
CERN Yellow Reports: Monographs, CERN-2024-003

Chapter I.5

MAD-X simulation code

Nuria Fuster Martínez

IFIC (CSIC-UV), Valencia, Spain

MAD-X is a general-purpose beam optics code with a long history, aiming to be at the forefront of
computational physics in the field of particle accelerator design and simulations. In this chapter,
the potential and the limitations of the MAD-X code are discussed along with fundamental and
practical steps to get started and fully-fledged examples. The goal of this course is to work on
the understanding of transverse beam dynamics concepts in magnetic lattices through a hands-on
approach, complementing the Transverse Beam Dynamics course.

I.5.1 Introduction

The comprehensive understanding of how charged particles interact with electromagnetic fields, forms

the foundation upon which particle accelerators technology is built. It enables scientists and engineers to

design accelerators meeting specific research and application goals and to predict the behavior of particle

beams in those accelerators with a high degree of accuracy. General-purpose beam optics codes, such

as MAD-X (Methodical Accelerator Design-X) [1], are developed to fulfill these aims. The equation of

motion of charged particles is solved under the effect of the external electromagnetic fields generated by

the different accelerator components. Then, the transport of the beam properties along the accelerator is

performed based on the matrix multiplication formalism and the Lie algebra methods. The explanation of

how the physics are implemented in the MAD-X software is beyond the scope of this document. Further

information on this topic can be found in [2].

MAD-X was first released in June 2002 and it is compatible with Linux, Mac OS X and Windows

operating systems. It is coded in C/C++/Fortran and distributed freely under the CERN copyright [3]. It

is a multipurpose code developed mainly for complex applications and large projects, capable of handel-

ing machines with more than 104 elements (LEP [4], LHC [5], ILC [6], CLIC [7]. . .). It is used from

early to final stages of accelerator design studies. In particular, it is used to: compute the linear optics

functions and beam properties along a defined linear or circular accelerator; design a lattice for obtain-

ing the desired global or local machine properties (matching); simulate accelerator imperfections such

as misalignments and magnetic errors to name a few; design correction schemes; and simulate beam

dynamics of single particle motion.

In summary, MAD-X is a single particle beam dynamics code used to document the accelerator

lattice and compute, simulate and improve its optics and beam parameters. It is worth noting that,

This chapter should be cited as: MAD-X simulation code, N. Fuster Martinez, DOI: 10.23730/CYRSP-2024-003.257, in:
Proceedings of the Joint Universities Accelerator School (JUAS): Courses and tutorials, E. Métral (ed.),
CERN Yellow Reports: School Proceedings, CERN-2024-003, DOI: 10.23730/CYRSP-2024-003, p. 257.
© CERN, 2024. Published by CERN under the Creative Commons Attribution 4.0 license.

257

https://doi.org/10.23730/CYRSP-2024-003.257
https://doi.org/10.23730/CYRSP-2024-003
http://creativecommons.org/licenses/by/4.0/

I.5.2. Getting started with MAD-X

when multi-particle and multi-bunch simulations are required, MAD-X cannot be used, as well as for

simulations requiring non-static machines, i.e., when the beam changes its environment to account for

space charge, instabilities and beam-beam effects. However, often, other simulation programs, able to

study the mentioned effects, use MAD-X inputs to perform their calculations.

In this chapter, we first provide an introduction to the MAD-X computational tool, widely em-

ployed in the design of particle accelerators. Note that a significant part of the capabilities of the code

are either briefly discussed or not covered at all. The reader willing to study in more detail the subject can

find more material on the official MAD-X web page [1]. In this first part, we also outline the fundamental

steps for installation and getting started with the software. Then, in the second part of this chapter, we

present a collection of MAD-X tutorials, aiming to complement the JUAS Transverse Beam Dynamics

course from a practical perspective. The goal of these tutorials is to work on the understanding of trans-

verse beam dynamics concepts in magnetic lattices through a hands-on approach to gain operational and

design experience.

I.5.2 Getting started with MAD-X

MAD-X is an interpreter that accepts and executes statements. The statements defined by the user can

be either actions, such as optics functions and matching calculations or the evaluation of expressions,

or assignments, including machine elements, beam properties, and variable definitions. It is worth-

mentioning, that MAD-X allows regular (a = b, if b changes a does not) and deferred assignments

(a := b, if b changes then a is updated too). The last one becomes crucial when variables are initially

defined and subsequently employed within a matching block, as shown in the tutorials in Section 7.

For the statements, MAD-X has its own scripting language, which has a strong resemblance to the

C-language but does not require the declaration of the variables’ types and is not case-sensitive except

for strings enclosed in double quotes (" "). Many of the features of programming languages such as loops

and macros can be used, as well as basic functions (exponential, logarithmic, trigonometric functions...),

built-in random number generators and predefined constants to be employed in algebraic expressions. It

is important to note, that for MAD-X to run successfully, all the statements defined by the user need to

end with a semicolon. The statements can occupy any number of input lines and several statements may

be placed on the same line.

It is always a good scripting practice to add comments. To do so in MAD-X, you should add

two slashes (//) or an exclamation mark (!) at the beginning of the line. For multiple lines, you should

enclose them with the (/∗) and (∗/) sequence of characters.

The statements defining a simulations should comprise the following three primary blocks:

– Description of the machine: definition of the accelerator element’s physical attributes and their

location in the machine.

– Description of the beam: definition of the beam properties, such as type of particle and energy.

– Actions: definition of the tasks to be executed on a specific machine and particle beam, including

optics calculations, optics matching, and tracking of particles.

When setting up the machine description, you should take into account that MAD-X assumes the

258

CERN Yellow Reports: Monographs, CERN-2024-003

horizontal plane to be the bending plane. The different accelerator components are placed and aligned

along the reference orbit moving along s (x = y = 0 in a curvilinear system), which is the path of a

charged particle having the reference momentum. See Fig. I.5.1 for more details. Due to various errors

like momentum error, misalignment errors, field errors and intentional orbit corrections, the beam orbit,

also known as the closed orbit, does not coincide with the reference orbit. The closed orbit is described

with respect to the reference orbit, using the local reference system (x, y, s), and includes all nonlinear

effects.

Fig. I.5.1: MAD-X reference system [8].

For the physical quantities, MAD-X employs the "Système International" (SI) units, with the

exception of energy, momentum and mass, which are given in GeV, GeV/c and GeV/c2, respectively.

Table I.5.1 gives as reference the names and units in MAD-X of the canonical variables describing the

motion of a particle and the linear optics functions.

I.5.3 MAD-X commands

Commands are a type of statement used for communicating with the MAD-X software. They are charac-

terized by a keyword, which is a protected term specifying the intended action to be executed. The user

can assign a label to a specific command. When this is done, MAD-X retains the command in memory,

allowing it to be used later in the script via the exec control command. Each keyword in MAD-X has

associated specific attributes. These attributes can be in the format of strings, logical values, integers,

expressions, or range selections. Figure I.5.2 illustrates the generic pattern of a MAD-X command.

I.5.3.1 Lattice elements and sequence

To initiate a study with MAD-X, we first need to define the accelerator components and their respective

locations, thereby describing the machine, as illustrated in Fig. I.5.3.

All machine elements must be defined with a command. The label of the command can refer

to one element in the accelerator or to a class of elements. In this case, the keyword defines the type

of element with specific attributes attached to it, defining its physics behavior. The elements can be

259

I.5.3. MAD-X commands

Table I.5.1: Names and units in MAD-X of the canonical variables describing the motion of a particle
and the linear optics functions [8].

Description MAD-X variable Units
Horizontal and vertical position of the (closed) orbit, x, y [m]
referred to the reference orbit, x, y
Horizontal and vertical momentum of the (closed) orbit referred px, py [-]
to the reference orbit, divided by the reference momentum, px,y/p0
Longitudinal position with respect to the reference particle, t = −c∆t t [m]
Energy error, divided by the reference momentum times pt [-]
the velocity of light, pt = ∆E/psc; ps = p0(1 + ∆p/p0)
Arc length, s s [m]
Momentum deviation from the design momentum, ∆p/p0 deltap [-]
Horizontal and vertical β-function, βx,y betx, bety [m]
Horizontal and vertical α-function, αx,y alfx, alfy [-]
Horizontal and vertical phase advance, µx,y mux, muy [2π]
Horizontal and vertical dispersion function, Dx,y dx, dy [m]

Fig. I.5.2: Generic pattern of a MAD-X command.

Fig. I.5.3: Accelerator components and sequence illustration.

magnets, markers, RF cavities and collimators, among others. A comprehensive list of all types of

elements available and their attributes can be found in the MAD-X manual [8].

260

CERN Yellow Reports: Monographs, CERN-2024-003

Among the various attributes of the different elements available in MAD-X, we want to highlight

here the strength of the magnetic elements. This property is a key parameter in the magnetic lattice beam

dynamics design. For a dipole magnet, the bending angle must be specified in units of radians, while for

higher-order magnets, the normalized magnetic strength relative to the beam rigidity, denoted as k, must

be defined. The attribute name for k depends on the type of magnet. The following example illustrates the

implementation of a dipole, a quadrupole, and a sextupole magnet, along with their specified magnetic

strength and length.

mbl: sbend, angle = 0.001, l = 10;

mq: quadrupole, k1 = 0.005, l = 3.3;

msf: sextupole, k2 = 0.0001, l = 1;

Note that in the case of a dipole magnet, a positive bend angle represents a bend to the right,

i.e. towards negative x values. For the quadrupole, a positive normalized quadrupole strength implies

horizontal focusing, irrespective of the charge of the particles. Additionally, octupole magnets are also

available, along with thin lens multiple magnet elements that can be defined of any order.

Once the accelerator elements have been defined, the lattice sequence needs to be constructed. A

lattice sequence is an ordered collection of machine elements with their position defining the accelerator.

The generic block used to define the sequence of an accelerator lattice begins with the keyword sequence

and concludes with endsequence. An illustrative example is provided below.

sequencename: sequence, refer = centre, l = length;

elementname1: elementtype1, at = pos1;

elementname2: elementtype2, at = pos2;

...

endsequence;

In the example above, sequencename is the name given by the user to the sequence, and it com-

prises the defined accelerator elements (elementname1, elementname2) arranged in the desired order

within the sequence. Each element within the sequence is associated with an elementtype correspond-

ing to the previously defined command that specifies the type of element and its associated physical

attributes. Additionally, the position of each element within the sequence must be defined. This posi-

tioning can be indicated with respect to the centre, exit, or entry of the element, as well as relative to

the sequence start or the position of another element within the sequence. Several examples illustrating

how to define the location of elements within a sequence, can be found in the tutorials of Section 7.

Once defined, the sequence needs to be activated in order to be used. In order to do so, the use

command has to be run. This command expands the specific sequence inserting drift spaces between

elements making it active and usable for other operations.

use, sequence = sequencename;

For large machines and, especially when multiple users are studying the same lattice, it is useful

to define the accelerator sequence in a separate ASCII file. This allows each user to execute the defined

sequence for their study using the call command as following: call, file = name;

261

I.5.3. MAD-X commands

I.5.3.2 Beam

Another important block concerns the beam definition. The beam command and the basic physical

attributes to describe the beam (particle type and total beam energy) are the following:

beam, particle = proton, energy = 7000;

More beam attributes can be found in Ref. [8].

Note that many commands in MAD-X require the prior setting of various quantities related to the

beam in the machine. Therefore, MAD-X will stop with a fatal error if an attempt is made to expand a

sequence with the use command for which no beam command has been defined before.

I.5.3.3 Actions

The MAD-X action commands enable us to perform computations on the defined machine for a given

beam. In this course, we introduce how to:

– compute the linear lattice functions using the twiss command,

– perform design and optimization studies using the match command,

– perform beam dynamics studies using the track command.

The twiss command
To compute the linear lattice functions (optical functions and closed orbit) around the machine and

optionally the chromatic functions, the twiss command can be used. Below, two examples are presented

to show how to use it for a periodic (first) and an initial condition (IC) solution (second) lattice:

twiss, sequence = name, centre, file = test.txt, table = name;

twiss, sequence = name, betx = 1, alfx = 0, bety = 1, alfy = 0, centre, file = test.txt, table = name;

By default, the optics functions are calculated at the exit of the accelerator element, however the

user can modify this by adding the position as an attribute to the twiss command. In the examples above

the centre position is chosen. Note that in order to compute the linear optics functions for the IC solution

lattice, the user needs to add as input the linear optics functions at the entrance of the sequence.

The twiss command saves the results of the computation in three outputs: a summary table called

summ (whose output data cannot be selected by the user) printed in the command line or terminal

where the MAD-X executable has been run (see Fig. I.5.4); a table named by default twiss with all the

calculated parameters; and optionally, an ASCII file with the same content as the twiss table. The twiss

table and the ASCII file names can be specified by the user as illustrated in the examples above. In

addition, the twiss ASCII file content can be modified by the user using the select command as follows:

select, flag = twiss, column = name, keyword, s, betx, bety, alfx, alfy, mux, muy;

The user can access and print data from the created tables using the value command. To get the

value of a variable in a table, the attribute to this command should be table and, enclosed in brackets,

the name of the table and the variables you want to print should be specified as follows: value, table

(summ, dq1, dq2);. Once you run the value command, the value of the selected variable is displayed in

the command window. It is also possible to print the value at the location of a given element using the

previous command as following: value, table (twiss, elementname, betx);.

262

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.4: summ table example with the main output data indicated in different colors.

In addition, a graphical output can be produced using the plot command as illustrated below.

plot, haxis = s, vaxis = betx, bety, color = 100, file = fodo;

The above example shows how to plot the horizontal and vertical β-functions as a function of the

longitudinal position s, as well as how to save the resulting figure under the name fodo.

The match command
One of the main applications of general-purpose beam optics codes is to perform matching studies in

order to design and optimize accelerator lattices. With a matching routine, one computes the magnetic

strength required by the magnets in order to get a desired global or local machine property. Global

properties, such as the horizontal and vertical tunes, or the horizontal and vertical chromaticities, are not

functions of the s-position along the accelerator. On the contrary, local properties stand for any MAD-X

variable or any user defined variable that depends on the s-coordinate and can be adjusted locally. The

local matching is usually used to design insertions, or adjust the orbit or the optics locally.

The matching block needs to be started with the match command and ended with the endmatch

command. Inside the matching block the user defines the global or local properties to be matched and

the element’s attributes to vary, as well as the optimization method to be used. Currently, there are four

methods available in MAD-X: lmdif , migrad, simplex and jacobian [8].

Below, we present an example of global matching. The objective of this example is to match the

horizontal (q1) and vertical (q2) tunes of the machine to 26.51 and 26.62, respectively, by changing the

magnetic strengths of the focusing and defocusing quadrupoles, named kqf and kqd, respectively.

match, sequence = name;

global, q1 = 26.51;

global, q2 = 26.62;

vary, name = kqf, step = 0.00001;

vary, name = kqd, step = 0.00001;

lmdif, call = 50, tolerance = 1e-6;

endmatch;

263

I.5.3. MAD-X commands

In the above example, the lmdif minimization method has been used, for which call indicates the

maximum number of iterations in the optimization process and tolerance the tolerance of the penalty

function.

Next, we provide an example of local matching where the objective is to attain a horizontal β-

function of 50 m and an α-function of 2 at the exit of the lattice. As before, these goals are to be met

by adjusting the magnetic strengths of the focusing and defocusing quadrupoles, named kqf and kqd,

respectively.

match, sequence = name;

constraint, range = #e, betx = 50;

constraint, range = #e, alfx = 2;

vary, name = kqf, step = 0.00001;

vary, name = kqd, step = 0.00001;

lmdif, call = 50, tolerance = 1e-6;

endmatch;

The track command
Last, the track command is introduced. This command is used to perform single particle tracking studies

in thin lens lattices. In order to make the lattice compatible with the module, the makethin command

has to be used as makethin, sequence = name; before the track block is executed. This command

substitutes all the magnets by the number of selected thin lenses and drift spaces. In order to select

the number of slices, the select command has to be used before the makethin command as follows:

select, flag = makethin, slice = 5;

If tracking studies with thick elements are of interest, the Polymorphic Tracking Code (PTC)

module can be used [9]. However, the use of this module is beyond the scope of this course.

The tracking block begins with the track command and concludes with the endtrack command.

Within the tracking block, the user must specify the initial coordinates of each particle to be tracked, as

well as the number of turns. Below we provide an example.

track, dump, file = name, deltap = 0.01;

start, x = 1e-3, px = 0, y = 1e-3, py = 0;

start, x = 1e-1, px = 0, y = 1e-1, py = 0;

observe, place = string;

run, turns = 100;

endtrack;

In the example above, the tracking is carried out for two particles. The first particle has, at the

entrance of the machine, a horizontal and vertical amplitude excursion of 1 mm while the second particle,

has a horizontal and vertical amplitude excursion of 100 mm. Both particles have initially a deltap

(momentum difference divided by the reference momentum) of 0.01. The tracking is performed, in this

case, for 100 turns indicated in the last line as an attribute for the run command.

To save the particle’s coordinates turn by turn, the attribute dump must be included in the first

264

CERN Yellow Reports: Monographs, CERN-2024-003

line of the track block. Then, the particle’s trajectory data at the start of the accelerator is saved, both

in a MAD-X table and in an ASCII file for each particle tracked. Additional observable points can be

defined using the observe command before the run command is executed inside the track block. If

this is implemented, additional MAD-X tables and ASCII files are created with the particle’s trajectory

data at the locations specified by the attribute place of the observe command. The output files are

named automatically. The name given by the user (attribute file of the track command) is followed

by .obsnnnn, where nnnn is the observation point number, and also followed by .pnnnn where nnnn

is now the particle number. Hence, the default filename for the first observation point and first particle

looks like file.obs0001.p0001.

Furthermore, the command plot can also be used here to create a graphical output with the tracking

data as follows:

plot, file = tracking, table = track, haxis = x, vaxis = px, colour = 100;

The above example shows how to plot the horizontal phase space coordinates for both particles

and save the figure under the name tracking.

I.5.4 How to run MAD-X

First of all, you need to install the MAD-X software. In order to do that, you need to download the latest

release from the repository and follow the instructions provided in Ref. [1]. After the installation, you

have two options for running MAD-X. You can run it interactively or in batch mode. The first approach

is done by running the MAD-X executable and then typing and running the MAD-X commands one after

the other at the command line. To run in batch mode, the user executes a pre-defined input ASCII file

containing all the MAD-X commands describing the simulation to be performed. Considering the batch

approach, the typical three-steps MAD-X workflow is illustrated in Fig. I.5.5.

Fig. I.5.5: Typical MAD-X workflow.

If you’re running on a Windows machine, the pre-defined input ASCII file is executed after running

the MAD-X executable using the call command, like this: call, file = myfile.txt;. While in Linux or MAC

OS, you need to run on a terminal the MAD-X executable followed by the name of the input ASCII file

as follows: ./madx myfile.madx.

Note, that MAD-X offers actions for basic plotting but lacks a graphical user interface. Because of

that, the post-processing is generally carried out using other programming languages such as Python [10],

Matlab [11], Root [12], or Gnuplot [13].

265

I.5.5. MAD-X Python interface

I.5.5 MAD-X Python interface

Instead of following a pure MAD-X approach, one can use the code through a Python [10] interface.

This approach was adopted for the JUAS MAD-X course since the 2020 edition.

Python is a high-level, interpreted, general-purpose programming language widely used in the

physics community, which provides powerful numerical libraries and plotting routines for the analysis.

You can find several quality Python courses, videos and resources on the internet [14, 15]. A Python

library called Cpymad [16] is being developed and maintained since 2014 and allows us to use the

MAD-X software through Python.

In order to use the Pythonic approach, the essential steps to set up the environment properly are

provided below. To install Python, we recommend using the Anaconda distribution, which can be down-

loaded from here [17]. The installation procedure depends on the operating system. We suggest follow-

ing the official documentation for Windows, Linux, or Mac OS as appropriate. In addition, in order to

run successfully the tutorials presented in Section 7, the following Python packages need to be installed:

Numpy [18], Matplotlib [19], Cpymad [16] and Pandas [20].

Most MAD-X commands have their corresponding method in the Cpymad library. All the avail-

able methods can be found in [16]. However, for the purpose of this course, only a few Cpymad methods

are used. This is done in order to not overload the reader with too many new commands, and to focus

the learning on the MAD-X ones while using Python to visualize and analyze the output data. The

Cpymad library methods used in the solutions presented in Section 7 are the input() method to com-

municate with the active MAD-X process, and the table.tablename.dframe() method to save MAD-X

output data from various tables into a Pandas dataframe. Additionally, during the in-person MAD-X

JUAS course, the call() method is used. This method enables the execution of a pre-defined ASCII file

containing MAD-X commands directly from the Python interface.

In the following, we provide the code snippets required to run MAD-X within a Python interface

i.e., using Jupyter [21].

The first step is to import the Cpymad library:

1 from cpymad.madx import Madx

Secondly, we have to create an instance of the Madx object, which initializes and manages a

MAD-X process in the background. This object allows us to establish communication with the running

process and issue commands to it.

1 myMad = Madx()

Then, we have to define the MAD-X input statements defining our study as Python strings.

1 myString= '''MAD -X statements;'''

Finally, we run the defined strings with the MAD-X commands in the running MAD-X process

using the Cpymad library input method:

1 myMad.input(myString)

If a twiss or track command is executed one can save the resulting output data in a Pandas

dataframe [20]. Pandas is a Python library designed to facilitate data manipulation and visualization

266

CERN Yellow Reports: Monographs, CERN-2024-003

through its powerful data structures. To do this, you can first check the available tables and their corre-

sponding names as follows:

1 print(list(madx.table))
2 ["summ", "twiss","track.obs0001.p0001"]

And then, the Pandas dataframes are built as follows:

1 myMad.table.twiss.dframe ()
2 myMad.table.summ.dframe ()
3 myMad.table[track.obs0001.p0001]. dframe ()

As mentioned earlier, it is also possible to define MAD-X commands in an ASCII file (filename

in the example below) and run this file within the active MAD-X process using the call method, as shown

below.

1 myMad.call(filename)

I.5.6 Tutorials

The JUAS MAD-X workshop is comprised of an introductory lecture on MAD-X and six tutorials.

During each tutorial, the students have dedicated time to work on the proposed questions, receiving

guidance from tutors. At the conclusion of each session, the solutions are discussed. In this section, we

introduce the tutorials while the solutions are presented in Section 7.

I.5.6.1 Tutorial 1: My first accelerator, a FODO cell

The main goal of this tutorial is to learn how to define a simple magnetic lattice and compute the linear

optics functions using MAD-X. For that, we are going to define a FODO lattice, which is the simplest

configuration we can design to get a net focusing effect of the beam in both transverse planes.

Questions:

1. Define a FODO lattice (see Fig. I.5.6) with the following characteristics:

– Length of the cell, Lcell = 100 m,

– Quadrupoles length, Lq = 5 m,

– The first quadrupole is placed at the start of the sequence,

– Quadrupoles focal length, fq = 200 m.

2. Define a proton beam with a total energy, Etot, of 2 GeV. Activate the sequence and compute the

periodic linear optics functions with the twiss MAD-X command. Then, plot the β-functions. If

you found βmax = 463.6 m, you succeeded!

3. Using the β-function plot obtained, can you estimate the phase advance of the FODO cell? How

does this value compare to the tune computed by MAD-X?

4. Try to run the twiss command with Etot = 0.7 GeV. What is the MAD-X error message? And if

you change the focal length to 20 m?

The solutions to the questions of this tutorial are in Section 7.1.

267

I.5.6. Tutorials

Fig. I.5.6: FODO cell illustration with the main parameters depicted.

I.5.6.2 Tutorial 2: My first matching

The main goal of this tutorial is to study the behavior of the linear optics functions when varying the

FODO cell magnetic properties. To do so, we use the linear thin lens optics solution and the twiss

MAD-X module. The results of the two approaches are compared and discussed.

By considering the periodic solution of the equation of motion for a symmetric FODO cell, and

applying the thin lens approximation and the stability conditions, we can derive the following relation-

ships between the optical parameters ∆µ, βmax and βmin and the magnets and cell specifications K, Lq

and Lcell:

∆µ

π
=

2arcsin(
KLcellLq

4)

π
, (I.5.1)

βmin

Lcell
=

−KLcellLq

4 + 1

sin(2 arcsin(
KLcellLq

4))
, (I.5.2)

βmax

Lcell
=

KLcellLq

4 + 1

sin(2 arcsin(
KLcellLq

4))
, (I.5.3)

where ∆µ is the phase advance, βmin and βmax correspond to the minimum and maximum β-functions,

respectively, K is the strength of both quadrupoles, Lq is the length of the quadrupoles and Lcell is the

total length of the FODO cell. Figure I.5.7 shows the thin lens approximation phase advance and extreme

β-functions for a FODO cell as a function of K, Lcell and Lq, computed using Eqs.(I.5.1), (I.5.2) and

(I.5.3).

Questions:

1. Using the thin lens approximation solution from Fig. I.5.7 (left) compute the required strength to

power the quadrupoles to obtain a ∆µ of approximately 90◦ in the FODO cell. Then, power the

quadrupoles of the FODO cell from Tutorial 1, with the computed strength values and compute

the linear optics functions with MAD-X. What is the phase advance computed by MAD-X?

2. What is the βmax computed by MAD-X? Compare the obtained values with the thin lens approxi-

mation solution from Fig. I.5.7 (right).

3. Reduce by half the focusing strength of the quadrupoles. What is the effect on the βmax, βmin and

268

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.7: Symmetric FODO cell thin lens approximation solution phase advance (left) and extreme
β-functions (right) as a function of K, Lq and Lcell.

∆µ? Compare the obtained values with the values from Fig. I.5.7.

4. Compute the maximum beam size σx,y assuming a normalized emittance, ϵx,yn , of 3 mrad·mm and

a total beam energy of Etot = 7 TeV. Use the relation between the beam size and the β-function:

σx,y =

√
βx,yϵ

x,y
n

γ
, (I.5.4)

where γ is the relativistic factor.

The solutions to the questions of this tutorial are in Section 7.2.

I.5.6.3 Tutorial 3: Building a circular machine

The main goal of this tutorial is to install dipole magnets in the FODO cell designed in question 1

Tutorial 2 to build a circular machine, as well as to study the impact of the dipole magnets on the linear

optics functions. In addition, the MAD-X matching module is used to adjust the quadrupoles’ strength

to achieve a desired tune of the machine. The tune, defined as the phase advance normalized by 2π, is a

crucial parameter in the design of a circular machine for getting the desired beam quality and stability.

Questions:

1. Consider the FODO cell designed in question 1 Tutorial 2 and add 4 sector dipoles of 15 m length,

Ld, assuming a drift space between the magnets as illustrated in Fig. I.5.8. For computing the

required bending angle, consider a ring with 736 dipoles with equal bending angles.

2. Using the twiss command compute the linear optics functions. Do the dipoles (weak focusing)

affect the maximum and minimum β-functions? What about the dispersion?

3. From the phase advance of the FODO cell compute the horizontal and vertical tunes of the ma-

chine.

4. Using the match command on a single FODO cell, match the tunes of the machine to 46.0 in both

planes.

5. If we change the beam energy to 7 TeV, what are the new tunes of the machine? Why?

269

I.5.6. Tutorials

Fig. I.5.8: FODO cell scheme with 4 sector dipoles.

6. What is the maximum tune that you can reach with such lattice? Hint: what is the maximum phase

advance per FODO cell in the thin lens approximation?

The solutions to the questions of this tutorial are in Section 7.3.

I.5.6.4 Tutorial 4: Natural chromaticity

The main objective of this tutorial is to study the impact of the natural chromaticity of a FODO cell on

the particle beam dynamics by means of particle tracking studies. Figure I.5.9 illustrates the concept

of chromaticity in a quadrupole magnet. Orange and blue lines correspond to off-momentum particles

and the green line represents an on-momentum particle. In this illustration, we observe a spread in

the focusing effect of the quadrupole, which is caused by the energy spread of the beam, known as

chromaticity.

Fig. I.5.9: Concept of chromaticity illustration.

For this tutorial, the thin lens version of the lattice designed in Tutorial 3 is used as starting point

together with a 7 TeV total energy proton beam. Note that the track module only works with thin lens

lattices. To do the proper conversion of the lattice, the makethin command is used. Additionally, after

running the makethin command, it is necessary to perform a rematch of the lattice to ensure that the

horizontal and vertical tunes of the FODO cell remain at 0.25.

Questions:

1. Using the chromaticities computed using the twiss command, compute the tunes for off-

270

CERN Yellow Reports: Monographs, CERN-2024-003

momentum particles with ∆p/p= 10−3, using the following equation:

∆Q = dq × ∆p

p
. (I.5.5)

2. Track two particles, one with initial coordinates of (x, y, px, py) = (1 mm, 1 mm, 0, 0) (particle1)

and another one with initial coordinates of (x, y, px, py) = (100 mm, 100 mm, 0, 0) (particle2) for

100 turns. Plot the horizontal and vertical phase space coordinates, x−px and y−py, respectively.

How do the particles move in the phase space turn after turn? Do you see the tunes? Do you see

any difference between the two particles? It may help to look only at the first 4 turns to get a clear

picture.

3. Repeat the tracking exercise, but now for two off-momentum particles by adding a ∆p/p = 10−2

to the initial particles’ conditions. How does the phase space look now? Is the tune still the same?

The solutions to the questions of this tutorial are in Section 7.4.

I.5.6.5 Tutorial 5: Non-linearities

The main objective of this tutorial is to install sextupole magnets in the FODO cell from Tutorial 4 to

correct for the natural chromaticity as well as to study the impact of the sextupole magnets on the beam

dynamics of the particles.

Fig. I.5.10: Chromaticity correction with sextupole magnets concept illustration.

Questions:

1. Install two 0.5 m long sextupole magnets attached to the two quadrupoles. Then, with a MAD -

X matching block adjust the vertical and the horizontal chromaticity of the FODO cell (global

parameters: dq1 and dq2) to zero, by powering the two sextupoles (k21 and k22).

2. Using the strength of the sextupoles, k21 and k22 and the linear optics functions (β-function and

dispersion) at the sextupoles’ location, evaluate the sextupoles’ contribution to the chromaticity on

the horizontal plane using the following equation:

ζx =
1

4π
(βx,s1k21Dx,s1 + βx,s2k22Dx,s2). (I.5.6)

Then, compare the obtained value with the chromaticity value obtained in Tutorial 4.

271

I.5.6. Tutorials

Fig. I.5.11: FODO lattice with dipole and sextupole magnets.

3. Track two particles, one with initial coordinates of (x, y, px, py) = (1 mm, 1 mm, 0, 0) (particle1)

and another one with initial coordinates of (x, y, px, py) = (100 mm, 100 mm, 0, 0) (particle2),

both with ∆p/p = 10−2, for 100 turns. Plot the horizontal and vertical phase space coordinates,

x − px and y − py, respectively. Do you see the tunes? Did you manage to recover the original

tunes for the off-momentum particles? What is going on?

4. Move the tunes to (0.23, 0.23) and repeat the tracking exercise described in question 3. Are the

particles stable?

The solutions to the questions of this tutorial are in Section 7.5.

I.5.6.6 Tutorial 6: Building a transfer line

The main objective of this tutorial is to design a transfer line and match the linear optics functions at the

end of the line to some desired values. Matching studies for different initial conditions are performed

and the results are discussed.

Questions:

1. Build a transfer line for a 2 GeV proton beam of 10 m total length, Ltot, with 4 quadrupoles of

0.4 m length, Lq, and 0.1 m−1 of magnetic strength. Place the quadrupoles centered at 2, 4, 6 and

8 m. What is the error message that you get if you try to find a periodic solution? Why?

Fig. I.5.12: Transfer line with four focusing quadrupoles scheme.

2. Calculate the linear optics functions for the transfer line assuming (βx, αx, βy, αy) = (1 m, 0, 2 m,

0) at the start of it. What are the linear optics functions (βend1
x , αend1

x , βend1
y , αend1

y) at the end of

the transfer line?

272

CERN Yellow Reports: Monographs, CERN-2024-003

3. Starting from (βx, αx, βy, αy) = (1 m, 0, 2 m, 0), match the transfer line to get the following optics

(βend2
x , αend2

x , βend2
y , αend2

y)= (2 m, 0, 1 m, 0) at the end.

4. Now, starting from (βx, αx, βy, αy) = (1 m, 0, 2 m, 0), and using the quadrupoles’ strength

computed in question 3, match the transfer line to get the (βend1
x , αend1

x , βend1
y , αend1

y) obtained in

question 2. Can you find back the initial quadrupoles’ strength from question 1 of 0.1 m−2?

5. Consider that the quadrupoles have an excitation current factor of 10 A·m2, an excitation magnetic

factor of 2 T/(m·A) and an aperture of 40 mm diameter. Compute the magnetic fields at the poles

of the quadrupoles for the two matching solutions obtained in question 2 and 4, assuming a linear

regime and using a dimensional approach.

The solutions to the questions of this tutorial are in Section 7.6.

I.5.7 Solutions

In this section, the solutions to the tutorials proposed in Section 6, implemented using Python as the

programming language, are presented. To execute the code snippets provided, you should use Python or

a Python interface like Jupyter [21]. If you prefer to use a pure MAD-X approach, you need to create an

input ASCII file containing the MAD-X statements defined as strings alongside this section and follow

the instructions detailed in Section 4 to run it in MAD-X.

To run all the tutorials presented in this section using the Python approach, you should start by

loading the relevant Python libraries and instantiating the MAD-X process. Here are the code lines that

show how to do this:

1 # Loading the libraries of interest
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import pandas as pd
5 from cpymad.madx import Madx
6 # Initialization of the MAD -X process
7 myMad = Madx()

Please ensure that you execute the code lines defined above for all the tutorials before proceeding

with the solutions presented along this section. Bare in mind that if the MAD-X process stops due to an

error, you need to initialize the MAD-X process again.

I.5.7.1 Tutorial 1: My first accelerator, a FODO cell

Question 1. The string containing the MAD-X statements and commands required to define the FODO

cell parameters, magnets, and sequence is presented below.

1 myString= '''
2 !**
3 !Definition of the main parameters **
4 !**
5 l_cell = 100;
6 quadrupolelength = 5;
7 f = 200;

273

I.5.7. Solutions

8 myk := 1/f/quadrupolelength;
9 !**

10 !Definition of the magnets **
11 !**
12 qf: quadrupole , l = quadrupolelength , k1 := myk;
13 qd: quadrupole , l = quadrupolelength , k1 := -myk;
14 !**
15 !Definition of the sequence **
16 !**
17 myCell: sequence , refer = entry , l = l_cell;
18 quadrupole1: qf, at = 0;
19 marker1: marker , at = 25;
20 quadrupole2: qd, at = 50;
21 marker2: marker , at = 75;
22 endsequence;'''

Then, the input method from the Python library Cpymad needs to be used to run the predefined

string with the FODO cell set-up, within the background MAD-X process, as illustrated below:

1 myMad.input(myString)

If MAD-X does not produce any error as output, it indicates that the input statements have been

defined correctly, and there are no syntax or logical errors in the defined list of commands. This means

that MAD-X has successfully processed the input statements, and you can proceed with further actions.

Question 2. A similar procedure must be followed to establish the beam parameters and activate the

sequence using the following code lines:

1 myString='''
2 !**
3 !Definition of the beam **
4 !**
5 beam , particle = proton , energy = 2;
6 !**
7 !Activation of the sequence **
8 !**
9 use , sequence = myCell;'''

10 myMad.input(myString)

Then, to calculate the linear optics functions, the following commands need to be run:

1 myString='''
2 !**
3 !MAD -X Actions **
4 !**
5 select , flag = twiss , column = ["name", "keyword", "betx", "bety "];
6 twiss , file = MyfirstFODO.madx;'''
7 myMad.input(myString)

After running the twiss command, the linear optics functions of the FODO lattice are calculated.

Two tables (by default, summ and twiss) containing the output data are generated. If the computation is

done satisfactory, the summary output table, shown in Fig. I.5.13 with the parameters defined in Fig. I.5.4,

should be displayed in the command window.

274

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.13: Tutorial 1 MAD-X summary table.

In order to visualize the data from the summ table, an example is given below using both, the

MAD-X (with the value command) and the Pythonic approach (with the Cpymad library method

myMad.table.[tablename].dframe()). In this example, the horizontal tune and the maximum hori-

zontal β-function are printed.

1 # MAD -X approach:
2 myString='''
3 value , table(summ , q1);
4 value , table(summ , betymax);'''
5 myMad.input(myString);
6 # Output
7 # table (summ q1) = 0.03853349451;
8 # table (summ betymax) = 463.6232883;
9 # Pythonic approach

10 # First , the names of the tables generated can be printed using the code below
11 print(list(myMad.table))
12 # Output
13 # ["summ", "twiss"]

275

I.5.7. Solutions

14 # Then , the Pandas dataframes can be created and the data desired selected
15 myDF = myMad.table.summ.dframe ()
16 myDF["q1"]
17 myDF["betymax"]
18 # Output
19 # 0.038533;
20 # 463.62;

If you found that the βmax is 463.6 m, you succeeded!

The data from the twiss table can be stored in a Pandas dataframe (named below as myDFAll),

and the desired columns can be selected and printed in a different table (named below as myDF and

shown in Fig. I.5.14) as follows:

1 myDFAll = myMad.table.twiss.dframe ()
2 myDF = myDFAll [["name", "keyword", "s", "betx", "bety", "alfx", "alfy",
3 "mux", "muy", "dx", "dy", "x", "y"]]
4 myDF

Fig. I.5.14: twiss output table printed as a Pandas dataframe table.

Next, you can plot the β-functions and the horizontal dispersion as functions of the position s, us-

ing either the matplotlib library and your own script or using the source code provided in Appendix 1.A.

In order to use the function in Appendix 1.A you need to save the script given as a Python script and run

it as follows:

1 import sys
2 sys.path.append('path to the location where the script is saved')
3 import 'name of the script ' as lib
4 lib.plot_layout(myDFAll)

Note that the plot_layout function needs as input the linear optics functions and the strength of

the magnets in order to run successfully. This function is employed all along this section to plot the linear

optics functions.

In Fig. I.5.15, the horizontal β-function (in blue), the vertical β-function (in red), and the horizon-

tal dispersion Dx (in green) are displayed as a function of the position s, along with an overview of the

276

CERN Yellow Reports: Monographs, CERN-2024-003

lattice layout in the top figure, including the strength of the magnets.

Fig. I.5.15: Horizontal (blue) and vertical (red) β-functions and horizontal dispersion (green) as a func-
tion of the position s along with an overview of the lattice layout in the top figure including the strength
of the magnets. Note that for an ideal lattice without errors and no dipoles, no dispersion is expected.

Question 3. Now, using Fig. I.5.15, we can estimate the horizontal and vertical phase advance of the

FODO cell and compare them with the values obtained by MAD-X. Regarding the phase advance, de-

noted as µx,y, we can consider the following definition:

µx,y =

∫
1

βx,y(s)
ds. (I.5.7)

A straightforward approximation can be made by assuming a constant β-function and calculating

the mean β-function value in the FODO cell. It is worth noting, that the phase advance in MAD-X is

provided in units of 2π. Taking all of these considerations, the resulting horizontal phase advance using

Eq. (I.5.7) is:

1 (1/((np.max(myDF["betx"])+np.min(myDF["betx"]))/2))*100/2/ np.pi
2 # Output
3 # 0.03819401853309916

Note that in the code lines above, the max and min functions of the Numpy Python’s library are used.

Another approach to compute the phase advance, consists in evaluating the integral in Eq. (I.5.7)

using the method trapz from the Python library NumPy. This method performs integration along a

specified axis using the composite trapezoidal rule.

1 np.trapz (1/ myDF["betx"],myDF["s"])/2/np.pi
2 # Output
3 # 0.038571104937361426

277

I.5.7. Solutions

Both calculations can be compared with the MAD-X computed value and printed as follows:

1 myDF.iloc [-1]["mux"]
2 # Output
3 # 0.03853349450910022

As observed, there is a strong agreement up to the third decimal digit for the first approximation

and up to the fourth decimal digit for the second approximation.

Due to the symmetry of the FODO cell under study, the same values obtained for the horizontal

plane are also obtained for the vertical plane.

Question 4. In the following, we rerun the twiss method, but this time for a beam with Etot = 0.7 GeV.

1 myString='''
2 beam , particle = proton , energy = 0.7; '''
3 myMad.input(myString);

When the above string is executed, a MAD-X error is shown in the command window because the

beam energy defined is lower than the proton rest mass and the total energy must be given.

As a consequence of the above error, the MAD-X process running in the background stops. To

proceed with the tutorial, you need to re-instantiate the MAD-X object and run the FODO lattice defined

at the beginning of the tutorial again. Then, you can change the quadrupole focal length to 20 m and

compute the linear optics functions using the following commands:

1 myString='''
2 f = 20;
3 myK := 1 / f / quadrupolelength;
4 beam , particle = proton , energy = 2;
5 use , sequence = myCell;
6 twiss , sequence = myCell;'''
7 myMad.input(myString);

Once again, you encounter an error, this time due to the instability of the cell. In this case, the

twiss module fails to find a periodic stable solution because the quadrupole’s focal length is too short,

and it does not satisfy the stability condition.

I.5.7.2 Tutorial 2: My first matching

Question 1. From Fig. I.5.7 one can determine that, in order to achieve a phase advance of 90◦ in a

FODO cell, the product (KLcelllq) should be approximately 2.8. Using this value, you can calculate the

necessary magnetic strength of the Tutorial 1 FODO cell quadrupole magnets to get a 90◦ phase advance.

The string containing the new machine parameters, beam and actions to be run is presented below.

1 myString='''
2 !**
3 !Definition of the main parameters **
4 !**
5 l_cell = 100;
6 quadrupolelength = 5;
7 myk := 2.8 / l_cell / quadrupolelength;
8 !**

278

CERN Yellow Reports: Monographs, CERN-2024-003

9 !Definition of the magnets **
10 !**
11 qf: quadrupole , l = quadrupolelength , k1 := myk;
12 qd: quadrupole , l = quadrupolelength , k1 := -myk;
13 !**
14 !Definition of the sequence **
15 !**
16 myCell: sequence , refer = entry , l = l_cell;
17 quadrupole1: qf, at = 0;
18 marker1: marker , at = 25;
19 quadrupole2: qd, at = 50;
20 marker2: marker , at = 75;
21 endsequence;
22 !**
23 !Definition of beam **
24 !**
25 beam , particle = proton , energy = 2;
26 !**
27 !Activation of the sequence **
28 !**
29 use , sequence = myCell;
30 !**
31 !Twiss **
32 !**
33 twiss , file=MyfirstFODO.madx;'''
34 myMad.input(myString)

From this point onward, we will exclusively follow the Pythonic approach to analyze the results.

The following code lines show how to retrieve the phase advance values computed by the twiss com-

mand used before.

1 myDFSumm = myMad.table.summ.dframe ()
2 myDFTwiss = myMad.table.twiss.dframe ()
3 myDFTwiss [["name","s","betx","bety","alfx","alfy","mux","muy"]]
4 # Phase advance in radians
5 myDFSumm["q1"]*2*np.pi
6 myDFSumm["q2"]*2*np.pi
7 # Output
8 # 1.485174
9 # 1.485174

10 # Phase advance in degrees
11 myDFSumm["q1"]*2*np.pi*180/np.pi
12 myDFSumm["q2"]*2*np.pi*180/np.pi
13 # Output
14 # 85.094226
15 # 85.094226

The phase advance computed by MAD-X is 85◦ in both planes.

Question 2. Now, to obtain the value of βmax, we can calculate the maximum value from the corre-

sponding column in the β-function twiss table (see Fig. I.5.16) as follows:

279

I.5.7. Solutions

1 myDFTwiss["betx"].max()
2 # Output
3 # 160.60365457633446
4 myDFTwiss["bety"].max()
5 # Output
6 # 160.60365457633446

The βmax from the thin lens approximation from Fig. I.5.7 (right) and for a (KLcelllq) value of 2.8,

is approximately 169.7 m in both planes. The relative variation obtained between the two calculations is

about 5%.

Fig. I.5.16: Tutorial 2 main twiss output data printed as a Pandas dataframe table.

Question 3. Next, we repeat question 2, but this time for a lattice with the quadrupoles’ strength reduced

by half:

1 myString='''
2 myk := 1.4/ l_cell/quadrupolelength;
3 twiss , file = firstTwiss.txt;'''
4 myMad.input(myString);

The tune and the values of the maximum and minimum β-functions can be visualized using the

Pythonic approach as follows:

1 myDFTable_half = myMad.table.twiss.dframe ()
2 myDFTable_half
3 print("horizontal bmax:")
4 display(myDFTable_half["betx"].max())
5 print("vertical bmax:")
6 display(myDFTable_half["bety"].max())
7 print("horizontal bmin:")
8 display(myDFTable_half["betx"].min())
9 print("vertical bmin:")

10 display(myDFTable_half["bety"].min())
11 print("q1:")
12 display(myDFTable_half["mux"].max())

280

CERN Yellow Reports: Monographs, CERN-2024-003

13 print("q2:")
14 display(myDFTable_half["muy"].max())
15 # Output
16 # Horizontal bmax :205.46040125139584
17 # Vertical bmax :205.46040125139584
18 # Horizontal bmin :106.48386027996813
19 # Vertical bmin :106.48386027996813
20 # q1 :0.10979220062366979
21 # q2 :0.10979220062366979

To be compared with the previous values:

1 # Output
2 # Horizontal bmax :160.60365457633446
3 # Vertical bmax :160.60365457633446
4 # Horizontal bmin :34.21749204847468
5 # Vertical bmin :34.21749204847468
6 # q1 :0.23637284979737802
7 # q2 :0.23637284979737802

From this exercise we can conclude that when we reduce the strength of the quadrupoles, effec-

tively focusing less, both the βmax and βmin increase, resulting in larger beam sizes. Conversely, the

tune is reduced. Using the thin lens approximation from Fig. I.5.7 and considering a (KLcelllq) value of

1.4, we obtain a βmax value of 204.2 m. In this case, the relative variation between the thin and thick

lens computations is approximately 0.6%. A closer agreement is observed between the thin and thick

lens calculations compared to the results obtained in question 2. This is attributed to the fact that as we

move towards the left on the horizontal axis of Fig. I.5.7 (resulting in smaller k for fixed Lq and Lcell

values), the condition for the thin lens approximation is better satisfied.

Question 4. Finally, the beam size can be computed using Eq. (I.5.4):

1 emittance_n = 3e-6 # units of m rad
2 beta_gamma = 7000/.938
3 np.sqrt(myDFTwiss["betx"].max()*emittance_n/beta_gamma)
4 # Horizontal
5 # 0.0002540918517774357
6 np.sqrt(myDFTwiss["bety"].max()*emittance_n/beta_gamma)
7 # Vertical
8 # 0.0002540918517774357

I.5.7.3 Tutorial 3: Designing a circular machine

Question 1. In this tutorial, we are adding dipole magnets to the FODO cell designed in question 1 from

Tutorial 2, in order to use it to build a circular machine. To determine the required strength of the dipoles,

we must first calculate the necessary bending angle to achieve a closed circular orbit with the proposed

736 dipoles using the following condition:

2π = Nθ, (I.5.8)

where N is the total number of dipoles and θ the bending angle of each dipole magnet.

281

I.5.7. Solutions

Using Eq. (I.5.8), the needed bending angle in units of radians is:

1 2*np.pi/736
2 # Output
3 # 0.008536936558667916

Below, the string containing the new lattice configuration with the four sector dipoles installed,

the beam parameters, and the actions to be performed is shown.

1 myString='''
2 !***
3 !Definition of parameters **
4 !***
5 l_cell = 100;
6 quadrupolelength = 5;
7 dipolelength = 15;
8 nBend = 736;
9 myAngle = 2*pi / nBend;

10 mykf := 2.8 / l_cell / quadrupolelength ;
11 mykd := 2.8 / l_cell / quadrupolelength ;
12 !***
13 !Definition of magnets **
14 !***
15 qf: quadrupole , l = quadrupolelength , k1 := mykf;
16 qd: quadrupole , l = quadrupolelength , k1 := -mykd;
17 bm: sbend , l = dipolelength , angle := myAngle;
18 !***
19 !Definition of sequence **
20 !***
21 myCell: sequence , refer = entry , l = l_cell;
22 q1: qf, at = 0;
23 b1: bm, at = 5 + quadrupolelength /2, from=q1;
24 b2: bm, at = 5 + dipolelength /2, from=b1;
25 q2: qd, at = l_cell /2;
26 b3: bm, at = 5 + quadrupolelength /2, from = q2;
27 b4: bm, at = 5 + dipolelength /2, from = b3;
28 endsequence;
29 !***
30 !Definition of beam **
31 !***
32 beam , particle = proton , energy = 2;
33 !***
34 !Activation of the sequence **
35 !***
36 use , sequence = myCell;
37 !***
38 !Twiss **
39 !***
40 twiss , file = MyfirstFODOwithDipoles.madx;'''
41 myMad.input(myString)

Note that in this case, when defining the sequence, the position of the FODO lattice elements have

282

CERN Yellow Reports: Monographs, CERN-2024-003

been defined with respect to the previous element in the sequence.

Question 2. Next, we analyze the impact of the dipoles on the linear optics functions. To do so, the data

from the summ and twiss tables, obtained from the first twiss, are stored in two Pandas dataframes

containing the columns of interest, as follows:

1 first_summ_with_dipoles = myMad.table.summ.dframe ()
2 first_twiss_with_dipoles = myMad.table.twiss.dframe ()
3 first_twiss_with_dipoles [["name", "keyword", "s", "x", "y","px","py",
4 "betx", "alfx", "mux", "bety", "alfy", "muy",
5 "dx", "dy", "dpx", "dpy"]]

In Fig. I.5.17, the resulting horizontal (blue) and vertical (red) β-functions, as well as the horizon-

tal dispersion, Dx, as functions of s, are depicted including the machine layout on the top figure with the

magnets’ strength. The plot is generated using the plot_layout function from Appendix 1.A.

Fig. I.5.17: Horizontal (blue) and vertical (red) β-functions and horizontal dispersion, Dx, as a function
of s including the machine layout on the top figure and the strength of the magnets.

Next, we repeat the linear optics calculation but without the dipole magnets by setting the dipoles’

strength to 0. The new data is saved in a new Pandas dataframes.

1 myString='''
2 myAngle = 0;
3 use , sequence = myCell;
4 twiss;'''
5 myMad.input(myString);
6 first_summ_without_dipoles = myMad.table.summ.dframe ()
7 first_twiss_without_dipoles = myMad.table.twiss.dframe ()
8 first_twiss_without_dipoles [["name", "keyword", "s", "x","y",
9 "px","py", "betx", "alfx", "mux",

10 "bety", "alfy", "muy", "dx", "dy", "dpx", "dpy"]]

283

I.5.7. Solutions

Now, we create a Pandas dataframe combining the data from both calculations in order to com-

pare the two scenarios studied. The code lines to perform this task are provided below and Fig. I.5.18

illustrates the resulting output table with the maximum values of the linear optics functions along the

lattice with and without dipoles.

1 comparison = pd.DataFrame ({'With dipoles ':first_twiss_with_dipoles.max(),
2 'Without dipoles ':first_twiss_without_dipoles.max()})
3 comparison.loc[["betx", "alfx", "mux", "bety", "alfy", "muy",
4 "dx","dy","dpx","dpy"]]

Fig. I.5.18: Maximum values of the linear optics functions in the FODO lattice with and without dipoles.
The effect of the dipoles can be observed on the horizontal parameters.

The effect of the dipole magnets on the horizontal and vertical βmax can be quantified by comput-

ing the relative variation between the two cases, using the code lines presented below.

1 betx_rel =(np.max(first_twiss_without_dipoles.betx)-np.max(
first_twiss_with_dipoles.betx))/np.max(first_twiss_without_dipoles.betx)

2 print ("On the horizontal plane [%]")
3 print(betx_rel *100)
4 bety_rel =(np.max(first_twiss_without_dipoles.bety)-np.max(

first_twiss_with_dipoles.bety))/np.max(first_twiss_without_dipoles.bety)
5 print("On the vertical plane [%]")
6 print(bety_rel *100)
7 # Output
8 # Relative variation on the horizontal plane [%]: 0.03495607663009094
9 # Relative variation on the vertical plane [%]: 0.0

From this tutorial we can conclude, that the dipole magnets affect the horizontal linear optics

functions, as well as the closed orbit. They introduce horizontal dispersion in the lattice, causing particles

with different momentum to follow betatron oscillations around a different closed orbit. The small effect

284

CERN Yellow Reports: Monographs, CERN-2024-003

observed on the horizontal β-function is known as weak focusing, and it was used in the first low-energy

circular accelerators to keep the particles confined in them, before the strong focusing concept with

quadrupoles was developed.

Question 3. The horizontal and the vertical tunes of the machine can now be computed using the phase

advance values obtained in the previous question, as follows:

1 Ncells =736/4
2 HorTune=Ncells*first_twiss_with_dipoles["mux"].max()
3 display(HorTune)
4 VerTune=Ncells*first_twiss_with_dipoles["muy"].max()
5 display(VerTune)
6 # Output
7 # Horizontal tune: 43.516126037479125
8 # Vertical tune: 43.49260436271754

Question 4. In the last part of this tutorial, the match module is used in order to adjust the tunes of the

machine to 46.0 in both planes. Given that our machine consists of 184 FODO cells, it is necessary to

adjust the tunes of a single FODO cell to 0.25. The sequence of actions required to accomplish this task

is provided below.

1 # The phase advance of one FODO cell is:
2 Ncells =736/4
3 np.array ([46.0 , 46.0])/Ncells
4 # Output
5 # array ([0.25 , 0.25])
6 myString='''
7 !**
8 !We first switch on the dipole magnets **
9 !**

10 nBend = 736;
11 myAngle = 2*pi / nBend;
12 use , sequence = myCell;
13 !**
14 !Twiss before matching **
15 !**
16 twiss , table = beforematching , file = BeforeMatching.txt;
17 !**
18 !Matching **
19 !**
20 phaseWantedX = 46.0/(736/4);
21 phaseWantedY = 46.0/(736/4);
22 match , sequence = myCell;
23 global , q1 = phaseWantedX ;//H-tune
24 global , q2 = phaseWantedY ;//V-tune
25 vary , name = mykf , step = 0.00001;
26 vary , name = mykd , step = 0.00001;
27 lmdif , calls = 50, tolerance = 1e-6;
28 endmatch;
29 !**
30 !Twiss after matching **
31 !**

285

I.5.7. Solutions

32 twiss ,table = aftermatching , file = AfterMatching.txt;
33 !**
34 !Final tune values **
35 !**
36 value , table(summ ,q1)*(736/4);
37 value , table(summ ,q2)*(736/4);'''
38 myMad.input(myString)

If the matching block runs successfully you should get a matching summary table as the one in Fig. I.5.19.

Fig. I.5.19: Tutorial 3 MAD-X matching summary table.

Again, the summ and twiss tables can be stored as Pandas dataframes as follows:

1 twiss_after_matching = myMad.table["aftermatching"]. dframe ()
2 summary_after_matching =myMad.table["summ"]. dframe ()
3 # To print out the horizontal tune
4 display(summary_after_matching["q1"])
5 # Output: 0.25
6 # To print out the vertical tune
7 display(summary_after_matching["q2"])
8 # Output: 0.25

Question 5. Now, we can explore the impact of changing the beam energy to 7 TeV on the tune. First

we run the twiss calculation for the new beam using the code lines below.

1 myString='''
2 !***
3 !Definition of beam **
4 !***
5 beam , particle = proton , energy = 7000;
6 !***
7 !Twiss **
8 !***
9 twiss , sequence=myCell;'''

10 myMad.input(myString)

286

CERN Yellow Reports: Monographs, CERN-2024-003

11 twiss_after_matching_7TeV = myMad.table['twiss']. dframe ()
12 summary_after_matching_7TeV = myMad.table['summ']. dframe ()

Then, we can display the tunes for each beam energy:

1 # For 2 GeV
2 display(Ncells*twiss_after_matching["mux"].max())
3 display(Ncells*twiss_after_matching["muy"].max())
4 # Output
5 # 46.00002265137154
6 # 46.000022660881534
7 # For 7 TeV
8 display(Ncells*twiss_after_matching_7TeV["mux"].max())
9 display(Ncells*twiss_after_matching_7TeV["muy"].max())

10 # Output
11 # 46.00002265137154
12 # 46.000022660881534

As illustrated in this tutorial, the tunes obtained are the same for the two beam energies. This is

because in MAD-X the strength of the quadrupoles, k, is normalized to the beam rigidity and therefore

the beam energy change has no impact on the β-functions and on the phase advance. However, be careful

with the definition of the chromaticity (dq1 and dq2) and all the momentum derivative quantities in MAD-

X, which are derivatives with respect to the longitudinal variable PT . Since PT ≈ βrel × ∆p/p0 (see

derivation in chapter 39 of Ref. [8]), where βrel is the relativistic Lorentz factor, those functions given

by MAD-X must be multiplied by βrel a number of times equal to the order of the derivative, to find the

functions given in the literature. See below the chromaticity for the two cases studied:

1 # For 2 GeV
2 display(summary_after_matching.iloc [0][["dq1","dq2"]])
3 # Output
4 # dq1 -0.359777
5 # dq2 -0.360008
6 # For 7 TeV
7 display(summary_after_matching_7TeV.iloc [0][["dq1","dq2"]])
8 # Output
9 # dq1 -0.317728

10 # dq2 -0.317932

Question 6. Finally, we can compute the maximum achievable tune in units of 2π of the full machine,

taking into account the fact that the maximum phase advance for a FODO cell is 180 degrees (see

Fig. I.5.7 left):

1 Ncells *.5
2 # Output
3 # 92.0

I.5.7.4 Tutorial 4: Natural chromaticity

The goal of this tutorial is to investigate the impact of the natural chromaticity of the FODO cell designed

in Tutorial 3 for a 7 TeV proton beams by means of tracking studies. Note that in order to run the

287

I.5.7. Solutions

track command, a thin lens lattice must be provided. To create a thin version of the lattice designed in

Tutorial 3, the elements in the sequence must be centered (the reference location must be the position

corresponding to the middle of the element) and the makethin command must be used. In order to keep

the horizontal and vertical tunes to 0.25, the matching block must be run again for the thin lens lattice

created after the makethin command is executed.

Below, the string with all the MAD-X statements defining the lattice, the beam and the actions

described in the previous paragraph, is given.

1 myString='''
2 !***
3 !Definition of parameters **
4 !***
5 l_cell = 100;
6 quadrupolelength = 5;
7 dipoleLength = 15;
8 nBend = 736;
9 myAngle = 2*pi / nBend;

10 mykf = 2.8 / l_cell /quadrupolelength;
11 mykd = 2.8 / l_cell /quadrupolelength;
12 !***
13 !Definition of magnets **
14 !***
15 qf: quadrupole , l = quadrupolelength , k1 := mykf;
16 qd: quadrupole , l = quadrupolelength , k1 := -mykd;
17 bm: sbend , l = dipolelength , angle := myAngle;
18 !***
19 !Definition of sequence **
20 !***
21 myCell: sequence , refer = centre , l = l_cell;
22 q1: qf, at = 0 + quadrupolelength /2;
23 b1: bm, at = 5 + quadrupolelength /2 + dipolelength /2, from = q1;
24 b2: bm, at = 5 + dipolelength /2 + dipolelength /2, from = b1;
25 q2: qd, at = l_cell /2 + quadrupolelength /2;
26 b3: bm, at = 5 + quadrupolelength /2 + dipolelength /2, from = q2;
27 b4: bm, at = 5 + dipolelength /2 + dipolelength /2, from = b3;
28 endsequence;
29 !***
30 !Definition of beam **
31 !***
32 beam , particle = proton , energy = 7000;
33 !***
34 !Activation of the sequence **
35 !***
36 use , sequence = myCell;
37 !***
38 !Twiss **
39 !***
40 twiss , file = MyfirstFODOwithDipoles.txt;
41 !***
42 !Makethin **

288

CERN Yellow Reports: Monographs, CERN-2024-003

43 !***
44 select , flag = makethin , slice = 5;
45 makethin , sequence = myCell;
46 use , sequence = myCell;
47 !***
48 !Twiss before matching **
49 !***
50 twiss , table = beforematching , file = BeforeMatching.txt;
51 !***
52 !Matching **
53 !***
54 match , sequence = myCell;
55 global , q1 = 0.25;
56 global , q2 = 0.25;
57 vary , name = mykf , step = 0.00001;
58 vary , name = mykd , step = 0.00001;
59 lmdif , calls = 50, tolerance = 1e-6;
60 endmatch;
61 !***
62 !Twiss after matching **
63 !***
64 twiss , file = AfterMatching.txt;
65 !***
66 !Final tune values **
67 !***
68 value , table(summ ,q1)*(nBend /4);
69 value , table(summ ,q2)*(nBend /4);
70 value , table(summ ,dq1);
71 value , table(summ ,dq2);
72 '''
73 myMad.input(myString)

Question 1. Now, using the chromaticity value, dq, obtained, the variation on the tune, ∆Q, for an

off-momentum particle with ∆p/p = 10−3 can be computed using Eq. (I.5.5). Remember that the

momentum derivative functions in MAD-X are normalized by βrel. However for this case, we could

assume an ultra-relativistic beam and therefore βrel = 1.

1 # Cpymad method in order to get the relativistic factor
2 beta_rel = myMad.sequence["mycell"].beam.beta
3 print (beta_rel)
4 # Output
5 # 0.9999999910167906
6 # Horizontal tune of the machine
7 tune_onmomentum = myMad.table["summ"].q1[0]
8 print ("On-momentum tune")
9 print(tune_onmomentum)

10 # Variation on the tune for the off -momentum particle using Eq.1.5
11 tune_onmomentum*beta_rel *1e-3
12 # -0.0003177280054266581
13 # Horizontal tune for the off -momentum particle
14 tune_offmomentum = myMad.table["summ"].q1 [0] -0.00031

289

I.5.7. Solutions

15 print("Off -momentum tune")
16 print(tune_offmomentum)
17 # Output
18 # Horizontal on-momentum tune: 0.25000012325703125
19 # Horizontal off -momentum tune: 0.24969012325703124

A similar result is obtained in the vertical plane by changing q1 by q2 in the above code lines.

Question 2. The impact of the detuning effect computed in question 1 on the beam dynamics of two par-

ticles with different initial conditions is illustrated in this exercise by means of tracking studies using the

track command. Two particles, particle1 and particle2, with initial horizontal and vertical amplitudes

of 1 and 100 mm, respectively, are tracked along the lattice using the code lines presented below.

1 myString='''
2 !**
3 !Tracking **
4 !**
5 track ,dump ,file=linear_machine , deltap = 0;
6 start , x = 1e-3, px = 0, y = 1e-3, py = 0;
7 start , x = 1e-1, px = 0, y = 1e-1, py = 0;
8 run , turns = 100;
9 endtrack;

10 value , table(summ , q1);
11 value , table(summ , q2);'''
12 myMad.input(myString);

If the tracking module runs successfully you should get a summary table like the one in Fig. I.5.20.

Fig. I.5.20: Tutorial 4 MAD-X tracking summary table.

When activating the option dump on the track module, new tables are generated by MAD-X with

the tracking results for each particle at each observable point. If no observable points are defined in the

sequence, only the trajectory data at the start of the lattice is stored. One can check the names of the

290

CERN Yellow Reports: Monographs, CERN-2024-003

output tables using the following command:

1 print(list(myMad.table))
2 # Output
3 # ['summ ', 'twiss ', 'beforematching ', 'aftermatching ', 'mytracksumm ',
4 'tracksumm ', 'track.obs0001.p0001 ', 'track.obs0001.p0002 ']

Then, the tracking output data can be saved into Pandas dataframes as:

1 particle1 = myMad.table["track.obs0001.p0001"]. dframe ()
2 particle2 = myMad.table["track.obs0001.p0002"]. dframe ()

We can now plot the phase space of the particles at the entrance of the FODO cell using the data

from the created Pandas dataframes particle1 and particle2. In order to see clearly what happens, the

pair of coordinates x− px is plotted for the first 5 turns using the code lines below.

1 plt.rcParams["figure.dpi"] = 100
2 turn0=particle1[particle1["turn"] == 0]
3 turn1=particle1[particle1["turn"] == 1]
4 turn2=particle1[particle1["turn"] == 2]
5 turn3=particle1[particle1["turn"] == 3]
6 turn4=particle1[particle1["turn"] == 4]
7 turn5=particle1[particle1["turn"] == 5]
8 plt.plot(turn0["x"]*1e3 ,turn0["px"],'xb',markersize =12, label='turn0')
9 plt.plot(turn1["x"]*1e3 ,turn1["px"],'xr',markersize =12, label='turn1')

10 plt.plot(turn2["x"]*1e3 ,turn2["px"],'xg',markersize =12, label='turn2')
11 plt.plot(turn3["x"]*1e3 ,turn3["px"],'xy',markersize =12, label='turn3')
12 plt.plot(turn4["x"]*1e3 ,turn4["px"],'ob',label='turn4')
13 plt.plot(turn5["x"]*1e3 ,turn5["px"],'or',label='turn5')
14 plt.xlabel('x [mm]')
15 plt.ylabel('px [-]')
16 plt.legend(loc='best')

In order to visualize the results for particle2 you need to change particle1 by particle2 in the

above code lines. For the vertical phase space you need to take the corresponding data y from the

Pandas dataframes.

In Fig. I.5.21, the horizontal phase space coordinates are shown for particle1 (left) and particle2

(right). The solution of the Hill’s equation represents a particle tracing out on an ellipse in the phase

space. For a periodic lattice and at a given location, the linear optics functions return to the same value

every turn. However, the particle phase space coordinates x − px and y − py do not. They undergo a

shift every turn to different parts of the ellipse. The tune is the number of "phase advance oscillation" a

particle undergoes in one turn (number of times around the ellipse), the integer part representing com-

pleted oscillations and the fractional part indicating the phase ellipse displacement after one turn. In this

example, being the tune 0.25, the particles move one quarter of the ellipse each turn and this explains

why the phase space coordinates of the tracked particles repeat every 4 turns as seen in Fig. I.5.21. A

similar phase space is found for both particles but with different amplitudes and momenta.

In Fig. I.5.22, the vertical phase space coordinates are shown for particle1 (left) and particle2

(right) for completeness. In the vertical plane, the same behavior as in the horizontal plane is observed.

291

I.5.7. Solutions

Fig. I.5.21: Horizontal phase space coordinates for particle1 (left) and particle2 (right) for the first 5
turns of the tracking.

Fig. I.5.22: Vertical phase space coordinates for particle1 (left) and particle2 (right) for the first 5 turns
of the tracking.

In Fig. I.5.23 (left), the horizontal amplitude versus the turn number is depicted for each particle.

It is worth mentioning here that with the turn-by-turn amplitude data, the tunes of the machine can be

computed by making a Fast Fourier Transform (FFT) analysis. In Fig. I.5.23 (right), the FFT amplitude

of the turn-by-turn data is shown for particle1 and particle2, in blue and red, respectively. In this

example, the tune of the machine is 0.25, value at which we observe the FFT peak amplitude. The

Python code lines needed to reproduce the plots in Fig. I.5.23 are given below. A similar plot can be

obtained for the vertical plane.

1 # Code lines to plot the particles ' amplitude versus the s position
2 plt.plot(particle1['turn'],particle1['x'],'.-b', label='Particle 1')
3 plt.plot(particle2['turn'],particle2['x'],'.-r', label='Particle 2')
4 plt.xlabel('Turn')
5 plt.ylabel('x [m]');
6 plt.legend(loc='best');
7 # For the FFT plot

292

CERN Yellow Reports: Monographs, CERN-2024-003

8 FFTamp1=np.abs(np.fft.fft(particle1['x']))
9 FFTamp2=np.abs(np.fft.fft(particle2['x']))

10 plt.figure ()
11 plt.plot(np.linspace (0,1,len(particle1['x'])), FFTamp1 , 'b', label='Particle 1')
12 plt.plot(np.linspace (0,1,len(particle2['x'])), FFTamp2 , 'r', label='Particle 2')
13 plt.xlabel('Q1 from X')
14 plt.ylabel('FFT amplitude [arb. units]');
15 plt.xlim (0 ,0.5)
16 plt.legend(loc='best');
17 # The maximum possible frequency for a given sampling rate that can be
18 # reconstructed is given by the Nyquist limit = sampling frecuency /2.
19 # In our case the sampling rate is 1, so the limit is 0.5.

Fig. I.5.23: Horizontal amplitude versus the turn number for particle1 in blue and particle2 in red
(left). FFT amplitude of the turn-by-turn horizontal amplitude data for particle1 in blue and particle2
in red (right).

Question 3. Now we can repeat the tracking exercise, this time for off-momentum particles, by adding

the attribute deltap = 0.01 in the track module.

1 myString='''
2 !**
3 !Tracking **
4 !**
5 track , dump , file=linear_machine_off_energy , deltap = 1e-2;
6 start , x = 1e-3, px = 0, y = 1e-3, py = 0;
7 start , x = 1e-1, px = 0, y = 1e-1, py = 0;
8 run , turns = 100;
9 endtrack;'''

10 myMad.input(myString);
11 # Saving the data of each particle in a Pandas dataframe
12 off_momentum_particle1 = myMad.table['track.obs0001.p0001 ']. dframe ()
13 off_momentum_particle2 = myMad.table['track.obs0001.p0002 ']. dframe ()
14 # Horizontal phase space plot
15 plt.rcParams["figure.dpi"] = 100
16 plt.plot(off_momentum_particle1["x"],off_momentum_particle1["px"],'ob',label = "

X-phase space")
17 plt.plot(off_momentum_particle1["y"],off_momentum_particle1["py"],'.r',label = "

293

I.5.7. Solutions

Y-phase space")
18 plt.xlabel("x [m]")
19 plt.ylabel("px")
20 plt.legend(loc="best")

The horizontal (blue) and the vertical (red) phase space coordinates are shown for particle1 (left)

and particle2 (right) in Fig. I.5.24.

Fig. I.5.24: Horizontal and vertical phase space coordinates for particle1 (left) and particle2 (right).

As can be seen in Fig. I.5.24, for off-momentum particles, the tune is affected by the natural

chromaticity of the FODO cell and it is no longer 0.25. The phase space coordinates of the particles do

not repeat now every 4 turns, as it was observed in Fig. I.5.21, but their motion remains stable, and the

phase space coordinates describe an ellipse. In this example, the observed chromaticity effect is small,

however in machines with stronger quadrupoles, the impact on the beam dynamics could be greater, and

the tune spread can lead to unstable motion due to resonances. Because of that, correction schemes are

necessary such as the one to be designed in Tutorial 5.

I.5.7.5 Tutorial 5: Non-linearities

Question 1. The goal of this tutorial is to design a chromaticity correction scheme for the FODO cell of

Tutorial 4 by using sextupole magnets. Then, by means of tracking studies, the impact of the sextupoles

on the particles’ beam dynamics is studied.

A pair of sextupole magnets can be used to compensate for the natural chromaticity of a FODO

cell. The string below defines the new lattice, in which the two sextupoles have been installed next to the

two quadrupoles, along with the beam and the actions to be performed.

1 myString='''
2 !***
3 !Definition of parameters **
4 !***
5 l_cell = 100;
6 quadrupolelength = 5;
7 dipolelength = 15;
8 ls = 0.5;

294

CERN Yellow Reports: Monographs, CERN-2024-003

9 nBend = 736;
10 myAngle = 2*pi / nBend;
11 mykf := 2.8 / l_cell / quadrupolelength;
12 mykd := 2.8 / l_cell / quadrupolelength;
13 k2f := 0.0;
14 k2d := -k2f;
15 !***
16 !Definition of magnets **
17 !***
18 qf: quadrupole , l = quadrupolelength , k1 := mykf;
19 qd: quadrupole , l = quadrupolelength , k1 := -mykd;
20 bm: sbend , l = dipolelength , angle := myAngle;
21 sf: sextupole , l = ls, k2 := k2f;
22 sd: sextupole , l = ls, k2 := k2d;
23 !***
24 !Definition of the sequence **
25 !***
26 myCell: sequence , refer = centre , l = l_cell;
27 qf: qf, at = 0 + qf->l/2;
28 s1 : sf, at = 5 + sf ->l/2;
29 b1: bm, at = 10 + bm ->l/2;
30 b2: bm, at = 30 + bm ->l/2;
31 qd: qd, at = 50 + qd ->l/2;
32 s2 : sd, at = 55 + sd ->l/2;
33 b3: bm, at = 60 + bm ->l/2;
34 b4: bm, at = 80 + bm ->l/2;
35 endsequence;
36 !***
37 !Definition of beam **
38 !***
39 beam , particle = proton , energy = 7000;
40 !***
41 !Activation of the sequence **
42 !***
43 use , sequence = myCell;
44 !***
45 !Twiss **
46 !***
47 twiss , table = thick_sequence;'''
48 myMad.input(myString)

Next, we need to make thin the new lattice with the sextupoles in order to use the tracking module,

and we need to rematch the tune of the machine to 0.25 after the makethin command, to compare the

results with those obtained in Tutorial 4. To accomplish these tasks, the following code lines have to be

run:

1 myString='''
2 !***
3 !Makethin **
4 !***
5 makethin , sequence = myCell;

295

I.5.7. Solutions

6 !***
7 !Activate sequence **
8 !***
9 use , sequence = myCell;

10 !***
11 !Twiss **
12 !***
13 twiss , table = thin_sequence;
14 !***
15 !Matching of the tunes **
16 !***
17 match , sequence = myCell;
18 global , q1 = 0.25;
19 global , q2 = 0.25;
20 vary , name = mykf , step = 0.00001;
21 vary , name = mykd , step = 0.00001;
22 lmdif , calls = 100, tolerance = 1e-6;
23 endmatch;
24 !***
25 !Twiss **
26 !***
27 twiss , table = twiss_after_matching;'''
28 myMad.input(myString)
29 thinNonZeroChromaSUMMTable = myMad.table["summ"]. dframe ()
30 print(thinNonZeroChromaSUMMTable["dq1"])
31 # Output
32 # -0.318184
33 thinNonZeroChromaTWISSTable = myMad.table["twiss_after_matching"]. dframe ()

Next, the strength of the sextupoles required to compensate the chromaticity in the FODO cell is

calculated using the matching module as follows:

1 myString='''
2 !**
3 !Matching the chromaticity. **
4 !**
5 match , sequence = myCell;
6 global , dq1 = 0.0;
7 global , dq2 = 0.0;
8 vary , name = k2f , step = 0.0001;
9 vary , name = k2d , step = 0.0001;

10 lmdif , calls = 100, tolerance =1E-12;
11 endmatch;
12 !**
13 !Twiss **
14 !**
15 select , flag = twiss , column = name ,s,betx ,bety ,dx ,k1l ,k2l;
16 twiss , file = "twiss_after_chroma_correction.txt"; '''
17 myMad.input(myString)
18 thinZeroChromaDFTable = myMad.table["twiss"]. dframe ()

The computed new optics have been saved into a new Pandas dataframe and the summary match-

296

CERN Yellow Reports: Monographs, CERN-2024-003

ing table is shown in Fig.I.5.25.

Fig. I.5.25: Tutorial 5 MAD-X matching summary table.

Question 2. The contribution to the chromaticity by the sextupoles can be computed using the results

from the previous twiss and Eq. (I.5.6) with the following code lines:

1 aux = thinZeroChromaDFTable
2 (aux["betx"]*aux["dx"]*1* aux['k2l']).sum()/4./np.pi
3 # Output: 0.3182143327879991

The previous obtained value has to be compared with the horizontal tune value before compensation

printed below:

1 thinNonZeroChromaSUMMTable["dq1"]
2 # Output
3 # -0.318214

A very good compensation is found. The same verification can be done for the vertical plane.

Question 3. Now, we are going to perform tracking studies for the new lattice with sextupoles to evaluate

the impact of the non-linear elements installed in the FODO cell on the beam dynamics of the particles.

The same tracking module used in Tutorial 4 should be used here to track both particles (particle1 and

particle2), but now with an off-momentum ∆p = 10−2 as described below.

1 myString='''
2 !***
3 !Tracking **
4 !***
5 track , dump , file = withSextupoles , deltap = 1e-2;
6 start , x = 1e-3, px = 0, y = 1e-3, py = 0;
7 start , x = 1e-1, px = 0, y = 1e-1, py = 0;
8 run , turns = 100;
9 endtrack;'''

10 myMad.input(myString);

297

I.5.7. Solutions

11 # Saving the output data in Pandas dataframes
12 off_momentum_nl_particle1=myMad.table["track.obs0001.p0001"]. dframe ()
13 off_momentum_nl_particle2=myMad.table["track.obs0001.p0002"]. dframe ()

The phase space coordinates for both, horizontal (blue) and vertical (red) planes, are shown in

Fig. I.5.26 for particle1 (left) and particle2 (right). Figure I.5.27 displays the horizontal (left) and

vertical (right) amplitudes for both particles, serving to illustrate the evolution of the amplitude of the

particles in the new lattice turn-after-turn.

Fig. I.5.26: Horizontal (blue) and vertical (red) phase space coordinates for particle1 (left) and
particle2 (right).

Fig. I.5.27: Horizontal (left) and vertical (right) amplitude versus the turn number for particle1 (blue)
and particle2 (red).

As can be seen in Fig. I.5.26 (right) and Fig. I.5.27, for large initial amplitude excursion, the

particle motion loses its stability. The cost of increasing the energy acceptance by introducing non-

linear elements in the beamline is a reduction of the transverse acceptance. The code lines used to plot

Fig. I.5.26 and Fig. I.5.27 are presented below.

1 # Phase space plot
2 plt.figure ()
3 plt.rcParams["figure.dpi"] = 100

298

CERN Yellow Reports: Monographs, CERN-2024-003

4 plt.plot(off_momentum_nl_particle1["x"],off_momentum_nl_particle1["px"],'ob',
label = "X-phase space")

5 plt.plot(off_momentum_nl_particle1["y"],off_momentum_nl_particle1["py"],'.r',
label = "Y-phase space")

6 plt.xlabel("x, y [m]")
7 plt.ylabel("px, py [-]")
8 plt.legend(loc="best")
9 plt.figure ()

10 plt.rcParams["figure.dpi"] = 100
11 plt.plot(off_momentum_nl_particle2["x"],off_momentum_nl_particle2["px"],'ob',

label = "X-phase space")
12 plt.plot(off_momentum_nl_particle2["y"],off_momentum_nl_particle2["py"],'.r',

label = "Y-phase space")
13 plt.xlabel("x, y [m]")
14 plt.ylabel("px, py [-]")
15 plt.legend(loc="best")
16

17 # Amplitude versus turn number plot
18 plt.figure ()
19 plt.plot(off_momentum_nl_particle1['turn'],off_momentum_nl_particle1['x'],'.-b',

label='Particle 1')
20 plt.plot(off_momentum_nl_particle2['turn'],off_momentum_nl_particle2['x'],'.-r',

label='Particle 2')
21 plt.xlabel('Turn')
22 plt.ylabel('x [m]');
23 plt.legend(loc='best');
24 plt.figure ()
25 plt.plot(off_momentum_nl_particle1['turn'],off_momentum_nl_particle1['y'],'.-b',

label='Particle 1')
26 plt.plot(off_momentum_nl_particle2['turn'],off_momentum_nl_particle2['y'],'.-r',

label='Particle 2')
27 plt.xlabel('Turn')
28 plt.ylabel('y [m]');
29 plt.legend(loc='best');

Question 4. In the final question of this tutorial we are going to adjust the tune of the machine to 0.23

in both the horizontal and the vertical planes, and repeat the chromaticity correction matching and the

tracking studies using the code lines below.

1 myString='''
2 !***
3 !Matching the tunes **
4 !***
5 match , sequence = myCell;
6 global , q1 = 0.23;
7 global , q2 = 0.23;
8 vary , name = mykf , step = 0.00001;
9 vary , name = mykd , step = 0.00001;

10 lmdif , calls = 100, tolerance = 1e-6;
11 endmatch;
12 !***

299

I.5.7. Solutions

13 !Matching the chromaticity **
14 !***
15 match , sequence = myCell;
16 global , dq1 = 0.0;
17 global , dq2 = 0.0;
18 vary , name = k2f , step = 0.0001;
19 vary , name = k2d , step = 0.0001;
20 lmdif , calls = 100, tolerance = 1e-12;
21 endmatch;
22 !***
23 !Tracking **
24 !***
25 track , dump , file = new , deltap = 1e-2;
26 start , x = 1e-3, px = 0, y = 1e-3, py = 0;
27 start , x = 1e-1, px = 0, y = 1e-1, py = 0;
28 run , turns = 100;
29 endtrack;'''
30 myMad.input(myString);
31 # Saving the data in Pandas dataframes
32 optWP_offmomentum_nl_particle1 = myMad.table["track.obs0001.p0001"]. dframe ()
33 optWP_offmomentum_nl_particle2 = myMad.table["track.obs0001.p0002"]. dframe ()

Figure I.5.28 shows the new results for the horizontal and the vertical phase space coordinates for

particle1 (left) and particle2 (right). In Fig. I.5.29, the resulting horizontal (left) and vertical (right)

amplitude versus the turn number are shown for both particles. Now, both particles are stable. To

generate these plots, you can use the code lines employed in the previous questions but taking the data

from the new Pandas dataframes.

Fig. I.5.28: Horizontal (blue) and vertical (red) phase space coordinates for particle1 (left) and
particle2 (right).

In conclusion, sextupole magnets play a crucial role for chromaticity correction, but at the expense

of introducing non-linear fields into the lattice, resulting in non-linear particle motion. This eventually

leads to particle instability and loss for large amplitudes. The maximum particle amplitude that can

be effectively tracked in the machine defines the dynamic aperture and as demonstrated, the dynamic

300

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.29: Horizontal (left) and vertical (right) amplitude versus turn number for particle1 (blue) and
particle2 (red).

aperture can be enhanced by selecting an optimal working point of the tune that is far from resonances.

I.5.7.6 Tutorial 6: Building a transfer line

Question 1. The objective of this tutorial is to design a transfer line and to understand the main differ-

ences from designing a periodic lattice. Below is the string defining the proposed lattice along with the

beam and the sequence.

1 myString='''
2 !**
3 !Definition of parameters **
4 !**
5 quadrupolelength = 0.1;
6 l_cell = 10;
7 myk1 = 0.1;
8 myk2 = 0.1;
9 myk3 = 0.1;

10 myk4 = 0.1;
11 !**
12 ! Definition of magnets **
13 !**
14 q: quadrupole , l = quadrupolelength;
15 !**
16 !Definition of sequence **
17 !**
18 myCell: sequence , refer = centre , l = l_cell;
19 myStart: marker , at = 0;
20 q1: q, k1 := myk1 , at = 2;
21 q2: q, k1 := myk2 , at = 4;
22 q3: q, k1 := myk3 , at = 6;
23 q4: q, k1 := myk4 , at = 8;
24 myEnd: marker , at = 10;
25 endsequence;
26 !**
27 !Definition of beam **

301

I.5.7. Solutions

28 !**
29 beam , particle = proton , energy = 2;
30 !**
31 !Activation of the sequence **
32 !**
33 use , sequence = myCell;'''
34 myMad.input(myString)

Next, we are trying to find the periodic solution of the linear optics functions using the twiss command.

1 myString='''
2 !**
3 ! Twiss **
4 !**
5 twiss;'''
6 myMad.input(myString)

When executing the twiss command, MAD-X outputs an error message, as depicted in Fig. I.5.30.

A periodic solution is unattainable for a magnetic lattice consisting only of focusing quadrupoles.

Fig. I.5.30: Tutorial 6 MAD-X output error message.

Question 2. Instead of a periodic solution, an initial condition (IC) solution can be explored. To do so,

we must add the values of the linear optics functions at the entrance of the lattice as follows:

1 myString='''
2 twiss , betx = 1, bety = 2; '''
3 myMad.input(myString)
4 # Saving the output TWISS data in a Pandas dataframe
5 myDFTable1 = myMad.table["twiss"]. dframe ()
6 # Pandas dataframe with only the optics functions at the end of the beamline
7 optics_at_end = myDFTable1.iloc [[-1]]
8 optics_at_end = optics_at_end [["name","keyword","betx","bety","alfx","alfy"]]
9 display(optics_at_end)

The Pandas dataframe table showing the linear optics functions at the end of the transfer line

is illustrated in Fig. I.5.31. In Fig. I.5.32, the horizontal (blue) and vertical (red) β-functions and the

horizontal dispersion, Dx (green), are depicted as a function of the position s. In addition, the layout of

the transfer line is overlaid on the top of the figure, including the strength of the magnets. Note, that the

dispersion is zero for this lattice, as no errors and dipole magnets have been considered. To generate this

figure, the Python function provided in Appendix 1.A is used as it is illustrated in Tutorial 1.

302

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.31: Pandas dataframe table with the linear optics functions at the end of the transfer line.

Fig. I.5.32: Horizontal (blue) and vertical (red) β-functions and horizontal dispersion (green) as a func-
tion of the position s along the transfer line. In addition, the layout of the transfer line is added on the
top of the figure including the strength of the magnets.

Question 3. Next, we want to match the strength of the quadrupoles to obtain the following optical

functions at the end of the transfer line: (βend1
x , αend1

x , βend1
y , αend1

y) = (2 m, 0, 1 m, 0). To accomplish

this, we use the match block as follows:

1 myString='''
2 myk1 = 0.1;
3 myk2 = 0.1;
4 myk3 = 0.1;
5 myk4 = 0.1;
6 match , sequence = myCell , betx = 1, bety = 2;
7 constraint , betx = 2, range = #e;
8 constraint , alfx = 0, range = #e;
9 constraint , bety = 1, range = #e;

10 constraint , alfy = 0, range = #e;
11 vary , name = myk1 , step = 0.00001;
12 vary , name = myk2 , step = 0.00001;
13 vary , name = myk3 , step = 0.00001;
14 vary , name = myk4 , step = 0.00001;

303

I.5.7. Solutions

15 jacobian , calls = 50, tolerance = 1e-20;
16 endmatch;
17 twiss , betx = 1, bety = 2, file=AfterMatching1.txt;'''
18 myMad.input(myString);
19 # Saving the output data in a Pandas dataframe
20 myDFTable2 = myMad.table["twiss"]. dframe ()
21 myDFTable2

In Fig. I.5.33 the main parameters of the quadrupole magnets after the first matching are depicted.

In order to print the table (as in Fig. I.5.33) you should employ the code lines below.

1 aux2 = myDFTable2[myDFTable2['keyword ']=='quadrupole ']
2 aux2 = aux2[["name","keyword","s","k1l","l","betx","bety"]]
3 display (aux2)

In Fig. I.5.34, the horizontal and vertical β-functions, along with the horizontal dispersion Dx

after the first matching, are shown.

Fig. I.5.33: Quadrupoles’ main parameters after the first matching.

Question 4. Next, we are performing a second local matching by using as a starting point, the gradients

obtained in question 3 to get the initial optics at the end of the transfer line (see Table I.5.31) from

question 2. In summary, we aim to match the end optics obtained in the second question but using a

different starting point for the quadrupoles’ strength.

1 myString='''
2 myK1 = -0.676969;
3 myK2 = 6.54514;
4 myK3 = -6.80251;
5 myK4 = 8.24398;
6 match , sequence = myCell , betx = 1, bety = 2;
7 constraint , betx = 85.599525 , range = #e;
8 constraint , alfx = -7.397891 , range = #e;
9 constraint , bety = 61.413366 , range = #e;

10 constraint , alfy = -6.624547 , range = #e;
11 vary , name = myk1 , step = 0.00001;
12 vary , name = myk2 , step = 0.00001;
13 vary , name = myk3 , step = 0.00001;
14 vary , name = myk4 , step = 0.00001;
15 jacobian , calls = 50, tolerance = 1e-20;
16 endmatch;

304

CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.5.34: Horizontal (blue) and vertical (red) β-functions and horizontal dispersion Dx (green) as a
function of the position s. The lattice layout is also included on the top figure as well as the strength of
the magnets after the first matching.

17 twiss , betx = 1, bety = 2; '''
18 myMad.input(myString);
19 # Saving the twiss output data in a Pandas dataframe
20 myDFTable3 = myMad.table["twiss"]. dframe ()
21 myDFTable3

A summary of the main quadrupoles’ parameters, resulting from the second matching, is pre-

sented in Fig. I.5.35. Additionally, Fig. I.5.36 shows the new horizontal and vertical β-functions and the

horizontal dispersion Dx.

Fig. I.5.35: Quadrupoles’ main parameters after the second matching.

As can be seen from the previous results, the second matching calculation does not converge to

the initial solution obtained in the second question. In a transfer line, it is important to note that there can

be multiple solutions. Furthermore, the solution obtained in the second matching appears to be highly

305

I.5.7. Solutions

Fig. I.5.36: Horizontal (blue) and vertical (red) β-functions and horizontal dispersion Dx (green) as a
function of the position s. The lattice layout is also included on the top of the figure as well as the
strength of the magnets after the second matching.

suboptimal, requiring the use of stronger quadrupole magnets (see the values in Fig. I.5.36 compared to

the values in Fig. I.5.34).

Question 5. Last, we compute the magnetic field corresponding to the gradients obtained ini-

tially (question 2) and after the second matching (question 4) using the magnet’s properties described in

the statement of this tutorial.

1 # For the initial conditions
2 aux = myDFTable1[myDFTable1["keyword"]=="quadrupole"]
3 aux = aux["k1l"]/aux["l"]
4 # Excitation current
5 aux=aux *10
6 # Excitation magnetic factor
7 aux=aux*2
8 # Aperture diameter
9 aux=aux *.04

10 # Final magnetic field in T
11 print(np.abs(aux))
12 # Output
13 # q1 0.08
14 # q2 0.08
15 # q3 0.08
16 # q4 0.08

306

CERN Yellow Reports: Monographs, CERN-2024-003

17

18 # For the second matching
19 aux = myDFTable3[myDFTable3["keyword"] == "quadrupole"]
20 aux = aux["k1l"]/aux["l"]
21 # Excitation current
22 aux = aux*10
23 # Excitation magnetic factor
24 aux = aux*2
25 # Aperture diameter
26 aux = aux *.04
27 # Final magnetic field in T
28 print(np.abs(aux))
29 # Output
30 # q1 10.061285
31 # q2 6.912524
32 # q3 4.710268
33 # q4 3.540589

As can be seen, the second magnets are extremely difficult to build (superconductive) due to their

high magnetic field. For a 2 GeV machine, it would better to stick with normal conducting magnets.

However, in some cases such as the Large Hadron Collider, which has to handle 7 TeV proton beams,

superconductive magnets are the only valid approach.

I.5.8 Acknowledgments

I would like to express my gratitude to Dr. G. Sterbini, who taught MAD-X at JUAS for over a decade,

for his support in preparing this course over the past years and for proofreading this document. I have

had the privilege of inheriting a large wealth of knowledge and course content from him. I am also

deeply thankful to P. Martínez-Reviriego, E. Martínez-López, P. Martín-Luna and L. Karina-Pedraza for

proofreading this document and providing valuable feedback.

307

CERN Yellow Reports: Monographs, CERN-2024-003

Appendix

I.5.A Python script for linear optics functions plot with machine layout on the top

The following python script can be used to plot the β-functions and the horizontal dispersion Dx of a

given lattice with the layout depicted in the top figure as well as the strength of the magnets. Quadrupoles

and dipoles are considered in this function but the code can be expanded to take into account also higher

order magnets.

1 #!/usr/bin/env python3
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import pandas as pd
5 import matplotlib.patches as patches
6

7 def plotLatticeSeries(ax ,series , height =1., v_offset =0., color='g',alpha =0.5,lw
=3):

8 aux=series
9 ax.add_patch(

10 patches.Rectangle ((aux.s-aux.l, v_offset -height /2.), # (x,y)
11 aux.l, # width
12 height , # height
13 color=color , alpha=alpha ,lw=lw))
14 return;
15

16

17 def plot_layout(myTwiss):
18

19 fig = plt.figure(figsize =(13 ,8))
20

21 ax1=plt.subplot2grid ((3 ,3), (0,0), colspan=3, rowspan =1)
22 plt.plot(myTwiss['s'],0* myTwiss['s'],'k')
23 DF=myTwiss [(myTwiss['keyword ']=='quadrupole ')]
24 print(DF)
25 for i in range(len(DF)):
26 aux=DF.iloc[i]
27 print(aux.k1l)
28 plotLatticeSeries(plt.gca(),aux , height=aux.k1l , v_offset=aux.k1l/2,

color='r')
29 color = 'red'
30 ax1.set_ylabel('1/f=K1L [m$^{-1}$]', color=color ,fontsize =20)
31 ax1.tick_params(axis='y',labelsize =20, labelcolor=color)
32 ax1.tick_params(axis='x',labelsize =20)
33 ax1.set_ylim(-np.max(abs(myTwiss.k1l)),np.max(abs(myTwiss.k1l)))
34

35 ax2 = ax1.twinx()
36 color = 'blue'
37 ax2.set_ylabel('$\\ theta$[rad]', color=color ,fontsize =20)
38 ax2.tick_params(axis='y', labelsize =20, labelcolor=color)
39 DF=myTwiss [(myTwiss['keyword ']=='sbend')]
40 for i in range(len(DF)):

309

I.5.A. Python script for linear optics functions plot with machine layout on the top

41 aux=DF.iloc[i]
42 plotLatticeSeries(plt.gca(),aux , height=aux.angle , v_offset=aux.angle/2,

color='b')
43 ax2.set_ylim(-np.max(abs(myTwiss.angle)),np.max(abs(myTwiss.angle)))
44

45

46 axbeta=plt.subplot2grid ((3 ,3), (1,0), colspan=3, rowspan=2,sharex=ax1)
47 plt.plot(myTwiss['s'],myTwiss['betx'],'b', label='$\\ beta_x$ ')
48 plt.plot(myTwiss['s'],myTwiss['bety'],'r', label='$\\ beta_y$ ')
49 plt.legend(loc='best',fontsize =20)
50 plt.ylabel('[m]',fontsize =20)
51 plt.xlabel('s [m]',fontsize =20)
52 axbeta.tick_params(axis='both', labelsize =20)
53 plt.grid()
54

55 ax3 = plt.gca().twinx()
56 plt.plot(myTwiss['s'],myTwiss['dx'],'green', label='D_x', lw=2)
57 ax3.set_ylabel('D_x [m]', color='green',fontsize =20)
58 ax3.tick_params(axis='y', labelsize =20, labelcolor='green')
59 ax3.tick_params(axis='x', labelsize =20)
60 ax3.set_ylim(0, 6);
61

62 return

The main function is called plot_layout and needs as input to work a Pandas dataframe with the

keyword, the s location, the strength of the magnets, the β-function and the horizontal dispersion data

for all the elements in the beamline. In order to run it, you can copy and paste the code in the Python

interface where the tutorials are being solved or you can save the script given below as a Python file and

run it as follows:

1 import sys
2 sys.path.append('path to the location where the script is saved')
3 import 'name of the script ' as lib
4 lib.plot_layout(myDF)

where myDF is the Pandas dataframe containing the data to be plotted.

310

CERN Yellow Reports: Monographs, CERN-2024-003

References
[1] MAD-X web site, last accessed 31 October 2022.

[2] MAD-X physics manual.

[3] MAD-X github repository.

[4] Large Electron-Positron (LEP) collider.

[5] Large Hadron Collider (LHC).

[6] International Linear Collider (ILC) project.

[7] The Compact Linear Collider (CLIC) project.

[8] MAD-X online manual.

[9] E. Forest et al., Introduction to the Polymorphic Tracking Code, 4 Jul. 2002.

[10] Python web site, last accessed 31 October 2022.

[11] Matlab programming and numeric computing platform.

[12] Root open-source data analysis framework.

[13] Gnuplot portable command-line driven graphing utility.

[14] Python for Beginners - Learn Python in 1 Hour.

[15] Learn Python - Full Course for Beginners.

[16] T. Gläßle, Y.I. Levinsen and K. Fuchsberger, Cpymad library documentation, last accessed 31

October 2022.

[17] Anaconda Python distribution.

[18] Numpy Python library.

[19] Matplotlib Python library.

[20] Pandas Python library.

[21] Jupyter Python web-based interactive computing platform.

311

https://mad.web.cern.ch/mad/
https://mad8.web.cern.ch/mad8/doc/phys_guide.pdf
https://github.com/MethodicalAcceleratorDesign/MAD-X/
https://home.cern/science/accelerators/large-electron-positron-collider
https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://linearcollider.org/
https://home.cern/science/accelerators/compact-linear-collider
https://mad.web.cern.ch/mad/webguide/manual.html
https://madx.web.cern.ch/madx/doc/ptc_report_2002.pdf
https://www.python.org/downloads/
https://es.mathworks.com/products/matlab.html
https://root.cern/
http://www.gnuplot.info/
https://www.youtube.com/watch?v=kqtD5dpn9C8
https://www.youtube.com/watch?v=rfscVS0vtbw
https://hibtc.github.io/cpymad/
https://docs.anaconda.com/anaconda/install/index.html
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PandasPythonForDataScience.pdf
https://jupyter.org

	MAD-X simulation code
	Appendices

