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Chapter I.12

Collective effects

Mauro Migliorati

Sapienza University of Rome, Italy

Particle accelerators use external electromagnetic fields to guide and accelerate charged particles. In
a real machine, however, there is another source of electromagnetic fields, the beam itself, which,
interacting with the accelerators’ devices, produces additional self-induced fields which perturb the
particle’s motion leading to the so-called collective effects.

The self-induced fields are commonly divided into space charge fields, generated directly by the
charge distribution and including the image currents circulating on the walls of a smooth, perfectly
conducting pipe, and the wakefields, produced by the finite conductivity of the walls, resonant de-
vices, or any geometrical variation of the beam pipe.

Collective effects in particle accelerators are one of the key constituents for determining the ultimate
particle accelerator performance. Their role is becoming increasingly important as particle accelera-
tors are being pushed to ever higher intensity and beam brightness.

Charged particles in a transport channel or in a circular accelerator are confined, guided and ac-

celerated by external electromagnetic (e.m.) fields. Acceleration is usually provided by the electric field

of the RF system, while magnetic fields in the dipole magnets are used for guiding the beam on the

reference trajectory (orbit), in the quadrupoles for the transverse confinement, and in the sextupoles for

the chromaticity correction.

The motion of a single charge q is governed by the Lorentz force through the equation

d(m0γv)

dt
= Fext = q(E+ v ×B) (I.12.1)

where m0 is the rest mass, γ is the relativistic factor, v is the particle velocity, and E and B are the

electric and magnetic fields. Observe that we use bold letters for the vectors. The external e. m. fields,

used for the beam transport, do not depend on the beam current. With the above equation, we can in

principle calculate the trajectory of the charge moving through any e.m. field.

In a real accelerator, however, there is another important source of fields to be considered: the

beam itself, which, circulating inside the pipe, produces additional e.m. fields called "self-fields". They

depend on the geometry of the beam pipe, the surrounding materials, the charge of the beam, its velocity,

and distribution. They are responsible for many phenomena observed in beam dynamics: energy loss,

betatron tunes shift, synchronous phase and tune shift, and instabilities. It is customary to divide the self-

fields into space charge fields and wakefields. The space charge forces are those generated by the charge
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I.12.1. Space Charge

distribution, including the image currents circulating on the walls of a smooth, perfectly conducting pipe.

Wakefields are produced by the finite conductivity of the walls, resonant devices, and, more generally,

any geometric variation of the beam pipe.

I.12.1 Space Charge

I.12.1.1 Direct space charge forces

Let us consider a relativistic point charge moving, with respect to what we define as our laboratory ref-

erence frame, with constant velocity v along the direction s. Observe that, differently from the common

Cartesian coordinates, we use here the variable s instead of z. The electric and magnetic fields produced

by the charge can be obtained from the relativistic transformation of the electrostatic field of a point

charge obtained directly from the Coulomb law. It is well known that the electrostatic field is modified

because of the relativistic Lorentz contraction along the direction of motion, as shown in Fig. (I.12.1).

Fig. I.12.1: Electric field lines of a point charge at different energies.

For an ultra-relativistic charge, with γ ≫ 1 the field lines are confined on a plane perpendicular

to the direction of motion. In fact, if we suppose that the particle at t = 0 passes in the origin of the

laboratory system, the electric field in the Cartesian coordinates can be written as

E =
q

4πε0

γ
(
xî+ yĵ + sk̂

)
(x2 + y2 + γ2s2)3/2

. (I.12.2)

At any point of the transverse plane perpendicular to the charge, since z = 0, if we write xî+yĵ =

rr̂, we have

E =
γq

4πε0r2
r̂, (I.12.3)

while, on the z axis, that is with x = y = 0, then

E =
q

4πε0γ2s2
k̂. (I.12.4)

We see that in the transverse plane, the electric field is radial and proportional to the charge energy

γ, while in the longitudinal plane, it vanishes as the inverse of the square of the energy.
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Additionally, we also obtain that the magnetic field has only an azimuthal component of the kind

Bθ =
v

c2
Er, (I.12.5)

with circular field lines shown in Fig. I.12.2.
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Fig. I.12.2: Electric and magnetic field lines of a relativistic point charge.

These fields allow evaluating the electromagnetic forces between two ultra-relativistic charges

traveling with the same velocity on parallel trajectories at a distance r one from the other. In case the

velocities are in the same direction, as in the left-hand side of Fig. I.12.3, the transverse force tends to

vanish because electric and magnetic terms have opposite sign

Fr = q1 (Er − βcBθ) =
γq1q2
4πε0r2

(
1− β2

)
=

q1q2
4πε0γr2

. (I.12.6)
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Fig. I.12.3: Two point charges moving in the same direction (left-hand side) and in the opposite direction
(right-hand side).

541



I.12.1. Space Charge

This is generally the case for charges belonging to the same bunch (q1 = q2) giving rise to defo-

cusing space charge effects, important for low-energy accelerators. On the other hand, if the two charges

are moving in opposite directions, as in the right-hand side of the figure, the electric and magnetic forces

have the same sign so that

Fr = q1 (Er + βcBθ) =
γq1q2
4πε0r2

(
1 + β2

)
. (I.12.7)

Counter-rotating particles can be found, for example, during collisions, and they are important for

beam-beam effects. In this case, the force can be defocusing or focusing if the two charges have the same

or opposite sign.

We now analyze the case of a charge distribution. Let us consider an infinite uniform cylindrical

beam of radius a in the free space. The intensity of the electric and magnetic fields can be computed

like in the static case, applying Gauss’s and Ampere’s laws. Due to symmetries, the electric field is only

radial and the magnetic field is azimuthal. As a consequence, it is convenient to choose, as the surface

for the calculation of the electric field flux, a cylinder of radius r and length l symmetric to the beam.

We observe that the flux is different from zero only on the lateral surface of the cylinder, where the

electric field is constant. On the other hand, for the circulation of the magnetic field, we can choose a

circumference of radius r. Referring to Fig. I.12.4, inside the distribution for r ≤ a, we then have

2πrlEr =
ρπr2l

ε0
=
λr2l

a2ε0
→ Er =

λr

2πε0a2
, (I.12.8)

2πrBθ = µ0Jπr
2 =

µ0vλr
2

a2
→ Bθ =

β

c

λr

2πε0a2
, (I.12.9)

with ρ the volume charge density, λ the charge per unit of length and J the current density.

 

a𝐸 𝐵

Fig. I.12.4: Infinite uniform cylindrical beam.

With these fields, the Lorentz force acting on a charge inside the distribution called direct space

charge force is given by

Fr = q(Er − vBθ) = q(1− β2)Er =
qEr

γ2
=

qλr

2πε0γ2a2
. (I.12.10)

This force is positive, that is, defocusing, and it is linear with the transverse coordinate. The lin-

earity derives from the assumption of uniform transverse distribution. We can observe that the attractive

magnetic force, which becomes significant at high velocities, tends to compensate for the repulsive elec-

tric force so that the space charge defocusing is primarily a non-relativistic effect. Therefore, for very
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high energy, these forces can be neglected.

Exercise 1
Calculate the electric and magnetic fields for r ≥ a.

Exercise 2
Calculate the electric and magnetic fields in case of a transverse Gaussian distribution of the kind

ρ(r) =
λ0

2πσ2r
e
− r2

2σ2
r .

I.12.1.2 Indirect space charge forces

In an accelerator, the beams travel inside a vacuum pipe generally made of metallic material (aluminium,

copper, stainless steel, etc.). The pipe goes through the coils of the magnets (dipoles, quadrupoles,

sextupoles). Its cross-section may have a complicated shape, as in the case of special devices like RF

cavity, kickers, diagnostics and controls; however, most part of the beam pipe has a cross-section with

a simple shape: circular, elliptic, racetrack, or quasi-rectangular. For the moment we consider only the

effect of a smooth pipe that influences the electromagnetic fields produced by the beam.

Before we go into this problem, it is necessary to recall the basic features of fields close to metallic

or magnetic materials.

I.12.1.2.1 Boundary conditions

When we have two materials with different relative permittivity, which we call εr1 and εr2, in the pas-

sage from one material to another, the tangential electric field and the normal electric displacement are

preserved, so that we have the boundary relations

Et1 = Et2

εr1En1 = εr2En2

. (I.12.11)

If one of the two materials is a conductor with a finite conductivity and we are in the static con-

dition, then the electric field must vanish inside it, and the walls are equipotential surfaces. This implies

that the electric field lines are orthogonal to the conductor surface, independently of the dielectric and

magnetic properties of the material. The only condition is to have a finite conductivity.

If we have a charge close to a conductor, in order to obtain the electric field, we need to include the

effects of the induced charges on the conducting surfaces and we must know how they are distributed.

Generally, this task is not easy, but if we have an infinite conducting screen, the problem can be easily

solved by making use of the method of images: we can remove the screen and put, at a symmetric

location, a "virtual" charge with opposite sign, as shown in the left-hand side of Fig. I.12.5, such that the

potential is constant at the position of the screen and the field lines are orthogonal to its surface.

The total electric field outside of the conductor is the sum of that generated by the direct and the

image charges.

For the static magnetic field between two materials with different permeability, the following

543



I.12.1. Space Charge
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Fig. I.12.5: Left: image charge method for a charge near a conducting screen, right: image current
method for a current near a ferromagnetic screen.

boundary relations hold
Ht1 = Ht2

µr1Hn1 = µr2Hn2

. (I.12.12)

Thus, static magnetic fields do not perceive the presence of the conductor, if it has a magnetic

permeability µr ≃ 1, as copper or aluminium, and the field lines behave as in the free space with-

out any distortion. However, a beam pipe in a real machine goes through many magnetic components

(like dipoles and quadrupoles) made of ferromagnetic materials with high permeability (of the order of

103 − 105). For these materials, due to the boundary conditions, the magnetic field lines are practically

orthogonal to the surface. Similarly to electric field lines for a conductor, the total magnetic field can be

derived by using the image method: we remove the magnetic wall and put a symmetric current with the

same sign, as shown on the right-hand side of Fig. I.12.5.

Static electric fields vanish inside a conductor for any finite conductivity σ, while static magnetic

fields pass through, unless of high permeability. This is no longer true for time-changing fields, which

can penetrate inside the material in a region δw called the skin depth. In order to obtain the skin depth

as a function of the material properties, we use the following Maxwell’s equations inside the conducting

material together with the constitutive relations


∇×E = −∂B

∂t

∇×H = J+
∂D

∂t


B = µ0µrH = µH

D = εrε0E = εE

J = σE

. (I.12.13)

We suppose that both σ and µ do not depend on time. If we apply the curl to the first equation, we

obtain

∇× (∇×E) = ∇ (∇ ·E)−∇2E = −∇2E = − ∂

∂t
(∇×B) = −µ ∂

∂t
(∇×H) . (I.12.14)
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We can substitute ∇ × H with the second equation and use the constitutive relations so that the

differential equation for the electric field becomes of the kind

∇2E = µ
∂J

∂t
+ µ

∂2D

∂t2
= µσ

∂E

∂t
+ µε

∂2E

∂t2
. (I.12.15)

Consider a plane wave linearly polarized with the electric field in the x direction propagating in

the conducting material along s. Then the differential equation becomes

∂2Ex

∂s2
− µε

∂2Ex

∂t2
− µσ

∂Ex

∂t
= 0. (I.12.16)

A similar equation holds for Hy. With respect to the classic plane wave differential equation in

vacuum, we now have an additional term proportional to the conductivity σ. In order to find the solution

to this wave equation, we assume that the electric field propagates in the z direction according to

Ex = Ẽ0e
j(ωt−ks), (I.12.17)

where k = kr + jki is a complex quantity that, from the above equation, is a solution of

−k2 − jωµσ + µεω2 = 0, (I.12.18)

that is

k = ±

√
ω2µε

(
1− jσ

ωε

)
. (I.12.19)

If σ ≫ ωε, then we are in a good conductor condition and can write

k = kr + jki ≃
√
ωσµ

2
− j

√
ωσµ

2
. (I.12.20)

Due to the imaginary part, the electric field propagates inside the conductor with an amplitude that

attenuates exponentially inside the material according to

Ex = Ẽ0e
−s/δwej(ωt−krs), (I.12.21)

with the attenuation constant δw, having the units of meters, called skin depth and defined as

δw = − 1

ki
=

√
2

ωσµ
. (I.12.22)

The skin depth depends on the material properties and the frequency. Copper, for example, has a

skin depth of

δw ≃ 6.66√
f [Hz]

[cm]. (I.12.23)

If we assume a copper beam pipe 2 mm thick, for example, we find that fields pass through the

wall up to frequencies of about 1 kHz.
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I.12.1. Space Charge

These results allow us to obtain further boundary conditions when we have a time-varying

e.m. field close to a good conductor with a given conductivity σ. In particular, if the skin depth is

larger than the wall thickness, time-varying fields pass through the conductor wall. This happens at rela-

tively low frequencies when δw is large. On the other hand, at higher frequencies, the skin depth can be

much smaller than the wall thickness. In this case, we can consider that both electric and magnetic fields

vanish inside the wall. As for the static case, we have that the electric field lines are perpendicular to the

wall surface, while the magnetic field lines are tangent to the wall. As a consequence, in order to obtain

a time-varying electric field close to a good conductor, we can still use the method of the images, while

for the magnetic field, it is easy to see that we can use the method shown in Fig. I.12.6, by changing the

direction of the image current.

direct 
current

𝐼 −𝐼
image 
current

Fig. I.12.6: Image current method for a current near a ferromagnetic screen in case of a high-frequency
magnetic field.

Exercise 3
Evaluate the electromagnetic force acting on a charge q at a distance d from an infinite perfectly con-

ducting plane, moving with a relativistic velocity v parallel to the plane (see Fig. I.12.7).

Fig. I.12.7: Exercise 3.
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I.12.1.2.2 Indirect space charge forces of a beam in a circular beam pipe.

In the previous Section we have seen that, under certain conditions, the electric and magnetic fields of a

charge or a distribution can be computed as the sum of the direct and image ones. As a first example of

the application of this method, let us consider the case of an infinite uniform cylindrical beam, already

studied in the free space, now placed in a circular beam pipe.

The direct force acting on any charge inside the distribution is given by Eq. (I.12.10). For the

indirect force, we need to evaluate the fields due to the boundary conditions. In this case, however, due

to the symmetry, the field lines are not modified by the presence of the vacuum chamber. Indeed, the

electric field is already radial and then perpendicular to the pipe, and the magnetic field remains circular.

Therefore, the transverse fields are the same as in the free space.

I.12.1.2.3 Space charge force for a finite length bunch

In the ultra-relativistic regime, with γ ≫ 1, the same Eq. (I.12.10) can be used in the transverse plane

even if the longitudinal distribution is not constant. For example, for bunched beams with finite length

ℓ0 inside a circular pipe of radius b, if ℓ0 ≫ b/γ, by introducing the local charge density λ(s) such that∫
ℓ0

λ(s)ds = Nq, (I.12.24)

with N the total number of particles in the bunch and q the charge of a single particle, we can write the

space charge force acting on a single particle inside the distribution as

Fr(s) =
qλ(s)

2πε0γ2a2
r. (I.12.25)

Exercise 4
By looking at Eq. (I.12.25), write the transverse electric and magnetic fields inside a cylindrical bunched

ultra-relativistic beam in a circular vacuum chamber.

Exercise 5
Evaluate the total transverse space charge force (direct + indirect) acting on a charge inside an ultra-

relativistic beam in a circular vacuum chamber for the following three longitudinal distributions:

– Gaussian: λ(s) = Nq√
2πσs

e
− s2

2σ2
s ;

– Parabolic: λ(s) = 3Nq
2l0

[
1−

(
2s
l0

)2]
;

– Sinusoidal modulation: λ(s) = λ0 +∆λ cos(kss).

I.12.1.2.4 Indirect space charge forces of a beam inside parallel plates: DC case

Under some conditions, the beam pipe cross-section is such that we can consider only the surfaces closer

to the beam, which we can imagine as two parallel conducting plates, as shown in Fig. I.12.8 In this case,

we can apply the image method to a charge distribution of radius a between two conducting plates 2h

apart. For each plate, we have an image charge with an opposite sign with respect to the real charge at a
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I.12.1. Space Charge

distance of 2h. Each image charge, in its turn, must have a corresponding image charge with respect to

the other plate so that we finally have an infinite set of charges with opposite signs 2h apart from each

other as shown in Fig. I.12.9. In the figure, the charge distribution extends along the z axis.

Fig. I.12.8: Elliptic and rectangular vacuum chamber cross-section approximated by parallel plates.

Fig. I.12.9: Image charge distribution for parallel plates.

By applying the superposition principle we get the total image electric field in a position y inside

the beam as

Eim
y (y, s) =

λ(s)

2πε0

∞∑
n=1

(−1)n
(

1

2nh+ y
− 1

2nh− y

)
=
λ(s)

2πε0

∞∑
n=1

(−1)n
−2y

(2nh)2 − y2

≃ − λ(s)

4πε0h2
y

∞∑
n=1

(−1)n
1

n2
=

λ(s)

4πε0h2
π2

12
y. (I.12.26)

In the last two passages, we have supposed that h≫ a ≥ y. This expression represents the electric

field due to the image charge distribution in a position y inside the circular beam. For the magnetic field,

we can observe that it is not modified by the presence of the conducting plates so that the total vertical

force acting on a charge inside the distribution, as a sum of the direct and indirect forces, is

Fy(y, s) =
qλ(s)

2πε0

(
1

γ2a2
+

π2

24h2

)
y. (I.12.27)

In the above equation, the direct field is still given by Eq. (I.12.25) with r substituted here by y.

Another interesting feature of this expression is that it is linear with the transverse coordinate y as long
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as we remain inside the beam distribution, that is y ≤ a. The linearity comes from the fact that we have

supposed a transverse uniform distribution. Finally, observe that the 1/γ2 dependence is only valid for

the direct space charge force since for image one there’s no cancellation of the electric and magnetic

forces.

Since we have lost the cylindrical symmetry due to the parallel plates, we need also to evaluate

the horizontal space charge force. The direct force is the same as the vertical one since the beam has a

cylindrical transverse distribution, while, for the image electric field we can use the divergence equation

∇ ·Eim = 0 (x, y) ≤ a (I.12.28)

so that
∂Eim

x

∂x
= −

∂Eim
y

∂y
→ Eim

x = −
∂Eim

y

∂y
x = − λ(s)

4πε0h2
π2

12
x. (I.12.29)

As a consequence, the horizontal space charge force is

Fx(x, s) =
qλ(s)

2πε0

(
1

γ2a2
− π2

24h2

)
x. (I.12.30)

Observe that the presence of the parallel plates produces an image-defocusing force in the vertical

plane and an image-focusing force in the horizontal plane.

Exercise 6
In the static case, evaluate the horizontal and vertical magnetic fields acting on a charge inside a beam at

the center of two parallel plates having a distance 2g between each other, and made of magnetic material

with µr ≫ 1.

I.12.1.2.5 Indirect space charge forces of a beam inside parallel plates: AC case

We have seen that, close to a conductor, electromagnetic fields have different behaviours depending on

the skin depth of the material. Usually, in particular for bunched beams, the frequency spectrum is quite

rich in harmonics. It is convenient to decompose the current into a DC component, Ī = λ̄v, for which

the skin depth is much larger than the wall thickness, and an AC component, Ĩ = λ̃v, for which the

skin depth is much lower than the wall thickness. While the DC component of the magnetic field does

not perceive the presence of the material, its AC component is obliged to be tangent at the wall. As a

consequence, we have image currents with opposite directions, which behave as the charges in the DC

case, producing an image magnetic field. Therefore, we have now both image electric field Ẽim
x and Ẽim

y ,

having the same expressions of the previous case, and image magnetic fields of the kind

B̃im
x (s, y) = −β

c
Ẽim

y B̃im
y (s, y) =

β

c
Ẽim

x . (I.12.31)

In this case, there’s a cancellation of the electric and magnetic forces, so that the total forces acting

on a charge inside the distribution and due to the AC component of the current can be written as

F̃x(s) =
qλ̃(s)

2πε0γ2

(
1

a2
− π2

24h2

)
x (I.12.32)
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F̃y(s) =
qλ̃(s)

2πε0γ2

(
1

a2
+

π2

24h2

)
y. (I.12.33)

A similar method can be applied when the beam is inside two parallel plates made of ferromagnetic

material, as, for example, when outside the beam pipe there is a dipole magnet with half-gap g. For the

DC case, the magnetic field doesn’t see the conducting pipe, while it is strongly affected by ferromagnetic

material, and the field lines must be orthogonal to the pole surface so that the total magnetic field can be

obtained by considering image currents with the same sign.

It is possible to write an expression that summarizes the results under the different conditions (AC

or DC) on both axes as

Fu =
q

πε0

[
1

γ2

(
1

2a2
∓ π2

48h2

)
λ∓ β2

(
π2

48h2
+

π2

24g2

)
λ̄

]
u, (I.12.34)

where λ̄ is the DC part of the current. The upper (minus) sign is used when u = x, while the lower

(plus) sign is used when u = y. It is interesting to observe that these forces are linear with transverse

displacement u = x or y. This is due to the hypothesis of uniform transverse distribution. A more

general expression, valid also for geometries different from circular or parallel plates, can be written as

Fu =
q

πε0

[
1

γ2

(
f0
a2

∓ f1
h2

)
λ∓ β2

(
f1
h2

+
f2
g2

)
λ̄

]
u. (I.12.35)

The Laslett form factors f0, f1, and f2 depend on the pipe geometry. By comparing the above

equation with Eq. (I.12.34), for example, it is easy to obtain the coefficients for the parallel planes.

Exercise 7
Demonstrate Eq. (I.12.31) by starting from the magnetic field of an infinite straight wire and using the

method of image currents.

Exercise 8
Write the Laslett form factors for parallel plates.

I.12.1.3 Longitudinal space charge force

In the longitudinal plane, the space charge force can be obtained, under some simplified assumptions,

from the transverse fields. In particular, let us consider a cylindrical beam inside a cylindrical vac-

uum chamber of radius b at ultra-relativistic velocities so that, according to the discussion at the end of

Sec. I.12.1.2.2, the results that we obtain for an infinite uniform cylindrical beam can be extended also

to bunched beams. The geometry is shown in Fig. I.12.10.

Let us use Faraday’s law of induction by choosing, as an integration path, a small rectangle with

two sides parallel to the s−axis, one starting from inside the beam at a given distance r in a given

longitudinal position z, and the parallel one going through the beam pipe at r = b as in the figure. We

can write ∮
E · dl = − ∂

∂t

∫
S
B · dS. (I.12.36)
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Fig. I.12.10: Beam model used to determine the longitudinal space charge forces.

Since ∆s is an infinitesimal, the above integral equation can be expanded as

Es(r, s)∆s+

∫ b

r
Er(r

′, s+∆s)dr′ − Es(b, s)∆s−
∫ b

r
Er(r

′, s)dr′ =

−∆s
∂

∂t

∫ b

r
Bθ(r

′, s)dr′. (I.12.37)

The difference between the two radial electric fields inside the integrals in the left-hand side of the

above equation can be written as

Er(r
′, s+∆s)− Er(r

′, s) =
∂Er(r

′, s)

∂s
∆s, (I.12.38)

so that the equation becomes

Es(r, s) = Es(b, s)−
∫ b

r

[
∂Er(r

′, s)

∂s
+
∂Bθ(r

′, s)

∂t

]
dr′. (I.12.39)

We also observe that there is a relation between the longitudinal position s and time t: a charge

arriving earlier in a given position of a circular machine with respect to the reference particle for which

s = 0 has a negative time but positive s since it is ahead with respect to the reference particle. We have

therefore ds = −vdt, with v the velocity of the beam, so that

Es(r, s) = Es(b, s)−
∂

∂s

∫ b

r

[
Er(r

′, s)− vBθ(r
′, s)
]
dr′. (I.12.40)

From Eq. (I.12.9), and noting that, for perfectly conducting walls, we have Es(b, s) = 0, the

longitudinal electric field inside the beam becomes

Es(r, s) = − ∂

∂s

∫ b

r

[
Er(r

′, s)− β2Er(r
′, s)
]
dr′ = − 1

γ2
∂

∂s

∫ b

r
Er(r

′, s)dr′. (I.12.41)

The integral on the right-hand side of the equation depends on the beam distribution. If we consider

a uniform cylindrical beam of radius a, then the integral can be split into an integral inside the beam (from

r to a), for which the radial electric field is given by Eq. (I.12.8), and an integral from a to b, outside the

551



I.12.1. Space Charge

beam, for which the electric field is proportional to 1/r, so that we obtain

Es(r, s) = − 1

4πε0γ2

(
1− r2

a2
+ 2 ln

b

a

)
∂λ(s)

∂s
. (I.12.42)

Since the magnetic field does not affect the longitudinal force, we have

Fs(r, s) = qEs(r, s) = − q

4πε0γ2

(
1− r2

a2
+ 2 ln

b

a

)
∂λ(s)

∂s
. (I.12.43)

Observe that this force is proportional to the derivative of the longitudinal distribution with the

minus sign: a positive slope means a negative force and vice versa. For a bunched beam, having, for

example, Gaussian or parabolic line density distribution, positive slopes in λ(s) are in the tail of the bunch

where charges are then affected by a negative longitudinal force and lose energy. The opposite happens

for charges in the head of the bunch, which are then accelerated. Of course, a uniform longitudinal

distribution does not produce any longitudinal force due to symmetry conditions. Observe also that this

force is inversely proportional to γ2 and vanishes quickly in high-energy accelerators.

Exercise 9
Demonstrate Eq. (I.12.42) by solving the integral (I.12.41) with the proper expression of Er(r, s).

Exercise 10
Compute the longitudinal space charge forces produced by a cylindrical beam in a circular beam pipe

with the same longitudinal distributions as Exercise 5.

Comments on Exercise 10 Let us suppose a coasting beam inside a circular accelerator working

below the transition energy. The longitudinal space charge force is proportional to

−∂λ(s)
∂s

.

As a consequence, particles along the positive slope of sinusoidal modulation are affected by a

negative force and lose energy. The opposite happens to particles on the negative slope. Below transition

energy particles with energy lower than the nominal one have a longer revolution time thus delaying

a bit. This means that such particles tend to slide down the slopes of the sinusoidal modulation, thus

filling the valleys of the perturbation which then decreases in amplitude as shown with the red curve of

Fig. I.12.11. The perturbation tends to cancel out and the beam is stable. The opposite happens above

transition energy, thus producing an increase of the perturbation: this is called a negative mass instability,

and it is caused by the space charge above the transition energy.

I.12.1.4 Transverse incoherent space charge effects in circular accelerators

In order to study the effects of the transverse space charge forces on beam dynamics, we consider an

ideal circular accelerator of radius ρ with the coordinate system already used in Chapters I.3 and I.4

on transverse and longitudinal beam dynamics. The equation of motion can be derived starting from

Newton’s second law. However, different from the equations used in the transverse beam dynamics, here

we must take into account not only the external guiding forces but also the self-field ones produced by
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Fig. I.12.11: Effect of the longitudinal space charge force on a coasting beam below transition energy.

the space charge. Therefore, our starting equation is

d(γm0v)

dt
= Fext(r) + Fself(r) → dv

dt
=

Fext(r) + Fself(r)

γm0
, (I.12.44)

for which we are supposed to have a constant beam energy since the external forces are produced by

static magnetic fields. Starting from this equation, we follow the same procedure used to derive the

linear betatron equation of motion (see Chapter I.3 on transverse deam dynamics), but we now must also

take into account the transverse space charge forces in addition to the guiding and focusing forces of

dipoles and quadrupoles. As a consequence, we can now write

x′′(s)v2 − v2

ρ

[
1− x(s)

ρ

]
= −qvB0

γm0
− qvxg

γm0
+
F self
x

γm0
. (I.12.45)

By dividing both sides of this equation by v2, we get

x′′(s) + x(s)

(
1

ρ2
+ k

)
=

F self
x

γv2m0
=

F self
x

β2E0
, (I.12.46)

with E0 the beam energy. Since we want to study the perturbation to the betatron motion produced by

the space charge forces, in the following we adopt the simplified model in which the particles execute

simple harmonic oscillations around the reference orbit. This is the case for which the focusing term is

constant along the machine. Although this condition is never fulfilled in a real accelerator, it provides a

reliable model for the description of the effects due to the self-fields. As a consequence, we consider the

focusing term between the round brackets on the left-hand side of the equation as a constant Kx, so that

the differential equation of motion becomes

x′′(s) +Kxx(s) =
1

β2E0
F self
x . (I.12.47)

We want also to express the above equation in terms of the betatron tune Qx0. For that, we write
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the solution of the free betatron motion as

x(s) = Ax cos
(√

Kxs+ ψ
)
, (I.12.48)

from which we can define a betatron wavelength as

λβ =
2π√
Kx

. (I.12.49)

From this wavelength, we define the betatron tune as

Qx0 =
2πρ

λβ
= ρ
√
Kx, (I.12.50)

so that the equation of motion becomes

x′′(s) +

(
Qx0

ρ

)2

x(s) =
1

β2E0
F self
x . (I.12.51)

It is important to remember that in deriving this equation we have linearized the betatron motion on

the left-hand side, but no assumptions have been made for the space charge force. Let us now consider

an expansion of the self-forces around the ideal orbit: the constant term acts as a dipole magnet and

changes the equilibrium orbit, and the linear term (proportional to the displacement) acts as a quadrupole

changing the focusing strength and thus inducing a shift of the betatron frequencies. This can happen

either in the motion of individual particles inside the beam (incoherent motion), or in the oscillation of

the whole beam (coherent motion) around the closed orbit.

If we write the linear term of the space charge force as(
∂F self

x

∂x

)
0

x, (I.12.52)

then the equation becomes

x′′(s) +

[(
Qx0

ρ

)2

− 1

β2E0

(
∂F self

x

∂x

)
0

]
x(s) = 0. (I.12.53)

We recognize in the square brackets a term proportional to the square of the new betatron tune that

is shifted, with respect to the initial one Qx0 by the self-induced forces. This term can then be written as[(
Qx0

ρ

)2

− 1

β2E0

(
∂F self

x

∂x

)
0

]
=

(Qx0 +∆Qx)
2

ρ2
≃ Q2

x0 + 2Qx0∆Qx

ρ2
, (I.12.54)

for which we have supposed that the perturbation to the tune ∆Qx (the tune shift) is much smaller than

the unperturbed tune, that is ∆Qx ≪ Qx0.

By comparing the first and the last term of the above equation, we obtain the tune shift due to the
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space charge forces as

∆Qx = − ρ2

2β2E0Qx0

(
∂F self

x

∂x

)
0

. (I.12.55)

Depending on the case, F self
x can be any of the expressions derived in Secs. I.12.1.1 and I.12.1.2.

For the vertical plane or in the case of cylindrical symmetry, we can substitute x with y or r respectively.

For the case of direct space charge force and in a circular vacuum chamber, the betatron tune shift

is negative since the space charge forces are defocusing on both planes. Notice also that, since the

transverse self-force for a non-uniform longitudinal distribution depends on the longitudinal position

inside the beam, the tune shift is not constant along the beam: charges at different positions are affected

by different space charge forces thus giving a tune spread inside the beam. This conclusion is generally

true also for more realistic non-uniform transverse beam distributions, which are characterized by a tune

shift dependent also on the betatron oscillation amplitude. In these cases, the effect is called incoherent

tune spread. The term incoherent derives from the fact that the tune shift changes for different charges

inside the bunch. In addition to this, there can be another effect acting on the center of mass of a bunch

called coherent tune shift, as we will discuss in the next Section.

As an example, let us consider an ultra-relativistic bunch with uniform circular transverse distri-

bution on the axis of a circular pipe. The space charge force is given by Eq. (I.12.25), so that the tune

shift can be written as

∆Qx = − qρ2

4πε0γ2β2a2E0Qx0
λ(s) = − re,pρ

2

qγ3β2a2Qx0
λ(s), (I.12.56)

where re,p is the classical radius of the electron or the proton and q = 1.6× 10−19 C the electron charge.

In this expression, we can clearly see the dependence of the tune shift on the longitudinal position inside

a beam.

Exercise 11
Calculate the tune spread (which we can simply define here as the difference between the minimum and

maximum tune shifts of the charges inside the distribution) for the three distributions of Exercise 5.

Some effects of the longitudinal distribution on the tune spread are discussed in the Ap-

pendix I.12.A.

In the more general and realistic case of non-uniform focusing along the accelerator, we can get

back to Eq. (I.12.47) considering Kx as a function of s and, as done for the constant focusing, linearize

the space charge force so that, instead of Eq. (I.12.53) we obtain

x′′(s) +

[
Kx(s)−

1

β2E0

(
∂F self

x (s)

∂x

)
0

]
x(s) = x′′(s) + [Kx(s) + ∆Kx(s)]x(s) = 0. (I.12.57)

Observe that we have considered here that also F self
x can vary along the machine.

This equation clearly shows that the space charge forces act as a gradient error ∆Kx(s) located

at a given position s of the machine. From the beam optics it is possible to demonstrate that, having a

circular accelerator with design quadrupole strengthKx(s) and gradient errors ∆Kx(s) distributed along
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the machine, these errors lead to a tune shift of

∆Qx =
1

4π

∮
βx(s)∆Kx(s)ds = − 1

4πβ2E0

∮
βx(s)

(
∂F self

x (s)

∂x

)
0

ds, (I.12.58)

where βx is the betatron function. With this expression, we can remove the hypothesis of a constant

focusing along the machine.

Exercise 12
Consider a beam with uniform circular transverse distribution inside a circular vacuum chamber of con-

stant radius a. Express the betatron tune shift of Eq. (I.12.56) in terms of the beam emittance.

Exercise 13
Evaluate Eq. (I.12.58) for a uniform transverse distribution of radius a using the relation a2 = βxεx with

εx the horizontal beam emittance.

Why can a space charge tune shift be dangerous? Since each particle inside the bunch can have a

different tune shift, the final result of the transverse space charge forces is a spread of the betatron tunes.

However, in circular accelerators, the values of the betatron tunes should not be close to rational numbers

in order to avoid the crossing of linear and non-linear resonances where the beam becomes unstable. The

spread induced by the space charge force can make it hard to satisfy this basic requirement. Typically, in

order to avoid major resonances, the stability requires that [1]

∆Qx/y ≤ 0.5. (I.12.59)

If the tune spread exceeds this limit, it could be necessary to reduce the effects of space charge

tune spread, e.g. by increasing the injection energy or the transverse beam size.

Exercise 14
To reduce the effects of the space charge tune spread, one possible action is to increase the beam injection

energy. In the CERN Proton Synchrotron (PS), for example, the last upgrade program increased the

injection (kinetic) energy from 1.4 GeV to 2 GeV. Determine the relative reduction in the tune spread.

The proton rest energy is 0.938 GeV.

The incoherent tune spread discussed so far also produces a beneficial effect, called Landau damp-

ing (see Appendix I.12.D.1), which, under some conditions, can cure different beam instabilities.

I.12.1.5 Coherent tune shift: uniform beam off-axis in a circular pipe

When a bunch is off-axis, for example, because of an injection error or a transverse deflection kick, it

starts to perform betatron oscillations as a whole, as shown in Fig. I.12.12. The bunch, which is the

source of the space charge fields, moves transversely inside the pipe, but the direct space charge forces

in its center of mass (CM in the figure) must be zero due to symmetry. However, image space charge can

affect bunch motion.

Let us consider an infinite circular beam with uniform line density λ0 displaced by a distance x

off-axis with respect to the center of a cylindrical vacuum chamber of radius b, as shown in Fig. I.12.13.

We have already studied that the electric field lines of the beam must be perpendicular to the pipe walls.
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CM

Fig. I.12.12: Coherent betatron oscillations.

It can be demonstrated that such a configuration of the field lines can be obtained by using an image

charge distribution −λ0 at a distance d = b2/x from the pipe centre (see demonstration in Appendix

I.12.B). With such a configuration, the walls of the vacuum chamber are equipotential.

Fig. I.12.13: Geometry used in the coherent tune shift evaluation.

In the centre of mass of the beam, the direct space charge forces are zero, but the image charge

distribution produces an electric field equal to1

Ex,coh =
λ0
2πε0

1

d− x
≃ λ0

2πε0

1

d
=

λ0
2πε0

x

b2
, (I.12.60)

for which we have supposed x ≪ d. This linear electric field produces an attractive force on the centre

of the beam in the positive direction of the x-axis of the kind

Fx,coh =
qλ0
2πε0

x

b2
. (I.12.61)

Being the force linear with x, we can apply the same method that we have used for the incoherent

tune shift and obtain the coherent tune shift due to the image space charge of a uniform beam off-axis in

1Observe that the electric field expression is proportional to 1/r as that of an infinite linear wire.
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a circular beam pipe as

∆Qx,coh = − ρ2

2β2E0Qx0

(
∂F self

x,coh

∂x

)
0

= − ρ2

2β2E0Qx0

qλ0
2πε0b2

. (I.12.62)

I.12.1.6 Longitudinal space charge effects in circular accelerators

In the longitudinal plane we can follow a reasoning similar to the transverse case and obtain the syn-

chrotron equation of motion with the inclusion of the longitudinal space charge forces F self
s as

∆ϕ′′ +

(
Qs

ρ

)2

∆ϕ =
hη

ρβ2E0
F self
s , (I.12.63)

where ∆ϕ is the relative RF phase with respect to the synchronous particle, h is the harmonic number,

η is the slippage factor, and Qs is the synchrotron tune, defined as the ratio between the synchrotron

angular frequency ωs and the revolution angular frequency ω0, and given by

Qs =
ωs

ω0
=

√
qηhVRF cosϕs

2πβ2E0
, (I.12.64)

with VRF the RF peak voltage, and ϕs the synchronous phase. If the longitudinal space charge forces can

be linearized, the effect is a shift of the synchrotron tune as in the transverse plane.

Another important consideration about the longitudinal plane is that since the force acts in the

same direction as the motion of the charges, it changes their energy. This can have consequences on the

longitudinal beam distribution depending if the machine operates below or above transition energy.

I.12.2 Wakefields

In addition to space charge, self-induced electromagnetic forces can also be generated by the beam in-

teracting with the different devices distributed along the accelerator, or due to the finite conductivity of

the vacuum chamber. These devices may have a complex geometry: kickers, bellows, RF cavities, diag-

nostics components, collimators, and other special devices. The study of these fields requires solving the

Maxwell equations in a given structure taking the beam current as source. This is a quite complicated

task for which it has been necessary to develop dedicated computer codes, which solve the electromag-

netic problem in the frequency or in the time domain. There are several useful codes developed for the

electromagnetic design of accelerator devices such as CST Studio Suite, GDFIDL, ACE3P, ABCI, and

others.

In this Section, we first discuss the general features of these fields, introduce the concept of wake-

field (or wake function) and coupling impedance, and then show a few simple examples in cylindrical

geometry: the finite conductivity of a circular beam pipe and the resonant modes of an RF cavity. In

addition, although the space charge forces have been studied previously, under some conditions, they can

also be considered as a particular case of wakefields.
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I.12.2.1 Definition of wakefields

Let us consider two charges inside a bunch, q0 and q called source and test charge, respectively, moving

at the speed of light along parallel trajectories inside a generic structure, as represented in Fig. I.12.14.

y

x

zSa

Fig. I.12.14: Geometry used for the definition of wakefields.

Let E and B be the fields generated by q0 inside the structure, (s0 = ct, r0) be the position of the

source charge and (s = s0 + z, r) be the position of the test charge q. If z > 0 then the test particle is

ahead of the source. Since the velocity of both charges is along the z-axis, the Lorentz force acting on q

has the following components [2]

F = q
[
Esk̂ − (Ex − cBy) î+ (Ey + cBx) ĵ

]
= F∥ + F⊥. (I.12.65)

It is convenient to distinguish two effects on the test charge: the longitudinal force changes the

particle energy, while the transverse force deflects its trajectory. Additionally, we use two approximations

valid for high energy accelerators [3, 4]:

– The rigid beam approximation, which says that the beam moves rigidly through the structure and

the electromagnetic field is a perturbation that does not affect its motion during the passage. This

implies that the distance z between the two charges and their transverse positions do not change

inside the structure;

– The impulse approximation: although the test charge sees a force coming from the electromagnetic

field all along the structure, what it cares about is the impulse variation through the entire device

∆p =

∫
structure

Fdt. (I.12.66)

Under these two hypotheses, we are not interested in the force acting on the test charge point by

point inside the structure, but in the integral of the force along the charge trajectory. The effect of the

longitudinal component of this force is then an energy change

U(r, r0, z) = v∆ps =

∫
structure

F∥ds ≃ U(z). (I.12.67)

559



I.12.2. Wakefields

This energy change, which represents the work done by the force, is expressed in Joule. It is

positive if the test charge gains energy, and negative if it loses it. In obtaining this expression we are

also supposed to be in cylindrical symmetry so that it is possible to expand U(r, r0, z) in the transverse

coordinates and take only the first term of the expansion U(z) independent on both r and r0.

If we consider the transverse force, we obtain a transverse deflecting kick

M(r, r0, z) = v∆p⊥ =

∫
structure

F⊥ds ≃ r0M(z). (I.12.68)

The unit here is (N·m), and, as for the longitudinal plane, we are supposed to be in cylindrical

symmetry by keeping only the first-order term expansion in the transverse coordinates which is, in this

case, proportional to the transverse position of the source charge. This is also called “dipolar term",

and it is a vector since it can be different in the two planes x and y. For devices which do not have

a cylindrical symmetry, in the expansion, it is also important to consider the term proportional to the

transverse displacement of the test charge r (called quadrupolar or detuning term).

The above two quantities U(z) and M(z), normalized by the two charges, are called longitudinal

and transverse dipolar wakefields2, given respectively by

w∥(z) =
U(z)

qq0
, (I.12.69)

w⊥(z) =
M(z)

qq0
. (I.12.70)

Units are V/C and V/C/m. The longitudinal wakefield then represents the energy lost or gained

by a test charge following the source one at a distance z in passing through a structure and due to the

electromagnetic fields of the source. In some textbooks, it is defined with the minus sign, so that a

positive sign of the wakefield means lost energy. In the transverse plane, a positive wakefield means a

defocusing deflecting force.

The wakefields are independent of the properties of the charges and depend only on the geometry

and conductivity of the device. A wakefield can be considered as the Green function of the device.

I.12.2.2 Loss factor and beam-loading theorem

The loss factor represents the energy lost by a charge in passing through a structure due to the electro-

magnetic fields of the charge itself and normalized by q20 . It is therefore defined as

k∥ =
U(z = 0)

q20
. (I.12.71)

Although in general the loss factor is given by the longitudinal wakefield at z = 0, for charges

travelling with the speed of light, w∥(z = 0) is discontinuous at z = 0 due to the causality principle, as

shown in Fig. I.12.15, where an example of the longitudinal wake function is shown when β = 1. Indeed

2They are also called wake functions.
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the exact relationship between the loss factor and the wakefield is given by the beam-loading theorem

k∥ =
w∥(z → 0−)

2
. (I.12.72)

This relation is only true in the longitudinal plane.
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Fig. I.12.15: Example of wakefield with β = 1.

For a simple demonstration of the beam-loading theorem, let us consider a charge q moving at the

speed of light that is split into two charges of value q/2 at a distance z one from the other. Let us call A

the head charge and B the tail one. The energy lost by A can be only due to the loss factor because of

the causality principle. We can then write

UA = q2Ak∥ =
q2

4
k∥, (I.12.73)

with k∥ the loss factor. For the charge B the energy loss is due to the electromagnetic field of the charge

itself, that is k∥ plus that due to the wake produced by A, that is

UB(z) = q2Bk∥ + qBqAw∥(z) =
q2

4
k∥ +

q2

4
w∥(z). (I.12.74)

When z → 0 the sum UA + UB must be equal to the loss factor of the original charge q, so that

q2k∥ = UA + UB(z → 0−) =
q2

2
k∥ +

q2

4
w∥(z → 0−), (I.12.75)

from which we obtain Eq. (I.12.72).
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I.12.2.3 Wake potential and energy loss of a bunched distribution

Another quantity of interest related to the wakefield in the longitudinal plane is the amount of energy a

particle gains or loses due to the electromagnetic fields produced by the same bunch it belongs to. Let us

suppose to have a longitudinal distribution λ(s) = dq/ds, with

qtot =

∫ ∞

−∞
λ(s)ds (I.12.76)

the total bunch charge, and a particle of charge q in a position s inside this distribution, as represented in

Fig. I.12.16.

Fig. I.12.16: Model for the evaluation of the longitudinal wake potential.

By using the definition of wakefield given by Eq. (I.12.69), we can write the energy change of q

due to all the charges dq(s′) that are in a position s′ inside the longitudinal distribution as

dU(s) = qdq(s′)w∥(s− s′) = qw∥(s− s′)λ(s′)ds′. (I.12.77)

By using the superposition principle we can sum this elementary energy change over the whole

bunch, obtaining the energy variation of the charge q as

U(s) = q

∫ ∞

−∞
w∥(s− s′)λ(s′)ds′. (I.12.78)

If the bunch is travelling at the speed of light, due to the causality principle, we know that the

wake is zero ahead of the source, so that all the charges behind e cannot contribute to its energy change

and the above equation can also be written as

U(s) = q

∫ ∞

s
w∥(s− s′)λ(s′)ds′. (I.12.79)

This energy change allows us to define the wake potential as the convolution integral of the wake-
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field and the longitudinal distribution normalized by the bunch charge, that is

W∥(s) =
U(s)

qqtot
=

1

qtot

∫ ∞

−∞
w∥(s− s′)λ(s′)ds′. (I.12.80)

Also in the transverse plane, of course, it is possible to define a wake potential similar to the lon-

gitudinal case. In this case, it is proportional to the transverse momentum, and it represents a normalized

transverse deflecting kick of a charge due to the entire bunch.

Knowing the longitudinal wake potential, it is easy to evaluate the energy variation of the entire

bunch due to the electromagnetic field of the bunch itself. Indeed, if we divide U(s) by the point charge

e and multiply it by all the charges in s, that is, λ(s)ds, we obtain the energy change of this infinitesimal

slice. By summing over all the slices, we get

Ubunch =
1

q

∫ ∞

−∞
U(s)λ(s)ds = qtot

∫ ∞

−∞
W∥(s)λ(s)ds. (I.12.81)

I.12.2.4 Coupling impedance

In several cases, it is convenient to solve the Maxwell equations and evaluate the electromagnetic fields

not in the time domain but in the frequency domain. In these conditions, we do not directly obtain

the wakefield, but its Fourier transform. Additionally, the analytical approach normally used to study

collective effects in circular accelerators consists of transforming in the frequency domain the differential

equation describing the motion of the whole beam, which, under some very common conditions, is called

the Vlasov equation. This implies that the wakefields also need to be transformed.

The Fourier transforms of the longitudinal and transverse wakefields are therefore just as important

quantities as the wakes themselves. They are called coupling impedances since their unit is ohm and are

defined as

Z∥(ω) = −1

c

∫ ∞

−∞
w∥(z)e

−iωz/cdz, (I.12.82)

Z⊥(ω) =
i

c

∫ ∞

−∞
w⊥(z)e

−iωz/cdz. (I.12.83)

The imaginary term i was introduced in the definition of the transverse coupling impedance to

make the transverse impedance have the same role as the longitudinal one in the study of collective

effects. If the charge does not travel at the speed of light, instead of c in the two equations, we must

substitute the velocity of the charge v. With the negative sign in front of Eq. (I.12.82), a positive real part

of the impedance is related to lost energy. This notation is followed by important electromagnetic codes

listed in the following Section and used to determine the wake potentials and the coupling impedances

of the machine devices.

I.12.2.5 Comments on wakefield, wake potential and electromagnetic codes

The difference between the wakefield, which represents the energy lost by a test particle in passing

through a device due to the electromagnetic field of a source particle and normalized by the two charges,

and the wake potential, representing the energy lost by the test charge due to the electromagnetic field of
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the whole bunch, again normalized by the charges, deserves here some additional comments.

First of all, we must say that the study of the electromagnetic fields inside an accelerator device

requires solving the Maxwell equations by taking the beam current as the source of the fields and consid-

ering the walls of the structure as boundary conditions. This is quite a complicated task. Indeed, only for

a few simple geometries it is possible to solve analytically the electromagnetic problem, but, for more

realistic devices it has been necessary to develop dedicated computer codes, which solve the Maxwell

equations in the time or in the frequency domain. In the last case, as a result, we obtain the coupling

impedances.

There are several codes that are used for the electromagnetic design of accelerator devices, and

new ones are being developed. Without intending to be exhausting, we mention here some of them:

– CST Microwave Studio: Computer Simulation Technology (https://www.cst.com);

– GDFIDL: Gitter drüber, fertig ist die Laube, literally: a simple way to build an arbour, is by putting

up a mesh (http://www.gdfidl.de);

– ACE3P: Advanced Computational Electromagnetic 3D Parallel software

(https://confluence.slac.stanford.edu/display/AdvComp/ACE3P+-

+Advanced+Computational+Electromagnetic+Simulation+Suite);

– ECHO(2D, 3D): Electromagnetic Code for Handling Of Harmful Collective Effects

(https://echo4d.de/echo2d/);

– ABCI: Azimuthal Beam Cavity Interaction (https://abci.kek.jp/).

All these codes work in the time domain and provide, as a result, the wake potential of a given

longitudinal distribution, and not the wakefield. With the inverse Fourier transform and by dividing the

result by the bunch spectrum, they also give the coupling impedance up to a maximum frequency that

depends on the chosen distribution.

According to Eq. (I.12.80), if we know the wakefield (Green function) of a given device, we can

obtain the wake potential for any distribution, but the contrary is not possible: the wake potential is valid

only for a fixed distribution.

As a consequence, for beam dynamics studies, we should know the wake potential for any possible

distribution that the beam could assume. In a Linac, with particles moving at the speed of light, the

longitudinal distribution remains frozen in time, and a fixed wake potential can be used to evaluate the

energy variation of particles inside the bunch (energy spread), while a fixed transverse wake potential

can be used to evaluate the deflecting kick. In this situation, the knowledge of a single wake potential

can be sufficient to study the beam dynamics.

On the other hand, in a circular accelerator, the longitudinal position of a charge depends on its

energy through the slippage factor, and this energy is modified by the wake potential. As a consequence,

the wake potential changes the longitudinal distribution, which, in turn, changes the wake potential. In

this case, we have to study the beam dynamics in a self-consistent way. Knowledge of the wake potential

of a given distribution is not sufficient because we do not know what the equilibrium beam distribution

will be due to the wake and other solutions have to be found. For example, in many cases, the wake

potential of a very short bunch can be used as an approximate wakefield to reconstruct the wake potential
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of longer bunches.

I.12.2.6 Resistive wall

An example of a wakefield that can be obtained analytically is represented by the case of a cylindrical

vacuum chamber of length ℓ and radius b with high conductivity σc such that the skin depth is much

smaller than the thickness of the wall (the so-called thick wall regime). Additionally, we consider β = 1

and a frequency range such that
cξ

b
≪ ω ≪ cξ−1/3

b
, (I.12.84)

with

ξ =
1

Z0σcb
(I.12.85)

with Z0 the vacuum impedance. Under such conditions, it is possible to solve the Maxwell equations in

cylindrical coordinates using the beam as a source [3]. We do not write here explicitly the calculations,

but the longitudinal coupling impedance results to be

Z∥ = (1− i)
ℓ

2πb

√
Z0ω

2cσc
=

ℓ

2πb
(1− i)

1

δwσc
=

ℓ

2πb
Zsurf, (I.12.86)

where we have separated the dependence on geometry from the dependence on material properties (skin

depth and conductivity). The quantity Zsurf is called surface impedance.

An analogous expression can be written in the transverse plane, where we have an impedance that

is inversely proportional to the third power of the pipe radius.

In order to better understand the frequency range in which this impedance is valid, suppose that

we have an aluminium beam pipe (σc = 3.5 × 107 S/m) with a radius of 5 cm. From Eq. (I.12.84), we

obtain that

1.4 ≪ f ≪ 8.3× 1011 (I.12.87)

with f the frequency in Hz. As you can see, this is a very large interval of validity.

From the impedance, with the inverse Fourier transform, it is also possible to obtain the longitudi-

nal wakefield, equal to

w∥(z) = − ℓc

4πb

√
Z0

πσc

1

|z|3/2
. (I.12.88)

Also, this wakefield has an interval of validity. Indeed |z| must satisfy the condition

ξ1/3b≪ |z| ≪ b

ξ
. (I.12.89)

With the same above example, the range of validity for the wakefield is

57µm ≪ |z| ≪ 3.3× 107m. (I.12.90)

As for the impedance, there’s also an expression for the transverse resistive wall wakefield under

the same conditions. This wake is inversely proportional to the third power of the pipe radius and to

565



I.12.2. Wakefields

1/
√
|z|.

The longitudinal resistive wall impedance has also a quite simple physical interpretation. Referring

to Fig. I.12.17 where we have represented a model of the cylindrical beam pipe of radius b and length ℓ,

we can imagine that, while the beam is passing, there is a flow of induced current inside the pipe walls,

which moves along ℓ and remains confined within the skin depth δw. The section through which the

image current flows is then a circular ring that, if b≫ δw, is equal to

S ≃ 2πbδw. (I.12.91)

ℓ

b

curre
nt

𝛿!

Fig. I.12.17: Model of beam pipe for the interpretation of the real part of the resistive wall impedance.

This induced current moves inside the conductor and it encounters a resistance equal to

R =
ℓ

σcS
=

ℓ

2πb

1

σcδw
. (I.12.92)

Therefore, this resistance is exactly the real part of the longitudinal coupling impedance of

Eq. (I.12.86) that can be interpreted as the resistance encountered by the induced current flowing in-

side the walls of the beam pipe, in a thickness equal to the skin depth.

For the interpretation of the imaginary part, we can use the following argument which refers to

Fig. I.12.18. We have already seen that the induced current flows through an area of section S = 2πbδw.

This area is represented in blue and is zoomed in on the right-hand side of the figure. If we call the

induced current I , we can also define a current density

J =
I

S
=

I

2πbδw
. (I.12.93)

This current produces a magnetic field inside S with circular concentric field lines. If we consider

a circumference of radius r as that shown in the right-hand side of the figure (r ≃ b), we can write

Ampere’s law as

2πrB ≃ 2πbB = µJ2πb(r − b), (I.12.94)
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Fig. I.12.18: Model of beam pipe for the interpretation of the imaginary part of the resistive wall
impedance.

so that

B = µJ(r − b) (I.12.95)

in the first-order approximation.

The flux of B through a surface of length ℓ and width δw is then

Φ(B) = ℓµJ

∫ b+δw

b
(r − b)dr =

ℓµJ

2
δ2w =

ℓµIδw
4πb

, (I.12.96)

where, for the last passage, we have used Eq. (I.12.93).

Having obtained the flux of the magnetic field, we can define an inductance as the ratio of the flux

and the current so that

L =
Φ

I
=
ℓµδw
4πb

. (I.12.97)

The imaginary part of the impedance is then equal to

Zim(ω) = −ωL = − ℓ

2πb

ωµδw
2

= − ℓ

2πb

√
2µ2ω2

4ωσcµ
= − ℓ

2πb

√
Z0ω

2cσc
, (I.12.98)

which coincides with the imaginary term of the longitudinal coupling impedance of Eq. (I.12.86).

An example of low-frequency resistive wall impedance is shown in Fig. I.12.19, where we have

compared Eq. (I.12.86) with the results of the CST Microwave Studio electromagnetic code.

For the comparison of the wakefield, as we have already discussed, we cannot directly use the

results of CST because the code can only give the wake potential of a given distribution. However, if we

use Eq. (I.12.88) and do the convolution integral defined in Eq. (I.12.80) with a Gaussian longitudinal

distribution, we obtain the wake potential shown, with the green curve, in Fig. I.12.20 where we have

also represented the result of CST (simulations). The two curves agree very well.

I.12.2.7 Space charge

As a second example of evaluation of impedance and wakefield, let us consider the longitudinal space

charge force that we have obtained in Section I.12.1.3. Actually, space-charge effects are a bit on the

edge of the definition of wakefields. Indeed, the definitions of eqs. (I.12.69) and (I.12.70) give a wake
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Fig. I.12.19: Classical thick-wall impedance as a function of frequency. Comparison between analytical
expression and the CST Microwave Studio results.

Fig. I.12.20: Resistive wall wake potential of a Gaussian bunch.

dependent on the geometry of the device, but independent on the properties of the charges, while we

have seen that space charge forces depend, for example, on the bunch energy and distribution. However,

we can still define a wakefield with space charge forces by considering a moderately relativistic beam

with γ ≫ 1 but not infinite. It turns out that in such a condition, starting from the force given by, for

example, by Eq. (I.12.43), we can still define a wakefield, even if it depends on beam properties such as

the transverse beam radius a and the beam energy γ. Let us consider a relativistic beam with cylindrical

symmetry and uniform transverse distribution inside a circular pipe so that the longitudinal space charge

force is given by Eq. (I.12.43). We can assume that the test particle is on axis (r = 0) and that the source

is a point charge, so that, in terms of the longitudinal distribution, this source is proportional to the Dirac

delta function: λ(s) = q0δ(s). Since this longitudinal force is constant in the beam pipe where we want
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to evaluate the space charge, from Eqs. (I.12.67) and (I.12.69), we obtain that

w∥(z) =
1

qq0

∫ ℓ

0
Fs(0, z)ds = − ℓ

4πε0γ2

(
1 + 2 ln

b

a

)
δ′(z), (I.12.99)

where ℓ is the length of the structure (beam pipe) and δ′ is the derivative of the Dirac delta function. With

this wake and the definition of coupling impedance given by Eq. (I.12.82), by supposing, in this case of

space charge, that the particle velocity is not exactly c but v = βc, we have

Z∥(ω) =
ℓ

4πε0vγ2

(
1 + 2 ln

b

a

)∫ ∞

−∞
δ′(z)e−iωz/vdz = i

ℓωZ0

4πcβ2γ2

(
1 + 2 ln

b

a

)
. (I.12.100)

Observe that this impedance is purely imaginary and is linearly proportional to the frequency.

However, unlike a pure inductive impedance, such as, for example, that given by Eq. (I.12.98), this one

has the opposite sign.

Exercise 15
Evaluate the energy lost per unit length by a charge inside a given longitudinal distribution λ(z) due to

the longitudinal wakefield of the space charge and compare it with the longitudinal space charge force in

r = 0.

Exercise 16
From the result of the previous exercise, evaluate the total energy lost per unit length by the whole bunch.

Exercise 17
Evaluate the energy spread (Umax − Umin) of a Gaussian bunch of RMS length σ due to the longitudinal

wakefield of the space charge in a structure of length ℓ.

I.12.2.8 Wakefield and coupling impedance of a whole accelerator

In the previous Sections, we have discussed two examples of wakefield and impedances, due to resistive

wall and the space charge. Similar studies, also with the help of electromagnetic codes, must be per-

formed for other accelerator devices, such as RF systems, collimation systems, bellows, and so on. Once

we have the results for all or at least the main ones, the total machine impedance (and wakefield) can be

obtained by summing all the elements.

In this way, we consider the contribution of each element independent of the presence of the others,

that is, we ignore any possible interference effects between different devices.

An example of the wake and coupling impedance of a whole machine is represented in Fig. I.12.21

for the DAΦNE accumulator ring [5]. On top of the figure, the wake potential is represented. We recall

that only with a few simplified models it is possible to obtain the analytical wakefield of a point charge,

that is, the Green function. For realistic structures, we need to resort to the simulation codes that provide

the wake potential of a given distribution. In this case, a Gaussian bunch of 5 mm rms has been used. The

total bunch length for this machine has been measured to be about 4 cm, which is a factor of about 10

larger so that this wake can be used as a pseudo-Green function. The corresponding coupling impedance,

obtained with the Fourier transform of the wake potential divided by the Gaussian bunch spectrum, is

shown in the lower part of the figure. Actually, instead of Z∥(ω), here we have represented Z∥(ω)/n
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with n = ω/ω0 and ω0 the angular revolution frequency. This quantity is generally used for evaluating

longitudinal instabilities

Fig. I.12.21: Example of wake potential (top) and coupling impedance (bottom) of the DAΦNE accu-
mulator ring [5].

I.12.2.9 Short and long-range wakefield

In the previous Section, we have shown an example of the so-called short-range wakefield (wake potential

in this case). Another example is represented in Fig.I.12.22 for the DAΦNE main ring [6]. In this case,

also the bunch shape used to determine the wake potential is shown. This figure allows us to highlight

the characteristic of the short-range wake: it vanishes after a few bunch lengths so that at the passage

of another bunch or the same one after one machine turn, the wake is zero and, consequently, only the

single bunch beam dynamics is influenced.

Concerning the coupling impedance, we know that the frequency resolution of the Fourier trans-

form depends on the total time of the signal. Due to the fact that this wake goes rapidly to zero, we have a

poor frequency resolution. The frequency transform is therefore called the broadband impedance. Even

if the true impedance of a machine can have very complicated behaviour, with many peaks as a function

of frequency, the broadband impedance, as shown in the bottom part of Fig. I.12.21, does not contain
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Fig. I.12.22: Short range wake potential of the DAΦNE main ring [6].

such details that, on the other hand, are not necessary for single-bunch dynamics studies.

In addition to the broadband impedance, a bunch can also excite resonant modes when it passes

through a machine device. These resonant modes are produced by electromagnetic fields which keep on

oscillating inside a structure after the bunch has left it. Eventually, the same bunch, or others, can interact

with these fields when they enter the structure. In this case, we call them long-range wakefields. They

are characterized by fields that oscillate over long distances. Therefore, they influence the multi-bunch

(or multi-turn) beam dynamics. In the frequency domain, they are characterized by a high peak real part

of the impedance. This impedance can be described by only three parameters: the quality factor of the

mode, Q, its resonant frequency fr, and the peak value of its real part, called shunt resistance Rs.

An example of a long-range wakefield produced by a point charge is shown in Fig. I.12.23 together

with a given longitudinal bunch distribution (Gaussian in this case). As we can see from the figure, after

the bunch passage, the wake is still strong so that it can influence a second bunch which enters after a

given time interval in the same structure. Eventually, this second bunch can also excite the same wake

which can, then, increase its amplitude.

The corresponding coupling impedance, real and imaginary, is represented in Fig I.12.24 with the

narrow peak clearly shown.

A typical impedance like this can be found in resonant structures, such as the RF cavity. For this

device, a charge can excite not only the fundamental, accelerating mode but other several resonant modes,

also called High Order Modes (HOMs). It is possible to demonstrate that, under some conditions, each

mode can be treated as an electric RLC parallel circuit loaded by an impulsive current. A qualitative

explanation of this behaviour can be given with the help of Figs. I.12.25.

On the left-hand side of the figure, a pillbox cavity is shown when a point charge q0 (here supposed

negative) enters it. The two vertical plates of the structure, except from the holes necessary for the

connection with the beam vacuum chamber, can be seen as two parallel plates of a capacitor. When the

negative charge is close to one of the plates, it induces a positive charge on it, as shown in the figure. Due
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Fig. I.12.23: Example of long range wake field.
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Fig. I.12.24: Example of narrow peak impedance produced by a high-quality resonant mode.

to the fact that the capacitor is neutral, on the opposite side we find a charge of the opposite sign (in this

example, it is negative). The capacitor is, therefore, charged with an impulsive current so that between

the two plates there is a voltage difference equal to V0 = −q0/C, with C the capacity of this capacitor.

The voltage between the two plates produces a wall current I , as shown in the middle part of the figure,

which, during its flow, encounters a resistance R due to the finite resistivity of the cavity material. In its

turn, this current produces a circular magnetic field and, therefore, a magnetic flux and an inductance L,

still between the two plates. The final result is the parallel RLC circuit shown on the right-hand side of

the figure.

In this circuit, the voltage across the gap coincides with the voltage between the two parallel

plates, that is with the voltage of the capacitor. Due to the parallel RLC circuit, this voltage starts to
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Fig. I.12.25: A pillbox cavity and the equivalent RLC parallel circuit.

oscillate, bouncing the energy between the capacitor and the inductor. Each time, some of this energy is

dissipated in the resistance. The time evolution of this voltage can be obtained by solving the following

second-order differential equation

V̈ +
1

RC
V̇ +

1

LC
V = 0. (I.12.101)

This equation has the form of that of a damped oscillator of the kind

V̈ + 2γV̇ + ω2
rV = 0 (I.12.102)

with

γ =
1

2RC
ωr =

1√
LC

. (I.12.103)

At time t = 0, the charge q0 passes through the cavity charging the capacitor with the initial

voltage V0. This voltage, at time t = 0+, produces a current I that initially all flows in the resistance

because of the initial infinite opposition of the inductance so that the second starting condition is

V̇ (t = 0+) =
dV

dt

∣∣∣∣
t=0+

=
d

dt

q

C

∣∣∣
t=0+

=
1

C

dq

dt

∣∣∣∣
t=0+

= −I(t = 0+)

C
= − V0

RC
. (I.12.104)

With these initial conditions, the solution of the differential equation is

V (t) = V0e
−γt

[
cos(ωnt)−

γ

ωn
sin(ωnt)

]
(I.12.105)

with

ω2
n = ω2

r − γ2. (I.12.106)

This voltage can be related to the wakefield. Indeed, if a second (test) charge passes inside the

cavity after a time delay t = −z/c (remember that z is negative behind the source charge and a time

delay is positive), it changes its energy by the quantity U(t) = qV (t). Since the longitudinal wakefield
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is the energy change divided by the two charges, we can write

w∥(t) =
U(t)

qq0
=
V0
q0
e−γt

[
cos(ωnt)−

γ

ωn
sin(ωnt)

]
. (I.12.107)

Instead of time we use, as the independent variable, z, so that we obtain the wake function of a

resonant mode as

w∥(z) = − 1

C
e

γz
c

[
cos
(
ωn
z

c

)
+

γ

ωn
sin
(
ωn
z

c

)]
H(−z). (I.12.108)

In writing this last equation, we have considered the causality principle so that this wake is dif-

ferent from zero only behind the source charge z ≤ 0. This condition is given by the Heaviside step

function H(−z). This wake is the one represented in Fig. I.12.23. If γ is large, the exponential decay

becomes stronger.

The longitudinal coupling impedance of the resonant mode can be obtained with the Fourier trans-

form of the above wake. This is given by

Z∥(ω) =
Rs

1− iQ

(
ω

ωr
− ωr

ω

) , (I.12.109)

with the shunt resistance equal to the circuit resistance Rs = R, and the quality factor given by Q =

ωr/(2γ). This impedance also corresponds to that of the parallel circuit RLC shown on the right-hand

side of Fig. I.12.25. In terms of shunt resistance, quality factor and resonant angular frequency, the wake

function can also be written as

w∥(z) = −Rsωr

Q
e

ωrz
2Qc

[
cos
(
ωn
z

c

)
+

ωr

2Qωn
sin
(
ωn
z

c

)]
H(−z). (I.12.110)

For the transverse case, it is possible to demonstrate that we have similar equations. In particular,

the transverse dipolar wake function of a resonant mode is written as

w⊥(z) =
R⊥ωr

Q
e

γz
c sin

(
ωn
z

c

)
H(−z), (I.12.111)

and the coupling impedance as

Z⊥(ω) =
ωn

ω

R⊥

1− iQ

(
ω

ωr
− ωr

ω

) . (I.12.112)

I.12.2.10 Broadband impedance models

An important feature of the longitudinal coupling impedance given by Eq. (I.12.109) is that it can also be

used as a simplified impedance model of a whole machine for short-range wakefields, assuming Q ≃ 1.

This is called the Broadband Resonator Impedance model. For example, withQ = 1 and a proper choice

of Rs and ωr, the absolute value of |Z∥/n| as a function of frequency is represented in Fig. I.12.26. This

figure is very similar to that shown on the right-hand side of Fig. I.12.21. The advantage of this model is
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that only three parameters (or, even better two, if one considers Q = 1) are necessary to describe it, and

it can be used to study the collective effects in the longitudinal plane analytically, of course with some

approximations.

Fig. I.12.26: Absolute value of the broadband resonator impedance as a function of frequency.

An improved version of this model uses two broadband resonators with different shunt impedances

and resonant frequencies. Additionally, the quality factor values can be varied.

This is not the only broadband impedance model that has been proposed for the analytical study

of collective effects in the longitudinal plane.

Another simplified broadband impedance model is obtained by a phenomenological expansion

over
√
ω of the different contributions to a machine impedance. By considering only the first two terms

of the expansion, we have the so-called RL impedance model, which is

Z∥(ω) = R− iωL (I.12.113)

The resistive term R takes into account the losses of the beam, while the second term, which rep-

resents an inductive impedance, gives the low-frequency behaviour typical of tapers, shielded bellows

and vacuum ports, small discontinuities as slots, shallow cavities in flanges, and so on. The correspond-

ing wake function is the sum of two terms: the one corresponding to the inverse Fourier transform of

the resistive part of the impedance, which is proportional to the Dirac delta function w∥(z) = cRδ(z),

while that of the imaginary part (the inductance), which is similar to what we have obtained for the space

charge, in particular, it is proportional to the derivative of the Dirac delta function.

I.12.3 Impedance-induced effects

The wake functions and the corresponding coupling impedances are used in beam dynamics studies to

determine the so-called impedance-induced effects. This can be carried out with analytical approaches

using simplified models, or, in a more rigorous and realistic way, through simulation codes.

In this Section, we will discuss some important effects produced by wakefields that can be ex-
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plained with simple analytical models.

I.12.3.1 Energy loss and energy spread

In Section I.12.2.3, with Eq. (I.12.81), we have obtained the energy loss of the whole bunch due to the

wakefields. This is one effect of the longitudinal wake that, under some conditions, has to be taken into

account because the lost energy must be compensated for by the RF system. For example, in a Linac, the

wakefield produced by the interaction of the beam with the fundamental accelerating mode also called

the beam loading effect, can limit the maximum energy of the Linac or its maximum current.

Additionally, with Eq. (I.12.78), we have also obtained the energy variation of a charge inside a

bunch due to the longitudinal wakefields. This energy variation depends on the position of the charge

inside the distribution. As a consequence, this effect generates an energy spread inside the bunch distri-

bution that could reduce the accelerator performance.

As an example of the application of these concepts, let us first evaluate the energy spread and loss

of a Gaussian longitudinal distribution of the kind

λ(s) =
qtot√
2πσz

e
− s2

2σ2
s , (I.12.114)

with σs the rms bunch length, due to the longitudinal space charge wake function of Eq. (I.12.99). We

first evaluate the energy lost by a charge inside the distribution. According to Eq. (I.12.78), this is equal

to

U(s) = − ℓqqtot

4πε0γ2
√
2πσz

(
1 + 2 ln

b

a

)∫ ∞

−∞
δ′(s− s′)e

− s′2

2σ2
s ds′ =

= − ℓqqtot

4πε0γ2
√
2πσs

(
1 + 2 ln

b

a

)
d

ds

(
e
− s2

2σ2
s

)
=

ℓqqtot

4πε0γ2
√
2πσ3s

(
1 + 2 ln

b

a

)
ze

− s2

2σ2
s . (I.12.115)

Observe that the particles in the head of the bunch gain energy (s > 0), while those in the tail lose

energy. Energy spread can be evaluated, for example, by the difference between the maximum value of

U(s) and the minimum value.

From this equation, together with Eq. (I.12.81), we can also obtain the energy lost by the whole

bunch due to the space charge. With symmetry considerations, it is possible to show that in this case this

energy is zero: the longitudinal space charge produces only an energy spread inside the bunch.

Another example that can be easily evaluated analytically is that of the interaction of a uniform

bunch distribution of length ℓ0, of the kind

λ(s) =


q

ℓ0
−ℓ0

2
≤ s ≤ ℓ0

2

0 otherwise
, (I.12.116)

with the wake function of a resonant HOM that, for simplifying the calculations, we approximate here as

w∥(z) = −w0 cos
(
ωr
z

c

)
H(−z). (I.12.117)
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The energy lost by a charge inside a distribution is then

U(s) = −qqtotw0

ℓ0

∫ ℓ0/2

z
cos

[
ωr

(s− s′)

c

]
ds′ =

qqtotw0

ℓ0

sin
(
ωr
x

c

)
ωr

c

∣∣∣∣∣∣
s−ℓ0/2

0

=

= −qqtotw0

2


sin

[
ωr

c

(
ℓ0
2

− s

)]
ωr

c

ℓ0
2

 . (I.12.118)

Exercise 18
Evaluate the energy lost by a charge inside a uniform longitudinal distribution of length ℓ0 due to a HOM

using the exact wake given by Eq. (I.12.108).

As for the space charge case, the energy change due to the interaction of the bunch with a HOM

depends on the position of the charge inside the distribution. We can also say that there is an energy

spread correlated with the longitudinal position. The maximum energy spread can be evaluated as Umax−
Umin. Observe that, as expected, if s = ℓ0/2, that is, at the head of the bunch, the energy lost is zero due

to the causality principle, since a particle in s = ℓ0/2 does not see the wake of all particles behind it.

Starting from the above expression we can also evaluate the energy loss due to the whole bunch.

According to Eq. (I.12.81) we have

Ubunch = − q2totw0

2ℓ0

(
ωr

c

ℓ0
2

) ∫ ℓ0/2

−ℓ0/2
sin

[
ωr

c

(
ℓ0
2

− s

)]
ds = −q

2
totw0c

2

ω2
rℓ

2
0

[
1− cos

(
ωrℓ0
c

)]
. (I.12.119)

This equation can also be written as

Ubunch == −2q2totw0c
2

ω2
rℓ

2
0

sin2
(
ωrℓ0
2c

)
= −q

2
totw0

2

sin2
(
ωrℓ0
2c

)
(
ωrℓ0
2c

)2 . (I.12.120)

This expression allows us to easily evaluate the limit when ℓ0 → 0. Indeed, since

lim
x→0

sin2(x)

x2
= 1, (I.12.121)

we have therefore that

lim
ℓ0→0

Ubunch = −q
2
totw0

2
. (I.12.122)

On the other hand, when the bunch length ℓ0 tends to zero, our bunch distribution becomes a point

charge. From the definition of loss factor given by Eq. (I.12.71), we also know that U(z = 0) = −q2k∥.

We can therefore conclude that

k∥ =
w0

2
(I.12.123)

in which we recognize the beam-loading theorem.
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I.12.3.2 Single bunch beam break-up in Linacs

I.12.3.2.1 Preliminary considerations: driven oscillator

Before dealing with the beam break-up instability produced by the transverse wakefield, let us first make

some preliminary remarks on the motion of a harmonic oscillator driven by an external periodic force.

Let us indicate with ω the angular frequency of the harmonic oscillator and with Ω that of the external

driving force.

Instead of using time as an independent variable, let us use the position s = vt, with v the oscillator

velocity (which we consider here equal to the speed of light v = c). The equation of motion of the

harmonic oscillator can be written as

x′′ +
ω2

c2
x = A cos

(
Ωs

c

)
, (I.12.124)

where x′′ is the second derivative of the position with respect to s, and A is a constant proportional to the

amplitude of the external force. We want to solve this differential equation by considering some given

starting conditions. It is convenient to use the complex notation with the condition to retain only the real

part of the final solution.

The above equation is a second-order non-homogeneous differential equation with a solution equal

to the sum of the complementary solution and a particular one

x(s) = xf (s) + xd(s) (I.12.125)

with f the solution of the ’free’ oscillations, and d the ’driven’ one. In complex notation we have

xf (s) = x̃fme
i
ωs

c xd(s) = x̃dme
i
Ωs

c , (I.12.126)

which, substituted in the differential equation, yields

(
ω2 − Ω2

)
x̃dme

i
Ωs

c = c2Ae
i
Ωs

c , (I.12.127)

that gives

xd(s) =
c2A

ω2 − Ω2
e
i
Ωs

c . (I.12.128)

In order to also find the amplitude x̃fm we need to specify the initial conditions. For simplicity let

us assume that the harmonic oscillator is at rest at s = 0. This means that

xf (s = 0) = −xd(s = 0), (I.12.129)

that is

x̃fm = − c2A

ω2 − Ω2
, (I.12.130)
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so that

x(s) =
c2A

ω2 − Ω2

eiΩsc − e
i
ωs

c

 . (I.12.131)

The real part of this expression is then

x(s) =
c2A

ω2 − Ω2

[
cos

(
Ωs

c

)
− cos

(ωs
c

)]
. (I.12.132)

In the case of general initial conditions, we can add, to the above equation, a sinusoidal term

satisfying them, so that we have

x(s) = X0 cos
(ωs
c

+ θ0

)
+

c2A

ω2 − Ω2

[
cos

(
Ωs

c

)
− cos

(ωs
c

)]
, (I.12.133)

where X0 and θ0 depend on the initial conditions. The above expressions are suitable for deriving the

response of the oscillator driven at a frequency close to or equal to the resonant frequency. For this

purpose, let us define two frequencies

δ = ω − Ω, ω̄ =
ω +Ω

2
. (I.12.134)

From them, we can write

ω = ω̄ +
δ

2
, Ω = ω̄ − δ

2
, ω2 − Ω2 = (ω +Ω)(ω − Ω) = 2ω̄δ. (I.12.135)

By using the rules of the cosine and sine of the sum of two angles, the equation of motion of the

forced harmonic oscillator (I.12.132) can then be written as

x(s) =
c2A

2ω̄δ

[
cos
( ω̄s
c

)
cos

(
δs

2c

)
+ sin

( ω̄s
c

)
sin

(
δs

2c

)
− cos

( ω̄s
c

)
cos

(
δs

2c

)
+ sin

( ω̄s
c

)
sin

(
δs

2c

)]
=
c2A

ω̄δ
sin

(
δs

2c

)
sin
( ω̄s
c

)
. (I.12.136)

This expression is interesting when ω and Ω are close to each other, that is when the external

driving force frequency is close to the resonant one. In this case, we recognize in the last expression the

product of two sinusoids: one oscillating at a low frequency δ/2, and the other one at a higher frequency

ω̄ (very close to that of the free harmonic oscillator and to that of the external driving force). The first

produces an amplitude modulation of the faster oscillations at the frequency ω̄. The result is a beating

between the two frequencies of the harmonic oscillator and of the external driving force, as represented

in Fig. I.12.27.
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Fig. I.12.27: Amplitude modulated oscillations of a harmonic oscillator with an external driving force
having a frequency close to the resonant one.

The same expression can also be written as

x(s) =
cAs

2ω̄
sin
( ω̄s
c

) sin

(
δs

2c

)
δs

2c

. (I.12.137)

In this way, it is easy to evaluate the limit for Ω → ω, that is, when the harmonic oscillator is

driven in resonance. Indeed, if δ → 0, the ratio sin(δ)/δ = 1 and we remain with

lim
δ→0

x(s) =
cAs

2ω̄
sin
( ω̄s
c

)
. (I.12.138)

In this condition, the harmonic oscillator increases linearly its amplitude with s as shown in

Fig. I.12.28. Of course, in this case, we have used the solution with the initial conditions x(s = 0) = 0

and x′(s = 0) = 0. For more general initial conditions, in the above equation, we must add a sinusoidal

oscillation as the first term on the right-hand side of Eq. (I.12.133), so that we have

x(s) = X0 cos
(ωs
c

+ θ0

)
+
cAs

2ω̄
sin
( ω̄s
c

)
. (I.12.139)

I.12.3.2.2 Single bunch beam break-up

In this Section, we discuss an instability produced by the transverse wakefields that can be very dangerous

for a Linac. The study is carried out considering a single bunch with an injection offset in an accelerating

structure of a Linac, for example, due to some misalignments.

As a result of the focusing quadrupoles, the bunch executes betatron oscillations, and, due to the

transverse displacement, it excites transverse wakefields. The head of the bunch undergoes unperturbed
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Fig. I.12.28: Amplitude modulated oscillations of a harmonic oscillator with an external driving force
on resonance.

oscillations because, according to the causality principle, it is not affected by the transverse wake. How-

ever, the trailing charges in the tail can be deflected by the wake of the head.

Since the wakefield force is proportional to the offset of the leading particles, it acts as an external

driving force in resonance at the betatron frequency with the tail oscillations. The amplitude of these

oscillations will then increase with distance, as we have discussed in the previous Section. The result is

that the tail of the bunch distorts, assuming a kind of "banana shape", as represented in Fig. I.12.29. This

process is called single-bunch beam break-up [7], and it was first observed at SLAC in 1966 [8].

Fig. I.12.29: Single bunch beam break-up.

Similarly, any beam offset or structure misalignment will excite long-range wakefields, which will

then cause subsequent bunches to be deflected. There could be then also a coupling in the motion of the

different bunches, which are more and more deflected as they proceed along the Linac in a process called

multi-bunch or cumulative beam break-up.

Even if the particles are not lost hitting the beam pipe walls, the beam emittance can be greatly

increased.

In order to understand and analytically treat the effect, we consider a simple model with only
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two charges: q1 = Nq/2 (source charge equal to the half bunch in the head concentrated in a single

point), and q2 = q (test charge corresponding to a single charge in a position in the tail). The model is

represented in Fig. I.12.30, and it is called a two-particle model.

!

!" = #$/2!# = $q q
& 8

Fig. I.12.30: Two-particle model for beam break-up study.

The source charge, at the head of the bunch, since the transverse wake in z = 0 is zero, executes

unperturbed free betatron oscillations of the kind

y1(s) = ŷ1 cos
(ωy

c
s
)
, (I.12.140)

with ωy the betatron angular frequency. Observe here that, since we are in a Linac, we do not use the

term betatron tune.

The test charge, at a distance z from the source, in a structure of length Lw, according to the

definition of Eq. (I.12.68), experiences a transverse deflecting kick proportional to the displacement y1,

and dependent on the distance z

y1(s)My(z) =

∫ Lw

0
Fyds =< Fy(y1, z) > Lw, (I.12.141)

where, for the last expression, we have used the definition of the mean value theorem for integrals.

We consider the transverse deflecting self-field force < Fy > as the average transverse force in the

structure of length Lw. By using the definition of transverse dipolar wakefield given by Eq. (I.12.70),

since q0 = qN/2, we can write

< Fy(y1, z) >=
Nq2

2Lw
wy(z)y1(s). (I.12.142)

The transverse equation of motion for the test charge q, affected by the self-field force, is similar

to that of Eq. (I.12.47), with K substituted, as for the betatron oscillation of the source, by (ωy/c)
2, so

that

y′′2(s) +
(ωy

c

)2
y2(s) =

1

β2E0
< Fy(y1, z) >=

Nq2

2β2E0Lw
wy(z)ŷ1 cos

(ωy

c
s
)
. (I.12.143)

This is the typical equation of a harmonic oscillator driven at the resonant frequency as the one

discussed in the previous Section I.12.3.2.1. In this case, the external force is due to the transverse

wakefield produced by the displacement of the source charge. The solution is given by the superposition
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of the “free” oscillations and forced oscillations, which, being driven at the resonant frequency, grow

linearly with s according to Eq. (I.12.138). The solution of this differential equation is, therefore, similar

to that of Eq. (I.12.139), that is

y2(s) = ŷ1 cos
(ωy

c
s+ θ0

)
+
cNq2swy(z)

4ωyβ2E0Lw
ŷ1 sin

(ωy

c
s
)
, (I.12.144)

for which we have supposed that the initial displacement of the bunch tail is the same as that of the bunch

head, that is ŷ2 = ŷ1.

The second term on the right-hand side of the equation is due to the on-resonance wakefield force.

At the beginning of the Linac, for very small values of s, this term is still negligible and we have free

oscillations that start slowly to increase as shown in Fig. I.12.31, while, when the driving term dominates,

we have oscillations similar to those shown in Fig. I.12.28

Fig. I.12.31: Betatron oscillations of a charge in a bunch tail excited by the transverse wakefield of the
head at the beginning of a Linac.

At the end of a Linac of lengthLL, the increase of the amplitude oscillations of the tail with respect

to the head of the bunch is
y2(LL)− ŷ1

ŷ1
=

cNqLLwy(z)

4ωyβ2(E0/q)Lw
. (I.12.145)

For Linacs with ultra-relativistic electron beams, we can assume β = 1. If the transverse wake is

given per cell, the relative displacement of the tail with respect to the head of the bunch depends on the

number of cells. It also depends, of course, on the focusing strength through frequency ωy.

Of course, if at the end of the Linac, the transverse displacement of the tail is much lower than the

bunch dimension, that is y2(LL) ≪ σy, then, the beam break-up effect can be neglected. This condition

occurs when
cNqLLwy(z)

4ωyβ2(E0/q)Lw
ŷ1 ≪ σy. (I.12.146)

Observe that we can neglect this instability when the initial transverse displacement of the bunch

head ŷ1 is very small, when the transverse wake per unit of length wy(z)/Lw is weak, when the Linac is

short, at high energy, or when the focusing effect of the quadrupole (proportional to ωy) is strong.

Exercise 19
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Consider an electron beam in a Linac at 1 GeV without acceleration. Obtain the growth of the oscillation

amplitude of the tail with respect to the head after 3 km if: N = 5× 1010, wy(z = −1mm) = 63 V/(pC

m), Lw = 3.5 cm, ky = 0.06 1/m.

Exercise 20
With constant acceleration in the Linac, if the beam energy can be written as Ef = E = 0 + gLL, with

g the acceleration gradient, the growth of the oscillation amplitude of the tail with respect to the head is

the same as that of the constant energy case multiplied by a factor equal to

F =
E0

Ef
ln
Ef

E0
.

Evaluate the growth of the oscillations with the same beam of the previous exercise that is now

accelerated from an initial energy of 1 GeV with a gradient g = 16.7 MeV/m.

I.12.3.2.3 BNS damping

This instability can be quite harmful and hard to take under control even at high energy, with a strong

focusing effect, and after a careful injection and steering.

A simple and smart method to cure it has been proposed observing that the large oscillation am-

plitude of the bunch tail is generated by the resonant driving force of the bunch head.

If the tail and the head of the bunch oscillate with different frequencies, this effect can be signifi-

cantly mitigated.

Let us assume that the tail oscillates with a frequency ωy + ∆ωy. Then the equation of motion

(I.12.143) becomes:

y′′2(s) +

(
ωy +∆ωy

c

)2

y2(s) =
Nq2

2β2E0Lw
wy(z)ŷ1 cos

(ωy

c
s
)
. (I.12.147)

In this case, we are off-resonance and, according to what we have discussed in the previous Section

I.12.3.2.1, we have beats so that, from Eq. (I.12.133), the solution can now be written as

y2(s) = ŷ1 cos

(
ωy +∆ωy

c
s

)
+

c2Nq2wy(z)

4ωy∆ωyβ2E0Lw
ŷ1

[
cos
(ωy

c
s
)
− cos

(
ωy +∆ωy

c
s

)]
. (I.12.148)

In writing this solution, we have supposed that, at injection, the head and tail of the bunch have

the same offset, that is, ŷ2 = ŷ1, and there is no divergence (θ0 = 0). The oscillations of the tail are then

of the type of those shown in Fig. I.12.32.

If we now choose ∆ωy such that

c2Nq2wy(z)

4ωy∆ωyβ2E0Lw
= 1, (I.12.149)
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Fig. I.12.32: Betatron oscillations of a charge in a bunch tail excited by the transverse wakefield of the
head in case of betatron frequency shift.

that is

∆ωy =
c2Nq2wy(z)

4ωyβ2E0Lw
, (I.12.150)

then we remain with

y2(s) = ŷ1 cos
(ωy

c
s
)
= y1(s), (I.12.151)

that is the head and the tail oscillate with the same amplitude and the instability is suppressed.

This method is called BNS damping, from the names of Balakin, Novokhatsky, and Smirnov who

first proposed it [9].

The extra focusing acting on the tail of the bunch can be obtained, for example, by using a radio-

frequency quadrupole (RFQ), a device in which the head and the tail see a different focusing strength,

or by creating a correlated energy distribution along the bunch, which, because of the chromaticity,

induces a spread in the betatron frequencies. An energy spread correlated with the longitudinal position

is attainable, for example, with the external accelerating voltage or with the longitudinal wakefields.

I.12.3.3 Instabilities in circular accelerators

The study of impedance-induced instabilities in particle accelerators, and in particular for circular ma-

chines, started around the mid-end 1960s. The first works on this topic were conducted by V. Vac-

caro [10] and A. M. Sessler [11], who described the initial concepts of dispersion relations in the same

works where the concept of coupling impedance was introduced. Subsequently, over the course of more

than 50 years, a considerable amount of research has been conducted in this field, with numerous papers

published on various aspects related to impedance-induced instabilities.

The simplest method that could be followed to study the effects of self-induced electromagnetic

fields on beam dynamics is that of introducing the self-induced forces in the motion of a single particle. In

practice, this is not possible because a bunch generally contains 1010−1012 particles, so the same number
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of differential equations (corresponding to Newton’s second law) should be solved in a self-consistent

way. Consequently, alternative methods must be used to deal with the so-called impedance-induced

instabilities.

As a consequence, two approaches are generally followed:

– At one extreme, we can use a continuous distribution function describing the motion of a beam as

a superposition of coherent modes of oscillation. This leads to the Vlasov equation [12] (or Fokker

Plank [13]) and to the analytical and numerical tools developed to solve it (as the so-called Vlasov

solvers [14, 15]). The Vlasov equation is shortly presented in Appendix I.12.D.2;

– On the opposite side, we can simplify the problem and reduce the number of equations by using

simulation codes, which track, in the time domain, about 106 − 107 macro-particles, taking into

account the wake function or the coupling impedance, examples can be found in Ref. [16].

We have seen that the wakefields, defined by Eqs. (I.12.69) and (I.12.70), produce an energy

change in the longitudinal direction, while they give a deflection kick in the transverse plane. Therefore,

it is convenient to separate the study of beam dynamics and collective effects in the longitudinal and

transverse planes.

Additionally, we have also discussed short-range and long-range wakefields. Classically, the study

of beam dynamics with collective effects is split into longitudinal, transverse, single, and multi-bunch.

For example, the main longitudinal effects of short-range wakefields are:

– Potential well distortion and deformation of the longitudinal distribution;

– Longitudinal emittance growth, microwave instability;

while the long-range wakefields give

– Robinson instability due to the RF fundamental mode;

– Coupled bunch instability due to HOMs.

The analytical study of these effects with the Vlasov equation is beyond the scope of this lecture.

However, in order to give an idea of the kind of instabilities that may occur in a circular accelerator, we

describe, in the next session, the Robinson instability.

I.12.3.3.1 Robinson instability due to the RF fundamental mode

Let us consider the real part of the RF fundamental mode impedance and a bunch with nominal revolution

period T0. The bunch spectrum has lines every ω0 (for simplicity, we suppose that the bunch is a point

charge), and its lost energy due to the interaction with the mode is proportional to the real part of the

impedance evaluated at the angular frequency ωRF = hω0, where h, already introduced in Eq. (I.12.63),

is the harmonic number. The other frequencies, at distances multiples of ω0 from ωRF, find a value

of the mode impedance so small that it can be neglected. It is important to note that the cavity resonant

frequency ωr can be slightly detuned with respect to the RF frequency ωRF so that they do not necessarily

coincide. Actually, this is realized on purpose for damping the Robinson instability as we will see.
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The phenomenological description of the instability (or stability) is the following. First, suppose

that we have a synchronous beam. In Fig. I.12.33 we have represented the real part of the fundamental

mode impedance with its resonant frequency ωr slightly below the frequency hω0. The bunch energy loss

due to the mode, together with other possible losses (for example those due to the synchrotron radiation),

is compensated in the cavity by the external RF voltage. The synchronous bunch is at equilibrium at each

turn.

Fig. I.12.33: Real part of the frequency of the fundamental mode and bunch spectrum line of the syn-
chronous particle.

Let us suppose now that, for example, the bunch is not at equilibrium, but it is performing syn-

chrotron oscillations, and the machine operates below transition energy. During a part of these oscilla-

tions, the bunch has an energy larger than that of the synchronous particle. Its revolution period is then

lower than T0 and the frequency larger than ω0.

Therefore, the spectrum line is now at a value greater than hω0. From the figure, we see that the

resistance found by this bunch is smaller than that at hω0, and this produces an energy loss lower than

that of the synchronous particle (we have a vertical line of the bunch spectrum shifted a bit on the right

side with respect to the black line of the figure). If the bunch gains in the cavity the same energy as that

of the synchronous particle, this would lead to extra energy of the bunch that is not compensated by the

corresponding loss.

This means that the bunch will have even higher energy with respect to the synchronous particle,

thus increasing its oscillation amplitude with the result of an unstable bunch. On the other hand, above

transition energy, the opposite situation occurs and the mode impedance has a stabilizing effect. If

hω0 < ωr we have stability below the transition energy and instability above it. This is called Robinson

instability: for example, above transition, detuning the resonant frequency of the mode slightly below

hω0 gives a stabilizing effect.

This qualitative behaviour can be described analytically. Let us recover the longitudinal equations

of motion. Let us suppose that we have a bunch that we consider as a point charge, coinciding with its
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centre of mass. Let us also suppose to have a constant energy circular machine (storage ring), and let us

ignore radiation damping.

The differential equations of motion in the longitudinal plane can then be written as

dϕ

dt
= − hη

R0p0
∆E (I.12.152)

and
d∆E

dt
=
qVRF

T0
(sinϕ− sinϕs) , (I.12.153)

with ∆E the energy variation with respect to the synchronous particle.

Combining these two equations, for small amplitude oscillations, we obtain a second-order differ-

ential equation similar to that of Eq. (I.12.63) but, in this case, we write it in the time domain as

d2∆ϕ

dt2
+ ω2

s∆ϕ = 0, (I.12.154)

with ωs given by Eq. (I.12.64). For stability reasons, we must satisfy the condition η cosϕs > 0. This is

the equation that describes the synchrotron oscillations.

The solution of this harmonic oscillator equation can be written as

∆ϕ = ∆ϕmax cos (ωst+ θ0) . (I.12.155)

In this simple equation, it is possible to additionally include the effect of the wakefield produced

by the RF fundamental mode. Indeed this can be represented through the loss factor and can be written

as an additional term on the right-hand side of Eq. (I.12.153) describing the energy variation with time.

Without going into the details of the calculations, we give here only the result. By considering small

oscillations, the differential equation of motion becomes now

d2∆ϕ

dt2
+ 2αr

d∆ϕ

dt
+ ω2

s∆ϕ = 0. (I.12.156)

We have here an additional term proportional to αr and to the first time derivative of ∆ϕ having a

form similar to that of Eq. (I.12.102), which gives an amplitude of the oscillations depending exponen-

tially with time. Indeed, if αr < ωs, by writing ωn =
√
ω2
s − α2

r , the solution is

∆ϕ = ∆ϕmaxe
−αrt cos (ωst+ θ0) . (I.12.157)

The value of αr is given by

αr =
qtotηhω0

2ωs(E0/q)T 2
0

Re[∆Z], (I.12.158)

where Re[∆Z] is the difference between the real part of the impedance of the fundamental mode evalu-
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ated at hω0 ± ωs, that is

Re[∆Z] = Re [Z(hω0 + ωs)]−Re [Z(hω0 − ωs)] . (I.12.159)

From the above equations, we can see that the sign of αr depends on both η and Re[∆Z]. If this

is positive, according to Eq. (I.12.157), we have exponentially damped oscillations; otherwise we have

instability.

For example, if we are above transition energy, η < 0, so that, in order to have stability, we must

have that [Z(hω0 + ωs)] < Re [Z(hω0 − ωs)]. This situation occurs when the RF frequency ωRF = hω0

is larger than the mode resonant frequency, as shown in Fig.I.12.34. Of course, we can have different

combinations of η and Re[∆Z]. These conclusions are the same as those we have discussed in the

phenomenological description.

Fig. I.12.34: Real part of the frequency of the fundamental mode and bunch spectrum line of the syn-
chronous particle.

I.12.4 Solutions to the exercises

Exercise 1

By considering a cylinder of radius r > a, according to the Gauss theorem, we have

2πrErℓ =
ρπa2ℓ

ε0
=
λℓ

ε0
→ Er =

λ

2πε0r
.
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Analogously, from the Ampere law, we can write

2πrBθ = µ0Jπa
2 = µ0vλ → Bθ =

β

c

λ

2πε0r
,

from which

Fr = q (Er − vBθ) =
qEr

γ2
=

qλ

2πε0γ2r
.

Exercise 2

2πrErℓ =
λ0

2πε0σ2r
ℓ

∫ r

0
e
− r′2

2σ2
r 2πr′dr′ =

λ0ℓ

ε0

(
1− e

− r2

2σ2
r

)
,

from which

Er =
λ0
2πε0

1− e
− r2

2σ2
r

r
.

Exercise 3

Consider a reference system moving with the same speed as the charge. In this reference system,

the charge is at rest close to a conducting plane. This is equivalent as having an image charge of opposite

sign at distance 2d producing, on the charge, an attractive force equal to

F0 =
q2

4πε0(2d)2
.

If we transform the transverse force in the laboratory system, according to the transformation of

the forces, we have

F =
F0

γ
=

q2

4πε0γ(2d)2
.

Exercise 4

Similarly to Eq. (I.12.10), we have

Er(r, s) =
λ(s)

2πε0a2
r Bθ(r, s) =

β

c

λ(s)

2πε0a2
r,

so that

Fr(r, s) = q(Er − vBθ) = q
λ(s)

2πε0γ2a2
r.

Exercise 5
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Since the circular vacuum chamber does not modify the electric and magnetic field lines for

an ultra-relativistic beam with a non-uniform longitudinal distribution, the force is simply given by

Eq. (I.12.25) with λ(s) substituted by the three longitudinal distributions, which are generally used for

the study of

– Electron bunch instabilities in the case of Gaussian distribution,

– Proton bunch instabilities in the case of parabolic distribution,

– Coasting beam instabilities in the case of sinusoidal modulations.

Exercise 6

The magnetic field lines must be orthogonal to the plates’ surface. The image magnetic field can

be obtained by considering image currents with the same sign as shown in Fig. I.12.35.

Fig. I.12.35: Image currents related to Exercise 6.

Suppose that a charge inside the beam is in a generic vertical position y with x = 0. If all the

currents exit out of the figure, then the magnetic field due to the image currents can be written as

Bim
x =

µ0βcλ(s)

2π

∞∑
n=1

(
1

2ng − y
− 1

2ng + y

)
=
µ0βcλ(s)

2π

∞∑
n=1

2y

(2ng)2 − y2

≃ µ0βcλ(s)

4πg2
y

∞∑
n=1

1

n2
=
µ0βcλ(s)

4πg2
π2

6
y.

For the vertical magnetic field, we can use the component of the curl equation along z

(
∇×Bim)

z
= 0 → ∂Bim

x

∂y
=
∂Bim

y

∂x
→ Bim

y =
µ0βcλ(s)

4πg2
π2

6
x.

Exercise 7
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With the condition that the magnetic field lines must be tangent to the parallel plates, as shown in

Fig. I.12.6, we obtain an infinite series of alternating currents. Following the same method that we have

used for the electric field in the DC case, we have now

B̃im
x =

µ0Ĩ

2π

∞∑
n=1

(−1)n
(

1

2nh− y
− 1

2nh+ y

)
=
µ0βcλ̃(s)

2π

∞∑
n=1

(−1)n
2y

4h2n2 − y2

≃ β

c

λ̃(s)

4πε0h2
y

∞∑
n=1

(−1)n
1

n2
=
β

c

λ̃(s)

4πε0h2
y

(
−π

2

12

)
= −β

c
Ẽim

y ,

and (
∇× B̃im

)
z
= 0 → ∂B̃im

x

∂y
=
∂B̃im

y

∂x
→ B̃im

y =
β

c
Ẽim

x .

Exercise 8

f0 = 1/2, f1 = π2/48, f2 = π2/24.

Exercise 9

The electric field inside a uniform cylindrical beam of radius a is given by Eq. (I.12.8), while,

outside the distribution, it is given by the solution of Exercise 1. As a consequence, Eq. (I.12.41) becomes

Es(r, s) = − 1

2πε0

∂λ(s)

∂s

[∫ a

r

r′

a2
dr′ +

∫ b

a

1

r′
dr′
]
= − q

4πε0

∂λ(s)

∂s

(
1− r2

a2
+ 2 ln

b

a

)
.

Exercise 10

Gaussian distribution:
dλ

ds
= − Nq√

2πσ3s
ze

− s2

2σ2
s ,

Fs(r, s) = qEs(r, s) =
Nq2

4π
√
2πε0γ2σ3s

(
1− r2

a2
+ 2 ln

b

a

)
se

− s2

2σ2
s .

Observe that this force is positive on the head of the bunch (s > 0) and negative on the tail.

Parabolic distribution:
dλ

ds
= −12Nq

l30
s,

Fs(r, s) = qEs(r, s) =
12Nq2

4πε0γ2l30

(
1− r2

a2
+ 2 ln

b

a

)
s.

Observe that this force is positive on the head of the bunch (s > 0) and negative on the tail.
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Sinusoidal modulation of a coasting beam:

dλ

ds
= −∆λks sin(kss),

Fs(r, s) = qEs(r, s) =
∆λksq

4πε0γ2

(
1− r2

a2
+ 2 ln

b

a

)
sin(kss).

Some observations on this force are given in the comments on Exercise 10.

Exercise 11

According to Eq. (I.12.56), we have:

– Gaussian distribution: the maximum tune shift is for z = 0 and it is equal to

∆Qmax = − re,pρ
2

γ3β2a2Qx0

N√
2πσs

.

The minimum tune shift is zero when s→ ∞. Therefore,

∆Qspread = ∆Qmax −∆Qmin = ∆Qmax.

– Parabolic distribution: the maximum tune shift is for s = 0 and it is equal to

∆Qmax = − re,pρ
2

γ3β2a2Qx0

3N

2l0
.

The minimum tune shift is zero when s = ±L0/2. Therefore,

∆Qspread = ∆Qmax −∆Qmin = ∆Qmax.

– Sinusoidal modulation: the maximum tune shift is for kss = 2πn and it is equal to

∆Qmax = − re,pρ
2

qγ3β2a2Qx0
(λ0 +∆λ).

The minimum tune shift is for kss = (2n+ 1)π and it is equal to

∆Qmin = − re,pρ
2

qγ3β2a2Qx0
(λ0 −∆λ).

Therefore

∆Qspread = ∆Qmax −∆Qmin = − 2re,pρ
2∆λ

qγ3β2a2Qx0
.

Exercise 12
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The emittance is related to the transverse dimension through the relation a2 = εxβx. Moreover,

βx =
λβ
2π

=
1√
Kx

=
ρ

Qx0
.

Therefore, for the tune shift, we have

∆Qx = − re,pρ

qγ3β2εx
λ(s). (I.12.160)

Exercise 13

∆Qx = − 1

4πβ2E0εx

∮
a2
(
∂F self

x (s)

∂x

)
0

ds.

Exercise 14

γi =
1.4 + 0.938

0.938
= 2.49, γf =

2 + 0.938

0.938
= 3.13,

(
3.13

2.49

)3

= 1.98.

Exercise 15

From Eq. (I.12.99) we have

w∥(z)

ℓ
= − 1

4πε0γ2

(
1 + 2 ln

b

a

)
dδ(z)

dz
.

By using Eq. (I.12.79), we have then

U(s)

ℓ
= −q

∫ ∞

−∞

w∥(s− s′)

ℓ
λ(s′)ds′ = − q

4πε0γ2

(
1 + 2 ln

b

a

)∫ ∞

−∞

dδ(s− s′)

ds′
λ(s′)ds′ =

= − q

4πε0γ2

(
1 + 2 ln

b

a

)
dλ(s)

ds
,

which coincide with Eq. (I.12.43) when r = 0. They are the same because, by considering a constant

longitudinal force, the product Fzℓ coincides with the energy lost by the charge U(z).

Exercise 16
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By using Eq. (I.12.81) with U(s) of the previous result, we have

Ubunch

ℓ
= − 1

4πε0γ2

(
1 + 2 ln

b

a

)∫ ∞

−∞

dλ(s)

ds
λ(s)ds =

1

4πε0γ2

(
1 + 2 ln

b

a

)[
λ(s)2

2

]∞
−∞

= 0,

since the longitudinal distribution is zero at ±∞. On the other hand, the space charge impedance is

purely imaginary, while it is possible to demonstrate that it is the real part of the coupling impedance

which is related to the bunch energy losses.

Exercise 17

From Exercise 15, by evaluating the derivative of the Gaussian distribution, we have

U(s) =
qℓ

4πε0γ2

(
1 + 2 ln

b

a

)
s√
2πσ3s

e
− s2

2σ2
s .

As already discussed in the Section dedicated to the longitudinal space charge, this energy is

positive ahead of the bunch and it is negative on the tail. The maximum and minimum energy variation

can be found when the derivative of this energy is zero, that is

dU(s)

ds
= 0 → s = ±σs.

We have, therefore,

Umax − Umin = 2Umax =
2qℓ

4πε0γ2

(
1 + 2 ln

b

a

)
1√
2πσ2s

e−
1
2 .

Exercise 18

U(s) = −qqtotw0

ℓ0

∫ ℓ0/2

s
eγ

(s−s′)
c

{
cos

[
ωn

(s− s′)

c

]
+

γ

ωn
sin

[
ωn

(s− s′)

c

]}
ds′ =

qqtotw0c

ℓ0ωn
eγ

x
c sin

(
ωr
x

c

)∣∣∣s−ℓ0/2

0
= −qqtotw0

2

e
− γ

c

(
ℓ0
2
−s

)
sin

[
ωn

c

(
ℓ0
2

− s

)]
ωn

c

ℓ0
2

.

Exercise 19

By using Eq. (I.12.145) with the parameters of the exercise, since ky = ωy/c, we have

y2(LL)− ŷ1
ŷ1

=
cNqLLwy(z)

4ωyβ2(E0/q)Lw
= 180.
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The condition to neglect the beam break-up is then that

180ŷ1 = y2(LL)− ŷ1 ≪ σy.

This means that, in these conditions, the beam must be injected onto the Linac axis with an accu-

racy better than a fraction of a per cent of the beam size.

Exercise 20

In this case, Ef = 1 + 16.7× 10−3 × 3000 = 51.1 GeV, so that the multiplication factor is

F =
E0

Ef
ln
Ef

E0
= 0.078,

and the amplitude of the oscillations of the tail with respect to the head becomes now

y2(LL)− ŷ1
ŷ1

= 180× 0.078 = 14.
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Appendices

I.12.A Effect of longitudinal distribution on the tune spread

In the left-hand side of Fig. I.12.A.1 we show the longitudinal phase space scatter plot (∆ϕ,∆E) of a

bunch obtained by simulations for the CERN PS Booster. In the top figures, the head and tails of the

bunch are represented with colors, while in the bottom ones, we have highlighted the particles in the

bunch center. On the right-hand side of the figure, the corresponding tune diagram is shown. The black

dot in these figures represents the bare tune.

Particles at the edges of the bunch (top figures) have tunes close to the bare tune in the necktie.

Indeed, in these two longitudinal phase space regions the beam line density is smaller with respect to the

centre of the bunch, therefore the space charge detuning, proportional to λ(z) is small too.

Fig. I.12.A.1: Longitudinal phase-space (∆ϕ,∆E scatter plot of the bunch tune footprint. (Courtesy of
V. Forte [17]).

I.12.B Image charge distribution of an infinite wire inside a circular beam pipe

Let us consider the geometry of Fig. I.12.B.1. We have a direct uniform infinite linear charge distribution

λ0 at a distance x from the centre of a beam pipe of radius b. The goal is to determine the distance d

from an image charge distribution −λ0 such that the walls of the beam pipe must be equipotential.

Referring to the figure, let us evaluate the potential of the pipe wall at a distance r from the direct

charge distribution and at R from the image. The same position is determined by the angle θ from the
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I.12.B. Image charge distribution of an infinite wire inside a circular beam pipe

Fig. I.12.B.1: Geometry for the determination of the image charge position.

center of the beam pipe. The two distances can be written as

r =
√
b2 + x2 − 2bx cos θ, (I.12.161)

R =
√
b2 + d2 − 2bd cos θ. (I.12.162)

The potential produced by a uniform infinite linear distribution at a given distance r is proportional

to λ0 ln(r), so that the potential created by the two linear distributions must be

V ∝ λ0 ln(r)− λ0 ln(R) = λ0

[
ln
(√

b2 + x2 − 2bx cos θ
)
− ln

(√
b2 + d2 − 2bd cos θ

)]
.

(I.12.163)

This potential must be independent from θ, so that

∂V

∂θ
= 0 =

2bx sin θ

2 (b2 + x2 − 2bx cos θ)
− 2bd sin θ

2 (b2 + d2 − 2bd cos θ)
, (I.12.164)

that is
x

(b2 + x2 − 2bx cos θ)
=

d

(b2 + d2 − 2bd cos θ)
. (I.12.165)

This equation can be written as

xd2 − d(b2 + x2) + xb2 = 0. (I.12.166)

By solving this second-order equation in d we get the two solutions

d1 = x, d2 =
b2

x
. (I.12.167)

Of course, the first solution gives the result that the two distributions coincide and that the electric

field inside the pipe is zero everywhere, while the second solution is what we were looking for.
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I.12.C Panofsky-Wenzel theorem

It is a relationship between transverse and longitudinal electromagnetic forces. It can be obtained from

the properties of the Lorentz force and the impulse received by a charge with the rigid beam approxima-

tion.

It says that the transverse gradient of the longitudinal force is equal to the longitudinal gradient of

the transverse force, that is

∇⊥F∥ =
∂

∂z
F⊥,

which, in terms of wake function, can be written as

∇⊥w∥ =
∂

∂z
w⊥,

and, in terms of impedance, as

Z⊥ =
βc

ω
∇⊥Z∥.

I.12.D Other collective effects

Finally, we briefly list here some other important effects related to self-induced electromagnetic fields.

I.12.D.1 Landau damping

There is a fortunate stabilizing effect against the collective instabilities called "Landau Damping". The

basic mechanism relies on the fact that if the particles in the beam have a spread in their natural frequen-

cies (synchrotron or betatron), their motion can’t be coherent for a long time.

I.12.D.1.1 Driven oscillators

In order to understand the physical nature of this effect, we consider a simple harmonic oscillator, at rest

for t < 0, driven by an oscillatory force for t > 0, similar to what we discussed in Section I.12.3.2.1.

Let us consider here the time as the independent variable so that Eq. (I.12.124) is now written as

d2x

dt2
+ ω2x = A cos (Ωt) . (I.12.168)

We have already discussed its solution when x(0) = 0 and ẋ(0) = 0, which now becomes

x(t) =
A

ω2 − Ω2
[cos (Ωt)− cos (ωt)] . (I.12.169)

Let us now assume that the external force is driving a population of particles characterized by a

spread of the natural frequencies of oscillation around the average value ωm. Furthermore, let the forcing

frequency Ω be inside the frequency spectrum. Following the same method of Section I.12.3.2.1, we can

define the difference between the resonance frequency Ω and a resonator frequency ω as δω = Ω − ω.

We also suppose that |δω| ≪ ωm such that Ω+ ω ≃ ωm.

Under such assumptions, the above equation of motion can be written similarly to Eq. (I.12.136),
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that is

x(t > 0) =
A

ωmδω
sin (ωmt) sin

(
δω
2
t

)
. (I.12.170)

As we have already seen, this equation can be seen as an oscillation at frequency ωm with an

amplitude modulated at the lower frequency δω/2. As for Eq. (I.12.137), it is convenient to write this

equation as

x(s) =
At

2ωm
sin (ωmt)

sin

(
δωt

2

)
δωt

2

. (I.12.171)

Let us now observe the option of two particles in the bunch, one with δω = 0, and the other one

with δω ̸= 0. Both are at rest and, at t = 0, they start to oscillate with the same amplitude and phase

(coherency). However, while the amplitude of the former charge grows indefinitely since it is driven at

resonance according to the blue curve of Fig. I.12.D.1, the latter, because of the beating of two close

frequencies, reaches a maximum amplitude which is modulated by δω/2, when sin(δωt/2) = 1, that is

when t = π/δω, after which this oscillator is out of resonance, and loses the phase synchronism with the

external driving force as shown by the red curve of the same figure. We can say that the system of the

particles loses the coherency at the time when the beating amplitude is maximum, i.e. for t = π/δω.

Fig. I.12.D.1: On resonance and out of resonance oscillations of two particles due to a sinusoidal external
force in arbitrary units.

We can then say that at any time t∗, only those oscillators inside the bandwidth |δω| < π/t∗

oscillate coherently. The longer we wait, the narrower the coherent bandwidth is, and therefore a lower

number of particles oscillates coherently.
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I.12.D.1.2 Amplitude of oscillations and energy of the system

At any instant, we can divide the bunch population into two groups: the coherent (on resonance) par-

ticles, oscillating all together with an amplitude growing linearly with time, and the incoherent (out of

resonance) particles which have different phases and a saturated maximum amplitude of oscillation.

It is possible to show that, although the amplitude of the coherent oscillators grows linearly with

time, the average amplitude of the whole system remains bounded. The reason is that the number of

coherent particles decreases inversely with time.

As regards the energy of the system, also in this case we distinguish between the coherent and

incoherent particles. The energy of the coherent particles grows quadratically with time, while the energy

of the incoherent particles is bounded. In this case, although the number of coherent oscillators decreases

with time, the total energy still grows linearly. This means that the system continues to absorb energy

from the external driving force but the average oscillation amplitude remains bounded: when a force

drives such a system, only at the beginning, the whole system follows the external force. Afterwards,

fewer and fewer particles are driven at the resonance.

This mechanism also works when the driving force is produced by the bunch itself. To trigger a

coherent instability, the rise time of the instability itself has to be shorter than the decoherence time of

the bunch.

A rigorous analysis of the beam dynamics in the frequency domain shows that, because of the

Landau damping, a stability region appears in the impedance plane, whose shape depends on the beam

energy distribution.

I.12.D.2 Vlasov and Fokker-Planck equations

These equations are used to study analytically the collective effects in circular accelerators.

The Vlasov equation describes the collective behaviour of a multiparticle system under the influ-

ence of electromagnetic forces [3].

It is valid for a conservative system when we can ignore, for example, the synchrotron radiation.

It is generally applied to study longitudinal and transverse beam dynamics of proton beams.

For electron beams, synchrotron radiation cannot be neglected and we need to use another equation

called the Fokker-Planck equation [3, 13]. Its stationary solution in the longitudinal plane is called the

Haissinski equation [18].

The Vlasov equation is sometimes loosely referred to as the Liouville theorem. However, it applies

to a system of many particles when collisions among particles are excluded.

Strictly, the Liouville theorem applies to an ensemble of many systems, each containing many

particles. It describes the conservation of density of the ensemble in the 2N-dimensional space and

applies to situations much more general than that considered in the study of collective effects, such as

when collisions among discrete particles are included.
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I.12.D.3 Other effects

Here we mention some other important self-induced effects that produce beam instabilities, together with

some references where the phenomenon is discussed:

– Touschek effect and intra-beam scattering [19]: Touschek effect is due to the Coulomb scattering

of charged particles because of an exchange of energies between the transverse and longitudinal

oscillations. Intra-beam scattering is due to multiple Coulomb scattering, leading to an increase in

the beam dimensions;

– Electron cloud [20]: Positive charges disturb electrons already in the beam pipe, and bounce them

into the wall. These electrons can be photo-electrons from synchrotron radiation or electrons

from ionized gas molecules. When an electron hits the wall, the wall emits more electrons due

to secondary emission. These electrons in turn hit the opposite wall, releasing more and more

electrons into the accelerator chamber;

– Beam-beam [21]: It is due to the electromagnetic fields of two counter-rotating beams as they

cross the interaction points in a collider. It can represent a severe limitation in high-intensity

accelerators;

– Beam Ion instability [22]: The ionization of residual gas by an electron beam produces ions. The

ions generated by the head of the bunch train oscillate in the transverse direction and resonantly

interact with the betatron oscillations of the subsequent bunches, causing the growth of an initial

perturbation of the beam.
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