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Chapter 1.1

Electromagnetism

Heino Henke

Technical University Berlin, Germany

Electromagnetic fields are at the heart of accelerators. They accelerate, focus and guide charged
particles and they are responsible for the stability as well as the instability of particle beams. Their
range goes from constant fields up to very fast changing fields with frequencies of many GHz. Since
electromagnetism is part of the university curriculum, we restrict ourselves to a review of some
basics which are important to deal with problems in particle accelerators.

I.1.1 Introduction

Long ago, electricity and magnetism were well known separate phenomena. The birth of electromag-
netism began with the discovery of Oestedt (1820) that an electric current is always associated with a
magnetic field. Later on, Faraday (1831) discovered the electromagnetic induction, the creation of elec-
tric fields by a changing magnetic field. Electromagnetism was born. Maxwell (1864) extended and
completed this work with the four equations, which relate the electric field £ and magnetic field H,

together with the electromagnetic Lorentz force. The four equations are

%H(r,t)-ds://J(r,t)-dA%—(Z//D(r,t)-dA ,
%E(r,t)-ds:—jt//B(r,t)-dA ,
#D(r,t)-dA:///p(r,t)dV ,

#B(r,t)-dA:O ,

I.1.1)

with

E  H the electric and magnetic fields,

D, B the electric displacement and the magnetic induction, which are responsible for the effects of

material on the fields,
J the electric current density,

p the electric charge density.
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1.1.1. Introduction

The term [[ J (r,t) - dA includes all currents going through the area A, which may consist of

Je(r,t) =kE (r,t) the conduction current (Ohm’s law),
Je (r,t) = p(r,t)v(r,t) the convection current,

Ji(r,t) an impressed current.

The term [[[ p(r,t)dV includes all charges in the volume V. Current and charge may have different

distributions, e.g. point-like, lines, surfaces, volumes.

In most cases Maxwell’s equations (I.1.1) are used in their differential form for which an extensive

set of tools is available. They can be derived easily from Eq. (I.1.1) using Stokes’ and Gauss’ theorem

oD
H = —_— 1.1.2
V x J+ T ( )
0B
EFE=——— I.1.
V x 5 (L1.3)
V.-D=p , (L1.4)
V-B=0 . (I.1.5)

It should be noted that Maxwell’s theory is a continuum theory. All quantities must be continuous.

Discontinuities must be excluded but can be taken into account by means of the integral form Eq. (I.1.1).

In case of time-harmonic fields it is convenient to reduce the equations to time-independent equa-

tions. Let us take an example, the electric field
E (r,t) = Eq (r) cos(wt + )
can be written as
E(r,t) = Re {E, (r) e¥e“!} = Re {E (r) eiwt} : (L1.6)

where F is called phasor. The advantages are
— the time derivative 0/0t is replaced by iw,
— phasors are vectors in a coordinate system rotating with wt,

— el“! cancels out in the equations.

In the following the tilde belonging to phasors will be dropped for convenience whenever time-harmonic

fields are treated and/or the situation is sufficiently clear.

The fields D and B describe the effect of E and H on matter. As simple examples we take
an isotropic and linear dielectric effect. A local electric field displaces the charge centers of an atom
and creates an elementary dipole with a moment p. = gz, Fig.[.1.1 An averaging procedure over the
effect of the macroscopic field E on the microscopic dipoles (Clausius-Mossotti) leads to a macroscopic

polarization field
P =cox.E
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E local

Fig. I.1.1: A local electric field displaces the charge centers of an atom and creates a dipole.

superimposed to E
D=cE+P=c,(14+x.)E=¢,50FE |, (1.1.7)

g0 = 8.854 x 10712 As/Vm, permittivity of the vacuum. The relative permittivity ¢, and therefore D
describe the influence of an electric field on matter. There are different microscopic effects: atoms or
molecules which are polarized or displaced or even rotating. They happen at different frequencies and

are connected with losses, which are represented by an imaginary part of &,
e =€, —iel.

The real and imaginary part of €, are schematically shown in Fig.1.1.2

el microwaves
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Fig. 1.1.2: Principal behavior of real and imaginary part of €, over frequency.

The reaction of matter on magnetic fields is due the particle spins, which can be simulated by an elemen-
tary current with magnetic momentum p,,, = mr21I,, Fig.1.1.3. Again, an averaging procedure leads to a
macroscopic magnetization field M

M =y, H

superimposed to H
B = poH + poM = po (1 + xm) H = prpoH, (1.1.8)



I.1.1. Introduction

po = 41 x 10~ "Vs/Am, permeability of the vacuum.

Pm

Hlo(t;\l

Fig. I.1.3: A local magnetic field causes elementary currents with a dipole moment p,,,.

The relative permeability u, and therefore B describe the influence of a magnetic field on matter. In most
technical materials i, is close to 1. An important exception are ferromagnetic materials where the rela-
tion between the external field and the magnetization is non-linear and depends on history (hysteresis),
Fig.1.1.4.
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Fig. I.1.4: Typical behavior of B(M) for ferromagnetic materials.

In many materials the relations P = P(FE) and M = M (B) are linear. In some materials, however,

they are non-linear or anisotropic and depend on time or frequency.

Typically they have losses due to radiation and/or friction between elementary dipoles. In technical

literature the losses are expressed by a loss angle §

e=¢ —ie”" =& (1 —itané.), tand.=¢"/¢, (1.19)
p=p —ip" =p (1 —1itané,), tand, =pu"/u'. o

In most dielectrics it is
tand, < 1, tand, ~0
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and in good metallic conductors

0D
|J| > ’&’ — K> wergg

oD

J 4+ — = (k +iwe,e0) E = iwepeg (1 -

ot

E =iwe E, & .~ —.
WEreQ

Finally, as mentioned above, Maxwell’s theory is a continuum theory. It requires continuous, double
differentiable functions. If the problem contains regions with different material, one derives general
solutions for each region and matches the solutions on the interface between the regions. The matching
process fixes the unknowns in the general solutions. This process uses boundary or continuity equations
derived from Eq. (I.1.1). To get conditions for tangential field components a small rectangle, small

compared to the distance in which the field changes, is chosen across the interface, Fig. 1.1.5.

J¢ h—0

Fig. I.1.5: Integration path along a small rectangle across the interface.

Then, the first equation in Egs. (I.1.1) gives
0
Hiy1As — Hyh — HioAs + Hyh = JoAs + — D.dA

which for h — 0 becomes
Hy — Hyp = Js. (L.1.10)

Here a surface current density J ¢ was assumed. In a similar way the second equation in Eqs. (I.1.1) gives
Ey — Ep =0. 1.1.11)
If medium 2 is perfectly electric conducting, the fields vanish and Eq. (I.1.10), Eq. (I.1.11) become
Hy=Js, Ey=0.

Conditions for the normal field components follow from the 3™ and 4™ equations in Eq. (I.1.1). In that

case one chooses a small cylinder, Fig. 1.1.6.

The 3™ equation in Eq. (I.1.1) becomes

D1 AA — Do AA+ / D-dA = p;AA
AAey



1.1.2. Electrostatic fields

O =n
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ps

Fig. I.1.6: Integration surface of a small cylinder across the interface.

and with h — 0
Dp1 — Dpo = Ps; (1112)

equivalently for the 4™ equation in Eq. (I.1.1)
By1 — B = 0. (1.1.13)

Here a surface charge ps was assumed. If medium 2 is perfectly electric conducting Eq. (I1.1.12),
Eq. (I.1.13) become
Dp1 = ps, Bpn1=0.

After these general remarks we will treat some simplifications of Maxwell’s equations and in particular

wave solutions.

I.1.2 Electrostatic fields

Electrostatics describe situations where H = 0 and 0/9t = 0. Maxwell’s equations Eqgs. (I.1.2)-(I.1.5)
simplify to
VxE=0 (I.1.14)

V.-D=p. (11.15)

Due to the identity V x V¢ = 0, one can derive the electric field in Eq. (I.1.14) from a scalar potential

¢
E=-V¢. (1.1.16)

The negative sign is thereby chosen such that work has to be done when moving a positive charge against

the field. Substituting Eq. (I.1.16) into Eq. (I.1.15) one gets a Poisson equation for the potential

V2p = —g. (L1.17)

As an example we consider an electrostatic lens consisting of two circular tubes with different potential,
Fig. I.1.7.

The structure is cylindrically symmetric with no free charges and the Poisson equation (I.1.17) becomes
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Fig. I.1.7: Two circular metallic tubes with different potential.

a circular symmetric Laplace equation

0%¢  10¢ @:o

2 P — [ —
Vo= op? +p8p 022

Using a Bernoulli ansatz
¢ (p:z) = R(p) Z(2)

it can be written as ) )
1 d*R 1 dR 1d°Z
=0. (1.1.18)

RdZ T oRdp T Zd2

The last term is independent of p and must be a constant, here k2. Then

2z
with solutions
Co + Doz k,=0

Z(z) =
Cek=* + De=k=% [, £ 0.

For z — £00 ¢ must be finite, i.e. C' = Dy = 0 and Z becomes

Co k,=0

Z(z) = e
De k, # 0.

The leftover equation (I.1.18) is Bessel’s differential equation

d®R  1dR
44 EPR=0
dp? +pdp+ ‘

with Bessel Jy and Neumann Ny functions as solutions

p _
R = A0+Boln<p—0) k, =0
AJO (kzp) + BNO (kzp) kz 7é 0.

(I1.1.19)



1.1.3. Stationary currents

Since ¢ must stay finite for p — 0 the constants By and B must be zero. Further, for p = a it is

—¢pg 2>0
+¢9 z2<0

¢=

and therefore
AgCy = —sgn(z)¢o

Jo(kza) =0 — kna = jon.
Using above conditions, ¢ simplifies to
¢ = —sgn(2)do + ZA Jo (;0 7) e—Jonl2l/a, (1.1.20)
n=1

Due to the antisymmetric behavior in z ¢ must be zero for z = 0 and Eq. (I.1.20) becomes
- p
o = ZlAnJo (jong). (L1.21)
n—=

The coefficients A,, will be determined via a Fourier-Bessel expansion. One multiplies Eq. (I.1.21)

with pJo(jomp/a) and integrates over p

oo [0 (ion2) o

2

a a
¢030m 1(]0 ) 2

[0 o)

‘] (]Um)-

n=1

With A,,, given above the final result for the potential Eq. (I.1.20) is

Jo (jon2) _.
,2) = —sgn(z)gp +2 Y  ——ral_eIonlzl/a,
¢(p ) s 0 Zl ]Onjl (]On)

A field plot is shown in Fig. I.1.7.

I.1.3 Stationary currents

Stationary currents describe situations with 9/0t = 0 and H # 0. Maxwell’s equations become in that
case
VxH=J (1.1.22)

V x E=0. (1.1.23)

Because of Eq. (I.1.23) one derives the electric field again from a scalar potential as in Eq. (I.1.16).

Taking the divergence of Eq. (I.1.22) and substituting J = xE one gets a Laplace equation for ¢
V. (VxH)=0=V -J=V.(kE) = —-skV?¢.

10
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The situation is similar to electrostatics but boundary or continuity conditions are different. For instance

in an example, Fig.1.1.8, the normal current density component has to be zero on the boundary

J,=kE, =—k—n=0.
K ﬁdnn 0

Fig. I.1.8: Constant current flow in a metallic object.

.14 Magnetostatic fields

In the magnetostatic case one takes 9/0t = 0 and E = 0, but allows for impressed currents. Then,
Maxwell’s equations are
V x B=uJ (1.1.24)

V.-B=0. (1.1.25)

Due to the identity V - (V x A) = 0 one derives the magnetic field from a vector potential A
B =V x A. (1.1.26)
Substituting Eq. (I.1.26) into Eq. (I.1.24) yields
Vx(VxA)=V(V-A)—-V?A=ul. (1.1.27)

Here, A is not fully determined. A gauge transformation A — A + V1) does not change the magnetic
field Eq. (I.1.26). One reduces the degree of freedom and imposes the condition V- A = 0 on Eq. (I.1.27)

V2A = —puJ

or in Cartesian components
V2A; = —pd;, i=uz,y, 2. (1.1.28)

A simple way to solve Eq. (I.1.28) is to use the well known field and potential of a point charge ¢

= Le = q
drer? " Ader

which are solutions of the inhomogeneous Poisson equation

11



I.1.5. Quasi-stationary fields

V2 = —g(s(r).

Taking ¢ as a Green’s function one can calculate the potential of a charge distribution p with the

6 (r) = 4;// f(_r2,|dv’.

The solution of Eq. (I.1.28) is obtained by replacing

Coulomb integral

1
¢ —op p

7 J (r')
A(r) = 477// |r_r/|dV’. (1.1.29)

Figure 1.1.9 shows the corresponding geometrical quantities. In regions where J = 0 one gets from

Eq. (I.1.24) again a Laplace equation

VxB=0— B=-Vy, V-B=0— V% =0. (I1.1.30)
vl J(r)dV’
R=r—¢ P
T o]

T

Fig. I.1.9: Geometry referring to Eq. (1.1.29).

1.5 Quasi-stationary fields

Still another simplification of Maxwell’s equations is possible in materials with very high conductivity

and no free charges, such that

dD
|J| =k |E]| >>“:w6|E|, p=0.

dt
Then,
V xB=ud (L.1.31)
0B
VXxE=—— 1.1.32
X 5 ( )
V.-B=0. (I.1.33)

Due to Eq. (I.1.33) one derives B from a vector potential, B = V x A, and substitutes it into Eq. (I.1.32)

12
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0 0A 0A
VXE=——VxA=-VX——>V E+—1]=0
x o~ o X(+8t> ’
which allows an ansatz for F
E=-V¢-— oA
B ot
Substituting B and F into Eq. (I.1.31)
9 0A
Vx(VxA) =V (V-A)-V*A=—uk qu_"ﬁ . (1.1.34)
Here again, A and ¢ are not fully determined since the replacements
0
A— A+ V9, ¢—>¢—6—lf
do not change B and E. One imposes the gauge
V- -A=—uko
and obtains the vectorial diffusion equation
A
V2A - ““8875 =0. (I1.1.35)

For time-harmonic processes the equation is equal to the Helmholtz equation, which we will treat later.

L.1.6 Poynting’s theorem

One starts with the full set of Maxwell’s equations (I.1.2)—(I.1.5) and a gedanken experiment. The fields
move a blob of charge pdV by a distance ds in a time interval d¢. The work done by the fields is

ow 0
dﬁ:df-d—'::pdV(E+vxB)-v:E-pvdV:E-JdV.
The term E - J will be expressed by means of Maxwell’s equations. One multiplies Eq. (I.1.2) with E

and Eq. (I.1.3) with H and subtracts the equations

E(VxH -E J+E.22
ot
9B (1.1.36)
H- E)=-H
(VX E) 5
oD oB 0 (1 1
V-(ExH)_E-J+E-at+Hat_E-J+at(2E-D+2H-B>.

Integration over a volume V' and application of Gauss’ law results in Poynting’s theorem

—#(ExH)-dA:// E-JdV+6///<1E-D+1H-B>dV, (1.1.37)
g v ot 2 2

13



1.1.6. Poynting’s theorem

S = FE x H Poynting vector (radiation flux),

pa=FE-J dissipated power density,
1
We = iE - D electric energy density,
1
Wy, = iH - B magnetic energy density.

Poynting’s theorem states: The energy radiated into the volume V' equals the dissipation and the in-

crease of stored electric and magnetic energy in V, see Fig.1.1.10.

.‘ -
radiation

Fig. 1.1.10: Radiation balance for a lossy volume with stored electromagnetic energy.

The above theorem deals with an arbitrary time-dependence. But many applications have time-harmonic

fields and one is not interested in the momentaneous values but in the values averaged over one period.

Similar to Eq. (I.1.36), one takes the first two Maxwell’s equations but in phasor notation

VxH =J —iwD"

V x E = —iwB,

where the star indicates complex conjugate quantities. One multiplies the first equation with E /2, the

second equation with H : /2 and takes the difference

1 ~ ~ % 1~ = 1= 1
—§V-<E><H)_§E-J +12w<4H-B -4

Integration over the volume V' and application of Gauss’ law gives Poynting’s theorem for time-

—# S, dA = /// pddV+iQw///(wm —w.)dV, (1.1.38)
A |4

harmonic fields

where
S. = %E x H” complex, time-averaged radiation flux,
Py = %E T time-averaged dissipation,
Wiy, = i H - E *, We = EE D" time-averaged magnetic and electric energy density.

The real part of Eq. (I.1.38) is the time-averaged active power and the imaginary part the reactive power.

It is interesting to note that in a resonator, where w,,, = w., the reactive power is zero.

14
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L1.7 Electromagnetic waves

The simplest electromagnetic wave is a plane wave. It depends only on one space variable (direction of
propagation) and on the time, e.g.

E=E(zt), H=H(z1).

Substituted into the first two Maxwell’s equations

OFE oOH
VXH*&E’ VXE——MW
results in two sets of uncoupled equations
_O0H, EaEm 0FE, _  0H,
0= ot 0z M (11.39)
0H, _ 0E, 0E, = 0H, o
0= ot 0z Mot

In the following we will treat the first set only. The second is obtained by replacing H, by —H, and E,
by E,. Eliminating H, in Eq. (I.1.39) gives the wave equation for F,

’E 1 OE 1
OE, 10B _, ._ 1 (1.1.40)
022 2 Ot? VHE
with d’ Alembert’s solutions
E,=f(z—ct)+g(z+ct)=E + E_
2= f(z—ct)+ gz +ct) = B + E; L

ZH, = f(z—ct) —g(z+ct) = ZH, — ZH, .

¢ = 1/,/p€ is the velocity of light and Z = \/u/e = 3772 the free-space wave impedance. The
function f belongs to a field propagating in +z-direction and g to a field propagating in —z-direction.

The fields have the properties

E* | H*
E*, H* are perpendicular to the direction of propagation,
E*/H* = +7,

S = E x H Poynting vector, energy flow in direction of propagation.

For simplicity, only the time-harmonic case, 9/9t = iw, will be treated. Then, Eq. (I.1.40), Eq. (I.1.41)

become
OF
o2 TRE: =0, k= wy/LE
E, = Ael@t=k2) 4 Beilwtthz) (L.1.42)

ZHy — Aei(wtsz) - Bei(thrkz)'

15



I.1.7. Electromagnetic waves

k is the wave number. In loss-free material it is
w 2T
k=wypue=—=—
a c A

and in lossy material

k=w/uE =B —ia, (1.1.43)

where [ is the phase constant and « the attenuation constant. The real physical field is, e.g.
Ef =Re {Aei(”t*kz)} = Acos(wt — fz)e” .

It has a time-harmonic factor and an exponential decay. Fig.I.1.11 shows the field pattern and the real

field behavior.
. E-field
Jf ?L//I{—ﬁ(‘ld
|
9T L
|
|

1 |
1 1

exp

COs

Fig. I.1.11: Field pattern and behavior of the real field £

In case of lossy dielectrics ¢ = (&) —ie!’) ¢ it is

B _

1 1 « 1 1
o §€’T—|— 55}\/1 + (el /e!)?, = \/—2€;+ 55}\/1+ (el /e!)?.

Most of the dielectrics have low losses, ¢!/ < ¢., then

1 ! Z : "
B~ Vak, ax Tk, Zx-2 (1+15’").

BN

An example is polyamide (nylon)
k=10"80"tm™ & =3, f =10MHz

with an attenuation of 11 % in 100 km. Very good conductors (metallic) have &/ ~ ik /w > &/ and

1 1 «
SRR RV =—, Z=(14i)—
B~ « \/zwlm 5 ( +1)/@’
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where J;, called skin depth, is the distance in which the fields have decayed by 1/e

1 [ 2
e s = = §o= ] —. (1.1.44)
e WK

In general, [ is a function of w and is called dispersion relation. Mostly it is a smooth function and can

be developed around a frequency wy

B(w) = Blwn) + 22

2
o, W+ ((dw)?) . (1.1.45)

wo

The O-order approximation yields the phase velocity v,, with which the phase ¢ of the wave propagates

d dz
¢ = wt F B(wo)z — dff =0=w ﬂFﬁ(Wo)E = w F B(wo)Uph

w

Blwo)

(I1.1.46)
Uph = &

vph has no physical meaning, since monochromatic waves carry no information. For instance, vp, can be
larger than the velocity of light. If the wave is modulated, i.e. carries a signal, the signal propagates with

the group velocity. An example is beating between two plane waves with w; and we
w1 =wo + 0w, [=Lfo+f
w2 =wp — 0w, P2 =Po— 0.

The resulting physical field

Re{ei(wltf,bﬁz) + ei(wm‘/fﬁgz)} — Re {ei(wotf,b’oz) (ei(&utfé,@z) + efi(&utféﬁz)>}

= 2 cos(wot — Bpz) cos(dwt — §/32)

has a high frequency part, which propagates with the phase velocity vy, = wo/ 3o, and the envelope part
(beating), which propagates with the group velocity

ow dw

'ngﬁ—)'l)g:%

1.1.47)

wo
Signals with a small bandwidth 26w propagate with v,. Large bandwidth signals require higher order
terms O ((dw)Q) in Eq. (I.1.45). Apart from phase and group velocity, there is the velocity with which

energy is transported. As shown in Fig.1.1.12, the energy transported a distance Az in time At equals

the energy radiated through AA

WAAAz

=WAAv, = S, AA
Az WAAv S,

or
(1.1.48)

SIS

Ve =

17



1.1.8. Cylindrical, ideal conducting waveguides

In case of plane waves

1 ., 142
Se=gBxH =57
1 1 1

=_E -D*+-H B"=_cA?
W= 1 2°

AA

a4

/'adiation

Fig. 1.1.12: Radiation per unit time through an area A A.

I.1.8 Cylindrical, ideal conducting waveguides

This chapter treats waveguides with constant cross-section, homogeneous filling and ideal conducting

walls. The full set of the time-harmonic Maxwell’s equations is required

V x H =iweE
V x E =—-iwpH
(1.1.49)
V-E=0
V-H=0.

It is possible to eliminate H or E from the first two equations and derive directly a wave equation. The
problem is, that the fields will not necessarily satisfy the divergence-free equations. Therefore, an ansatz

which fulfills the equations is chosen

E™ =V x AT, ATE = A™¢, TE-waves

HM=-vxA™ A™ - g™¢ = TM-waves.

)

(1.1.50)

ATE A™ are the two independent functions, which are necessary. TE-waves are called transverse
electric and TM transverse magnetic waves. The further procedure is shown for TE-waves. For TM-

waves it is similar. Substituting EF into the first equation (I.1.49)
V x (H™ —iweA™) =0 - H™ = Vo + iwe A™.

18
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From the second equation (I.1.49) follows
Vx (VxA™) =V (V- A™) - V2A™ = —iwpVep + K*A™, k=wype.  (L15])
ATE and ¢ determine not fully E and H. The freedom is used to impose the Lorenz gauge
V-A™ = —iwpue. (1.1.52)
Then, from Eq. (I.1.51)
V2ATE | p2ATE _

and since A has only a z-component one gets a scalar Helmholtz equation from TE and in a similar
way for TM

TE
VAP 1 k2AP =0, P= . (1.1.53)
™

I.1.8.1 Circular waveguide

For a circular waveguide, Fig.1.1.13, circular cylinder coordinates are the natural choice and Eq. (I.1.53)
becomes
kA =0. (1.1.54)

2002 | 022

pop \"op

Fig. 1.1.13: Geometry for circular waveguide.

Substituting a Bernoulli ansatz
Apsp,2) = R(p)®(p)Z(2) (1.1.55)

into Eq. (I.1.54) yields

1 1 d*®  1d°Z
L <p(jiR) ! 12 k= (1.1.56)
p

pR dp P2 dp? + Z dz2

19



1.1.8. Cylindrical, ideal conducting waveguides

The term for Z is independent of p and ¢ and must be constant, written as —k?2. Then,

A

FE K2Z =0 Z(2) = Cre %% 4+ Coe=2,

The first term is for a wave propagating in +z-direction. The backward traveling wave is simply obtained

replacing k, by —k,. Next, we substitute Z in Eq. (I.1.56)

p d dR 1 d?® 2012 12
7= (2t —Z = kK —k2)=0. 1.1.57
de<pdp>+@dso2+p ( 2) (1=

Now, the second term is independent of p and must be constant, chosen as —k:i,. Then

d*® :
g + k?a(I) =0 — ®(¢) = C3cos(kyp) + Cysin(ky,p)
and since @ is 27-periodic, k, must be an integer m. In addition, we rotate the coordinate system until

Cy4 = 0. Finally, one substitutes ® into Eq. (I.1.57) and obtains Bessel’s equation

d*R 1dR m?2
I K- —|R=0, k.= k2 k2 1.1.58
dp2+pdp+{c pQ] Ce ? (=8
with solutions
R(p) = Cs5Jpm(kep) + Co N (kep). (1.1.59)

On the axis, p = 0, R must be finite and therefore Cs = 0. Thus, the vector potential Eq. (I.1.55) is
A(p,p,z) = Cy, cos mgoJm(kcp)e*ikzZ. (1.1.60)

The last unknown constant k. (or k) is determined by the boundary conditions for p = a.

In case of TE-waves, E = V x (Ae,), the boundary conditions are

0A

E‘P = —87p ~ J,,/n(kca)
EQO(p =a)=0— J;n(kca) =0, kemna= jr,nn
with j/ . being the n'M non-vanishing zero of J!,. Then the fields are
10A .
Eﬂ = 787 = _TCmn sin mSOJm (];ng> eilkzmnz
P 82 jp, , (L1.61)
E, = 9 = — Z” Crnn cosmepJ) <j;nn5) g~ 1kzmn?
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—iwpH =V X E
H - kzmn .]/MC cosmoJ’ (i P e ikzmnz
p Wi a mn PIm ]mna
k m . g P\

H,=— :}7;” FC’mn sinmpJp, (J;nng) g ikzmnz
—1 /i \?2 ,

H,=— (jmn> Crn cos mpJy, (j,/n,me) e 1kemnz,
iwp \ a a

For TM-waves, H = V x (Ae.), the boundary conditions are

2
-kc A~ T (kep)

we
Ez(p = a) =0— Jm(kca) =0, kenna = Jmn

E, =

with jp,n the n® non-vanishing zero of J,,. Then

H,= —TDWL sin myJ, (jmng) o~ ikzmnz
P a
H, = —]m—ann cosmpJ), (jmn3> o ikzmnz
a a
iweEE =V x H B .
E,=— Zgn ]%Dmn COos mng{n (jmng) e 1kzmnz
k m )
E, = R Dy SIN mpdm <]mng> o thzmnz
we p a
T /G \2 ,
E,=— <]mn> Dy cosmpdy, (jmnB) e kzmnz
iwe \ a a

In the equations (I.1.61)-(I.1.64) the propagation constant is

kvmn =V E?> — k2,

real k > kemy propagation
kzmn = {0 k = kemn

imaginary k < k¢p,y, attenuation

with the critical wavenumber
Jrn/a  TE-waves

kcmn - y
Jmn/a TM-waves
and
femn = Ckemn /21 cut-off frequency,
Aemmn = 27 [ kemn cut-off wavelength,
A
Aemn = 27 /K omn = waveguide wavelength,

1 — (A Aemn)?

A free space wavelength.
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1.1.8. Cylindrical, ideal conducting waveguides

The ratio of the transverse field components is a constant with the dimension of an impedance and is

called field (wave) impedance

E, B, )Zi=gl;
A - . (1.1.66)
H‘P Hp Z};M — kzmn

we

From the complex Poynting vector follows that

real power flux k> kemn

1
Sez = 5 (B x H"), = o Zp ([H " + |Hg|*) = {0 k= kyn - (L1.67)

N |

imaginary power flux & < kemn

Every field with indices mn in Eqs. (I.1.61)-(1.1.64) is a particular (eigen-)mode. Therefore, the general

field is expressed by the linear combination of all modes
E=) Y (B +EN), H=) ) (H5 +HJ). (1.1.68)
m n m n

Normally, modes are sorted referring to their cut-off frequency.

type m n (f./GHz)(a/cm)
TE 1 1 8.78
™ 0 1 11.46
TE 2 1 14.56
TE/TM 0/1 1/1 18.29
TE 3 1 20.05
0.07
0.06 \\
- 005
é; 0.04 \ Mo \
% 0.03 \ \
Z 002 AN T Eg1—
PN
0.01 TE1
R R TR ENN
Frequency, GHz

Fig. I.1.14: Attenuation for some low-order modes.

In Fig. I.1.14 the attenuation for some modes is given. Particularly interesting is the TEy;-mode because
the attenuation decreases with w—3/2. Tt is used for low-loss transmission, although there are three modes

with lower cut-off frequency and special measures are necessary to suppress these modes.

Some field plots of modes with low cut-off frequency are shown in Fig.1.1.15.
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Fig. I.1.15: Field plots of four low-order modes.

1.1.8.2 Impedance boundary condition on good conductors

In materials with high conductivity x (metals) one can neglect the displacement current compared to
the conduction current, see Sec. 1.1.5. On the surface of the material the electric field is essentially
perpendicular and the magnetic field is parallel. Tangential to the surface the typical length in which the
fields change is A. In the material and in normal direction to the surface the length in which changes take
place is s < A. Under these assumptions a very good approximation for the ratio of the tangential fields

can be derived.
One decomposes the fields and the nabla operator into tangential and normal components, see
Fig.1.1.16,

E=FE,+FE,e,, H=H,+H,e, V= VH—eZ%.

Fig. 1.1.16: Geometry on the surface of a medium with high conductivity.
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1.1.8. Cylindrical, ideal conducting waveguides

Maxwell’s equations become

1 1 OH
VxH=J=kE: E,=—~e,x V;H, +-e, x —*
K K 0z
1
Ezez = *Vt X Ht
K
OF, (1.1.69)

VXxE=—iwpH: Hi=——e, x ViE, + —e, x 2t
Wi wh 0z

H.e, — wiﬂvt % E,.

Since tangential to the surface the typical length of change is A, an order of magnitude approximation is

1
Then, |E,|, |H,| in Eq. (I.1.69) become
= Y m~ L Eg = (%) 2y
2l = CIVi o~ SH =7 ¢
1 . 1 Z 1
Z|H,| = —[iVy x Ey| = — —|Ei| = | E4],
Wit wi A 2w

and the first terms on the right side in Eq. (1.1.69)

1 1 55\ 1(3:\?
—|e, H,|~ —|H,| = — | Z|H)| == |+ E
teox vt x il = () 2~ () 1B

1 1 1 1/0:\?
—lie, x VB, |~ —|E,| = —=|E,| = = | = | |Hy|.
wuhez | w,u)\| Al 27‘('2’ 2| 2 (A) |Hi|
Due to 65 < A, these terms can be neglected compared to the left sides | Ey|, | H;| in Eq. (I.1.69) and the
equations simplify to
OH,

0z
% (I.1.70)

0z

kE; ~ e, x

iwuH; ~ —e, x
Eliminating E; one gets a differential equation for H;

O*H,
022

—iwusH; =0

with solution
H, = Hge (1H12/% (L.1.71)

After substituting Eq. (I.1.71) into Eq. (I.1.70) one gets a relation between the tangential field components
on the surface
Et(] ~ Zw (’I’L X Ht(]) (1172)

where Z,, is the wall impedance
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14 2
S S (L.1.73)
KOs WK

I1.1.8.3 Attenuation in waveguides (power-loss method)

One starts with a small piece Az of waveguide, Fig.I1.1.17.

Plz) ' PiA: P(z + Az) = P(3) + %Az
-

Az

Fig. 1.1.17: Input power P(z), power loss P;Az and output power P(z + Az) for a piece Az of
waveguide.

Conservation of power requires

d (Z) /
: —_p 1.1.74
dz d ( )

and since F, H are proportional to e~%* the transported power is
P(Z) ~ 67204,27
and Eq. (I.1.74) becomes

_1 B
- 2P(2)

—2aP(2) = —P) — « : (I.1.75)

In order to calculate the dissipation per unit length P, one takes the power radiated into a small area A A
of the waveguide wall and uses Eq. (I.1.72) and Eq. (I.1.73)

AP, 1
TZ = —n-Re{S.} = —iRe{n‘ (Ew x Hy)}
1 1 (1.1.76)
= 5Re{Zw}\I{td2 = 2553‘Ht0‘2‘

P} is obtained by integrating Eq. (I.1.76) over the boundary of the waveguide cross-section

1

Pl = —— @ |Hyl|’ds.

47 9Ké, yg [H ol ds

The transported power in the waveguide gives the Poynting vector integrated over the cross-section
1
P(z) = // Re{S.}-dA = 3 // Re{E x H*} - e,dA
A A
1 N 1
= 5 // Re{Etransv X Htransv}dA = 2ZF// |Htransv|2dA-
A A

Then, the attenuation Eq. (I.1.75) is
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1.1.9. Resonant cavities

1 ¢ ’Ht()‘QdS
o = .
2k0s L ff ’Htransv|2dA

It is worth noting, that the tangential field H; and transverse field H gy are the fields of the ideal

1.1.77)

conducting waveguide.

Although the power-loss method was used here to calculate the waveguide attenuation, Eq. (I.1.76)

can also be used to calculate the losses in any metallic structure.

1.1.9 Resonant cavities

Resonant cavities are used to accelerate charged particles. The simplest arrangement is a cylindrical
cavity with radius a and length g. In order to have a longitudinal electric field it is operated in a TM-
mode.

We take the E, component in Eq. (I.1.64) and superimpose a forward and backward travelling

wave

k ) .
E(p _ Namn TDmn sin moJo, (Jmng) (eflkzmnz _ Tmelkzmnz> )
we p a

The boundary conditions are

E,(2=0)=0 — Tm =1, Fgy~sink,mnz
E,(z2=9)=0 — kympg=pr, p=0,1,2,...
therefore
E, = —iQPL/gTDmn sin meJp, (jmng) sin (pwz)
we p a g
2 [ Gmn \ 2 2
E,=—-i— (mn) Dy cosmpdpy, (jmn8> cos (pw)
we \ a a g
E, = inDTr/g‘]M mn COS Mgl (jmn8> sin <p7rz> (1.1.78)
we a a g
H,= —QTDmn sinmoJy, (]mng) cos (pwz>
P a g
H, = —QMDmn cos mgoJ,’n (]mn3> cos <p7rz> ,
a a g
where

jﬂ =4 [k2 — <pﬂ'>2_
a g

For acceleration the resonator is operated in the TMg9-mode, i.e. no azimuthal dependence (m = 0),
no longitudinal dependence (p = 0) and the first non-vanishing zero jg; of J,. The mode has field

components, see Eq. (I.1.78)

we

2 (i)’ .
E,=—-i— (]()1) Do1Jo (]018) , E,=FE,=0
a a (1.1.79)

H, = =220, 1y (jon2) . H, =0,
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and a resonant frequency
Wy Jo1 Wy Joic
kT‘ = — = — — f,r, = — = —
c a 2T 2ra

A figure of merit is the ()-value. It is determined by the stored energy

T
W:W€+Wm:2We:// E.D*dvzg// |E,|2dV
2 v 2 Jlv

Amg ji1 1o /1 2(. P\P,P
= 9oz [ ( 7) Lal
w2e a2 O [, 0 015) %

2mg J01

= 3 01J1( )

w2e a?

and the dissipated power, see Eq. (1.1.76),

Py = # PldA
27r 2w
:2m5 [/ / |Hy( —a|ad<pdz+2/ / 0)pdedp

= 55 j01 <1 + )D01J1 (Jo1)-

Then, o
wrW _ 1 g 6.0 = 2Volume
Py ds1+g/a

(@ is proportional to the ratio volume over surface. Obviously, a spherical resonator will have the highest

Q= (1.1.80)

surface '

(-value. The importance of () stems from the fact that it defines the decay rate of the stored energy or

the filling time 7';. From power conservation

dW Wy
=Pj=—W

YT

follows
W = Woe 277 with Ty = 2 9. (1.1.81)
Wy
The example of a copper cavity at 3 GHz with
g=X\/2=5cm, k=58-100"1m™!,
Jo1 = 2.405, J1(jo1) = 0.5191

yields
a=383cm, J0,=121pm, Q=17963, Ty=19ps.

I.1.9.1 Resonance behavior of a cavity mode

To make the problem directly accessible for an analytical treatment, it is convenient to take ideal con-

ducting walls but a lossy dielectric filling. In that way ideal modes with losses exist.

The cavity is driven by a current J passing through it. J splits into a conduction current J. = K F,
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1.1.9. Resonant cavities

responsible for the losses in the dielectric, and in an enforced current Jy as driving term. From the first

two Maxwell’s equations

E
VX(VXE):V(V-E)—VQEZ—M%VXHZ—M% (Jo—l—/@'E—i-E%t)

follows together with V - E = (0

(1.1.82)

One expands E in modes
E =) a(t)e,(z,y,2) (1.1.83)
s

where 7 runs over all m, n, p and where it is assumed that

VQe,. + k?er =0

///er-est—dﬁ

n X e, = 0 on walls

V - e, = 0 in volume.

One substitutes Eq. (I.1.83) into Eq. (1.1.82)

3 &a,  wda, Ky 1 1dJo
— | dt? e dt pe | e dt’

multiplies with e, and integrates over V, then

d?as  kdas k2 1 dJy df
- —as=—— || == -edV = =~
dt? + e dt * uga 5// a € dt

and in case of time-harmonic excitation

k2
[—wQ rifw S} as = iwfs,
€ pe
_ Qs [s

ag =

o (1.1.84)

- , Ws = Cks; Qs = .
“81+1Q5(§5—%) K

For a realistic cavity with lossy walls one replaces Qs by @ and ws by wy,p,. Figure.1.18 shows the

magnitude and angle of a mode amplitude a(w).
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w2 |
arc(a )
2| Q=20 ]
0- -
T /2
(Oom © —-

Fig. 1.1.18: Magnitude and phase of a resonant mode amplitude.

If the modes in a cavity are well separated they can be represented by lumped element resonant circuits,

Fig.L.1.19.

I

Ls R
s
Vi =
¥
Fig. 1.1.19: Lumped element resonant circuit.

The corresponding parameters are

1 wsW

Ws = 5 Qs = = wSRSCS
V LsCs Pds
bandwidth B, = Wet0w) = (ws —dw) 0w _ 1 (1.1.85)
wS O‘)S QS
s 1
filling time Ty = 2Q— = —.
W ow

While wy and @) are directly measurable, one needs one more quantity to determine the lumped elements.

This is the R-upon-Q)

Rgpn V2 2
= 5 — 1.1.86
Qs wsW wsCs , ( )
with )
v
Ry, P, R

and the accelerating voltage for a particle passing the cavity on-axis with velocity v

Vs = , z=ut.

g .
/ ases - e,eldz
0
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1.1.9. Resonant cavities

The shunt impedance Ry, is a measure of the available voltage for a given dissipation. Whereas the R-
upon-() determines the available voltage for a given stored energy. It is independent of the cavity losses

and therefore measurable.

1[.1.9.2 Influence of beam pipe

It is important to estimate the influence of the beam pipe on the accelerating voltage, Fig.1.1.20.

i TMgp-mode
]

Fig. 1.1.20: Cross-section of a pill-box cavity with beam pipes.

Let us assume that the cavity is excited in the TMpjo-mode. In the pipe region, 0 < p < b, a spectral

expansion of the longitudinal field is used

Expﬁ)zif Ak (K p)e*5dk., K = /R — &2 (1.1.87)

with ) -
MMMMFQ/‘&mmWM
7T —00

On the interface between pipe and cavity, p = b, the field is approximated by

Ey —g/2<z2<g/2

E.(p=0b,2) =
0 |z|>g/2
and one obtains /2
Ey (9% 4 Eygsin(k.g/2)
A(k,)Io(Kb) = — Wetdy = — —————~, 1.1.88
koo K) = 2 [ eeri = D0 (L1.88)

Using Eq. (I.1.87) together with Eq. (I.1.88) the accelerating voltage becomes

V@Z/ @m@&w:/ E.(p, 2)e**/Pdz

Eog [ . sin(k.g/2) Io(Kp) / X i(EB—k2) w v
= — dkz d 1 zZ:E TF 7b’ k:—’ = -,
2m /oo kag/2 To(Kb) J 0gTF(p, b) S, 8=
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with the gap factor (transit time factor)

_ sin(k.g/2)
k.g/2

and the reduction factor due to the beam pipe

Io(kp/Bv) 1

F(p,b) =

y .
Io(kb/ ) V1-p2
For a particle on-axis the reduction of the accelerating voltage is

V(ip=0) 1

V(p=b)  To(kb/B7)

For kb/ B~ > 2 it is approximately exponential

Vip=0) [orkb/Brye kb8,

V(p=10)

1.1.10 Exercises

1.1.10.1 Exercise 1: Given is a conducting hollow sphere carrying a charge (). What is the field
in- and outside and what is the stored energy? If the sphere were a model for an electron
(Ege = 511 keV) what is then the classical electron radius r, = a?

e
( -

N4

I1.1.10.2 Exercise 2: A parallel plate capacitor is filled with a lossy dielectric and charged to a
voltage V. What is the time constant for discharge?

}
=
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1.1.10. Exercises

1.1.10.3

1.1.10.4

1.1.10.5

1.1.10.6

1.1.10.7

n x Iy

Exercise 3: A long dipole magnet is excited by a coil with n windings and current I.

Calculate the magnetic field in the gap.

Exercise 4: Derive the multi-poles for a static 2-dimensional magnetic field. Remark:

Solve the equation for the magnetic potential in circular cylindrical coordinates.

Exercise 5: Give the E- and H-field of a z-polarized plane wave which propagates in

x-direction. What is the time-averaged radiation power density?

Exercise 6: Derive the longitudinal vector potential for TM-modes in a rectangular

waveguide. What is the equation for the separation constants?

Exercise 7: Give the guide wavelength, phase, and group velocity of a TM;;-mode in a

rectangular waveguide.

X

X

L___J

XX L]
X X L]

me; =T
o ﬁ:ﬁf‘ﬁ

; 1A
(’\

)

w
[\
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1.1.10.8 Exercise 8: Calculate the accelerating voltage, shunt impedance and R-upon-QQ of a
TMj0-mode in a rectangular cavity resonator of quadratic cross-section, a = b, and
length g.

L1.11 Solutions to the exercises

I.1.11.1 Solution to exercise 1

From Eq. (I.1.1) and due to spherical symmetry

9 0 r<a
#D’dA:///pdV:47T50TET .
A v Q r>a

Inside the sphere there is no field and no stored energy. Outside the sphere the energy stored in the field

1 1/ Q \? ©dqr Q2
We == E-DIdV=—-(—| 4 — = .
2 //v 2 <47r50> 7760/(1 r2  8mepa

To find the classical electron radius the stored energy must be equal the electron rest energy

is

2 2

e
= Mpec® — a = P
8mega 8megmoecC

(&

Since there exist several models for an electron with slightly different factors the radius is defined as

62

re=-——>3 =281x10"""m.
4megmoecC
1.1.11.2 Solution to exercise 2
From Eq. (I.1.2)
oD
V. (VxH)=0=V" <J+6t>'

After integration over V' and application of Gauss’ law

OF dE K
E+eo ) dAa=0-% = "p
5?%1(“ +58t> Tat T e

Where we have used the fact that E has only a y-component in the capacitor and vanishes outside. The
solution of the differential equation is
E = Ege /T

with the relaxation time 7. = ¢/x.

33



1.1.11. Solutions to the exercises

I.1.11.3 Solution to exercise 3

From Eq. (I.1.1) and Eq. (I.1.13)

}I§H~ds://AJ-dA

Hizonl + Hgapg = nly
Biron = Bgap — Hiron Hiron = NOHgap-

Then
nIO IO

~

Hypp = — 0 20
B2 g+ pol/piron g

1.1.11.4 Solution to exercise 4

From Eq. (1.1.30)

2y 10 (06) 10 _
Vo= oo \Pap) T ="

Substituting a Bernoulli ansatz
P(p, ) = R(p)F ()

yields
d dR 1 d*F
P (pS )+ o5 =0
Rdp \' dp F dy
The second term is independent of p and must be a constant, put to —2. 27-periodic fields require v = n

F,=a,cosnp, n=0,1,2,...

Substituting F}, into the differential equation gives

d?R 1dR n?
a2 T pap AT

with solutions
Rn = bnpn + Cnp7n~

A finite potential for p — 0 requires ¢, = 0 and the general solution is
[e.e]
d(p,0) =D anp" cosnp
n=0

o
B=V¢= Z annp™ ! [cos npe, — sinnpe,| .

n=1

n=1,2,3,... are dipole, quadrupole, sextupole,. .. fields.
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I.1.11.5 Solution to exercise 5

Itis _
E = Eoel(wt—kx)ez’ k=

w
)
C

ZH = e, x E = —Ey@t e, 7 =

™=

1 ., 1
: &:§Etziﬁww%.

1.1.11.6 Solution to exercise 6

The vector potential satisfies the homogeneous Helmholtz equation

%A, n %A, n 9?A
Ox? oy?

P4 k2A, =0, k=-.
022 + = c
Using a Bernoulli ansatz
Ax(z,y,2) = X(2)Y (y) Z(2)
the equation becomes
1¥X+1£Y+1£Z+
X dx?2 Y dy? 7 dz?

k= 0.

Each term depends only on its own variable and must therefore be constant. The constants we call —k2,

—k:g, —k?2. They form the equation of the separation constants (dispersion relation)
2 2 2 2
k™= ki +ky + kZ.
With the separation constants each function X, Y, Z satisfies the standard equation for harmonic oscilla-

tion, e.g.

with linear combinations of solutions

Then, the vector potential is

cos kyx cos kyy e k=2
A, (x,y,2z) = v . .
(@y,2) { sin k,x }{ sin kyy }{ elh=2 }

Here, standing waves were used for the transverse directions x, y and traveling waves for the longitudinal

direction z.

It is understood that all quantities are proportional to €, which was dropped for simplicity.

The constants &, &k, follow from the boundary conditions.
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1.1.11. Solutions to the exercises

TM-waves: H =V x(Ase,), iweE=VxH

024,  OA. sy
= AZ
Ay ayQ) (K2 + 12)

Boundary condition: FE.(z =0,a) = E,(y =0,b) =0

iweFE, = — <

—ikzmnz

A (x,y,2) = Cpp sin kg sin kypye

T T
kxm:ma, kyp=n-—, m,n=12,3,...

b )

The propagation constant k.., is fixed by the equations of separation constants and the frequency &

o () 2 ()

1.1.11.7 Solution to exercise 7

Itism=n=1k=w/c=21/A

L o'

A

Azl =
V1= (A\/2a) — (A/2)2
w C
U = =
T 1o (02a)2 — (A/20)2
vy = 2 — e /T= (Aj2a)? = (20
Ok 11
Uph¥y = .
1.1.11.8 Solution to exercise 8
Itism=n=1,p=0,E, ~ A,
E.=Csinrosintl, E,=E,=0, k =— =2_.
a a co a

The accelerating voltage is with z = vt

g a a .

The magnetic fields are

sinwyg/2v

V= wrg/2v

U
:\cy/ ¢rs/vdy — |ClgT, T =
0

—iwrpoH =V X E

OF
—lwppoH, = 3 2 = 0% sinrZ cosm?
Y a a a
OF
—iwppoHy, = — 8; = —Cg cos W% sinw%
H,=0.

Stored energy
W =2W, = 0 /// |E., |2dxdydz = E—OaQQCQ.
2 v 8
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Dissipated power

g a
Pd:#PgdA —%5 V / |H,(y 2dxdz+/() /0 |H,(x = 0)|*dyd=
/ / Ha (2 o>r?+rHy<z:o>Pd:cdy]

2
= T (1427 )
ﬁéwQ,uO 2 ( +

Shunt impedance

Ry — — —
TP m dsa(l +2g/a)
Q-value o
Q- w W g _ 1 volume
Py 0:2(1+2g/a)  d surface’
R-upon-Q)
2
fon _ V2829, 00 g [H0)
QR wW T a €0

wr, @, Ren/Q can be measured. They determine the lumped elements R, L, C in an equivalent circuit.
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