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Chapter I.8

Transverse linear imperfections

Hannes Bartosik, Davide Gamba

CERN, Geneva, Switzerland

This chapter addresses transverse linear imperfections in particle accelerators, with a particular
focus on their impact on the transverse dynamics of particle beams in circular accelerators. The
primary sources of these imperfections include magnetic field errors, which arise from uncertainties
in magnet strengths and calibration, as well as magnet misalignments. The theoretical framework
necessary for understanding these imperfections is established, introducing concepts such as
multipole expansion of magnetic fields. This foundation paves the way for addressing non-linear
effects, which will be discussed in the following chapter. Practical examples, including the effects of
magnetic hysteresis and quadrupole magnet misalignments, are presented to illustrate the real-world
consequences of these imperfections, such as closed orbit distortion and optics function distortions
like beta-beating and tune shifts, as well as coupling. Furthermore, this chapter discusses local and
global closed orbit correction techniques using dipole correctors, as well as advanced methods like
Singular Value Decomposition (SVD) and MICADO algorithms. The chapter also provides practical
methods for estimating the impact of imperfections on closed orbit, tune shifts, beta-beating, and
coupling, offering a valuable toolkit for the design and optimization of circular accelerators.

I.8.1 Introduction—sources of imperfections

In this course, we will be discussing linear imperfections and their impact on circular accelerators

(“rings”). These imperfections, arising from magnetic field imperfections and magnet misalignment

errors, affect most importantly the transverse dynamics of the particle motion. In most parts of the lec-

ture, we will be using normalized magnet strength, i.e. magnetic field B derivatives normalized by the

magnetic rigidity Bρ = p/q, which for a particle with charge q = Ze and with total energy E (in GeV)

or momentum p (in GeV/c) is given in Tm by the following relations

Bρ[Tm] = 3.3356βrE[GeV]/Z, (I.8.1)

= 3.3356 p[GeV/c]/Z, (I.8.2)

where βr = v
c is the velocity v normalized to the speed of light c, e is the elementary charge, and Z is

the particle charge state which is equal to 1 for protons.

There are two main categories of imperfections that are encountered when translating an ideal

lattice model into a real accelerator installation, as discussed in the following.
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I.8.1. Introduction—sources of imperfections

I.8.1.1 Errors in the magnet strengths

First, the physical units of the machine model defined by the accelerator physicist, i.e. the magnet

strengths, must be converted into magnetic fields and eventually into currents for the power converters

that feed the magnet circuits. Imperfections (i.e. errors) in the real accelerator optics can be introduced

by uncertainties or errors in the magnetic field. Figure I.8.1 shows how uncertainties in the precise beam

momentum, the magnet calibration and hysteresis effects, inaccuracies in the power converter regulation,

and additional effects such as eddy currents introduce discrepancies between the desired magnetic field

from the model and the actual magnetic field seen by the beam. An example of the magnetic hysteresis

effect is shown in Fig. I.8.2. Depending on the magnetic history, e.g. if the magnet is ramped up or

ramped down, the magnetic field in the magnet is different for a given excitation current.

Fig. I.8.1: From magnet strength to magnetic field.

Fig. I.8.2: Example of the Extra Low ENergy Antiproton (ELENA) ring main dipoles Transfer Function
(TF) of the integrated dipole field over coil excitation current along a hysteresis curve. The arrows
indicate the ramping direction of the excitation current. Different colours correspond to different magnet
units.
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I.8.1.2 Magnet misalignments and feed-down effects

The second category of imperfections concern the alignment of accelerator magnets. Depending on the

machine specific performance goals, the accelerator elements must be positioned in the accelerator tunnel

within a certain accuracy. For example, the magnets of the CLIC final focusing system have to be aligned

to the nanometer level. For the CERN hadron accelerators we aim for accuracies of around 0.1 mm. The

alignment process implies precise measurements of the magnetic axis in the laboratory with reference to

the element alignment markers used by the survey group (this process is known as fiducialization). The

alignment target can be seen on the photograph of a quadrupole of the Super Proton Synchrotron (SPS) at

CERN shown in Fig. I.8.3. Using these alignment targets, the survey group performs the precise in-situ

alignment (positions and angles) of the element in the tunnel. Residual alignment errors are a common

source of imperfections through the so-called magnetic feed-down effects.

Fig. I.8.3: Alignment target (as highlighted by the purple circle) on one of the Super Proton Synchrotron
(SPS) main quadrupole magnets.

To illustrate feed-down effects, let’s consider a quadrupole magnet which has a horizontal mis-

alignment of −δx, as shown in Fig. I.8.4. The magnetic field generated by this quadrupole is given

by

Bx(x̄, y) = Bx(x+ δx, y) = G · (y) = Gy︸︷︷︸,
quadrupole dipole

By(x̄, y) = By(x+ δx, y) = G · (x+ δx) =
︷︸︸︷
Gx +

︷︸︸︷
Gδx,

(I.8.3)

which is equivalent to the original quadrupolar field plus a constant vertical field component correspond-

ing to a dipolar field. Effectively, the horizontally displaced quadrupole also generates a dipole field

through feed-down. This is also sketched in Fig. I.8.4.
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I.8.1. Introduction—sources of imperfections

Fig. I.8.4: Feed-down effect from a horizontally displaced quadrupole.

Similarly, the magnetic field generated by a vertically displaced quadrupole as shown in Fig. I.8.5

is given by

Bx(x, ȳ) = Bx(x, y + δy) = G · (y + δy) = Gy︸︷︷︸+Gδy︸︷︷︸,
quadrupole dipole

By(x, ȳ) = By(x, y + δy) = G · (x) =
︷︸︸︷
Gx ,

(I.8.4)

which is equivalent to the original quadrupolar field plus a constant horizontal field component corre-

sponding to a skew dipole field. Effectively, the vertically displaced quadrupole also generates a skew

dipole field deflecting particles in the vertical plane through the Lorentz force. We have introduced

here the term skew dipole, which indicates that the magnetic field component is rotated compared to the

normal dipolar field used for deflecting particles in the horizontal plane.

Fig. I.8.5: Feed-down effect from a vertically displaced quadrupole.

In this chapter we consider pure transverse magnetic fields, i.e. we are neglecting fringe fields. The

magnetic field consists thus only of horizontal and vertical field components and we can use a multipole

expansion to describe our field configuration. It is convenient to use a complex 2D representation given

by

B(x, y) = By(x, y) + iBx(x, y) =

∞∑
n=0

(Bn + iAn)(x+ iy)n, (I.8.5)

where the magnetic field components are given by

Bn =
1

n!

∂nBy

∂xn

∣∣∣∣
(0,0)

and An =
1

n!

∂nBx

∂yn

∣∣∣∣
(0,0)

, (I.8.6)
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where Bn represent the normal (also called “upright”) and An represent the skew field components1.

The skew field components correspond to magnetic field configurations which are rotated by an angle of
π

2(n+1) . For example, a skew dipole (n = 0) corresponds to a dipole field rotated by π
2 , i.e. a 90 degree

rotated dipole field generating a vertical kick. Similarly, a skew-quadrupole (n = 1) field corresponds to

a quadrupolar field rotated by π
4 , and so on.

For illustration of the general behaviour of the feed-down effect, we start writing the magnetic

field components Bx and By as the sum of all multipole components and we identify the contributions

from the normal and skew components

By = B0︸︷︷︸+B1x−A1y︸ ︷︷ ︸+B2(x
2 − y2)− 2A2xy︸ ︷︷ ︸+B3(x

3 − 3xy2)−A3(−y3 + 3x2y)︸ ︷︷ ︸+ . . . ,

dipole quadrupole sextupole octupole

Bx =
︷︸︸︷
A0 +

︷ ︸︸ ︷
A1x+B1y+

︷ ︸︸ ︷
A2(x

2 − y2) + 2B2xy+
︷ ︸︸ ︷
A3(x

3 − 3xy2) +B3(−y3 + 3x2y)+ . . . ,

(I.8.9)

For investigating the effect of a pure horizontal displacement x̄ = x+ δx, we analyze the magnetic field

components along the horizontal axis, i.e. for y = 0. Starting from Eq. I.8.9, we find that a horizontally

displaced multipole field of order n, i.e. a “2(n+ 1) pole”

Bx(y=0) = 0,

By(y=0) = Bnx̄
n︸ ︷︷ ︸ = Bn(x+ δx)n = Bn( x

n︸︷︷︸+nδxxn−1︸ ︷︷ ︸+ n(n−1)
2 δx2xn−2︸ ︷︷ ︸+. . .+ (δx)n︸ ︷︷ ︸),

2(n+1)-pole 2(n+1)-pole 2n-pole 2(n-1)-pole dipole

Bx(y=0) =
︷ ︸︸ ︷
Anx̄

n = An(x+ δx)n = An(
︷︸︸︷
xn +

︷ ︸︸ ︷
nδxxn−1+

︷ ︸︸ ︷
n(n−1)

2 δx2xn−2+. . .+
︷ ︸︸ ︷
(δx)n),

By(y=0) = 0,

(I.8.10)

results in a series of lower order normal multipole components from a 2n pole all the way down to the

dipole components. In particular, a horizontally displaced normal multipole of strength Bn (upper two

lines of Eq. I.8.10) creates normal feed-down components. Conversely, a horizontally displaced skew

multipole of strength An (lower two lines of Eq. I.8.10) creates skew feed-down components. It should

also be mentioned that the decreasing order of feed-down multipole components have a strength that is

proportional to the initial magnet strength and more importantly proportional to an increasing power of

the misalignment δx. Since this offset is usually small, the feed-down multipole components become less

important for lower orders. It should also be noted that we have considered here the components along

the horizontal axis only. However, the reader than verify that the obtained expressions of the feed-down

1In some occasions it is useful to consider the magnetic field expansion in normalized multipole strengths as follows

B = By + iBx = Bρ

∞∑
n=0

(kn + ijn)
(x+ iy)n

n!
, (I.8.7)

where the normalized magnet field components are given by

kn =
1

Bρ

∂nBy

∂xn

∣∣∣∣
(0,0)

=
n!

Bρ
Bn

∣∣∣∣
(0,0)

and jn =
1

Bρ

∂nBx

∂yn

∣∣∣∣
(0,0)

=
n!

Bρ
An

∣∣∣∣
(0,0)

. (I.8.8)
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I.8.1. Introduction—sources of imperfections

components also hold for y ̸= 0.

Performing a similar analysis for vertical misalignments we investigate the magnetic field compo-

nents along the vertical axis, i.e. for x = 0. We find that

for n even


By(x = 0) = inBnȳ

n

Bx(x = 0) = inAnȳ
n

, for n odd


By(x = 0) = in+1Anȳ

n

Bx(x = 0) = in−1Bnȳ
n

, (I.8.11)

which means that a vertical offset in normal(skew) magnets of order n results in alternating skew(normal)

and normal(skew) feed-down components of all lower orders. To illustrate this, we consider as example

a normal multipole with n even, and write the vertical field component at x = 0 explicitly for a vertical

offset δy, which yields

By(x=0) = inBn(y + δy)n = inBn(y
n + nδyyn−1 + n(n−1)

2 δy2yn−2 + · · ·+ (δy)n). (I.8.12)

Comparing with Eq. I.8.9, we find indeed that this vertically shifted normal multipole of order n will

create skew feed-down components of order n − 1, n − 3, . . . and normal feed-down components of

order n− 2, n− 4, . . . all the way down to the dipole component.

I.8.1.2.1 Problem 1

a) Derive an expression for the resulting magnetic field components (Bx and By) when the

closed orbit in a normal sextupole is horizontally displaced by −δx from its reference position.

Hint: the field generated by a sextupole is

By(x, y) = B2(x
2 − y2), (I.8.13)

Bx(x, y) = B2(2xy). (I.8.14)

a) Do the same for an octupole.

Hint: the field generated by an octupole is

By(x, y) = B3(+x
3 − 3xy2), (I.8.15)

Bx(x, y) = B3(−y3 + 3x2y). (I.8.16)

I.8.1.2.2 Solution to problem 1

a) We can use the following substitution:

x→ x̄ = x− (−δx) = x+ δx
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For a horizontally displaced sextupole one obtains:

By(x+ δx, y) = B2

(
(x+ δx)2 − y2

)
= B2x

2 + 2B2xδx+B2(δx)
2 −B2y

2 (I.8.17)

= B2(x
2 − y2)︸ ︷︷ ︸+2B2(δx)x︸ ︷︷ ︸+B2(δx)

2︸ ︷︷ ︸ (I.8.18)

sextupole quadrupole dipole (I.8.19)

Bx(x+ δx, y) =
︷ ︸︸ ︷
B2(2xy) +

︷ ︸︸ ︷
2B2(δx)y (I.8.20)

b) Similarly, for a horizontally displaced closed orbit in an octupole

By(x+ δx, y) = B3

(
(x+ δx)3 + 2(δx)x2 + 3(δx)2x+ (δx)3 − 3xy2 − 3(δx)y2

)
(I.8.21)

= B3(x
3 − 3xy2) + 3B3(δx)(x

2 − y2) + 3B3(δx)
2x+B3(δx)

3 (I.8.22)

Bx(x+ δx, y) = B3

(
−y3 + 3(x2 + 2(δx)x+ (δx)2)y

)
(I.8.23)

= B3(−y3 + 3x2y) + 3B3(δx)2xy + 3B3(δx)
2y (I.8.24)

And from direct comparison

By(x+ δx, y) = B3(x
3 − 3xy2)︸ ︷︷ ︸+3B3(δx)(x

2 − y2)︸ ︷︷ ︸+3B3(δx)x︸ ︷︷ ︸+B3(δx)
3︸ ︷︷ ︸ (I.8.25)

octupole sextupole quadrupole dipole (I.8.26)

Bx(x+ δx, y) =
︷ ︸︸ ︷
B3(−y3 + 3x2y)+

︷ ︸︸ ︷
3B3(δx)2xy +

︷ ︸︸ ︷
3B3(δx)

2y (I.8.27)

I.8.1.2.3 Problem 2

ELENA is a small ring (30.4 m circumference) that receives anti-protons with a kinetic energy of

5.3 MeV from the Antiproton Decelerator (AD). The ring is composed of 25 cm-long quadrupoles.

a) Compute the normalized strength of the quadrupoles assuming a gradient of 1.4 T/m.

b) What is the trajectory kick, in radians, that an anti-proton receives when entering in a focusing

quadrupole with a 1 mm positive offset with respect to the quadrupole magnetic axis in the

focusing plane (x)?

c) What is the direction of the kick (positive/negative x/y)?

I.8.1.2.4 Solution to problem 2

a) – The magnetic rigidity is

Bρ [Tm] = 3.3356βrE [GeV].
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I.8.2. Closed-orbit distortion

– We need to compute the total energy which is

E = T + E0 = 0.0053 + 0.9383 = 0.9436GeV.

– Now we need to compute the relativistic beta. First, we compute the relativistic gamma

γr =
E

E0
=

0.9436

0.9383
= 1.0056,

and the relativistic beta is

βr =
√

1− 1/γ2r = 0.1058.

– The magnetic rigidity is then

Bρ = 3.3356βrE = 0.3331Tm.

– The normalised strength, for a gradient of 1.4 T/m, is

k1 =
1!

Bρ
B1 =

1.4

0.3331
= 4.203

1

m2
.

– The integrated normalised strength of the quads is

k1L = 4.203 · 0.25 = 1.050
1

m
.

b) For a particle entering with an offset of 0.001 m, the kick is

k1Lx = 1.050 · 0.001 = 1.050mrad.

c) Since it is a focusing quadrupole, and the particle enters with a positive x offset, then the

kick is toward negative x values.

I.8.2 Closed-orbit distortion

I.8.2.1 Illustration of closed-orbit distortion

A circular accelerator (like a synchrotron) lattice is usually composed of a repetition of basic ‘cells’.

A simple FODO (Focusing-Drift-Defocusing-Drift) cell typically contains dipole magnets to guide (or

bend) the beam around the machine, quadrupole magnets to focus the beam, beam position monitors

(BPMs) to measure the transverse beam position, small dipole corrector magnets for beam steering and

possibly also sextupole magnets to control the off-energy focusing (i.e. the chromaticity). A sketch of a

typical FODO cell is shown in Fig. I.8.6.

To illustrate the impact of an imperfection resulting in a closed-orbit distortion, we start from a toy

model representing a machine built from a basic FODO lattice as shown in Fig. I.8.7. In this figure, each

vertical bar at the top corresponds to a horizontally focusing (bar pointing upwards) or a horizontally

348



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. I.8.6: Sketch of a typical FODO cell (not to scale).

defocusing (bar pointing downwards) quadrupole. Our toy machine consists of 16 FODO cells. As this

case shows the ideal machine without any imperfection, launching a particle with an offset of around

4 mm in the horizontal position results in betatron oscillations around the design orbit, i.e. around x = 0

along the machine. As shown in the figure, after 100 turns the particle trajectories trace out a nice beam

envelope along the machine. On the right-hand side we show the particle phase space at the end of the

machine, i.e. at s = C (where C denotes the machine circumference). Indeed the phase-space ellipse is

centered around the origin, i.e. around x = 0 and x′ = 0 as indicated by the green dot.

Let’s now investigate what happens if the FODO lattice contains an imperfection in the form of

a dipole error resulting in a deflection θ. To illustrate this, we take the simple FODO lattice example

from before and start tracking a particle with initial conditions x, x′ = 0. Figure I.8.8 (top) shows the

resulting particle trajectory for the first turn. Note how the dipole error, indicated by the little purple box

in the lattice schematic, gives a kick to the particle and thus excites a betatron oscillation. Continuing the

tracking until reaching 100 turns as shown in Fig. I.8.8 (bottom), we observe how the particle oscillates

around a distorted closed orbit as indicated by the thick red line. The closed orbit corresponds to the

evolution of the center of the phase-space ellipse along the machine circumference. For illustration, the

phase-space ellipse at the end of the machine is also shown and it is clear how its center is shifted.
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I.8.2. Closed-orbit distortion

Fig. I.8.7: Particle trajectories in a FODO lattice - no errors.

Fig. I.8.8: Particle trajectories in a FODO lattice - single-dipole error, result after 1 turn (top) and after
100 turns (bottom).
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I.8.2.2 Closed orbit from a single-dipole kick

In the following, we will calculate the closed-orbit distortion resulting from a single-dipole error. Con-

sider a single-dipole kick θ = δu′0 = δu′(s0) = δ(Bl)
Bρ (thin-lens approximation) at s = s0 as shown

in Fig. I.8.9 (top). Note that we use here u as the transverse coordinate, which represents either the

horizontal position x or the vertical position y.

Fig. I.8.9: Change of trajectory from a single-dipole kick (top) and closed orbit resulting from a single-
dipole kick (bottom).

The coordinates of a single particle at a downstream location s can be computed using the transport

matrix Ms0,s from location s0 to location s expressed as a function of the Twiss lattice parameters (see

Chapter I.3 on transverse beam dynamics)

(
us

u′s

)
=Ms0,s

(
0

θ

)
, (I.8.28)

where

Ms0,s =


√

βs

βs0
(cosψs0,s + αs0 sinψs0,s)

√
βsβs0 sinψs0,s

αs0−αs√
βsβs0

cosψs0,s −
1+αsαs0√

βsβs0

sinψs0,s

√
βs0
βs

(cosψs0,s − αs sinψs0,s)

 . (I.8.29)

Since we want the orbit to be closed on itself after one turn, (see Fig. I.8.9 (bottom)), we have to solve

the following equation[
cos (2πQ) + α0 sin (2πQ) β0 sin (2πQ)

−1+α2
0

β0
sin (2πQ) cos (2πQ)− α0 sin (2πQ)

](
u0

u′0

)
+

(
0

θ

)
=

(
u0

u′0

)
, (I.8.30)

which only depends on the Twiss functions at the s0 location and the machine tune Q. The initial

conditions of the closed orbit at the location of the kick are obtained as

u0 =
θ

2

β0
tan (πQ)

and u′0 =
θ

2

(
1− α0

tan (πQ)

)
. (I.8.31)

For any location s around the ring, the closed-orbit distortion ∆u generated by a kick θ in s0 is obtained
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I.8.2. Closed-orbit distortion

as

∆us = θs0

√
βsβs0

2 sin(πQ)︸ ︷︷ ︸ cos(πQ− |ψs − ψs0 |), (I.8.32)

maximum orbit distortion amplitude

where βs denotes the beta function at location s and βs0 the beta function at location s0, and ψs, ψs0

are the phase advances at locations s and s0. Note that this expression consists of the oscillatory term

cos(πQ−|ψs−ψs0 |) and the term θs0

√
βsβs0

2 sin(πQ) that defines the maximum closed-orbit distortion amplitude

around the machine. We highlight that the impact of a localised dipole error results in a closed-orbit

distortion proportional to
√
βs0 , i.e. the impact is higher for errors located in a region with a large beta

function. Furthermore, we observe that the maximum closed-orbit distortion amplitude has a strong

dependence on the tune due to the denominator sin(πQ).

I.8.2.3 Dependence of closed-orbit distortion amplitude on the tune-integer resonance

The impact of a single-dipole error on the closed orbit depends strongly on the tune of the machine

(see Eq. I.8.32) as illustrated in Fig. I.8.10. While the same dipole error results in a modest closed-orbit

distortion at a tune of Q = 4.47, the impact is about 5 times higher at Q = 4.07 and about 20 times

higher at Q = 4.02. In fact the closed-orbit distortion is most critical for tunes close to integer values,

for which the closed orbit becomes unstable due to the expression 2 sin(πQ) in the denominator going to

zero. Conversely, for a tune close to half-integer values the same term attains its maximum value of ±2.

In other words, the closed-orbit distortion is minimum. This behaviour can also be illustrated in phase

space as shown in Fig. I.8.11. For integer tunes (left picture), particles return to the same position (y

in this illustration) turn after turn and a dipole error adds up and systematically increases the oscillation

amplitude. As this happens for all particles in the same way, the closed orbit is unstable. For half-integer

tunes (right picture), the kick from the dipole error cancels out every other turn and the particle oscillation

amplitude remains bounded. It is due to this cancellation that the impact on the closed-orbit distortion

is minimum for half-integer tunes. In other words, integer tunes have to be avoided in the presence of

dipole errors due to the integer resonance, while half-integer tunes are not harmful in this case.
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Fig. I.8.10: Impact of a single-dipole error on the closed orbit for different tunes: Q = 4.47 (top),
Q = 4.07 (middle) and Q = 4.02 (bottom). The strength of the dipole error is the same for all three
cases.
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I.8.2. Closed-orbit distortion

Fig. I.8.11: Effect of a dipole error at integer (left) and half-integer (right) tunes.

I.8.2.4 Localizing closed-orbit errors

Figure I.8.12 shows schematically how a single-dipole error affects the closed orbit for different tunes

ranging from 6.1 to 6.9. Note that for tunes close to the integer resonance, the overall closed-orbit

distortion is large, while for tunes further away from the integer values the impact becomes smaller,

as expected from Eq. I.8.32. Depending on the tune, the closed orbit exhibits a bit more than six or

almost seven complete oscillations. The location of the dipole error can be identified by the “kink” in

the closed-orbit oscillation, as also indicated by the red arrow in the schematic. This kink can also be

used to identify a single-dipole error in a beam orbit measurement. To illustrate this we take a look at an

example orbit measurement of the Large Hadron Collider (LHC). Figure I.8.13 shows a measurement of

the horizontal closed orbit along the LHC circumference. In this case there is only a single-dipole kick,

as the measurement is taken with respect to a reference closed orbit. Each vertical green bar corresponds

to the measurement of one LHC BPM. However, in this representation it is not easy to identify the

location of the dipole kick. Only when taking the same data and plotting the beam position normalized

by the square root of the corresponding local beta function (x/
√
β) as a function of the betatron phase

Fig. I.8.12: Schematic representation of closed-orbit distortions for different tunes.
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advance ψ, the kink can be identified clearly. This approach can be quite handy in routine operation

when searching for a single localized dipole kick, e.g. identifying the failure of single-dipole correctors,

missing strength of individual main dipoles due to inter-turn shorts, remnent field of strong bumper

magnets used for beam extraction, and other similar situations.

Fig. I.8.13: Measurement of the horizontal closed orbit in the LHC. The data corresponds to the dif-
ference orbit, where only a single-dipole error deflection was added with respect to a reference closed
orbit. The raw BPM measurement is shown on the top, while the normalized closed-orbit oscillation as a
function of the phase advance is shown on the bottom. The location of the dipole deflection is indicated
by the red arrow.

I.8.2.5 Global closed-orbit distortion

In a realistic accelerator, dipole kicks resulting in closed-orbit distortion can be generated by various

sources, typically related to the presence of a constant transverse magnetic field error (δBu) at some

location (s). In general, the angular kick (dθ) received by the beam is

dθ =
δBu(s)ds

Bρ
. (I.8.33)

For the most common sources, the integrated deflection θj produced by the jth error can be expressed as
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– Integrated dipole field error

θj =
δ(Bjlj)

Bρ
, (I.8.34)

where Bjlj is the integrated dipole field.

– Dipole roll

θj =
Bjlj sinϕj

Bρ
, (I.8.35)

where ϕj is the roll angle of the dipole around its longitudinal axis.

– Quadrupole displacement

θj =
Gjljδuj
Bρ

, (I.8.36)

where δuj is the transverse displacement of the quadrupole, Gj is the quadrupole gradient and lj
is the length of the quadrupole.

The formalism for treating the general case of closed-orbit distortion was first introduced by Courant and

Snyder in 1957 [1]. As we consider linear betatron motion only, the total orbit distortion at a general

location s can be expressed as the integral of all perturbations encountered along the ring

u(s) =

√
β(s)

2 sin (πQ)

∫ s+C

s

δBu(τ)

Bρ
θ(τ)

√
β(τ) cos (πQ− |ψ(s)− ψ(τ)|)dτ. (I.8.37)

Approximating the errors as delta functions at n locations, the distortion at the ith observation point

(e.g. at a BPM) is obtained as

ui =

√
βi

2 sin (πQ)

i+n∑
j=i+1

θj
√
βj cos (πQ− |ψi − ψj |), (I.8.38)

with j indicating each single kick produced by the n errors.

During the design stage of a circular accelerator, it is interesting to estimate the expected closed-

orbit distortion induced by a random distribution of errors in n magnets. Such calculations are typically

done to specify tolerances of magnet alignments and field errors of the linear magnets (dipoles and

quadrupoles). By squaring the orbit distortion expression and averaging over the angles (considering

uncorrelated errors), the expectation (rms) value of the closed-orbit distortion is obtained as

urms(s) =

√
β(s)

2
√
2| sin(πQ)|

∑
j

√
βjθj


rms

=

√
nβ(s)βrms

2
√
2| sin(πQ)|

θrms. (I.8.39)

To illustrate this we look at the example of the Spallation Neutron Source (SNS) ring: with its 32

dipoles (β = 6 m) and 54 quadrupoles (β = 30 m), and a tune of Q = 6.2, and assuming 1 mrad rms

kicks either at dipoles or at quadrupoles, one obtains:
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– The rms orbit distortion in the dipoles

udip
rms =

√
6 · 6 · 32

2
√
2| sin(6.2π)|

· 10−3 ≈ 2 cm.

– In the quadrupoles, for equivalent kicks

uquad
rms =

√
30 · 30 · 54

2
√
2| sin(6.2π)|

· 10−3 ≈ 13 cm.

I.8.2.5.1 Problem 3

The SNS proton ring with kinetic energy of 1 GeV and a circumference of 248 m has 18, 1 m-long

focusing quadrupoles, each with a gradient of 5 T/m. In one of the quadrupoles, the horizontal

and vertical β functions are 12m and 2m, respectively. The rms β function in both planes on the

focusing quadrupoles is 8 m.

a) With a horizontal tune of 6.23 and a vertical tune of 6.2, compute the expected horizontal and

vertical orbit distortions on a single focusing quadrupole induced by horizontal and vertical

misalignments of 1 mm rms in all the quadrupoles.

b) What happens to the horizontal and vertical closed-orbit distortions if the horizontal tune

drops to 6.1, and 6.01?

I.8.2.5.2 Solution to problem 3

a) – The rms orbit distortion is given by

urms(s) =

√
Nβ(s)βrms

2
√
2| sin(πQ)|

θrms.

– We need to determine the rms kick angle, which for a quadrupole displacement is given

by

θrms =
GL

Bρ
(δu)rms.

– For computing the magnetic rigidity Bρ we need the total energy, which is

E = T + E0 = 1.938GeV.

– W compute the relativistic beta from the relativistic gamma

γr =
E

E0
= 2.07 ⇒ βr =

√
1− 1/γ2r = 0.875.
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– The magnetic rigidity is then

Bρ = 3.3356βrE [GeV] = 5.657Tm,

and the rms angle in both planes is

θrms = 8.8× 10−4 rad.

– Now we can calculate the rms orbit distortion on the single focusing quad

xrms(s) =

√
Nβx(s)βrms

2
√
2| sin(πQx)|

θrms =

√
18× 12× 8

2
√
2| sin(6.23π)|

× 8.8× 10−4 = 19.6mm.

– The vertical is

yrms(s) =

√
Nβy(s)βrms

2
√
2| sin(πQy)|

θrms =

√
18× 2× 8

2
√
2| sin(6.20π)|

× 8.8× 10−4 = 9mm.

b) – For Qx = 6.1 the horizontal orbit distortion becomes

xrms(s) = 41.9mm.

– For Qx = 6.01 we have

xrms(s) = 0.41m.

– For both cases, the vertical rms orbit distortion remains unchanged.

I.8.2.6 Closed-orbit correction

In particle accelerators, maintaining the precise alignment and trajectory of the particle beams is critical

for optimal performance. Various imperfections can lead to closed-orbit distortions as mentioned above,

which need to be corrected, e.g. to minimize particle loss on the vacuum chambers. Generally speaking,

one needs to develop methods to measure the beam orbit using BPMs and to minimize the closed-

orbit distortion by deploying closed-orbit dipole corrector magnets. The closed orbit can be corrected

locally, correcting directly at the source of the error, e.g. by introducing closed-orbit bumps. For the

global closed-orbit correction, various methods have been developed, such as a harmonic correction by

minimizing components of the closed-orbit frequency response from Fourier analysis; the MICADO

algorithm that searches for the most efficient corrector for minimizing the rms orbit; or a least square

minimization using the orbit response matrix of dipole correctors using SVD.

From the previous analysis above we have observed that the impact of a kick on the closed orbit

is proportional to
√
β at the location of the kick, and to

√
β at the location of observation. It is thus

advantageous to install closed-orbit correctors at locations with large β functions, and also BPMs at

locations with large β functions. The choice of the machine layout can thus already help in optimising

the closed-orbit correctability of a machine by placing horizontal or vertical dipole correctors and BPMs

close to focusing or defocusing quadrupoles, respectively. An example is the FODO lattice of the SPS
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ring shown in Fig. I.8.14, in which horizontal BPMs and horizontal orbit correctors were installed next

to focusing quadrupoles, and conversely vertical BPMs and vertical orbit correctors were installed next

to defocusing quadrupoles.

Fig. I.8.14: Example diagram (left) and actual disposition in the SPS (right) of dipole correctors and
BPMs close to quadrupoles.

For machines with less regular optics, special attention is required for the locations where beta-

functions reach maxima (e.g. insertion regions in a collider) and/or where the phase advance is quickly

evolving.

I.8.2.7 Closed-orbit correction - local

Often it is needed to steer the closed orbit away from the nominal trajectory in a localized part of a circular

accelerator. Typical examples are local orbit correction (or steering around local aperture restrictions)

using a few correctors, e.g. Fig. I.8.15, or bumps required for injection / extraction, e.g. Fig. I.8.16.

Standard “bump” configurations exist, using a limited number of correctors.

Fig. I.8.15: closed-orbit bump using three correctors. The dipole correctors are indicated in the plot by
the purple squares.

The general framework for building local closed-orbit bumps is the following. Consider the trans-
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Fig. I.8.16: Schematic representation of an extraction bump using two correctors: before extraction
(left) and at extraction (right) where in addition a fast kicker magnet is fired to bring the beam through
the extraction septum out of the machine.

port matrix between two positions in an accelerator, here from position 1 to position 2

M1→2 =

(
m11 m12

m21 m22

)
=

 √
β2

β1
(cosψ12 + α1 sinψ12)

√
β2β1 sinψ12

α1−α2√
β2β1

cosψ12 − 1+α2α1√
β2β1

sinψ12

√
β1

β2
(cosψ12 − α2 sinψ12)

 .
Now, consider a single-dipole kick at position 1

θ1 =
δ(Bl)

Bρ
.

At position 2, the variation of position (δu2) and angle (δu′2) can be expressed as(
δu2

δu′2

)
= M1→2

(
0

θ1

)
.

Inserting the coefficients from the general betatron matrix, we obtain

δu2 =
√
β1β2 sin(ψ12)θ1,

and

δu′2 =

√
β1
β2

[cos(ψ12)− α2 sin(ψ12)]θ1.

Using these simple formulas, one can calculate the conditions to create local closed-orbit bumps

using the desired numbers of correctors. The simplest cases are using between two and four correctors,

as depicted in Fig. I.8.17.

Consider a cell in which the correctors are placed close to the focusing quadrupoles. The orbit

shift at the second corrector is obtained as

δu2 =
√
β1β2 sin(ψ12)θ1.
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Fig. I.8.17: Diagram of typical orbit bumps using two (top), three (middle) or four (bottom) orbit cor-
rectors.

This orbit bump can be closed by choosing a phase advance equal to π between the correctors (this is

called a “π-bump”). The kick at position 2 needs to satisfy the following equation

θ2 = δu′2 = −

√
β1
β2

[cos(ψ12)− α2 sin(ψ12)] θ1 =

√
β1
β2
θ1.

The restriction to a phase advance of a multiple of π is unpractical in most situations. Therefore the 3-

corrector bump is more commonly used, as it works for any phase advance if the three correctors satisfy

certain conditions. The angle of the closed orbit (i.e. the slope of the closed orbit) in the center of the

bump is defined by the conditions to achieve a closed bump, and it can thus not be adjusted independently

of the bump amplitude. The condition for such a bump to be closed is

√
β1

sinψ23
θ1 =

√
β2

sinψ31
θ2 =

√
β3

sinψ12
θ3. (I.8.40)

Note that in the above equation ψ23 indicates the phase advance from location 2 to location 3, ψ31

indicates the phase advance from location 3 to location 1, and ψ12 the phase advance from location 1 to

location 2.

Another way to understand two and three orbit corrector bumps is to use normalised phase-space

coordinates, as show in Fig. I.8.18. In this illustration, the “π-bump” is obvious, while the three-

corrector-bump relation can easily be extracted using the “law of sines” in triangles.

Finally, a four-corrector bump allows for independent adjustment of the position xb and angle x′b
of the closed-orbit bump at location sb. This configuration can be used for aperture scanning, extraction
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Fig. I.8.18: Phase-space representation of closed-orbit bumps using two (left) or three (right) orbit cor-
rectors.

bumps, and more. The derivation of the conditions for achieving a closed bump is more lengthy, but

following similar derivations as before one obtains the following equations

θ1 = +
1√
β1βb

cosψ2b − αb sinψ2b

sinψ12
xb −

√
βb
β1

sinψ2b

sinψ12
x′b, (I.8.41)

θ2 = − 1√
β2βb

cosψ1b − αb sinψ1b

sinψ12
xb +

√
βb
β2

sinψ1b

sinψ12
x′b, (I.8.42)

θ3 = − 1√
β3βb

cosψb4 + αb sinψb4

sinψ34
xb −

√
βb
β4

sinψb4

sinψ34
x′b, (I.8.43)

θ4 = +
1√
β4βb

cosψb3 + αb sinψb3

sinψ34
xb +

√
βb
β4

sinψb3

sinψ34
x′b. (I.8.44)

I.8.2.7.1 Problem 4

Three correctors are placed at locations with a phase advance of π/4 between them and beta func-

tions of 12, 2, and 12 meters. The question is: how are the corrector kicks related to each other in

order to achieve a closed three-corrector bump (i.e., what is the relative strength between the three

kicks)?

I.8.2.7.2 Solution to problem 4

– The relations for achieving a three-bump are

√
β1

sinψ23
θ1 =

√
β2

sinψ31
θ2 =

√
β3

sinψ12
θ3.

– The phase advances are ψ12 = ψ23 = π/4 and ψ13 = ψ12 + ψ23 = π/2, which gives

ψ31 = −π/2.

– So θ1 = θ3 and θ2 = −θ1
√
12.
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I.8.2.8 Closed-orbit correction - global

Global orbit correction is a fundamental process in synchrotrons to ensure that the particle beam follows

the desired path as closely as possible. Over time, various methods have been developed to address

this problem. One of the most widely used methods at CERN is the MICADO (from French “MInimi-

sation des CArrés des Distortions d’Orbite”) algorithm [2], which has been implemented in different

programming languages, evolving from FORTRAN to modern languages such as Java, C, and C++.

I.8.2.8.1 MICADO algorithm

The MICADO algorithm, introduced by B. Autin and Y. Marti in 1973 [2], is a deterministic approach to

minimizing quadratic orbit distortions. The principle behind MICADO is relatively simple and involves

the following steps:

1. A model of the machine is required;

2. The effect (response) of each orbit corrector on the orbit is computed;

3. MICADO compares the response of every corrector with the raw orbit in the machine;

4. The corrector that has the best match with the raw orbit, i.e. the one that will give the largest

improvement to the RMS orbit deviation, is selected;

5. The procedure is iterated to include the second-best corrector, and so on, until the orbit is suffi-

ciently corrected or cannot be improved further.

An example application of the MICAOD algorithm to the closed-orbit correction the CERN LHC

is shown in Fig. I.8.19.

It should be noted that the intuitive nature of the MICADO algorithm allows it to be applied not

only for orbit correction using the measured orbit distortion but also for the correction of other linear

effects.

I.8.2.8.2 Singular Value Decomposition - SVD

Another approach for global orbit correction involves using the response matrix, which relates the kicks

from correctors to the closed-orbit displacements at BPMs. The steps in this method are as follows:

1. Consider a set of M available orbit correctors and N BPMs;

2. Assume or verify that the linear approximation is sufficient (typicall OK for small corrections);

3. Use the optics model to compute the response matrix A, which describes the orbit change in the

ith monitor due to a unit kick from the jth corrector. The elements Ai,j of the response matrix A

are obtained using the previously defined formalism as

Ai,j =

√
βiβj cos(πQ− |ψi − ψj |)

2 sin(πQ)
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Fig. I.8.19: Example of MICADO orbit correction at the LHC. The raw orbit (top) can have large errors,
but the correction brings the deviations down by a factor of 20 (below).

and can be computed using a beam optics simulation program like MAD-X or even measured

directly in the machine;

4. To compute the correction to achieve the desired global orbit variation, we invert the response

matrix A so that

∆c = A−1∆m,

where ∆c are the corrector strengths and ∆m are the measured orbit deviations.

When the number of correctors M is not equal to the number of BPMs N , a Singular Value

Decomposition (SVD) is used to perform a pseudo-inversion of the response matrix. The SVD algorithm

decomposes the response matrix A into three matrices

A = UΣV T ,

where U and V are orthogonal matrices, Σ is a diagonal matrix containing the singular values and T

indicates the transpose of a matrix.

The correction ∆c is then computed as

∆c = V Σ−1UT∆m.
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I.8.2.9 Concluding remarks on beam orbit stability

Beam orbit stability is a crucial aspect of the operation of synchrotrons, significantly impacting various

performance parameters. Ensuring stable beam orbits is essential for several reasons. Firstly, it directly

affects the injection and extraction efficiency of synchrotrons. Any instability in the orbit can lead to

losses during these processes, reducing the overall efficiency of the machine. Secondly, in colliders,

the stability of the collision point is paramount. Unstable orbits can cause shifts in the collision point,

adversely affecting the experimental conditions. Thirdly, for synchrotron light sources, the stability of

the light spot in the beamlines is critical for the precision of experiments and the quality of the generated

light.

The consequences of orbit distortion are numerous and detrimental. Mis-steering of beams can

occur, leading to off-centered orbits that can cause beam losses. Modifications of the dispersion function

and resonance excitation can also result from orbit distortions, further complicating beam dynamics.

Aperture limitations may be encountered, reducing the operational efficiency and lifetime of the beam.

Additionally, orbit distortions can induce coupling between the horizontal and vertical planes of particle

motion, modulation of lattice functions, and poor injection/extraction efficiency, all of which degrade the

overall performance of the accelerator.

Sources of closed-orbit drifts can be categorized by their timescales. Long-term drifts, occurring

over years to months, are often due to ground settling and seasonal changes. These slow drifts can

gradually alter the alignment of the accelerator components, necessitating periodic corrections. Medium-

term drifts, spanning days to hours, can be caused by various environmental factors such as thermal

variations due to the sun, weather changes including rivers, rain, and wind, and operational factors. These

drifts can also result from the drift of electronics and local machinery, which require regular monitoring

and adjustment. Short-term drifts, happening within minutes to seconds, are primarily due to ground

vibrations, fluctuations in power supplies, the influence of experimental magnets, and the operation of

air conditioning and refrigeration systems. These rapid changes might necessitate real-time correction

mechanisms to maintain orbit stability.

I.8.2.9.1 Problem 5

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and

108 defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m, with horizontal and vertical

β functions of 108 m and 30 m in the focusing quadrupoles (30 m and 108 m for the defocusing

ones). The tunes are Qx = 20.13 and Qy = 20.18. In 2016, a mechanical problem resulted in

the vertical movement of one of the focusing quadrupoles, i.e. it was sinking down, resulting in an

increasing closed-orbit distortion compared to a reference closed orbit taken earlier in the year.

a) By how much had the quadrupole shifted down when the maximum vertical closed-orbit

distortion amplitude in defocusing quadrupoles reached 4 mm?

b) Why was there no change in the horizontal orbit measured?

c) How big would have been the maximum closed-orbit distortion amplitude if it had been a
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defocusing quadrupole?

I.8.2.9.2 Solution to problem 5

a) – For 400 GeV, the relativistic beta is almost 1 and then the magnetic rigidity is

Bρ = 3.3356βrE [GeV] = 1334Tm.

– The focusing normalized gradient is

KF =
GF

Bρ
=

15

1334
= 0.011m−2

– The defocusing one is just the same with opposite sign

KD = −0.011m−2.

– The closed-orbit distortion from a single-dipole error is given by

u(s) = θ

√
β(s)β0

2 sin(πQ)
cos(πQ− |ψ(s)− ψ0|).

– We are interested in the peak (ŷ) orbit distortion

ŷ = θ

√
β̂yβ0

2 sin(πQ)
.

– From this we can calculate the required kick

θ =
ŷ2 sin(πQ)√

β̂yβ0

=
0.004× 2 sin(π20.18)√

108× 30
= 75µrad.

– And finally the required quadrupole displacement to produce this deflection

θ =
Glδy

Bρ
= KF lF δy ⇒ δy =

θ

KF lF
=

75× 10−6

0.011× 3.22
m = 2mm.

b) No horizontal orbit change was observed because the quadrupole shifted only in the vertical

plane resulting in a pure vertical kick.

c) If it had been a defocusing quadrupole, the kick would have been the same but with the

opposite sign. However, the impact on the closed orbit would have been bigger since the

vertical β-function is bigger in the defocusing quadrupole, such that the peak orbit distortion
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would reach

ŷ = θ

√
β̂yβ0

2 sin(πQ)
= θ

√
β̂yβ̂y

2 sin(πQ)
= 75× 10−6 ×

√
108× 108

2 sin(π × 20.18)
m = 7.5mm.

I.8.3 Optics function distortion - gradient errors

Optics errors in synchrotrons can significantly impact the stability and performance of particle beams.

These errors lead to phenomena such as tune shifts, beta-beating, and resonance excitation, which can

degrade the quality of the beam and affect the overall efficiency of the accelerator. Hence, maintaining

control over optics is critical for machine performance, especially at collision points or collimators, such

as in the LHC.

A common source of optics errors is the presence of quadrupole errors, i.e. unwanted quadrupolar

fields in the accelerator. These result in additional focusing or defocusing of the particle beam. When a

particle is injected with an offset, it performs betatron oscillations and experiences additional focusing

(or defocusing) from the quadrupole error, leading to a tune shift and beta-beating. The ideal machine

model with a regular FODO lattice can be used to illustrate this effect. Consider a quadrupole error

located at the end of the lattice, as shown in Fig. I.8.20. The particle’s betatron oscillations will be

modified by the error, leading to a distorted beam envelope around the machine, commonly referred to

as beta-beating. Also note that the quadrupole error has modified the tune of the machine.

Fig. I.8.20: Illustration of optics distortion, comparing the nominal (top) with the perturbed optics (bot-
tom) for the case of a regular FODO lattice. The quadrupole error results in a distortion of the beam
envelope and induces a tune shift (the tunes are indicated in the plots).
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Optics errors can arise from various sources, including errors in quadrupole strengths (both ran-

dom and systematic), stray fields from injection / extraction elements, feed-down from higher order

multi-pole magnets and their errors if the beam has a non-zero closed-orbit distortion at their location.

I.8.3.1 Mathematical description of optics errors

First we will investigate how a single quadrupole error changes the tune of the machine. Let’s consider

the one-turn transfer matrix of the machine

M0 =

(
cos(2πQ) + α0 sin(2πQ) β0 sin(2πQ)

−γ0 sin(2πQ) cos(2πQ)− α0 sin(2πQ)

)
. (I.8.45)

A gradient error δK in a quadrupole can be taken into account by adding a thin-lens quadrupole to the

one-turn matrix. The new one-turn matrix is then obtained as

M =

(
1 0

−δKds 1

)
M0, (I.8.46)

which yields

M =

(
cos(2πQ) + α0 sin(2πQ) β0 sin(2πQ)

−δKds(cos(2πQ) + α0 sin(2πQ))− γ0 sin(2πQ) cos(2πQ)− (δKdsβ0 + α0) sin(2πQ)

)
.

(I.8.47)

This one-turn transfer matrix can also be written as a new one-turn transfer matrix

M∗ =

(
cos(χ) + α∗

0 sin(χ) β∗0 sin(χ)

−γ∗0 sin(χ) cos(χ)− α∗
0 sin(χ)

)
, (I.8.48)

where χ = 2π(Q + δQ) denotes the new tune of the new matrix. These two one-turn matrices are

equal as they describe the same machine. Thus, also the traces of these matrices have to be equal,

i.e. trace(M) = trace(M0), which gives

2 cos(2πQ)− δKdsβ0 sin(2πQ) = 2 cos(2π(Q+ δQ)). (I.8.49)

Developing the right-hand side as

cos(2π(Q+ δQ)) = cos(2πQ) cos(2πδQ)− sin(2πQ) sin(2πδQ) ≈ cos(2πQ)− sin(2πQ)2πδQ,

(I.8.50)

and inserting it back finally results in the tune shift induced by a thin-lens quadrupole

4πδQ = δKdsβ0. (I.8.51)

For a quadrupole of length l the tune shift is thus

δQ =
1

4π

∫ s0+l

s0

δK(s)β(s)ds, (I.8.52)
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and more generally for distributed quadrupole errors, the tune shift is obtained as

δQ =
1

4π

∮
δK(s)β(s)ds. (I.8.53)

In the following, we will investigate the optics distortion induced by a quadrupole error in the

machine. Here we consider the unperturbed transfer matrix for one turn M0 written as the product of

two transport matrices A and B

M0 =

(
m11 m12

m21 m22

)
= B ·A, (I.8.54)

with

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
. (I.8.55)

Introducing a thin-lens quadrupole representing a gradient perturbation between the two matrices A and

B allows to obtain the perturbed one-turn transfer matrix as

M∗
0 =

(
m∗

11 m∗
12

m∗
21 m∗

22

)
= B

(
1 0

−δKds 1

)
A. (I.8.56)

Recalling that m12 = β0 sin(2πQ) we can write the perturbed term as

m∗
12 = (β0 + δβ) sin(2π(Q+ δQ)) = m12 + δβ sin(2πQ) + 2πδQβ0 cos(2πQ), (I.8.57)

where we used sin(2πδQ) ≈ 2πδQ and cos(2πδQ) ≈ 1, as well as

sin(2π(Q+ δQ)) = sin(2πQ) cos(2πδQ) + cos(2πQ) sin(2πδQ). (I.8.58)

On the other hand, the matrices A and B have the coefficients a12 =
√
β0β(s1) sinψ and b12 =√

β0β(s1) sin(2πQ− ψ) and we can thus write the perturbed matrix element m∗
12 explicitly as

m∗
12 = b11a12 + b12a22 − a12b12δKds = m12 − a12b12δKds. (I.8.59)

Combining Eqs. (I.8.57) and (I.8.59) yields

δβ sin(2πQ) + 2πδQβ0 cos(2πQ) = −β0β(s1) sinψ sin(2πQ− ψ)δKds, (I.8.60)

and inserting for δQ the expression from Eq. (I.8.51), we obtain

δβ sin(2πQ) +
1

2
δKdsβ0β(s1) cos(2πQ) = −β0β(s1) sinψ sin(2πQ− ψ)δKds. (I.8.61)

Using

cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
(I.8.62)
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yields the expression for the relative beta distortion

δβ

β0
= − 1

2 sin(2πQ)

∫ s1+C

s1

β(s)δK(s) cos(2ψ − 2πQ)ds. (I.8.63)

For distributed errors around the machine we obtain

δβ(s)

β(s)
= − 1

2 sin(2πQ)

∫ s+C

s
β(s1)δK(s1) cos(|2ψ(s1)− 2ψ(s)| − 2πQ)ds1. (I.8.64)

This equation shows how the gradient error perturbs the beta function around the ring. Note that the

impact of a quadrupole error on the tune and on the optics distortion (beta-beating) scales with the

β function at the location of the quadrupole error. The induced beta-beating wave propagates with twice

the lattice phase advance around the machine (due to the term 2ψ(s) in the cosine). Furthermore, the

expression for the beta-beating shows that quadrupole errors have the biggest impact close to integer and

half-integer tunes due to the sin(2πQ) in the denominator. At these resonances the beam envelope (or

the beam size) becomes unstable.

For machine operation, it is thus essential to avoid not only integer but also half-integer tunes.

Similar to the case of dipole errors, at integer tunes also the kicks from quadrupole errors add up turn

after turn resulting in unstable motion (dipole errors result in an unstable closed orbit, quadrupole errors

in unstable beam size). Furthermore, at half-integer tunes the quadrupole errors also add up turn after

turn (recall that dipole errors have the least impact for half-integer tunes, as they cancel out turn after

turn). This is illustrated in Fig. I.8.21.

Fig. I.8.21: Effect of a quadrupole error at integer (left) and half-integer (right) tunes. In both cases the
errors add up turn after turn, driving the beam envelope unstable.

The example shown in Fig. I.8.22 demonstrates the importance of choosing the machine tune to

ensure the robustness of an optics against quadrupole imperfections. The same quadrupole error installed

in the FODO lattice with a tune of 4.24 has no noticeable effect on the beam optics around the machine,

while for a tune of 4.49 the beam envelope becomes very large and completely distorted, a situation to

be avoided in machine operation.

Figure I.8.23 (top) shows a practical example of optics distortion due to quadrupole errors in the
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Fig. I.8.22: Illustration of the impact of a quadrupole error on the machine optics. The same quadrupole
error is installed in the FODO lattice set to a tune of 4.24 (top) and set to a tune of 4.49 (bottom).

LHC. Compared to the regular β functions in the unperturbed optics, a quadrupole gradient error leads

to noticeable perturbations in the β function, resulting in the oscillating pattern. The error is easier

to analyse and diagnose if one examines the ratio between the perturbed and the nominal β function

when plotted against the betatron phase advance as shown in Fig. I.8.23 (bottom). The β function ratio

reveals an oscillating pattern, called the betatron function beating (‘beta-beating’). The amplitude of the

perturbation is the same all over the ring. Similar to the case of the closed-orbit kick, the location of the

quadrupole error reveals itself by a kink in the oscillation pattern. Furthermore, it can be easily seen that

there are two oscillation periods per 2π (360 deg) phase advance. The beta-beating frequency is twice

the frequency of orbit oscillations.

I.8.3.2 Correction and mitigation of optics distortion due to quadrupole errors

Understanding and mitigating the impact of optics errors is crucial for maintaining the stability and

performance of synchrotrons. Through careful analysis and correction of these errors, it is possible

to minimize their adverse effects and ensure optimal machine operation. Quadrupole correctors can be

foreseen in the machine design to mitigate the effects of gradient errors. These correctors can take several

forms:

– Individual correction magnets: these are dedicated magnets placed at strategic locations around

the synchrotron to correct gradient errors (locally or globally).

– Windings on the core of the quadrupoles (trim windings): additional windings are integrated

into the quadrupole magnets, allowing fine-tuning of the magnetic field to correct errors.
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Fig. I.8.23: Example of a perturbed β function within a segment of the LHC ring. The top plot displays
the nominal and perturbed optics as a function of the longitudinal position in the ring. The bottom plot
illustrates the ratio of perturbed to nominal optics as a function of phase advance. Notice the kink in the
oscillatory pattern, indicating the location of the source of the optics perturbation, and the frequency of
the oscillation in the rest of the ring, which is twice the frequency of the phase advance.

– Pairs of correctors at well-chosen locations: corrector pairs can be installed to minimize reso-

nance effects.

Several methods and approaches are available to address the impact of gradient errors:

– Measuring and correcting the optics function β distortion: the β function distortion can be

obtained by analysing the betatron motion of a kicked beam at various BPMs around the machine.

The most commonly used technique is based on reconstructing the beta-beating from the measured

phase beating of the betatron motion between BPMs. This method is usually the preferred option,

as it does not rely on the BPM calibration (unlike the analysis based on the direct measurement

of the oscillation amplitude between BPMs). Suitable corrections can be determined through a

response matrix approach, similar to what was discussed in the context of closed-orbit corrections

(SVD).

– Move the working point close to integer and half-integer resonance: adjusting the working

point to be near these resonances can increase the sensitivity to quadrupole errors, which can be
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useful when the optics correction aims at minimizing the half-integer resonance strength.

– Individual powering of quadrupoles and/or trim windings: individual powering of a

quadrupole allows direct measurement of optics functions at the location of the quadrupole by

exploiting Eq. (I.8.52), which is the so called K-modulation technique. The β function is directly

related to the measured tune shift when varying the strength of the quadrupole. Furthermore, in-

dividually powered quadrupoles allow for optics correction as well as beam-based alignment of

BPMs.

Modern methods of response matrix analysis, such as Linear Optics from Closed Orbits (LOCO),

play a crucial role in fitting the optics model to the real machine and correcting optics distortion, es-

pecially for light sources for which the machine performance (i.e. the resulting equilibrium emittance)

depends crucially on the control of the machine optics. LOCO works by analyzing the response of the

beam to various magnetic configurations and deriving corrections that align the actual machine behaviour

with the theoretical model.

I.8.3.2.1 Problem 6

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and

108 defocusing quadrupoles, each with a length of 3.22 m and a gradient of 15 T/m, with a horizontal

and vertical β function of 108 m and 30 m in the focusing quadrupoles (30 m and 108 m for the

defocusing ones). The tunes are Qx = 20.13 and Qy = 20.18.

a) Find the tune shift for systematic gradient errors of +1% in the focusing and +0.5% in the

defocusing quadrupoles.

b) Find the βx and βy rms beating for rms gradient errors of 1% in both focusing and defocusing

quadrupoles.

I.8.3.2.2 Solution to problem 6

a) – For 400 GeV, the magnetic rigidity is Bρ = 3.3356βrE [GeV] = 1334Tm.

– The focusing and defocusing normalized gradients are

KF =
GF

Bρ
=

15

1334
= 0.011m−2, KD = −0.011m−2.

– Now, the total tune change is given by

δQu =
1

4π

∑
i

βuKi

(
δK

K

)
i

li, withu = x, y.
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– By splitting the focusing and defocusing quads, we have

δQu =
1

4π

(
NFβ

F
uKF

(
δK

K

)
F

lF +NDβ
D
u KD

(
δK

K

)
D

lD

)
.

– As NF = ND = N , lF = lD = l and KF = −KD = K, the tune shift can be rewritten

as

δQx,y =
1

4π
NlK

(
±βFx,y

(
δK

K

)
F

∓ βDx,y

(
δK

K

)
D

)
.

– This gives a horizontal and vertical tune shift of

δQx =
108× 3.22× 0.011

4π
(108× 0.01− 30× 0.005) = 0.3, (I.8.65)

δQy =
108× 3.22× 0.011

4π
(−30× 0.01 + 108× 0.005) = 0.07. (I.8.66)

b) – In a similar way, one can compute the rms beta beating in case of rms error of 1% for

both focusing and defocusing quadrupoles (note that in this case, all signs are positive!).

The rms beta beating is given by

δβu
β0u

∣∣∣∣
rms

=
1

2
√
2| sin(2πQ)|

(∑
i

δK2
i βu,ii

2

)1/2

, (I.8.67)

=
1

2
√
2| sin(2πQu)|

√
N

∣∣∣∣lK (δKK
)∣∣∣∣ [(βFu )2 + (βDu )2]1/2 , (I.8.68)

=

√
108× 3.22× 0.011× 0.01×

√
1082 + 302

2
√
2| sin(2πQu)|

, (I.8.69)

i.e.: (
δβx
β0x

)
rms

= 20%, (I.8.70)(
δβx
β0x

)
rms

= 16%. (I.8.71)

I.8.4 Coupling errors

The beam dynamics in the two transverse planes is coupled if the betatron motion in one plane affects the

betatron motion in the other plane. This leads to complications, as the two planes cannot be controlled

independently. Linear coupling may result from the rotation of a quadrupole (tilt), which introduces a

skew-quadrupole component into the magnetic field, as shown in the schematics in Fig. I.8.24.

Similarly, a systematic vertical offset in a sextupole generated through closed-orbit distortion or

a vertical misalignment of the magnet also introduces a skew-quadrupole field. In this situation, the

magnetic fields can be described as follows

Bx = 2B2xȳ = 2B2xy + 2B2xδy, (I.8.72)

By = B2(x
2 − ȳ2) = −2B2yδy +B2(x

2 − y2)−B2(δy)
2, (I.8.73)
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Fig. I.8.24: The magnetic field of tilted quadrupole is equivalent to the sum of normal quadrupole and a
skew quadrupole.

where δy represents the vertical offset and ȳ is introduced to represent our usual change of variable

ȳ = y + δy.

To understand how the skew-quadrupole field induces coupling, let’s have a look at the forces

generated by a normal and a skew-quadrupole field: Normal quadrupoles produce magnetic fields which

result in Lorentz forces that depend on the particle’s position in the same plane

Fx = −kx, Fy = +ky.

In contrast, skew quadrupoles produce magnetic fields which result in Lorentz forces that depend on the

position in the orthogonal plane

Fx = ksy, Fy = ksx.

These skew-quadrupole components thus couple the motion in the two planes, leading to cross-talk

between horizontal and vertical beam dynamics.

Mathematically, coupling can also be treated using the transport matrix formalism. Starting from

the case of uncoupled motion, the transport matrices for each transverse plane can be written separately.

Let’s consider again the one turn matrix for a given plane u

Mu =

[
cos(2πQu) + αu sin(2πQu) βu sin(2πQu)

−1+α2
u

βu
sin(2πQu) cos(2πQu)− αu sin(2πQu)

]
.

By definition, Mu is symplectic (see linear dynamics lectures), and as such can be diagonalized in a

matrix with elements equal to its eigenvalues (λ1, λ2), which must fulfil λ1λ2 = 1, in particular

det(Mu − λI) = [cos(2πQu)− λ]2 − α2
u sin

2(2πQu) + (1 + α2
u) sin

2(2πQu) (I.8.74)

= λ2 − 2λ cos(2πQu) + 1 = 0 (I.8.75)

hence,

λ1/2 = cos(2πQu)± i sin(2πQu) = e±i2πQu (I.8.76)

, which satisfy λ1λ2 = 1. With a transformation Eu built by the normalized eigenvectors of Mu one can
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diagonalize the latter

Eu
−1MuEu =

(
e+i2πQu 0

0 e−i2πQu

)
(I.8.77)

, which is equal to the diagonalized version of a simple rotation. Note that this is the case only because

the considered matrix Mu is by construction representing a periodic lattice which has a closed solution.

In general, for a generic transport matrix Ms0s between two locations of a ring or a transfer line, i.e.

Ms0,s =


√

βs

βs0
(cosψs0,s + αs0 sinψs0,s)

√
βsβs0 sinψs0,s

αs0−αs√
βsβs0

cosψs0,s −
1+αsαs0√

βsβs0

sinψs0,s

√
βs0
βs

(cosψs0,s − αs sinψs0,s)

 (I.8.78)

the eigenvalues would still need to fulfill the relation λ1λ2 = 1, but the amplitude of one of the two eigen-

values could be greater than one, which would not correspond anymore to a rotation, but representing an

un-bounded lattice.

So far, we have considered each plane independently, meaning the coordinates of a particle at a

given location are transported from turn n to the turn after n+ 1 as follows(
x

x′

)
n+1

= Mx

(
x

x′

)
n

and

(
y

y′

)
n+1

= My

(
y

y′

)
n

(I.8.79)

. We can also merge the two 2× 2 independent matrices Mu into a 4× 4 block matrix M
x

x′

y

y′


n+1

= M


x

x′

y

y′


n

=

[
Mx 0

0 My

]
x

x′

y

y′


n

=


Cx Sx 0 0

C ′
x S′

x 0 0

0 0 Cy Sy

0 0 C ′
y S′

y



x

x′

y

y′


n

. (I.8.80)

This formulation represents uncoupled motion, indicating no cross-talk between planes.

The matrix M must also be symplectic, hence can be diagonalized by a transformation E in

its eigenvalues, which, by virtue of the block composition of M, are equal to the eigenvalues of the

individual Mu

E−1ME =


e+i2πQx 0 0 0

0 e−i2πQx 0 0

0 0 e+i2πQy 0

0 0 0 e−i2πQy

 . (I.8.81)

This matrix is equal to the diagonalized version of a simple rotation, with independent rotations in the x

and y planes.

Let’s now introduce one skew quadrupole, represented by Msq, and built in analogy to the normal
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quadrupole matrix in thin-lens approximation. The particle coordinates at turn n+1 can be expressed as
x

x′

y

y′


n+1

= MsqM


x

x′

y

y′


n

=


1 0 0 0

0 1 0 −δksq
0 0 1 0

0 −δksq 0 1



Cx Sx 0 0

C ′
x S′

x 0 0

0 0 Cy Sy

0 0 C ′
y S′

y



x

x′

y

y′


n

(I.8.82)

=


Cx Sx 0 0

C ′
x S′

x −δksqCy −δksqSy
−δksqCx −δksqSx Cy Sy

0 0 C ′
y S′

y



x

x′

y

y′


n

. (I.8.83)

Note that the new matrix is not anymore block diagonal, but there are terms in the off-diagonal 2 × 2

blocks that couple the motion between the two planes. Still, the new matrix must be symplectic and

it can be diagonalized in its eigenvalues λj , which must also come in pairs such that λ1λ2 = 1 and

λ3λ4 = 1. Note that in this case it must also hold λ1 + 1
λ1

= λ1 + λ2 and λ3 + 1
λ3

= λ3 + λ4. Solving

det(MsqM− λI) = 0, one can get the following relation [3]

λ+
1

λ
= cos(2πQx) + cos(2πQy)±

√
[cos(2πQx)− cos(2πQy)]2 + δk2sqβxβy sin(2πQx) sin(2πQy).

(I.8.84)

If the particle motion is still bounded (which is not necessarily the case!) λ must assume the form

λ = ei2πµ, hence

λ+
1

λ
= ei2πµ + e−i2πµ = 2 cos(2πµ), (I.8.85)

where µ ∈ R. In analogy with the uncoupled case, one can compute the transformation that diagonalizes

the coupled matrix into two independent “tunes” (µ+, µ−) which depend on the two uncoupled tunes

(Qx, Qy)

2 cos(2πµ) = cos(2πQx) + cos(2πQy)

±
√
[cos(2πQx)− cos(2πQy)]2 + δk2sqβxβy sin(2πQx) sin(2πQy). (I.8.86)

In the limit where Qx = Qy := µ0 in Eq. I.8.86, one finds that cos(2πµ+) − cos(2πµ−) =√
βxβy|δksq| sin(2πµ0), and if (µ+ − µ−) = ∆µ is small, one can easily prove that cos(2πµ+) −

cos(2πµ−) ≈ sin(2πµ0)2π∆µ, hence

∆µ = µ+ − µ− ≈
√
βxβy

2π
|δksq|.

This represents the minimum separation between eigenvalues, or, in practice, the minimum tune separa-

tion that one could observe in an accelerator, also called the “closest tune approach” (∆Qmin).

Numerically, let’s assume to insert the skew quadrupoles at a location where βx = βy = 1 and

assume Qy = 0.25. For this simplified case, the eigenvalues (µ+, µ−) as a function of varying Qx for
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different values of |δksq| are shown in Fig. I.8.25. These plots illustrate the relationship between Qx and

Fig. I.8.25: Coupling eigenvalues for a simplified lattice with a single skew quadruple installed at βx =
βy = 1 and integrated strength |δksq| = 0.01 (left), |δksq| = 0.05 (middle), |δksq| = 0.1 (right) as a
function of the set bare horizontal tune Qx and fixed bare vertical tune Qy = 0.25.

the eigen-mode tunes for varying strengths of the skew quadrupole. Note the minimum distance between

eigenvalues is indeed realized for Qx = Qy = 0.25 and follows from Eq. I.8.4.

One should also note, using Eq. I.8.86, that in a working point region “close to” Qx + Qy = n

where n ∈ N the particle motion becomes un-bounded. For example, in the limit case Qy = 1 − Qx

Eq. I.8.86 becomes

2 cos(2πµ) = 2 cos(2πQx)± i
√
βxβy|δksq| sin(2πQx),

which does not allow any real solution for µ. This can also be demonstrated numerically in a simplified

lattice where the skew quadrupole is again inserted at a location where βx = βy = 1, and by computing

the amplitude of the eigenvalues of MsqM as a function of (Qx, Qy) for different |δksq|. The working

point regions where at least one eigenvalue has an amplitude greater than 1 indicate where the motion is

not stable, as shown in Fig. I.8.26. Note how the “unstable” band around Qy = 1−Qx quickly becomes

Fig. I.8.26: Unstable regions in the tune diagram for a simplified lattice with a single coupling error
inserted at a location where βx = βy = 1 and integrated strength |δksq| = 0.05 (left), |δksq| = 0.1
(middle), |δksq| = 0.2 (right).

larger for higher coupling error strength, underlining the importance of having a good control of coupling

errors in an accelerator.

In practice, in a real accelerator there might be multiple known and unknown sources of coupling.

No unique treatment of this complex problem is available in the literature, but the most common ones

are Mais-Ripken [4] and Edwards-Teng [5]. In practice, there is a general consensus that the most
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important task remains the estimation of the global coupling coefficient |C−| and its minimisation. A

recent overview of different ways to estimate |C−| is available in [6].

In a real accelerator the simplest method to determine if there is coupling is to excite a beam

oscillation in one plane (e.g. with a fast single kick) and observe the oscillations (e.g. with a turn-by-

turn BPM) or the frequency content in the orthogonal plane. If coupling is present, a horizontal kick will

produce a small vertical oscillation and vice versa, as shown for example in Fig. I.8.27 for a measurement

in the LHC.

Fig. I.8.27: Spectrum of the horizontal motion measured at one fast transverse pickup in the LHC in the
presence of coupling. Mind the logarithmic scale, and the presence of a high-amplitude peak (supposedly
close to the bare horizontal tune) and a low-amplitude one (supposedly close to the vertical tune).

To be stressed that, strictly speaking, in this case one does not see the bare tunes (Qx, Qx) of the

un-coupled motion, but one is measuring the two eigenvalues (µ+, µ−) of the coupled motion.

The coupling coefficient C− can be measured by approaching the tunes, e.g. by varying a single

quadrupole strength (recall Eq. I.8.53) and by measuring the minimum distance between the observed

tunes: ∆Qmin = |C−| as shown in Fig. I.8.28.
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Fig. I.8.28: Conceptual experiment where coupled tunes are measured as a function of a normal
quadrupole strength variation (top) and example of an actual measurement in the CERN PS (bottom). In
the latter, one sees the horizontal (top) and vertical (bottom) frequency content measured on a sensitive
pickup as a function of time in a cycle where the bare tunes are set to cross each other.

Coupling correctors, such as skew quadrupoles, can be introduced into the lattice to correct cou-

pling. If skew quadrupoles are not available, vertical closed-orbit bumps in sextupole magnets can be

used as a temporary measure. A typical coupling correction strategy involves:

– Correcting the coupling coefficient: adjust the skew-quadrupole strengths to minimize the cou-

pling coefficient or resonance driving terms.

– Correcting optics distortion: correct vertical dispersion and other optics distortions induced by

coupling.

– Working point adjustment: move the working point close to coupling resonances and iterate the

correction process.

Correcting coupling is especially important for beams with unequal emittances, known as “flat
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beams”, for which coupling can lead to emittance exchange. Vertical orbit correction is also critical for

reducing coupling, particularly due to feed-down effects in sextupoles.

I.8.4.1 Problem 7

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 focusing and

108 defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m, with a horizontal and

vertical beta of 108 m and 30 m in the focusing quads (30 m and 108 m for the defocusing ones).

The tunes are Qx = 20.13 and Qy = 20.18.

In order to correct its natural chromaticity, several 0.42 m long sextupoles are installed next

to focusing and defocusing quadrupoles at locations with high dispersion.

Assume that one of those sextupoles installed next to a focusing quad has a gradient of 60.3

T/m2 and it is vertically misaligned by δy = 10 mm. Assume that the beta functions at the sextupole

are equal to the ones at the nearby quadrupole.

a) What is the normalized sextupole strength?

b) Compute the impact of the vertical misalignment on:

– tune,

– maximum beta beating,

– minimum tune separation,

– maximum closed-orbit deviation

(Neglect next order effects of such an orbit on transverse optics due to other machine sex-

tupoles.)

c) Repeat for the case in which the sextupole is displaced horizontally.

d) What would be the maximum closed-orbit deviation if only one focusing quadrupole would

be vertically displaced by −δy = 10 mm? Qualitatively, would you expect some effect on

coupling or tune or beta-beating in such a case?

I.8.4.1.1 Solution to problem 7

a) – For a vertical offset in a normal sextupole, the resulting magnetic field can be computed

by adapting the usual change of variable: y 7→ y + δy:

By(x, y + δy) = B2

(
x2 − (y + δy)2

)
(I.8.87)

= B2(x
2 − y2)︸ ︷︷ ︸− 2B2(δy)y︸ ︷︷ ︸−B2(δy)

2︸ ︷︷ ︸, (I.8.88)

sextupole skew quad. dipole (I.8.89)
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I.8.4. Coupling errors

Bx(x, y + δy) =
︷ ︸︸ ︷
B2(2xy) +

︷ ︸︸ ︷
2B2(δy)x . (I.8.90)

– i.e., a skew quadrupole with Ā1 = 2B2δy and normal dipole with B̄0 = −B2(δy)
2

where B2 = 60.3 [T/m2].

– Hence, Ā1 = 2×60.3×0.01 = 1.21T/m and B̄0 = −60.3×(0.01)2 = −0.006 [T].

– With the magnetic rigidity of Bρ = 1334T m, the normalized sextupole strength is

K2 =
1

Bρ

∂2By

∂x2
= 2× 60.3/1334 ≈ 0.09 [m−3].

– The skew-quadrupole normalized gradient is δKS = 1.21/1334 ≈ 0.0009 [m−2].

– The horizontal dipole normalized field is −0.006/1334 ≈ −4.5× 10−6 [m−1].

b) – Due to the skew quadrupole, we expect that minimum tune separation

∆Qmin ≈
√
βxβy

2π
|δKS |lsext =

√
108× 30

2π
× 0.0009× 0.42 = 0.0034.

– No beta beating or tune shift is expected (a skew quadrupole does not affect beta func-

tions).

– The kick induced by the dipole feed-down is θx = −4.5 × 10−6 × 0.42 ≈ 1.9 ×
10−6 [rad].

– The maximum horizontal displacement is

∆x|max = |θs0 |

√
βx|maxβx|s0
2 sin(πQx)

= 1.9× 10−6

√
108× 108

2× sin(π20.13)
≈ 2.6× 10−4 [m].

c) – In case the offset is horizontal, one obtains a normal quadrupole and normal dipole

components, hence

– The maximum horizontal closed orbit would be the same as before (note that it

will be on the same plane! as the misalignment and that the dipole kick will have

a positive sign, but no change in absolute term).

– No coupling will be introduced, as no skew components will be generated.

– On the other hand, there will be a tune shift:

δQx,y = ± 1

4π
lsextδKβ

F
x,y,

which correspond to:

δQx =
0.42× 0.0009× 108

4π
= 0.0032, (I.8.91)

δQy =
−0.42× 0.0009× 30

4π
= −0.0009. (I.8.92)
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– There will also be a beta-beating

δβx,y
β0x,y

∣∣∣∣
max

=
1

2| sin(2πQx,y)|
βFx,ylsextδK,

which correspond to

δβx
β0x

∣∣∣∣
max

=
108× 0.42× 0.0009

2| sin(2π × 20.13)|
≈ 2.8%, (I.8.93)

δβy
β0y

∣∣∣∣
max

=
30× 0.42× 0.0009

2| sin(2π × 20.18)|
≈ 0.6%. (I.8.94)

d) – If one focusing quadrupole would be vertically displaced, a vertical closed-orbit kick
would appear

θy =
GF lquad

Bρ
δy =

15× 3.22

1334
× 0.01 ≈ 3.6× 10−4 [rad].

– The maximum vertical closed-orbit deviation (at defocusing quadrupoles) would be

∆y|max = θs0

√
βy|maxβy|s0
2 sin(πQy)

= 3.6× 10−4

√
108× 30

2× sin(π × 20.18)
≈ 20 [mm].

– Such a vertical orbit will also be present in the sextupoles of the machine. Such a big

orbit, double the misalignment considered earlier, will certainly induce strong coupling,

but in principle no beta-beating or tune shift.

I.8.5 Summary

Linear imperfections, such as magnet misalignments and field errors, are unavoidable in a real acceler-

ator. However, these imperfections can be corrected to some extent using various methods. The table

below summarizes the main aspects of linear imperfections and their corresponding corrections.

Error source Effect Cure

Fabrication imperfections
Unwanted multipolar
components

Better fabrication / multipolar
correctors coils

Transverse misalignments Feed-down effect Better alignment / correctors

Dipole kicks
Orbit distortion / residual
dispersion

Corrector dipoles

Quadrupole field errors Tune shift, beta-beating Trim special quadrupoles
Quadrupole tilts Coupling x− y Better alignment / skew quads

Power supplies
Closed-orbit distortion / tune
shift / modulation

Improve power supplies and
their calibration

Table I.8.1: Summary of linear imperfections and corrections in synchrotrons.
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