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Chapter I.13

Cyclotrons and fixed field alternating gradient accelerators

Bertrand Jacquot

Large Heavy Ion National Accelerator (GANIL), Caen, France

The cyclotrons are the most used hadron accelerators: they represent a compact and efficient solution
with 100% duty cycle, very well adapted for the medical applications and for the nuclear physics
research. The cyclotron maximal energy is typically 1 GeV for a proton beam. In this introductory
lecture, we present the underlying concepts. The longitudinal and transverse beam dynamics in
these accelerators are covered. We present specific cyclotrons (compact cyclotrons at low energy,
synchrocyclotrons, “Fixed Field Alternating Gradient” accelerators, superconducting cyclotrons,
separated sector cyclotrons). The concepts used in the cyclotrons are numerous, and the topic is
an ideal application of many ideas introduced in a basic course in accelerator physics. We provide
many exercises for a better understanding.

1 Introduction: from physics research to the medical applications

The cyclotron concept [1–4] has been developed in the years 1929–1931 by Ernest Orlando Lawrence [5].

The proposed accelerator is a generic and powerful idea: a unique acceleration radiofrequency gap

crossed many times by a beam having a spiraling trajectory. Such general idea has been adapted to

most of cyclic accelerators (cyclotron, synchrocyclotron, microtron, FFAG, recirculating linac).

Hence the first cyclotrons allowed the scientists to overcome the technical difficulties of the high

voltage DC accelerators (Van de Graaff, Tandem). The numerous potential discoveries induced by

the cyclotron idea have been recognized very soon, and a Nobel prize in Physics has been awarded

to E.O. Lawrence in 1939 for his pioneering work and for the large quantity of new results obtained

with cyclotrons (especially with regard to artificial radioactive elements). Then the research in nuclear

and particle physics made considerable progress during the period 1930–1970 thanks to proton and ion

cyclotrons. Since the 1980’s, the development of facilities for the production of radionucleides used in

the hospitals has opened up a new era for the cyclotrons: nowadays more than 1200 cyclotrons are in

operation in the world [6]. A cyclotron can be bought on a catalog from several manufacturers (IBA,

BEST, VARIAN, SIEMENS, SUMITOMO, GE, etc. ). For such applications, the R&D in cyclotron is

led mainly by these industrial manufacturers, which aim to reduce the cost and ease their operation in a

medical context. In the near future, a larger number of cancer treatment facilities using 250 MeV pro-

ton isochronous cyclotron or synchrocyclotron could complement the standard radiotherapy. The X-rays

radiotherapy uses low cost 5–15 MeV electron linac producing photons by bremstrahlung mechanism.

The advantage of hadron irradiation over photon is related to the very precise tumour irradiation in a

narrow range of depth, the so-called Bragg peak, minimizing radiation to the healthy nearby tissues. On
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2. The cyclotron principle and the longitudinal dynamics

the research context, the cyclotrons are very limited in their maximal energy compared to synchrotron.

However many research facilities still use some very specific cyclotrons, let us cite:

– PSI (in Switzerland, providing the most powerful proton beam of 1.4 MW at 590 MeV),

– RIBF (in Japan, operating the largest superconducting cyclotron in the world),

– TRIUMF (in Canada, housing the world’s largest cyclotron, which delivers H− at 520 MeV),

– GANIL (in France, having five cyclotrons in operation).

Besides, large projects could emerge using advanced cyclotron concept for muon acceleration or

accelerator driven nuclear reactor.

2 The cyclotron principle and the longitudinal dynamics

2.1 Generalities

A cyclotron consists of a very large dipolar magnet operating with a vertical magnetic field Bz generated

by an electromagnet. Inside the magnet, two semicircular hollow electrodes with a D shape (called

“Dees”) are excited by a radiofrequency generator. A sinusoidal electric field is generated in the gap

between the two cavities, (see Fig. I.13.1).

Fig. I.13.1: The cyclotron principle. The beam is injected in the centre of the cyclotron magnet from
a source in the gap between the two semi-circular cavities (the “Dees”).The RF voltage of the Dees
produces a sinusoidal electric field in the gap. The particle bunches are accelerated after each half turn.
Note that one of the Dee is at the ground potential.

The operating mode of a cyclotron is quite different from a synchrotron. The synchrotrons are

pulsed accelerators: the beam is injected, then accelerated, then extracted. During the acceleration,

no beam is injected into the ring, the magnet field is ramped up and the RF synchronized with beam

revolution frequency. The beam is delivered to the users in pulses of a given length ∆T (typically few

microseconds with a fast extraction) at a given repetition frequency Fpulse (usually between 1 Hz and

10 Hz). The duty cycle, i.e. the product of pulse length and repetition frequency, is very low (< 0.01%),

but a synchrotron can deliver beams (ions or electrons) at ultra-relativistic energy.

A cyclotron will take the continuous particle beam coming out of an ion source. The beam is

bunched at a given RF frequency with a pre-buncher and then accelerated continuously. The cyclotron
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delivers a continuous stream of particle bunches at RF frequency (we call it a Continuous Wave acceler-

ator: CW). Therefore, the main advantages of the cyclotron over the synchrotron are its 100% duty cycle

and its compactness (and the associated relatively low cost). However, most of cyclotron accelerators are

restricted to low energy hadron beams (E < 1 GeV for protons) as we will see.

In Table I.13.1 you may find a generic comparison of the characteristics of cyclotrons and syn-

chrotrons.

Table I.13.1: Comparison of cyclotrons and synchrotrons.

Isochronous
cyclotron

Synchrotron

Revolution frequency Constant
Variable (∼ v)

RF frequency
Constant
cw acceleration
100% RF duty cycle

Variable: RF ramped
pulsed accelerator
very low RF duty cycle

Orbit radius R Variable Constant

Magnetic field Bz Constant
Variable: ramped
Bdipole = f(time) = Bρ

Rdipole

Transverse focusing Weak focusing
Strong focusing with
quadrupoles

Limits Beam energy (γ < 2)
No limit in energy
(except synchrotron radiation
and cost)

Particles Protons, ions Electrons, protons, ions

Fig. I.13.2: The “compact cyclotron” hardware. 1) External ion source: A beam line directs the
beam inside the cyclotron through an axial hole, then the beam is deviated in the cyclotron plane with
an electrostatic inflector. 2) The magnet yoke: One compact magnet provides the bending force to the
beam. 3) The magnet poles excited by copper coils define a complex magnetic field with modulations.
4) The 180◦ RF Dee for acceleration: Half of the cyclotron is at the ground potential while a hollow
electrode is at sinusoidal voltage. 5) An electrostatic deflector is used for beam extraction.
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2. The cyclotron principle and the longitudinal dynamics

2.2 Revolution frequency: ωrev = qB/mγ

Using a cylindrical coordinate system (er, ez, eθ) , we compute the beam revolution frequency during the

acceleration in the cyclotron. A particle, having a charge q, is injected in horizontal plane of a cyclotron

and the vertical magnetic field B = (0, Bz, 0) produces a radial force which bends the trajectories in a

circular motion between each acceleration

F = q(v ×B) = q(υθ ·Bz) · er . (I.13.1)

The vector product (or “cross product”) (v × B) is not a scalar product. This vector product is

computed as a matrix determinant

v ×B =

∣∣∣∣∣∣∣
er ez eθ

0 0 υθ

0 Bz 0

∣∣∣∣∣∣∣ . (I.13.2)

Between two successive accelerations, the relativistic Newton equation reads

dp

dt
= mγ

dv

dt
= q(vθ ·Bz) · er . (I.13.3)

The magnetic force, being always perpendicular to the particle velocity, produces an uniform circular

motion. This circular motion corresponds to a radial acceleration (related to the centrifugal force, see

Ex. 1).

dv

dt
=

(
∥v∥2

R

)
· er , (I.13.4)

mγ
dv

dt
= mγ

v2

R
· er = q(vθ ·Bz) · er . (I.13.5)

Rearranging the last equation, we express the radius R of the trajectory

R =
mγ vθ
qBz

=
p

qBz
. (I.13.6)

The particle revolution frequency reads

Frev =
v

2πR
=

qBz

2πmγ
. (I.13.7)

Hence, in the non-relativistic approximation (γ ∼ 1), the revolution frequency is independent of the

energy and the beam radius in the cyclotron. We express generally the angular velocity ωrev

ωrev =
dθ

dt
=

vθ
R

= 2πFrev =
qB

mγ
. (I.13.8)
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Exercise no1: Radial acceleration in circular motion

(a) Demonstrate that in a uniform circular motion, the radial acceleration is a = v2

R · er .

You can use the parametric equations for a circular motion (X(t), Y (t) ) with:

X(t) = R cos(ωt) and Y (t) = R sin(ωt).

(b) Compute the velocity and the acceleration, demonstrate that the acceleration is radial.

Answer:

vx = dX(t)
dt = −ωR sin(ωt) and vy = dY (t)

dt = +ωR cos(ωt).

Thus, the velocity modulus is v = ∥v∥ =
√
v2x + v2y = ωR.

Then, the acceleration is

ax = dvx
dt = −Rω2 cos(ωt) , ay =

dvy
dt = −Rω2 sin(ωt) and ∥a∥ = Rω2 = v2

R .

The longitudinal velocity v is perpendicular to a (check that v · a = vx · ax + vy · ay = 0, so

the acceleration is radial). We can conclude that, in an uniform circular motion, the

acceleration vector is radial

a =
v2

R
· er .

2.3 Beam synchronisation with RF

In fact, there are two alternate solutions to guarantee a proper synchronization with the RF field during

the acceleration:

– Making the revolution frequency constant to match the fixed RF frequency (isochronous cy-

clotron),

– Matching the RF frequency to the variable revolution frequency (this is the synchrocyclotron and

FFAG option, see Section 5).

We will concentrate on the isochronous technology since it provides 100% duty cycle accelerators, while

the second, less used nowadays, delivers pulsed beam.

If we choose a RF generator with a constant frequency and with a voltage V = U0 cos(ωrft), the

synchronization between the beam and accelerating RF cavity requires first a careful tuning of the field

B0 at injection

ωrf = H(2π Frev) = H
qB0

m
, (I.13.9)

where H is an integer called the Harmonic. The early cyclotrons were designed with an uniform axial

field Bz = B0 ez . If the magnetic field is uniform, the beam revolution frequency decreases pro-

gressively with energy and radius due to special relativity. Since the velocity in a circular motion is

υ = ∥v∥ = Rωrev and expressing gamma, we have

ωrev =
qB0

mγ
=

qB0

m

√
1− v2

c2
=

qB0

m

√
1− R2ω2

rev

c2
. (I.13.10)
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2. The cyclotron principle and the longitudinal dynamics

Hence, the ion revolution frequency decreases with the radius. The early cyclotrons, having a uniform Bz

field, were not able to provide high energy beams: at large energy, because of the non-constant revolution

frequency, the bunches arrive out of phase at the gap, as explained in Fig. I.13.3.

Fig. I.13.3: Desynchronization of bunches in a uniform field cyclotron. In an uniform field B0, after
a few turns when the γ factor increases the bunches arrive out of phase. Then the bunches start to be
decelerated and no beam reaches the extraction. In order to maintain the acceleration the B field must
vary with the radius as the Lorentz factor: Bz = f(radius) ∼ γ.

2.4 Isochronous cyclotron

In order to keep the synchronisation with the RF acceleration, the vertical field Bz should follow the

evolution of the relativistic γ factor. Let us choose to apply a field with the form

Bz(R) = B0 f(radius) =
B0√

1 − R2 ω2
rev

c2

. (I.13.11)

With such a field Bz(R), the time for one turn is constant whatever the energy and radius

ωrev =
q Bz(R)

m

1

γ
=

q B0

m
√

1− R2 ω2
rev

c2

√
1− v2

c2
=

qB0

m
= constant. (I.13.12)

The cyclotron is said to be ISOCHRONOUS. In Fig. I.13.4 , the bunches are shown on the RF accelerat-

ing wave for each gap crossing between the two Dees. With the isochronous condition (Frev = constant),

the beam arrives always at the edge of the gap at the optimum accelerating RF phase during the acceler-

ation time.
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Fig. I.13.4: Bunch synchronization with RF. In an isochronous cyclotron for a perfect acceleration, the
two following conditions are required:
a) Synchronism with RF at injection: ωrf = H ωrev = H qB0

m ,
b) Isochronism: ωrev = constant, during the acceleration with Bz(R) = B0√

1−R2 ω2
rev

c2

.

2.4.1 Choice of RF harmonic H = ωrf/ωrev

In the gap, it is required that the electric field be directed always in the right direction to obtain the

acceleration. The AC generator must alternate the polarity of the 180°Dee in order to give to the ion an

accelerating electric field every half period. With this cavity geometry the harmonic H should have an

odd value (see also Section 2.5.1) Besides, the harmonic H will define the number of bunches per turn in

the cyclotron.

2.4.2 Variable energy cyclotron

Most of the industrial cyclotrons for medical applications work at fixed energy. In research labs, the

flexibility of the energy is important even if it requires some extra technical complexity. The ion energy

variation is associated with the beam velocity at the extraction radius which imposes to modify the

magnetic field and its radial dependence (to be adapted to the new γ factor), and the RF frequency.

The variable energy cyclotrons having a variable final velocity (vfinal = Rextraction ωrev), requires:

– A RF cavity with variable frequency (ωrf = H ωrev) adapted for each required energy,

– A magnet with many correction coils1 for the adjustment of the field evolution

Bz(R) =
B0√

1− R2 ω2
rev

c2

with B0 =
ωrev m

q
.

1The correction coils (called trimming coils) are a set of adjustable concentric coils located on the pole pieces inside the magnet
gap. Equipped with a variable frequency RF cavity and adjustable trimming coils (excited with independent power supplies),
a cyclotron can accelerate a wide range of ion species (q,m) at diverse energies (γ).
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2. The cyclotron principle and the longitudinal dynamics

Exercise no2: The isochronous cyclotron, numerical application

An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic H = 3

- Compute the time Trev needed to perform one turn for the accelerated ions.

- Compute the average field B0 needed to accelerate protons in a non-relativistic

approximation.

Answer:

The revolution frequency is Frev = Frf
H = 20 MHz. Trev = 1

20 10−6 s = 50 ns.

ωrev = qB0

γm = ωrf
H . At relatively low energy the Lorentz factor γ is close to 1. So, using the

proton mass mp ∼ 1.6 10−27 kg and the proton charge q ∼ 1.6 10−19C , we get

Frf = ωrf
2π = 60MHz , so we have

B0 = ωrev
mp

q
∼ (2π

Frf

H
)
mp

q
= 10−8 106 20 2π = 1.26T.

2.5 Acceleration with RF Dees

2.5.1 The classical RF Dee with αcav = 180°

The energy gain in the accelerating gaps of the RF cavity, called “Dee”, depends on the phase of the

RF at the particle arrival at the gap. In an isochronous cyclotron, with constant revolution frequency,

the particle’s azimuth θ is connected to the revolution frequency, while the RF phase evolves like φrf =

H θ+ constant. With a Dee angular width αcav = 180°(see Fig. I.13.1 and I.13.2), there are two

accelerations per turn. Using as a reference the phase φmid in the middle of the Dee, the phase φgap1 at

the entrance of the Dees

φgap1 = φmid − H αcav

2
.

Remembering that the voltage should be negative at the entrance of the Dee to accelerate positive ions,

if V is negative at the entrance of the Dee the energy gain δEgap1 at the first gap is positive

δEgap1 = − q V (φgap1) = + q|V (φgap1)| .

The energy gain per turn in the general case is


δEturn = δEgap1 + δEgap2 = −qV (φgap1) + qV (φgap2)

= −qU0 sin
(
φmid − Hαcav

2

)
+ qU0 sin

(
φmid +

Hαcav
2

)
= 2qU0 cos(φmid) sin

(
Hαcav

2

)
= 2qU0 cos(φmid) sin(90

◦) .

(I.13.13)

We demonstrate here that the even harmonics H = 2, 4... produce no energy gain (sin 180° = 0),

since the energy gain in the first acceleration gap would be compensated by a deceleration in the second.

In principle, all particles with a phase satisfying −π/2 < φmid < π/2 , are accelerated since

(δEturn > 0). The particles with low energy gain are lost either at injection, extraction, or during
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the acceleration. The longitudinal acceptance ∆φ does not exceed generally 40° (out of 360°) therefore,

the optimization of the transmission requires a RF buncher upstream of the cyclotron.

2.5.2 RF Dee with smaller angle αcav

Some cyclotrons are equipped with RF-cavities with an angular extent αcav much smaller than 180°,

which allows to increase the number of acceleration per turn. We present in Fig. I.13.5, a cyclotron with

two independent cavities producing four accelerations per turn

δEturn = NgapqU0 sin

(
Hαcav

2

)
cos(φmid) . (I.13.14)

The kinetic energy of any particle after Nturn is connected to the phase in the cavity

E(Nturn) = EN = Einjection +Nturn Ngap q U0 sin

(
Hαcav

2

)
cos(φmid) . (I.13.15)

Fig. I.13.5: The Isochronous Cyclotron “SSC2” (Ganil, France). has two RF cavities with an angular
width of αcav = 34°, the RF is operated with H = 2 (2 bunches per turn) at a frequency between 7
and 14 MHz, depending on the heavy ion beam to be accelerated. U0 reaches 230 kVolts. The incom-
ing beam in this cyclotron has been already pre-accelerated by 2 consecutive cyclotrons. Positive ions
(12C6+, 40Ca20+, . . . , 238U58+) are accelerated by a negative voltage at the cavity entrance, and by a
positive voltage at the exit.

2.5.3 RF acceleration, radial size ∆R and bunch separation δR

The acceleration of a bunch having a finite length ∆φ = ωrf ∆t = H ωrev∆t , increases the bunch

radial size. Two particles arriving at different times in the accelerating gap will get a different energy

kick
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2. The cyclotron principle and the longitudinal dynamics

E1 = E0 + q U0 cos(0)

E2 = E0 + q U0 cos(ωrfδt)
. (I.13.16)

Hence the bunch length ∆t induces an energy spread which causes a radial dispersion ∆R of the

bunch. The reference particle after Nturns is located at R0 = B ρ0
Bz

.

The horizontal size of the bunch ∆R satisfies the relation 2

∆R

R
=

∆Bρ

Bρ
=

∆p

p
=

γ

γ + 1

∆Ek

Ek
. (I.13.17)

For low energy ions γ ∼ 1− 1.5 we have

∆R

R
≈ 1

2

∆Ek

Ek
≈ 1

2
∆ cos(φ) ≈ 1

4
∆φ2 . (I.13.18)

The radial beam size ∆R is very sensitive to the bunch length ∆t and the harmonic H (∆φ =

H ωrev ∆t). Besides, the radial separation between two bunches δR, (i.e. the distance between them

on two successive turns) is decreasing with the radius R in the cyclotron

EN = Einjection + Nturn δEturn ≈ 1
2 mv2 ≈ 1

2 m (Rωrev)
2

δR
R ≈ 1

2
δEturn
EN

∼ 1
R2 .

(I.13.19)

Consequently, the bunch spacing δR ∼ 1
R is often very small at the cyclotron extraction at large radii:

The bunches overlap each other and the extraction of the bunches produces beam losses on the deflector

(see Section 7).

2In a non-relativistic approximation:

dEk

dp
=

d(mv2

2
)

d(mv)
=

d(v2/2)

d(v)
=

2v

2
= 2

Ek

p
.

Therefore, dp
p

= 1
2

dEk
Ek

, and considering relativistic mechanics, we get (see Section I.13.D)

dEk

dp
=

γ + 1

γ

Ek

p
.
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Exercise no3: the Kb value of a cyclotron and its maximal capability

A cyclotron is designed to accelerate ions with a nucleon number A and a charge state Q.

- Demonstrate that the maximal kinetic energy (Ek
A ) of a cyclotron can be written as

Ek

A
= Kb

(
Q

A

)2

.

Note: Write the Kb factor in a non-relativistic approximation using an extraction radius Rextr

and a magnetic field B. Assuming the ion mass is m ∼ A ·mu and the charge Q of the ions

is q = Q · e0. The quantity mu is the atomic mass unit (mu = 1.66× 10−27 kg).

- A cyclotron with Kb = 30MeV can accelerate protons up to 30MeV. What would be the

maximal energy of a carbon ion beam 12C4+ for this cyclotron?

- What will be the revolution frequency with a field B0 = 1.26T for a proton (H1+) beam

and for a 12C4+ beam?

Answer:

The kinetic energy is Ek = (γ − 1)c2 ≃ 1
2mv2 , therefore Ek = 1

2AmuR
2
extr ω

2
rev so,

Ek

A
=

1

2
muR

2
extr

(
Qe0B

Amu

)2

= Kb

(
Q

A

)2

.

For a proton (A = 1, Q = +1 ), Ek
A = 30 (Q/A)2 = 30MeV/A .

While for 12C4+ (12 nucleons, Q = +4), the maximal energy is
Ek
A = 30

(
4
12

)2
= 3.33MeV/A.

Then Frev = ωrev
2π = qB

2πm = 20 MHz with protons, and Frev = 6.67MHz with 12C4+.

Let us note that the revolution frequency for 12C4+, ωrev = q B
m ∼ q B

Amu
, is 3 times smaller

than that of the proton beam. We can operate the cyclotron at Frf = 20MHz for the two

beams, which corresponds to a harmonic number H = ωrf/ωrev = 1 for protons, and H = 3

for carbon ions. Consider also that a slight adjustment in B is needed, since the carbon ion

mass is not exactly twelve times the proton mass.

3 Transverse dynamics and orbit stability

In the cyclotron magnet, the particles travel a long way before their extraction. This corresponds to many

turns in the magnetic field. Therefore, it is important to study if a particle, starting with a slight deviation

to the reference orbit, is transported correctly.

To study this aspect, we will introduce the following concepts: cylindrical coordinates, field index

n, transverse stability, tunes, etc.

3.1 Equation of motion in cylindrical coordinates

We will provide a rigorous formulation of the particle trajectories in the vicinity of an ideal circular

trajectory over one turn: we use a cylindrical coordinate system (er(t), ez, eθ(t)). An arbitrary charged
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3. Transverse dynamics and orbit stability

particle, evolves in the field B(r) as

r(t) = R · er + z · ez = [R0 + x(t)] · er + z · ez . (I.13.20)

The equations of motion are determined by: dp
dt = mγ dv

dt = mγ d2r
dt2

Fig. I.13.6: In the cylindrical system, the basis vector er and the azimuthal vector eθ follow the reference
particle and evolve as a function of time.

The frame of reference (er, ez, eθ) has base vectors er × ez = +eθ. The equations of motion

require the calculation of the derivative of the position vector r. Using a Cartesian frame (X,Y), the base

vectors are er = (cos(ωt), sin(ωt))

eθ = (−sin(ωt), cos(ωt)).
(I.13.21)

Then, the vector derivatives required in the equations of motion can be written asder
dt = ω · eθ = dθ

dt · eθ
deθ
dt = −ω · er .

(I.13.22)

Finally, we have d2er
dt2

= −ω2 · er = − v2

R2 · er since ω = v/R .

In the horizontal plane, the time derivatives will act on R(t), er(t), and eθ(t). Since we have
der
dt = ω · eθ = dθ

dt · eθ

v =
dr

dt
=

dR

dt
· er +

dz

dt
ez + R

dθ

dt
· eθ . (I.13.23)

While the acceleration a is determined (by using deθ
dt = −ω · er)

a =
d2r

dt2
=

dv

dt
=

[
d2R

dt2
−R

(
dθ

dt

)2
]
· er +

d2z

dt2
ez +

[
R

d2θ

dt2
+ 2

dR

dt

dθ

dt

]
eθ . (I.13.24)

Outside the accelerating gap, there is no electric field, the velocity modulus ∥v∥ is constant, and the

Lorentz factor γ is constant: we can neglect dωrev/dt = d2θ/dt2 ≈ 0 since there is no longitudinal
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acceleration. The relativistic Newton-Lorentz equation is

d2r

dt2
=

q

mγ
(v ×B) . (I.13.25)

Expressing the vector product in the cylindrical frame as a 3D determinant

v ×B =

∣∣∣∣∣∣∣
er ez eθ

vr vz vθ

Br Bz Bθ

∣∣∣∣∣∣∣ = er (vzBθ − vθBz) + ez (−vrBθ + vθBr) + eθ (vrBz − vzBr) .

(I.13.26)

This leads to the 3 equations used to study the stability of motion in an arbitrary field B = (Br, Bz, Bθ)

d2r

dt2
· er =

[
d2R

dt2
− R

(
dθ

dt

)2
]

=
q

mγ
(vzBθ − vθBz) : Horizontal motion (radial),

d2r

dt2
· ez =

d2z

dt2
=

q

mγ
(vθBr − vrBθ) : Vertical motion (axial),

d2r

dt2
· eθ = R

d2θ

dt2
+ 2

dR

dt

dθ

dt
=

q

mγ
(vrBz − vzBr) : Longitudinal motion (azimuthal).

3.2 The definition of local field index n

In an isochronous cyclotron, the magnetic field increases with the radius to fulfil the isochronism condi-

tion. As we will see later, the magnetic field will generate defocusing forces. Let’s suppose that the field

evolution can be described locally as a power law

Bz(R) = KR−n . (I.13.27)

With the n factor called the “field index”3 . This definition of n eases the analytical calculation of the

orbit stability but does not restrict the generality. The minus sign is a convention.

The field index n(R) can be seen as the fractional change in field associated with a change in

radius

n(R) = −

(
dBz
Bz

)
(
dR
R

) = −
(

R

Bz

) (
dBz

dR

)
. (I.13.28)

3Note: If the field is Bz = B0 at R = R0, the field can be written as Bz(R) = B0(R/R0)
−n. Around a given orbit with a

radius R0, the vertical field can be expanded at a radius R = R0 + x as

Bz(R = R0 + x) = Bz(R0) + x

(
dBz

dR

)
+ · · · = B0 − xn

(
B0

R0

)
· · · = B0

(
1 − x

n

R0

)
+ . . . .
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3. Transverse dynamics and orbit stability

Between the poles, in the vacuum chamber, the static magnetic field satisfies ∇ × B = 0. The

dependence of the vertical field Bz produces a radial field component Br as required by the Maxwell

equation

∇×B =

(
dBθ

dz
− dBz

Rdθ

)
er +

(
d (RBθ)

RdR
− dBr

dθ

)
ez +

(
dBz

dR
− dBr

dz

)
.eθ . (I.13.29)

Considering that Bz(R) = KR−n and (∇×B) · eθ = 0, we have

dBr

dz
=

dBz

dR
= −nKRn−1 = −n

B0

R
, (I.13.30)

consequently, Br = [− z n B0
R0

+ constant], where the constant is zero, since Br(R = 0) = 0 .

The radial component of ∇×B is zero, hence dBθ
dz = dBz

Rdθ , and the azimuthal component Bθ to

the first order in z, is Bθ = z dBz
Rdθ + . . .

For a cyclotron with a field index n 4, we expect a general magnetic field B = (Br, Bz, Bθ) with

components

Br = −z n
B0

R
+ . . . Bz =

B0(
1 − R2 ω2

c2

)1/2 = KR−n Bθ = z
dBz

Rdθ
+ . . . .

(I.13.31)

4Historical note on the field index: In the early synchrotrons, the vertical focusing was not ensured by the addition of magnetic
quadrupoles, but by dipoles having a slight positive field index (a decreasing field with radius: n > 0): this method is called
weak focusing. In the isochronous cyclotrons, the field index is adjusted for isochronism and consequently the field has to
increase with increasing energy and radius with a negative field index n < 0 .
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Exercise no4: Field index n and γ factor
Demonstrate that in an isochronous cyclotron the field index is related to the Lorentz factor:

n(R) = 1− γ2.

- First, evaluate dBz
dR .

- Then, remembering that Bz(R) = KR−n demonstrate n = − R
Bz

dBz
dR .

Answer:

- Since in an isochronous cyclotron Bz = B0 γ(R), let’s compute dBz
dR = B0

dγ
dR .

dBz

dR
= B0

dγ

dR
= B0

d
(
1− R2ω2

c2

)−1/2

dR
= B0

(
−2Rω2

c2

)
·(−1

2
)·
(
1− R2ω2

c2

)−3/2

.

So the derivative of the field appears as

dBz

dR
= B0

(
β2

R

)(
1− R2ω2

c2

)−3/2

=
B0

R
β2γ3 =

B0γ

R
β2γ2 =

(
Bz

R

)
β2γ2.

Remembering that γ2 = 1
1−β2 implies that β2γ2 = γ2 − 1 (see Section I.13.D). Thus

dBz

dR
=

Bz

R
β2γ2 = −

(
Bz

R

)(
1− γ2

)
.

- Besides,the field derivative is connected to n

dBz

dR
= −nK R−n−1 = −n

Bz

R
.

- By identification of two last expressions, we get the field index n

n(R) = 1− γ2(R).

In an isochronous cyclotron, n is negative. So, the magnetic field Bz(R) has to increase

with radius, when γ increases with the acceleration.

3.3 Horizontal stability and the radial tune

A reference particle (m, q, v = v0 eθ) is injected in a cyclotron having a field Bz(R) = B0

(
R
R0

)−n

at a radius R = R0. The field B0 is adjusted to B0 = (p0/q)
R0

=
Bρ

R0
. The trajectory of such a particle

describes a perfect circle of radius R =
Bρ

Bz
= R0 which corresponds to the radius of injection. If a

particle with the same velocity v0 = R0, ω is injected a radius R = R0 + x , it will oscillate around

the ideal trajectory.

The projection of the Newton equation on an horizontal plane (the radial plane), as shown gives

(see Section 3.1)
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3. Transverse dynamics and orbit stability

d2r

dt2
·er =

[
d2R

dt2
− R

(
dθ

dt

)2
]

=
d2R

dt2
− Rω2 =

[
d2R

dt2
− R

(v0
R

)2]
=

q

mγ
(vz Bθ − vθ Bz) .

(I.13.32)

Substituting for this particle dθ
dt = ω = v/R = v0 /R and R = R0 + x we have

[
d2x

dt2
− v0

2

R0 + x

]
=

q

mγ
(vz Bθ − vθ Bz) . (I.13.33)

And since to the first order in x

(R0 + x)−1 = R−1
0 (1 + x/R0)

−1 = R−1
0 (1 − x

R0
+ 0(x2)) (I.13.34)

we obtain

[
d2x

dt2
− ω2R0 (1 − x/R0 + . . . )

]
=

q

mγ
(vz Bθ − vθ Bz) . (I.13.35)

In our case, with no azimuthal component of the magnetic field, (vz Bθ) is zero since Bθ = 0:

- The particle velocity is vθ = v0 = R0 ω and q B0/mγ = ω ,

- The field around R0 is Bz = B0(1 − x n
R0

) + 0(x2)

[
d2x

dt2
− ω2R0 (1 − x/R0) + . . .

]
= − q

mγ
vθBz =

q B0

mγ
[R0 ω] [−x

n

R0
+ . . . ] . (I.13.36)

Rewriting the equation, we obtain

d2x

dt2
= −ω2 (1 − n)x + . . . . (I.13.37)

The field index n, being negative in an isochronous cyclotron since dBz
dR > 0 , the quantity (1 − n) is

positive suggesting a sinus like solution for the differential equation. A particular solution can be found

using the initial condition x(t = 0) = x0 . At the first order, we get

x(t) = x0 cos(ωQr t + ϕ) with Qr = (1 − n)1/2 . (I.13.38)

The quantity Qr = (1− n)1/2 is called the “radial tune”, and it corresponds to the number of oscillations

per turn in the radial plane around the reference orbit. This motion is a stable oscillation.

3.4 Vertical stability

Let us follow a particle starting at radius R = R0 at a position z = z0 between the poles. The study of

the motion is obtained by projecting the Newton equation on the ez axis, see Section 3.1
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d2r

dt2
· ez =

d2z

dt2
=

q

mγ
(vθ Br − vr Bθ) . (I.13.39)

Using ∇ × B = 0 , the field index produces a radial component Br = −nB0z/R, while the angular

component derives from an angular modulation of Bθ = z dBz
Rdθ + . . .

The revolution frequency being ω = q B0

mγ to the first order in z

d2z

dt2
=

q

mγ

(
−Rω n

B0 z

R
− vr z

dBz

Rdθ

)
= −ω2

(
n +

vr
ωB0

dBz

Rdθ

)
z = −ω2Q2

z z .

(I.13.40)

The quantity called "vertical tune" Qz is defined as

Q2
z =

(
n +

vr
ωB0

dBz

Rdθ

)
. (I.13.41)

The nature of the dynamics in the vertical plane will depend on the sign of Q2
z:

– When Q2
z < 0: vertical instability

If the azimuthal component of the field is zero Bθ = 0 , Q2
z = n since dBz

dθ = 0. A particular

solution of the equation is an exponential: the field index is negative in isochronous cyclotron (see

ex. n°4, n = 1 − γ2 )

z(t) = z0 exp (ω | − n|1/2 t) = z0 exp (| − n|1/2 θ) . (I.13.42)

All the trajectories with z0 ̸= 0 will diverge exponentially (the particle transmission of such a

cyclotron would be very low, the vertical acceptance being very small).

– When Q2
z > 0: vertical stability

With some angular modulations on the magnet poles providing a non zero Bθ component, the

quantity Q2
z can become positive: Q2

z =
(
n + vr

ωB0

dBz
Rdθ

)
> 0. A particular solution of the

equation is a cosine

z(t) = z0 cos (ωQz t + ϕ) with Qz =

√(
n +

vr
ωB0

dBz

Rdθ

)
. (I.13.43)

The quantity Qz corresponds to the number of oscillations per turn of any particle around the

reference orbit in the vertical plane. The angular field modulation Bz = B0 F (R, θ) associated with the

Bθ component is used to provide additional vertical focusing. Cyclotrons with such field dependence are

called “Azimuthally Varying Field Cyclotron” and have a much larger particle transmission.

3.5 Qualitative understanding of the vertical instability

In the isochronous cyclotrons, the vertical field Bz should increase with the radius such to compensate

the increase of the γ factor and to keep ωrev constant. This can be obtained by using correction coils

or, by reducing the gap at large radius (since the local field Bz is inversely proportional to the aperture
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4. Azimuthally varying field (AVF) cyclotron

between the two poles: Bz(R) ∼ 1/Rgap.

The non-uniformity of the magnetic field Bz generates a radial field component Br (see Fig. I.13.7).

Fig. I.13.7: An increasing field at large radius, obtained with non uniform gap g ∼ 1/Rgap , generates
vertical defocusing forces. The magnetic field lines are perpendicular to the pole surfaces due to the
Maxwell equation (∇ × B = 0). The curvature of the magnetic field lines depicted corresponds to a
radial component Br .

We see on Fig. I.13.7 that the increasing field Bz(R) generates a radial field whose sign is connected to

the sign of z: Br = − nB0
z
R

- In the upper plane, Br is directed to the centre of the cyclotron magnet and this generates a vertical

force Fz toward the top, as it can be seen with the right hand rule: Fz = q(v ×B) · ez =

q vθ Br ∝ +z ;

- In the lower plane, Br is directed outwards, generating a vertical force Fz directed downward;

- In the median plane, Br = 0 because of the symmetry, and no vertical force is generated on a

moving charged particle.

Hence, the requirement of increasing field Bz(R) produces a this vertical defocusing force in all

isochronous cyclotron. As a consequence, the particles that are not injected exactly on the median plane

(z = 0) could hit the cyclotron pole.

The solution to overcome the defocusing force in isochronous cyclotron will be to add an azimuthal field

component Bθ , as we will see in Section 4.

4 Azimuthally varying field (AVF) cyclotron

4.1 Hill and valley

As we have seen, in the isochronous cyclotrons, we have a radial field component Br that gives a vertical

defocusing force:Fz ∝ z. This defocusing force is linear in z (like a defocusing quadrupole). In order
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to compensate the defocusing force, one can theoretically add a new vertical force Fnew
z = q vr Bθ with

a new field component Bθ

Fz = q ( vθ ·Br − vr ·Bθ ) . (I.13.44)

A modulation of the magnet yoke gap, function of the azimuth θ produces such Bθ component. If we

build a magnet gap modulation adding N angular sectors, i.e. a succession of hills and valleys, the vertical

field is modified and can be described as

Bz(R, θ) = B0 [1 + f sin (Nθ)] . (I.13.45)

Due to (∇ × B = 0), this produces an azimuthal field , Bθ = z dBz
Rdθ = + B0

R f N cos(Nθ).

The sign of this components is oscillating in the sectors.

Besides, the local orbit curvature radius ρ(θ) in the high field sectors (hill) is reduced, since locally

we have ρhill = B ρ
Bz

= B ρ
B0(1+f) ≃ R0 (1 − f). While, in the low field region (valley) ρvalley ≃

R0 (1+ f). The evolution of the trajectory radius corresponds to a radial velocity vr = dR
dt , whose sign

changes periodically.

Therefore the combination of the two effects generates a new vertical force Fz = −q (vr Bθ) that is

always focusing vertically (see Fig. I.13.8). This effect has been discovered by L.H. Thomas in 1938,

and has improved greatly the transmission of the early cyclotrons.

Fig. I.13.8: Principle of pole modulation with a “4 straight sectors” cyclotron. The pole modulation
generates two effects: 1) An oscillation of the trajectories in the horizontal plane corresponding to the
non-circular orbit vr = dR/dt ̸= 0 (vr < 0 at the hill entrance and vr > 0 at the exit). 2)
An angular field component proportional to z: Bθ = z dBz

Rdθ + . . . The so created force Fz is always
opposite to z (this is a vertical focusing force): FAV F

z = q (− vr Bθ) ∼ − z.

4.2 Flutter F and averaged field index k

The effect of the vertical focusing is maximal when the particle crosses the edge of a sector, and zero in

its middle. The evaluation of the average focusing effect over one turn, is related to the flutter function

F (R) defined as the relative mean-square azimuthal fluctuation of the magnetic field Bz along a circle
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of radius R

F (R) =
⟨(Bz(R, θ) − ⟨Bz(R, θ))2⟩

⟨Bz(R, θ)⟩2
=

σ2
Bz

⟨Bz⟩2
. (I.13.46)

Here ⟨Bz(R, θ)⟩ = 1
2π

∫ 2π
0 Bz(R, θ)dθ = B0 is the average field value over one turn.

The flutter F (R) is an useful quantity: since the tune Qz is connected to the betatron oscillation frequen-

cies it can be expressed quite precisely in terms of F (R). The local curvature radius ρ(θ) in a complex

field Bz(θ) does not coincide anymore with the radius R (the coordinate R). Let us define an equivalent

radius ⟨R⟩ connected to the path length C over one turn: ⟨R⟩ = C
2π .

The magnetic rigidity corresponds to the product of the average field and radius

B ρ = p/q = ⟨B(θ)⟩ ⟨R⟩ . (I.13.47)

The demonstration comes easily, since locally B(θ) = B ρ/ρ(θ), we compute the average field

⟨B⟩ =
1

C

∫
B ds =

B ρ

C

∫
1

ρ(θ)
ds =

B ρ

C

∫ 2π

0

1

ρ(θ)
ρ dθ =

B ρ

C
2π =

B ρ

⟨R⟩
. (I.13.48)

Exercise no5: Flutter calculation

Considering a four-sector cyclotron with the field: BZ(R, θ) = B0 [1 + f cos(Nθ)] , where

N = 4. compute the "flutter" F (R).

Answer:

First, we know the average field ⟨Bz(R, θ)⟩ = B0(R) . Let’s evaluate the value ⟨σ2
Bz

⟩

⟨(Bz − ⟨Bz⟩)2⟩ =
1

2π

∫ 2π

0
(B0[1 + f cos(Nθ)]−B0 )

2 dθ

with N = 4.

We need to compute the integral of cos2, remembering cos(Nθ) = exp(iNθ)+exp(−iNθ)
2 , we

get cos2(Nθ) = 1+cos(2Nθ)
2 .

The flutter is then: F = ⟨ (Bz−⟨Bz⟩)2 ⟩
⟨Bz⟩2 = 1

2π

∫ 2π
0 [f cos(Nθ)]2 dθ = f2

2 .

Whatever the sector number N , we have always F = f2/2.

We generalize this result with a more complex field, taking

Bz = B0 [1 +
∑

An(R) cos(nθ) +Bn(R) sin(nθ)]

the flutter would be F (R) =
∑

n
A2

n+B2
n

2 .

Though the trajectories are complex in an AVF cyclotron, a simple formula holds: Bρ = ⟨B⟩⟨R⟩. The

field index should now be defined as an average and the field evolution is calculated over one turn
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⟨Bz⟩ = ⟨B0⟩
(

⟨R⟩
⟨R0⟩

)k

.

Locally in a magnet, we still use the local field index n

n(ρ, θ) = − dB

dρ

ρ

B
,

where ρ(θ) = B ρ
Bz(θ)

is the local curvature radius in the magnet. While in an AVF machine the average

field index k over one turn is

k(⟨R⟩) = +

(
dB

d⟨R⟩)

)(
⟨R⟩
B

)
,

where ⟨R⟩ = 1
2π

∫
ds is the average radius.

Note on sign convention: Let us underline the sign + of k corresponds to the convention of the

synchrotron community and is not coherent with n: ⟨Bz⟩ ∝ ⟨R⟩k and Bz ∝ ρ−n (sorry...).

Exercise no6: Average field index k in a Separate Sector Cyclotron (S.S.C.).

Compute the average field index k, in a separated sector cyclotron (sometimes called "ring

cyclotron").

Answer:

In a cyclotron without azimuthal field modulation, the trajectories are circular, and we have

Bz(θ) = ⟨B⟩ and ⟨R⟩ = Bρ
⟨B⟩ = ρ , so k = −n. In a Separated Sector Cyclotron with

N radial sectors, the trajectories alternate straight lines of length L0 and circular sections

with ∆ = 2π/N . The path for a reference particle is C = 2π ρ + N L0 = 2π ⟨R⟩. The

constant factor λ = ⟨R⟩/ρ drives the field in the sectors: for a given trajectory, we have

Bsector = Bρ
ρ = ⟨B⟩⟨R⟩

ρ = λ ⟨B⟩.
We have demonstrated in the text that B ρ = ⟨B⟩⟨R⟩, therefore

⟨R⟩ =
B ρ

⟨B⟩
=

γ mv

q ⟨B⟩
.

Using the average radius ⟨R⟩ the particle revolution is given by

ω = 2π Frev =
v

⟨R⟩
=

q⟨B⟩
mγ

.

For isochronism (ω = constant), we should have ⟨B⟩ = B0γ ⟨R⟩ . Finally, we obtain the

same formula for k in an AVF than the field index n in an uniform field cyclotron (except for

the sign convention)

k(⟨R⟩) = +

(
d⟨B⟩
d⟨R⟩)

)(
⟨R⟩
⟨B⟩

)
= γ2 − 1 (see Ex. no4).
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4.3 Edge focusing and AVF cyclotron

The mechanism of vertical focusing in a cyclotron with straight radial sectors is very similar to the edge

focusing that occurs at the entrance and exit of the rectangular bending magnets in a synchrotron.

A dipole magnet, that has an entrance edge non-perpendicular to the reference trajectory, generates

focusing or defocusing depending on the sign of the edge angle.

In the deviation plane (horizontal), a positive edge corresponds to less deviation of external trajec-

tories (x > 0), which has the same effect as that of a defocusing lens (see Fig. I.13.9).

With a positive entrance edge angle (β1 > 0), like a rectangular dipole magnet, the focal length

associated in the horizontal plane is

fx = − R0

tanβ1
.

Like in a quadrupole, the effect in the vertical plane is inverse to the one in horizontal plane and

the edge is vertically focusing (see Chapter I.3 on transverse beam dynamics for a full demonstration).

Fig. I.13.9: In a sector magnet, the edge crossing has no effect. In a rectangular dipole magnet a positive
edge angle at entrance β1 and exit β2 defocuses in the horizontal plane (fx < 0), and focuses in the
vertical plane (fy > 0).

Exercise no7: Transfer matrix R of a dipole magnet with edges
Write the transfer matrix R for a dipole magnet with a positive entrance edge angle β1 in the

vertical plane (y, y′) = R(y, y′) in a thin lens approximation.

Answer: At the edge, the vertical angle change ∆y′ is given by

∆y′ = −y0
fy

= − y0(
R0

tanβ1

) .
After the dipole edge, y = y0 and y′ = −y0

tanβ1

R0
+ y′0.

This can be represented in matrix form(
y

y′

)
=

(
1 0

−1/fy 1

)(
y0

y′0

)
=

(
1 0

− tanβ1

R0
1

)(
y0

y′0

)
.
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In the AVF cyclotrons, the crossing of an hill edge is such that the equivalent edge angle β is positive.We

can demonstrate (see Ex. n°8) that the vertical tune is

Q2
z = − k +

1

2
f2 N2

N2 − 1
= − k + F

N2

N2 − 1
. (I.13.49)

Exercise no8: Qz in an AVF Cyclotron

Computation of the vertical tune in an AVF field: Bz(R, θ) = B0 [1 + f sin(Nθ)]

– First, compute a periodic solution for the radial motion R = r(θ),

– Then, compute the particle dynamics in the vertical plane.

Answer:

The field perturbation in AVF generates δFr = −qvθ δBz = −qvθ B0f sin(Nθ). The

expected evolution is R = R0 + x(t) = R0 +A sin(Nωt). Let’s compute A. The effect of

the field index k is neglected radially because the smooth variation of B(R) is smaller than

the variation of B(θ) for the equilibrium orbit

d2x

dt2
= −ω2x− qvθB0

f sin(Nθ)

mγ
= −ω2x− ω2R0f sin(Nθ),

(since vθ = R0 ω and ω = qB0

mγ )

−ω2N2A sin(Nθ) = −ω2A sin(Nθ)− ω2R0 f sin(Nθ).

Then,

– The amplitude is: A = fR0

(N2−1)
.

– The radial velocity is: vr = dR
dt = dθ

dt
dR
dθ = ωNA cos(Nθ).

– The azimuthal field is: Bθ = z dBz
Rdθ = + z B0 Nf cos(Nθ)

R0
.

– The vertical force is: FAVF
z = −qvrBθ = −ωzq⟨B⟩AfN2 cos2(Nθ).

Compute the vertical motion z(t) as in Section 3.4

d2z

dt2
= −ω2Q2

z z = −ω2z n z +
FAVF

mγ
= −ω2nz − ω2z f2 cos2(Nθ)

N2

N2 − 1
.

The average effect over one turn is

⟨F
AVF

mγ
⟩ = ⟨ω2z f2 N2

N2 − 1
cos2(Nθ) ⟩ = −ω2z

f2

2

N2

N2 − 1
= −ω2z F

N2

N2 − 1
.

Finally, we obtain:Q2
z = ⟨n⟩+ F N2

N2−1
= −k + F N2

N2−1
.
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4.4 Spiral sectors on the poles of a compact cyclotron magnet

We can use edges with a spiral shape on the pole modulations of the AVF machines to enhance the

vertical focusing effect over one turn. Shifting progressively the hill boundary with a function g(R)

gives a field

Bz(R, θ) = B0 [1 + f sin (N(θ − g(R)))] . (I.13.50)

Figure. I.13.10 helps in understanding the effect due to a spiral modulations of the poles (sectors):

- At each hill entrance, we have a vertical defocusing due to the field boundary not being perpendic-

ular to the particle trajectory (the inclination angle is negative ξ < 0);

- At each hill exit, we have a vertical focusing (ξ > 0): the spiral edge of the pole enhances

the vertical focusing (see exercise n°7) increasing the crossing angle β between the edge and the

trajectory. The focal length Fedge of one edge is the sum of the two contributions AVF+ spiral

edges.

Fig. I.13.10: Effect of spiral modulations of the magnet pole ξ. The sector edges produce an alternate
focusing. The spiral edge angle generates an additive radial field component Br = −Bθ tan ξ, and
forces Fz ∝ − vθ Br. The inclination of the sector edge ξ is related to the shape of the edge g(R). For an
Archimedean spiral g(R) = R/A, the global focusing effect increases with radius since the inclination
tan(ξ) increases with the radius R. The pole of the “C01” cyclotron Ganil (France) is reproduced in the
right corner.

The overall effect of spiral edge “Defocus-Focus. . . ” is focusing. Like in a FODO channel where the

effect of two lenses with alternate polarities, and separated by a distance L, is always focusing. The

transport matrix element R21 of a FODO is negative (focusing)

R21 =
−1

FFODO
=

−1

F
+

1

F
− L

2F 2
= − L

2F 2
< 0 . (I.13.51)

For the spiral geometry, we can use an Archimedean spiral g(R) = R
A , for which the inclination of the

field boundary to the particle trajectory becomes
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tan ξ(R) =
Rdθedge

dR
= R

d R
A

dR
=

R

A
.

In an Archimedean spiral, the tangent of the spiral angle ξ increases linearly with radius and the

associated z-focusing effect increases at large radius, compensating the increase of the relativistic vertical

defocusing effect.

4.5 Separated Sector Cyclotron (SSC), sometimes called ring cyclotron

When the Lorentz factor becomes large (γ > 1.4) we have to increase the flutter term F to keep an

efficient vertical focusing. This is possible by reducing the field in the valley down to zero: separating

the sectors leads to the Separated Sector Cyclotron (see for example Fig. I.13.11 or Fig. I.13.5). The

SSCs providing optimal beam quality are apt to accelerate high-energy beams. They require generally a

pre-accelerator for the beam injection. Let’s consider a Separated Sector Cyclotron with the following

field: Bz = B0 [1 + f sin(Nθ)] with f ∼ 1.

The field in the hill region (Bhill = B0 [1+f ]) is limited by the magnet technology, and the corresponding

average field is rather low due to the significant amplitude variation (f ∼ 1)

⟨Bz⟩ = B0 =
Bhill

1 + f
. (I.13.52)

Consequently a SSC provides a better focusing than a "compact" AVF that have only one magnet. But

the SSC dimensions are larger (radius) for a given energy, because of a lower average field ⟨Bz⟩.

Fig. I.13.11: PSI Ring cyclotron and tune diagram. The largest cyclotron of the Paul Scherrer Institute
(PSI, Villigen, Switzerland) provides a very intense proton beam (up to 2.5 mA) at 590 MeV. The total
size of the accelerator is about 15 m in diameter (Rextraction = 4.5m). It is composed by 8 independent
and separated magnets with a spiral shape, to increase as much as possible the z-focusing. Besides four
RF cavities in the valleys are required for a single-turn extraction to reduce the beam losses. The large
beam power permit to produce high intensity secondary particles (neutrons, muons, pions) for different
research fields. The right part of the figure shows that the tunes, i.e. the number of oscillations per turn in
z and r, vary during acceleration; for certain radii (corresponding to values like Qr = 1.5), resonances
may be excited causing oscillations and beam losses (see Section 4.7).
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4. Azimuthally varying field (AVF) cyclotron

4.6 Tunes in AVF cyclotrons with spiral sectors

After complex calculations, the vertical and radial tunes in AVF cyclotrons with N sectors are

Q2
z = −k +

N2

N2 − 1
F
(
1 + 2 tan2(ξ) + . . .

)
, (I.13.53)

Q2
r = 1 + k +

3N2

(N2 − 1)(N2 − 4)
F
(
1 + 2 tan2(ξ) + . . .

)
. (I.13.54)

- The term 1
N2−4

in the radial tune means that a cyclotron geometry with two sectors (N = 2) is

unstable in the horizontal plane. Therefore, N = 3 sectors is the minimal geometry.

- In an isochronous cyclotron, the average field index k is constrained by the isochronous require-

ment k = γ2 − 1 (see exercises 4 and 6).

4.7 Tunes and resonances

The tune calculation is important to establish whether the vertical motion is stable (Qz
2 > 0), but it is

not sufficient. At a certain energy and if the tunes reach an integer value (Q = N ) it means that any

particle will return nearly at the same position after one turn: So if one of the magnets has a field defect

(no magnet is perfect) the particles will see the same defect at each turn, producing large amplitude

oscillations and finally beam losses. Moreover, if the tune corresponds to Qz = N
K , i.e. the particles

will return to the same vertical position after K turns, this can excite a resonance. K is the resonance

order.

In a machine with large turn numbers, the oscillations in the vertical plane can even excite the horizon-

tal resonances (non-linearities couple the vertical and horizontal motions). Thus in synchrotrons and

cyclotrons, we adjust the tunes to avoid a resonance, by requiring KQr + LQz ̸= N during the

acceleration, where K,L,N are integers. In a synchrotron, the tunes are nearly constant, while in a cy-

clotron the tunes evolve progressively. Only a large cyclotron with a large turn number (Nturn > 500)

can excite a resonance, while in a synchrotron this is more important since the particles perform more

than 107 turns in a large number of identical cells. The low order resonances are the most dangerous

(|K| + |L| = 1, 2, 3 ), since these can appear after a few turns. In the PSI ring cyclotron, see

Fig. I.13.11, the most dangerous resonance corresponds to Qr − 2Qz = 0, since during the accele-

ration the beam remains a long time around this value, and a small beam deviation from the ideal value,

can generate large amplitude oscillations due to this coupling resonance.

4.8 Limits of the tunes formulas

The previous approximations for Q2 are not very precise, since these formulas correspond to a simplified

field: Bz(R, θ) = B0 [1 + f sin (N(θ − g(R)) ) ].

In reality, the magnetic field description of real magnets is often more complex than one sinusoidal

function. General formulas have been computed for a field with several harmonics [7]. Besides RF

cavities produce as well a weak focusing effect [8].
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For a more accurate determination of the tunes Qz, r, we can simulate numerically few trajectories. With

a multiparticle code using a realistic field map, we extract the first order transport matrix R over one turn:

we use a reference particle, which describes a closed orbit (the trajectory comes back at the same position

after one turn without acceleration). The dynamics is periodic without acceleration and the matrix over

one turn has the following form

R(0, 2π) =

(
cos(µ) + α sin(µ) β sin(µ)

γ sin(µ) cos(µ)− α sin(µ)

)
. (I.13.55)

Where (α, β, γ) are the Twiss parameters. For instance, two particles starting at two different

horizontal positions and sent over one orbit allow us to extract R11 = (x1−x0)final
(x1−x0)initial

. The phase advance

per turn µ = 2πQ is obtained by calculating half the trace of the transport matrix

cos (µr) =
1

2
Trace(R) =

1

2
(R11 + R22) . (I.13.56)

Finally, we can compute the tunes with the numerical evaluation of the transport matrix: thus, we can

extract µz and µr

Qz,r =
µz,r

2π
=

arccos
(
1
2 TraceR

)
2π

. (I.13.57)

Another limit of the tunes formulas can be underlined: the tune concept does not describe fully the

particle motion, since it is a first order approach. The complexity of the cyclotron magnet and the

complexity of the trajectories with the acceleration produce many non-linear effects. Therefore, a start-

to-end multi-particle simulation is always required.

5 Frequency modulated cyclotrons (not isochronous)

With some modifications to cyclotrons, two new machines solve the problem of the detuning between

particle revolutions and RF-field by cycling the RF frequency: synchrocyclotron and Fixed Field Alter-

nating Gradient (FFAG) accelerators [11–13].

5.1 Synchrocyclotron

The RF modulated cyclotrons called synchrocyclotrons5 are nowadays less used than the isochronous cy-

clotrons. In the synchrocyclotron, the magnetic field is not shaped for isochronism, and the RF frequency

Frf varies to synchronize the few injected bunches during their acceleration

ωrev =
q B0

mγ(R)
= f(Radius) = f(time) =

2πFrf(t)

H
. (I.13.58)

During one cycle, the RF frequency is first adapted to the injection energy (γ = 1). Progressively, the
5Historical note: The synchrocyclotrons were the precursors of the synchrotrons, they provided the highest energy particle
beams from 1946 to 1954. The first accelerator of the CERN facility was a 600 MeV proton synchrocyclotron with a radius of
2.3 m and had been operational in the years 1957–1990. Nowadays, for research applications, which require often a high beam
intensity, the 100% duty cycle isochronous cyclotron are preferred. Regarding very high-energy applications, synchrotrons
have still no rival.
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frequency is decreased to follow the evolution of the γ factor of a given particle. The frequency then

reaches the value corresponding to the extraction energy. Then, the frequency restarts to its highest value

to be re-synchronized for the acceleration of the next few other bunches.

Any particle injected at RF phase φ close to an ideal phase φs will oscillate during the acceleration. This

is the synchrotron oscillations. The phase φs is called "synchronous phase" and corresponds to a particle

phase such as to allow to cross the gaps at the same RF phase during the whole acceleration process. The

particle revolution period Trev is not constant during the acceleration.

Fig. I.13.12: The cycle of the RF frequency in a synchrocyclotron. Few bunches are injected when
the RF frequency is at its maximun, then the frequency is decreased to follow the particle revolution
frequency.

The revolution frequency of a given particle in a synchrocyclotron decreases with γ(R) from the injection

to extraction radius. For a good acceleration the RF frequency should decrease, as well, to match the

behaviour of the revolution frequency. For a given particle the total acceleration ∆E should take place

during the decreasing part of the RF cycle τRFcycle . The energy gain per turn must be on average

⟨δEturn⟩ =
∆E

Nturn
with Nturn =

τRFcycle

⟨Trev⟩
. (I.13.59)

The energy gain per turn is related to the gap number Ngap, the cavity aperture αcav, and the RF voltage

⟨δEturn⟩ = q Ngap U0 sin

(
H αcav

2

)
cos(⟨ϕ⟩) = q V0 cos(φs) . (I.13.60)

Technically, the cycle of RF can hardly be faster than 1 kHz and the acceleration must take a rather long

time τRFcycle ∼ 1ms in order to synchronize the particle revolution frequency with the RF (see I.13.12).

In comparison, the revolution period is short ⟨Trev ⟩ = H
⟨Frf⟩ ∼ 10-20 ns, finally the beam performs a

large number of turns in the synchrocyclotron

Nturn =
τRFcycle

⟨Trev⟩
∼ 104 − 105 . (I.13.61)

The total acceleration voltage V0 per turn and the synchronous phase ϕs are chosen to match the cycle of

the RF (I.13.12), therefore the energy gain δEturn must be small
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⟨δEturn⟩ = qV0 cos(φs) =
∆E

Nturn
= (Eextraction − Einjection)

⟨Trev⟩
τRF cycle

. (I.13.62)

The couple (V0, φs) have to fullfil the equation: q V0 cos(φs) = ∆E Trev
τRFcycle

. The synchronous phase

φs should be chosen to maximise the phase acceptance of the synchrocyclotron: the typical value of

φs = 60 °provides a large acceptance in phase such that many particles having different phases at the

source output will be captured and will describe stable oscillations in the plane (phase, energy) [2]. The

frequency Ωsynchro of the synchrotron oscillations is generally much lower than the revolution frequency:

Ωsynchro ∼ 10−3 ωrev.

The main drawback of a synchrocyclotron is its low duty cycle. Because of the frequency variation

of the cavity, only a small fraction of the charged particles leaving the source are synchronized with the

RF acceleration. As an advantage, the magnet of a synchrocyclotron can be much simpler than the one

for isochronous ones.

For the proton therapy facilities, the IBA company proposes an ultra-compact superconducting

synchrocyclotron called "S2C2" [16] and can be operated at 5 Teslas (see Fig. I.13.13).This new machine

aims to replace the less compact isochronous superconducting cyclotron “C235” (see Fig. I.13.14).

Fig. I.13.13: The S2C2® IBA proton synchrocyclotron and the associated rotating gantry. This
machine, because of the very high field, is more compact than an isochronous cyclotron, but it has a
very low duty cycle. Accelerator parameters: Ep = 230MeV; the total weight is 50 tons. The field at
extraction ⟨B⟩ = 5T, average field index k < 0. Extraction radius R = 49 cm. The RF frequency
is cycledFrf = [93MHz, 63MHz]. The repetition rate is 1 kHz. Duty cycle = 0.7%. The beam pulse
duration is Tpulse = 7 µs. The Dee voltage is very low Vrf = 10 kV → number of turns ∼ 40000.
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6. FFAG: Fixed Field Alternating Gradient accelerator

Fig. I.13.14: The C235 ® IBA isochronous cyclotron. This proton cyclotron has 100 % duty cy-
cle but has a greater cost than the very compact synchrocyclotron "S2C2". Accelerator parameters:
Ep = 235 MeV; the total weight is 210 tons.The average field at extraction is ⟨B⟩ = 2.2T, average
field index k > 0. A compact magnet with spiralled sectors is used. Extraction radius R = 108 cm
(duty cycle = 100%). The RF frequency is fixed Frf = 106MHz, and the Dee voltage is Vrf = 150 kV.
The beam performs about 700 turns to reach the extraction channel.

6 FFAG: Fixed Field Alternating Gradient accelerator

The idea of FFAG [11–13] (also abbreviated FFA) is to provide a very high energy like in a synchrotron

(γ ≫ 1) but at a higher duty cycle. The ramping of the magnets of a synchrotron limits the repetition rate

to a range 1Hz - 50Hz. Instead in a FFAG or a synchrocyclotron the magnet field is constant in time, and

the cycling of the RF can be as fast as 1 kHz. The vertical focusing in synchrocyclotron is not optimal,

and an FFAG provides a better beam quality at even larger energy. The FFAG idea has been proposed in

the 1950s [14]. Few proofs of principle machines have so far been built (KURRI at KEK(Japan) with 30

and 150MeV protons, EMMA in Daresbury(for 20MeV electrons). A FFAG is a synchrocyclotron with

complex magnets ensuring a better focusing by an alternating gradient (dBz
dR ) of complex dipole magnets.

The FFAG field should oscillates azimuthally

Bz(R, θ) = ±B0

(
R

R0

)−n

F (θ − g(R)) (I.13.63)

- F (θ − g(R)) is a periodic oscillating function with N-fold symmetry;

- g(R) is the spiral that defines the edge angles, if needed;

- n(R, θ) is the local field index in each magnet.

The average field scales as follows: ⟨Bz(θ)⟩ = ⟨B0⟩
(

(⟨R⟩
⟨R0⟩

)k
. The beam dynamics in a FFAG is not

isochronous (k ̸= γ2 − 1).

Since we have demonstrated that Bρ = ⟨B(θ)⟩⟨R⟩ , the particle momentum increases with the

average radius ⟨R⟩ = C
2π

Pextraction = q⟨Bz⟩⟨R⟩ = Pinjection

(
⟨Rextraction⟩
⟨Rinjection⟩

)k+1

. (I.13.64)
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The average field index k in a FFAG is generally rather large (k ≫ 1) to reduce the horizontal

size (and cost): for a given extraction momentum Pextraction you can reduce ⟨Rextraction⟩ if k is large.

The vertical motion (Q2
z = − k + . . . ) is stabilized with the alternating gradient magnets. The

use of a series of dipole magnets (with a gradient) with alternate field ±B0 allows to provide an addi-

tive transverse focusing coming from an alternating-gradient focusing effect to obtain a stable motion

(Q2
z > 0).

6.1 Scaling FFAG

The simplest idea is to find a geometry that warrants constant tunes during the acceleration (avoiding

crossing resonances in the tune diagram). Scaling FFAG means that the orbit shape (optics) is kept fixed,

independent of energy, just as in a synchrotron. The three conditions to obtain a constant tune are the

following:

- 1) The average field index k is independent of r: by having the local index n = constant in the

two dipoles B1 = −B2;

- 2) The flutter F , is independent of the radius;

- 3) A magnet with a pole shape to have a constant tan(ξ). There are two possibilities:

- With a straight sector tan(ξ) i.e. no spiral poles for the main magnet,

- With rspiral = R0 e
Aθ, we get tan(ξ(r)) = r dθ

dr = A for the reverse field magnet.

Fig. I.13.15: The scaling FFAG geometry. Unlike the cyclotrons to obtain a scaling we affect their
constant focusing properties during the acceleration. An FFAG uses many cells containing a triplet of

bending magnets. Positive horizontal focusing (+) in the main dipole dB
dR = +nB0

(
R
R0

)−n
> 0.

While in the 2 reverse field dipoles (-), dB
dR = −nB0

(
R
R0

)−n
< 0.

The momentum compaction factor αp = p
C (dC/dp) , which describes the evolution of the path length

C in the accelerator, scales as αp = 1
k+1 . This means that the path length increases monotonically with

particle momentum since the average field index is fixed in scaling FFAG

C(p) ∼ pαp ∼ p1/(k+1) . (I.13.65)

635



7. Introduction to cyclotron injection

6.2 New applications and non-scaling FFAG

In FFAG, the reverse field regions increase the average radius of the machine (and the cost) by an im-

portant factor compared to an equivalent synchrocyclotron or cyclotron. But the FFAG can be a solution

when a rapid cycling synchrotron is not possible and when a cyclotron cannot reach the desired energy.

For instance, FFAG accelerators were reconsidered for muons acceleration [15] for a neutrino factories

and for Muon Colliders: It was indeed required to accelerate muons to an energy of about 20 GeV, not

reachable with cyclotrons. The muons have a short half-life and the acceleration could be faster in a

FFAG than in rapid cycling synchrotron.

The rapid acceleration with a small number of turns (< 20 turns) could be important for unstable muons

(T − 1/2 = 2.2 µs). A small number of turns allows relaxing the constraints of scaling FFAG, since

the betatron oscillations and resonances will not have time to develop and spoil beam quality. Therefore,

the field index can evolve k = k(r). In non-scaling FFAGs, a linear variation of magnetic field can be

employed: using constant-gradient “linear” magnets greatly increases dynamic aperture and simplifies

construction, while employing the strongest possible gradients minimizes the real aperture. Besides,

the linear field variation provides a large dynamic aperture, allowing the acceleration of large emittance

beams.

The Electron Model for Many Applications (EMMA), the first non-scaling FFAG, has been built

at the Daresbury Laboratory (UK) in 2010 [13]. This has become a proof of principle machine delivering

20MeV electrons, and it requires a ring of 16 m circumference: The ring is composed by combined func-

tion magnets with dipole and quadrupole components (a gradient): these magnets are in fact quadrupoles,

and their dipole component is obtained by using them off-axis. 42 cells composed of 2 magnets (focusing

and defocusing) produce at the same time a deviation (dipolar component) and AG focusing (quadrupolar

components).

The EMMA ring accelerates electrons from 10MeV to 20MeV. EMMA has demonstrated a good

stability, its geometry is called “non-scaling” since the tunes (Qr, Qz) vary continuously from injection

to extraction. Resonance crossing happens very rapidly (3Qr = 1, 2Qr + 2Qz = 1) within 20 turns.

There are 42 cells of two magnets (quadrupoles) used off axis to provide two field components: we

have Bz(r) = B0 ± G (r − r0) . The alternate linear gradients ±G generate a small momentum

compaction factor αp = (dC/C)
(dp/p) which provides a good dynamic aperture with small magnets. Four

cells of the doublet are shown in detail (https://www.technologysi.stfc.ac.uk/Pages/EMMA.aspx).

In the EMMA ring the path length decreases then increases with momentum since the average

field index is not fixed like in scaling FFAG.

The path length has, in fact, a parabolic evolution C(p) ∼ Cte + λ(p − p0)
2. The parabolic

evolution of C(p), with a minimum, makes that the revolution frequency does not evolve monotonically.

The amplitude of the evolution of the revolution is very small during the acceleration, therefore a fixed

RF frequency can be used in the EMMA ring.

7 Introduction to cyclotron injection

Designing the central region of a cyclotron is a very complex task [17–22], and we present here a first

approach to the injection problematic.
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Fig. I.13.16: The EMMA FFAG constructed at STFC Daresbury Laboratory. There are 42 cells
of two magnets (quadrupoles) used off axis to provide two field components: we have Bz(r) = B0 ±
G (r − r0) . Four consecutive doublet cells are shown in detail.

Several injection systems are used, depending of the cyclotron model.

• For the low-energy cyclotrons, two techniques are used to inject a beam in a cyclotron:

- A very compact internal ion source inserted directly inside the cyclotron centre;

- An external ion source connected to a beam line injects the beam axially (vertically) and

bends the beam with a compact electrostatic inflector (hyperboloid or spiral inflector) on the

first orbit.

• The high-energy cyclotrons (like separated sector cyclotrons) are located downstream a preaccel-

erator. In that case, the beam is more rigid and a compact axial injection system is not feasible.

We use a radial injection beam line.

7.1 Internal ion sources

Most of industrial cyclotrons (Kb = 5 − 30MeV) use a very compact internal source (PIG = Penning

ion gauge, see Fig.I.13.17 ), which can be inserted in the central region of the cyclotron. This system
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in this case does not need an injection beam line (vacuum chambers, quads, solenoids, inflector), with a

large cost reduction of the accelerator. This technology can deliver positive and negative hydrogen ions.

Fig. I.13.17: Penning Ion Gauge source with a hot cathode (filament). Electrons are emitted by
thermoionic effect, and ionize the gas atom generating a plasma. The plasma is confined by the cyclotron
magnetic field. With the electric field between the anodes and the puller ions then emerge from the
plasma. This is a very old technology, but recent and specific designs are developed to improve the
current or to increase the cathode lifetime, thus reducing the cost and maintenance of medical cyclotrons.
A current around I = 100 µA is a typical performance for an H+ beam.

7.2 Axial injection with external sources

An external ion source is often preferred for various reasons:

- An external source is less constrained geometrically and can be much larger and performing than

a very compact internal ion source;

- For heavy ions it is important to obtain the highest charge state Q to increase the maximal energy

of a given cyclotron: (EA )max = Kb (
Q
A )

2 . The ECR ion source, which produces heavy ion beams

with high charge states, requires a magnetic confinement with two large solenoids and a hexapolar

magnet which obviously cannot fit inside a cyclotron;

- For negative hydrogen isotopes, external Multi-cusp sources are very efficient but cumbersome;

- In general, a complex injection beam line associated with an external ion source allows 6D match-

ing (radial, axial, and longitudinal) which is better to obtain an optimal transmission. In particular,

using a pre-buncher, operating at the cyclotron frequency, also permit to focus longitudinally the

beam and increase the beam current and the cyclotron phase acceptance.

At the energy provided by the ion source extraction (typically 20 kV), the beam magnetic rigidity

is very low. The only possibility is to inject the beam vertically toward the centre of the cyclotron, by

way of a hole in the magnet yoke: in the axial direction the beam velocity is parallel to the cyclotron field

Bz and no radial force perturbs the injection axially. The beam is then bent onto the cyclotron median

plane with an electrostatic device, called inflector. As soon as the beam is deflected into the horizontal

plane, the beam experiences a magnetic force Fr from the cyclotron field. The full motion is in 3D. After

the inflector, the beam starts a circular radial motion, and meets rather quickly the first acceleration gap.

The inflector is designed to inject the beam on the first cyclotron orbit Rm.
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Nowadays two inflector geometries are used:

- Hyperboloid inflector (Müller inflector) [20],

- Spiral inflector (Pabot-Belmont inflector) [21, 22].

The injection geometry in a cyclotron is determined by the injection energy (the voltage of the

ion source) and the mass over charge ratio of the desired beam particle: the two parameters define the

magnetic rigidity at injection and the magnetic radius of the first orbit is hence Rm = B ρ0
B0

. The

inflector given the electric force generated by the inflector electrodes and magnetic force generated in

the horizontal plane takes the beam to the first orbit capture.

Generally it is advisable to treat the problem of the axial injection in the backward direction:

i. Start from a trajectory rotating at large radius around cyclotron centre Ω;

ii. Then, with a simulation, propagate backward the reference particle toward the first orbit (turn): this

identify the beam position just upstream of the first acceleration;

iii. Lastly, design the inflector geometry, which will take the beam from the injection beam line to the

right position and angle for the first acceleration gap.

7.3 Hyperboloid inflector (called “Müller inflector”)

The principle of an hyperboloid inflector [20]. is to find a geometry whose electrodes are surfaces of

revolution. An hyperbolic electric potential

V =
K2

z

2
+

K2
r

4
,

is the simplest potential which satisfies ∆V = 0 and has a radial symmetry. The two electrodes follow

an equation r2 − 2 z2 = constant.

The central particle will stay on the equipotential surface, if the inflector satisfies two conditions:

- The initial reference velocity must be related to the inflector potential

v0 = k
r0
2

=

(
qK

m

)
r0
2

;

- The central magnetic field should match the potential

B0z =

(
m

q

)
k
√
6 = K

√
6 .

Assuming a constant field B0, the motion in cylindrical coordinates of the central trajectory is described

by

rc(kt) = r0

√
1 +

sin2(kt)

2
θc(kt) =

√
6

2
k t− tan−1

(√
6

2
tan(kt)

)
Zc(kt) =

1

2
r0 sin(kt) .

(I.13.66)
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In Cartesian coordinates, the central trajectory can be written as


Xc(t) = [a cos(bkt)− b cos(akt)] r02

Yc(t) = [a sin(bkt)− b sin(akt)] r02

Zc(t) = [sin(kt)] r02

, (I.13.67)

where (kt) varies in the range [0, π/2].

The parameter k is related to the potential V (K): k = q K/m. The particle trajectory is on the

equipotential surface r2 − 2 z2 = r20. The parameters a, b are

a = (3/2)1/2 + 1 and b = (3/2)1/2 − 1 . (I.13.68)

The inflector height A is connected to the parameter r0 = 2A. Besides A is related also to the magnetic

radius Rm corresponding to the curvature radius of the first orbit: Rm is defined by the injection energy

and the field of the cyclotron

Rm =
mv0
qB0z

=
r0

2
√
6
= A

√
6 . (I.13.69)

Fig. I.13.18: Hyperboloid inflector and beam centering. Left side: The inflector electrodes are repre-
sented in 3D with 3 trajectories. Right: The figure shows the geometry of the injection in a 180° Dee.
The positions of the rotation centres of the ion spiral trajectory (curvature centre O1, . . . , O3) as they
move after each acceleration. The centres of curvature converge toward the cyclotron centre Ω after few
accelerations.

Therefore, if Rm is fixed by the cyclotron field and the particle of interest, there is no free parameter

for the geometry of the hyperboloid inflector. Generally the inflector entrance is not corresponding to

the axis of the cyclotron centre Ω (off-axis injection). The position of cyclotron injection (corresponding

to the inflector exit) is defined in such way that first the trajectory after several accelerations converge

toward the centre of the cyclotron frame (blue circle in Fig. I.13.18). The advantage of a hyperboloid
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inflector is that the two transverse sub-spaces are not correlated and can be matched independently, and

the transfer matrix becomes simple (no coupling term in horizontal and vertical plane [20]. The voltage

on the electrodes depends on the choice of their inter-distance d = |r2 − r1|

Uinflector = U2 − U1 =

[
K

4

] (
r22 − r21

)
≈
[
mk2

4 q

]
2r0 d =

[
mv20
q r20

]
2 r0 d =

4Usource

A
d .

(I.13.70)

The hyperboloid inflector height A is sometimes too large to be adapted in a small cyclotron. In that case

the more compact “spiral inflector” is preferred.

7.4 Spiral inflector (called “Pabot-Belmont” inflector)

In the spiral inflector [21, 22], the electrode shape must be such that the electric field vector E on the

central trajectory is always perpendicular to the ion velocity vector. With this requirement the central

trajectory will always lie on an equipotential surface, and this allows us to construct an inflector that

works at low voltage. Several geometries can be found ensuring v · E = 0 . The electrodes must be

tilted progressively around the central trajectory: varying the tilt adapts the geometry of the electrodes to

the cyclotron constraints.

Fig. I.13.19: Spiral inflector and the electrode tilt k′ . The inflector 3D geometry is shown. The frame
on the right side shows a typical axial injection layout with 2 magnetic dipoles, few quadrupoles and a
solenoid. For a better transmission, a RF buncher is needed upstream the cyclotron.

The electric field changes as a function of the parameter θ = v0 t
A when it varies from 0 to π/2


Ex = E0 [cos(θ) cos(2Kθ) − k′ sin(θ) sin(2Kθ)]

Ey = E0 [cos(θ) sin(2Kθ) − k′ sin(θ) cos(2Kθ)]

Ez = E0 [sin(θ)]

. (I.13.71)

We can derive the parametric equation of the central trajectory in 3D. The integration of the equation of

motion for the reference trajectory with E0 =
mv20
q A
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
Xc(t) = −λ+

[
cos(aθ)

a − cos(bθ)
b

]
A
2

Yc(t) =
[
sin(aθ)

a − sin(bθ)
b

]
A
2

Zc(t) = A−A sin(θ)

. (I.13.72)

The parameters (a, b, λ ) are connected

a = 2K − 1 , b = 2K + 1 , λ =
A

4K2 − 1
. (I.13.73)

The exit point E of the inflector in this frame is
XE = 2K λ sin(Kπ) − λ

YE = − 2Kλ cos(Kπ)

ZE = 0 .

(I.13.74)

The parameter K is related to the curvature R of the trajectory in the horizontal plane at the exit of the

inflector (at θ = π
2 ). The curvature of the trajectory R is given by two contributions: the contribution of

the cyclotron magnetic field B0 and the one of electric field E0 of the inflector

K =
A

2R
=

A
2mv0
qB0

+
Ak′

2mv20
qE0

=
A

2Rm
+

k′

2
. (I.13.75)

Physically, A is the inflector height, and Rm = (mv0)/(q B0) is the magnetic radius. The tilt parameter

k′ is linked to the inclination of the electrodes. The electrode angle ϕ(θ) in the horizontal plane changes

progressively in the inflector

tanϕ(θ)

sin(θ)
= k′ . (I.13.76)

The tilt parameter k′ is defined as the tangent of electrode angle at the inflector exit (see Fig. I.13.19)

k′ = tan(ϕexit) .

The parameter k′ is a free parameter to adapt the entrance point of the inflector for a fixed arrival point

in the cyclotron median plane. The voltage of the electrodes is computed as follows

Uinflector = U2 − U1 = d0E0 = d0
mv20
q A

= d0
2Usource

A
. (I.13.77)

The parameters of the inflector are determined as follows:

– The three values (v0 = f(Usource),
m
q , B0 ) define the injection radius Rm = mv0

q B0
;

– The available space in the cyclotron hall limits the maximum height A (but decreasing A increases

the required electric field and the effect of electrostatic fringe field);

– The choice of K (and k′) should be determined knowing the ideal position for the centre of cur-
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Fig. I.13.20: Spiral inflector and the electrode tilt k′ . Left side: The projection of the central trajectory
in the horizontal plane depends only on the two parameters (K, Rm ) . The trajectory centre C1 is
depicted for 3 different K. Right side: For a given magnetic radius Rm and a given height A, the
electrode tilt k′ allows to reduce the distance between the inflector entrance and the trajectory centre C1

(called off-centering ρc). Generally C1 has to be close to the cyclotron centre Ω for a given inflector exit.
The increase of k′ reduces the off-centering ρc, which is a function of the 2 parameters (K, k′). The exit
angle in this frame (O, x, y) is α = −K π.

vature of the first trajectory C1 before the first accelerating gap (the first ion curvature radius

correspond Rm). The centres of curvature O1, O2, O3, . . . should converge toward the cyclotron

centre Ω after few accelerations (O1 should be determined from the cyclotron simulation taking

account the acceleration, and Ω does not necessarily coincide exactly to O1).

The centre of curvature of the first trajectory C1 (located at a distance Rm from the inflector exit) in the

inflector frame is [22] xC1 =
[
(A− 2KA sin(Kπ)

1− 4K2 − A sin(Kπ)
2K− k′

]
yC1 =

[
− ( 2KA cos(Kπ)

1− 4K2 − A cos(Kπ)
2K− k′

]
.

(I.13.78)

The off-centering ρc =
√
x2C1

+ y2C1
, i.e. the horizontal distance between C1 and the inflector en-

trance, can be generally reduced by a rough optimization of the value of K (K ∼ 1 − 1.5 is typical).

With this choice one may place the inflector not too far from the cyclotron centre Ω.

The exit point of the inflector is fixed by the geometric constraint coming from the RF gaps. The fine

tuning of k′ allows to adjust the entrance position. Several solutions are found: the inflector exit should

arrive tangentially anywhere on the circle (O1, Rm).

For the centering of the inflector, a change of frame a reference is convenient, such that the inflector

exit point (E) is located at the fixed position (x′ = 0 , y′ = Rm ) with a fixed direction at 0° whatever

the parameters (A, Rm, k′). The transformation of an arbitrary point (X,Y, Z) toward the new frame

(X ′, Y ′, Z ′ ) is
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
X ′ = (X − XE) cos(Kπ) − (Y − YE + Rm) sin(Kπ)

Y ′ = (X − XE) sin(Kπ) − (Y − YE + Rm)cos(Kπ)

Z ′
c = Z .

(I.13.79)

The new frame centre O′ corresponds to the C1 point. The inflector entrance O, C1, and Ω (the

cyclotron centre), have to be computed in this frame.

Though the spiral inflector is the most compact inflector, it suffers from several defects:

– The beam is often defocused vertically and requires sometimes a small electrostatic quad at the

inflector exit. This requirement increases the complexity of the injection;

– The inflector transfer matrix is not analytic. Moreover, the horizontal and vertical plane being

coupled, skew quadrupoles are needed in the injection beam line for a perfect transverse matching

of the beam;

– The electrode geometry requires a complex machining;

– The fringe effects have to be considered, especially for short inflectors (A < 4 cm).

Note: The hyperboloid inflector is equivalent to a Spiral inflector having K =
√

3
8 = −k′

2 . Let

us also note that the choice of the tilt parameter k′ strongly affects the inflector focusing properties.
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Exercise no9: Approximate orbit calculation in a compact cyclotron.

Compute the orbit geometry (values of trajectory radii) in a compact cyclotron having a

uniform magnetic field at the injection. The cyclotron has a 180 ° RF Dee, a turn number

Nturn = 25, Rinjection = Rm = 3 cm , Rextraction = 50 cm and a RF-gap of g = 2 cm .

Compute first the energy gain after each gap. Then, discuss the influence of the transit time

factor in the gap. Finally, explain how to optimize the location of the inflector exit.

Answer:

The acceleration in the first gap, that defines finally the position of the first curvature centre

C1, can be computed in a non-relativistic approximation. Let us assume a constant energy

gain in the gaps during the acceleration. The average energy gain per gap is

∆Egap ≈
mv2extraction

2

1

Nturn Ngap
=

mR2
extraction ω

2

2Nturn Ngap
.

Noting that the initial radius of injection R0 = Rm, the energy after the acceleration gap n°1

Ek1 = Einjection + ∆Egap1 =
mR2

m ω2

2
+ T1

mR2
extraction ω

2

2Nturn Ngap
.

T1 is the transit time factor in the first gap, which describes the effective reduction of the

energy gain due to the variation of the electric field during the gap crossing. The transit time

factors TN are close to 1 after several accelerations for relatively large velocity ions.

However, in the first gaps T1, T2, T3 must be evaluated since the injection velocity in the gap

of length g is still low. For an uniform electric field we have

T1 =
1

E0 g

∫ +g/2

−g/2
E0 cos(ωrf t) ds =

sin(ωrf g)
2 v0

)
ωrf g
2 v0

=
sin( H g

2Rm
)

H g
2Rm

,

using t = s
v0

, ωrf = H ω and v0 = Rm ω.

Therefore the curvature radii Ri after each acceleration are

R1 =
v

ω
=

1

ω

√
2EK1

m
=

√
R2

m + T1
R2

extraction
Nturn Ngap

R2 =

√
R2

1 + T2
R2

extraction
Nturn Ngap

, R3 = . . . , R4 = . . .

Given the uniform field B0, the trajectory is a series of half-circles. Knowing R5,. . . ,R1 ,

we want to identify the ideal inflector position and the first rotation centre O1 of the particle

after injection. For that purpose,we draw a semi-circular trajectory centred at O5 = Ω , the

cyclotron center,with a radius R5. then, we go backward connecting half-circles with

decreasing radii R4,... R1, to get the ideal position before the first acceleration. This

determine the ideal location for the inflector exit. This guaranty that the beam rotation centres

will converge toward the cyclotron centre Ω after 5 accelerations. (see Fig. I.13.18).
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7.5 Radial injection for separated sector cyclotron

This technique is particular to separated sector cyclotron. This cyclotron kind is used to accelerate

relatively high-energy ion beams. The injected beam comes from an accelerator and it is too rigid for a

Bρ ≥ 0.5Tm to be injected axially with a compact electrostatic inflector like the hyperboloid inflector.

The separated sector cyclotrons (SSC) consist of magnet sectors separated by empty spaces (val-

leys), of a size that can fit an injection beam line. The radial injection beam line is made up from several

magnets and at the end a high voltage electrostatic inflector, with two flat electrodes, provides the last

kick to the injected beam without modifying the trajectory of the accelerated turns (one example is SSC2,

Ganil, France, reproduced in Fig. I.13.21).

Fig. I.13.21: Radial injection of SSC2 (Ganil, France). The space available between the separated
sector magnets of the SSC is used to insert the injection magnets (1,2,3,4) and an electrostatic inflector.
The electrostatic inflector gives only a few milliradians deviation to align the beam with the accelerated
orbit. The trajectory of the accelerated beam (in red) is not perturbed by the external electrode of the
inflector which is at ground potential. The position of the electrostatic inflector can be moved to generate
a precession, which can be helpful for the extraction (see also Section 8.2.2).

8 Extraction

The most frequently used extraction methods are stripping extraction and extraction by electrostatic

deflectors [17, 18, 23].

8.1 Stripping extraction

Hydrogen isotopes (1H or deuterium 2H) can be produced in a negative ion state: i.e. a hydrogen atom

can capture an extra-electron. Even if the extra-electron on an H− ion is very loosely bound, we can

accelerate these anions. After the acceleration, when passing through a thin carbon foil, the ion loses its

electrons (by stripping). The thin carbon foil is positioned in the cyclotron magnetic field close to the

extraction radius, the accelerated H− ions by crossing the foil are transformed into H+ ions. The change

in the ion’s sign changes the direction of the bending force (from Fr = − e0 vθBz to Fr = + e0 vθBz),
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and the positive ions are deviated toward the outside of the magnetic field. The stripping extraction

techniques present many advantages and is very cost effective:

– The efficiency is closed to 100%, much better than with an electrostatic deflector;

– The foil lifetime even with large current is rather long (∼ 104 µAh);

– Simultaneous extraction of two beams toward two external lines is possible with two foils corre-

sponding to beams of different energies and with different beam currents;

– A large energy range may be covered by changing the foil position in the magnetic field (correcting

magnets are then needed to ensure a constant angle in the exit beam line);

– Negative ion source can provide H− or negative deuterium D− at high currents up to 0.5 mA (with

an external multicusp source).

Fig. I.13.22: Stripping extraction for H−. At the radius of the last orbit a thin carbon foil strips off
the electrons. The residual ions are H+ and the trajectories of the positive ions are bent in the opposite
direction. The radial location of the stripper on the last orbit defines the beam energy. Several strippers
can be inserted producing simultaneous beams. The simultaneously extracted beams are delivered to
different applications at the same time, which is very cost effective. A picture of a carbon foil stripper is
shown in the bottom left corner.

8.2 Deflector extraction: Single-turn extraction vs multi-turn extraction

For positive ions such as H+ the stripping extraction is not possible and several optical elements must be

used to bend the beam out of the cyclotron. The extraction hardware for a cyclotron usually consists of

an electrostatic deflector followed by a magnetic channel. The curvature of the electrodes of the deflector

must correspond to the shape of the orbits of the extracted ions. The deflector provides an angle kick of

typically 50 mrad with an electric field of approximately E = 100 kV/cm.

If the bunches are well separated radially (bunch size ∆R smaller than the turn separation δR), it is

possible to adjust the acceleration voltage to direct most of the particles inside the electrostatic deflector

without beam losses. One speaks then of single-turn extraction. If the bunches are not separated radially

(size ∆R > turn separation δR), the bunch having performed Nturn turns overlaps the bunch on its

(Nturn − 1) turns, the deflector will cut a continuous stream of particles generating important beam
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losses: in this case we talk about multi-turn extraction, which results in activation and HV sparking of

the deflector. The reduction of beam losses in the deflector requires minimizing the beam size while

maximizing the turn separation.

– Minimization of the bunch size ∆R: The minimization of the beam size ∆r is obtained through

transverse matching and longitudinal bunching.

– Transverse matching: The cyclotron is a (quasi) periodic accelerator and the magnetic struc-

ture possesses an ideal periodic emittance in the transverse plane (the eigen ellipse). A mis-

match between the cyclotron periodic ellipse and the injected beam will result in an increase

of the beam emittance. It is always important to design the injection beam line to match

properly the beam ellipse to the ideal periodic ellipse and to avoid emittance dilution, and

getting the minimal bunch size at the extraction.

– Longitudinal bunching: The energy dispersion can be reduced by a minimization of the phase

width ∆φ = Hωrev ∆t using a buncher, which results in a reduction of the bunch size

∆R

R
=

∆B ρ

B ρ
=

∆p

p
=

γ

γ + 1

∆Ek

Ek
≈ 1

2
[cos(0) − cos(

∆φ

2
)] ≈ 1

4
∆φ2 . (I.13.80)

– Maximisation of the orbit separation δR: During acceleration the bunch spacing is reduced pro-

gressively δR ∼ 1/R , the energy gain per turn being constant while the energy is increasing (see

Eq. (I.13.19)). The conditions to obtain a single-turn extraction rely on the maximisation of the

turn separation δR. Three techniques are used:

– Maximal acceleration,

– Precession,

– Resonant extraction.

8.2.1 Acceleration for the maximisation of the turn separation

In high-energy isochronous cyclotron, the energy gain per turn can be increased by using more accel-

erating gaps: for example, the 8 separated sector cyclotron of PSI (Kb = 590MeV, see Fig. I.13.11),

has four accelerating RF cavities located in the valleys. It provides 8 accelerating gaps. The number

of valleys available restricts the number of the accelerating cavities. A bunch separation δR larger than

1 cm is rather difficult to obtain. Therefore, other additional mechanisms are required.
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Exercise no10: Turn separation and energy gain per turn.

Demonstrate that the turn separation δR is dominated by the energy gain per turn δEturn in

the cyclotron, but is influenced as well by the average field index k

δR

R
=

γ

γ + 1

δEturn

EN

1

1 + k
.

Answer:

Compute the radial gain δR per turn in a non-homogeneous field ⟨B⟩ ∼ ⟨R⟩k.

Since
d⟨B⟩
dR

=
d(Rk)

dR
= kRk−1 = k

⟨B⟩
R

,

we have δ⟨B⟩
⟨B⟩ = k δ⟨R⟩

⟨R⟩ .

Besides, for a particle at a given orbit:

Bρ = ⟨B⟩⟨R⟩ so ⟨R⟩ = Bρ

⟨B⟩
,

δ⟨R⟩
⟨R⟩

= δ ln(⟨R ⟩) = δ ln

(
Bρ

⟨B⟩

)
=

δBρ

Bρ
− δ⟨B⟩

⟨B⟩
=

δp

p
+ k

δ⟨R⟩
⟨R⟩

.

This gives the acceleration + field variation over one turn. Rearranging δR on both sides:

δ⟨R⟩
⟨R⟩

=

(
δp

p

)
1

1 + k
=

(
γ

γ + 1

δEturn

EN

)
1

1 + k
.

(We have used: dEk
Ek

= γ+1
γ

dp
p , see Appendix I.13.D).

The energy after Nturn is EN = Einjection +NturnδEturn ≈ NturnδEturn.

Therefore, the radial separation of two consecutive turns δR is:

δR = ⟨R ⟩ γ

γ + 1

δEturn

EN

1

1 + k
≃ ⟨R ⟩ γ

γ + 1

1

Nturn

1

Q2
r

.

(We have seen that the radial tune is Q2
r ≃ 1 + k + . . . , see Section 4.5).

Consequently, for a desired cyclotron energy, if you have to increase the turn separation δR at

the extraction in order to reduce the beam losses:

– Build cyclotrons with a large radius R ;

– Make the energy gain per turn δEturn as high as possible (it reduces Nturn);

– Accelerate the beam into the fringing field, where ⟨Bz ⟩ and Q2
r drop.

If the turn separation δR is not sufficient to obtain a single-turn extraction, we have to use

precession and resonant extraction.
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8.2.2 Precession

An orbital precession induced by an off-centering injection enhances the turn separation δR. Detuning

slightly the beam at the cyclotron injection allows to shift the radial position by a few mm and, because

of the betatron oscillation, the beam will oscillate with a frequency (Qr ωt) = Qr θ (see Section 3). The

position of a bunch after N revolutions at azimuth θ1 = 2πN will be

R(θ1 = 2πN) = R0 (2πN) + xN cos(Qr (2πN) + φ) , (I.13.81)

where the ideal orbit (without precession) after N turns is R0(θ1 = 2πN), is defined by the accelera-

tion. The amplitude of the precession is given by the injection error x0: xN = R0N ( x0
R0

). Since Qr ∼ 1

in an isochronous cyclotron, we can replace cos(Qr (2πN) ) by cos( (Qr − 1) (2πN) ). So, only the

fractional part of the tune Qr matters.

Fig. I.13.23: Precession by off-center injection. The beam intensity can be measured as a function
of the cyclotron radius on a radial probe. This plot shows the intensity in the machine as a function
of the orbit radius. For certain radii some orbits are so close that we cannot distinguish the different
turns (δ R < ∆R), while for other radii, we see clearly different peaks when the turn separation is
larger. These radial oscillations of the beam allow to increase the turn’s separation δ R at the deflector
for a single-turn extraction. For this cyclotron (Ganil SSC2), the precession is defined by the radial
tune (Qr − 1) = 1

13 generating an apparent period of oscillation of 13 turns at the azimuth θ1 of the
measurement.

8.2.3 Resonant extraction

For a resonant extraction we generate an oscillation x(θ) close to the extraction point with some magnetic

perturbations (field bumps). The radius of the trajectory will oscillate around a non-perturbed trajectory

R0 : R(θ) = R0(θ) + x(θ).

Adding a magnetic perturbation at the extraction ∆Bz = BP (R) cos(Pθ) , using θ = ω t , we get as in

Section 3.3

d2x

dθ2
+ Q2

r x = A cos(Pθ) . (I.13.82)

Note: a full derivation gives A = ( ⟨R⟩
⟨Bz⟩) (

dBP (R)
dR ).
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This is the equation of a driven oscillator. We can try a particular solution x(θ) ∼ cos(Pθ) which

gives the response function χ

χ =

[
x(θ)

A

]
=

cos(Pθ)

(Q2
r − P 2)

. (I.13.83)

If the excitation frequency P corresponds to the natural frequency Qr (P ∼ Qr), the response func-

tion χ = [x(θ)A ] will diverge. This means, that a very small amplitude perturbation ∆ induces a large

amplitude motion x(θ) = χ∆. This is the definition of a resonance.

Note on resonances: Most of the time, in synchrotrons and cyclotrons, we try to adjust the tunes

Qz, Qr to avoid resonances, by requiring KQr + LQz ̸= N during the acceleration, with K,L,N

integers. For a resonant extraction, we excite on purpose the radial resonance (KQr = N ), but only

locally, close to the extraction radius to increase the turn separation δR.

Fig. I.13.24: Principle of the excitation of the first order resonance using a magnetic bump. When
Qr ∼ 1, a dipolar perturbation (∆Bz) shifts the orbit centre at each turn. If the orbit separation is
sufficient (δR > ∆R), we can direct the full bunch through the extraction channel without beam losses
thus obtaining a single-turn extraction.

In isochronous cyclotrons, the average field index is k ∼ γ2 − 1, so Q2
r = 1 + k + · · · = γ2 which

defines the multi-polarities of the field perturbation to be used P ∼ γ.

– For low energy cyclotron (γ < 1.2) a flat field bump localized at large radius with an aperture

∆θ = 20deg is sufficient mimicking a first harmonic perturbation A cos(θ) and corresponds

to a “Qr = 1” resonance. This case K = 1 (low-order resonance) of the equation KQr =

N , produces N = 1 oscillation per turn. Therefore, we excite the natural frequency with the

perturbation from one side in the cyclotron and get the large amplitude motion on the other side.

– For higher energy cyclotrons (γ < 1.5) we can think to use 2Qr = 3. This “half-integer

resonance” (NK = 3
2 ) can be excited with a magnetic quadrupole perturbation. Naturally, shifting

a particle by a δx = +1mm from the reference trajectory at a given turn, becomes a negative

shift δx = cos(3/2 × 360°) = − 1 the next turn. The idea is to use a magnetic perturbation with

gradient (a positive perturbation δB = f(R0 + x) at turn N , become − δB = f(R0 − x) at turn
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N + 1) and will increase the amplitude of |δx|. This perturbation matches the natural periodicity

of the beam over two turns:

Natural oscillation δx(N) = − δx (N + 1) ∼ field bump δB(N) = − δB (N + 1) .

– For proton synchrocyclotrons at 250 MeV (γ = 1.26) the idea of a quadrupolar perturbation is

also applied. The magnetic perturbation, having a gradient, changes the focusing property and

shifts the radial tune to a lower value Qr ∼ 1. We excite this resonance to mimic an ideal

perturbation ∆B(R, θ) = K (R − R0) cos(2θ). This method is called "regenerative extraction".

it required two perturbations: first, a negative quadrupolar perturbation (called "peeler") gives a

radially outward impulse, then a positive quadrupolar perturbation (called "regenerator"), located

∼ 90 ° apart, gives a radially inward impulse. The two radial kicks add constructively to increase

the amplitude of a beam radial oscillation. The direction of the kicks depends of the particle radial

position in the peeler and regenerator.

Table I.13.2: Overview of two resonances often used in cyclotron extraction.
For Qr = N

K , the betatron oscillation corresponds to K oscillation periods within N turns.

Resonance
KQr = N

Ideal
pertur-
bation

Field bump Comments

Qr = 1 cos(θ)
1 local dipolar perturbation:
∆B(θ) = C1 f(θ − θ0)

Adapted to cyclotron with Qr ∼ 1
Energy selective effect

2Qr = 2

K = 2
N = 2

cos(2θ)

"Regenerative extraction"

2 local gradients pertur-
bations (quadrupolar fields)
achieved with a neg. gradient
+ a pos. gradient located
90°apart.

∆B(R, θ) =
−K(R−R0) f(θ − θ0) +
K(R−R0)f(θ − (θ0 + 90°))

The quadrupole perturbation
modify the field index k and radial
tune. Q2

r = 1 + k + . . .
If k ∼ −1 (decreasing ⟨B⟩),
δR increases exponentially since
∆R
R ∼ 1

Q2
r

-Radius selective effect

-Useful for low energy gain per
turn and bad beam quality (like in
synchrocyclotrons).
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9 Conclusion

The cyclotrons are cost effective hadron accelerators. The main application is the production of radioiso-

topes for medicine for diagnosis (imaging). The cancer therapy centres using 250 MeV proton cyclotron

represents as well an application with an increasing interest. Besides, large cyclotrons are still used in

many laboratories for research, and can accelerate various ions, even at very large beam power (a 1.4 MW

proton beam has been obtained in PSI). We classify the cyclotrons as a function of their bending power

Kb (we have (E/A)max = Kb(Q/A)2 ). The main formula, which drives all the concept of isochronism,

is the particle revolution frequency in the cyclotron magnet

ωrev =
q ⟨Bz(R, θ)⟩θ

mγ
.

We have seen that several variations of the initial concept lead to 3 cyclotron kinds:

Isochronous cyclotrons Synchrocyclotrons FFAGs
the most diffused

Particles: protons and ions protons and ions p, ions, electrons, muons

Frf = constant = HFrev RF cycled (Frf ̸= constant ) RF cycled (Frf ̸= constant )

100% duty cycle. typically ∼ 1% duty cycle typically∼ 1% duty cycle

CW Faster cycling than a synchrotron Faster cycling than a synchrotron

Azimuthal field modulations No azimuthal oscillations required Azimuthal oscillations required

Rather complex magnets Simpler magnet Very complex magnet

(AVF, SCC, spiral edge) (dBz/dR < 0) (alternate grad.,spiral edge)

Vertical foc. achieved mainly Vertical focusing comes Vertical focusing comes

by edge focusing in the sectors from decreasing field from alternates gradients

Average field index k not constrained k not constrained

k(R) = γ2 − 1 by isochronism by isochronism

Limited in energy γ < 2 Limited in energy γ < 2 Not limited in energy

Applications: Applications: Applications:

radioisotope production, proton therapy proof of principle machines,

proton therapy, accelerator driven system (?),

research in nuclear physics future muon accelerator (?)
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I.13.A The cyclotron CYCLONE® (IBA)

This accelerator is an industrial cyclotron for medical radioisotope production

(18F, 15O, 11C, 68Ge, 123I . . . ) . For instance the Fluorine-18 is the most widely used radio-

isotope for imaging, it permits the positron emission tomography (PET) which is a powerful tool to

detect cancerous tumors and metastases, and to monitor their evolution.

Fig. I.13.25: The CYCLONE 30 cyclotron.

It is a compact isochronous cyclotron with Kb = 30MeV, and has four straight magnetic sectors.

Azimuthally the magnetic field evolves from 1.7 T (in the hills) to 0.12 T (valleys) and two RF Dees are

operated at 65MHz. The cyclotron delivers protons up to 30 MeV, and deuterium and alpha particles up

to 7.5MeV/A. The beam intensity can reach 800 µA for the proton beam.

This cyclotron is operated in 30 facilities in the world with low running costs (https://www.iba-

radiopharmasolutions.com).

I.13.B The superconducting “Comet” at PSI for proton therapy

This accelerator is a 250MeV proton compact cyclotron, and has been constructed by ACCEL for the

Paul Sherrer Institute (PSI). The cyclotron delivers protons at fixed energy for cancer treatment. The

cyclotron is a compact isochronous "Azimuthally Varying Field" with 4 spiral sectors. The supercon-

ducting coils, cooled by liquid helium, produce a field evolving from 3.8 T (hills) to 2.4 T (valleys).

There are four accelerating RF Dees operated at 72 MHz (H = 2). The beam orbits 630 turns before

extraction.

For treatments on the human body the beam energy is degraded with solid targets (carbon degraders) in

order to deposit the maximal energy (corresponding to the “Bragg peak”) at the right depth in the tumor.
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Fig. I.13.26: The COMET facility in PSI

The treatment station uses a rotating gantry to deposit the beam energy in the tumour with high precision,

thus minimizing the damage to surrounding healthy tissues.
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I.13.C RIBF facility (Tokyo, Japan)

The RIBF facility is built to produce rare radioactive nuclei for basic nuclear research, by the fission of

energetic uranium ions. The accelerator facility uses a Linac and four isochronous cyclotrons in cascade.

The largest cyclotron called SRC is a superconducting separated cyclotron with Kb = 2600 MeV (see

Ex. 3). The SRC can boost the kinetic energy of an heavy ion beam at an energy which depends on the

charge state Q and nucleon number A, EK
A = Kb (

Q
A )

2 . The ion source cannot provide fully stripped

uranium ions with Q = 92+, but only Q = 35+. The uranium ions are stripped at two different

energies with two strippers to obtain U86+ and to optimize the acceleration capability of the cyclotrons.

Fig. I.13.27: RIBF facility (Tokyo, Japan).

The coupling of two cyclotrons requires that the extraction velocity matches exactly the velocity of

injection of the second cyclotron. Therefore, a strong constraint defines the matching of the RF harmonic

and injection-extraction radii for the coupled cyclotrons.

For two consecutive coupled cyclotrons C1 and C2, we should have

vinjection C2 = Rω =
2π Rinjection C2 FRF2

H2
= vextraction C1 =

2π Rextraction C1 FRF1

H1
. (I.13.84)

Finally, the coupling of two cyclotrons requires

Rinjection C2 FRF2

H2
=

Rextraction C1 FRF1

H1
. (I.13.85)

Besides, for the two respective RF frequencies we need FRF2 = N FRF1 (N integer ≥ 1), in order to

accept all the bunches in the cyclotron C2.

I.13.D Relativistic formulas

Some relativistic expressions are used in the lecture:

– The Lorentz factor γ = 1√
1−β2

with β = v/c,
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– The total energy E = γmc2 =
√

p2c2 +m2c4,

– The rest energy E0 = mc2,

– The kinetic energy Ek = E − E0 = (γ − 1)mc2,

– The momentum p = γmv = γmβc,

– The particle magnetic rigidity Bρ = p
q = γ mβc/q.

We express generally the particle magnetic rigidity Bρ = p
q in Tesla.meter (Tm). The magnetic rigidity

permits an easy computation of the curvature radius in a transverse magnetic field B0

ρ [m] =
Bρ [Tm]

B0 [T ]
.

A useful relativistic relation is needed very often

(βγ)2 =
β2

1− β2
=

β2 − 1 + 1

1− β2
= γ2 − 1 = (γ + 1)(γ − 1).

Some derivatives are required, for instance in Ex. 10, to demonstrate that
(
∆p
p

)
= γ

γ+1

(
∆Ek
Ek

)
:

dγ

dβ
=

d(1− β2)−1/2

dβ
= (−2β) ·

(
−1

2

)
· (1− β2)−3/2 = +βγ3, therefore

dβ

dγ
=

1

βγ3
,

dEk

dβ
=

d
(
(γ − 1)mc2

)
dβ

= mc2βγ3 =
γmc2

β
β2γ2 =

γmc2

β
(γ + 1)(γ − 1) =

γ

β
(γ + 1)Ek,

dp

dβ
= mcγ +mcβ

dγ

dβ
= mcγ

(
1 + (βγ)2

)
= mcγ

(
1 + (γ2 − 1)

)
= mcγ3.

Finally, using the last relations, we obtain

dEk

dp
=

[
dβ

dp

]
· dEk

dβ
=

[
1

mcγ3

] [
γ

β
(γ + 1)Ek

]
=

(γ + 1)

γ

(
Ek

p

)
.

In the lecture, we used a consequence of the last formula in Secs. 12.2.5.3, 12.8.2, and Ex. 10

dEk

Ek
=

(γ + 1)

γ

(
dp

p

)
.
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