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Chapter I.9

Transverse nonlinear effects

Hannes Bartosik, Sofia Kostoglou

CERN, Geneva, Switzerland

This chapter provides a basic introduction to nonlinear effects in particle accelerators. It covers
important concepts like resonance driving terms, resonances, tune diagram and chaotic motion,
which are crucial for understanding how particle dynamics evolves in the presence of nonlinear
magnetic fields. Additionally, it provides an overview of methods like resonance compensation and
beam extraction. Techniques such as symplectic integration, dynamic aperture and frequency map
analysis are also introduced, which are used to study and analyze these effects.

1 Introduction

This chapter provides a basic introduction to nonlinear effects in particle accelerators. It covers im-

portant concepts like resonance driving terms, resonances, tune diagram and chaotic motion, which are

crucial for understanding how particle dynamics evolves in the presence of nonlinear magnetic fields.

Additionally, it provides an overview of methods like resonance compensation and beam extraction.

Techniques such as symplectic integration, dynamic aperture and frequency map analysis are also intro-

duced, which are used to study and analyze these effects. More details can be found in previous works,

see Refs. [1–13].

2 Example of a simple storage ring

To understand the complex beam dynamics in a particle accelerator, especially in the presence of nonlin-

ear fields, we will start by considering a basic storage ring. We consider only the horizontal plane at this

moment. This simplified lattice consists of a linear periodic transport map with βx = 1m and αx = 0,

i.e. this part of the lattice corresponds to a pure rotation in phase space

(
x

px

)
7→

(
cosµx sinµx

− sinµx cosµx

)(
x

px

)
. (I.9.1)

The lattice also includes a non-linear magnet to introduce nonlinearities in the particle trajectories.

The change in the horizontal momentum of a particle moving through a sextupole is found by integrating

the Lorentz force

∆px = −
∫ L

0

By

Bρ
ds with

By

Bρ
=

1

2
k2x

2 (assuming y = 0). (I.9.2)
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2. Example of a simple storage ring

If the sextupole is short we can neglect the small change in the coordinate x as the particle moves

through the sextupole, in which case we obtain (thin lens approximation)

∆px = −
∫ L

0

1

2
k2x

2 ds ≈ −1

2
k2Lx

2. (I.9.3)

The map for a particle moving through a short sextupole can be represented by a “kick” in the horizontal

momentum

x 7→ x,

px 7→ px −
1

2
k2Lx

2.

While this approach may appear simplistic, it allows to understand more advanced concepts, such

as resonances and chaotic motion, which will be discussed in more detail in later sections.

The Python code that simulates this model is provided in Appendix A. A set of particles with in-

creasing initial horizontal positions (vertical coordinates are set to zero for simplicity) are tracked through

the lattice for several turns and their horizontal position and momentum is depicted in the Poincaré maps.

A Poincaré map is the illustration of the position and momentum coordinates of particles propagated

(i.e. “tracked”) through the lattice turn-by-turn, i.e. it is a phase space portrait. Figure I.9.1 shows the

Poincaré maps resulting from different settings of the tune. We observe that:

– Qx = 0.203 (Fig. I.9.1 top left): for a tune close to 1/5, small amplitude particles exhibit tra-

jectories in the form of closed loops that are almost circular, i.e. indicative of the linear regime

of motion. As the amplitude increases, the circular trajectories are deformed and islands become

visible, in this particular case we observe five islands. Increasing the amplitude further, we ob-

serve regular but deformed trajectories. It even appears that for some amplitudes a large number

of small islands are formed. For even higher amplitudes the trajectories become chaotic and even-

tually we also observe some particles getting lost (very few particle coordinates are recorded for

high amplitudes as unstable particles increase in amplitude and get lost);

– Qx = 0.252 (Fig. I.9.1 top right): for a tune close to 1/4 we observe a smaller region of linear

motion around the origin, but already for relatively small amplitudes we see four islands and a

strong deformation of the phase space. As before, for high amplitudes the motion becomes chaotic

and eventually particles are lost;

– Qx = 0.33 (Fig. I.9.1 bottom left): for a tune close to 1/3, almost all particles become unstable

and rapidly increase their amplitude. Only the particle on the closed orbit (i.e. the origin of the

phase space) is stable;

– Qx = 0.403 (Fig. I.9.1 bottom right): adjusting the lattice to a tune close to 2/5, the phase space is

more regular. We observe five islands, and for high amplitude particules the trajectories are regular

but nevertheless deformed. In this case, for the amplitudes tested here, no unstable or chaotic

motion is observed.

In summary, we have identified some interesting features in these phase space portraits to which it

is worth drawing attention:
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Fig. I.9.1: Poincaré maps for the simple storage ring consisting of a single sextupole magnet and a linear
transport map, which is adjusted to provide a tune of Qx = 0.203 (top left), Qx = 0.252 (top right),
Qx = 0.330 (bottom left) and Qx = 0.403 (bottom right).

– For small amplitudes (small x and px), particles trace out closed loops around the origin: this is

what we expect for a purely linear map;

– As the particle amplitude is increased, “islands” appear in phase space: the phase advance (for the

linear map) is often close to m/p where m is an integer and p is the number of islands;

– Sometimes, a larger number of islands appears at larger amplitude;

– Usually, there is a closed curve that divides a region of stable motion from a region of unstable mo-

tion. Outside that curve, the amplitude of particles increases without limit as the map is repeatedly

applied;
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2. Example of a simple storage ring

– The area of the stable region depends strongly on the phase advance: for a phase advance close to

2π/3, it appears that the stable region almost vanishes altogether;

– It appears that as the phase advance is increased towards π, the stable area becomes large, and

distortions from the linear ellipse become less evident.

The simplified lattice is then modified to include a rotation and an octupole, and we set the tune

near 1/4 (the Python code can be found in the Appendix A). Figure I.9.2 depicts the phase space (left)

and the tune as a function of the initial particle amplitude (right). A “linear” detuning as a function

of the oscillation amplitude is observed, which is a direct consequence of the presence of the octupole.

Furthermore, the tune analysis clearly shows that particles at a specific amplitude are trapped at a tune

value of Q = 0.25. As will be discussed in more detail later, this tune corresponds to a fourth-order

resonance (4Qx = 1), resulting in four resonance islands in phase space. The particles with (average)

tune of Qx = 1/4 are the ones inside the resonance islands.

Fig. I.9.2: Phase space (left) and tune as a function of the initial particle amplitude (right) for a simple
lattice consisting of a linear rotation and an octupole.

The combined effect of an octupole and sextupole is illustrated in Fig. I.9.3 and the Python code

can be found in the Appendix A. Despite the tune being close to the third-order resonance (i.e. 3Qx = 1),

particle trajectories are significantly more stable compared to the single sextupole case, cf. Fig. I.9.1

(bottom left). Some particles are captured by the stable islands of the third-order resonance, yet the

majority of particles perform regular oscillations. This enhanced stability is attributed to the amplitude

detuning induced by the octupole, which results in a larger distance between the high-amplitude particles

and the third-order resonance and acts as a stabilizing mechanism.
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Fig. I.9.3: Phase space (left) and tune as a function of the initial particle amplitude (right) for a simple
lattice consisting of a linear rotation, a sextupole and an octupole.

3 Hamiltonian mechanics

In this section we will investigate the non-linear beam dynamics from a theoretical point of view. One

of the most common frameworks to describe the motion of particles in accelerators is the Hamiltonian

formalism. The Hamiltonian represents the total energy of the system under study. The Hamiltonian H

describing the motion of a charged particle in an accelerator can be written as

H = H(xi, pi; t), (I.9.4)

where xi, pi represent the particle’s position and conjugate momentum, respectively, with i = 1, 2 . . . N

for the N degrees of freedom and t the time. The equations of motion are then given by Hamilton’s

equations
dxi
dt

=
∂H

∂pi
, (I.9.5)

dpi
dt

= −∂H
∂xi

. (I.9.6)

Considering only horizontal motion (x, px) to simplify the analysis, the time derivative of the Hamilto-

nian can be expressed as
dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂px

dpx
dt

+
∂H

∂t
. (I.9.7)

By differentiating the Hamiltonian with respect to position or momentum, we obtain Hamilton’s
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3. Hamiltonian mechanics

equations. Using Hamilton’s equations we find that

dH

dt
=
∂H

∂x

∂H

∂px
− ∂H

∂px

∂H

∂x
+
∂H

∂t
=
∂H

∂t
, (I.9.8)

i.e., if the Hamiltonian does not depend explicitly on the time t, the Hamiltonian is conserved since

dH

dt
=
∂H

∂t
= 0. (I.9.9)

Hamiltonian systems are inherently symplectic, meaning that the phase space structure is preserved. Ad-

ditionally, Eq. I.9.9 shows that in the absence of external time-dependent forces or dissipative effects

such as synchrotron radiation, the Hamiltonian remains constant and is an integral of motion. A conse-

quence of this is that the phase space volume is preserved, which is known as the Liouville’s theorem. In

practice, Liouville’s theorem implies that, under these assumptions, quantities such as the emittance of a

beam remain constant over time.

3.1 Hamiltonian for linear betatron motion

The Hamiltonian for linear betatron motion in a lattice with dipoles and quadrupoles is given as a function

of the azimuthal coordinate s by

H(s) =
p̄2x + p̄2y

2
− x2

2ρ(s)2
+
k1(s)

2
(x2 − y2), (I.9.10)

where p̄2x+p̄2y
2 is the kinetic term and p̄x = px

p0
and p̄y =

py
p0

are the transverse momenta normalized to the

reference momentum p0, x2

2ρ(s)2
is the weak focusing from the dipoles with a bending radius ρ(s), and

k1(s)
2 (x2 − y2) is the focusing (or defocusing depending on the sign) of the quadrupoles’ strength k1(s).

Applying Hamilton’s equations (cf. Eq. I.9.5) we derive the equations of motion for a linear accel-

erator, known as Hill’s equations

x′′ −
(
k1(s)− 1

ρ(s)2

)
x = 0, (I.9.11)

y′′ + k1(s)y = 0, (I.9.12)

where x′′ and y′′ are the second derivatives of the horizontal and vertical coordinates with respect to the

longitudinal position s.

3.2 Hamiltonian with nonlinear fields

The dynamics of the particle motion in a more realistic accelerator lattice cannot be described by the

linear Hamiltonian due to the presence of higher-order multipoles. Nonlinear fields play an important role

in accelerator operation, for example for chromaticity control, or to suppress coherent motion. Nonlinear

fields also arise naturally from the interaction of two colliding beams.

The general Hamiltonian for a charged particle in an accelerator with transverse magnetic fields

can be written as

H(s) =
p̄2x + p̄2y

2
− eAs

p0
, (I.9.13)
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where e is the elementary charge and As is the longitudinal component of the magnetic vector potential.

Here we consider only purely transverse magnetic fields, i.e. we apply the hard edge approximation

in which the magnetic fields are assumed to vanish outside of the magnets and the components of the

magnetic field are given by

Bx =
∂As

∂y
, By = −∂As

∂x
. (I.9.14)

It is convenient and customary to use a complex representation of the magnetic field such as

By + iBx = B0p0

M∑
n=0

(kn + ijn)
(x+ iy)n

n!
, (I.9.15)

where B0 is the reference magnetic field and kn, jn are the normal and skew multipole strengths, respec-

tively, given by

kn =
1

B0p0

∂nBy

∂xn

∣∣∣∣
(0,0)

, (I.9.16)

jn =
1

B0p0

∂nBx

∂yn

∣∣∣∣
(0,0)

. (I.9.17)

The subscript (0, 0) indicates that the n-th partial derivatives are computed for (x, y)=(0,0), i.e. on the

design trajectory of the accelerator. The magnetic potential can thus be expressed by the following

multipole expansion
eAs

p0
=

x2

2ρ2
− Re

{
M∑
n=1

(kn + ijn)(x+ iy)n+1

(n+ 1)!

}
. (I.9.18)

The Hamiltonian in the presence of nonlinear fields is then obtained as

H(s) =
p̄2x + p̄2y

2
− x2

2ρ2
+ Re

{
M∑
n=1

(kn + ijn)(x+ iy)n+1

(n+ 1)!

}
, (I.9.19)

and it can be divided in a linear part H0 including dipole and quadrupole fields

H0(s) =
p̄2x + p̄2y

2
− x2

2ρ(s)2
+
k1(s)

2
(x2 − y2) (I.9.20)

and a nonlinear part that containes the nonlinear multipole field components

V (s) = Re

∑
n≥2

[kn(s) + ijn(s)](x+ iy)n+1

(n+ 1)!

 =
∑

m,n≥3

Vmnx
myn. (I.9.21)

3.3 Action-angle variables

The linear part of the Hamiltonian can be reduced to a simple rotation with a canonical transformation,

i.e. a change of variables that preserves Hamilton’s equations. This transformation converts the particle’s

phase space from the coordinates (x, px) to the action-angle variables (J, φ). The action variable J
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4. Resonance driving terms and resonances

Fig. I.9.4: The evolution of phase space from ellipses (left) to circles (right) via the canonical transfor-
mation to action-angle variables.

corresponds to the Courant-Snyder invariant for the linear motion

Jx = γxx
2 + 2αxxpx + βxp

2
x, (I.9.22)

while the angle variable is

φx = − arctan

(
βxpx
x

+ αx

)
. (I.9.23)

By moving to action-angle variables, the particle’s motion in phase space is transformed from an ellipse

to a simple rotation on a circle with a radius equal to
√
2Jx, as shown in Fig. I.9.4, and with an angle

change per turn equal to ∆φx = 2πQx0, where Qx0 is the betatron tune.

In systems with more degrees of freedom, the particle trajectories are a product of circles (u, pu)

with action-angle variables Ju and φu that are forming multi-dimensional tori. As will be shown in the

next sections, when a nonlinearity is introduced, resulting in a change of pu, the tori will be distorted

and, in the presence of a strong nonlinearity, some tori might even be destroyed.

4 Resonance driving terms and resonances

The Hamiltonian in action-angle variables is obtained as

H(J,φ; s) =
QxJx +QyJy

R
+ V (J,φ; s), (I.9.24)

where Qx, Qy are the horizontal and vertical tunes and R is the (average) radius of the accelerator. In

perturbation theory, the nonlinear part of the Hamiltonian V can be written as

V (J,φ; s) =
ε

R

mx∑
j=0

j+k=mx

my∑
l=0

l+m=my

(J
j+k
2

x J
l+m
2

y hjklme
i[(j−k)φx+(l−m)φy ]), (I.9.25)
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where ε is the parameter that controls the strength of the perturbation, mx,my are integers that define

the order of the resonance and the complex coefficients hjklm are known as the resonance driving terms.

These terms are responsible for angle-dependent terms in the Hamiltonian that can lead to resonant

motion, such as motion on islands or on a separatrix in phase space. The resonance driving terms are

determined by integrals over the circumference of the accelerator that depend on the location of the

multipolar magnetic elements

hjklm =
1

2
j+k+l+m

2

(
j + k

j

)(
l +m

l

)
∫ s0+2πR

s0

Vj+k,l+m(s)β
j+k
2

x (s)β
l+m
2

y (s)ei[(j−k)φx(s)+(l−m)φy(s)] ds. (I.9.26)

To first order of the multipole strengths, the solution for the stable betatron motion can be written as a

quasi-periodic solution, i.e. a sum of periodic motions with different frequencies

x(n)− ipx(n) =
√
2Jxe

i(2πQxn+φx0)−

2i
∑
jklm

sjklm (2Jx)
j+k−1

2 (2Jy)
l+m
2 ei[(1−j+k)(2πQxn+φx0)+(m−l)(2πQyn+φy0)], (I.9.27)

where

sjklm =
1

1− e−2πi[(j−k)Qx+(l−m)Qy ]
hjklm. (I.9.28)

The stable solutions of the betatron motion include the resonance driving terms, and the resonance con-

ditions are defined by the integer multiples of the betatron tunes Qx and Qy. A resonance can occur

when

nxQx + nyQy = r, (I.9.29)

where nx = j − k, ny = l − m and |nx|+|ny| is the resonance order. In the space of the horizontal

and vertical tunes, namely the tune diagram, the resonance conditions of Eq. I.9.29 are depicted as lines.

Figure I.9.5 illustrates the resonance condition for the resonances up to third (left) and fifth (right) order.

Skew resonances (excited by skew multipole components), for which ny is an odd number, are repre-

sented by dashed lines. Normal resonances (excited by upright multipole components), characterized

by an even ny, are marked with solid lines. A summary of the resonance driving terms and resonance

conditions is shown in Table I.9.1.

Indices j, k, l,m
Resonance Driving Term hjklm
Potential Vj+k,l+m

Resonance condition (j − k)Qx + (l −m)Qy = r
Resonance order |j − k|+ |l −m|

Table I.9.1: Summary of resonance driving terms and resonance conditions.
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4. Resonance driving terms and resonances

Fig. I.9.5: Resonances within the tune diagram up to the third (left) and fifth (right) order. Normal (solid
lines) and skew (dashed lines) resonances are illustrated.

Fig. I.9.6: Phase space in the presence of angle-independent resonance driving terms (left) that result in
amplitude detuning and angle-dependent (right) resonance driving terms responsible for the formation
of resonance islands. Courtesy of P. Bélanger.

A review of Eq. I.9.25 reveals two types of resonance driving terms, and their impact on the

particle’s phase space is illustrated in Fig. I.9.6:

– Angle-independent resonance driving terms (Fig. I.9.6, left): for j = k and l = m and the lowest

order in the multipolar gradient, the exponential factor is equal to one and the dependence on the

angle vanishes. The nonlinear part of the Hamiltonian depends only on the particle action resulting
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in a detuning with amplitude and has the form of

V (J,φ; s) =
ε

R

mx∑
j=0

2j=mx

my∑
l=0

2l=my

J j
xJ

l
yhjjll. (I.9.30)

– Angle-dependent resonance driving terms (Fig. I.9.6, right): these terms are responsible for the

excitation of resonances by creating fixed point and island structures in phase space. For example,

for the fourth order resonance (4,0)

V (J,φ; s) =
ε

R
J2
xh4000e

i4φx . (I.9.31)

4.1 Sextupole driving terms in first-order perturbation theory

The sextupole driving terms are calculated by substituting the magnetic potential in Eq. I.9.26 by

V (s) = b2(s)(x
3 − 3xy2) = V30(s)x

3 − V12(s)xy
2, (I.9.32)

where b2 is the sextupole strength at the position s and V30, V12 are the Vj+k,l+m(s) with j+k=3, l+m=0

and j + k=1, l +m=2, respectively, that excite the following resonances (j − k)Qx + (l −m)Qy:

– V30: h3000, h2100 for the purely horizontal resonances (3,0), (1,0);

– V12: h1011, h1020, h1002 and resonances (1,0), (1,2), (1,-2).

In first-order of the sextupole strengths, sextupoles are driving integer and third-order resonances, they

are exciting purely horizontal resonances (but not purely vertical ones) and coupled resonances, while

amplitude detuning j = k, l = m is not generated (amplitude detuning is only generated in second order

of the sextupole strength).

The topology of the third-order horizontal resonance is shown in Fig. I.9.7. Near the origin of the

phase space, the motion of particles is regular and follows nearly circular paths. As the amplitude of

particle oscillations increases, these trajectories become distorted, tending towards a triangular shape, a

signature of third-order resonances. The boundary between stable and unbounded motion is referred to

as separatrix and it connects the three unstable (hyperbolic) fixed points, which are points in phase space

where particles will jump on one side of separatrix for tiniest perturbations.

4.2 Octupole driving terms in first-order perturbation theory

The octupole driving terms are calculated by substituting the magnetic potential in Eq. I.9.26 by

V (s) = b3(s)(x
4 − 6x2y2 + y4) = V40(s)x

4 + V22(s)x
2y2 + V04(s)y

4, (I.9.33)

where b3 is the octupole strength and V40, V22 and V04 are the Vj+k,l+m with j + k=4, l +m=0, then

j+k=2, l+m=2 and finally, j+k=0, l+m=4. The excited resonance driving terms and the resonances

(j − k)Qx + (l −m)Qy are:
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4. Resonance driving terms and resonances

Fig. I.9.7: Phase space in the vicinity of the third-order resonance. Courtesy of P. Bélanger.

– V40: h4000, h3100, h2200, resonances (4,0), (2,0) and an angle-independent resonance driving term

(j = k = 2, l = m = 0) that introduces detuning with amplitude;

– V22: h2020, h1120, h2011, h1111, resonances (2,2), (0,2), (2,0) and an amplitude detuning resonance

driving term (j = k = 1, l = m = 1);

– V04: h0040, h0031, h0022, resonances (0,4), (0,2) and an amplitude detuning resonance driving term

(j = k = 0, l = m = 2).

Octupoles introduce amplitude detuning, excite second and fourth order resonances in first-order pertur-

bation theory and they also excite both purely horizontal but also purely vertical resonances.

Figure I.9.8 illustrates the topology of the fourth-order resonance. Near the origin of the phase

space, the motion is regular. The trajectories in phase space tend towards a square shape. The separatrix

connects four unstable fixed points. There are also four stable fixed points. These are points where the

motion is stable, and they are surrounded by closed, regular trajectories, forming islands of stability in

phase space.
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Fig. I.9.8: Phase space in the vicinity of the fourth-order resonance. Courtesy of P. Bélanger.

4.3 Sextupole resonances in second-order perturbation theory

The Hill’s equation can be modified to include the sextupole term k2

d2x

ds2
+K(s)x =

k2
2
x2, (I.9.34)

where K(s) represents the linear part

K(s) =
1

ρ2(s)
− k1(s). (I.9.35)

The solution to Hill’s equation can be written as a series expansion with a small perturbation ε due to the

sextupole which is proportional to k2. The solution will have the form

x(s) = x0 + εx1(s) + ε2x2(s) +O(ε3), (I.9.36)

with x0 representing the solution of the unperturbed linear equation and x1 and x2 the first and second-

order perturbation from the sextupoles, respectively, while O(ε3) represents the higher-order terms. By

inserting the series expansion of Eq. I.9.36 into Eq. I.9.34 and matching terms of the same order in ε, the
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5. Chaos

following equations are derived
d2x0
ds2

+K(s)x0 = 0, (I.9.37)

d2x1
ds2

+K(s)x1 = k2(s)x
2
0(s), (I.9.38)

d2x2
ds2

+K(s)x2 = 2k2(s)x0(s)x1(s). (I.9.39)

Starting from the linear solution

x0(s) =
√
εxβx(s) cos[φx(s) + φx0], (I.9.40)

where φx0 is the initial phase of the particle and computing sequentially the other terms, using the

solutions from previous steps to calculate the next one we obtain

x1(s) ∝ A cos[2φx(s) + φx0], (I.9.41)

x2(s) ∝ C cos[3φx(s) + φx0] +D cos[φx(s) + φx0]. (I.9.42)

As was shown in the previous section, in first-order perturbation theory the phase 2φx of x1 results in the

excitation of third-order resonances. Similarly, in the second-order of the sextupole strengths, the phase

3φx(s) and φx(s) in the solution x2 indicate that the sextupoles are capable of exciting fourth-order and

second-order resonances. In practice, sextupoles can excite resonances up to very high orders, as we

have observed in Fig. I.9.1 (e.g. fifth order resonances).

5 Chaos

5.1 KAM theorem and onset of chaos

The Kolmogorov-Arnold-Moser (KAM) theorem describes the behavior of Hamiltonian systems when

subjected to small perturbations. In an integrable system, phase space motion can be represented by

invariant tori, where motion is regular, predictable and quasi-periodic. According to the KAM theorem,

with the introduction of small perturbations, many of these invariant tori are deformed but still survive

so that particle motion remains confined and stable within these tori.

However, as the strength of the nonlinearity increases or the system approaches a resonance con-

dition, some invariant tori are destroyed. When this happens, trajectories that were once confined to the

surface of the torus can now have irregular, unpredictable or chaotic behavior.

As perturbations increase, the motion around the unstable fixed points also becomes more com-

plex. Initially, some trajectories near these points may follow predictable paths, but as the system is

perturbed, these paths can start to intertwine and form complex structures known as tangles as shown in

Fig. I.9.9. Tangles are intersections of stable and unstable paths from and to unstable fixed points and

they represent complex trajectory structures. They introduce a sensitivity to initial conditions as particles

with slightly different starting points crossing these tangles can have vastly different paths. As shown in

the phase space illustrated in Fig. I.9.10, the motion around the separatrix becomes chaotic.
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Fig. I.9.9: Formation of tangles around the unstable fixed points of a fourth order resonance.

Fig. I.9.10: Chaotic motion around the separatrix due to strong nonlinear perturbations.

5.2 Resonance overlap

With increasing perturbation, the width of the resonance islands in the phase space grow. Although

islands are regions of stable motion, when they start overlapping the particle can move from one island

to the other, facilitating chaotic motion across the phase space. This condition, known as resonance

overlap criterion, was described by B. Chirikov [14]. The Chirikov criterion states that chaos emerges

when the sum of the half-widths J of two resonances of order k and k′ exceeds the distance between

399



6. Resonance compensation

them

∆Ĵkmax +∆Ĵk′max ≥ δĴk,k′ . (I.9.43)

A rule of thumb is that significant chaos is expected when the sum of the maximum widths of the chaotic

layers around two resonances is greater than two-thirds of the distance between the resonances

∆Ĵkmax +∆Ĵk′max ≥ 2

3
δĴk,k′ . (I.9.44)

The resonance overlap is illustrated in Figure I.9.11. Increasing the strength of the nonlinearity (left

to right), the width of the resonances increases and eventually the islands overlap leading to chaotic

motion. The main limitation of this criterion is its geometrical nature, which makes it difficult to apply

for systems with more degrees of freedom.

Fig. I.9.11: The impact of resonance overlap when increasing the strength of a perturbation (left to right).

6 Resonance compensation

The excitation of resonances due to nonlinear fields is a significant contributor to unstable particle mo-

tion, particle losses and emittance growth. These issues undermine the performance of an accelerator,

as they can limit the achievable beam intensity and beam emittances. Despite these undesirable effects,

nonlinear magnets are crucial for the operation of the accelerator as they allow fine tuning of the beam

dynamics such as the correction of chromaticity with sextupoles and inducing amplitude detuning with

octupoles to Landau damp coherent instabilities. Additionally, certain nonlinear effects are unavoidable

as they are an inherent consequence of magnet imperfections or result from the interplay between the

colliding beams (beam-beam effects).

There are several strategies to mitigate the adverse effects of resonances. One approach involves

the strategic design of the accelerator’s lattice with a specific periodicity, which means that the accel-

erator is structured in repetitive cells and the lattice symmetry allows to minimize or even cancel some

resonance driving terms. Another approach involves the use of specialized magnets to correct for specific

resonance driving terms.
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6.1 Lattice periodicity

Considering a lattice with tunes Qx and Qy and P identical cells, the phase advance per cell is Qx/P

and Qy/P . Since for the beam there is no difference between passing one cell P turns or passing a lattice

consisting of P identical cells only once, the resonance condition must be satisfied by each individual

cell. Thus the resonance condition of Eq. I.9.29 within a cell takes the following form

nx
Qx

P
+ ny

Qy

P
=

r

P
. (I.9.45)

Based on the lattice periodicity, the resonances can be divided into two categories:

– Systematic resonances arise when r
P is an integer. In this case, the perturbation from the nonlinear

magnetic fields at each cell will accumulate systematically cell-by-cell. Such resonances arise

from the lattice design and structure.

– When r
P is not an integer, the resonance is non-systematic. As the particle passes through the cells

it will experience a varying perturbation cell by cell and the cumulative impact of the resonance

is, to first-order, cancelled. This cancellation requires a perfectly periodic lattice, a condition that

easily breaks in the presence of random magnet errors.

Figure I.9.12 depicts the tune diagram up to fourth order resonances for a lattice with periodicity

P = 1 (top left), P = 2 (top right) and P = 3 (bottom). The systematic resonances are illustrated in red,

and the non-systematic ones in blue. Obviously, the higher the lattice periodicity the more resonances

become non-systematic, i.e. suppressed by the lattice symmetry.

Fig. I.9.12: Tune diagram up to the fourth order for a lattice with periodicity P = 1 (left), P = 2 (center)
and P = 3 (right). The systematic resonances are illustrated in red, and the non-systematic ones in blue.

Non-systematic resonances can be corrected (to first-order) by having a good control of the lattice’s

symmetry. The correction of the non-systematic resonances was demonstrated at the Advanced Light

Source (ALS) at Lawrence Berkeley National Laboratory [15]. The ALS nominal lattice has a periodicity

of P = 12. Thus, the third order resonance 3Qx = 43 is non-systematic (ratio 43/12 is not an integer)

and the fifth order resonance 5Qx = 72 is systematic (ratio 72/12 is an integer). The beam loss rate was

measured when the horizontal tune was changed to cross these two resonances as shown in Fig. I.9.13.

Initially, important losses were observed when crossing both resonances (dashed line) when the linear
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optics was uncorrected and the β-beating was around 30%. The measurement was repeated after optics

corrections that effectively reduced β-beating to around 1%, restoring the lattice’s periodicity to P = 12

(dashed line). The impact from the non-systematic resonance 3Qx = 43 was suppressed, while the losses

around the systematic resonance 5Qx = 72 were unaffected.

Fig. I.9.13: Beam loss rate when crossing a non systematic 3Qx = 43 resonance and a systematic
5Qx = 72 resonance in ALS with P = 12 before (solid line) and after (dashed line) optics corrections
that restored the lattice periodicity [15].

6.2 Resonance driving term compensation with correctors

Mitigating weak resonances (e.g. non-systematic resonancs excited by random magnet errors in the ma-

chine) can also be achieved by using a pair of multipole correctors that are approximately orthogonal in

the phase of the resonance driving terms. Such correctors are ideally installed in low-dispersion regions

to avoid influencing the chromaticity. It must be noted that although these correctors are adjusted to

compensate for a specific resonance, they might also excite other resonances.

The Proton Synchrotron Booster (PSB) at CERN employs a stack of multipole correctors, includ-

ing quadrupoles, sextupoles, and octupoles (both normal and skew), to compensate for various reso-

nances [16]. The resonance compensation is necessary due to the large tune spread caused by space

charge effects. Figure I.9.14 illustrates the loss maps, which are computed by scanning the horizontal

and vertical tunes and measuring the losses. A comparison before (left) and after (right) the resonance

compensation clearly shows the reduction of the resonance strengths.
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Fig. I.9.14: Tune loss maps in the PSB before (left) and after (right) the resonance compensation [16].

7 Transfer maps

7.1 Taylor maps

The evolution of the particle’s coordinates when passing through an accelerator (or part of it) can be

represented by transfer maps. In particular, the evolution of xj , representing any of the six phase space

coordinates (x, px, y, py, z, δ), can be expressed as a series expansion that includes terms up to a specific

order, which is known as Taylor map. For example, the evolution of xj to its final state xfj calculated by

a third order Taylor map is written as

xfj =

6∑
k=1

Rj,kxk +

6∑
k=1

6∑
l=1

Tj,k,lxkxl +

6∑
k=1

6∑
l=1

6∑
m=1

Uj,k,l,mxkxlxm, (I.9.46)

where Rj,k, Tj,k,l, Uj,k,l,m are the linear, quadratic and cubic coefficients, respectively.

The main drawback of this approach is that truncated Taylor maps (i.e. Taylor maps including

terms up to a finite number of terms) are in many cases not symplectic (unless special terms are included

to ensure symplecticity). This leads to inaccuracies in the simulation of particle dynamics and unphysical

results.

7.2 Symplectic maps

Considering a conservative accelerator system, meaning that there is no energy loss from synchrotron ra-

diation or external time-dependent forces acting on it, Liouville’s theorem states that the phase space area

is conserved. This conservation is preserved only if the nonlinear maps used to represent the evolution

of the particle’s trajectories are symplectic. A transfer map is symplectic when the following condition

is satisfied

JTSJ = S, (I.9.47)
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where J is the n× n Jacobian in the n-dimensional phase space

J =



∂xf

∂xi

∂xf

∂pxi
· · · ∂xf

∂zi

∂xf

∂δi
∂pxf
∂xi

∂pxf
∂pxi

· · ·
∂pxf
∂zi

∂pxf
∂δi

...
...

. . .
...

...
∂zf
∂xi

∂zf
∂pxi

· · · ∂zf
∂zi

∂zf
∂δi

∂δf
∂xi

∂δf
∂pxi

· · · ∂δf
∂zi

∂δf
∂δi


(I.9.48)

and S

S =


I 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I

 ,
with

I =

[
0 1

−1 0

]
.

An important property of the S matrix is that its determinant is 1 or -1: det(S) = 1 if n is even or

det(S) = −1 if n is odd. From Eq. I.9.47 it follows that a transfer map is symplectic if the determinant

of its Jacobian is equal to one

det(JTSJ) = det(S) =⇒ det(JT ) det(S) det(J) = det(S) =⇒ det(J) = 1. (I.9.49)

Fig. I.9.15: Phase space with symplectic (left) and non-symplectic (right) map.
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When a power-series map is truncated to a finite order and loss of symplecticity occurs, the re-

sulting phase space can be significantly different from the conditions in a real accelerator. Figure I.9.15

illustrates the phase space with a symplectic (left) and non-symplectic transfer map (right). In the first

case the particle trajectories in the islands are well-defined by closed loops. However, in the second case,

these loops become distorted, which could be interpreted as chaotic motion. This distortion may lead to

inaccurate predictions of the particle stability and the overall beam lifetime in storage rings. The Python

code of a symplectic and non-symplectic one-turn map for the simple example of a linear rotation and a

sextupole kick can be found in the Appendix A.

Fig. I.9.16: The concept of the "drift-kick-drift" symplectic integrator.

A powerful tool to preserve symplecticity in tracking codes is the use of symplectic integrators.

For the case of a sextupole where

dx

ds
= px,

dpx
ds

= −1

2
k2x

2, (I.9.50)

the nonlinear differential equations cannot be solved analytically to derive the equations of motion. An

integrator that approximates the solution to these equations is used which splits the sextupole’s influence

into segments (“drift-kick-drift” approach). As shown in Fig. I.9.16, the integration is divided into three

intervals: initial drift from 0 to L/2, a kick by a thin lens sextupole at L/2, and final drift from L/2 to

L, where L is the sextupole length.

For 0 ≤ s < L/2 : x1 = x0 +
L

2
px0, px1 = px0,

For s = L/2 : x2 = x1, px2 = px1 −
1

2
k2Lx

2
1,

For L/2 ≤ s ≤ L : x3 = x2 +
L

2
px2, px3 = px2.

(I.9.51)
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Exercise 1
a) Derive the expression for the one-turn map in a lattice consisting of a linear rotation followed by a

sextupole.

b) Show that this one-turn map is symplectic.

Hint: the Jacobian is:

J =

[
∂x′

∂x
∂x′

∂px
∂p′x
∂x

∂p′x
∂px

]
.

c) Neglect the cross-term x and px on the one-turn map and demonstrate the loss of symplecticity.

Exercise 2
Take the transport matrix of a thick quadrupole and truncate the Taylor expansion up to first order. Is

the map symplectic? How does it compare to the map of a thin quadrupole?

Hint: the transport map of a thick quadrupole is:

MQ =

(
cos(

√
kL) 1√

k
sin(

√
kL)

−
√
k sin(

√
kL) cos(

√
kL)

)
. (I.9.52)

8 Numerical methods

The evolution of particles through the elements of an accelerator over a large number of turns can be

studied with tracking simulations. Tracking simulations allow to study the beam dynamics under a wide

range of conditions and optimize the beam and machine configuration. By post-processing the tracking

results, important information concerning the diffusion of the particle amplitude, the strength of the

resonances and the particle’s overall stability can be extracted. This section provides an overview of the

main tools that are commonly used with tracking simulations. Of course, having a symplectic map of the

accelerator under study is a pre-requisite.

8.1 Dynamic aperture

The dynamic aperture (DA) is closely correlated to the performance of a collider (or other circular ac-

celerators) in operation. The DA represents the boundary between stable and unstable particle motion:

particles with actions exceeding the DA are unstable and will eventually be lost, while particle inside the

DA follow trajectories with long-term stability (those trajectories might however be chaotic). In simu-

lations, the DA is obtained by tracking a large number of particles with different initial conditions and

determining which particles are stable for a relevant number of turns (this depends on the accelerator and

the required beam lifetime).

Figure I.9.17 illustrates the DA boundary for the Large Hadron Collider (LHC) based on simu-

lations (blue and green) and measurements (red) at injection energy. Note the remarkable agreement

between the simulation and the measurements. Here, the DA is calculated using symplectic tracking
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Fig. I.9.17: DA for the LHC from simulations (blue and green) and measurements (red) [17].

codes for 106 turns for the LHC. These simulations include multipole field errors and strong nonlinear-

ities (such as beam-beam effects during collisions) that limit the area of stable motion. Since multipole

errors are not always fully known, various machine models with random distributions of these errors are

used to estimate them. Initial simulations may begin in 4D (transverse dimensions only) but typically

need to extend to 5D (including constant energy deviation) and eventually 6D (including synchrotron

motion).

The DA is an important guiding tool as it is strongly correlated to the beam lifetime in operation.

Multi-parametric DA scans can be used to identify the optimal beam and machine parameters in operation

in order to improve the beam lifetime. Figure I.9.18 depicts the horizontal tune as a function of the

vertical tune for HL-LHC (the future upgrade of the LHC) and the color-code is the DA. Depending on

the beam and machine parameters, some working points are more favorable (blue) while others leads to

a reduction of the DA due to resonances (red) and should be avoided.

8.2 Numerical analysis of fundamental frequencies

The numerical analysis of fundamental frequencies (NAFF) was originally developed by J. Laskar to

study chaotic motion within the solar system [18]. This algorithm can also be used to describe the

quasi-periodic motion of particles in an accelerator described by symplectic maps. Compared to the

traditional Fast Fourier Transform (FFT), the NAFF algorithm enhances the precision and accelerates the

convergence when determining the amplitude, frequency, and phase of each component in a particle’s
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Fig. I.9.18: DA scan for the HL-LHC from simulations.

tune spectrum. This is achieved by maximizing the Fourier integral that is defined as

ϕ(f) = ⟨ψ(t), ei2πft⟩ = 1

T

∫ T

0
ψ(t)e−i2πftx(t) dt, (I.9.53)

where ψ(t) is the quasi-periodic complex signal of the particle’s position and momentum over a time

interval [0, T ], f represents a specific frequency and x(t) is the window function. The NAFF algorithm

uses the Hann window to mitigate discontinuities at the edge of the signal’s finite time span and suppress

spectral leakage. The Hann window is defined as

xh(t) =
2h(h!)2(1 + cosπt)h

(2h)!
, (I.9.54)

where h is the power of the window. Unlike the FFT, whose accuracy is proportional to 1/N (with N

being the window’s length), the precision of the NAFF algorithm improves with 1/N2h+2, particularly in

the absence of noise in the signal and when the frequency components are well separated. The numerical

integration is done using Hardy’s 6-point integration rune and the refined frequency fk, amplitude αk

and phase ϕk of the k-th spectral component are computed. The component is then subtracted from

the signal and the search is iterated for additional spectral components. After iterating over N spectral
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components, the quasi-periodic signal can be expressed as

ψ(t) =

N∑
k=1

ake
i2πfkt+ϕk . (I.9.55)

A simplified version of the NAFF algorithm in Python can be found in the Appendix A.

8.3 Frequency map analysis

Frequency map analysis (FMA) is a powerful tool for detecting early signs of chaotic motion in the

presence of nonlinearities [19–22]. This method involves tracking a distribution of particles, usually

with initial conditions in the form of polar or rectangular grid in (x, y) and zero momenta, over a pre-

defined number of turns. For instance, in the context of the LHC, 10000 turns are usually needed which

corresponds to approximately 1 second in machine operation.

The turn-by-turn data of each particle are divided into two equal time intervals. The tune of each

particle for both intervals is computed with the NAFF algorithm. The tune diffusion that reflects the tune

variation between the two segments is then quantified using the “tune diffusion” defined as

D =
√
(Q1

x −Q2
x)

2 + (Q1
y −Q2

y)
2, (I.9.56)

where Q1
i , Q

2
i with i = (x, y) are the tunes from the first and second interval, respectively. The tunes of

different particles are mapped onto a tune diagram, with a color code representing the logarithm of the

tune diffusion.

Figure I.9.19 illustrates the FMA (left) and initial x − y space (right) for the LHC color-coded

with the tune diffusion. The resonances appear as lines in the tune domain and match the resonance

condition indicated by the tune diagram (gray lines), while they appear as curves in the initial x − y

space. The origin of the large linear tune spread observed in the FMAs are the octupoles that are the

main source of nonlinearity at injection energy and are crucial to maintain beam stability. Depending on

the positive (top) or negative (bottom) polarity of the octupole current, particles with larger amplitudes

will have a larger or lower tune, respectively, compared to the nominal tune working point. FMA allows

to distinguish between the regions of stable (blue) and chaotic motion (red) as, due to the tune spread,

some particles encounter strongly-driven resonances and start to diffuse in phase space and so their tune

is not stable. This analysis allows to identify the strongest resonances and optimize for the best working

point in operation.

9 Beam-beam effects

Apart from nonlinear magnets, one of the most significant sources of nonlinearities in particle colliders

are beam-beam interactions [23]. The beams consist of charged particles that produce an electromagnetic

field. When the two beams are in close proximity or intersecting, the electromagnetic field of one beam

influences the other, resulting in a deflection of the particle trajectories. For round Gaussian beams, this
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Fig. I.9.19: FMA for the LHC in the tune domain (left) and in the initial x− y space (right) for positive
(top) and negative (bottom) octupole polarities. The color-code represents the logarithm of the tune
diffusion.

deflection can be expressed as

∆px = −2Nr0
γ

· x
r2

[
1− exp

(
− r2

2σ2

)]
, (I.9.57)
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∆py = −2Nr0
γ

· y
r2

[
1− exp

(
− r2

2σ2

)]
, (I.9.58)

where r0 is the classical particle radius, γ is the relativistic Lorentz factor, σ is the beam size, N is the

number of particles in the bunch and r = x2 + y2.

For small particle amplitudes, i.e. when r is relatively small, the beam-beam force is approxi-

mately linear and thus similar to the force of a quadrupole, a regime known as the head-on beam-beam

interaction. The intensity of this linear interaction is represented by the linear beam-beam parameter,

which indicates the tune shift, and for round Gaussian beams is given by

ξ =
Nr0β

∗

4πγσ2
, (I.9.59)

where β∗ is the β-function at the collision point. As the amplitude increases, the force becomes nonlinear,

a regime known as long-range interaction, leading to a tune spread that varies with amplitude and can be

approximated by

∆Qlr ∝
N

d2
, (I.9.60)

where d is the distance of the two bunches. Beam-beam effects challenge the collider’s performance due

to their tendency to:

– Induce a large tune spread, causing particles to cross multiple resonances in the tune diagram;

– Excite resonances up to very high orders.

The FMA of the LHC in the presence of beam-beam is shown in Fig. I.9.20. Due to the large tune spread,

particles are crossing the diagonal and, due to the important strength of the resonance, a large number of

particles is lost.

Fig. I.9.20: FMA for the LHC in the tune domain (left) and in the initial x − y space (right) in the
presence of beam-beam interactions. The color-code represents the logarithm of the tune diffusion.

To mitigate parasitic beam-beam interactions away from the collision points, the beams are collid-

ing with a crossing angle, as depicted in Fig. I.9.21. Besides head-on collisions at the interaction points,
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bunches in close proximity within the shared vacuum pipe experience long-range interactions. These

can be mitigated by increasing the crossing angle at the cost of the collider’s performance, as the overlap

between the two beams reduces, reducing the number of collisions. In the same context, increasing the

collision rate requires small and intense beams which, in turn, leads to a significant tune spread due to

head-on beam-beam effects. Therefore, beam-beam studies, often based on DA analysis, are essential

for balancing the mitigation of beam-beam effects with the optimization of the collider performance.

Fig. I.9.21: The head-on and long-range beam-beam interaction in the presence of a crossing angle.

10 Tune modulation

When particles are not influenced by resonances, they exhibit stable and predictable paths, character-

ized by constant betatron tunes. This ideal state can be perturbed by various phenomena such as tune

modulation. Tune modulation refers to the periodic variation of the betatron tune in time

Qinst(n) = Q0 +∆Q cos(2πQmn), (I.9.61)

where Q0 is the tune in the absence of a tune modulation, ∆Q is the maximum deviation of the betatron

tune from its unperturbed value, Qm is the modulation frequency (in units of 2π as the betatron tune)

and n the turn number. This modulation can be the result of several effects such as:

– Synchro-betatron coupling from chromaticity: passing through quadrupoles, particles with dif-

ferent longitudinal momentum deviations will experience different focusing due to chromaticity.

At the same time, they undergo synchrotron oscillations at the synchrotron frequency in the lon-

gitudinal plane, which leads to a periodic variation of their momentum deviations. During each

revolution, the particles go through the quadrupoles with a different momentum deviation, which

leads to the modulation of the betatron frequency with the synchrotron tune. This interaction be-

tween the longitudinal and transverse plane is known as synchro-betatron coupling. The maximum

variation of the tune from its unperturbed value is proportional to the chromaticity and the peak

momentum deviation.

– Beam-beam interactions and synchro-betatron coupling: the effect of beam-beam interactions de-

pend on the position of the particle within the bunch. Due to synchrotron oscillations, a particle

initially at the head of the bunch that might experience a strong beam-beam kick will eventually
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be at the tail and experience a different beam-beam interaction. The variation of the beam-beam

force as particles oscillate longitudinally induces synchro-betatron coupling.

– Power supply ripple: power supply ripples are fluctuations in the voltage output of magnet power

supplies with a specific frequency that is usually a harmonic of the mains frequency 50 Hz. These

fluctuations translate into variations in the magnet current, which cause perturbations in the mag-

netic field. In the case of quadrupoles, this leads to a modulation of the magnet focusing strengths.

When the focusing strength of a quadrupole is not constant, the particles will encounter a different

focusing at each revolution, which, in turn, modulates the particles’ betatron tune. This type of

modulation appears in the beam spectrum as sidebands of 50 Hz harmonics around the betatron

tune. The maximum tune variation from the unperturbed tune is proportional to the beta-function

at the location of the modulated quadrupole.

Tune modulation has significant implications for the performance of a collider, as its interplay with

nonlinearities results in the excitation of additional resonances, reducing even further the resonance-

free regions in the tune diagram. This can be illustrated with a simplified lattice that includes a linear

rotation and an octupole that excites the sixth-order resonance and the tune is close to the resonance.

Figure I.9.22 (top left) shows the action-angle variables (first panel) and the variation of the tune with

action (second panel). The tune is changing linearly with the action as a result of the amplitude detuning

induced by the octupoles and some particles are trapped in the 6Qx = 2 resonance. Introducing a

modulated quadrupole with a modulation frequency equal to Qm (middle) results in the appearance of

additional resonance islands. For slower modulation frequency, many islands of high-order resonance

sidebands (n·Qm with n = 1, 2 . . . 5) appear (bottom). In this case, the islands of the main resonance and

the resonance sidebands are overlapping and, as described in the previous sections, resonance overlap

occurs resulting in chaotic motion.

In the general two-dimensional case in the presence of tune modulation, the resonance condition

of Eq. I.9.29 takes the form

nxQx + nyQy + nmQm = r. (I.9.62)

The resonances described by the additional term appear as sideband resonances at a distance equal to

multiples nm of the modulation frequency. Their strength depends on the strength of the main resonances

with which they are associated. Depending on the modulation frequency and their strength, the sideband

resonances can either be very close to each other or to the main resonances and overlap, leading to chaotic

motion, or reach the tune footprint even if the modulation frequency is far away from the betatron tune,

acting as an additional diffusion mechanism for the particles in the distribution. This is illustrated with the

FMAs for a specific configuration of the LHC at CERN in Fig. I.9.23 where the color-code indicates the

tune diffusion. A comparison between the unperturbed case in the absence of a tune modulation and the

case where a tune modulation is present due to power supply ripple in a quadrupole with a frequency of

100 Hz (neglecting the impact of synchrotron motion) reveals that a strong resonanceQx−Qy+Qm = 0

is excited, mainly impacting the particles at larger amplitudes. If the modulation frequency is changed to

600 Hz, then another strong resonance reaches the footprint (Qx − 2Qy +Qm = 1) and mainly affects

particles with lower amplitudes. This example shows that certain modulation frequencies may be more

critical than others depending on the working point.
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Fig. I.9.22: Action-angle variables (first panel) and tune variation with action (second panel) for a simple
lattice including a linear rotation and an octupole (top), adding a modulated quadrupole with a modula-
tion frequency Qm (middle) and a reduced Qm (bottom) [24]. The tune of the particles trapped on the
main islands (vertical black line) and sideband islands (vertical red line) is also illustrated.
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Fig. I.9.23: FMAS for the LHC at CERN without tune modulation (top), with tune modulation due to
quadrupole power supply ripple at 100 Hz (middle) and 600 Hz (bottom) [24]. The main resonances are
depicted in gray and the sideband resonances in red, blue and cyan.
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11 Beam extraction with resonances

Despite their negative implications, resonances can also be used to extract particles from a synchrotron

for various experimental needs. Some of these methods are the slow extraction, multi-turn extraction and

the resonant fast extraction. As an example, several fixed-target facilities receive beams from the LHC

injector complex, complementary to the LHC, and the beam is extracted by exploiting resonances.

Resonant slow extraction is a method to extract the beam in a continuous way over an extended

period of time, typically several seconds. A typical use of slow extraction is the beam extraction in the

CERN Super Proton Synchrotron (SPS), where the beam is extracted over 4.8 s towards the fixed-target

experiments of the North Area. The working principle is depicted in the evolution of the phase space

in Fig. I.9.24. As a first step, a closed-orbit bump is used to displace the beam closer to the extraction

septum, which is an element that separates the circulating from the extracted beam (top left and middle).

Then, sextupole magnets are powered to excite the third-order resonance (top right). At the same time,

the momentum spread in the distribution is increased with radio-frequency manipulations, which, in the

presence of chromaticity, is translated into a large tune spread. The machine tune is initially set to a

value below the resonance and, by changing the current of the main quadrupoles, the tune is dynamically

changed (bottom). Depending on the momentum, the chromaticity and the machine tune, some particles

move closer to the separatrix, become unstable and are guided out of the accelerator through the septum.

The tune of the machine is then slowly changed to extract the remaining particles. This technique creates

a continuous "spill" of particles that is then deflected into the transfer line headed to the fixed-target

experiments.

Fig. I.9.24: The basic working principle of the slow resonant extraction.
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Another method is the Resonant Multi-Turn Extraction (MTE) [26]. MTE was originally devel-

oped to improve the efficiency of the beam extraction from the Proton Synchrotron (PS) to the SPS at

CERN, and it has been systematically used in operation since 2015. The previous extraction method

used since 1973, referred to as Continuous Transfer, included physical slicing of the beam on the sep-

tum, resulting in high levels of machine activation due to radiation. In the MTE technique, sextupole

and octupole magnets are used to excite a fourth order resonance and create islands in the horizontal

phase space as illustrated in Fig. I.9.25. By ramping the horizontal tune, some particles are trapped in the

islands while other remain at the core (top right). The particles trapped inside the islands are then moved

towards larger amplitudes (middle). The current in the sextupole and octupole is then decreased while

the tune increases and the islands are even further separated from the core (bottom). Once the islands are

sufficiently separated, the beam is extracted over a duration of four turns for the islands and one turn for

the core.

Finally, another method of resonance extraction is the resonance fast extraction method used in

the SPS at CERN. In the resonant fast extraction, the current in the quadrupoles is adjusted so that the

machine tune is close to the half-integer. Octupoles are used to excite the half-integer resonance. Then,

a fast discharge in the quadrupole current pushes the particles’ tune onto the resonance. The particles are

extracted in streams, over a few ms.

12 Conclusions

The beam dynamics in accelerators is significantly influenced by nonlinear effects. Nonlinearities, orig-

inating from various sources such as nonlinear magnets used to control various beam properties or as

an unavoidable consequence of the beam-beam interactions, introduce amplitude detuning and, more

importantly, they excite resonances. In the vicinity of a resonance, a review of the phase space reveals

the existence of fixed and unstable points. When unstable points are perturbed, they can lead to chaotic

motion. Rapid diffusion is also observed when resonance overlap occurs. In some cases, it is possible to

compensate for individual resonances either with the lattice design or with dedicated corrector magnets.

Understanding the impact of nonlinear effects often requires symplectic tracking simulations. Tools such

as Dynamic Aperture and Frequency Map Analysis are powerful techniques to optimize the beam and

machine parameters and eventually reduce the negative effects of resonances. Despite their challenges,

resonances are also used for controlled beam extractions.

417



12. Conclusions

Fig. I.9.25: The working principle of the MTE [27].
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A Python code for simplified model

Listing I.9.1: Simple accelerator class.

i m p o r t numpy as np

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t pandas as pd

c l a s s s i m p l e _ a c c e l e r a t o r :

d e f _ _ i n i t _ _ ( s e l f , mu_x , i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s , k 2 l =0 , k 3 l

=0) :

s e l f . mu_x = mu_x

s e l f . k 2 l = k 2 l

s e l f . k 3 l = k 3 l

s e l f . p a r t i c l e _ c o o r d i n a t e s = np . a t l e a s t _ 2 d (

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s )

s e l f . t u r n s = 0

d e f a p p l y _ r o t a t i o n ( s e l f ) :

cos_mu = np . cos ( s e l f . mu_x )

sin_mu = np . s i n ( s e l f . mu_x )

x_new = s e l f . p a r t i c l e _ c o o r d i n a t e s [ : , 0 ] * cos_mu + s e l f .

p a r t i c l e _ c o o r d i n a t e s [ : , 1 ] * sin_mu

px_new = − s e l f . p a r t i c l e _ c o o r d i n a t e s [ : , 0 ] * sin_mu + s e l f .

p a r t i c l e _ c o o r d i n a t e s [ : , 1 ] * cos_mu

s e l f . p a r t i c l e _ c o o r d i n a t e s = np . c o l u m n _ s t a c k ( ( x_new , px_new ) )

d e f a p p l y _ s e x t u p o l e _ k i c k ( s e l f ) :

s e l f . p a r t i c l e _ c o o r d i n a t e s [ : , 1 ] −= 0 . 5 * s e l f . k 2 l * s e l f .

p a r t i c l e _ c o o r d i n a t e s [ : , 0 ]**2

d e f a p p l y _ o c t u p o l e _ k i c k ( s e l f ) :

s e l f . p a r t i c l e _ c o o r d i n a t e s [ : , 1 ] −= ( 1 / 6 ) * s e l f . k 3 l * s e l f .

p a r t i c l e _ c o o r d i n a t e s [ : , 0 ]**3

d e f i n i t i a l i z e _ t u r n _ b y _ t u r n _ d a t a ( s e l f , n u m b e r _ o f _ t u r n s =100) :

s e l f . t u r n _ b y _ t u r n _ d a t a = np . z e r o s ( ( n u m b e r _ o f _ t u r n s +1 , s e l f .

p a r t i c l e _ c o o r d i n a t e s . shape [ 0 ] , 2 ) )

s e l f . t u r n _ b y _ t u r n _ d a t a [ 0 ] = s e l f . p a r t i c l e _ c o o r d i n a t e s

d e f s a v e _ p a r t i c l e _ c o o r d i n a t e s ( s e l f ) :

s e l f . t u r n _ b y _ t u r n _ d a t a [ s e l f . t u r n s ] = s e l f .

p a r t i c l e _ c o o r d i n a t e s
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d e f g e t _ t u r n _ b y _ t u r n _ p a n d a s ( s e l f ) :

f l a t _ d a t a = s e l f . t u r n _ b y _ t u r n _ d a t a . r e s h a p e ( −1 , 2 )

n u m b e r _ o f _ p a r t i c l e s = s e l f . p a r t i c l e _ c o o r d i n a t e s . shape [ 0 ]

t u r n _ n b = np . r e p e a t ( np . a r a n g e ( s e l f . t u r n s + 1) ,

n u m b e r _ o f _ p a r t i c l e s )

p a r t i c l e _ i d = np . t i l e ( np . a r a n g e ( n u m b e r _ o f _ p a r t i c l e s ) , s e l f .

t u r n s +1)

r e t u r n pd . DataFrame ( {

’x ’ : f l a t _ d a t a [ : , 0 ] ,

’ px ’ : f l a t _ d a t a [ : , 1 ] ,

’ a c t i o n ’ : 0 . 5 * ( f l a t _ d a t a [ : , 0 ]**2 + f l a t _ d a t a [ : , 1 ] * * 2 )

,

’ ang le ’ : np . a r c t a n 2 ( f l a t _ d a t a [ : , 1 ] , f l a t _ d a t a [ : , 0 ] ) ,

’ t u r n nb ’ : tu rn_nb ,

’ p a r t i c l e id ’ : p a r t i c l e _ i d

} , i n d e x =[ p a r t i c l e _ i d ] ) . s o r t _ i n d e x ( )

d e f c o m p u t e _ p a r t i c l e _ t u n e ( s e l f , g roup ) :

f o u r i e r = np . f f t . r f f t ( g roup [ ’ x ’ ] . v a l u e s − np . mean ( group [ ’ x ’ ] .

v a l u e s ) )

f r e q u e n c i e s = np . f f t . r f f t f r e q ( n= l e n ( group ) , d = 1 . 0 )

max_f requency = f r e q u e n c i e s [ np . argmax ( np . abs ( f o u r i e r ) ) ]

r e t u r n max_f requency

Listing I.9.2: Phase space.

n u m b e r _ o f _ p a r t i c l e s = 20

x_min = 6e −7

x_max = 0 .042

x = np . l i n s p a c e ( x_min , x_max , n u m b e r _ o f _ p a r t i c l e s )

px = np . z e r o s ( n u m b e r _ o f _ p a r t i c l e s )

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s = np . c o l u m n _ s t a c k ( ( x , px ) )

k 2 l = −45.0

k 3 l = 0 .

mu_x = ( 2 . 0 * np . p i * 0 . 4 0 3 )

n u m b e r _ o f _ t u r n s = 10000

a c c e l e r a t o r = s i m p l e _ a c c e l e r a t o r ( mu_x , i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s ,

k 2 l =k2l , k 3 l = k 3 l )
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a c c e l e r a t o r . i n i t i a l i z e _ t u r n _ b y _ t u r n _ d a t a ( n u m b e r _ o f _ t u r n s )

m o d u l a t e d _ s t r e n g t h = [ ]

f o r t u r n i n r a n g e ( n u m b e r _ o f _ t u r n s ) :

a c c e l e r a t o r . a p p l y _ r o t a t i o n ( )

a c c e l e r a t o r . a p p l y _ s e x t u p o l e _ k i c k ( )

a c c e l e r a t o r . a p p l y _ o c t u p o l e _ k i c k ( )

a c c e l e r a t o r . t u r n s += 1

a c c e l e r a t o r . s a v e _ p a r t i c l e _ c o o r d i n a t e s ( )

t u r n _ b y _ t u r n _ d a t a = a c c e l e r a t o r . g e t _ t u r n _ b y _ t u r n _ p a n d a s ( )

p a r t i c l e _ t u n e s = t u r n _ b y _ t u r n _ d a t a . groupby ( ’ p a r t i c l e id ’ ) . a p p l y (

a c c e l e r a t o r . c o m p u t e _ p a r t i c l e _ t u n e )

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 8 , 8 ) )

p l t . s c a t t e r ( t u r n _ b y _ t u r n _ d a t a . x*1 e3 , t u r n _ b y _ t u r n _ d a t a . px *1 e3 , c =" b " ,

s =2)

p l t . y l im ( −60 , 60)

p l t . x l im ( −60 , 60)

p l t . x l a b e l ( " x [mm] " )

p l t . y l a b e l ( " 1 e3px " )

p l t . t e x t ( −50 ,50 , f "Q={mu_x / ( 2 . 0 * np . p i ) : . 3 f } " , f o n t s i z e =25)

Listing I.9.3: Action-angle and tune.

n u m b e r _ o f _ p a r t i c l e s = 30

m i n _ a c t i o n = 1e −10

max_ac t ion = 13e −5

a c t i o n s = np . l i n s p a c e ( min_ac t i on , max_ac t ion , n u m b e r _ o f _ p a r t i c l e s )

p h i = np . deg2rad ( 4 5 . 0 )

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s = np . z e r o s ( ( n u m b e r _ o f _ p a r t i c l e s , 2 ) )

f o r i , J i n enumera t e ( a c t i o n s ) :

x = np . s q r t (2 * J ) * np . cos ( p h i )

px = np . s q r t (2 * J ) * np . s i n ( p h i )

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s [ i ] = [ x , px ]

k 2 l = 0

k 3 l = 80*100 .

mu_x = ( 2 . 0 * np . p i * 0 . 2 4 4 )

n u m b e r _ o f _ t u r n s = 10000
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a c c e l e r a t o r = s i m p l e _ a c c e l e r a t o r ( mu_x , i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s ,

k 2 l =k2l , k 3 l = k 3 l )

a c c e l e r a t o r . i n i t i a l i z e _ t u r n _ b y _ t u r n _ d a t a ( n u m b e r _ o f _ t u r n s )

f o r t u r n i n r a n g e ( n u m b e r _ o f _ t u r n s ) :

a c c e l e r a t o r . a p p l y _ r o t a t i o n ( )

a c c e l e r a t o r . a p p l y _ s e x t u p o l e _ k i c k ( )

a c c e l e r a t o r . a p p l y _ o c t u p o l e _ k i c k ( )

a c c e l e r a t o r . t u r n s += 1

a c c e l e r a t o r . s a v e _ p a r t i c l e _ c o o r d i n a t e s ( )

t u r n _ b y _ t u r n _ d a t a = a c c e l e r a t o r . g e t _ t u r n _ b y _ t u r n _ p a n d a s ( )

p a r t i c l e _ t u n e s = t u r n _ b y _ t u r n _ d a t a . groupby ( ’ p a r t i c l e id ’ ) . a p p l y (

a c c e l e r a t o r . c o m p u t e _ p a r t i c l e _ t u n e )

f i g , ax = p l t . s u b p l o t s ( n c o l s =2 , f i g s i z e =(10 , 6 ) )

p l t . s c a ( ax [ 0 ] )

p l t . s c a t t e r ( t u r n _ b y _ t u r n _ d a t a . x*1 e3 , t u r n _ b y _ t u r n _ d a t a . px *1 e3 , c =" b " ,

s =1)

p l t . y l im ( −20 , 20)

p l t . x l im ( −20 , 20)

p l t . x l a b e l ( " x [mm] " )

p l t . y l a b e l ( " 1 e3px " )

p l t . t e x t ( −10 ,17 , f "Q={mu_x / ( 2 . 0 * np . p i ) : . 3 f } " , f o n t s i z e =25)

p l t . s c a ( ax [ 1 ] )

d a t a _ a t _ t u r n _ 0 = t u r n _ b y _ t u r n _ d a t a [ t u r n _ b y _ t u r n _ d a t a [ ’ t u r n nb ’ ] == 0]

p l t . p l o t ( d a t a _ a t _ t u r n _ 0 . a c t i o n *1 e6 * 2 . , p a r t i c l e _ t u n e s , c =" b " , ms=5 ,

marker =" o " )

p l t . a x h l i n e ( 0 . 2 5 , c =" r " , lw = 0 . 5 )

p l t . y l a b e l ( r " $Q_x$ " )

p l t . x l a b e l ( r "2 J$_x$ [um ] " )

Listing I.9.4: Simplified NAFF algorithm.

i m p o r t numpy as np

from s c i p y . o p t i m i z e i m p o r t m i n i m i z e _ s c a l a r

d e f hann_window ( t , h =1) :

r e t u r n (2** h * np . math . f a c t o r i a l ( h ) **2 * (1 + np . cos ( np . p i * t /

t [ − 1 ] ) ) **h ) / np . math . f a c t o r i a l (2* h )
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d e f d i s c r e t e _ f o u r i e r _ i n t e g r a l ( s i g n a l , t imes , f r e q , h =1) :

e x p _ f a c t o r = np . exp ( −1 j * 2 * np . p i * f r e q * t i m e s )

my_hann_window = hann_window ( t imes , h=h )

i n t e g r a l = np . sum ( my_hann_window * s i g n a l * e x p _ f a c t o r )

r e t u r n i n t e g r a l

d e f s i m p l e _ n a f f ( s i g n a l , t imes , h =1) :

d e f o b j e c t i v e ( f r e q ) :

r e t u r n −np . abs ( d i s c r e t e _ f o u r i e r _ i n t e g r a l ( s i g n a l , t imes , f r e q ,

h=h ) )

f r e q _ b o u n d s = ( 0 , 0 . 5 * (1 / np . mean ( np . d i f f ( t i m e s ) ) ) )

r e s u l t = m i n i m i z e _ s c a l a r ( o b j e c t i v e , bounds= f r eq_bounds , method = ’

bounded ’ )

d o m i n a n t _ f r e q = r e s u l t . x

c o m p l e x _ f o u r i e r _ i n t e g r a l = d i s c r e t e _ f o u r i e r _ i n t e g r a l ( s i g n a l ,

t imes , d o m i n a n t _ f r e q , h=h )

d o m i n a n t _ a m p l i t u d e = abs ( c o m p l e x _ f o u r i e r _ i n t e g r a l ) / l e n ( t i m e s ) *2

r e t u r n d o m i n a n t _ f r e q , d o m i n a n t _ a m p l i t u d e

# Example

r e v o l u t i o n _ f r e q u e n c y = 11245 .5

n u m b e r _ o f _ t u r n s = 10000

d u r a t i o n = n u m b e r _ o f _ t u r n s * 1 / r e v o l u t i o n _ f r e q u e n c y

t i m e s = np . l i n s p a c e ( 0 , d u r a t i o n , number_o f_ tu rns , e n d p o i n t = F a l s e )

f r e q u e n c y = 3000

s i g n a l = 20 .0 * np . s i n (2 * np . p i * f r e q u e n c y * t i m e s )

d o m i n a n t _ f r e q = s i m p l e _ n a f f ( s i g n a l , t imes , h =3)

p r i n t ( f " Main f r e q u e n c y : { d o m i n a n t _ f r e q [ 0 ] } Hz " )

Listing I.9.5: One-turn map and non-symplectic maps.

i m p o r t sympy as sp

c l a s s s i m p l e _ a c c e l e r a t o r _ o n e t u r n :

d e f _ _ i n i t _ _ ( s e l f , mu_x , i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s , k 2 l =0 , k 3 l

=0) :

s e l f . mu_x = mu_x
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s e l f . k 2 l = k 2 l

s e l f . k 3 l = k 3 l

s e l f . p a r t i c l e _ c o o r d i n a t e s = np . a t l e a s t _ 2 d (

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s )

s e l f . t u r n s = 0

d e f i n i t i a l i z e _ t u r n _ b y _ t u r n _ d a t a ( s e l f , n u m b e r _ o f _ t u r n s =100) :

s e l f . t u r n _ b y _ t u r n _ d a t a = np . z e r o s ( ( n u m b e r _ o f _ t u r n s +1 , s e l f .

p a r t i c l e _ c o o r d i n a t e s . shape [ 0 ] , 2 ) )

s e l f . t u r n _ b y _ t u r n _ d a t a [ 0 ] = s e l f . p a r t i c l e _ c o o r d i n a t e s

d e f s a v e _ p a r t i c l e _ c o o r d i n a t e s ( s e l f ) :

s e l f . t u r n _ b y _ t u r n _ d a t a [ s e l f . t u r n s ] = s e l f .

p a r t i c l e _ c o o r d i n a t e s

d e f g e t _ t u r n _ b y _ t u r n _ p a n d a s ( s e l f ) :

f l a t _ d a t a = s e l f . t u r n _ b y _ t u r n _ d a t a . r e s h a p e ( −1 , 2 )

n u m b e r _ o f _ p a r t i c l e s = s e l f . p a r t i c l e _ c o o r d i n a t e s . shape [ 0 ]

t u r n _ n b = np . r e p e a t ( np . a r a n g e ( s e l f . t u r n s + 1) ,

n u m b e r _ o f _ p a r t i c l e s )

p a r t i c l e _ i d = np . t i l e ( np . a r a n g e ( n u m b e r _ o f _ p a r t i c l e s ) , s e l f .

t u r n s +1)

r e t u r n pd . DataFrame ( {

’x ’ : f l a t _ d a t a [ : , 0 ] ,

’ px ’ : f l a t _ d a t a [ : , 1 ] ,

’ a c t i o n ’ : 0 . 5 * ( f l a t _ d a t a [ : , 0 ]**2 + f l a t _ d a t a [ : , 1 ] * * 2 )

,

’ ang le ’ : np . a r c t a n 2 ( f l a t _ d a t a [ : , 1 ] , f l a t _ d a t a [ : , 0 ] ) ,

’ t u r n nb ’ : tu rn_nb ,

’ p a r t i c l e id ’ : p a r t i c l e _ i d

} , i n d e x =[ p a r t i c l e _ i d ] ) . s o r t _ i n d e x ( )

d e f c h e c k _ s y m p l e c t i c i t y ( s e l f , x _ r o t , px_k ick ) :

x , px , mu_x , k 2 l = sp . symbols ( ’ x p_x mu_x k2l ’ )

map = sp . Ma t r i x ( [ x _ r o t , px_k ick ] )

v a r i a b l e s = sp . M a t r i x ( [ x , px ] )

j a c o b i a n = map . j a c o b i a n ( v a r i a b l e s ) # . s i m p l i f y ( )

p r i n t ( " J a c o b i a n : " )

sp . p p r i n t ( j a c o b i a n )

d e t _ j a c o b i a n = j a c o b i a n . d e t ( ) . s i m p l i f y ( )

p r i n t ( )
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p r i n t ( " D e t e r m i n a n t o f J a c o b i a n : " )

sp . p p r i n t ( d e t _ j a c o b i a n )

i s _ s y m p l e c t i c = sp . s i m p l i f y ( d e t _ j a c o b i a n ) == 1

p r i n t ( )

p r i n t ( f " The map i s s y m p l e c t i c : { i s _ s y m p l e c t i c } " )

d e f d e f i n e _ o n e _ t u r n _ s y m p l e c t i c ( s e l f ) :

x , px , k2l , mu_x = sp . symbols ( ’ x p_x k_ {2 l } mu_x ’ )

cos_mu = sp . cos ( mu_x )

sin_mu = sp . s i n ( mu_x )

x _ r o t = x * cos_mu + px * sin_mu

p x _ r o t = −x * sin_mu + px * cos_mu

p x _ s e x t = p x _ r o t − 0 . 5 * k 2 l * x _ r o t **2

s e l f . c h e c k _ s y m p l e c t i c i t y ( x _ r o t , p x _ s e x t )

r e t u r n x _ r o t , px_sex t , x , px , k2l , mu_x

d e f t r u n c a t e _ e x p r e s s i o n ( s e l f , expr , x , px , x _ o r d e r =2 , p x _ o r d e r =2)

:

t r u n c a t e d _ e x p r = 0

f o r te rm i n exp r . a s _ o r d e r e d _ t e r m s ( ) :

powers = te rm . a s _ p o w e r s _ d i c t ( )

i f powers . g e t ( x , 0 ) <= x _ o r d e r and powers . g e t ( px , 0 ) <=

p x _ o r d e r :

i f powers . g e t ( x , 0 ) != powers . g e t ( px , 0 ) :

t r u n c a t e d _ e x p r += term

r e t u r n t r u n c a t e d _ e x p r

d e f d e f i n e _ o n e _ t u r n _ t r u n c a t e d ( s e l f ) :

x , px , k2l , mu_x = sp . symbols ( ’ x p_x k_ {2 l } mu_x ’ )

cos_mu = sp . cos ( mu_x )

sin_mu = sp . s i n ( mu_x )

x _ r o t = x * cos_mu + px * sin_mu

p x _ r o t = −x * sin_mu + px * cos_mu

p x _ s e x t = p x _ r o t − 0 . 5 * k 2 l * x _ r o t **2

p x _ s e x t = s e l f . t r u n c a t e _ e x p r e s s i o n ( p x _ s e x t . expand ( ) , x , px )

s e l f . c h e c k _ s y m p l e c t i c i t y ( x _ r o t , p x _ s e x t )

r e t u r n x _ r o t , px_sex t , x , px , k2l , mu_x

n u m b e r _ o f _ p a r t i c l e s = 30

x_min = 6e −7

425



A. Python code for simplified model

x_max = 0 .042

x = np . l i n s p a c e ( x_min , x_max , n u m b e r _ o f _ p a r t i c l e s )

px = np . z e r o s ( n u m b e r _ o f _ p a r t i c l e s )

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s = np . c o l u m n _ s t a c k ( ( x , px ) )

k 2 l = −0.45*100

mu_x = ( 2 . 0 * np . p i * 0 . 2 5 2 )

n u m b e r _ o f _ t u r n s = 500

a c c e l e r a t o r _ o n e t u r n = s i m p l e _ a c c e l e r a t o r _ o n e t u r n ( mu_x ,

i n i t i a l _ p a r t i c l e _ c o o r d i n a t e s , k 2 l = k 2 l )

a c c e l e r a t o r _ o n e t u r n . i n i t i a l i z e _ t u r n _ b y _ t u r n _ d a t a ( n u m b e r _ o f _ t u r n s )

# x _ r o t , px_kick , sp_x , sp_px , sp_k2 l , sp_mux = a c c e l e r a t o r _ o n e t u r n .

d e f i n e _ o n e _ t u r n _ s y m p l e c t i c ( )

x _ r o t , px_kick , sp_x , sp_px , sp_k2 l , sp_mux = a c c e l e r a t o r _ o n e t u r n .

d e f i n e _ o n e _ t u r n _ t r u n c a t e d ( )

p r i n t ( )

p r i n t ( " One t u r n maps f o r x and px : " )

p r i n t ( " x \ ’ = " )

sp . p p r i n t ( x _ r o t . expand ( ) . s i m p l i f y ( ) )

p r i n t ( " px \ ’ = " )

sp . p p r i n t ( px_k ick . expand ( ) . s i m p l i f y ( ) )

f o r t u r n i n r a n g e ( n u m b e r _ o f _ t u r n s ) :

p r i n t ( t u r n , n u m b e r _ o f _ t u r n s )

new_x = [ x _ r o t . subs ( { sp_x : x_val , sp_px : px_val , s p _ k 2 l : k2l ,

sp_mux : mu_x } ) . e v a l f ( ) f o r x_val , px _va l i n

a c c e l e r a t o r _ o n e t u r n . p a r t i c l e _ c o o r d i n a t e s ]

new_px = [ px_k ick . subs ( { sp_x : x_val , sp_px : px_val , s p _ k 2 l : k2l ,

sp_mux : mu_x } ) . e v a l f ( ) f o r x_val , px _va l i n a c c e l e r a t o r _ o n e t u r n

. p a r t i c l e _ c o o r d i n a t e s ]

a c c e l e r a t o r _ o n e t u r n . p a r t i c l e _ c o o r d i n a t e s = np . a r r a y ( [ new_x ,

new_px ] ) . T

a c c e l e r a t o r _ o n e t u r n . t u r n s += 1

a c c e l e r a t o r _ o n e t u r n . s a v e _ p a r t i c l e _ c o o r d i n a t e s ( )
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t u r n _ b y _ t u r n _ d a t a _ o n e t u r n = a c c e l e r a t o r _ o n e t u r n .

g e t _ t u r n _ b y _ t u r n _ p a n d a s ( )

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 8 , 8 ) )

p l t . s c a t t e r ( t u r n _ b y _ t u r n _ d a t a _ o n e t u r n . x*1 e3 ,

t u r n _ b y _ t u r n _ d a t a _ o n e t u r n . px *1 e3 , c =" b " , s =2)

p l t . y l im ( −60 , 60)

p l t . x l im ( −60 , 60)

p l t . x l a b e l ( " x [mm] " )

p l t . y l a b e l ( " 1 e3px " )

p l t . t e x t ( −50 ,50 , f "Q={mu_x / ( 2 . 0 * np . p i ) : . 3 f } " , f o n t s i z e =25)

B Solution to the exercises

B.1 Exercice 1

The Python code for the symplectic and non-symplectic one-turn maps can be found in the Appendix A.

a) One-turn map: In a lattice consisting of a linear rotation and a sextupole, the one-turn map can

be derived as follows. First, the linear rotation is applied

x′ = x cos(µx) + px sin(µx),

p′x = −x sin(µx) + px cos(µx),

where µx = 2πQx represents the total phase advance withQx being the betatron tune. Then, a sextupole

kick is applied, affecting only the momentum

p′′x = p′x −
1

2
k2lx

′2.

The one-turn map is

x′ = px · sin(µx) + x · cos(µx),

p′′x = −0.5 · k2l · p2x · sin2(µx)− 0.5 · k2l · x2 · cos2(µx) + px · cos(µx)− x · sin(µx)

− 0.5 · k2l · px · x · sin(2µx).

b) Demonstrating symplecticity: the one-turn map is symplectic if the determinant of its Jacobian is

equal to one. The Jacobian J is defined as

J =

[
∂x′

∂x
∂x′

∂px
∂p′x
∂x

∂p′x
∂px

]
.

The Jacobian for this one-turn map is

J =

[
cos(µx) sin(µx)

−k2l · (px sin(µx) + x cos(µx)) · cos(µx)− sin(µx) −k2l · (px sin(µx) + x cos(µx)) · sin(µx) + cos(µx)

]
.
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The determinant of the Jacobian matrix J is calculated as follows

det(J) = cos(µx) · [−k2l · (px sin(µx) + x cos(µx)) · sin(µx) + cos(µx)]

− sin(µx) · [−k2l · (px · sin(µx) + x · cos(µx)) · cos(µx)− sin(µx)]

= cos2(µx) + sin2(µx)

= 1.

Therefore, the transformation is symplectic as

det(J) = 1.

c) Neglecting terms: after neglecting the term involving the product of x and px, the expression for p′′x
is simplified to

p′′x = −0.5 · k2l · p2x · sin2(µx)− 0.5 · k2l · x2 · cos2(µx) + px · cos(µx)− x · sin(µx).

The Jacobian is given by

J =

[
cos(µx) sin(µx)

−k2l · x · cos2(µx)− sin(µx) −k2l · px · sin2(µx) + cos(µx)

]
.

Calculating the determinant of the Jacobian

det(J) = (cos(µx))
(
−k2l · px · sin2(µx) + cos(µx)

)
− (sin(µx))

(
−k2l · x · cos2(µx)− sin(µx)

)
= cos2(µx) + k2l · px · sin3(µx) · cos(µx)− k2l · x · sin(µx) · cos3(µx)− sin2(µx),

which cannot be simplified to 1, indicating that the transformation is not be symplectic.

B.2 Exercice 2

Series truncation: the map of a quadrupole is given by

MQ =

(
cos(

√
kL) 1√

k
sin(

√
kL)

−
√
k sin(

√
kL) cos(

√
kL)

)
, (I.9.63)

which has a determinant of 1. From the Taylor expansion of the trigonometric functions

cos(x) = 1− x2

2
+O(x4), (I.9.64)

sin(x) = x− x3

6
+O(x5). (I.9.65)
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Inserting the Taylor expansion of the trigonometric functions in the quadrupole map

MQ =

(
1 L

−kL 1

)
+O(L2). (I.9.66)

Truncating terms higher than second order results in a determinant equal to 1 + kL2, which indicates a

non-symplectic map. The map of the thin quadrupole is

M =

(
1 0

−kL 1

)
, (I.9.67)

which is symplectic.
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