) = �2 logP ({ni};↵) (29)

=

NbinsX

i=1

�2 logG(ni; ⌫i(↵),�i) (30)

=

NbinsX

i=1

✓
ni � ⌫i(↵)

�i

◆2

. (31)

The quantity on the last line is known as the �2 of the ni with respect of the prediction ⌫i(↵), i.e. the
sum of the squares of the corresponding pulls, as defined in Section 2.1.2.1. It is often used in so-called
�2 fits, in which one adjusts the model parameters to get the smallest �2 with respect to the data.

We have seen that the MLE ↵̂ is the value that minimizes �(↵): it is therefore also the value that
minimizes the �2, and thus corresponds to the �2 best-fit value in this Gaussian situation. This illustrates
the notion that the MLE matches, in general, the best-fit values of the model parameters to the data.

For example, in the ROOT software, which is widely used in high-energy physics, fitting a histogram
to a model prediction is by default done using a �2. For non-Gaussian cases, one can also use the
likelihood fit option, which performs a maximum-likelihood estimation based on a model where each bin
is described by a Poisson PDF. In ROOT, as in other similar software, fitting a model to data therefore
exactly corresponds to performing a MLE.

4.2 Testing hypotheses

Now that we have a well-defined method for estimating parameter values, we turn again to the problem
of determining whether or not an observed signal yield is in fact significant. This implies computing
significances and p-values as in Section 2.1.2.1, but now for arbitrary statistical models.

4.2.1 Tests and errors

What we want to do is in fact to test a hypothesis, defined as a set of values for the model parameters.
The hypothesis under test is usually referred to as the null hypothesis. In the case of discovery, we want
to test the null hypothesis H0 defined by S = 0, where S is the signal yield. This hypothesis can in fact
be true (i.e. the signal S does not actually exist) or false (there is actually a non-zero S).

Testing the hypothesis H0 means using the data to come to a decision as to whether it is true or
false. There can be, therefore, four possible outcomes. In two of them, the conclusion is correct:

– H0 is false (i.e., S exists) and from the data we decided that H0 was likely false. This is a very
positive outcome, where there was a signal to be found and it was successfully detected by the
experiment. If the signal is large enough, we have made a discovery.

– H0 is true (i.e., no S), and from the data we decided that H0 was likely true. This is not a very
exciting outcome since nothing was found, but we arrived to the correct conclusion that no signal
is present.

2Note that we have dropped the prefactor in the Gaussian, which would give an additive constant term in �(↵): since we
ultimately wish to minimize �(↵), this term is irrelevant.
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There are however two more outcomes, which correspond to errors, in the sense that the test reached the
wrong conclusion:

– H0 is true (no S) and from the data we decided that H0 was likely false (S exists). This is a
very embarrassing outcome, where the experimental result is the “discovery" of a signal that does
not actually exist. This can create some short-lived excitement but inevitably gets falsified when
eventually other experiments fail to reproduce the spurious discovery. This error is called a Type-I
error and the probability for it to occur if H0 is true is called the p-value3. Since Type-I errors are
often quite embarrassing for the experimenter, it is important to ensure that their rate (the p-value)
is small.

– H0 is false (S exists) and from the data we decided that H0 was likely true. This is another
incorrect conclusion, where there was signal to be found but the experiment missed it. This is
called a Type-II error and it is again best avoided.

Given these possible outcomes, our goal is to design an optimal test that will lead to minimal
rates for both Type-I and Type-II errors. In practice, this is usually done by defining a discriminant, i.e.
a function of the observables which has a different distribution in the cases when H0 is true or false.
Ideally, it also captures all or most of the information present in the data to separate these two cases. This
discriminant is called the test statistic. The result of the test is then based on the value of the test statistic,
as illustrated on the left panels of Fig. 6: for instance if a true H0 corresponds to larger values of a test
statistic q and vice-versa, one would declare that H0 is likely true if q > Qthresh for some threshold value
Qthresh.

The choice of Qthresh determines the Type-I and Type-II error rates. As illustrated on the left panels
of Fig. 6, raising Qthresh will tighten the test, making it less likely to find a signal whether it is there or
not: the Type-I rate will therefore decrease but the Type-II error rate will increase. Lowering Qthresh will
give a looser test and the opposite behavior. The relation between the two is given by the ROC curve
shown on the right side of Fig. 6: by changing the threshold one moves along the curve, but one cannot
reach arbitrarily small values for both error rates. An optimal test relies on an optimal test statistic, i.e.
a discriminant that achieves the best possible separation between the two cases. But this optimal test
still cannot yield arbitrarily small error rates of both kinds since lowering one rate raises the other. In
fact these rates are bounded from below by the information present in the data and an optimal test is one
where this information is captured by the discriminant.

4.2.2 The Neyman–Pearson lemma

At face value, finding such an optimal discriminant is a difficult problem: the test statistic should some-
how capture all the information present in the measurement, spanning all the measurement regions and
accounting for the distributions of the signals and backgrounds in each case. Fortunately, such a dis-
criminant is provided quite simply in many cases by the Neyman–Pearson lemma. This states that when

3We will see shortly that this coincides with the definition we gave earlier in the Gaussian example.
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Fig. 6: Representation of the performance of a hypothesis test. The test is defined in terms of the
hypotheses S = 0 (i.e. no signal present) and BSM (presence of a signal of physics beyond the Standard
Model). The distributions of a discriminant observable under each hypothesis are shown in the two plots
on the left. The shaded areas correspond to the Type-I error or p-value ✏Type-I (red area) and the Type-II
error ✏Type-II (blue area). In the top and bottom plots, these areas are shown for two different values of the
threshold which defines the test (i.e. the BSM hypothesis is chosen for values of the discriminant above
the threshold, and the S = 0 hypothesis for values below). The plot on the right shows the ROC curve of
the test (yellow line), i.e. the values of 1� ✏Type-I as a function of 1� ✏Type-II as the test threshold varies.
The situations shown in the plots on the left correspond to the leftmost (top plot) and rightmost (bottom
plot) markers on the curve. The orange and green lines correspond to hypothetical situations obtained
with, respectively, a less powerful and more powerful discriminant than the one shown here. The dotted
red line corresponds to the limiting case, where the discriminant has no sensitivity to the hypotheses.

choosing between two hypotheses H0 and H1, the optimal discriminant is in fact the likelihood ratio

L(↵H0)

L(↵H1)
(32)

where ↵H0 and ↵H1 are the parameter values that define H0 and H1, respectively. Note that one does not
test H0 in an absolute sense, but only with respect to an alternate hypothesis H1.

Just like for the MLE, the Neyman–Pearson lemma can be understood intuitively as following the
data: if the data was in fact generated for ↵ = ↵H0 , then by definition there is a high probability that
L(↵H0) is high and, therefore, that the likelihood ratio takes large values. Conversely, if ↵ = ↵H1 then it
is L(↵H1) that will take large values and the likelihood ratio will be small. In both cases data fluctuations
can lead to the opposite behavior, but these cases occur by definition with low probability. We will not
provide a formal proof of the Neyman–Pearson lemma here, but hopefully these arguments make it clear
that the likelihood ratio has the right properties for an optimal discriminant. The proof and more details
can be found, e.g., in Ref. [2].
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The likelihood ratio is optimal in the sense that if we choose a given rate of Type-I error (for
instance by adjusting the threshold for the test), then the rate of Type-II errors will be the smallest
possible, given the information present in the measurement. In the rest of these lectures we will therefore
mostly ignore Type-II error rates: we will instead focus on the Type-I rate (the p-value), and trust that the
Type-II rate is as small as can be thanks to the optimality guaranteed by the Neyman–Pearson lemma.

4.3 Discovery testing

4.3.1 The likelihood ratio test statistic

Having established the general framework for hypothesis testing, we can now go back to more practical
matters and apply it to the case of discovery testing already covered in Section 3.2 for the special case of
a one-bin Gaussian measurement. Here we make a much more general assumption that the measurement
is described by a PDF p(n;S), in terms of the observables n and a signal yield parameter S, and that we
have observed n = nobs. We define as usual the likelihood as L(S) = p(nobs, S).

Since we want to test for the presence of signal, we define our null hypothesis H0 to be the case
S = 0. To use the Neyman–Pearson lemma, we need to also define an alternate hypothesis H1 that will
be tested against H0. Here we take H1 to correspond to S > 0, using a one-sided definition that assumes
positive signals.4

To compute the numerator of the likelihood ratio, we can simply use L(S = 0). For the denomi-
nator, we need to choose the value of S that will represent the S > 0 hypothesis: an obvious choice is to
select Ŝ, in the case where Ŝ > 0. If Ŝ < 0, then in keeping with our one-sided assumption we take this
to be identical with Ŝ = 0 (no evidence of signal). Since this is the same as the numerator, the likelihood
ratio is simply 1 in this case.

We add one final ingredient: as mentioned in Section 2.1.3, it is often practical to consider
�2 logL instead of just L, in particular in the often-seen cases where L is approximately Gaussian.
We therefore define our discriminant as

q0 =

8
><

>:

�2 log
L(S = 0)

L(Ŝ)
if Ŝ > 0

0 if Ŝ  0.
(33)

One can see immediately that q0 � 0: since Ŝ is the MLE, by definition L(Ŝ) > L(S = 0), so that
the likelihood ratio in Eq. (33) is negative and q0 is positive. Furthermore, q0 = 0 indicates the absence
of signal: in this case L(S = 0)/L(Ŝ) = 1, so that the best-fit likelihood L(Ŝ) is identical to that of
the background-only hypothesis. Conversely, large values of q0 indicate the presence of signal: large
q0 means small L(S = 0)/L(Ŝ), which in turns means L(Ŝ) � L(S = 0): this indicates a strong
preference of the data for a Ŝ away from 0, and therefore that a signal seems to be present. Setting
q0 = 0 for Ŝ  0 identifies this case with the absence of signal S = 0, as mentioned above.

4This hypothesis is composite, in the sense that it encompasses a range of values of S. The proof of the Neyman–Pearson
lemma applies only simple hypotheses corresponding to a single point in parameter space, so that the likelihood ratio is not
guaranteed to be optimal in this case [2]. However, in practice this is seen to remain close to being true in many cases.
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4.3.2 The discovery p-value

The test statistic q0 discriminates between signal and background, but like in any test we can sometimes
come to the wrong conclusion based on the observed data. For the discovery case, the main issue is the
case of a spurious discovery, when in fact S = 0 (i.e., H0 is true), but a large value of q0 leads to the
incorrect conclusion that signal is in fact present. Looking back at the definitions in Section 4.2.1, we
see that this corresponds to a Type-I error, and the probability for it to occur under the S = 0 hypothesis
is the p-value.

Graphically, the p-value can be seen as the tail integral of the PDF of q0 under the S = 0 hypoth-
esis, as illustrated in Fig. 7. Under S = 0, the value qobs

0 observed in data will be usually close to 0, but
will occasionally reach higher values if signal-like fluctuations are present. The probability to observe a
false discovery at the level of qobs

0 or higher is given by the tail integral

p0 =

1Z

q
obs
0

f(q0;S = 0) dq0 (34)

where f(q0;S = 0) is the distribution of q0 under the S = 0 hypothesis. This provides the general
definition of the p-value p0.

Fig. 7: PDF f(q0;S = 0) of the test statistic q0 defined by Eq.( 33) under the S = 0 hypothesis, in the
asymptotic approximation. Values of q0 are on the x-axis, while the y-axis gives the values of the half-�2

distribution 1
2f�2(n=1). The hatched region near q0 = 0 represents the delta function �(q0) corresponding

to the case Ŝ  0. The p-value for the case of qobs
0 = 5 is the area of the red shaded region.

4.3.3 The distribution of q0

We are missing a critical ingredient to compute the p-value (and therefore the significance), namely the
distribution f(q0;S = 0). In general, this is a difficult problem since q0 derives from the usually complex
expression for L. However, one can show that if the measurement is Gaussian, then f(q0;S = 0) can be
simply expressed in terms of the �2 distribution f�2(nf ) introduced in Section 2.1.3, with a number of
degrees of freedom nf equal to the number of parameters used to define H0 (i.e., one parameter, S, in the
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case we consider here). This result is called Wilks’ theorem [13]. In a two-sided situation, the distribution
of the test statistic would be exactly f�2(nf ). In the one-sided situation shown here, the distribution is a
“half-�2", with the Ŝ > 0 half of Eq. (33) described by a f�2(nf ) while the Ŝ  0 half is represented by
a delta function at 0. The distribution is illustrated in Fig. 7.

It is an asymptotic approximation, in the sense that it becomes valid in the limit of large event
yields, since by the central-limit theorem PDFs generally tend to the Gaussian limit in this case. How-
ever, this does not mean that this only applies to the Gaussian case: the key point is that this Gaussian
assumption only applies to one part of the computation, namely the distribution f(q0;S = 0). The com-
putation of qobs

0 itself is performed using the exact form of L, and therefore accounts for non-Gaussian
behavior. For this reason, the asymptotic approximation remains valid over a surprisingly wide range of
situations. We will see in Section 4.3.6 that this limit is in fact often already valid for small yields, of
order 5 to 10 events.

In the cases where the measurements are so non-Gaussian that Wilks’ theorem does not provide
a sufficient approximation (e.g. for very small expected event yields), other methods are required to
obtain f(q0;S = 0). One solution is to sample f(q0;S = 0) using pseudo-experiments: in this case the
PDF p(n;S = 0) is used to generate random datasets, for which the computation of q0 is performed in
the same way as for real data. The distribution of the resulting q0 values provides an approximation to
f(q0;S = 0), which improves as more pseudo-experiments are generated. This procedure can however
be quite CPU-intensive, especially to determine the tail of f(q0;S = 0) when computing small p-values.

4.3.4 The p-value and significance under the asymptotic approximation

If we assume that qobs
0 follows its asymptotic half-�2 distribution, then one can compute the p-value p0

of a positive signal Ŝ with respect to the S = 0 hypothesis as [12]

p0 =
1

2

h
1� F�2(nf )(q

obs
0 )

i
(35)

and its significance z as
z = �

�1
(1� p0). (36)

In Eq. (35), F�2(nf ) is the cumulative distribution function F�2(nf )(q0) =
R
q0

0 f�2(nf )(q)dq, which is
directly related to the tail integral of f�2(nf ). The factor 1/2 is due to the half-�2 nature of the distribution
discussed above and ultimately comes from the one-sided nature of the test.

These formulas take a simpler form in the case of a single parameter of interest, nf = 1: a �2

observable for a single degree of freedom is by definition the square of a normal observable, so that one
has F�2(1)(q0) = �(

p
q0). Therefore, for nf = 1,

p0 = 1� �

✓q
qobs
0

◆
(37)

and
z =

p
q0. (38)

The asymptotic expression for z in terms of q0 is, therefore, particularly simple in this case: one simply
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needs to take the square root of q0 to obtain z.

4.3.5 The one-bin Gaussian example

We consider the case of a one-bin Gaussian measurement with fixed background B, where a measured
event count n is used to obtain the signal yield S. The measurement PDF is p(n;S) = G(n;S +

B,
p
S +B) and we assume that we measured n = nobs.

In Section 4.1.3, we have already computed Ŝ, the p-value p0 of the S = 0 hypothesis and the
significance Ŝ of the signal using elementary methods. We now check that the general methods described
in this section give the same results.

For simplicity, we will work with the N2LL

�(S) = �2 logL(S) =
(n� (S +B))

2

S +B
(39)

The MLE Ŝ is obtained by finding the minimum of �(S), i.e. by solving @�(Ŝ)/@S = 0. A simple
computation yields

Ŝ = nobs �B (40)

as expected. We can now compute q0, which is simply expressed in terms of � as

qobs
0 = �(S = 0)� �(Ŝ) (41)

for Ŝ > 0. Plugging in the expressions for � and Ŝ, one obtains

qobs
0 =

(nobs �B)
2

B
=

 
Ŝp
B

!2

, (42)

again assuming Ŝ > 0. Using Eqs. (37) and (38), one recovers the expressions

p0 = 1� �

 
Ŝp
B

!
(43)

z =
Ŝp
B

(44)

that were already obtained in Section 3.2. Reassuringly, the general framework therefore yields in this
simple situation the same results as those obtained using more pedestrian methods.

4.3.6 Asympototic significance for a Poisson measurement

We can apply the same treatment as in the previous section to a measurement described by a Poisson
measurement, p(n;S) = Pois(n;S +B). Repeating the same computation in this case, we obtain

z =

vuut
2

"
(Ŝ +B) log

 
1 +

Ŝ

B

!
� Ŝ

#
. (45)
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Note that this is obtained using the asymptotic formula z =
p
q0, which assumes Gaussian behavior for

this particular step of the computation, but q0 itself is computed using the Poisson expression. This proce-
dure illustrates the principle behind the asymptotic approximation: the exact (potentially non-Gaussian)
PDF of the measurement is used to compute q0, but the Gaussian approximation is used to convert q0
into a significance or a p-value.

In this particular example, we can check the validity of the asymptotic approximation. Figure 8
shows a comparison of the significance computed using Eq. (45), the fully Gaussian version of Eq. (44),
and the exact value (obtained using pseudo-experiments, as discussed in Section 4.3.3), for different
values of S and B. The results show that the asymptotic Eq. (45) provides a much closer approximation
to the exact result than the fully Gaussian form of Eq. (44), and that the approximation remains excellent
even for small yields of 5 events or so.

b

−110 1 10 210

|1
]

0
m

e
d
[Z

0

2

4

6

8

0,A
q  

b  s / 

 exact

s = 2

s = 5

s = 10

Fig. 8: Median significance for a counting experiment with varying numbers of signal and background
events. Results are computed using Eq. (44) (dotted red) and Eq. (45) (solid blue), and compared to the
exact results computed from pseudo-experiments (black dots). Figure taken from Ref. [12].

4.4 Confidence intervals on a model parameter

4.4.1 Definition

As already mentioned in Section 3.5, an important class of physics results is confidence intervals set on
a model parameter µ. For a single parameter, they are usually written as in the form µ = µ̂+✏+

�✏� , where
the best-fit value µ̂ is the central value of the interval and ✏± are the positive and negative errors.

Before moving to computations, it is useful to first clarify what we mean exactly by these inter-
vals. First, intervals are accompanied by a probability value called a confidence level (CL). For a single
parameter this is often set at the "1�" level, i.e. a confidence level of 68.3% that corresponds to the 1�

inter-quantile of a Gaussian distribution.
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We write for instance µ = µ̂+✏+
�✏� at 68.3% CL, which is the statement that

p(µ̂� ✏�  µ  µ̂+ ✏+) = 68.3%, (46)

i.e. that there is a 68.3% chance that the true value µ is contained in the stated interval. It is worth noting
that the probability statement is about the interval and not µ itself: recall that µ is a fixed (unknown)
value, with no associated probability distribution. What changes from experiment to experiment is the
data and therefore the interval that we compute. Another way to state Eq. (46) is, therefore, that the
confidence interval that we built for a given observed data will cover the true value µ in 68.3% of cases,
if we perform the same experiment many times.

4.4.2 The likelihood ratio for intervals

Several methods can be used to compute confidence intervals. A popular one is the Neyman construction
which is elegant and works very well for small numbers of parameters. It is however difficult to use for
larger parameter counts, so we will focus on a different method based on similar principles as those used
for discovery testing, namely likelihood ratios.

The basic idea is that defining a confidence interval amounts to finding a range of parameter values
that are compatible with the observed data. This in turn can be expressed as a hypothesis test: we define
H0(µ0) as the hypothesis that µ = µ0 and test this against the alternate hypothesis µ 6= µ0, for an
arbitrary value µ0. The values µ0 for which H0(µ0) is likely true will be part of the confidence interval,
and vice versa.

The test is naturally two-sided: values of µ away from µ0 can be either above it or below (µ
is not necessarily an event yield and can in principle take arbitrary positive or negative values). As
before, we will perform the test using the likelihood ratio test statistic. The alternate hypothesis µ 6= µ0

corresponds to a range of values and we need to decide which representative value to use to compute
the corresponding likelihood. As before, we choose the best-fit value µ̂ for this purpose. With the usual
�2 log modification, the test statistic is then

t(µ0) = �2 log
L(µ = µ0)

L(µ̂)
. (47)

Its values are always positive, with a minimum at µ0 = µ̂. Small values indicate good agreement with
the µ = µ0 hypothesis. This agreement is maximal at µ0 = µ̂ and typically gets worse as µ0 moves away
from µ̂. It therefore seems sensible to define the confidence interval with CL c as the range of values µ0

such that t(µ0)  T (c), where T (c) is a suitable threshold that rises with the confidence level c.

4.4.3 Asymptotic approximation

To define T (c), we go back to the one-bin Gaussian case discussed in Section 3.5. The likelihood for µ
is L(µ) = G(mobs;µ,�) and a short computation shows that, in this case,

t(µ0) =

✓
µ0 � µ̂

�

◆2

. (48)
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Therefore t(µ0) follows a parabolic shape with a minimum at µ0 = µ̂ and the condition t(µ0)  T (c)

leads to the confidence interval µ̂±
p

T (c)�.

We know from the computation of Section 3.5 that, in this simple Gaussian case, the 1� intervals
should be µ̂ ± �, and this suggests to use a threshold of T (68.3%) = 1 in this case: the 1� confidence
interval is therefore defined as the range of µ0 for which t(µ0)  1. Similarly, a 2� interval would be
defined by t(µ0)  4, and so on.

This is a suitable generalization of the results of Section 3.5, which matches the simple computa-
tion in the Gaussian case but is applicable to arbitrary forms of L. These likelihood intervals are another
example of an asymptotic approximation, in the sense that the computation is exact only in the Gaus-
sian limit. However, this again only applies to the distribution of t(µ0), since t(µ0) itself is computed
from the exact form of L including non-Gaussian effects. For this reason, the computation remains valid
for a wide range of non-Gaussian situations. In practice, this means likelihood scans that are not quite
parabolic, as they would be in the Gaussian case, but for which one can still compute confidence inter-
vals by computing the intersections of the scan with the appropriate threshold T (c). An example of the
application of this method to a real-life example is shown in Fig. 9.
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Fig. 9: Likelihood scans for the measurement of a Higgs boson production cross-section, taken from
Ref. [14]. The scan corresponds to scenarios in which various combinations of measurements uncer-
tainties are considered. The intersections of the scan with horizontal dotted lines at y-values of 1 and 4
define the endpoints of, respectively, the 1� and 2� confidence intervals on the parameter.

The method can also be extended for larger numbers of parameters, as illustrated in Figs. 10a
and 10b for the case of a confidence contour in two dimensions. Since the relevant asymptotic distribution
is now a �2 with two degrees of freedom, the thresholds T (c) differ from the case of a single parameter:
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for instance 1� contours correspond to a threshold of about 2.30.
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Fig. 10: (a) Illustration of the method used to obtain two-dimensional likelihood contours for two model
parameters denoted as �ggF and �VBF. The N2LL t(�ggF,�VBF) defines a surface that has a paraboloid
shape for Gaussian likelihoods. Likelihood contours are obtained by intersecting this shape with a plane
t(�ggF,�VBF) = Z at the appropriate level Z. For 1� intervals, this level is about 2.30. (b) Example of a
real application of this method, taken from Ref. [14].

4.5 Upper limits on a signal yield

Finally, we come back to the question of setting upper limits, as already introduced in Section 3.6. These
are in fact just one-sided confidence intervals set on a quantity such as a signal yield S, which is known to
be positive. They are typically set in the case where the observed signal is small: in this case, rather than
reporting a small significance, or a signal yield with a large uncertainty, it is often more useful to frame
the result as the exclusion of some large signal hypotheses. Our goal is therefore to be able to state that
we can exclude S < S1�↵ at a confidence level 1�↵, i.e. that if in fact S > S1�↵ then the probability to
have observed a signal as small as the one that we did obtain is no more than ↵. In high-energy physics,
these limits are often set at 95% CL, i.e. ↵ = 5%.

4.5.1 Hypothesis test

Upper limits are computed in a similar way to confidence intervals, using an hypothesis test. Suppose
that the parameter of interest is a signal yield S and that we are considering an upper limit S < S0: then
obviously our null hypothesis will be S = S0. What is the alternate hypothesis that we should exclude
against? For an upper limit, this is the case S < S0 where the true signal is below the limit, since this
is the case where the limit would be invalid. If on the other hand S > S0, then this does not invalidate
our limit, and we can consider this case as part of the good outcomes, together with our S = S0 null
hypothesis.
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Therefore the test is naturally one-sided, as for discovery, and we define our test-statistic as5

q(S0) =

8
><

>:

�2 log
L(S = S0)

L(Ŝ)
if Ŝ < S0

0 if Ŝ � S0.
(49)

As usual, we use the value Ŝ as the representative value for the alternate hypothesis S < S0. We do this
only in the case Ŝ < S0, due to the one-sideness discussed above; for Ŝ < S0 we set the test-statistic to
0, the same value as for S = S0. This one-sided definition mirrors quite closely the situation of discovery
testing in Section 4.3 (compare with Eq. (33)).

4.5.2 Computing p-values and upper limits

We can see from Eq. (49) that values of q(S0) that are close to 0 indicate that Ŝ is close to S0 (or above
it, in which case q(S0) = 0 by construction). Conversely, large values of q(S0) point to Ŝ ⌧ S0, i.e.
that the observed result is too small to be compatible with S = S0 or above. As usual, one can quantify
this agreement using a p-value. Assuming as before the asymptotic approximation of a near-Gaussian
measurement, the p-value for an observed test value q(S0) = qobs

(S0) of the test statistic is

p(S0) = 1� �

✓q
qobs(S0)

◆
, (50)

following the same steps as for Eq. (37).

There is however a last twist in the case of upper limits: what the p-value provides is the level of
exclusion for a given S0, which directly translates into the confidence level for the limit. For instance, if
p(S0) = 9% then the p-value for S < S0 is 9%, which we can reformulate as the fact that S0 defines a
91% CL upper limit on S. However, typically what we want is not this, but instead the value of S0 that
corresponds to a predefined CL, usually 95%. This means that to get the (1 � ↵) CL upper limit, one
generally needs to find the right value S0, by solving the equation p(S0) = ↵ for S0. In simple examples
this can be done in closed form, as we will see below, but generally one needs a numerical procedure that
iteratively searches for the solution S0.

4.5.3 The one-bin Gaussian example

As usual, we now apply the general method to the case of our simple one-bin Gaussian measurement
with fixed background B. Recall that this is defined by the PDF p(n;S) = G(n;S + B,�)6 and the
observed yields n = nobs.

As before, we have Ŝ = nobs � B. Obviously the upper limits that we will set are above Ŝ (we
cannot exclude the value that is preferred by the data!), so we consider S0 hypotheses above Ŝ: we are

5Alternative definitions, such as the q̃µ of Ref. [12], can also be used.
6Note that we are “cheating" a bit here by using a constant Gaussian width �, since in principle we should use � =

p
S +B,

which depends on S. This is a reasonable assumption in the case where S ⌧ B, so that � ⇡
p
B, and we adopt it here since

removing the dependence on S simplifies the computation.
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on the “good" side of the one-sided test defined in Eq. (49). We then have

qobs
(S0) = �2 log

L(S0)

L(Ŝ)
=

 
S0 � Ŝ

�S

!2

, (51)

with the same calculation as the one that led to Eq. (48). Assuming that the asymptotic approximation
applies, we have

p(S0) = 1� �

✓q
qobs(S0)

◆
= 1� �

 
S0 � Ŝ

�

!
. (52)

Note that we can remove the square root without ambiguity, since we know that S0 > Ŝ. To set the 95%
CL upper limit S95, we therefore need to solve

p(S95) = 1� �

 
S95 � Ŝ

�

!
= 5%, (53)

which gives
S95 = Ŝ + �

�1
(0.95)� ⇡ Ŝ + 1.64�. (54)

Recall that � and �
�1 are implemented in e.g. ROOT and scipy, and we can use either to find that

�
�1

(0.95) ⇡ 1.64. The computed limit has the expected properties: it rises and decreases with Ŝ, so that
observing a smaller signal leads to setting a lower upper limit and vice versa; and the upper limit is always
above the best-fit signal, by an amount that is proportional to the uncertainty � in the measurement. The
only slightly non-trivial ingredient is the factor 1.64, which corresponds to the desired 95% CL.

4.5.4 CLs upper limits

We close the discussion of upper limits by briefly discussing the CLs modification to upper limits on
signal yields, since this procedure is widely used in high-energy physics.

The motivation behind this extra wrinkle can be seen from Eq. (54), in the one-bin Gaussian case:
suppose that the true signal value is S = 0, i.e. that we are looking for a signal that does not actually exist
(although we are not aware of this fact!) and that Ŝ < 0 due to a statistical fluctuation in the background.
We see that if Ŝ is negative enough, the limit itself will go negative. For a 95% CL limit, this will occur
if we are unlucky enough that Ŝ < �1.64�.

This is in fact completely normal: we know that when setting a 95% CL upper limit, that limit
will by definition be wrong in 5% of the cases: this means that if S = 0, then in 5% of cases we will in
fact set a negative limit S95 < 0 that wrongly excludes the true value. While this is a basic property of
statistical results, it is also somewhat counter-intuitive. Furthermore, if we assume that we know a priori
that S > 0, then we also know that the cases where S95 < 0 fall within the 5% of times where the limit
fails. This motivates “fixing" the upper limit computation to avoid these cases.

The CLs fix consists in modifying the definition of the p-value: instead of basing the test on p(S0)

as defined in Eq. (50) we use, instead,

pCLs(S0) =
p(S0)

p0
, (55)
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where p0 is the p-value for the S = 0 hypothesis. Without going into the technical details of why this
particular modification is used, one can check that it has the intended effect: if Ŝ is strongly negative,
then this excludes S = 0, which means that the p-value p0 is small. Then pCLs(S0) � p(S0) and
this larger p-value leads to a weaker limit, which almost always avoids spuriously excluding S = 0.
However, if Ŝ is compatible with 0 (or positive), then p0 ⇡ 1 (a large p-value indicating no exclusion of
S = 0) and therefore pCLs(S0) ⇡ p(S0): in this case the result is unchanged compared to before. This
behavior is illustrated in Fig. 11, where we see that the CLs limit coincides with the usual frequentist
CLs+b (defined by Eq. (50)) for large Ŝ; and for Ŝ < 0 the CLs case deviates so as to avoid negative
limits. While this CLs technique avoids “unphysical" negative limits, the price to pay for this is loss of
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s+b95% CL limit, CL

s95% CL limit, CL

Fig. 11: Value of the 95% CL upper limit on the mean µ of a Gaussian PDF with width 1, as a function
of its best-fit value µ̂. The CLs+b limit computed from Eq. (54) (red line) is shown alongside the CLs

limit computed from Eq. (56) (blue line).

coverage: this is still advertised as a 95% CL limit, but for Ŝ ⇡ 0 and below it corresponds in fact to a
higher CL, and is therefore over-conservative.

Applying the CLs computation to the simple Gaussian example of Section 4.5.3, one finds

SCLs
95 = Ŝ + �

�1

"
1� 0.05�

 
Ŝ

�

!#
�, (56)

and one can check that one recovers the result of Eq. (54) in the case of Ŝ � �, while for |Ŝ| ⌧ � one
has

SCLs
95 ⇡ Ŝ + 1.96� (|Ŝ| ⌧ �). (57)

This relation is quite useful since the scenario |Ŝ| ⌧ �, where no significant signal is found, is particu-
larly relevant to setting upper limits.

We conclude by stating without proof another very useful result: suppose that we perform a single-
bin counting experiment and that we observe nobs = 0. Then the exact value of the 95% CLs upper limit
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is
SCLs
95 (nobs = 0) = log(20) ⇡ 3. (58)

This is a remarkable result for two reasons: first, it is independent of the background level B or, equiva-
lently, of the uncertainty � of the measurement; and secondly, it is exact in the sense that it does not rely
on the asymptotic approximation: it is, in fact, based solely on properties of the Poisson distribution. For
this reason, the result cannot be obtained as a limiting case of Eq. (57), but it is relatively easy to derive
by going back to the Poisson definition of the p-values entering Eq. (55).

4.6 Expected results

So far we have covered the computation of so-called observed results, i.e. those obtained from a particular
observed dataset. It is also often useful to compute expected results, i.e. the median expected outcome
under a particular hypothesis.

A common use-case for this is to choose between two analysis options: if the choice is done used
the observed results, then one may end up picking an option that seems more sensitive due to a lucky
fluctuation in the data. While this may be beneficial for this particular dataset, it may not remain so when
more data is collected, and such a choice would also systematically overestimate the analysis sensitivity.
This is related to the concept of blind analysis, where analysis choices are made only based on expected
outcomes, without looking at the observed data, in order to avoid biases towards a particular result
(e.g. the result found by previous measurements). Another typical use-case for expected results is the
projection of analysis sensitivity to as-yet hypothetical situations, for instance to estimate the expected
performance at future experimental facilities.

Expected results are computed under a given hypothesis; for instance, the Standard Model expec-
tations. There are two main techniques for this: pseudo-experiments (also often called “toy datasets")
and Asimov datasets. For pseudo-experiments, one uses the measurement PDF to generate random data,
i.e. datasets which have not been actually observed in the experimental apparatus, but are randomly
generated using the PDF. Recall that the PDF is exactly the tool needed to do so, since it provides the
probabilities for different outcomes. Defining the generation hypothesis simply corresponds to setting
the PDF parameters to the appropriate values. Technically, tools for random generation are provided by
the usual statistics toolkits (e.g. RooFit, ROOT, or pyhf). Statistical results are then computed from each
pseudo-dataset, exactly in the same way as for real observed data. The expected result is then reported as
the median of these results, as shown in Fig. 12a. One can also compute, e.g., 1� and 2� bands around
the median using the corresponding quantiles of the distribution. These bands are useful to test the agree-
ment of the observed result with the expected result. They are often shown in particular for limits, as in
Fig. 12b.

The other method of computing expected results is the so-called Asimov dataset technique: in
this case, one constructs a single dataset that corresponds exactly to the desired scenario, the Asimov
dataset.7 The expected results are then obtained by simply performing the computation on this dataset.
The Asimov dataset is formally defined as a dataset for which the best-fit values of all model parameters
are exactly equal to their hypothesis values. So, if the desired scenario is µ = µ0, then an Asimov dataset

7The name originates from a short story by Isaac Asimov, Franchise, featuring a form of government based on a similar premise.
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should verify µ̂ = µ0. For a counting experiment, one can construct such a dataset by simply setting the
observed yield in all bins to their expectations. For unbinned cases there is no similar technique, but one
can get a suitable approximation by building a binned dataset with sufficiently fine bins, where the bin
yields again match the expectation from the model.
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Fig. 12: (a) Illustration of the computation of an expected result from an ensemble of pseudo-
experiments. The pseudo-experiment results (µ95) are shown as a histogram (black line). The expected
result is computed as the median of the histogram (central blue line), and the 1� and 2� bands (green and
yellow areas) as the corresponding quantiles around the median. (b) Example computation of expected
and observed upper limits taken from Ref. [16]. Limits on the production cross-section of a resonance
are shown as a function of its mass mX . Each position in mX corresponds to a separate result, for
which both observed (solid black line) and expected (dotted black lines) upper limits are shown. The
green and yellow areas show respectively the 1� and 2� bands around the expected result, as in panel
(a). The computation is performed using the Asimov dataset technique at lower values of mX , where the
measurement is quasi-Gaussian due to large event yields. At higher mX the smaller yields invalidate the
Gaussian approximation, and the results are instead obtained using the pseudo-experiments technique.

The Asimov dataset technique has the advantage that the expected result can be obtained from
a single computation, whereas the pseudo-experiments technique typically requires processing tens to
hundreds of datasets. It does not however provide the bands around the results, and these need to be
computed using asymptotic formulas [12]. The Asimov dataset technique is therefore usually the pre-
ferred choice in Gaussian settings, while pseudo-experiments are required in non-Gaussian cases, where
the asymptotic approximation does not apply.

5 Profiling and systematic uncertainties

A careful reader may have noticed that the “general" methods presented in Section 4 did not include
the treatment of the nuisance parameters of the model, discussed in Section 2. The central concept of
systematic uncertainties was also not yet introduced. We will show in this section that both are in fact
closely related, and that their treatment can be included as a simple modification of the methods described
in Section 4.
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5.1 Profile likelihood method

5.1.1 Definition of the profile likelihood ratio

In Section 4.2, we have considered hypothesis tests in the case of a PDF p(n;µ) with a single parameter
of interest. We have seen that, according to the Neyman–Pearson lemma, we can use the likelihood ratio
L(µ0)/L(µ1) to make a decision between two hypotheses µ = µ0 and µ = µ1. We have extended this
to test µ = µ0 against µ 6= µ0 by using L(µ0)/L(µ̂), where the best-fit value µ̂ is used as a stand-in for
the µ 6= µ0 case.

What if now we have P (n;µ, ✓), with nuisance parameters ✓ also present? In principle, the
Neyman–Pearson lemma applies in the same way to this case as well, and we can test hypotheses defined
by values of both µ and ✓. However, we are not interested in the values of ✓ (by definition,these are not
parameters of interest!); the hypotheses we want to test are only defined by values of µ. So, to use the
Neyman–Pearson lemma, we need to “fill in" some ✓ values to fully specify the hypotheses.

Following the principles already laid out earlier, the obvious values to use are the ones provided
by the data, i.e. the best-fit values:

– For the null hypothesis defined by µ = µ̂, we can just add ✓̂ to the definition so that this becomes
the (µ = µ̂, ✓ = ✓̂) hypothesis.

– For the alternate µ = µ0 hypothesis, we need to account for the fact that we restrict ourselves
to a particular value of µ, so that for consistency the best-fit value of ✓ should also be computed
under this restriction. We therefore introduce the conditional best-fit value ˆ̂✓(µ0), which is the
best-fit value of ✓ under the condition µ = µ0. The alternate hypothesis is then defined in full by
(µ = µ0, ✓ =

ˆ̂✓(µ0)).

One can see immediately that ˆ̂✓(µ̂) = ✓̂, but for other values of µ the conditional best-fit value
may not necessarily match the overall best-fit value ✓̂. This conditional best-fit value is also called the
profiled value of ✓ as a function of µ0. Putting it all together, this gives a new definition of the likelihood
ratio, which with the usual �2 log operation reads

t(µ0) = �2 log
L(µ0,

ˆ̂✓(µ0))

L(µ̂, ✓̂)
. (59)

This is the profile likelihood ratio, and corresponds to a generalization of Eq. (47) in the presence of
nuisance parameters ✓.

5.1.2 Wilks’ theorem for the profile likelihood ratio

One can see immediately that, thanks to the use of best-fit values, t(µ0) remains a function of µ0 only,
without reference to the ✓. The ✓ are of course always there in the background, but their impact is baked
into t(µ0) through the best-fit values and not explicitly apparent.

Furthermore, there is a truly amazing result on the asymptotic distribution of t(µ0) : in the µ = µ0

hypothesis, t(µ0) follows a �2 distribution with a number of degrees of freedom equal to the number of
parameters of interest. This result is known as Wilks’ theorem [13].
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This shouldn’t come as too much of a surprise since the same result was already presented in Sec-
tion 4.3.3 for the case of a simple likelihood ratio without nuisance parameters, defined by Eq. (47). The
full version of Wilks’ theorem that is stated above generalizes this to the case where nuisance parameters
are present, and are profiled as shown in Eq. (59). The fact that it remains true also in this case is some-
what miraculous (it relies on a subtle interplay between the best-fit values of µ and ✓ in the Gaussian
case), but the upshot is that things do not change very much when nuisance parameters are also included.
With the new definition of t(µ0) from Eq. (59) (and the related test statistics of Eqs. (33) and (49)), all
the techniques and formulas presented in Section 4 remain applicable as long as the asymptotic approxi-
mation is valid.

So, for example, one can still compute the discovery significance as z =
p
q0, following Eq. (36),

provided that the definition of q0 in Eq. (33) is updated to include the conditional (under S = 0) and
unconditional best-fit values of the nuisance parameters, similarly to Eq. (59). Confidence intervals and
upper limits can also still be computed as described in Section 4, with the profiled values of the nuisance
parameters included in the definition of the test statistics.

5.1.3 Application to a simple Gaussian example

To illustrate the use of the profile likelihood, we consider a measurement where the signal yield S and
background yield B are both free parameters. The goal is to demonstrate how to deal with B using profil-
ing, in order to measure S. Since we need to measure two parameters, we need at least two measurement
bins. We therefore now include two independent Gaussian measurements: in one bin, we measure S+B

with uncertainty �, using an event count n; in the other we assume that only background is present so
that we measure B only with uncertainty ✏ using an event count m. This is in fact a fairly standard
experimental setup, where the measurement mainly occurs in a signal region (SR) where both signal and
background is present, and the background is obtained through a separate control region (CR) which is
sensitive to background only. The full measurement PDF is

p(n,m;S,B) = G(n;S +B,�)G(m;B, ✏). (60)

Assuming that we observe nobs and mobs, we define as usual the likelihood L(S,B) =

P (nobs,mobs;S,B) and the N2LL �(S,B) = �2 logL(S,B). We have

�(S,B) =

✓
S +B � nobs

�

◆2

+

✓
B �mobs

✏

◆2

. (61)

The best-fit values of S and B are obtained from minimizing �, and we have

Ŝ = n�m (62)

B̂ = m (63)

ˆ̂B(S) = m+
✏2

�2 + ✏2
(Ŝ � S) (64)
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As expected, the best-fit values of S and B are the ones that best match the data. The profile value ˆ̂B(S)

also has the expected properties: for S 6= Ŝ, one can see that ˆ̂B(S) deviates from B̂ = m in a way that
partially compensates for the deviation of S from Ŝ: if S > Ŝ then ˆ̂B(S) < m and vice versa, which
in both cases tends to soften the discrepancy between the prediction and the data. Plugging these values
into Eq. (59), we then obtain

t(S0) =

✓
S0 � (n�m)

�2 + ✏2

◆2

. (65)

We can then obtain a confidence interval on S from the intersections t(S) = 1 as described in Sec-
tion 4.4.3. We get

S = (n�m)±
p
�2 + ✏2 at 68.3% CL (66)

with an uncertainty of
p
�2 + ✏2 that is the sum in quadrature of the uncertainties coming from the SR

(�) and from the CR (✏). This illustrates that although t(S) remains a function of S only, the profiling
accounts for the impact of the nuisance parameters behind the scenes, and the uncertainty from the
measurement of B in the CR was correctly propagated to the estimation of S.

5.2 Systematic uncertainties

5.2.1 Statistical and systematic uncertainties

We finally come to one of the central issues of statistical analysis in high-energy physics: systematic
uncertainties. First, what are they? Recall that the measurement PDFs that we have been working with
are a way to describe uncertainties about the data, as discussed in Section 2. For instance, we use Poisson
distributions to encode the fact that the number of events observed in a counting experiments fluctuates,
if we repeat the experiment several times. These uncertainties, which are provided by the measurement
PDFs, are called statistical uncertainties. They are the uncertainties that we have been dealing with up
to now.

There is however another class of uncertainties: uncertainties in the form of the PDF itself. For
instance, in the counting example studied in Section 4.1.3 we have assumed that the background yield B

is known exactly and this is a critical input to the analysis; e.g. to extract the signal as Ŝ = nobs � B.
However, in a real-life situation B is never known exactly: there is an uncertainty on its value. This
uncertainty isn’t captured by the PDF itself (Eq. (25) in this example) since it is an uncertainty on the very
form of the PDF. These uncertainties on the definition of the PDF are known as systematic uncertainties.

There is an alternate definition of statistical uncertainties based on their behavior as the measure-
ment dataset increases: we have seen that, according to the central-limit theorem, the combined precision
of N measurements scales as 1/

p
N (see Eq. (4)). By the same argument, statistical uncertainties scale

as the inverse square root of the size of the dataset, as more data makes the measurement more precise.
Systematic uncertainties on the other hand usually remain constant even as the dataset size increases
(unless one makes clever use of the new data to improve the measurement!): they represent a fixed bias
between the actual measurement process and its imperfect statistical model, which more data does not
help to reduce. This can be illustrated by coming back again to the simple Gaussian example of Sec-
tion 4.1.3, where the signal yield is obtained as Ŝ = nobs � B: the statistical uncertainty comes from
nobs and a larger dataset will lead to increased relative precision on this term. However, if B is off from
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its true value, then this will lead to a systematic bias on Ŝ that more data cannot help to reduce. This bias
then needs to be covered by a separate systematic uncertainty.

5.2.2 Systematic uncertainties as nuisance parameters

Since systematic uncertainties affect the measurement PDFs themselves, they lie outside the scope of the
techniques we have presented in Section 4. We therefore need to find a way to expand our description of
the PDFs to also account for these effects. The simplest way to do this is to add more free parameters
into the description. For instance, the background yield B in the example above can be promoted from a
fixed value to a floating parameter that can be adjusted from the data itself.

Sometimes it is possible to just do this: we arrange to obtain B from a data-driven estimate, as
in the example shown in Section 5.1.3, and remove the source of systematic bias. However, this is not
always possible: for instance in the one-bin Gaussian example of Section 4.1.3, we estimate the signal
from a single bin yield using Ŝ = nobs � B, and this assumes that we know B a priori. If both S and
B are free parameters, then we cannot estimate both their values from just the knowledge of the single
yield nobs.

The way out is to assume that we have some external knowledge of B, coming from outside
the current measurement. In general this is what happens in realistic situations: B is not completely
unknown but can be estimated from previous experiments, MC simulation, or a combination of the two.
We will generally frame this knowledge as the results of auxiliary measurements that are independent
of the measurement that we are describing: either using a separate dataset or a completely different
apparatus.

This is a sensible approach for the background yield B, but and can be adapted to less obvious
cases such as theory predictions. Of course, the output of a theory computation can hardly be viewed as
the result of a measurement (theory errors do not represent fluctuations in the result of the computation!).
However, one can still represent the knowledge on the corresponding theory parameter using, e.g., a
Gaussian distribution with a width corresponding to the theory uncertainty.

The general framework is then as follows: suppose that we have a measurement Pmain(n;µ),
where as usual n represents the observables and µ the measurement parameters. To describe systematic
uncertainties in Pmain, we augment µ with the parameters {✓syst

i
}1iNsysts , which are additional nuisance

parameters describing the systematic uncertainties. We assume that we have external knowledge on each
✓syst
i

, encoded in the PDF Pi(✓obs
i

; ✓syst
i

). This PDF represents an auxiliary measurement with observable
✓obs
i

that provides information on ✓syst
i

. Since the auxiliary measurements are assumed to be independent
from the main measurement, we can combine all of them together with Pmain by taking the product

P (n, {✓obs
i };µ, {✓syst

i
}) = Pmain(n;µ, {✓syst

i
})
Y

i

Pi(✓
obs
i ; ✓syst

i
). (67)

Remember that in Pmain(n;µ, {✓syst
i

}) alone, we typically would not have enough measurement infor-
mation to constrain all the ✓syst

i
. But this is now possible in P (n, {✓obs

i
};µ, {✓syst

i
}), thanks to the extra

information coming from the observables ✓obs
i

. We can therefore now treat this PDF using the profile
likelihood techniques described in Section 5.1 to compute the results in the presence of systematic un-
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certainties.

In practice, the Pi will often be represented as simple Gaussians, with a central value correspond-
ing to the nominal value of the nuisance parameter and a width corresponding to the value of its un-
certainty. This can be considered as a simplified description of the auxiliary measurement, in the cases
where one actually exists, or as a mathematical tool to convey the uncertainty in other cases (e.g. for the-
ory uncertainties). However, it is also possible in principle to provide Pi as the full PDF of an auxiliary
measurement, obtained e.g. as described in Section 2.

5.2.3 The simple one-bin Gaussian example

We illustrate the treatment of systematics by returning one last time to our one-bin Gaussian counting
example, Pmain(n;S,B) = G(n;S + B,�). Instead of assuming that B is known exactly, we will now
assume that there is some uncertainty in this value, so that we have B = Bnom ± �B . We represent this
systematic uncertainty as a Gaussian auxiliary measurement with PDF PB(Bnom;B) = G(Bnom;B,�B).
Including this extra information, the full measurement PDF is now

P (n,Bnom;S,B) = Pmain(n;S,B)PB(Bnom;B) = G(n;S +B,�)G(Bnom;B,�B). (68)

We can now obtain a confidence interval on S by profiling B and defining the profile likelihood t(S) as
in Eq. (59). The profiling of B will then account for the impact of its uncertainty on the measurement of
S, as we saw already in Section 5.1.3. In fact one can check that the computations in this example are
formally identical to those in Section 5.1.3: by a simple change of notation, we can obtain immediately

S = (n�Bnom)±
q
�2 + �2

B
at 68.3% CL. (69)

So, the systematic uncertainty �B on the background level gets added in quadrature to the statistical
uncertainty � to form the total uncertainty on S, as one would have naively expected. The implementation
of the systematic uncertainty as a nuisance parameter and its treatment using profiling therefore fully
accounts for its effect on the measurement.

The similarity of the computation here and the one in Section 5.1.3 is not completely accidental:
as mentioned above, a systematic uncertainty on a model parameter can be seen as information coming
from an auxiliary experiment that is sensitive to this parameter. The control region (CR) measurement in
Section 5.1.3 can be seen as such an auxiliary measurement: if one considers only the signal region (SR)
measurement as the measurement, then the CR is an auxiliary measurement and B is associated with a
systematic uncertainty, as in this section. If, however, one considers the measurement as encompassing
both the SR and the CR, then both S and B are measured simultaneously from data, in a measurement
without systematic uncertainties. In this second case, the statistical uncertainty on B still propagates
to the uncertainty on S in the same way as for a systematic uncertainty, so the two cases are formally
equivalent.

Note, however, that in the case of a systematic uncertainty, an increase in the dataset would a priori
apply only to the SR and not to the auxiliary measurement, while for a combined measurement, both SR
and CR datasets would be expected to increase. This difference reflects the different scaling behaviors
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of statistical and systematic uncertainties with luminosity that were described in Section 5.2.1.

5.3 Profiling: caveats and pitfalls

As described in Section 5.2.2, there are two types of nuisance parameters: parameters associated with
an auxiliary observable, as in Section 5.2.3, which represent systematic uncertainties, and data-driven
parameters which are determined fully from the data without additional external information, as in Sec-
tion 5.1.3. Profiling provides a general way to deal with nuisance parameters of both types. Thanks to
the Neyman–Pearson lemma and Wilks’ theorem, the resulting profile likelihood ratio tests statistics are
guaranteed (with some caveats) to be optimal, i.e. they make use of all the information in the data to
provide statistical results with maximal sensitivity.

There can be some interplay between auxiliary measurements and data-driven constraints: for
instance, in a complex measurement with a large number of bins the data can provide constraints on the
systematics nuisance parameters. If the constraint from the data is stronger that the one provided by the
auxiliary measurement, then the data itself provides a better estimate of the parameter than what was
provided externally: the magnitude of the systematic uncertainty is therefore reduced, compared to the
value that was given as input in the model.

This property of profiling is particularly useful in LHC experiments, where large datasets allow
one to set strong constraints that can help to reduce systematic uncertainties. Profiling therefore provides
a powerful tool to improve the measurement precision. However, it must also be used with caution,
since it relies on the assumption that the systematic parameters provide a complete description of the
uncertainties.

To illustrate where this can fail, suppose that a measurement is sensitive to the energy calibration of
an experimental observable, say the jet energy, and that the associated systematic uncertainty is described
using a single nuisance parameter. Assume further that large amounts of data are available at low jet
energies, but that the measurement is performed at higher energies. If profiling is applied, the low-energy
data can provide a strong constraint on the parameter, which then translates into a reduced systematic
uncertainty that also applies in the high-energy region. In terms of physics modeling this is often wrong:
the calibration of high-energy objects is often decorrelated from the low-energy region, so that one
should have separate uncertainties described by different parameters. The reduction of the uncertainty in
the high-energy region is therefore likely invalid. The issue is not related directly to the profiling itself,
but rather to the description of the uncertainties using model parameters. While profiling is a powerful
tool, it requires a careful treatment of this point, to avoid spurious reductions in systematic uncertainty.

A realistic example of a case where a systematic uncertainty is heavily reduced is shown in Fig. 13.
While such cases can correspond to legitimate uses of the data to improve on the knowledge of systematic
effects, they should be checked carefully to ensure this improvement is justified.

6 Conclusion

Statistical methods are an essential part of high-energy measurements. Modern tools implemented within
the ROOT toolkit or the python ecosystem allow one to describe complex measurements using binned
or unbinned PDFs, as well as the associated systematic uncertainties. Frequentist techniques based
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Fig. 13: Pull and impact plot taken from Ref. [15]. The rows correspond to nuisance parameters de-
scribing the leading systematic uncertainties in the analysis. The black bars and dot show the normalized
best-fit values and uncertainties (pulls) of the parameters. Uncertainties smaller than 1 indicate that the
parameter is constrained by the data. In this case the effective impact of the systematic uncertainty (red
hashes) is reduced compared to its input value (green bands).

on the use of profile likelihood ratios can then be used to obtain statistical results, such as discovery
significances, confidence intervals for model parameters, and upper limits on signal yields. These results
can be obtained using arbitrarily complex likelihoods (limited only by computing power) and make
generally optimal use of the information present in the data.

A set of jupyter notebooks providing examples and exercises based on the contents of
these lectures can be found at https://github.com/fastprof-hep/stats-tutorial/tree/main/
AEPSHEP2022. Further reading on these techniques can be found in standard textbooks on statistics, such
as Refs. [1, 17, 18].
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