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Chapter I.1

Electromagnetism

Heino Henke

Technical University Berlin, Germany

Electromagnetic fields are at the heart of accelerators. They accelerate, focus and guide charged
particles and they are responsible for the stability as well as the instability of particle beams. Their
range goes from constant fields up to very fast changing fields with frequencies of many GHz. Since
electromagnetism is part of the university curriculum, we restrict ourselves to a review of some
basics which are important to deal with problems in particle accelerators.

I.1.1 Introduction

Long ago, electricity and magnetism were well known separate phenomena. The birth of electromag-

netism began with the discovery of Oestedt (1820) that an electric current is always associated with a

magnetic field. Later on, Faraday (1831) discovered the electromagnetic induction, the creation of elec-

tric fields by a changing magnetic field. Electromagnetism was born. Maxwell (1864) extended and

completed this work with the four equations, which relate the electric field E and magnetic field H ,

together with the electromagnetic Lorentz force. The four equations are

˛
H (r, t) · ds =

¨
J (r, t) · dA+

d

dt

¨
D (r, t) · dA ,

˛
E (r, t) · ds = − d

dt

¨
B (r, t) · dA ,

‹
D (r, t) · dA =

˚
ρ (r, t) dV ,

‹
B (r, t) · dA = 0 ,

(I.1.1)

with

E,H the electric and magnetic fields,

D,B the electric displacement and the magnetic induction, which are responsible for the effects of

material on the fields,

J the electric current density,

ρ the electric charge density.
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I.1.1. Introduction

The term
˜

J (r, t) · dA includes all currents going through the area A, which may consist of

Jc (r, t) = κE (r, t) the conduction current (Ohm’s law),

Jcv (r, t) = ρ (r, t)v (r, t) the convection current,

J i (r, t) an impressed current.

The term
˝

ρ (r, t) dV includes all charges in the volume V . Current and charge may have different

distributions, e.g. point-like, lines, surfaces, volumes.

In most cases Maxwell’s equations (I.1.1) are used in their differential form for which an extensive

set of tools is available. They can be derived easily from Eq. (I.1.1) using Stokes’ and Gauss’ theorem

∇×H = J +
∂D

∂t
, (I.1.2)

∇×E = −∂B
∂t

, (I.1.3)

∇ ·D = ρ , (I.1.4)

∇ ·B = 0 . (I.1.5)

It should be noted that Maxwell’s theory is a continuum theory. All quantities must be continuous.

Discontinuities must be excluded but can be taken into account by means of the integral form Eq. (I.1.1).

In case of time-harmonic fields it is convenient to reduce the equations to time-independent equa-

tions. Let us take an example, the electric field

E (r, t) = E0 (r) cos(ωt+ φ)

can be written as

E (r, t) = Re
{
E0 (r) e

iφeiωt
}
= Re

{
Ẽ (r) eiωt

}
, (I.1.6)

where Ẽ is called phasor. The advantages are

– the time derivative ∂/∂t is replaced by iω,

– phasors are vectors in a coordinate system rotating with ωt,

– eiωt cancels out in the equations.

In the following the tilde belonging to phasors will be dropped for convenience whenever time-harmonic

fields are treated and/or the situation is sufficiently clear.

The fields D and B describe the effect of E and H on matter. As simple examples we take

an isotropic and linear dielectric effect. A local electric field displaces the charge centers of an atom

and creates an elementary dipole with a moment pe = qx, Fig. I.1.1 An averaging procedure over the

effect of the macroscopic field E on the microscopic dipoles (Clausius-Mossotti) leads to a macroscopic

polarization field

P = ε0χeE
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Fig. I.1.1: A local electric field displaces the charge centers of an atom and creates a dipole.

superimposed to E

D = ε0E + P = εo (1 + χe)E = εrε0E , (I.1.7)

ε0 = 8.854 × 10−12As/Vm, permittivity of the vacuum. The relative permittivity εr and therefore D

describe the influence of an electric field on matter. There are different microscopic effects: atoms or

molecules which are polarized or displaced or even rotating. They happen at different frequencies and

are connected with losses, which are represented by an imaginary part of εr

εr = ε′r − iε′′r .

The real and imaginary part of εr are schematically shown in Fig. I.1.2

Fig. I.1.2: Principal behavior of real and imaginary part of εr over frequency.

The reaction of matter on magnetic fields is due the particle spins, which can be simulated by an elemen-

tary current with magnetic momentum pm = πr2eIe, Fig. I.1.3. Again, an averaging procedure leads to a

macroscopic magnetization field M

M = χmH

superimposed to H

B = µ0H + µ0M = µ0 (1 + χm)H = µrµ0H, (I.1.8)
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I.1.1. Introduction

µ0 = 4π × 10−7Vs/Am, permeability of the vacuum.

Fig. I.1.3: A local magnetic field causes elementary currents with a dipole moment pm.

The relative permeability µr and therefore B describe the influence of a magnetic field on matter. In most

technical materials µr is close to 1. An important exception are ferromagnetic materials where the rela-

tion between the external field and the magnetization is non-linear and depends on history (hysteresis),

Fig. I.1.4.

Fig. I.1.4: Typical behavior of B(M) for ferromagnetic materials.

In many materials the relations P = P (E) and M = M(B) are linear. In some materials, however,

they are non-linear or anisotropic and depend on time or frequency.

Typically they have losses due to radiation and/or friction between elementary dipoles. In technical

literature the losses are expressed by a loss angle δ

ε = ε′ − iε′′ = ε′ (1− i tan δε) , tan δε = ε′′/ε′,

µ = µ′ − iµ′′ = µ′ (1− i tan δµ) , tan δµ = µ′′/µ′.
(I.1.9)

In most dielectrics it is

tan δε ≪ 1, tan δµ ≈ 0
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and in good metallic conductors

|J | ≫
∣∣∣∣∂D∂t

∣∣∣∣ −→ κ≫ ωεrε0

J +
∂D

∂t
= (κ+ iωεrε0)E = iωεrε0

(
1− i

κ

ωεrε0

)
E = iωεcE, εc ≈

κ

iω
.

Finally, as mentioned above, Maxwell’s theory is a continuum theory. It requires continuous, double

differentiable functions. If the problem contains regions with different material, one derives general

solutions for each region and matches the solutions on the interface between the regions. The matching

process fixes the unknowns in the general solutions. This process uses boundary or continuity equations

derived from Eq. (I.1.1). To get conditions for tangential field components a small rectangle, small

compared to the distance in which the field changes, is chosen across the interface, Fig. I.1.5.

Fig. I.1.5: Integration path along a small rectangle across the interface.

Then, the first equation in Eqs. (I.1.1) gives

Ht1∆s−Hnh−Ht2∆s+Hnh = Js∆s+
∂

∂t

¨
∆A

D · dA

which for h→ 0 becomes

Ht1 −Ht2 = Js. (I.1.10)

Here a surface current density Js was assumed. In a similar way the second equation in Eqs. (I.1.1) gives

Et1 − Et2 = 0. (I.1.11)

If medium 2 is perfectly electric conducting, the fields vanish and Eq. (I.1.10), Eq. (I.1.11) become

Ht1 = Js, Et1 = 0.

Conditions for the normal field components follow from the 3rd and 4th equations in Eq. (I.1.1). In that

case one chooses a small cylinder, Fig. I.1.6.

The 3rd equation in Eq. (I.1.1) becomes

Dn1∆A−Dn2∆A+

¨
∆Acyl

D · dA = ρs∆A
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I.1.2. Electrostatic fields

Fig. I.1.6: Integration surface of a small cylinder across the interface.

and with h→ 0

Dn1 −Dn2 = ρs, (I.1.12)

equivalently for the 4th equation in Eq. (I.1.1)

Bn1 −Bn2 = 0. (I.1.13)

Here a surface charge ρs was assumed. If medium 2 is perfectly electric conducting Eq. (I.1.12),

Eq. (I.1.13) become

Dn1 = ρs, Bn1 = 0.

After these general remarks we will treat some simplifications of Maxwell’s equations and in particular

wave solutions.

I.1.2 Electrostatic fields

Electrostatics describe situations where H = 0 and ∂/∂t = 0. Maxwell’s equations Eqs. (I.1.2)-(I.1.5)

simplify to

∇×E = 0 (I.1.14)

∇ ·D = ρ. (I.1.15)

Due to the identity ∇×∇ϕ = 0, one can derive the electric field in Eq. (I.1.14) from a scalar potential

ϕ

E = −∇ϕ. (I.1.16)

The negative sign is thereby chosen such that work has to be done when moving a positive charge against

the field. Substituting Eq. (I.1.16) into Eq. (I.1.15) one gets a Poisson equation for the potential

∇2ϕ = −ρ
ε
. (I.1.17)

As an example we consider an electrostatic lens consisting of two circular tubes with different potential,

Fig. I.1.7.

The structure is cylindrically symmetric with no free charges and the Poisson equation (I.1.17) becomes
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Fig. I.1.7: Two circular metallic tubes with different potential.

a circular symmetric Laplace equation

∇2ϕ =
∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+
∂2ϕ

∂z2
= 0.

Using a Bernoulli ansatz

ϕ (ρ, z) = R (ρ)Z(z)

it can be written as
1

R

d2R

dρ2
+

1

ρR

dR

dρ
+

1

Z

d2Z

dz2
= 0. (I.1.18)

The last term is independent of ρ and must be a constant, here k2z . Then

d2Z

dz2
− k2zZ = 0

with solutions

Z(z) =

C0 +D0z kz = 0

Cekzz +De−kzz kz ̸= 0.

For z → ±∞ ϕ must be finite, i.e. C = D0 = 0 and Z becomes

Z(z) =

C0 kz = 0

De−kz |z| kz ̸= 0.
(I.1.19)

The leftover equation (I.1.18) is Bessel’s differential equation

d2R

dρ2
+

1

ρ

dR

dρ
+ k2zR = 0

with Bessel J0 and Neumann N0 functions as solutions

R (ρ) =

A0 +B0 ln
(

ρ
ρ0

)
kz = 0

AJ0 (kzρ) +BN0 (kzρ) kz ̸= 0.
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I.1.3. Stationary currents

Since ϕ must stay finite for ρ→ 0 the constants B0 and B must be zero. Further, for ρ = a it is

ϕ =

−ϕ0 z > 0

+ϕ0 z < 0

and therefore
A0C0 = − sgn(z)ϕ0

J0(kza) = 0 −→ kzna = j0n.

Using above conditions, ϕ simplifies to

ϕ = − sgn(z)ϕ0 +
∞∑
n=1

AnJ0

(
j0n

ρ

a

)
e−j0n|z|/a. (I.1.20)

Due to the antisymmetric behavior in z ϕ must be zero for z = 0 and Eq. (I.1.20) becomes

ϕ0 =
∞∑
n=1

AnJ0

(
j0n

ρ

a

)
. (I.1.21)

The coefficients An will be determined via a Fourier-Bessel expansion. One multiplies Eq. (I.1.21)

with ρJ0(j0mρ/a) and integrates over ρ

ϕ0

ˆ a

0
J0

(
j0m

ρ

a

)
ρdρ =

∞∑
n=1

An

ˆ a

0
J0

(
j0n

ρ

a

)
J0

(
j0m

ρ

a

)
ρdρ

ϕ0
a2

j0m
J1(j0m) = Am

a2

2
J2
1 (j0m).

With Am given above the final result for the potential Eq. (I.1.20) is

ϕ(ρ, z) = − sgn(z)ϕ0 + 2

∞∑
n=1

J0
(
j0n

ρ
a

)
j0nJ1(j0n)

e−j0n|z|/a.

A field plot is shown in Fig. I.1.7.

I.1.3 Stationary currents

Stationary currents describe situations with ∂/∂t = 0 and H ̸= 0. Maxwell’s equations become in that

case

∇×H = J (I.1.22)

∇×E = 0. (I.1.23)

Because of Eq. (I.1.23) one derives the electric field again from a scalar potential as in Eq. (I.1.16).

Taking the divergence of Eq. (I.1.22) and substituting J = κE one gets a Laplace equation for ϕ

∇ · (∇×H) = 0 = ∇ · J = ∇ · (κE) = −κ∇2ϕ.
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The situation is similar to electrostatics but boundary or continuity conditions are different. For instance

in an example, Fig. I.1.8, the normal current density component has to be zero on the boundary

Jn = κEn = −κdϕ
dn

n = 0.

Fig. I.1.8: Constant current flow in a metallic object.

I.1.4 Magnetostatic fields

In the magnetostatic case one takes ∂/∂t = 0 and E = 0, but allows for impressed currents. Then,

Maxwell’s equations are

∇×B = µJ (I.1.24)

∇ ·B = 0. (I.1.25)

Due to the identity ∇ · (∇×A) = 0 one derives the magnetic field from a vector potential A

B = ∇×A. (I.1.26)

Substituting Eq. (I.1.26) into Eq. (I.1.24) yields

∇× (∇×A) = ∇ (∇ ·A)−∇2A = µJ . (I.1.27)

Here, A is not fully determined. A gauge transformation A → A +∇ψ does not change the magnetic

field Eq. (I.1.26). One reduces the degree of freedom and imposes the condition ∇·A = 0 on Eq. (I.1.27)

∇2A = −µJ

or in Cartesian components

∇2Ai = −µJi, i = x, y, z. (I.1.28)

A simple way to solve Eq. (I.1.28) is to use the well known field and potential of a point charge q

E =
q

4πεr2
er, ϕ =

q

4πεr

which are solutions of the inhomogeneous Poisson equation
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I.1.5. Quasi-stationary fields

∇2ϕ = −q
ε
δ(r).

Taking ϕ as a Green’s function one can calculate the potential of a charge distribution ρ with the

Coulomb integral

ϕ (r) =
1

4πε

˚
ρ (r′)

|r − r′|
dV ′.

The solution of Eq. (I.1.28) is obtained by replacing

ϕ→ Ai,
1

ε
→ µ, ρ→ Ji

A (r) =
µ

4π

˚
J (r′)

|r − r′|
dV ′. (I.1.29)

Figure I.1.9 shows the corresponding geometrical quantities. In regions where J = 0 one gets from

Eq. (I.1.24) again a Laplace equation

∇×B = 0 −→ B = −∇φ, ∇ ·B = 0 −→ ∇2φ = 0. (I.1.30)

Fig. I.1.9: Geometry referring to Eq. (I.1.29).

I.1.5 Quasi-stationary fields

Still another simplification of Maxwell’s equations is possible in materials with very high conductivity

and no free charges, such that

|J | = κ |E| ≫
∣∣∣∣dDdt

∣∣∣∣ = ωε |E| , ρ = 0.

Then,

∇×B = µJ (I.1.31)

∇×E = −∂B
∂t

(I.1.32)

∇ ·B = 0. (I.1.33)

Due to Eq. (I.1.33) one derives B from a vector potential, B = ∇×A, and substitutes it into Eq. (I.1.32)
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∇×E = − ∂

∂t
∇×A = −∇× ∂A

∂t
→ ∇×

(
E +

∂A

∂t

)
= 0,

which allows an ansatz for E

E = −∇ϕ− ∂A

∂t
.

Substituting B and E into Eq. (I.1.31)

∇× (∇×A) = ∇ (∇ ·A)−∇2A = −µκ
(
∇ϕ+

∂A

∂t

)
. (I.1.34)

Here again, A and ϕ are not fully determined since the replacements

A → A+∇ψ, ϕ→ ϕ− ∂ψ

∂t

do not change B and E. One imposes the gauge

∇ ·A = −µκϕ

and obtains the vectorial diffusion equation

∇2A− µκ
∂A

∂t
= 0. (I.1.35)

For time-harmonic processes the equation is equal to the Helmholtz equation, which we will treat later.

I.1.6 Poynting’s theorem

One starts with the full set of Maxwell’s equations (I.1.2)–(I.1.5) and a gedanken experiment. The fields

move a blob of charge ρdV by a distance δs in a time interval δt. The work done by the fields is

d
δW

δt
= df · δs

δt
= ρdV (E + v ×B) · v = E · ρvdV = E · JdV.

The term E · J will be expressed by means of Maxwell’s equations. One multiplies Eq. (I.1.2) with E

and Eq. (I.1.3) with H and subtracts the equations

E · (∇×H) = E · J +E · ∂D
∂t

H · (∇×E) = −H · ∂B
∂t

(I.1.36)

−∇ · (E ×H) = E · J +E · ∂D
∂t

+H
∂B

∂t
= E · J +

∂

∂t

(
1

2
E ·D +

1

2
H ·B

)
.

Integration over a volume V and application of Gauss’ law results in Poynting’s theorem

−
‹

A
(E ×H) · dA =

˚
V
E · JdV +

∂

∂t

˚ (
1

2
E ·D +

1

2
H ·B

)
dV, (I.1.37)
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I.1.6. Poynting’s theorem

S = E ×H Poynting vector (radiation flux),

pd = E · J dissipated power density,

we =
1

2
E ·D electric energy density,

wm =
1

2
H ·B magnetic energy density.

Poynting’s theorem states: The energy radiated into the volume V equals the dissipation and the in-

crease of stored electric and magnetic energy in V , see Fig. I.1.10.

Fig. I.1.10: Radiation balance for a lossy volume with stored electromagnetic energy.

The above theorem deals with an arbitrary time-dependence. But many applications have time-harmonic

fields and one is not interested in the momentaneous values but in the values averaged over one period.

Similar to Eq. (I.1.36), one takes the first two Maxwell’s equations but in phasor notation

∇× H̃
∗
= J̃

∗ − iωD̃
∗

∇× Ẽ = −iωB̃,

where the star indicates complex conjugate quantities. One multiplies the first equation with Ẽ/2, the

second equation with H̃
∗
/2 and takes the difference

−1

2
∇ ·

(
Ẽ × H̃

∗)
=

1

2
Ẽ · J̃∗

+ i2ω

(
1

4
H̃ · B̃∗ − 1

4
Ẽ · D̃∗

)
.

Integration over the volume V and application of Gauss’ law gives Poynting’s theorem for time-

harmonic fields

−
‹

A
Sc · dA =

˚
V
pddV + i2ω

˚
(wm − we) dV, (I.1.38)

where

Sc =
1

2
Ẽ × H̃

∗
complex, time-averaged radiation flux,

pd =
1

2
Ẽ · J̃∗

time-averaged dissipation,

wm =
1

4
H̃ · B̃∗

, we =
1

4
Ẽ · D̃∗

time-averaged magnetic and electric energy density.

The real part of Eq. (I.1.38) is the time-averaged active power and the imaginary part the reactive power.

It is interesting to note that in a resonator, where wm = we, the reactive power is zero.
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I.1.7 Electromagnetic waves

The simplest electromagnetic wave is a plane wave. It depends only on one space variable (direction of

propagation) and on the time, e.g.

E = E(z, t), H = H(z, t).

Substituted into the first two Maxwell’s equations

∇×H = ε
∂E

∂t
, ∇×E = −µ∂H

∂t

results in two sets of uncoupled equations

−∂Hy

∂z
= ε

∂Ex

∂t
,

∂Ex

∂z
= −µ∂Hy

∂t
∂Hx

∂z
= ε

∂Ey

∂t
, −∂Ey

∂z
= −µ∂Hx

∂t
.

(I.1.39)

In the following we will treat the first set only. The second is obtained by replacing Hy by −Hx and Ex

by Ey. Eliminating Hy in Eq. (I.1.39) gives the wave equation for Ex

∂2Ex

∂z2
− 1

c2
∂Ex

∂t2
= 0, c =

1
√
µε

(I.1.40)

with d’Alembert’s solutions

Ex = f(z − ct) + g(z + ct) = E+
x + E−

x

ZHy = f(z − ct)− g(z + ct) = ZH+
y − ZH−

y .
(I.1.41)

c = 1/
√
µε is the velocity of light and Z =

√
µ/ε = 377Ω the free-space wave impedance. The

function f belongs to a field propagating in +z-direction and g to a field propagating in −z-direction.

The fields have the properties

E± ⊥ H±,

E±,H± are perpendicular to the direction of propagation,

E±/H± = ±Z,

S = E ×H Poynting vector, energy flow in direction of propagation.

For simplicity, only the time-harmonic case, ∂/∂t = iω, will be treated. Then, Eq. (I.1.40), Eq. (I.1.41)

become

∂Ex

∂z2
+ k2Ex = 0, k = ω

√
µε

Ex = Aei(ωt−kz) +Bei(ωt+kz),

ZHy = Aei(ωt−kz) −Bei(ωt+kz).

(I.1.42)
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I.1.7. Electromagnetic waves

k is the wave number. In loss-free material it is

k = ω
√
µε =

ω

c
=

2π

λ

and in lossy material

k = ω
√
µε = β − iα, (I.1.43)

where β is the phase constant and α the attenuation constant. The real physical field is, e.g.

E+
x = Re

{
Aei(ωt−kz)

}
= A cos(ωt− βz)e−αz.

It has a time-harmonic factor and an exponential decay. Fig. I.1.11 shows the field pattern and the real

field behavior.

Fig. I.1.11: Field pattern and behavior of the real field E+
x .

In case of lossy dielectrics ε = (ε′r − iε′′r) ε0 it is

β

k0
=

√
1

2
ε′r +

1

2
ε′r

√
1 + (ε′′r/ε

′
r)

2,
α

k0
=

√
−1

2
ε′r +

1

2
ε′r

√
1 + (ε′′r/ε

′
r)

2.

Most of the dielectrics have low losses, ε′′r ≪ ε′r, then

β ≈
√
ε′rk0, α ≈ 1

2

ε′′r√
ε′r
k0, Z ≈ Z0√

ε′r

(
1 +

i

2

ε′′r
ε′r

)
.

An example is polyamide (nylon)

κ = 10−8Ω−1m−1, ε′r = 3, f = 10MHz

with an attenuation of 11% in 100 km. Very good conductors (metallic) have ε′′r ≈ iκ/ω ≫ ε′r and

β ≈ α ≈
√

1

2
ωµκ =

1

δs
, Z ≈ (1 + i)

α

κ
,

16
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where δs, called skin depth, is the distance in which the fields have decayed by 1/e

e−αδs =
1

e
, δs =

√
2

ωµκ
. (I.1.44)

In general, β is a function of ω and is called dispersion relation. Mostly it is a smooth function and can

be developed around a frequency ω0

β(ω) = β(ω0) +
∂β

∂ω

∣∣∣∣
ω0

dω +O
(
(dω)2

)
. (I.1.45)

The O-order approximation yields the phase velocity vph with which the phase φ of the wave propagates

φ = ωt∓ β(ω0)z →
dφ

dt
= 0 = ω ∓ β(ω0)

dz

dt
= ω ∓ β(ω0)vph

vph = ± ω

β(ω0)
.

(I.1.46)

vph has no physical meaning, since monochromatic waves carry no information. For instance, vph can be

larger than the velocity of light. If the wave is modulated, i.e. carries a signal, the signal propagates with

the group velocity. An example is beating between two plane waves with ω1 and ω2

ω1 = ω0 + δω, β = β0 + δβ

ω2 = ω0 − δω, β2 = β0 − δβ.

The resulting physical field

Re{ei(ω1t−β1z) + ei(ω2t−β2z)} = Re
{
ei(ω0t−β0z)

(
ei(δωt−δβz) + e−i(δωt−δβz)

)}
= 2 cos(ω0t− β0z) cos(δωt− δβz)

has a high frequency part, which propagates with the phase velocity vph = ω0/β0, and the envelope part

(beating), which propagates with the group velocity

vg =
δω

δβ
→ vg =

dω

dβ

∣∣∣∣
ω0

. (I.1.47)

Signals with a small bandwidth 2δω propagate with vg. Large bandwidth signals require higher order

terms O
(
(dω)2

)
in Eq. (I.1.45). Apart from phase and group velocity, there is the velocity with which

energy is transported. As shown in Fig. I.1.12, the energy transported a distance ∆z in time ∆t equals

the energy radiated through ∆A

W∆A∆z

∆t
=W∆Ave = Sc∆A

or

ve =
Sc

W
. (I.1.48)
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I.1.8. Cylindrical, ideal conducting waveguides

In case of plane waves

Sc =
1

2
E ×H∗ =

1

2

A2

Z
,

W =
1

4
E ·D∗ +

1

4
H ·B∗ =

1

2
εA2

the energy velocity equals the velocity of light

ve =
1

εZ
=

1
√
µε

= c.

Fig. I.1.12: Radiation per unit time through an area ∆A.

I.1.8 Cylindrical, ideal conducting waveguides

This chapter treats waveguides with constant cross-section, homogeneous filling and ideal conducting

walls. The full set of the time-harmonic Maxwell’s equations is required

∇×H = iωεE

∇×E = −iωµH

∇ ·E = 0

∇ ·H = 0.

(I.1.49)

It is possible to eliminate H or E from the first two equations and derive directly a wave equation. The

problem is, that the fields will not necessarily satisfy the divergence-free equations. Therefore, an ansatz

which fulfills the equations is chosen

ETE = ∇×ATE, ATE = ATEez, TE-waves

HTM = ∇×ATM, ATM = ATMez, TM-waves.
(I.1.50)

ATE, ATM are the two independent functions, which are necessary. TE-waves are called transverse
electric and TM transverse magnetic waves. The further procedure is shown for TE-waves. For TM-

waves it is similar. Substituting ETE into the first equation (I.1.49)

∇×
(
HTE − iωεATE) = 0 → HTE = ∇φ+ iωεATE.
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From the second equation (I.1.49) follows

∇×
(
∇×ATE) = ∇

(
∇ ·ATE)−∇2ATE = −iωµ∇φ+ k2ATE, k = ω

√
µε. (I.1.51)

ATE and φ determine not fully E and H . The freedom is used to impose the Lorenz gauge

∇ ·ATE = −iωµφ. (I.1.52)

Then, from Eq. (I.1.51)

∇2ATE + k2ATE = 0

and since A has only a z-component one gets a scalar Helmholtz equation from TE and in a similar

way for TM

∇2AP + k2AP = 0, P =

{
TE

TM

}
. (I.1.53)

I.1.8.1 Circular waveguide

For a circular waveguide, Fig. I.1.13, circular cylinder coordinates are the natural choice and Eq. (I.1.53)

becomes
1

ρ

∂

∂ρ

(
ρ
∂A

∂ρ

)
+

1

ρ2
∂2A

∂φ2
+
∂2A

∂z2
+ k2A = 0. (I.1.54)

Fig. I.1.13: Geometry for circular waveguide.

Substituting a Bernoulli ansatz

A(ρ, φ, z) = R(ρ)Φ(φ)Z(z) (I.1.55)

into Eq. (I.1.54) yields

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2Φ

d2Φ

dφ2
+

1

Z

d2Z

dz2
+ k2 = 0. (I.1.56)
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I.1.8. Cylindrical, ideal conducting waveguides

The term for Z is independent of ρ and φ and must be constant, written as −k2z . Then,

d2Z

dz2
+ k2zZ = 0 → Z(z) = C1e

−ikzz + C2e
ikzz.

The first term is for a wave propagating in +z-direction. The backward traveling wave is simply obtained

replacing kz by −kz . Next, we substitute Z in Eq. (I.1.56)

ρ

R

d

dρ

(
ρ
dR

dρ

)
+

1

Φ

d2Φ

dφ2
+ ρ2

(
k2 − k2z

)
= 0. (I.1.57)

Now, the second term is independent of ρ and must be constant, chosen as −k2φ. Then

d2Φ

dφ2
+ k2φΦ = 0 → Φ(φ) = C3 cos(kφφ) + C4 sin(kφφ)

and since Φ is 2π-periodic, kφ must be an integer m. In addition, we rotate the coordinate system until

C4 = 0. Finally, one substitutes Φ into Eq. (I.1.57) and obtains Bessel’s equation

d2R

dρ2
+

1

ρ

dR

dρ
+

[
k2c −

m2

ρ2

]
R = 0, kc =

√
k2 − k2z (I.1.58)

with solutions

R(ρ) = C5Jm(kcρ) + C6Nm(kcρ). (I.1.59)

On the axis, ρ = 0, R must be finite and therefore C6 = 0. Thus, the vector potential Eq. (I.1.55) is

A(ρ, φ, z) = Cm cosmφJm(kcρ)e
−ikzz. (I.1.60)

The last unknown constant kc (or kz) is determined by the boundary conditions for ρ = a.

In case of TE-waves, E = ∇× (Aez), the boundary conditions are

Eφ = −∂A
∂ρ

∼ J ′
m(kca)

Eφ(ρ = a) = 0 → J ′
m(kca) = 0, kcmna = j′mn

with j′mn being the nth non-vanishing zero of J ′
m. Then the fields are

Eρ =
1

ρ

∂A

∂φ
= −m

ρ
Cmn sinmφJm

(
j′mn

ρ

a

)
e−ikzmnz

Eφ = −∂A
∂ρ

= −j
′
mn

a
Cmn cosmφJ

′
m

(
j′mn

ρ

a

)
e−ikzmnz

(I.1.61)
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−iωµH = ∇×E

Hρ =
kzmn

ωµ

j′mn

a
Cmn cosmφJ

′
m

(
j′mn

ρ

a

)
e−ikzmnz

Hφ = −kzmn

ωµ

m

ρ
Cmn sinmφJm

(
j′mn

ρ

a

)
e−ikzmnz

Hz =
−1

iωµ

(
j′mn

a

)2

Cmn cosmφJm

(
j′mn

ρ

a

)
e−ikzmnz.

(I.1.62)

For TM-waves, H = ∇× (Aez), the boundary conditions are

Ez =
k2c
iωε

A ∼ Jm(kcρ)

Ez(ρ = a) = 0 → Jm(kca) = 0, kcmna = jmn

with jmn the nth non-vanishing zero of Jm. Then

Hρ = −m
ρ
Dmn sinmφJm

(
jmn

ρ

a

)
e−ikzmnz

Hφ = −jmn

a
Dmn cosmφJ

′
m

(
jmn

ρ

a

)
e−ikzmnz

(I.1.63)

iωεE = ∇×H

Eρ = −kzmn

ωε

jmn

a
Dmn cosmφJ

′
m

(
jmn

ρ

a

)
e−ikzmnz

Eφ =
kzmn

ωε

m

ρ
Dmn sinmφJm

(
jmn

ρ

a

)
e−ikzmnz

Ez =
1

iωε

(
jmn

a

)2

Dmn cosmφJm

(
jmn

ρ

a

)
e−ikzmnz.

(I.1.64)

In the equations (I.1.61)-(I.1.64) the propagation constant is

kzmn =
√
k2 − k2cmn

kzmn =


real k > kcmn propagation

0 k = kcmn

imaginary k < kcmn attenuation

.
(I.1.65)

with the critical wavenumber

kcmn =

j′mn/a TE-waves

jmn/a TM-waves
,

and
fcmn = ckcmn/2π cut-off frequency,

λcmn = 2π/kcmn cut-off wavelength,

λzmn = 2π/kzmn =
λ√

1− (λ/λcmn)2
waveguide wavelength,

λ free space wavelength.
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The ratio of the transverse field components is a constant with the dimension of an impedance and is

called field (wave) impedance

ZF =
Eρ

Hφ
= −Eφ

Hρ
=

ZTE
F = ωµ

kzmn

ZTM
F = kzmn

ωε

. (I.1.66)

From the complex Poynting vector follows that

Scz =
1

2
(E ×H∗)z =

1

2
ZF

(
|Hρ|2 + |Hφ|2

)
=


real power flux k > kcmn

0 k = kcmn

imaginary power flux k < kcmn

. (I.1.67)

Every field with indices mn in Eqs. (I.1.61)-(I.1.64) is a particular (eigen-)mode. Therefore, the general

field is expressed by the linear combination of all modes

E =
∑
m

∑
n

(
ETE

mn +ETM
mn

)
, H =

∑
m

∑
n

(
HTE

mn +HTM
mn

)
. (I.1.68)

Normally, modes are sorted referring to their cut-off frequency.

type m n (fc/GHz)(a/cm)

TE 1 1 8.78
TM 0 1 11.46
TE 2 1 14.56
TE/TM 0/1 1/1 18.29
TE 3 1 20.05

Fig. I.1.14: Attenuation for some low-order modes.

In Fig. I.1.14 the attenuation for some modes is given. Particularly interesting is the TE01-mode because

the attenuation decreases with ω−3/2. It is used for low-loss transmission, although there are three modes

with lower cut-off frequency and special measures are necessary to suppress these modes.

Some field plots of modes with low cut-off frequency are shown in Fig. I.1.15.
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Fig. I.1.15: Field plots of four low-order modes.

I.1.8.2 Impedance boundary condition on good conductors

In materials with high conductivity κ (metals) one can neglect the displacement current compared to

the conduction current, see Sec. I.1.5. On the surface of the material the electric field is essentially

perpendicular and the magnetic field is parallel. Tangential to the surface the typical length in which the

fields change is λ. In the material and in normal direction to the surface the length in which changes take

place is δs ≪ λ. Under these assumptions a very good approximation for the ratio of the tangential fields

can be derived.

One decomposes the fields and the nabla operator into tangential and normal components, see

Fig. I.1.16,

E = Et + Ezez, H = Ht +Hzez, ∇ = ∇t + ez
∂

∂z
.

Fig. I.1.16: Geometry on the surface of a medium with high conductivity.
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I.1.8. Cylindrical, ideal conducting waveguides

Maxwell’s equations become

∇×H = J = κE : Et = −1

κ
ez ×∇tHz +

1

κ
ez ×

∂Ht

∂z

Ezez =
1

κ
∇t ×Ht

∇×E = −iωµH : Ht = − i

ωµ
ez ×∇tEz +

i

ωµ
ez ×

∂Et

∂z

Hzez =
i

ωµ
∇t ×Et.

(I.1.69)

Since tangential to the surface the typical length of change is λ, an order of magnitude approximation is

|∇t| ≈
1

λ
.

Then, |Ez|, |Hz| in Eq. (I.1.69) become

|Ez| =
1

κ
|∇t ×Ht| ≈

1

κλ
|Ht| = π

(
δs
λ

)2

Z|Ht|

Z|Hz| =
1

ωµ
|i∇t ×Et| =

1

ωµ

Z

λ
|Et| =

1

2π
|Et|,

and the first terms on the right side in Eq. (I.1.69)

1

κ
|ez ×∇tHz| ≈

1

κλ
|Hz| = π

(
δs
λ

)2

Z|Hz| ≈
1

2

(
δs
λ

)2

|Et|

1

ωµ
|iez ×∇tEz| ≈

1

ωµλ
|Ez| =

1

2πZ
|Ez| ≈

1

2

(
δs
λ

)2

|Ht|.

Due to δs ≪ λ, these terms can be neglected compared to the left sides |Et|, |Ht| in Eq. (I.1.69) and the

equations simplify to

κEt ≈ ez ×
∂Ht

∂z

iωµHt ≈ −ez ×
∂Et

∂z
.

(I.1.70)

Eliminating Et one gets a differential equation for Ht

∂2Ht

∂z2
− iωµκHt = 0

with solution

Ht = Ht0e
−(1+i)z/δs . (I.1.71)

After substituting Eq. (I.1.71) into Eq. (I.1.70) one gets a relation between the tangential field components

on the surface

Et0 ≈ Zw (n×Ht0) (I.1.72)

where Zw is the wall impedance
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Zw =
1 + i

κδs
, δs =

√
2

ωµκ
. (I.1.73)

I.1.8.3 Attenuation in waveguides (power-loss method)

One starts with a small piece ∆z of waveguide, Fig. I.1.17.

Fig. I.1.17: Input power P (z), power loss P ′
d∆z and output power P (z + ∆z) for a piece ∆z of

waveguide.

Conservation of power requires
dP (z)

dz
= −P ′

d (I.1.74)

and since E, H are proportional to e−αz the transported power is

P (z) ∼ e−2αz,

and Eq. (I.1.74) becomes

−2αP (z) = −P ′
d → α =

1

2

P ′
d

P (z)
. (I.1.75)

In order to calculate the dissipation per unit length P ′
d one takes the power radiated into a small area ∆A

of the waveguide wall and uses Eq. (I.1.72) and Eq. (I.1.73)

∆Pd

∆A
= −n · Re{Sc} = −1

2
Re{n · (Et0 ×H∗

t0)}

=
1

2
Re{Zw}|Ht0|2 =

1

2κδs
|Ht0|2.

(I.1.76)

P ′
d is obtained by integrating Eq. (I.1.76) over the boundary of the waveguide cross-section

P ′
d =

1

2κδs

˛
|Ht0|2ds.

The transported power in the waveguide gives the Poynting vector integrated over the cross-section

P (z) =

¨
A
Re{Sc} · dA =

1

2

¨
A
Re{E ×H∗} · ezdA

=
1

2

¨
A
Re{Etransv ×H∗

transv}dA =
1

2
ZF

¨
A
|H transv|2dA.

Then, the attenuation Eq. (I.1.75) is
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α =
1

2κδs

¸
|Ht0|2ds

ZF

˜
|H transv|2dA

. (I.1.77)

It is worth noting, that the tangential field Ht0 and transverse field H transv are the fields of the ideal

conducting waveguide.

Although the power-loss method was used here to calculate the waveguide attenuation, Eq. (I.1.76)

can also be used to calculate the losses in any metallic structure.

I.1.9 Resonant cavities

Resonant cavities are used to accelerate charged particles. The simplest arrangement is a cylindrical

cavity with radius a and length g. In order to have a longitudinal electric field it is operated in a TM-

mode.

We take the Eφ component in Eq. (I.1.64) and superimpose a forward and backward travelling

wave

Eφ =
kzmn

ωε

m

ρ
Dmn sinmφJm

(
jmn

ρ

a

)(
e−ikzmnz − rmeikzmnz

)
.

The boundary conditions are

Eφ(z = 0) = 0 → rm = 1, Eφ ∼ sin kzmnz

Eφ(z = g) = 0 → kzmnpg = pπ, p = 0, 1, 2, . . .

therefore

Eφ = −i2
pπ/g

ωε

m

ρ
Dmn sinmφJm

(
jmn

ρ

a

)
sin

(
pπ
z

g

)
Ez = −i

2

ωε

(
jmn

a

)2

Dmn cosmφJm

(
jmn

ρ

a

)
cos

(
pπ
z

g

)
Eρ = i2

pπ/g

ωε

jmn

a
Dmn cosmφJ

′
m

(
jmn

ρ

a

)
sin

(
pπ
z

g

)
Hρ = −2

m

ρ
Dmn sinmφJm

(
jmn

ρ

a

)
cos

(
pπ
z

g

)
Hφ = −2

jmn

a
Dmn cosmφJ

′
m

(
jmn

ρ

a

)
cos

(
pπ
z

g

)
,

(I.1.78)

where
jmn

a
=

√
k2 −

(
p
π

g

)2

.

For acceleration the resonator is operated in the TM010-mode, i.e. no azimuthal dependence (m = 0),

no longitudinal dependence (p = 0) and the first non-vanishing zero j01 of Jm. The mode has field

components, see Eq. (I.1.78)

Ez = −i
2

ωε

(
j01
a

)2

D01J0

(
j01

ρ

a

)
, Eρ = Eφ = 0

Hφ = −2
j01
a
D01J

′
0

(
j01

ρ

a

)
, Hρ = 0,

(I.1.79)
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and a resonant frequency

kr =
ωr

c
=
j01
a

→ fr =
ωr

2π
=
j01c

2πa
.

A figure of merit is the Q-value. It is determined by the stored energy

W =W e +Wm = 2W e =
1

2

˚
V
E ·D∗dV =

ε

2

˚
V
|Ez|2dV

=
4πg

ω2
rε

j401
a2
D2

01

ˆ 1

0
J2
0

(
j01

ρ

a

) ρ
a
d
ρ

a

=
2πg

ω2
rε

j401
a2
D2

01J
2
1 (j01)

and the dissipated power, see Eq. (I.1.76),

Pd =

‹
P ′′
d dA =

1

2κδs

‹
|Ht0|2dA

=
1

2κδs

[ˆ g

0

ˆ 2π

0
|Hφ(ρ = a)|2adφdz + 2

ˆ a

0

ˆ 2π

0
|Hφ(z = 0)ρdφdρ

]
=

4π

κδs
j201

(
1 +

g

a

)
D2

01J
2
1 (j01).

Then,

Q =
ωrW

Pd
=

1

δs

g

1 + g/a
→ δsQ = 2

volume
surface

. (I.1.80)

Q is proportional to the ratio volume over surface. Obviously, a spherical resonator will have the highest

Q-value. The importance of Q stems from the fact that it defines the decay rate of the stored energy or

the filling time Tf . From power conservation

−dW
dt

= Pd =
ωr

Q
W

follows

W =W 0e
−2t/Tf with Tf = 2

Q

ωr
. (I.1.81)

The example of a copper cavity at 3GHz with

g = λr/2 = 5 cm, κ = 58 · 106Ω−1m−1,

j01 = 2.405, J1(j01) = 0.5191

yields

a = 3.83 cm, δs = 1.21 µm, Q = 17 963, Tf = 1.9 µs.

I.1.9.1 Resonance behavior of a cavity mode

To make the problem directly accessible for an analytical treatment, it is convenient to take ideal con-

ducting walls but a lossy dielectric filling. In that way ideal modes with losses exist.

The cavity is driven by a current J passing through it. J splits into a conduction current Jc = κE,
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I.1.9. Resonant cavities

responsible for the losses in the dielectric, and in an enforced current J0 as driving term. From the first

two Maxwell’s equations

∇× (∇×E) = ∇(∇ ·E)−∇2E = −µ ∂
∂t

∇×H = −µ ∂
∂t

(
J0 + κE + ε

∂E

∂t

)
follows together with ∇ ·E = 0

∇2E − µκ
∂E

∂t
− µε

∂2E

∂t2
= µ

∂J0

∂t
. (I.1.82)

One expands E in modes

E =
∑
r

ar(t)er(x, y, z) (I.1.83)

where r runs over all m,n, p and where it is assumed that

∇2er + k2rer = 0˚
er · esdV = δsr

n× er = 0 on walls

∇ · er = 0 in volume.

One substitutes Eq. (I.1.83) into Eq. (I.1.82)

∑
r

[
d2ar
dt2

+
κ

ε

dar
dt

+
k2r
µε
ar

]
er = −1

ε

dJ0

dt
,

multiplies with es and integrates over V , then

d2as
dt2

+
κ

ε

das
dt

+
k2s
µε
as = −1

ε

˚
dJ0

dt
· esdV =

dfs
dt

and in case of time-harmonic excitation

[
−ω2 + i

κ

ε
ω +

k2s
µε

]
as = iωfs,

as =
Qs

ωs

fs

1 + iQs

(
ω
ωs

− ωs
ω

) , ωs = cks, Qs =
εωs

κ
.

(I.1.84)

For a realistic cavity with lossy walls one replaces Qs by Q and ωs by ωmnp. Figure I.1.18 shows the

magnitude and angle of a mode amplitude a(ω).
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Fig. I.1.18: Magnitude and phase of a resonant mode amplitude.

If the modes in a cavity are well separated they can be represented by lumped element resonant circuits,

Fig. I.1.19.

Fig. I.1.19: Lumped element resonant circuit.

The corresponding parameters are

ωs =
1√
LsCs

, Qs =
ωsWs

Pds
= ωsRsCs

bandwidth Bs =
(ωs + δω)− (ωs − δω)

ωs
= 2

δω

ωs
=

1

Qs

filling time Tfs = 2
Qs

ωs
=

1

δω
.

(I.1.85)

While ωs andQs are directly measurable, one needs one more quantity to determine the lumped elements.

This is the R-upon-Q
Rsh

Qs
=

V 2
s

ωsWs
=

2

ωsCs
, (I.1.86)

with

Rsh =
V 2
s

Pds
= 2Rs

and the accelerating voltage for a particle passing the cavity on-axis with velocity v

Vs =

∣∣∣∣ˆ g

0
ases · ezeiωtdz

∣∣∣∣ , z = vt.

29



I.1.9. Resonant cavities

The shunt impedance Rsh is a measure of the available voltage for a given dissipation. Whereas the R-

upon-Q determines the available voltage for a given stored energy. It is independent of the cavity losses

and therefore measurable.

I.1.9.2 Influence of beam pipe

It is important to estimate the influence of the beam pipe on the accelerating voltage, Fig. I.1.20.

Fig. I.1.20: Cross-section of a pill-box cavity with beam pipes.

Let us assume that the cavity is excited in the TM010-mode. In the pipe region, 0 ≤ ρ ≤ b, a spectral

expansion of the longitudinal field is used

Ez(ρ, z) =

ˆ ∞

−∞
A(kz)I0(Kρ)e

−ikzzdkz, K =
√
k2z − k2 (I.1.87)

with

A(kz)I0(Kρ) =
1

2π

ˆ ∞

−∞
Ez(ρ, z)e

ikzzdz.

On the interface between pipe and cavity, ρ = b, the field is approximated by

Ez(ρ = b, z) =

E0 −g/2 ≤ z ≤ g/2

0 |z| > g/2

and one obtains

A(kz)I0(Kb) =
E0

2π

ˆ g/2

−g/2
eikzzdz =

E0g

2π

sin(kzg/2)

kzg/2
. (I.1.88)

Using Eq. (I.1.87) together with Eq. (I.1.88) the accelerating voltage becomes

V (ρ) =

ˆ ∞

−∞
Ez(ρ, z)e

iωtdz =

ˆ ∞

−∞
Ez(ρ, z)e

ikz/βdz

=
E0g

2π

ˆ ∞

−∞
dkz

sin(kzg/2)

kzg/2

I0(Kρ)

I0(Kb)

ˆ ∞

−∞
dzei(k/β−kz)z = E0gTF (ρ, b), k =

ω

c
, β =

v

c
,

(I.1.89)
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with the gap factor (transit time factor)

T =
sin(kzg/2)

kzg/2

and the reduction factor due to the beam pipe

F (ρ, b) =
I0(kρ/βγ)

I0(kb/βγ)
, γ =

1√
1− β2

.

For a particle on-axis the reduction of the accelerating voltage is

V (ρ = 0)

V (ρ = b)
=

1

I0(kb/βγ)
.

For kb/βγ ≥ 2 it is approximately exponential

V (ρ = 0)

V (ρ = b)
≈

√
2πkb/βγe−kb/βγ .

I.1.10 Exercises

I.1.10.1 Exercise 1: Given is a conducting hollow sphere carrying a charge Q. What is the field
in- and outside and what is the stored energy? If the sphere were a model for an electron
(E0e = 511 keV) what is then the classical electron radius re = a?

I.1.10.2 Exercise 2: A parallel plate capacitor is filled with a lossy dielectric and charged to a
voltage V . What is the time constant for discharge?

31



I.1.10. Exercises

I.1.10.3 Exercise 3: A long dipole magnet is excited by a coil with n windings and current I0.
Calculate the magnetic field in the gap.

I.1.10.4 Exercise 4: Derive the multi-poles for a static 2-dimensional magnetic field. Remark:
Solve the equation for the magnetic potential in circular cylindrical coordinates.

I.1.10.5 Exercise 5: Give the E- and H-field of a z-polarized plane wave which propagates in
x-direction. What is the time-averaged radiation power density?

I.1.10.6 Exercise 6: Derive the longitudinal vector potential for TM-modes in a rectangular
waveguide. What is the equation for the separation constants?

I.1.10.7 Exercise 7: Give the guide wavelength, phase, and group velocity of a TM11-mode in a
rectangular waveguide.
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I.1.10.8 Exercise 8: Calculate the accelerating voltage, shunt impedance and R-upon-Q of a
TM110-mode in a rectangular cavity resonator of quadratic cross-section, a = b, and
length g.

I.1.11 Solutions to the exercises

I.1.11.1 Solution to exercise 1

From Eq. (I.1.1) and due to spherical symmetry

‹
A
D · dA =

˚
V
ρdV = 4πε0r

2Er

0 r < a

Q r ≥ a
.

Inside the sphere there is no field and no stored energy. Outside the sphere the energy stored in the field

is

We =
1

2

˚
V
E ·DdV =

1

2

(
Q

4πε0

)2

4πε0

ˆ ∞

a

dr

r2
=

Q2

8πε0a
.

To find the classical electron radius the stored energy must be equal the electron rest energy

e2

8πε0a
= m0ec

2 → a =
e2

8πε0m0ec2
.

Since there exist several models for an electron with slightly different factors the radius is defined as

re =
e2

4πε0m0ec2
= 2.81× 10−15m.

I.1.11.2 Solution to exercise 2

From Eq. (I.1.2)

∇ · (∇×H) = 0 = ∇ ·
(
J +

∂D

∂t

)
.

After integration over V and application of Gauss’ law

‹
A

(
κE + ε

∂E

∂t

)
· dA = 0 → dE

dt
= −κ

ε
E.

Where we have used the fact that E has only a y-component in the capacitor and vanishes outside. The

solution of the differential equation is

E = E0e
−t/Tε

with the relaxation time Tε = ε/κ.
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I.1.11.3 Solution to exercise 3

From Eq. (I.1.1) and Eq. (I.1.13)

˛
H · ds =

¨
A
J · dA

Hironl +Hgapg = nI0

Biron = Bgap → µironHiron = µ0Hgap.

Then

Hgap =
nI0

g + µ0l/µiron
≈ n

I0
g
.

I.1.11.4 Solution to exercise 4

From Eq. (I.1.30)

∇2ϕ =
1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+

1

ρ2
∂2ϕ

∂φ2
= 0.

Substituting a Bernoulli ansatz

ϕ(ρ, φ) = R(ρ)F (φ)

yields
ρ

R

d

dρ

(
ρ
dR

dρ

)
+

1

F

d2F

dφ2
= 0.

The second term is independent of ρ and must be a constant, put to −ν2. 2π-periodic fields require ν = n

Fn = an cosnφ, n = 0, 1, 2, . . .

Substituting Fn into the differential equation gives

d2R

dρ2
+

1

ρ

dR

dρ
− n2

ρ2
R = 0

with solutions

Rn = bnρ
n + cnρ

−n.

A finite potential for ρ→ 0 requires cn = 0 and the general solution is

ϕ(ρ, φ) =

∞∑
n=0

anρ
n cosnφ

B = ∇ϕ =

∞∑
n=1

annρ
n−1 [cosnφeρ − sinnφeφ] .

n = 1, 2, 3, . . . are dipole, quadrupole, sextupole,. . . fields.
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I.1.11.5 Solution to exercise 5

It is
E = E0e

i(ωt−kx)ez, k =
ω

c
,

ZH = ex ×E = −E0e
i(ωt−kx)ey, Z =

√
µ

ε
, Sc =

1

2
E ×H∗ =

1

2Z
|E0|2ex.

I.1.11.6 Solution to exercise 6

The vector potential satisfies the homogeneous Helmholtz equation

∂2Az

∂x2
+
∂2Az

∂y2
+
∂2Az

∂z2
+ k2Az = 0, k =

ω

c
.

Using a Bernoulli ansatz

Az(x, y, z) = X(x)Y (y)Z(z)

the equation becomes
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
+ k2 = 0.

Each term depends only on its own variable and must therefore be constant. The constants we call −k2x,

−k2y , −k2z . They form the equation of the separation constants (dispersion relation)

k2 = k2x + k2y + k2z .

With the separation constants each function X,Y, Z satisfies the standard equation for harmonic oscilla-

tion, e.g.
d2X

dx2
+ k2xX = 0

with linear combinations of solutions

X(x) =

{
cos kxx

sin kyy

}
or

{
e−ikxx

eikxx

}
.

Then, the vector potential is

Az(x, y, z) =

{
cos kxx

sin kxx

}{
cos kyy

sin kyy

}{
e−ikzz

eikzz

}
.

Here, standing waves were used for the transverse directions x, y and traveling waves for the longitudinal

direction z.

It is understood that all quantities are proportional to eiωt, which was dropped for simplicity.

The constants kx, ky follow from the boundary conditions.
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TM-waves: H = ∇× (Azez), iωεE = ∇×H

iωεEz = −
(
∂2Az

∂x2
+
∂2Az

∂y2

)
= (k2x + k2y)Az

Boundary condition: Ez(x = 0, a) = Ez(y = 0, b) = 0

Az(x, y, z) = Cmn sin kxmx sin kynye
−ikzmnz

kxm = m
π

a
, kyn = n

π

b
, m, n = 1, 2, 3, . . .

The propagation constant kzmn is fixed by the equations of separation constants and the frequency k

k2 =
(ω
c

)2
=

(
m
π

a

)2
+
(
n
π

b

)2
+ k2zmn.

I.1.11.7 Solution to exercise 7

It is m = n = 1, k = ω/c = 2π/λ

kz11 =
2π

λz11
=

√
k2 −

(π
a

)2
−
(π
b

)2

λz11 =
λ√

1− (λ/2a)2 − (λ/2b)2

vph =
ω

kz11
=

c√
1− (λ/2a)2 − (λ/2b)2

vg =
∂ω

∂kz11
= c

√
1− (λ/2a)2 − (λ/2b)2

vphvg = c2.

I.1.11.8 Solution to exercise 8

It is m = n = 1, p = 0, Ez ∼ Az

Ez = C sinπ
x

a
sinπ

y

a
, Ex = Ey = 0, kr =

ωr

c0
=

√
2
π

a
.

The accelerating voltage is with z = vt

V =

∣∣∣∣ˆ g

0
Ez

(
x =

a

2
, y =

a

2

)
eiωrtdz

∣∣∣∣ = |C|
ˆ g

0
eiωrz/vdz = |C|gT, T =

sinωrg/2v

ωrg/2v
.

The magnetic fields are
−iωrµ0H = ∇×E

−iωrµ0Hx =
∂Ez

∂y
= C

π

a
sinπ

x

a
cosπ

y

a

−iωrµ0Hy = −∂Ez

∂x
= −Cπ

a
cosπ

x

a
sinπ

y

a

Hz = 0.

Stored energy

W = 2W e =
ε0
2

˚
V
|Ez|2dxdydz =

ε0
8
a2gC2.
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Dissipated power

Pd =

‹
P ′′
d dA =

2

2κδs

[ˆ g

0

ˆ a

0
|Hx(y = 0)|2dxdz +

ˆ g

0

ˆ a

0
|Hy(x = 0)|2dydz

+

ˆ a

0

ˆ a

0
|Hx(z = 0)|2 + |Hy(z = 0)|2dxdy

]
=

C2

κδsω2
rµ

2
0

π2

2

(
1 + 2

g

a

)
.

Shunt impedance

Rsh =
V 2

Pd
=

4
√
2

π

g2Z0

δsa(1 + 2g/a)
T 2.

Q-value

Q =
ωrW

Pd
=

g

δs2(1 + 2g/a)
=

1

δs

volume
surface

.

R-upon-Q
Rsh

Q
=

V 2

ωrW
=

8
√
2

π

g

a
Z0T

2, Z0 =

√
µ0
ε0
.

ωr, Q,Rsh/Q can be measured. They determine the lumped elements R,L,C in an equivalent circuit.
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