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After studying the relevant aspects of accelerators topic by topic, it is time to gain hands-on
experience by designing a realistic particle accelerator. This chapter describes the accelerator design
workshop which takes place at the end of JUAS course I. The core idea is to gain experience how
such a large task can be split up and organised into collaborating teams with different expertise, with
a particular focus on how certain design decisions affect everything else. In a collaborative effort,
several teams participate in a top factory study tackling the design of a high-energy collider. The
teams approach the design from three complementary angles viz., the general parameters teams
determine a basic beam and machine parameter set, the RF teams design the radio-frequency systems
with respect to acceleration and synchrotron radiation, and the lattice design teams work out an
accelerator lattice using the MAD-X suite. The teams require inputs from the respective other topics
to complete their tasks. During the workshop conclusion following the oral group examinations,
selected teams present their results in a conference style setting. This approach sets the scene for
a motivating, competitive and fun workshop event while fostering participants to understand the
mutual dependencies between accelerator and beam parameters and the implications of design
decisions, involving the knowledge they gained during the JUAS school.

I.14.1 Workshop philosophy

The goal of the accelerator design workshop is to apply the knowledge gained during the JUAS school to

a realistic case study. The task is to design a particle accelerator with certain specifications and boundary

conditions. The idea is to gain experience how such a large task is tackled and organised. This is the time

during the JUAS school where the workshop participants patch together the specific knowledge from all

the previously covered topics, understanding the links between them and the corresponding impact of

design decisions on various accelerator parameters. The workshop format is set up such that teams of

participants work together in collaboration. The case study is approached from three different sides, and

teams are assigned to represent an expert group for one of these corresponding three focus topics. Before

the teams start into the group work phase, a dedicated accelerator design lecture summarises and gathers

the most relevant information from previous lectures and offers practical design considerations.

Based on the experience from the JUAS schools where this workshop was taught, a team size of

three participants turns out to be ideal for close collaboration within the teams. This choice balances the

work load and, thus, spreads the knowledge gain as evenly as possible across all workshop participants.
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I.14.1. Workshop philosophy

Choosing more participants per team was observed to result in single participants taking a more inactive

and passive role, while choosing teams of only two participants sometimes limited their creative potential

and more input was required from the tutor side to spark ideas.

The three focus topics general parameters, RF design and lattice design touch on most of the

JUAS course I topics. There is a set of open exercises for each topic (see the appendix to this chapter),

along which a corresponding team will work out their accelerator design. The lattice design tasks are

implemented in a fill-the-gap interactive python notebook [1]. For typical JUAS attendance numbers

there are around two to four teams per focus topic. As they work through the same exercise set per

topic, the teams of a given topic compete to work out the most well-founded design. The exercises

are kept open such that different answers may be formally correct, and the participants are required to

justify their choices. The competitive aspect of the workshop is observed to stimulate the motivation of

participants. Some exercises are designed such that the teams require input from the other topics: these

links between the topics represent the interaction between research teams in real design studies.1 These

inter-topical discussions are observed to take a key role in achieving the goals of the workshop, which

are being instructive and triggering the understanding of intertwined beam and accelerator parameters.

Different priorities of topical goals lead to individual design choices taken by each team. In other words,

rather than aiming for single correct results, the exercises demand the teams to develop a well argued

motivation behind their choice.

In order to render the workshop experience more realistic and interesting, the case study chosen

here evolves around a real project instead of an entirely hypothetical machine. The teams collaboratively

design a top factory aligned closely with the parameters of the lepton version of the Future Circular

Collider (FCC-ee), and they discuss and decide on optimal parameter sets. In contrast to classical tutoring

where tutors instruct and actively guide the learning process, the role of the tutors here is to support and

complement the design process within the teams during the main part of the workshop, just like a senior

colleague or consultant would do. During the oral examination then, the tutors “switch sides” and can

be thought of to represent a political committee: they need to decide on the best design per topic which

has been presented in the most convincing way and, thus, “deserves full funding”. A corresponding

presentation of selected results by the best teams at the end of the workshop along with a general plenary

discussion rounds up the process of understanding for the participants.

This chapter is presented in a style intending to reflect the workshop atmosphere and the discus-

sions between the workshop participants and the tutors. Typical questions and corresponding possible

discussions from the team work phase complement the presented story line of the case study, including

all the lecture contents.

1Practical observations: in the online JUAS format, the teams were working separately in breakout rooms and could briefly
join teams from other topics for the discussions. At least two links per topic between the exercise sets were required to keep
alive a running discussion between the topics. For the on-site JUAS format at ESI, the teams worked in workshop rooms, as
nearby located as possible. Very active and lively discussions were observed already with one or two links per topic. More
than two exercises linking to other topics are likely to inhibit effective group work. Throughout the workshop, teams are likely
to change their design decisions to work out a more coherent design, and correspondingly the input given to other teams might
become obsolete. Within the scope of the JUAS accelerator design workshop, teams are encouraged to ignore this fact and
just continue their design focusing on the original input. During the oral examination, these inputs from other teams were not
taken into account for the evaluation (unless they were obviously questionable). Given the limited time during the JUAS, the
teams were explicitly not obliged to converge on a single set of parameters for the case study.
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I.14.2 What does accelerator design actually mean?

The design of an accelerator typically orients itself along an experimental request, e.g. the production of

top-antitop quark pairs. Those experimental requests have to be translated into accelerator requirements,

in this case maximising the production rate leads to certain request on required kinetic energy and lumi-

nosity. Once a basic parameter set is defined, several aspects have to be covered: first, the type of particle

beam (protons, electrons, ...) and the accelerator type (cyclotron, linear accelerator, synchrotron, ...) need

to be identified. Then the lattice is designed, transverse and longitudinal beam dynamics are optimised

and potentially limiting instabilities are addressed. The next step considers the hardware requirements

(magnets, RF systems, beam instrumentation, ...), which often results in adjustments of the previous de-

cisions. In the final part, engineering challenges are investigated and solved (civil engineering, power

concepts, surveying, ...). Usually, such a design requires an iterative approach. Lattice and optics have

to be adapted according to technical requirements and vice versa.

The accelerator design workshop focuses on the first two stages. The introductory lectures break

down the design process of a high-energy collider and present a step-by-step approach:

Step I: Decide on the particle species, beam energy and general layout.

Step II: Calculate the beam rigidity and the required bending fields.

Step III: Determine the focusing structure and calculate the beam optics.

Step IV: Determine synchrotron radiation losses, specify the RF system and the space needed.

Step V: Open the arc lattice and install dispersion suppressors for dispersion-free straight sections.

Step VI: Include matching sections if needed.

Step VII: Install interaction regions.

We follow this sensible guideline. Let’s start designing an accelerator!

I.14.3 Step I: General layout, particle species and beam energy

Determine particle type and beam energy suited for the specific experiment. Define the general
layout of the accelerator.

This section covers basic considerations which are usually consequences of the experimental requests

and/or user requirements: What kind of particles should be accelerated, and to what energy? What

collision layout is foreseen and what collider geometry is chosen?

I.14.3.1 What particle species should we choose for our accelerator?

The choice of the particle species depends on the application of the beams. In the case of high-energy

physics both hadrons and electrons/positrons are used. As the name says, high-energy storage rings

aim for particle beams with highest possible beam energy, which will then be collided to study the
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I.14.3. Step I: General layout, particle species and beam energy

fundamental physics of the standard model and beyond. Hadrons, such as protons or heavy ions, carry

more mass than electrons or positrons. As a consequence, using hadron beams makes it easier to reach

higher centre-of-mass energies as the emission of synchrotron radiation is usually (below ∼ 1TeV)

suppressed due to the large mass. Hadron colliders are therefore used as discovery machines. They

push on the energy frontier and explore for new, unknown particles.

However, hadrons are composite particles. For instance, the proton comprises three valence quarks

along with a sea of virtual particles such as gluons, quarks and antiquarks. Each of these elementary

particles carries only a fraction of the proton’s total momentum. In the event of a collision with one of

these elementary particles, not all the kinetic energy of the composite proton is available for creating new

particles in the collision process. This results in a significantly wider distribution of generated particles,

which leads to a large background of “non-interesting” collision products. Figure I.14.1a depicts such a

hadron collision event from the CMS detector at the CERN LHC (Large Hadron Collider), where a lot

of traces from collision products need to be resolved.

In this sense, the big advantage of leptons is that they are elementary particles. During a col-

lision of an electron and a positron, two particles are involved with well-defined momenta giving a

well-defined centre-of-mass energy. Therefore, electron-positron colliders provide cleaner results in the

collision process, i.e., background as described for hadron beam collisions is strongly suppressed and

the collision products are well defined with respect to the provided kinetic energy of the primary particle

beam. Figure I.14.1b shows such a collision event recorded by the detector OPAL at the LEP (Large

Electron-Positron) collider. Lepton colliders are, therefore, typically used for targeted precision
measurements.

On the other hand, the beam dynamics is heavily driven by the emission of synchrotron radiation.

As the mass of electrons and positrons (me = 0.511MeV/c2) is nearly 2000 times smaller than the mass

of a proton (mp = 938MeV/c2), the Lorentz factor of an electron γe becomes orders of magnitude larger

compared to the Lorentz factor of a proton γp with the same energy

E = 10GeV → γp = 11

→ γe = 19570.

Since the emitted synchrotron radiation power is proportional to the fourth power of the Lorentz factor,

synchrotron radiation becomes a critical factor for high-energy electron/positron storage rings.

Question I.14.1: Based on the discussion above, can you explain why a circular muon collider is an

attractive alternative?

Question I.14.2: The Large Electron Positron Collider (LEP) was a single-ring collider, which

means both beams shared on vacuum chamber. The Large Hadron Collider (LHC) on the other hand

is a double-ring collider, in which the two beams have their individual beam pipes. Why was it not

possible to realize LHC as a single-ring collider? What does a single-ring collider entail?
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(a) (b)

Fig. I.14.1: Comparison of collision events in hadron and electron-positron colliders: (a) shows an event
in CMS at the hadron collider LHC [2] and (b) displays an OPAL event at the electron-positron collider
LEP [3].

I.14.3.2 What is the difference between fixed-target and collider geometry?

There are two possible geometries for particle collisions: let us first consider the Rutherford experiment,

where a gold foil was bombarded by a beam consisting of alpha particles. This layout is a typical

fixed-target experiment, in which the sample at a fixed position is probed by a beam of particles. This

arrangement offers high event rates, since the target, often a solid body, has a high particle density.

In the context of high-energy physics, the decisive factor for excitation of higher energy states or

the production of new particles is the centre-of-mass energy
√
s. Given the four-vector momenta p1 and

p2 of the two colliding particles and using natural units where c = 1,

s = (p1 + p2)
2 = p21 + p22 + 2p1p2 = m2

1 +m2
2 + 2 (E1E2 − p⃗1p⃗2) . (I.14.1)

In fixed-target geometry we have p⃗2 = 0⃗ and E2 = m2. The centre-of-mass energy then reads

√
s =

√
m2

1 +m2
2 + 2E1m2 ∝

√
E1. (I.14.2)

As a consequence, the energy reach at high energies (E1 ≫ m1,m2) is limited, as the centre-of-mass

energy is proportional only to the square root of the beam energy E1.

An approach to mitigate this limitation is to collide two particle beams instead, which are both

simultaneously used as target and probing beam. Assuming the collision of particles with same mass

(m1 = m2 = m) and energy (p⃗1 = −p⃗2), the centre-of-mass energy in the collider geometry is

√
s =

√
2m2 + 2E2 + 2|p⃗|2 = 2E ∝ E. (I.14.3)

The drawback of this geometry is the low event rate resulting from the low particle density in the collided

beams.
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I.14.3. Step I: General layout, particle species and beam energy

Question I.14.3: You would like to conduct an experiment, for which you need a centre-of-mass

energy of
√
s = 200GeV. Calculate the beam energy you need if you collide two proton beams.

Next, consider a single proton beam and a fixed hydrogen target. What beam energy is now required?

I.14.3.3 What defines the beam energy of our accelerator?

In the case of exploratory hadron colliders, the energy shall be pushed as high as possible. As the

beam energy (or particle momentum p0) is determined by the integrated magnetic field B (see also

Sec. I.14.4.2),

2π
p0
e

=

∮
B ds, (I.14.4)

the beam energy is finally limited by technical constraints such as the maximum achievable magnetic

field of the (superconducting) magnets, the maximum circumference etc. As such projects require long-

term planning and preparation over a duration of decades, it is reasonable to take into account expected

results of future technical research and development (R&D) during the design process.

Precision machines on the other hand target certain events or particles to be produced such as, for

example, the Higgs boson. The beam energy in this case is determined by the cross-section depending

on the centre-of-mass energy. The cross-section shows either a resonance as in the case of the Z boson,

which is displayed in Fig. I.14.2a, or an energy threshold as for the the Higgs boson, which is depicted

in Fig. I.14.2b. These cross-sections define the operation modes and corresponding beam energies for

which precision machines are optimised for. In the example case of the FCC-ee, four operation modes

are foreseen: Z production with a beam energy of 45.6GeV, W production at 80GeV, Higgs production

at 120GeV, and tt̄ pair production at 182.5GeV.

Eur. Phys. J. C (2019) 79 :474 Page 35 of 161 474

Fig. 3.1 Top row, left: the Z line shape with the Z and γ exchange
contribution and the Z − γ interference. Top row, right: the muon pair
forward–backward asymmetry has a strong slope around the Z-pole
resulting from the Z -γ interference. Bottom row: relative statistical

accuracy of the αQED determination from the muon forward–backward
asymmetry at the FCC-ee, as a function of the centre-of-mass energy.
The integrated luminosity is assumed to be 80 ab−1 around the Z pole.
The dashed blue line shows the current uncertainty

Among the other asymmetries to be measured at the FCC-ee, the τ polarisation asymmetry in the τ → πντ decay mode
provides a similarly accurate determination of sin2 θeff

W , with a considerably reduced
√
s dependence. In addition, the scattering

angle dependence of the τ polarisation asymmetry provides an individual determination of both Ae and Aτ, which allows, in
combination with the Aµµ

FB and the three leptonic partial width measurements, the vector and axial couplings of each lepton
species to be determined. Similarly, heavy-quark forward–backward asymmetries (for b quarks, c quarks and, possibly s
quarks) together with the corresponding Z decay partial widths and the precise knowledge of Ae from the τ polarisation,
provide individual measurements of heavy-quark vector and axial couplings.

Within the same scan of the Z, cross-sections for hadronic and leptonic final states will be measured with a precision
limited by the luminosity measurement. The design of the luminometer aims for a point-to-point relative precision of 10−5

and absolute normalisation with a precision of 10−4 (limited by the projected hadronic vacuum polarization systematics in
the theoretical calculation of the Bhabha cross section), see FCC-ee CDR Section 7. Several results are expected from the
scan: the Z mass mZ and width #Z will be extracted with a statistical precisions of 5 and 8 keV respectively, and a systematic
uncertainty given by the centre-of-mass uncertainties of 100 keV; the ratio of hadronic to leptonic partial widths RZ

ℓ , from
which αs(mZ) will be derived with a precision better than 0.00016 – one order of magnitude better than today; the peak
cross-section σ 0

had will determine the number of light neutrino species Nν with a precision of 0.001 of a neutrino species.

123

(a)

304 The European Physical Journal Special Topics

Fig. 1.9. The Higgs boson production cross section as a function of the centre-of-mass
energy in unpolarised e+e� collisions. The blue and green curves stand for the Hig-
gsstrahlung and WW fusion processes, respectively, and the red curve displays the total
production cross section. The vertical dashed lines indicate the centre-of-mass energies of
choice at the FCC-ee for the measurement of the Higgs boson properties.
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Fig. 1.10. Left: a schematic view, transverse to the detector axis, of an e+e� ! HZ event
with Z!µ+µ� and with the Higgs boson decaying hadronically. The two muons from the
Z decay are indicated. Right: distribution of the mass recoiling against the muon pair,
determined from the total energy-momentum conservation, with an integrated luminosity
of 5 ab�1 and the CLD detector design. The peak around 125GeV (in red) consists of
HZ events. The rest of the distribution (in blue and pink) originates from ZZ and WW
production.

(b)

Fig. I.14.2: Cross-section of the Z and Higgs production in electron-positron collisions [4]. The Z
cross-section has a resonance shape, the Higgs cross-sections shows a production threshold.
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I.14.3.4 Why are there linear and circular colliders?

Linear colliders are proposed in the context of high-energy electron-positron collisions. As mentioned

above, the synchrotron radiation power Pγ is proportional to γ4 (see Chapter I.10 on synchrotron radi-

ation). As a consequence, for collision energies beyond a threshold of about 500GeV the synchrotron

radiation power becomes unbearable in terms of energy efficiency and equipment shielding unless the

collider reached an enormous size beyond hundreds of kilometers. Linear colliders have been proposed

to resolve this issue. Since the particle beams are not deflected onto a ring geometry here, no synchrotron

radiation is emitted and higher beam energies can in principle be reached. However, the geometry of a

linear collider allows for only one experiment to take data at a given time, whereas circular colliders

typically feature several experiments at several interaction points running simultaneously. Also, it has to

be kept in mind, that only ≈ 10 collisions take place during one bunch crossing. In linear collider the

rest of the ≈ 1011 particles go to the dump at their full kinetic energy, while in a circular collider they get

the chance to collide again after one turn or in the next experiment. Due to this recycling effect, circu-

lar colliders are preferred at energies below 500GeV centre-of-mass energy as they reach much higher

luminosities (see Sections I.14.10.1 and I.14.10.2). In the end, the choice of linear or circular collider

geometry is the result of a trade-off between expected synchrotron radiation power and luminosity reach.

Figure I.14.3 compares the expected instantaneous luminosities of potential future electron-positron col-

liders. At energies below 300GeV the circular collider projects FCC-ee (Future Circular Collider) and

CEPC (Circular Electron-Positron Collider) outperform the linear collider projects ILC (International

Linear Collider) and CLIC (Compact LInear Collider) by orders of magnitude. Above ∼500GeV linear

colliders provide larger luminosities.
FCC-ee: The Lepton Collider 285

Fig. 2. Baseline luminosities expected to be delivered (summed over all interaction points)
as a function of the centre-of-mass energy

p
s, at each of the four worldwide e+e� collider

projects: ILC (blue square), CLIC (green upward triangles), CEPC (black downward trian-
gles), and FCC-ee (red dots), drawn with a 10% safety margin. The FCC-ee performance
data are taken from this volume, the latest incarnation of the CEPC parameters is inferred
from [20], and the linear collider luminosities are taken from [15,17].

Performance

As a result of the renewed worldwide interest for e+e� physics and the pertaining
discovery potential since the observation of the Higgs boson at the LHC, the FCC is
not alone in its quest. Today four e+e� collider designs are contemplated to study
the properties of the Higgs boson and other standard model (SM) particles with an
unprecedented precision: the International Linear Collider (ILC [13]) project with a
centre-of-mass energy of 250 GeV [14,15]; the Compact Linear Collider (CLIC [16]),
whose lowest centre-of-mass energy point was reduced from 500 to 380 GeV [17]; the
Circular Electron Positron Collider (CEPC [18–20]), in a 100 km tunnel in China,
with centre-of-mass energies from 90 to 250 GeV; and the Future e+e� Circular
Collider in a new ⇠100 km tunnel at CERN (FCC-ee, formerly called TLEP [8,21]).
The baseline luminosities expected to be delivered at the ILC, CLIC, CEPC, and
FCC-ee centre-of-mass energies are illustrated in Figure 2.

The expected integrated luminosities and operation phases at each energy are
illustrated in Figure 3. The FCC-ee delivers the highest rates in a clean, well-
defined, and precisely predictable environment, at the Z pole (91 GeV), at the
WW threshold (161GeV), as a Higgs factory (240 GeV), and around the tt̄ thresh-
old (340–365 GeV), to two interaction points. Thanks to the availability of trans-
verse polarisation up to over 80 GeV beam energy, it also provides high precision
centre-of-mass energy calibration at the 100 keV level at the Z and W energies, a
unique feature of circular colliders. The FCC-ee is, therefore, genuinely best suited
to o↵er extreme statistical precision and experimental accuracy for the measure-
ments of the standard model particle properties, it opens windows to detect new
rare processes, and it furnishes opportunities to observe tiny violations of established
symmetries.

Fig. I.14.3: Expected luminosities for different future collider projects [5]. At energies below 200GeV
the circular collider projects FCC-ee and CEPC outperform the linear collider projects ILC and CLIC by
orders of magnitude. Above ∼500GeV the linear colliders provide larger luminosities.

Question I.14.4: Why does the luminosity drop for the circular colliders with increasing beam ener-

gies? Hint: for FCC-ee the synchrotron radiation power is limited to a maximum of 50MW/beam

for all operation modes.
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I.14.4. Step II: Beam rigidity and required bending fields

I.14.4 Step II: Beam rigidity and required bending fields

Calculate the beam rigidity and the required integrated dipole field in order to determine the
magnet technology needed, the dipole length and number and finally the size of the storage
ring without straight sections.

This section provides guidelines on designing the layout of the collider. Once the particle type (lepton

vs. hadron) is defined and in the case that the decision has been made in favour of a circular collider,

the beam rigidity can be calculated. The beam rigidity provides direct information about the required

magnet technology (super-/normal-conducting), deflection angle and, eventually, the circumference of

the collider ring.

I.14.4.1 What is the general layout of a circular collider?

A circular collider consists of arc sections and straight sections. The straight sections house injec-

tion/extraction sections, RF installations, collimation sections, where particles with large amplitude or

momentum offset are filtered out safely, special beam diagnostics, and of course the interaction regions

with mini-beta insertions.

Besides bending the beam and transporting it to the next straight section, a crucial purpose of the

arc sections is to control tune and chromaticity. Sometimes also higher-order multipoles are installed for

higher-order optics corrections. The integrated magnetic field in arc sections defines the beam energy.

In case of lepton storage rings, lattice and optics of the arc sections define the beam emittance (see

Section I.14.5.8). Optics variations in the arc sections allow to tune the beam emittance.

Figure I.14.4 shows the layout of the LHC, which features an eight-fold symmetry and, thus, eight

arc and eight straight sections. Often, about two thirds of the circumference consist of arc sections and

about one third consists of straight sections.

I.14.4.2 How are beam energy and circumference of the accelerator related?

The deflection angle of charged particles in a magnetic dipole field depends on the particle momentum

or, in other words, the beam energy. For higher energies, either the bending radius ρ increases or, for a

fixed footprint, the magnetic field B has to be increased.

In the case of a storage ring, a given particle momentum defines the required integrated magnetic

field along the design orbit. This can be easily shown considering an infinitesimal arc element

dθ =
ds

ρ
=
B ds

Bρ
=

e

p0
B ds, (I.14.5)

where ρ is the bending radius and s denotes the longitudinal coordinate of the Frenet-Serret coordinate

system. In the calculation, the relation of the beam rigidity (see Chapter I.3 on transverse beam dynamics)

has been used: Bρ = p0/e. Integration of the left side from 0 to 2π yields Eq. (I.14.4), that is here

repeated for convenience ∮
B ds = 2π

p0
e
.
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Fig. I.14.4: Layout of the LHC [6]. Two straight sections are taken by the two multi-purpose experiments
ATLAS and CMS. The straight sections with the smaller experiments ALICE and LHCb also include
the injection sections. In two straight sections, collimators are installed for momentum cleaning and
transverse betatron cleaning, one houses the RF section and the last one contains the extraction section
towards the beam dump.

The direct consequence: the pursuit of ever higher beam energies in hadron colliders requires to push the

magnetic field strengths up to their technical limit. Once the limit is reached, higher energies can only

be obtained via a larger circumference of the storage ring, which is why each future high-energy circular

collider project increases in circumference. In the end, the beam energy is limited by the maximum

tolerable circumference affordable within a given budget.

Question I.14.5: What is the maximum momentum of protons in the LHC? LHC has N = 1232

bending magnets each with a length of LB = 14.3m and a magnetic field strength of B = 8.3T.

I.14.4.3 Shall we use normal- or superconducting magnet technology?

The choice of the magnet technology depends on the beam energy and the particle species.

As we established above, high-energy hadron accelerators are designed as exploratory machines

and push on the energy frontier. As the magnetic field of iron dominated magnets is limited to < 2T,

they require superconducting magnet technology to reach their energy at an acceptable circumference.

Using superconducting magnets, the energy loss due to the electric resistance in the magnet coils is

reduced drastically at the expense of a cryogenic infrastructure.

In the case of electron-positron storage rings, an additional limitation has to be considered: due to

the much smaller mass of electrons and positrons, the emitted synchrotron radiation power proportional

toE4/ρ2 becomes unbearable – typically long before the technical limit of the magnetic fields is reached.

Designers of high-energy lepton colliders still aim for large circumferences with the following strategy in
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mind: decreasing the bending fields as well as distributing them over the ring as much as possible results

in large bending radii ρ, which in turn reduces the synchrotron radiation power. As a consequence, the

required magnetic field strengths can be realised with normal-conducting magnet technology.

As a side note, the final-focusing quadrupoles of the FCC-ee collider will need to be installed

inside the detector. In this case, superconducting magnets are being discussed, which then allows for

more compact designs in order to reduce the blind spots of the detector. These superconducting elements

then need to be protected from synchrotron radiation to prevent quenches.

Question I.14.6: Calculate the bending field of the dipoles of FCC-ee during tt̄ production at

182.5GeV beam energy assuming a local bending radius of ρ = 10.760 km. Which magnet tech-

nology do you propose based on your result?

I.14.5 Step III: Focusing structure and beam optics

Determine the focusing structure of the basic cell: FODO, DBA, etc. Calculate the optics
parameters of the basic cell: beam dimension, vacuum chamber, magnet aperture & design,
and tune.

This section discusses various basic cell structures for the lattice design. Depending on the purpose of the

accelerator, e.g. a collider or a light source, different lattices can be beneficial. In the particular case of

a FODO basic cell, some design considerations are presented as guidelines for various particle species.

Additional information is provided in the textbooks [7, 8] or the CAS proceedings [9–11].

I.14.5.1 Why is the FODO cell an adequate basic cell for high-energy storage rings?

As the name says, high-energy storage rings accommodate particle beams of highest possible beam

energies, which are then collided to study the fundamental physics of the standard model and beyond.

The design of the basic lattice cell is driven by the requirement of a high dipole filling factor, which

applies for both hadron and lepton storage rings but for different reasons.

Hadron storage rings: Hadrons, such as protons or heavy ions are used for exploratory machines that

push on the energy frontier. The beam energy is defined by the integrated magnetic field, which is pushed

towards the technical limit during the design process. For a given magnetic field and circumference the

energy can be maximised if the largest possible proportion of the cell is occupied by dipoles.

Lepton storage rings: Contrary to hadrons, the beam dynamics of leptons is dominated by the emission

of synchrotron radiation. The synchrotron radiation power Pγ is proportional to E4/ρ. To reduce it,

the local bending radius ρ is maximised, i.e., the local magnetic field strength is minimised. The design

strategy is to again maximise the proportion of the cell occupied by dipoles, this time not to maximise the

integrated magnetic field but rather to minimise the local magnetic field and, thus, synchrotron radiation

power.

The common feature of high-energy hadron and lepton storage rings is that the lattice design of

the basic cell should push for a highest possible dipole filling factor, which is the ratio between the length
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of all dipole magnets and the cell length. The FODO cell allows for a very large dipole filling factor and

is typically chosen as the basic cell of high-energy storage rings.

I.14.5.2 How is a FODO structured?

The FODO structure consists of equidistant quadrupoles with alternating polarity. The space in between

the quadrupoles can either consist of drift spaces or can be filled with other equipment such as bending

magnets or RF cavities. Compared to other lattice structures it features a low number of quadrupoles.

The FODO structure is used in transfer lines which have to cover long distances with a minimum of

hardware, in linacs or in FELs (Free Electron Lasers) which require lots of space for RF cavities or

undulators, and in circular colliders which require a high dipole filling factor.

Figure I.14.5 shows the lattice of a 50m long FODO cell that has been proposed for FCC-ee [12].

The cell starts and ends in the centre of a (horizontally) focusing quadrupole represented by the box

above the horizontal line. The defocusing quadrupole is located in the centre depicted by the box below

the horizontal line. The small boxes next to the quadrupoles are sextupole magnets, which are installed

for chromaticity correction. The dipole filling factor of a FODO cell should reach at least 80%. The four

dipole magnets, represented by the huge boxes, have a length of 10.5m each resulting in a dipole filling

factor of 84%. Underneath, the optics functions βx, βy and the horizontal dispersion function Dx are

plotted. x and y denote the horizontal and the vertical coordinates of the Frenet-Serret coordinate system.

Since quadrupoles focus in one plane while defocusing in the perpendicular plane, the β-function reaches

its maximum in one plane where it is at a minimum in the other. The dispersion function follows the

course of the horizontal β-function.
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Fig. I.14.5: Lattice and optics functions of a FODO cell that has been proposed for FCC-ee [12]. The
large blocks are the dipole magnets and the rectangles above and below the centre line show the position
of the quadrupole magnets. The smaller rectangles next to them represent sextupoles.

The simple layout of the FODO cell allows for easy analytical optics calculations. We know from

the Chapter I.3 on transverse beam dynamics that the maximum and minimum values of the β-function

in a FODO cell of length Lc with phase advance φ are given by

β̂ = Lc
1 + sin(φ/2)

sinφ
and β̌ = Lc

1− sin(φ/2)

sinφ
. (I.14.6)
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Fig. I.14.6: Minimum and maximum values of the β-function as function of phase advance per cell for
the FODO cell of Fig. I.14.5. While the minimum value of the β-function decreases with increasing
phase advance, the maximum value has a minimum at φ = 76◦.

The minimum value for β̂ is obtained for φ = 76◦ as shown in Fig. I.14.6. β̌ continuously decreases

with increasing phase advance. This discussion already shows: the most important parameters to be

determined during the lattice design are the cell length as well as the phase advance per cell.

I.14.5.3 How do we choose the phase advance of a FODO cell for a hadron storage ring?

The Chapter I.3 on tranverse beam dynamics discusses that, in hadron storage rings, the geometric emit-

tance ϵ shrinks during acceleration because of adiabatic damping

ϵ ∝ 1

βγ
. (I.14.7)

Note that in this case β and γ do not refer to the optics functions but to β = v/c and to the Lorentz

factor γ. As a consequence, the aperture is constrained most at injection energy, as shown in Fig. I.14.7.

The transverse 7σ silhouette of the HERA proton beam at 40GeV injection energy (γ = 43) fills the

vacuum chamber almost entirely. After ramping up the beam energy to a flat-top energy of 920GeV

(corresponding to γ = 980), the emittance decreased from ϵ = 120 nm to ϵ = 5.1 nm.

Long-time experience from HERA, for example, and tracking studies of beam losses have shown

that the aperture at injection should be in the order of at least ±10 times the beam size σ to provide

sufficient space for the beam and prevent particle losses. To maximise the range of beam energies, the

phase advance is chosen such that one obtains as small β-functions as possible. As hadron storage rings

feature round beams in the sense of ϵy ≈ ϵx = ϵ, the β-function should be minimised in both planes at

the same time

r2 = ϵxβx + ϵyβy → r2/ϵ = βx + βy. (I.14.8)
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Fig. I.14.7: Transverse beam cross section (7σ) in the HERA proton ring (a) at injection energy of
40GeV and (b) at 920GeV flat-top energy. The beam size shrinks during acceleration due to adiabatic
damping.
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Fig. I.14.8: β̂ + β̌ as a function of the FODO cell phase advance. The minimum value and thus the
minimum sum of transverse beam sizes is obtained for a FODO cell phase advance of φ = 90◦.

The condition for maximum aperture with respect to the beam size,

d

dφ
(β̂ + β̌) =

d

dφ

2Lc

sinφ
= −2Lc

cosφ

sin2 φ

!
= 0, (I.14.9)

is fulfilled for a phase advance of φ = 90◦. Figure I.14.8 illustrates this by plotting the sum of β̂ and β̌

as a function of the phase advance per cell φ. With φ = 90◦, Eq. (I.14.6) becomes

β̂ = Lc

(
1 +

1√
2

)
. (I.14.10)
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Fig. I.14.9: Layout of an LHC FODO cell including arc corrector magnets according to the design
report [13]: in addition to the main quadrupoles (MQ) and bending magnets (MBA/MBB), the correctors
comprise trim quadrupoles (MQT), skew trim quadrupoles (MQS), spool piece sextupoles (MCS), lattice
octupoles (MO), spool piece octupole and decapole (MCOD), and sextupole (skew sextupole) and orbit
corrector (MSCB).

We note that the maximum beta function depends linearly on the cell length L. As a consequence, the

transverse rms beam size σ ≈ √
ϵβ is approximately proportional to the square root of the cell length.

This gives the possibility to adjust the maximum beam size according to the aperture availability. Besides

the beam size at injection energy, the aperture is also constrained by the magnetic field strength

B =
µ0nI

d
, (I.14.11)

where I denotes the current in the n windings of the coil, and d is the pole gap (twice the aperture). The

larger the pole gap (i.e. the aperture), the smaller the resulting magnetic field becomes. Since the goal

is to increase the integrated magnetic field as much as possible, small pole gaps are generally preferred.

However, small pole gaps would require small beta functions and thus short cells. Short cells on the

other hand provide a smaller dipole filling factor. Clearly, a good balance must be found for all these

counteracting aspects in order to determine an optimum cell length, which is an essential task of lattice

designers.

Example - the FODO cell of LHC: The schematic layout of an LHC FODO cell is shown in Fig. I.14.9.

Here, three bending magnets are installed in between two quadrupoles magnets. The bending magnets

are each 14.3m long, leading to a dipole filling factor of 80%. In addition to the main quadrupoles (MQ)

and bending magnets (MBA/MBB), a set of corrector magnets is installed to compensate for magnetic

higher-order multipole fields, which arise from eddy currents during the energy ramp.

Question I.14.7: The FODO cell of LHC has a length of L = 106.9m and a phase advance of

φ = 90◦. Use Eq. (I.14.6) to calculate the values of the maximum and minimum β-function in the

LHC FODO cell. The figure below [14] shows the optics functions calculated by MAD-X. Do the

values agree?
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1.1. The Large Hadron Collider
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Figure 1.10.: �-function and horizontal dispersion in an LHC arc FODO cell. The
top graph indicates the position of dipole (blue) and quadrupole (red)
magnets.

FODO cell for minimizing the beam size in both planes is 90� [35]. This defines the
product k·�s of the quadrupole strength k and distance �s between two quadrupoles.
A larger FODO cell is preferred to increase the integrated dipole field in the arc,
however the maximum length is limited by the optics stability in the presence of
field errors [36]. For the LHC a FODO cell length of 107 m has been chosen, and
each arc consists of 23 of these cells. The dispersion which is created in the arcs due
to the dipole fields needs to be reduced, as it is unwanted in the insertion regions.
A dispersion suppressor section is connecting each arc with the IRs, which uses the
missing dipole scheme together with individually powered quadrupole magnets to
correct the dispersion [35].

Experimental IRs

Four IRs in the LHC are housing experiments. The two high-luminosity experiments
are the ATLAS detector in IR1 and the Compact Muon Solenoid (CMS) in IR5.
Two medium-luminosity experiments, A Large Ion Collider Experiment (ALICE) and

17

I.14.5.4 Summary: Hadron storage rings

Features of hadron storage rings that have to be taken into account for the lattice design process:

– The beam emittance in a hadron storage ring is typically defined by the beam quality delivered by

injectors.

– Hadron storage rings often feature round beams in the sense of ϵy ≈ ϵx.

– The emittance shrinks during acceleration (adiabatic damping): ϵx ∝ 1
βγ .

– Aperture requirements call for smallest sum of β-functions and thus for a FODO cell phase ad-

vance per cell of φ = 90◦.

→ The maximum value of the β-function is then defined via the cell length: β̂ = Lc

(
1 + 1√

2

)
.

→ The cell length is chosen according to aperture availability in the bending magnets.

– Maximum beam energy is obtained through maximizing the integrated B field:
∫
B ds = 2π p0

e .

→ Highest possible dipole fields are required.

→ Maximum dipole filling factor is required.

I.14.5.5 What is the fundamental difference between a hadron and lepton storage ring?

The beam dynamics in a lepton storage ring is dominated by the emission of synchrotron radiation,

which in the case of hadron storage rings only significantly occurs for beam energies starting from the

TeV range. The emission of synchrotron radiation leads to two fundamental effects, namely radiation

damping and quantum excitation. These decrease or increase the beam emittance, respectively, until an

equilibrium of both effects has been reached after a few damping times. For details to radiation damping

and quantum excitation, consult the Chapter I.10 on synchrotron radiation.
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For a working point chosen far from linear coupling resonances, the equilibrium beam parameters

in a lepton storage ring can be approximately expressed using the following radiation integrals [8]

I1 =

∮
Dx

ρ
ds, (I.14.12)

I2 =

∮
1

ρ2
ds, (I.14.13)

I3 =

∮
1

|ρ3| ds, (I.14.14)

I4 =
∮
Dx

ρ

(
1

ρ2
+ 2k1

)
ds, (I.14.15)

I5 =
∮

1

|ρ|3Hx ds, (I.14.16)

where k1 denotes the quadrupole strength, and the Hx function is given by

Hx = βxD
′2
x + 2αxDxD

′
x + γxD

2
x (I.14.17)

using the optics functions βx, αx, and γx. The synchrotron radiation integrals mainly depend on the local

bending radius ρ and the dispersion function Dx. In other words, the equilibrium beam parameters can

be tailored during the lattice design. This is an important insight.

The first synchrotron radiation integral is related to the momentum compaction factor

αc =
I1
C
, (I.14.18)

where C is the machine circumference. The second integral in combination with the third synchrotron

radiation integral gives the equilibrium energy spread

σ2E
E2

= Cqγ
2 I3
JsI2

. (I.14.19)

For electrons or positrons the constant Cq = 55
32

√
3

ℏc
m0c2

has the value 3.832 × 10−13 m. γ in this case

is again the Lorentz factor. The damping partition numbers can be expressed using the second and forth

integral,

Jx = 1− I4
I2

and Js = 2 +
I4
I2
, (I.14.20)

and finally the equilibrium emittance is defined by the ratio of the fifth and second integral

ϵx = Cq
γ2

Jx

I5
I2
. (I.14.21)

The energy loss per turn due to synchrotron radiation is given by

U0 =

∫ T0

0
Pγ dt =

Cγ

2π
E4I2 (I.14.22)

with the revolution time T0 and Cγ = e2

3ϵ0
1

(mec2)4
= 8.8460 × 10−5mGeV−3. U0 increases with the
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beam energy E to the fourth power. As a consequence, beam energy, beam current, and in the end

the luminosity of high-energy lepton storage rings are limited by the maximum acceptable synchrotron

radiation power, which both has to be absorbed by collimators and returned to the beam in the RF cavities.

In the example case of FCC-ee, the maximum synchrotron radiation power has been limited to

50MW per beam. As mentioned in an earlier section, four operation schemes are foreseen for FCC-ee

for precision measurements of the Z, W , and Higgs bosons and the tt̄ threshold. Table I.14.1 shows the

number of bunches, particles per bunch and luminosity at the corresponding beam energies that range

from 45.6GeV to 182.5GeV as presented in the conceptual design report [5]. In order to keep the power

loss constant, the number of bunches naturally decreases with increasing beam energy. The instantaneous

luminosity for the corresponding mode correspondingly decreases by two orders of magnitude.

Table I.14.1: Beam energy, number of bunches, number of particles per bunch and luminosity for the
four operation modes of FCC-ee as presented in the conceptual design report [5]. Since the synchrotron
radiation power is limited to the same value in all modes, luminosity reduces due to the diminishing
number of bunches.

Energy # bunches # particles per bunch Luminosity
(GeV) (1011) (1034 cm−2 s−1)
45.6 16 640 1.7 460.0
80.0 2000 1.5 56.0
120.0 328 1.8 17.0
182.5 48 2.3 3.1

The beam dynamics of electron and positron storage rings is determined by emission of synchrotron

radiation. The synchrotron radiation power is determined by the lattice. The lattice design allows to

tailor the emission of synchrotron radiation and, thus, beam dynamics and beam parameters.

Let’s go step by step...

I.14.5.6 How do we choose the phase advance of a FODO cell for a lepton storage ring?

Quantum excitation, the effect that leads to an increase of the emittance, only occurs in dispersive regions

(i.e., where the dispersion function D ̸= 0). This means, in an ideal ring, where the vertical dispersion

function is zero everywhere, only radiation damping occurs and the vertical emittance could become

infinitely small in a classical sense. In a real storage ring, the vertical emittance is effectively determined

by elements that introduce coupling between the transverse planes, such as sextupoles for example, and

finite vertical dispersion which arises from misalignments. In the end, the vertical emittance ϵy typically

assumes values in the order of 0.1% to 1% of the horizontal emittance ϵx. This is why lepton storage

rings typically feature “flat” beams in the sense of ϵx ≫ ϵy.

In hadron storage rings with “round” beams, the sum of maximum and minimum values of the

β-function has been optimised for largest aperture. In the case of lepton storage rings with flat beams,
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only β̂ is considered and minimised

d

dφ
β̂ =

d

dφ

[
Lc(1 + sin(φ/2))

sin(φ)

]
= 0 → φ = 76◦. (I.14.23)

The minimum value of the maximum β-function is, hence, obtained for a phase advance per cell of

φ = 76◦ in both planes, which can be readily identified in Fig. I.14.6.

Even though minimum beam sizes are obtained for a advance per cell of φ = 76◦, this value

is often not chosen because of following reason: we know from the Chapter I.3 on transverse beam

dynamics, that an energy offset of a particle creates a focusing error in the quadrupoles, which is captured

by the quantity called chromaticity. The chromaticity is compensated by sextupole magnets, which need

to be located in dispersive regions. The magnetic field of a sextupole is given by

e

p
Bx = k2 xy and

e

p
By =

1

2
k2(x

2 − y2), (I.14.24)

where k2 is the sextupole strength. The nonlinear nature of the sextupolar field perturbs the harmonic

transverse oscillation of the particles by introducing geometric aberrations that arise from particle posi-

tion and angle. However, such geometric aberrations can be canceled, if two sextupoles with equal length

and strength are installed at positions with a relative phase advance of (an odd multiple of) π, which is

then called a -I transformation. To allow such an arrangement, low multiples of the phase advance per

FODO cell should ideally add up to 180◦. Typical phase advances in lepton storage rings are:

φ = 90◦ ⇒ 2× φ = π,

φ = 60◦ ⇒ 3× φ = π.

I.14.5.6.1 Cancellation of geometric aberrations of sextupoles using a “-I transformation”

To counteract the influence of geometric aberrations, which is particularly notable for particles at large

betatron oscillation amplitudes, the lattice should comprise as many sextupoles as possible. This measure

allows to minimise the strength of localised nonlinear fields. Should the stability of the particle motion

still be compromised at reasonably small betatron amplitude due to geometric aberrations, a more elab-

orate sextupole scheme becomes necessary: the geometric effects of the sextupoles can be canceled by

installing them in pairs with equal strength, and ensuring that the separating transfer matrix for x, x′, y,

and y′ constitutes a negative unity transformation

−I =




−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (I.14.25)

The contribution of the sextupoles to the overall chromaticity oscillates with the beta function and,

thus, at twice the phase advance. This allows to effectively cancel the geometric aberrations imposed by

the sextupolar nonlinearity (theoretically at all amplitudes when considering thin lenses) while fully

providing for chromaticity correction with each sextupole.
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Question I.14.8: Show the cancellation of nonlinear sextupole contributions for the two sextupoles

S1 and S2, which are separated by a −I transformation as illustrated in the schematic below [12].

S1 S20 1 2 3

−I

The particle arrives at point 0 in front of sextupole S1 with coordinates (x0,y0) at an angle specified

by (x′0,y′0). In thin-lens approximation, sextupoles generate single kicks:

∆x′ =
1

2
(k2LS) (x

2 − y2), (I.14.26)

∆y′ = (k2LS) x y. (I.14.27)

Calculate particle the coordinates and angle at point 3 just behind S2.

Consequently, an effective chromaticity correction scheme necessitates an even number of sex-

tupoles, while efforts should be made to minimise phase advance errors as they diminish the efficiency

of cancellation [15]. In a strict sense, the compensation of geometric effects as described above only

holds true for thin lenses. The finite length of sextupoles introduces higher-order terms [16], which can-

not be fully eliminated by the −I transfer map. Nevertheless, while the full cancellation of first-order

geometric aberrations may not be achieved, they can still be significantly reduced.

I.14.5.7 What are possible sextupole schemes for high-energy storage rings?

Sextupoles are categorised into focusing and defocusing sextupoles correcting chromaticity in the hori-

zontal and vertical plane, respectively. A sextupole family refers to a group of sextupoles with the same

strength. Taking above mentioned considerations into account, the sextupoles of a family should be in-

stalled with a phase advance separation of π. The number of families is determined by the phase advance

per cell.

For a phase advance of 60◦, three families can be installed for each plane: the sextupole in the first

cell belongs to the first family, the one in the second cell to the second family, and the one in the third cell

to the third family. The sextupole in the fourth cell is installed with a phase advance of π relative to the

first sextupole, so it needs to have the same strength as the first one to cancel its geometric aberrations

and thus belongs to the first family. Other phase advances per cell and their corresponding number of

sextupole families are listed in Tab. I.14.2.

The arrangement of sextupoles into families is a critical aspect for the design of a chromaticity

compensation scheme and should be done carefully. The number of families determines the degrees of

freedom for chromaticity correction and depends on lattice and optics. There are two primary methods
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Table I.14.2: Possible FODO cell phase advances to establish a multi-family sextupole scheme in the
arc sections and the corresponding number of sextupole families.

Phase advance # of families
π/4 45◦ 4
π/3 60◦ 3
π/2 90◦ 2
3π/5 108◦ 5
3π/4 135◦ 4

for organizing sextupole within the lattice: interleaved schemes and non-interleaved schemes. Each ap-

proach presents its own set of advantages and disadvantages, which will be the subjects in the subsequent

discussion.

I.14.5.7.1 Interleaved sextupole scheme

In an interleaved sextupole scheme, sextupoles are installed at every quadrupoles. As the phase advance

per cell is smaller than π, this leads to the arrangement discussed above, where the members of the

sextupole families are interleaved. Figure I.14.10 illustrates the layout of an interleaved sextupole scheme

for a FODO cell lattice with φ = 60◦ and three sextupole families in both planes. The grid represents

the FODO cells, the long vertical lines stand for the focusing quadrupoles and the short lines for the

defocusing quadrupoles. The sextupoles are installed next to every quadrupole. The first sextupole of

each group belongs to the first family “SF1”, the second to the second family “SF2”, etc.

The main advantage of this arrangement is the high number of sextupoles, which allows to de-

crease the individual sextupole strengths. This diminishes the local strength of the nonlinear fields,

however, the cancellation of geometric aberration is compromised since other sextupoles are installed

between two members of a family and the −I transformation is not exactly given.

1 2 3 4 5 6 7 8 9 10 11 12

SF1 SF2 SF3 SF1 SF2 SF3 SF1 SF2 SF3 SF1 SF2 SF3 SF1

SD1 SD2 SD3 SD1 SD2 SD3 SD1 SD2 SD3 SD1 SD2 SD3

φx = 60◦

φy = 60◦

1st group 2nd group 3rd group 4th group

1st group 2nd group 3rd group 4th group

Fig. I.14.10: Interleaved sextupole scheme for a FODO cell phase advance of φ = 60◦ with three
families in both planes.

I.14.5.7.2 Non-interleaved sextupole scheme

For the best cancellation of geometric effects the sextupoles should be installed in individual pairs with

same strength separated by a −I transfer map. In the ideal case, only linear elements are installed

between the two sextupoles. Such a scheme, as illustrated in Fig. I.14.11 for a FODO cell phase advance
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φ = 60◦, is called a non-interleaved sextupole scheme. The scheme starts with a pair of focusing

sextupoles located at the focusing quadrupoles of the cells 1 and 4. As the phase advance is 60◦, two

sextupoles forming a pair are separated by three FODO cells. Since the sextupole pairs shall be not

interleaved, the first defocusing sextupole pair is installed next to the defocusing quadrupoles of the cells

4 and 7. A non-interleaved sextupole scheme with non-interleaved sextupole pairs requires many FODO

cells. Keeping in mind, that a FODO cell has a length in the order of 100m, such a scheme is therefore

only applicable in large storage rings with long arc sections.

The comparison of Fig. I.14.11 to Fig. I.14.10 directly shows the disadvantage of a non-interleaved

sextupole scheme: only 7 sextupoles are installed in the 12 illustrated FODO cells, while 24 are installed

in the interleaved scheme. The sextupoles have to correct the same value of the chromaticity and therefore

need to be stronger in the non-interleaved scheme.

1 2 3 4 5 6 7 8 9 10 11 12

FODO cells

SF1 SF1 SF2 SF2

SD1 SD1 SD2

φx = 60◦

φy = 60◦

1st pair 2nd pair

1st pair 2nd pair

Fig. I.14.11: Completely non-interleaved sextupole scheme for a FODO cell lattice with φ = 60◦ phase
advance in both planes. Only linear elements are installed between two sextupoles forming a pair.

I.14.5.7.3 Hybrid schemes

In order to increase the number of sextupoles, many studied and applied non-interleaved schemes inter-

lace the sextupole pairs of the horizontal plane and the vertical plane, but not the sextupole pairs within

the same plane. If the difference of the β-functions is large enough, the effect of the sextupoles on the

other plane is small and the resulting distortion can be tolerable. The performance of a sextupole scheme

in terms of dynamic aperture and momentum acceptance has to be investigated with tracking simulations

during the lattice design process of a new accelerator.

I.14.5.7.4 Summary: Sextupole schemes

Interleaved sextupole schemes:

+ High number of sextupoles and lower local sextupole strength

− Phase relation between two sextupoles of one family is disturbed by interleaved sextupoles

Non-interleaved sextupole schemes:

+ Better cancellation of geometric aberrations

− Only applicable for many FODO cells

− Stronger sextupoles required
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I.14.5.8 With a given phase advance per cell, how can I tune the horizontal emittance?

The natural emittance in an electron storage ring is determined by the equilibrium of quantum excitation,

characterised by synchrotron radiation integral I5, and radiation damping, characterised by synchrotron

radiation integral I2. As mentioned earlier, the two synchrotron radiation integrals are primarily in-

fluenced by the bending radius ρ and the dispersion function Dx(s). For a given beam energy, these

parameters are thus key factors for adjusting the equilibrium emittance. It has been shown in the Chap-

ter I.3 on transverse beam dynamics that the maximum and minimum value of the dispersion function in

a FODO cell can be calculated with the equations

D̂x =
L2
c

ρ

[
1 + 1

2 sin(φ/2)
]

4 sin2(φ/2)
and Ďx =

L2
c

ρ

[
1− 1

2 sin(φ/2)
]

4 sin2(φ/2)
. (I.14.28)

The dispersion function and, thus, the equilibrium emittance can be tuned via the cell length, bending

radius and phase advance. The plots of these functions in Fig. I.14.12 illustrate that as the phase advance

per cell increases, both the maximum and minimum values decrease.

10 20 30 40 50 60 70 80 90 100 110 120 130 140

0

0.5

1

1.5

ϕ / °

D̂
x
,Ď

x
/

m

D̂x

Ďx

Fig. I.14.12: Minimum and maximum values of dispersion in a FODO cell that has been proposed for
FCC-ee as a function of the phase advance per cell.

I.14.5.8.1 Emittance tuning and FODO cell design à la Teng

On the way to low emittance lattices with high brilliance, L.C. Teng presented form factors to calculate

the equilibrium emittance in electron storage rings in [17]. In this publication, FODO cells were treated

as a “bad example” in terms of low emittance, still, the formalism is useful for the design of a FODO cell

delivering a certain value of the equilibrium emittance. In the above mentioned paper, the emittance was

written as

ϵx =
Cq

Jx
γ2θ3 F with F =

ρ2

LB
⟨H⟩dipole . (I.14.29)
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The quantity θ in this specific case refers to the bending angle of a half-cell with length L. If more than

one dipole magnets are installed in a half-cell, θ is the sum of the bending angles of those bending mag-

nets. The same applies for LB, which is the length of all bending magnets in one half-cell. The bending

radius of the dipoles ρ is assumed to be the same for all bending magnets. After some calculations, the

form factor for the FODO cell can be expressed as

FFODO =
1

2 sinφ

5 + 3 cosφ

1− cosφ

L

LB
. (I.14.30)

For φ = 90◦ and φ = 60◦ F is then

F (90◦) = 2.50
L

LB
and F (60◦) = 7.51

L

LB
. (I.14.31)

Equation (I.14.29) in combination with the form factors of Eqs. (I.14.30) and (I.14.31) can be used

for quick analytical estimations during the lattice design phase. Once the beam energy is defined and the

dipole filling factor LB/L has been obtained from a first layout of the FODO cell, a condition for the

bending angle θ can be derived to obtain a certain required value of the beam emittance, in this example

for a phase advance of 90◦

θ3 =
1

2.50

ϵxJx
Cqγ2

LB

L
. (I.14.32)

The bending angle of a full cell is 2θ, and the number of cells required to close the ring becomes

Nc =
2π

2θ
. (I.14.33)

The circumference of the storage ring without straight sections is then C = Nc Lc. If the obtained

circumference is larger than a given limit, the cell length can be scaled down. It is important to keep the

dipole filling factor and the bending angle constant, which means that the length of the dipoles must also

be scaled and their magnetic field increased. Otherwise the value of the emittance will change.

Side note: increasing the magnetic fields also increases the synchrotron radiation power. If the

circumference is below the limit, the cell length can also be scaled up, which decreases the bending

magnetic fields and, thus, reduces the synchrotron radiation power.

Question I.14.9: Assume a reasonable dipole filling factor and Jx = 1. Calculate the bending angle

required to obtain an equilibrium emittance of ϵx = 1nm for an electron beam with the energy of

182.5GeV. How many cells do you need to close the ring? Is this realistic assuming a cell length of

50m?
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I.14.5.9 Summary: Comparison between circular e+ e− colliders and synchrotron light sources

Colliders:

– High beam energy and beam currents lead to tremendous emission of synchrotron radiation.

– FODO structure is used because a high dipole filling factor is required to curb the synchrotron

radiation power.

– Large circumference reduces the local bending radius and decreases synchrotron radiation power.

– The emittance is naturally small due to the large circumference.

– Accelerator performance is measured by the luminosity (see Sec. I.14.10.1)

L =
N1N2nbf

4πσ∗xσ∗y
.

Synchrotron light sources

– Small footprint is desired.

– Accelerator performance is measured by brilliance of electron beams (see Chapter I.10 on syn-

chrotron radiation)

B(λ) =
F (λ)

(2π)2σxσx′σyσy′
∝ 1

ϵxϵy

with photon flux F (λ).

– Low emittance beams are needed for high brilliance.

– Special low emittance lattices are used to achieve low emittance with small facility footprint.

I.14.5.10 How does a typical low-emittance lattice for synchrotron light sources look like?

To reduce the equilibrium beam emittance the fifth synchrotron radiation integral needs to be as small as

possible. Recalling Eqs. (I.14.16) and (I.14.17), the goal is to minimise the dispersion function in places

where the beam is deflected, which is unfortunately the place where the dispersion is created. FODO

cells are obviously not adequate, because of their high dipole filling factor and large dispersion function.

Typical lattice structures designed for low emittances are called achromat structures. Achromatic refers

to the transverse particle position at the beginning and at the end of the cell, which should be independent

of its energy or, in other words, the dispersion function and its derivative vanish.

The prototype of all achromatic lattices is the double bend achromat (DBA) also known as the

Chasman–Green-Lattice [18]. The simplest configuration consists of two bending magnets and five

quadrupoles: one quadrupole between the two bending magnets and two quadrupoles each in front of the

first and behind the second bending magnet. Lattice and optics functions of such an exemplary DBA cell

are shown in Fig. I.14.13. Dispersion, vanishing at the start, is created in the first bending magnet. The

center quadrupole is horizontally focusing and flips the sign of the derivative. Its strength is adjusted such

that the second bending magnet brings the dispersion back to zero. As a consequence of the achromatic

optics, no dispersion suppressors are needed and the drift space in-between cells can be increased to
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Fig. I.14.13: Lattice and optics of an exemplary Double Bend Achromat cell. Dispersion is created by
the first bending magnet and vanishes again after the second one. Flat β-functions in the straight sections
enable constant beam sizes within insertion devices.

make space for insertion devices such as wigglers or undulators for dedicated generation of synchrotron

radiation. As illustrated in Fig. I.14.13, the optics is matched such that the values of αx and αy are small

in the drift spaces and the beam size is nearly constant within the insertion devices.

Low emittance at compact footprints in combination with sufficient space for the installation of

insertion devices made DBA structures to the characteristic lattice of 3rd generation synchrotron light

sources. Such storage rings usually feature the following characteristics:

– Small emittance: ≤ 10 nm,

– Moderate energy spread: ≤ 10−3,

– Long straight sections for insertion devices: ∼ 5m,

– High beam current: > 100mA.

Question I.14.10: To mitigate certain beam instabilities, optics with negative momentum com-

paction factor are being discussed. How would one obtain such an optics with a DBA lattice? Re-

member: the momentum compaction factor is given by αc =
I1
C = 1

C

∮ D(s)
ρ ds.

I.14.5.11 What is the emittance of a DBA structure?

The minimum equilibrium emittance in a DBA lattice is

ϵDBA =
Cq

4
√
15
γ2θ3. (I.14.34)

For a detailed derivation we refer to Ref. [11]. Compared to the emittance of a FODO lattice,

ϵFODO > Cq γ
2 θ3, the emittance of a DBA structure is smaller by a factor of 4

√
15 ≈ 15.5. While

685



I.14.5. Step III: Focusing structure and beam optics

this is already a significant improvement compared to the FODO lattice, the emittance can be reduced

even further. Besides the obvious measures of increasing bending angle (circumference) and considering

lower beam energy, the contribution to I5 can be decreased by detuning the quadrupoles and allowing

dispersion to leak into the former dispersion-free regions. This allows to decrease the peak dispersion in

the centre quadrupole and thus the dispersion in the bending magnets. However, if dispersion leaks into

the straight sections where insertion devices are installed, they also contribute to I5. The dispersion in

the insertion devices has to be carefully controlled, to reduce the overall emittance below the value of

the ideal DBA structure. At KARA (KArlsruhe Research Accelerator), for example, the emittance has

a value of ϵx = 80nm with DBA optics and can be reduced to 60 nm or even 40 nm depending on the

optics.

I.14.5.12 What is an MBA lattice, and what other lattice design measures are taken in state-of-
the-art synchrotron light sources?

The acronym MBA refers to multi-bend achromat. To reduce the emittance even further compared to

the DBA lattice, the approach is to split the bending magnets to increase their number while reducing

their length. In between two bending magnets, β-functions and dispersion are refocused by quadrupoles.

This prevents the dispersion from growing and the contribution to I5 is diminished. The emittance

asymptotically scales with

ϵ ∝ E2

N3
, (I.14.35)

where N is the number of bending magnets per cell [19].

The first further development of the DBA lattice was the triple-bend achromat (TBA) lattice with,

as the name says, three bending magnets per cell. BESSY II in Berlin comprises a TBA lattice: with a

beam energy of 1.7GeV and a circumference of 240m, the equilibrium emittance is about 5 nm, roughly

a third of the value that would have been obtained by a DBA lattice.

Modern synchrotron light sources employ achromat cells with six or seven bending magnets are

used, the multi-bend achromat cells. They are designed to reach the diffraction limit (see Chapter I.10

on synchrotron radiation), which means the emittance of the electron beam is smaller than the one of

the photon beam. Figure I.14.14 shows the optics functions of the unit cell of ESRF-EBS (2015), which

has a 7-bend achromat lattice. Compared to the DBA optics of Fig. I.14.13, the values of the dispersion

function are reduced by one order of magnitude. While keeping the same circumference and beam

energy, the emittance could be reduced from ϵx = 3.8 nm to 0.133 nm.

Modern synchrotron light sources are designed to operate 24/7. Because of full-energy injectors

and top-up injection it is not necessary anymore to ramp the beam energy. As the main storage ring is

designed for one specific beam energy, energy-efficient magnet designs using permanent magnets can

be applied. A closer look at the bending magnets in Fig. I.14.14 reveals that the outer bending magnets

actually consist of five slices. This is no simulation artefact but rather part of the design: a drawing

of this bending magnet is shown in Fig. I.14.15a. The magnet consists of five sections with magnetic

fields ranging from 0.17T to 0.67T. The approach to minimise the emittance via I5 here is to introduce

bending magnets with a non-constant magnetic field along their length, they comprise several sections of

different field strengths. While keeping the total bending angle constant, the idea of such "longitudinal
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Fig. I.14.14: Seven-bend-achromat optics of ESRF-EBS as presented in 2015 [20]. ηx is the dispersion
function, which is usually referred to as Dx in this chapter.

gradient bends" is to have the strongest dipole field where the dispersion is minimum and smaller fields

where the larger dispersion would lead to a greater contribution to I5. The concept is illustrated in

Fig. I.14.15b. An added advantage of these longitudinal gradient bends is the ability to produce hard

X-rays where the magnetic field is large. More concepts of MBA lattices are discussed in detail in the

Chapter I.10 on synchrotron radiation.

Table I.14.3 compares the equilibrium emittances of different electron storage rings with different

lattices, circumference and beam energies.

Table I.14.3: Comparison of equilibrium emittance values of different electron storage rings and their
lattice type, circumference and beam energy [5, 21–25]. The range at MAX-IV refers to different gap
settings of the insertion devices, at KARA for different optics settings.

lattice C in m E in GeV ϵx in nm
LEP II FODO 26 700 104.0 22.0
FCC-ee FODO 97 756 182.5 1.46
KARA (DBA optics) DBA 110 2.5 ∼80
KARA (user optics) DBA 110 2.5 40 to 60
ESRF DBA 844 6.0 4.0
BESSY II TBA 240 1.7 5.0
Sirius 6BA 518 3.0 0.251
ESRF-EBS 7BA 844 6.0 0.133
MAX-IV 7BA 528 3.0 0.200 to 0.330
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Fig. I.14.15: (a) Drawing of a longitudinal gradient bend for ESRF-EBS with five sections of different
magnetic field ranging from 0.17T to 0.67T [20]. (b) Illustration of the longitudinal gradient bend
concept (inspired by [20]): the longitudinal gradient bend has high dipole strength where the dispersion
is minimum and low fields where the dispersion is large.

I.14.5.13 Summary: Electron storage rings

– Equilibrium of quantum excitation and radiation damping leads to equilibrium beam parameters.

– Equilibrium beam emittance increases with beam energy squared:

ϵx =
Cq

Jx
γ2

I5
I2
.

– Electron beams are flat in the sense of ϵy = 0.1% to 1%ϵx.

– The lattice design allows to tailor the equilibrium beam parameters.

– High energy storage rings: use large bending radius ρ (large circumference) and FODO structure

with high dipole filling factor to reduce synchrotron radiation.

– Synchrotron light sources: smaller footprint and room for insertion devices require achromat

structures for (ultra-)low emittance.
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I.14.6 Step IV: Synchrotron radiation losses and RF sections

Calculate the energy loss per turn: electrons radiate, protons only at energies in the TeV range.
Determine the parameters of the RF system: frequency, overall voltage, space needed in the
lattice, distribution of RF sections.

This section presents aspects of the lattice design that are related to the energy loss due to synchrotron

radiation and the recovery of the lost energy. For a detailed discussion of synchrotron radiation see

the corresponding Chapter I.10. For details about cavities and RF systems see the Chapter II.2 on RF

engineering and the Chapter II.5 on superconducting RF cavities.

I.14.6.1 What effect does the energy loss due to synchrotron radiation have on the orbit?

The continuous emission of synchrotron radiation in the bending magnets has a strong effect on the closed

orbit. Take, for example, a look at Fig. I.14.16, which exhibits the measured beam orbit in LEP: the plot

has to be read from the right to the left (direction of motion of the beam) and shows the offset of the beam

relative to the design orbit for each beam position monitor along the lattice. The transverse position of

the particle is given by the sum of the amplitude of the betatron oscillation xβ and the dispersive offset

xδ (see Section I.14.7.1)

x(s) = xβ +Dxδ︸︷︷︸
xδ

. (I.14.36)

The particles of each beam, both electrons and positrons, lose energy because of the emission of syn-

chrotron radiation. Therefore, the relative energy offset δ increases and the orbit moves toward the inside

of the ring in the dispersive arc sections. In the RF sections, the energy of the beam is restored such

that the beam is pushed to the outside at the beginning of the next dispersive section reaching nominal

energy and design orbit in the centre of the arc. As LEP had four RF sections, this sawtooth orbit seen

in Fig. I.14.16 features a four-fold symmetry.

Fig. I.14.16: The orbit offsets in LEP measured at each beam position monitor show the well-known
sawtooth shape resulting from the energy loss due to synchrotron radiation and the energy gain in the RF
cavities [26]. The direction of motion of the beam is from right to left.
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The discussion above shows two things:

1. Should the beam energy not be restored in the RF cavities, the particles will drift to the inside of

the ring and eventually hit the vacuum chamber, where they will be lost;

2. The more RF sections are distributed along the ring, the smaller the maximum orbit excursions

become. This is of particular importance for high-energy storage rings with high beam energies

and huge synchrotron radiation power such as LEP. If the number of RF sections is restricted,

modern high-energy lepton storage rings like FCC-ee foresee decreasing magnetic fields along the

arc sections that prevent the orbit from drifting. Such an adjustment of the local magnetic field to

the local beam energy is referred to as magnet tapering.

I.14.6.2 Can we estimate the energy loss per turn from our basic cell?

The energy loss per turn can be calculated with Eq. (I.14.22) and is proportional to E4I2. Assuming

the total number of dipoles in the ring is NB and only a single type is used with constant magnetic field

without fringe fields, the second synchrotron radiation integral becomes

I2 =
∮

1

ρ2
ds =

NBLB

ρ2
. (I.14.37)

In particular for storage rings with large bending radii ρ, this allows a first analytic estimation of the

energy loss per turn as long as beam energy and particle type are well defined.

According to Eq. (I.14.22) the energy loss per turn increases with the fourth power of the beam

energy. At the same time Cγ contains the reciprocal mass of the emitting particle. As a consequence,

large particle masses suppress the emission of synchrotron radiation. Table I.14.4 summarises the energy

loss per turn in storage rings with different particle types and beam energies.

Table I.14.4: Energy loss per turn U0 in storage rings with different particle species and beam energies
E.

particle E (GeV) U0 (MeV)
LHC p 7000.0 0.01
FCC-hh p 100 000.0 5.00
KARA e− 2.5 0.63
LEP e− 100.0 2850.00
FCC-ee e− 182.5 9000.00

I.14.6.3 How can we restore the beam energy?

The Lorentz force for charged particles,

F⃗L = q(E⃗ + v⃗ × B⃗), (I.14.38)

shows that magnetic fields only act in a direction perpendicular to the particle velocity vector. As a con-

sequence, only electric fields can be used to increase the particle energy. The beam energy is increased
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Fig. I.14.17: The synchronous phase ϕs is the RF phase at which the energy gain ∆U = qVRF equals
the energy loss per turn U0. (a) shows the case for positively charged hadrons, (b) for electrons.

or restored in special sections where RF cavities are installed. They contain the oscillating electric fields

in the accelerator.

The energy gain in the cavities ∆U depends on the voltage VRF = V0 sin (ϕRF − ωRFt) in the RF

cavity and the phase ϕRF at the time when the particle passes the cavity. The phase at which the energy

gain in the RF cavity equals the energy loss per turn U0 is referred to as the synchronous phase ϕs. We

can then write

∆U = qV0 sin (ϕs − ωRFt)
!
= U0. (I.14.39)

The synchronous phase depends on the charge of the particles and the amount of energy emitted. For

positively charged hadrons, the energy loss is only significant at high energies in the TeV range. The

synchronous phase is thus slightly below π as illustrated in Fig. I.14.17a. In the case of negatively

charged electrons with a large energy loss per turn, shown in Fig. I.14.17b, the synchronous phase is in

the range from 3π/2 to 2π.

Question I.14.11: As Fig. I.14.17 indicates, there are always two phases satisfying Eq. (I.14.39).

Can you specify under which conditions either of the solutions is applied?

I.14.6.4 How many RF cavities do we have to install? What voltage is required?

Concerning the design of the RF sections, we already discussed in Section I.14.6.1 that a well distributed

high number of RF sections helps to reduce the amplitude of the sawtooth orbit. Not only the localisa-

tion of the RF sections, but also the choice of the total RF voltage, necessitate certain considerations:

Obviously, the sum of all RF cavity voltages in the storage ring has to be larger than the energy loss per

turn divided by e, otherwise the particle energy cannot be restored. Another important aspect to consider

is the RF acceptance, which is directly affected by the value of the RF voltage. The RF acceptance is

defined by the maximum momentum deviation a particle can assume without leaving the stable area in
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longitudinal phase space, the so-called RF bucket, and can be defined by [8]

δRF =
2Qs

h|η|

√
1 +

(
ϕs −

π

2

)
tanϕs, (I.14.40)

where h is the harmonic number, η the phase slip factor (see Chapter I.4 on longitudinal beam dynamics)

and Qs is the synchrotron tune

Qs =
1

2π

√
−eVRF

cp0

ωRFC

c
η cosϕs ∝

√
VRF. (I.14.41)

Combining Eqs. (I.14.40) and (I.14.41) reveals that the RF acceptance is proportional to the square root of

the RF voltage, δRF ∝ √
VRF. Providing just sufficient RF voltage to exactly compensate for the energy

loss (i.e., ϕs → π/2), the RF bucket becomes infinitesimally small and only particles with exactly the

design momentum could be stored in the bucket as δRF → 0. In order to allow phase focusing and stable

storage of particles with a certain momentum deviation, the RF voltage has to be increased. This is of

particular importance for light sources, which commonly operate in the low GeV energy range, where

lifetime is limited by the Touschek effect. The Touschek effect describes the scattering of two particles in

the bunch resulting in a transfer of transverse momentum to longitudinal momentum. If the longitudinal

momentum gain is larger than the momentum acceptance, the particle is kicked out of the bucket and,

in case of an electron storage ring, would be lost. In the ideal case, the RF voltage is set to such a high

value that the RF acceptance is larger than the momentum acceptance imposed by lattice and optics.

I.14.6.5 Could you give an example of how the RF cavities are integrated on site?

High performance cavities have a superconducting surface coating and therefore have to be installed

in a cryomodule that usually contains several cavity units. The cryomodule currently foreseen for the

400MHz cavities of FCC-ee has a length of about 12m and will contain four two-cell cavities [27]

as illustrated in Fig. I.14.18. In the RF section the FODO cell length is increased to about 100m. In-

between two quadrupole magnets four cryomodules will be installed resulting in eight cryomodules per

FODO cell [28]. Civil engineering has to include caverns for the cryoplants that supply the cryomodules

with liquid helium and klystron galleries where the RF power is generated. As an example, the tunnel

cross section proposed for the FCC-ee RF section is shown in Fig. I.14.19 [28]. From lattice design point

of view, dispersion-free straight sections have to be included, where the cavities are installed.

I.14.6.6 Why do RF cavities have to be installed in dispersion-free sections?

RF cavities have to be installed in dispersion-free sections of the ring to avoid coupling between the lon-

gitudinal motion (energy) and the transverse motion via dispersion. Otherwise, so-called synchrobetatron

resonances are excited, if following condition for the tunes is fulfilled

mQx + nQy + lQs = integer withm,n, l ∈ N. (I.14.42)

Synchrobetatron resonances reduce lifetime drastically and therefore limit the performance of storage

rings [19].
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Fig. I.14.18: The figure shows a drawing of a cryomodule for four 400MHz two cell cavities as foreseen
for FCC-ee [27, 28]. In-between two quadrupole magnets four cryomodules will be installed.
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Fig. I.14.19: This picture shows an illustration of the tunnel cross section of the RF section proposed for
FCC-ee [28]. Above the collider tunnel a separate tunnel housing the klystron gallery is foreseen.
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I.14.7 Step V: Dispersion suppressors

Open the arc lattice to install straight sections for RF, interaction regions and or other inser-
tions. Install dispersion suppressors to match the dispersion function to zero.

This sections discusses how dispersion-free sections can be obtained in a storage ring in case the basic

cell is not achromatic. For details about the dispersion function, see the Chapter I.3 on transverse beam

dynamics. Dispersion suppressor concepts are for example discussed in the references [7, 9, 10, 19, 29].

I.14.7.1 Remind me: what is dispersion in context of particle accelerators?

The equation of motion for a particle with ideal momentum is given by Hill’s equation, which is a

homogeneous differential equation. In case the particle has a momentum offset, an additional term is

added on the right hand side and the equation becomes inhomogeneous:

x′′ + x

(
1

ρ2
− k1

)
=

∆p

p0

1

ρ
. (I.14.43)

The solution for the transverse position is given by the sum of the homogeneous solution xβ(s) and the

particular solution xδ(s) as stated in Eq. I.14.36. The dispersion function is then defined as the particular

solution of the inhomogeneous Hill’s equation normalised to the relative energy offset δ

Dx(s) =
xδ(s)

δ
. (I.14.44)

It can be understood as a special orbit a particle with δ = 1 would have. Clearly, particles with δ = 1

could not be stored in the storage ring. Typical values for the energy offset are δ ≈ 10−3. At a position

where the dispersion function has a value of D = 1m the orbit offset would then be xδ = 1mm.

As particles with energy offset take a different orbit with a larger transverse amplitude, dispersion

contributes to the beam size

σx(s) =
√
ϵxβx(s) +D2

x(s)δ
2 . (I.14.45)

As a consequence, the dispersion functions have to vanish at positions where minimum beam sizes are

required, as for example the interaction point of a collider.

Question I.14.12: We already discussed that the dispersion function needs to vanish in RF cavities

(to prevent synchro-betatron resonances) and at collision points of colliders. If you think about light

sources, why do you think undulators should be installed in dispersion-free sections as well?

I.14.7.2 What is the basic idea of a dispersion suppressor and when do we need it?

Light sources usually have achromatic lattices, which means the dispersion function and its derivative

vanish at the beginning and at the end of the cell. In this case no extra measures have to be taken.

Particle colliders on the other hand with high-energy beams are built of FODO cells, where the dispersion

function is non-zero everywhere if bending magnets are installed.
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Fig. I.14.20: (a) Ten FODO cells in an arc section with 50m length and 60◦ phase advance in both planes.
The dispersion function oscillates regularly in phase with the horizontal β-function. (b) Example of an
unmatched 60◦ optics: instead of following the periodic solution of the straight FODO cells indicated by
the dashed line, the dispersion function starts beating in the absence of the bending magnets. Such an
optics does not permit the installation of RF cavities or interaction regions.

Figure I.14.20a shows a toy FODO lattice consisting of ten arc cells with a length of 50m each and

a 60◦ optics. The periodic solution of the dispersion function shows a regular oscillation in phase with

the horizontal β-function. As already discussed in Section I.14.5.8, the maximum an minimum values

of the dispersion function can be calculated analytically and depend on cell length, bending radius and

phase advance. In FODO cells of a straight section without any dipole magnets the periodic solution of

the dispersion function is zero. If arc and straight section FODO cells would just be attached to each

other, the transition from the arc to the straight cell solution would be unmatched. As long as the weak

focusing of the dipoles is negligible the β-functions are not disturbed, but the dispersion function starts

beating around the periodic solution as illustrated in Fig. I.14.20b. Such an optics does not permit the

installation of RF cavities or interaction regions, as the condition Dx = D′
x = 0 is not fulfilled. In

order to have a smooth transition from the oscillating solution of the arc sections to the zero-solution

of the straight cells, a lattice section has to be installed that matches the dispersion function of the arc

cells with the one of the straight cells. Such an insertion is called a dispersion suppressor as it brings

the non-zero dispersion function to zero. Depending on the arc layout and given boundary conditions

different arrangements of magnets can be chosen to design a dispersion suppressor:

– Quadrupole-based schemes: Since dispersion is "only another orbit" quadrupoles can be used to

match dispersion;

– Dipole-based schemes: It is the dipoles that introduce dispersion in the first place. Clever ar-

rangements can be used to suppress it again;

– Combined schemes: Of course both concepts can be combined to comply with certain boundary

conditions or for larger flexibility.
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Fig. I.14.21: Transition of an arc section into a straight section using a quadrupole-based dispersion
suppressor. In the last two arc cells the effect on the β-functions is visible.

I.14.7.3 Tell me more about quadrupole-based dispersion suppressors!

The dispersion function Dx and its derivative D′
x = dDx/ds can be suppressed solely by matching

the strengths of quadrupole lenses. This scheme of dispersion suppressor can be considered as "the

straight forward one" since the quadrupoles of the cells in the transition region between arc and straight

sections usually are equipped with individual power supplies and no other measures have to be taken

concerning the magnetic lattice and the cell design. However, quadrupoles also have an influence

on the optics functions and thus the phase advance. As a consequence, also the β-functions (βx
and βy) and α-functions (αx and αy) have to be re-matched, which means at least six individually

powered quadrupoles are needed for this scheme. If also phase advances should be matched, additional

quadrupoles have to be included. An example is given in Fig. I.14.21 for a lattice consisting of 50m long

FODO cells and a 60◦ optics. The last six quadrupoles of the arc section have been powered individually

and their strengths have been matched to suppress the dispersion and its derivative while restoring the

optics in the cells of the straight section. Figure I.14.21 also shows the effect on the β-functions resulting

from the matching of the quadrupole strengths.

Advantages of the quadrupole-based dispersion suppressor scheme are:

+ It is easy to implement;

+ The geometry of the ring is not affected;

+ It is a flexible scheme that works for any phase advance per cell;

+ It can be used to connect different lattice structures and/or cells with different phase advances.

Challenges coming with the quadrupole-based dispersion suppressor scheme are:

− Many additional power supplies are required (expensive);

− The individual strength of the quadrupoles can be higher, which might require a different hardware

design;
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(a) 60◦ optics
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(b) 90◦ optics

Fig. I.14.22: Illustration of the underlying principle of the half-bend dispersion suppressor scheme in a
toy lattice consisting of four regular arc cells and six half-bend cells: the dispersion function starts to beat
around the periodic solution in the half-bend cells, indicated by the dotted line, as soon as the half-bend
cells are reached. It requires a phase advance of 2π for one oscillation. At the point where Dx = 0 and
D′ = 0 the half-bend cells will be cut off and replaced by the empty FODO cells of the straight section.

− The optics is affected. Tunes or local phase advances might have to be restored;

− Depending on number and distance of the used quadrupoles, the β-function might reach high

values that require a modification of the vacuum chamber for larger aperture.

I.14.7.4 Tell me more about the half-bend dispersion suppressor!

Dipole-based dispersion suppressors are the most elegant way to match the dispersion to zero as long

as the boundary conditions allow to implement such a scheme. As the name already says, a half-bend

dispersion suppressor consists of FODO cells with bending magnets of exactly half the bending angle

compared to the dipoles in the regular arc cells. As a consequence of Eq.s (I.14.28), the minimum and

maximum values of the periodic solutions are half. If now the half-bend cells are attached to the regular

arc cells, the transition of the dispersion function from the periodic solution of the arc is mismatched

to the one in the half-cells. As in case of the straight cells, the dispersion function begins to beat. The

difference between the two cases is the amplitude of the beating: for the half-bend cells the values

oscillate between Dx = D̂x and Dx = 0 instead of Dx = D̂x and Dx = −D̂x. Figure I.14.22 illustrates

the dispersion beat both for a 60◦ optics (a) and a 90◦ optics (b). The periodic solutions in the half-bend

cells are again indicated by the dotted line. Also important to note is the period length of the beating:

comparing Fig. I.14.22a and Fig. I.14.22b shows that the period length depends on the FODO cell phase

advance. It requires a phase advance of 2π to complete one period: for a phase advance of φx = 60◦

per FODO cell the period length is six cells, for a phase advance of φx = 90◦ it is four cells. Still, for

both the 60◦ and the 90◦ optics locations can be identified, where Dx = 0 and D′ = 0: for the 60◦
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Fig. I.14.23: Transition of an arc section to a straight section using a half-bend dispersion suppressor to
match the dispersion function. In-between four arc cells with 90◦ optics and four straight cells two half-
bend cells serve as dispersion suppressor. The dispersion function starts beating as soon as the half-bend
cells are reached. After the two half-bend cells the dispersion and its derivative are suppressed without
affecting the β-functions. The small differences of the β-functions in arc and straight section originate
from the geometric focusing of the bending magnets in the arc section.

optics at s = 350m and for the 90◦ optics at s = 300m. The idea is therefore to use this beating to

suppress the dispersion function: after half an oscillation, where the dispersion function reaches zero, the

half-bend cells are cut off and replaced by the straight section cells. Hereby, a matched optics is obtained

as illustrated in Fig. I.14.23 for the example of a 90◦ optics. After two half-bend cells the dispersion

reaches zero which corresponds to the periodic solution of the dispersion function in the straight section

cells and dispersion beating is prevented. Since no quadrupoles have been involved, the β-functions are

not affected by the half-bend dispersion suppressor.

The concept of the half-bend dispersion suppressor only works, if after a certain number of FODO

cells the dispersion function really reaches zero. In other words, it only works for certain values of the

FODO cell phase advance. In the remaining part of this section, the conditions are being discussed that

have to be fulfilled for this scheme. For the derivation of these conditions and a detailed description of the

mathematics behind dispersion suppression we refer to [29] or [9]. In general, the dispersion suppressor

has to fulfill two requirements: Firstly, the dispersion function Dx has to be zero and, secondly, its

derivative D′
x has to be zero. If we require Dx = 0 we get the condition

2θDS sin2
(nφx

2

)
= θB, (I.14.46)

where n is the number of FODO cells with reduced bending angle, θDS is the dipole bending angle in the

dispersion suppressor cells and θB the bending angle in the arc cells. In case of the half-bend dispersion

suppressor the bending angle θDS = θB/2 which simplifies Eq. (I.14.46) to

sin2
(nφx

2

)
= 1. (I.14.47)
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Fig. I.14.24: Plots of the angular functions in Eq. (I.14.47) and Eq. (I.14.48) for 90◦ and 60◦ phase
advance per FODO cell depending on the cell number. For 90◦ phase advance both conditions are
fulfilled for n = 2, for 60◦ for n = 3.

For D′
x = 0 the condition

sin (nφx) = 0 (I.14.48)

can be derived. Both conditions are fulfilled, if

nφx = kπ with k = 1, 3, . . . , (I.14.49)

or in words, when n half-bend cells have phase advance of an odd multiple of π. Figure I.14.24 shows

the angular functions of Eq. (I.14.47) and Eq. (I.14.48) for the two examples of φx = 90◦ and 60◦ FODO

cell phase advance. For φx = 90◦, the two conditions are fulfilled for n = 2, which means two half-bend

cells have to be employed as discussed above. For φx = 60◦, the conditions are fulfilled for n = 3, so

three cells are required. More examples are provided in the summary table of Section I.14.8.

I.14.7.5 Are there more dipole-based schemes?

The half-bend dispersion suppressor is just one special set of solutions that match the dispersion function

and its derivative to zero. A more general discussion, provided in [29], also leads to a different scheme,

the missing-bend scheme. If the dipole strength in the suppressor cells does not have to be uniform,

the dispersion function can for any phase advance be suppressed within two FODO cells, which in this

context will be called two-cell dispersion suppressor with diverse bending fields.

I.14.7.5.1 Missing-bend scheme

The missing-bend scheme works similarly to the half-bend scheme. The dispersion suppressor consists

of N cells in total. Instead of bending magnets at half field strength, the initial perturbation of the

dispersion function is created by a number of m cells in which the dipoles are removed completely.

Those cells are followed by n cells of uniform bending strength. The bending strength in those n cells

can be the same as in the regular cells, but it also can be different.
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Fig. I.14.25: Transition of an arc section into a straight section in an example lattice consisting of 50m
long FODO cells with a 60◦ optics. A missing-bend dispersion suppressor scheme is used. Note the
empty cell followed by one regular FODO cell.

As for the half-bend scheme, conditions can be derived for which dispersion and its derivative

vanish. For the phase advance, the condition is

(2m+ n)φx = (2k + 1)π (I.14.50)

and for the number of regular cells after the gap

sin
nφx

2
=

1

2
for k = 0, 2, . . . or sin

nφx

2
= −1

2
for k = 1, 3, . . . . (I.14.51)

An example of a missing-bend dispersion suppressor is shown in Fig. I.14.25, where the phase

advance per cell is 60◦. The gap consists of one empty FODO cell followed by one cell with bending

magnets with the same strength as in the arc. As in case of the half-bend scheme, the β-functions are not

affected here as the quadrupoles have not been touched. Solutions for other phase advances are provided

in the summary table of Section I.14.8.

I.14.7.5.2 Two-cell dispersion suppressor scheme with diverse bending fields

The half-bend and missing-bend dispersion suppressors only work for specific values of the phase ad-

vance. In both schemes all dipoles of the suppressor section have a uniform strength. If instead different

bending angles are allowed in the suppressor cells, the dispersion and its derivative can be suppressed

within two cells for any FODO cell phase advanceφx as long as the following conditions are fulfilled [19]

θB,A = θB

(
1− 1

4 sin2(φx/2)

)
, θB,S =

θB

4 sin2(φx/2)
. (I.14.52)
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Table I.14.5: Examples of bending strengths in the two-cell dispersion suppressor scheme for different
FODO cell phase advances φx. θB is the nominal bending angle, θB,A the one in the FODO cell next to
the arc, θB,S the one in the cell next to the straight.

φx θB,A/θB θB,S/θB
108◦ 0.62 0.38
90◦ 0.50 0.50 corresponds to half-bend scheme
76◦ 0.34 0.66
60◦ 0.00 1.00 corresponds to missing-bend scheme
45◦ -0.71 1.71 requires reverse bends and θB,S > θB

θB is the nominal bending strength of the regular arc dipoles, θB,A is the strength of the dipoles in

the FODO cell next to the arc cells and θB,S is the one in the FODO cell next to the straight section.

Table I.14.5 summarises the values of θB,A and θB,S for different phase advances. For φx ≤ π/3 reverse

bends with negative strength are used in the cell next to the arc cells. In addition, the bending strength

in the other cell becomes larger than the nominal bending strength, which might be critical in case of

superconducting magnets, where the nominal bending strength already is defined by the technical limits.

I.14.7.6 What are advantages and disadvantages of dipole-based schemes? When do we need
hybrid schemes?

The big advantage of dipole-based dispersion suppressors is they do not affect the optics. Because of

the large bending radius, the weak focusing effect of the dipoles is negligible and modifications of the

bending strength has very little impact. Therefore, aperture requirements stay the same and no extra

quadrupole hardware has to be designed. Moreover, the optics does not need to be re-matched and no

additional power supplies are required for free quadrupoles. On the other hand, dipole magnets with

modified field strength are required. The corresponding change of bending radius has a strong impact on

the geometry of the ring, hence, dipole-based schemes need to be included to the design at an early stage.

Dipole-based schemes are always optimised for one specific optics with specific phase advance per cell.

An optics change leading to a different phase advance per cell would require different bending angles

for dispersion suppression, which would imply a modification of the geometry. For simulations this is

not a problem, but for a real machine the change of phase advance would imply major reconstruction

work. If different optics are foreseen in operation, they already need to be taken into account during

design phase. One may eventually require additional quadrupoles to remain flexible. This is where the

hybrid schemes come into play. In general, one of the two dipole-based schemes (missing or half-bend

suppressor) is combined with a certain number of individual quadrupole lenses to guarantee the flexibility

of the system with respect to phase advance changes in the lattice, fine-tuning of optics and tune and to

keep the size of the β-function moderate. Also, if the footprint of a new accelerator is pre-defined (e.g.

in the case of an existing tunnel), the dipole-based schemes cannot be fully exploited and need to be

supported by quadrupoles. For lepton storage rings, schemes with reduced field at the end of the arc

sections are beneficial as they reduce the level of synchrotron radiation entering from the arcs into the

straight section. This is of particular interest, if there is an experimental region in the straight section.
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I.14.8 Summary: Dispersion suppressor schemes

Quadrupole-based scheme:

+ Easy to implement

+ Does not affect the geometry of the ring

+ Flexible scheme that works for any phase advance per cell

+ Can connect different lattice structures and/or cells with different phase advances

− Additional power supplies are required

− The quadrupole strength can be higher requiring a different hardware design

− Affects the optics: tunes or local phase advances might have to be restored

− Large β-function might require a modification of the vacuum chamber for larger aperture

Dipole-based schemes:

+ The optics is not affected as the quadrupoles are not touched

+ Reduced synchrotron radiation in the straight section due to reduced bending strength

− Affect the geometry thus not flexible for optics changes

− Half-bend and missing-bend scheme are optimised for specific values of the phase advance:

Phase advance Suppressor cells Empty cells Cells with dipoles Bending angle

φx N m n θDS

108◦ 5 0 5 θB/2

90◦ 2 0 2 θB/2

60◦ 3 0 3 θB/2

45◦ 4 0 4 θB/2

60◦ 2 1 1 θB

45◦ 3 1 2 θB/
√
2

30◦ 4 2 2 θB

77◦ 4 3 1 -θB/1.25

Hybrid schemes:

✓ Combination of dipole-based scheme with additional quadrupoles

✓ Reduces the effect on the optics while maintaining flexibility for optics changes and fine-tuning

✓ Usually the way to go!
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I.14.9 Step VI: Matching sections

Install matching sections where beam parameters have to be matched over short distances,
such as at the transition of two different lattice structures, – and match the optics.

In this section we mainly discuss the use case of matching sections and a few examples. For a more

detailed discussion including analytic solutions that can be of considerable help in guiding numeric

matching routines see for example [29].

I.14.9.1 What is a matching section and what do I need it for?

Each periodic lattice structure has its periodic solution for the optics functions. Whenever we combine

two different lattice structures we need a matching section in between to adapt the optics functions

between the two lattices from one periodic solution to the other. Examples are the end of a transferline,

low-beta insertions in colliders and the interface of arc and straight sections. In the matching section the

quadrupoles are powered individually to allow individual strengths. The magnetic lattice itself can but

does not need to be altered.

I.14.9.2 Can you give us some examples?

Figure I.14.26a shows the end of an arc section and the beginning of a straight section in an early lattice

version of FCC-ee. The cell length is 54m in the arc and 50m in the straight section. The phase advance

per cell is φx = 90◦ and φy = 60◦ in both arc and straight section. The last two cells of the arc section

are half-bend cells to suppress dispersion (blue background). The five quadrupoles of the first three

straight cells are powered individually (brown background). This is the matching section that is used to

match the optics from the 54m cell to the 50m cell, which can be recognised at about s = 480m, where

the vertical β-function is slightly larger than before.

The same lattice is shown in Fig. I.14.26b now with a 60◦/60◦ optics. In this case the two half-

bend cells are not sufficient anymore to suppress the dispersion function. Now the dispersion suppressor

is supported by additional four individually powered quadrupoles leading to the irregular oscillation of

the β-functions in the blue deposited area.

Figure I.14.27 shows a similar but more complicated example from an early lattice of the FCC-

ee top-up booster synchrotron. Its footprint follows the layout of FCC-hh. The fixed length of the arc

section with bending radius of ρ = 13.15 km and the required values for the beam emittance lead to a

cell length of 54m that applies for the first five cells until the first blue vertical line. FCC-hh foresees

a hybrid bend-quadrupole dispersion suppressor scheme with a length of 566m and a larger bending

radius of ρ = 15.06m (until second vertical blue line). In order to fit the tunnel geometry and the section

length, the cell length has to be increased to 56.6m. In the following straight section a cell length of

100m was chosen to allow for more space for the cryomodules of the RF cavities. The first two cells of

the straight section have an intermediate length of 75m to support the matching of the optics functions

in the transition region. In summary: there are three different types of FODO cells and the optics has to

be matched several times including the suppression of the dispersion function.

703



I.14.9. Step VI: Matching sections

Bastian Haerer (KIT) JUAS’24 - Accelerator Design 113

Example: Change of phase advance per cell

0.0 249.45862 498.91724 748.37585
                               s (m)

FCC-ee Matching Section

0.0

20.

40.

60.

80.

100.

120.

140.

160.

βx
(m

),
βy

(m
)

β x β y

0

50

100

150
�

x
,�

y
/

m

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

s / m

D
x

/
m

�x

�y

Dx

half-bend DS

(4 quadrupoles)

matching section

(5 quadrupoles)

• μ = 90∘
54 m arc cell  50 m straight cell⇒

0.0 249.45862 498.91724 748.37585
                               s (m)

FCC-ee Matching Section

0.0

20.

40.

60.

80.

100.

120.

140.

160.

βx
(m

),
βy

(m
)

β x β y

0

50

100

150

�
x
,�

y
/

m

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

s / m

D
x

/
m

�x

�y

Dx

• switch to μ = 60∘

half-bend DS needs to be 
supported by quadrupoles

(a)

Bastian Haerer (KIT) JUAS’24 - Accelerator Design 113

Example: Change of phase advance per cell

0.0 249.45862 498.91724 748.37585
                               s (m)

FCC-ee Matching Section

0.0

20.

40.

60.

80.

100.

120.

140.

160.

βx
(m

),
βy

(m
)

β x β y

0

50

100

150

�
x
,�

y
/

m

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

s / m

D
x

/
m

�x

�y

Dx

half-bend DS

(4 quadrupoles)

matching section

(5 quadrupoles)

• μ = 90∘
54 m arc cell  50 m straight cell⇒

0.0 249.45862 498.91724 748.37585
                               s (m)

FCC-ee Matching Section

0.0

20.

40.

60.

80.

100.

120.

140.

160.

βx
(m

),
βy

(m
)

β x β y

0

50

100

150

�
x
,�

y
/

m

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

s / m
D

x
/

m

�x

�y

Dx

• switch to μ = 60∘

half-bend DS needs to be 
supported by quadrupoles

(b)

Fig. I.14.26: Examples for transitions from an arc section into a straight section. Plot (a) shows a
90◦ optics. The last two cells of the arc consist of two half-bend cells to suppress dispersion (blue
background). Since the cell length is 54m in the arc and 50m in the straight section a matching section
consisting of five individually powered quadrupoles (brown background) is used to match the optics. (b)
shows the same lattice with a 60◦ optics. In this case three half-bend cells would be needed to suppress
dispersion, therefore four additional free quadrupoles in the dispersion suppressor support the matching
of the optics.

The first matching section is located in the first three of the 56.6m cells (brown background)

consisting of six individually powered quadrupoles to match βx,y, αx,y, Dx and D′
x. The last four cell of

the arc are work as a quadrupole-based dispersion suppressor consisting of eight individually powered

quadrupoles (blue background). In principle, the number of quadrupoles would be sufficient to again

match six parameters. However, since the FODO cells of arc and straight section are very different

in length and thus have very different periodic solutions, the minimum number of quadrupoles would

lead to large values of the β-functions in the transition region. To reduce their values with respect to

aperture requirements the additional matching section with intermediate cell length and additional four
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quadrupoles has been added (brown background).

Fig. I.14.27: Transition region from the arc section to the RF straight section in an early version of the
FCC-ee full-energy top-up booster synchrotron (adapted from [30]): different cell lengths require several
matching sections (brown background) and a quadrupole-based dispersion suppressor (blue background).
Details are described in the text.

Question I.14.13: What is the difference between a matching section and the quadrupole-based

dispersion suppressor scheme we discussed earlier?

I.14.10 Step VII: Interaction regions

Install an interaction region, where the beams will be collided. An interaction region must be
in a straight section that is dispersion-free and consists of a drift space for the detector, final
focus quadrupoles to obtain minimum β-functions and matching sections on each side. Modern
layouts, especially for linear colliders, also include local chromaticity correction schemes.

This section discusses the luminosity as the key performance parameter and the integration of interaction

regions and related aspects that affect the design of interaction regions. More information on the lattice

design of interaction regions can be found in [9] or [19].

I.14.10.1 Remind me: what is luminosity?

Luminosity is a measure for the number of particle collisions per area and time and is therefore one of

the most important parameters of a particle collider. The production rate of a certain physics event is

determined by the product of the event’s cross section σp multiplied by the collider’s luminosity L

dNp

dt
= σpL. (I.14.53)
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For head-on collision and Gaussian shaped bunches the luminosity is given by

L =
N1N2fnb
4πσ∗xσ∗y

=
1

4πe2fnb

I1I2
σ∗xσ∗y

. (I.14.54)

N1 and N2 describe the numbers of particles in the two colliding bunches. Alternatively, the bunch

currents I1 and I2 can be used for the calculation. f is the revolution frequency and nb is the number

of bunches per beam. σ∗x and σ∗y are the transverse beam sizes at the interaction point. The design

parameters of the LHC required for the calculation of the luminosity are summarized in Tab. I.14.6.

According to Eq. (I.14.54) the LHC’s head-on luminosity would be LLHC,HO = 1.16 × 1034 cm−2,

slightly larger than the nominal luminosity of LLHC = 1.00 × 1034 cm−2, that includes the luminosity

reduction due to the crossing angle at the interaction point (see Sec. I.14.10.2).

Table I.14.6: Summary of LHC parameters required for the calculation of the luminosity.

β-function at collision point β∗x,y 0.55m

beam emittance ϵx,y 5× 10−10m
beam size at collision point σ∗x,y 17 µm
revolution frequency f 11.245 kHz
number of bunches nb 2808
beam current I 584mA

Instead of the sometimes called instantaneous luminosity discussed above, often the integrated

luminosity is mentioned. Luminosity integrated over time is a measure for the number of events produced

Lint =

∫
Ldt = Np/σp. (I.14.55)

When knowing the integrated luminosity, multiplication with the cross sections allows to draw direct

conclusions about how much data of a specific event is collected. As the cross section is a measure of the

probability for the occurrence of a specific event, it is a constant value determined by the properties of the

particles and interactions involved. Thus, for a higher production rate the luminosity has to be increased.

Especially for the observation of rare decay events with very small cross sections, high luminosity is

required to gain sufficient amount of statistics.

I.14.10.2 What are the steps to maximise luminosity? What are the limitations?

Recalling Eq. (I.14.54), the luminosity basically describes the density of the particle bunches at the col-

lision point times repetition rate of bunch crossings. For highest luminosities, both particle density and

repetition rate have to be as large as possible.

The repetition rate strongly depends on the geometry of the collider. In circular colliders, the rep-

etition rate depends on revolution frequency and the number ob bunches per beam. In linear colliders,

where the bunches only cross once, the repetition rate is determined by the potential of the injectors to

produce new bunches. In a linear collider the repetition rate is typically in the range of 5Hz to 100Hz

in contrast to tens of kHz in the case of circular colliders [31]. A related advantage of circular collid-
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ers is that they can provide support several experiments at the same time. Operating two experiments

at once doubles the crossing rate and thus also doubles the integrated luminosity. Moreover, if the ex-

periments are conducted by different research collaborations using different detector designs, such as

ATLAS and CMS at the LHC, they can cross-check their results and limit systematic effects in the mea-

surement results. However, each additional experiment incurs costs for detector design and development,

construction, staffing, operation and so on.

In case of circular colliders, the revolution frequency of the bunches is determined by the circum-

ference of the storage ring. Therefore, in order to increase the repetition rate, the number of bunches must

be maximised. A different layout choice sets the limit for this maximum: if a single vacuum chamber

is used to store both beams, measures have to be taken to locally separate the bunches and prevent para-

sitic collisions outside of the detectors. The details of such separation schemes are beyond the scope of

this discussion. Two separation schemes that have been implemented at LEP are for example described

in [32]. Sticking to this example, the number of bunches in LEP was limited to 8 bunches per beam

(L = 1.2× 1032 cm−2 s−1), while the double-ring collider LHC can store 2808 bunches per beam in the

same tunnel (L = 1.0 × 1034 cm−2 s−1). It has to be kept in mind, however, that with a high number

of bunches the beams have to be collided at a crossing angle to avoid unwanted crossings in the part of

the interaction region where the bunches share the vacuum chamber. A crossing angle reduces the bunch

overlap and thus the luminosity. The calculation of the luminosity reduction factor is presented in [33].

At the LHC, a crossing angle of 285 µrad leads to a luminosity reduction of 0.835 and thus reduces

luminosity from L = 1.2× 1034 cm−2 s−1 to 1.0× 1034 cm−2 s−1 [33].

Advanced crossing schemes aim to recover or even surpass the head-on luminosity. In this context,

we would like to mention the crab-crossing scheme using crab cavities to rotate the colliding bunches,

thereby increase the bunch overlap again and thus suppress luminosity loss. It will be implemented

in the LHC high luminosity upgrade [34], for more information we refer to [35, 36]. Also, we would

like mention the crab-waist collision scheme, which is considered attractive for future lepton storage-

ring colliders, as it promises to suppress resonances and allows to increase luminosity by 1-2 orders of

magnitude without increase in beam current or reduction of bunch length [37]. This scheme introduces

large crossing angles (30mrad are proposed for FCC-ee [5]) and uses sextupoles to orient the beam

waist at the interaction point along the trajectory of the other beam. Again, for detailed information we

refer to publications such as [38–40].

As stated at the beginning of this discussion, besides the repetition rate the particle density must be

maximised at the interaction point. There are two options for increasing the particle density: increasing

the particles per bunch (bunch population), and decreasing the beam size. Particle colliders usually

feature a bunch population in order of ≈ 1011 particles per bunch, which is the limit given by the beam-

beam effect. The space charge of each of the colliding beams acts like a perturbing nonlinear lens to

the respective other beam. There are numerous consequences from the beam-beam interaction, it may

suffice here to mention two significant ones. First, the tunes of single particles will be shifted according

to their amplitude within the nonlinear fields, which results in the beam-beam induced tune spread within

a colliding bunch. This tune spread renders the bunch more susceptible to destructive betatron resonances

surrounding the working point in the tune diagram. Second, the beam-beam force can drive the colliding

bunches into coherent instability. A detailed discussion can be found e.g. in Ref. [41].
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When discussing smallest beam sizes, several parameters are crucial: Firstly, the dispersion func-

tion must vanish at the interaction point. Dispersion contributes to the beam size and, if not elimi-

nated, dilutes the luminosity. Additionally, non-zero dispersion during beam-beam interaction introduces

synchro-betatron resonances [42, 43], which can affect beam quality and stability. Secondly, the beam

emittance must be small, which is not straight forward to achieve. In the case of hadron storage rings,

as previously discussed, the emittance is determined by the quality of the injectors. The high luminosity

upgrade of the LHC therefore was preceded by the Large Injectors Upgrade (LIU) [44, 45] to reduce the

normalised emittance from 3.75 µm to 2.50 µm [44]. In the case of lepton storage rings, the emittance

is an equilibrium beam parameter and determined by the lattice design. It must therefore already be

minimised during the design process. Later, there is no option anymore to decrease emittance except for

minor modifications by increasing the phase advance per FODO cell and thus reducing the value of the

dispersion function (see Eq. (I.14.28)).

Finally, the most important way to deliver small beam sizes and high luminosity when designing an

interaction region is to strongly squeeze the β-functions to tiny sizes by focusing with strong quadrupole

magnets. In the LHC, for example, the design values of the β-functions at the interaction point are

β∗ = 0.55 m in both planes. During the high-luminosity upgrade, they will be further reduced to

0.15m [44]. For the FCC-ee, values in the range from β∗x = 0.15m to 1.0m are foreseen for the

different operation modes and β∗y = 0.8mm to 1.6mm in the vertical plane. However, such strong

focusing comes with significant challenges: The strong quadrupoles introduce substantial chromatic

effects resulting in large values of the chromaticity. Special chromaticity compensation schemes need to

be developed to correct the chromaticity without reducing the dynamic aperture by the nonlinear fields of

the sextupoles. In addition, strong focusing results in highly divergent beams leading to large beam sizes

that have to be accommodated in the vacuum chamber without aperture issues (see Sections I.14.10.4

and I.14.10.5).

One last thought: after continually increasing the luminosity, it is important to consider a limitation

introduced by the detectors: the pile-up of events. The larger the luminosity, the higher is the probability

for several collision per bunch crossing. In lepton colliders, usually only few events occur per bunch

crossing because of the comparably low cross sections. In the case of proton collisions, however, the

larger cross section leads to multiple interactions. In the LHC on average 20 events are expected per

bunch crossing [33], but also crossings with more than 100 proton-proton interactions have already been

observed [46]. As illustrated in Fig. I.14.28, the more interactions occur the more tracks are recorded

and thus the more difficult becomes the reconstruction of the events from the detector signals. The

detector performance consequently puts a limit on the pile-up and thus to the luminosity. If the luminosity

surpasses the detector’s capabilities luminosity leveling techniques can be employed. These techniques

artificially decrease and control the luminosity by introducing a beam offset during collisions or by

adjusting the β∗ squeeze for example.

I.14.10.3 What is the layout of a typical interaction region?

At the center of the interaction region is the interaction point, where the two beams collide. This in-

teraction point must be located in a drift space long enough to accommodate the detector. The ATLAS

detector in the LHC, for example, has a length of 46m. The distance from the interaction point to the first
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Fig. I.14.28: Tracks of charged particles close to the vertex region. Tracks that origin from the same
interaction are coloured the same [46].

Bastian Haerer (KIT) JUAS’23 - Accelerator Design 116

Layout of the HERA mini-beta insertion
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Fig. I.14.29: (a) Interaction region layout and optics functions of the former electron-proton collider
HERA at DESY, (b) High-luminosity interaction region of the hadron collider LHC at CERN.

quadrupole is therefore 23m on each side. The strong focusing required for high luminosity is achieved

using a doublet or triplet of quadrupoles, known as the final focus quadrupoles. In order to match the

optics, matching section and dispersion suppressor are needed on each side before entering the arc sec-

tion. Figure I.14.29 shows two examples of interaction regions with this layout: Figure I.14.29a shows

the interaction region of the former electron-proton collider HERA at DESY, Fig. I.14.29b an interaction

region of the hadron collider LHC at CERN.
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I.14.10. Step VII: Interaction regions

Question I.14.14: In case of the HERA interaction region the β-functions are symmetric on both

sides of the interaction point – βx,y,(s) = βx,y(−s), in case of LHC they are asymmetric – βx,(s) =

βy(−s) and vice versa. Can you explain why?

Hint: HERA collided electrons and protons, LHC has proton-proton collisions.

Question I.14.15: In the interaction regions of some colliders the final focus quadrupoles consist of

a doublet, in others they are a triplet. Do you have an idea why this is the case?

I.14.10.4 Why do the β-functions increase so much in the vicinity of the interaction point?

The increase of the beta functions in interaction regions is a direct consequence of Liouville’s theorem,

which states that the local particle density in phase space stays constant under the influence of conserva-

tive forces. This means that if the beam has been squeezed to a tiny size for high local particle density

at the interaction point it is highly divergent. For linear motion, this can easily be illustrated looking at

the equation of the beam emittance. As the interaction point is in the middle of a straight section and a

symmetry point of the β-functions, α∗ = 0 and γ∗ = 1/β∗. The equation of the emittance thus simplifies

to

ϵ(s) = γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) =
x2

β∗
+ β∗x′2. (I.14.56)

Largest divergence is obtained for x = 0 given by σ′ =
√
ϵ/β∗. This clearly shows, that while small

β-functions help to reduce the beam size σ =
√
ϵβ, they increase the divergence.

The evolution of the optical functions from the interaction point to the first final focus quadrupole

can be calculated using the matrix formalism. The transfer matrix corresponds to that of a drift space

Mdrift =

(
m11 m12

m21 m22

)
=

(
1 s

0 1

)
. (I.14.57)

Given the elements mij of the transfer matrix, the optical functions at position s1 can be transformed to

the corresponding functions at position s2 as follows



β

α

γ




s2

=




m2
11 −2m11m12 m2

12

−m11m21 m12m21 +m11m22 −m12m22

m2
12 −2m22m21 m2

22






β

α

γ




s1

. (I.14.58)

In this case, the interaction point is at s1 = 0 which means for the optical functions α(s1) = α∗ = 0 and

γ(s1) = 1/β(s1) = 1/β∗. With those assumptions, expanding Eq. I.14.58 yields following expression

for the evolution of the β-function in the drift space between interaction point and final focus quadrupole

β(s) = β∗ +
s2

β∗
. (I.14.59)

As illustrated in Fig. I.14.30, the β-function has the shape of a parabola with its minimum value β∗ at
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Fig. I.14.30: The β-function in the vicinity of the interaction point at s = 0 for different values of
β∗ [12]. The β-function increases quadratically with distance s. The smaller β∗, the larger becomes the
beam divergence.

the interaction point at s = 0. The smaller β∗ becomes, the faster the β-functions increase with distance

from the interaction point. The only possible means to limit the growth of the β-functions is to keep

the distance from interaction point to the first final focus quadrupole, usually denoted as L∗, as small as

possible and to not reduce β∗ any further.

Question I.14.16: Contextualise the quadratic increase of the β-function in a drift section. Does this

make sense, if you think about the trajectory of a particle in a drift space? What does this mean for

the beam size?

I.14.10.5 Are there special requirements on the final focus quadrupoles?

The final focus quadrupoles must meet extremely high requirements. Primarily, they need to be very

strong to achieve the necessary focusing at the interaction point. The quadrupole gradient g is determined

by the pole tip field B, i.e. the magnetic field at the pole surface, and the aperture radius r

g =
dB

dr
. (I.14.60)

This means that for large gradients, a small aperture radius is beneficial. However, as discussed above,

the β-functions increase rapidly near the interaction point, leading to large beam sizes and the largest

aperture requirements in the entire storage ring. If the quadrupoles use superconducting coils, additional

shielding may be required to protect the superconductor from energy intake and mechanical damage

caused by collision debris. This shielding further reduces the available aperture. If the requirements on
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I.14.10. Step VII: Interaction regions

the optics are very aggressive, demanding smallest values of β∗, one solution is to reduce the distance to

the interaction point L∗ and install the final focus quadrupoles inside the detector. This approach imposes

spatial constraints: the solid angle occupied by the magnets, i.e. the blind spot of the detector, should

be as small as possible, necessitating very compact, superconducting designs. In the case of FCC-ee,

L∗ has a value of 2.2m and the magnet system consisting of final focus quadrupoles and compensating

solenoid must not exceed an angle of ±100mrad within the detector [5]. This discussion illustrates that

design and placement of the final focus quadrupole require a compromise between achievable quadrupole

gradient, available aperture, and distance to the interaction point.

However, there are not only special requirements on the design of the quadrupoles but also on

their performance and quality. Their quadrupole strength k1 must fulfill highest precision requirements,

because the tune shift created by a gradient error,

∆Q = − 1

4π
β(s̃)∆k1LQ, (I.14.61)

scales with the β-function at the position s̃ of the perturbed quadrupole. As the β-functions reach values

up to kilometre level, the tune shifts due to a gradient error would be correspondingly large potentially

driving the particles onto a resonance. In addition, as discussed in the Chapter I.8 on transverse linear

imperfections, a second consequence of gradient errors is the modulation of the betatron amplitude,

known as beta beat

∆β(s)

β(s)
= − 1

2 sin 2πQ

∫ s+C

s
β(s̃)∆k1(s̃) cos{2(ψ(s̃− ψ(s))− 2πQ)} ds̃. (I.14.62)

Equation (I.14.62) clearly shows that both the quadrupole gradient ∆k1(s̃) and β-function β(s̃) at the

position of the perturbed quadrupole drive the amplitude of the modulation. Since both of these factors

are very large, the resulting effect is significant.

Finally, the alignment of the final focus quadrupoles needs to be of highest precision. If the

quadrupoles are installed with a transverse offset ∆x, their field can be decomposed into the sum of a

quadrupole field depending on x and a constant dipole field

e

p
By = k1(x+∆x) = k1x+ k1∆x︸ ︷︷ ︸

∆k0

. (I.14.63)

The additional dipole component ∆k0 = k1∆x affects the closed orbit given by

CO(s) =

√
β(s)

2 sinπQ

∮
(−∆k0(s̃))

√
β(s̃) cos(|ϕ(s̃)− ϕ(s)| − πQ) ds̃. (I.14.64)

The closed orbit distortion is determined not only by the size of the misalignment but also by the large

quadrupole strength and the large value of the beta function at the location of the quadrupole β(s̃). When

examining the closed orbit distortion at the position of the quadrupole, i. e. for the case s = s̃, the effect

becomes even more pronounced, as CO(s) is proportional to β(s̃) rather than
√
β(s̃).

In summary, the final focus quadrupoles must be both strong and provide a large aperture. Their

magnetic field must be extremely precise and stable, and they must be installed with the highest precision.

712

https://doi.org/10.23730/CYRSP-2024-003.341


CERN Yellow Reports: Monographs, CERN-2024-003

I.14.10.6 I heard of “local chromaticity correction” – what is that?

The strive for highest luminosities leads to values of β∗ approaching the millimetre range. Correspond-

ingly, as a direct consequence of Liouville’s theorem, one finds extremely divergent beams leading to

β-functions of several kilometres. Recalling the equation for the chromaticity (see Chapter I.3 on trans-

verse beam dynamics),
dQ

dδ
= − 1

4π

∫
β(s)k1(s) ds, (I.14.65)

the contribution to chromaticity is proportional to the strength of the quadrupoles k1 and the value of the

β-function at their location. The squeezing of the beams to a small β∗ requires the strongest quadrupoles

in the lattice. In addition, in the final focus quadrupoles the β-functions reach their maximum val-

ues, which means they have the largest contribution to chromaticity exceeding the contribution of all

quadrupoles in the rest of the lattice combined. At SUPER-KEK-B, about 80% of the chromaticity is

created by the final focus quadrupoles [47]. The idea is therefore to correct it as close to the source as

possible, at best “locally” in the interaction region.

Local chromaticity correction has been developed in the context of linear colliders. In general, the

sextupoles have to be installed in dispersive sections of the lattice to correct for chromaticity. In linear

colliders without transverse deflection, no dispersion is created and, thus, the chromaticity created by the

quadrupoles cannot be corrected. Therefore, an additional section has been included in the interaction re-

gion, where dipoles locally create dispersion so that pairs of identical sextupoles can correct chromaticity

before the beams are collided. In modern circular colliders the concept of local chromaticity correction

has been adopted, especially for electron-positron colliders such as Higgs and B factories. An example

of such an interaction region with local chromaticity correction is presented in Fig. I.14.31 [5], which

shows lattice and optics of the interaction region proposed for the FCC-ee. The layout is asymmetric,

designed to minimise the synchrotron radiation towards the interaction point located at s = 0. The beam

passes from left to right through a section of dipole magnets that create dispersion – in this plot denoted

as η. The sextupoles of the local chromaticity correction scheme are installed at the positions (a)-(d).

The sextupoles at (a) and (d) are additionally used to implement the crab-waist collision scheme that has

been mentioned in Sec. I.14.10.2.

I.14.11 Summary

What appears straightforward in this chapter is, in reality, only a first glimpse into the complexities

of accelerator design. Particularly for large-scale projects, the design phase can span several years or

even decades. This chapter aims to provide guidelines for compiling a list of beam parameters and

the resulting fundamental layout decisions. In addition, a step-by-step approach has been presented for

constructing an initial lattice of a circular collider. In fact, this very approach has been applied for the

first lattice design of FCC-ee [12]. The subsequent work by numerous expert groups extends beyond

the scope of this discussion. Specifically, this involves studies on the effects of imperfections, such as

magnet misalignments, or how collective effects compromise beam stability. Both areas require complex

particle tracking studies. Additionally, sections dedicated to injection, extraction, beam collimation, and

beam dumps must be designed. Depending on the specific laboratory, an injector or even an injector

chain has to be designed and built that require their own accelerator design. As mentioned in the in-
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FCC-ee: The Lepton Collider 337

Fig. 2.7. The beam optics of the FCC-ee IR for tt. Upper and lower rows show
p

�x,y

and dispersions, respectively. The beam passes from the left to the right. The optics is
asymmetric to suppress the synchrotron radiation toward the IP. Dipoles are indicated by
yellow boxes; those in region (e) have a critical energy of the SR photon below 100 keV at
the tt. Sextupoles for the LCCS are located at (a–d), and sextupoles at (a,d) play the role
of crab sextupoles.

left and right of Figure 2.8, it can be seen that the beam sizes at Z through this
region are still smaller than those at tt. The peak value of �y is almost unchanged
even though �⇤

y is reduced by a factor of 2. The peak of �x at Z is about 3 times

higher, while �⇤
x becomes 1/6 of the value at tt.

The critical energy of SR photons from the dipoles up to 500 m upstream of the
IP is set below 100 keV at tt. There are no dipole magnets upstream of the IP for
up to 100m.

2.4.3 RF section and other straight sections

Figure 2.9 shows the beam optics for the half ring for tt. The RF sections are
located in the long straight sections around PJ and PD as shown in Figure 2.1. At
tt, an acceleration voltage of ⇠5.3 GV per section is needed; As a result, the length
of the RF installation for the collider will be about 1 km (with a similar length
for the top-up booster). At the tt energy, both beams pass through a common RF
section. A combination of electrostatic separators and a dipole magnets deflects only
the outgoing beam so at to avoid any SR shining towards the RF cavities. In this
running mode, the quadrupoles within the RF section are common to both beams,
but they are still compatible with the overall tapering scheme, if their strengths are
symmetrical about the mid-point of the RF section.

Fig. I.14.31: The beam optics of the FCC-ee interaction region for tt̄ operation as proposed in the
Conceptual Design Report [5]. The upper plot shows the square roots of the beta-functions, the lower
plot the dispersion functions, which in this plot are denoted as η. The beam passes from the left to
the right, the interaction point is located at s = 0. The layout of the interaction region is asymmetric
to suppress synchrotron radiation towards the interaction point. The critical energy of the synchrotron
radiation created by the dipoles in region (e) is below 100 keV. The dipoles are used to create dispersion
for the sextupoles of the local chromaticity correction scheme, which are located at positions (a)-(d). The
sextupoles at (a) and (d) are additionally used to implement the crab-waist scheme.

troduction, various hardware systems need to be designed, including magnets, vacuum and RF systems,

and beam diagnostics. Finally, engineering challenges, encompassing civil engineering, power concepts,

surveying, and personnel safety systems, etc. must be investigated and resolved...
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... and then you just turn the key and run the machine.

Now you are experts.       Let’s start the workshop! ⇒
CERN Document Server, © CERN
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JUAS’24 Accelerator Design Workshop: Exercises

Tutors: Kevin André, Bastian Härer, Bernhard Holzer, Carsten Mai, Adrian Oeftiger

February 2024

1 Timetable

JUAS slots with lectures introducing the mini-workshop:

• Tuesday, 6 February, 9:00 to 12:00

• Wednesday, 7 February, 16:00 to 18:00

JUAS slots to work on exercise set:

• Thursday, 8 February, 16:00 to 18:00

• Friday, 9 February, 9:00 to 12:00 and 14:50 to 17:50

• Monday, 12 February, 9:00 to 12:00

=⇒ finish presentation slides for your group until the exam.

Exam: marked 9-minute presentations follow during the day on Tuesday, 13 February (schedule as announced
on indico). Every group will present their results to the jury and answer questions. Make sure that every group
member presents a fair share. Prepare the slides such that the other students working on different aspects of
the machine can comprehend: selected groups will repeat their presentation during the workshop conclusion
(Tuesday, 13 February at 14:30).

2 Introduction

The goal of the accelerator design workshop is to apply the knowledge gained during this school to a realistic
study case. The task is to design a particle accelerator with certain specifications and boundary conditions.
The idea is to gain experience how such a big task is tackled and organised. There are eight groups of three or
four students each. We assigned three topics, each treats the same problem from a slightly different angle and
with different emphasis.

Scope: design a top factory for precision measurements. Design a particle collider for precision mea-
surements of the top quark mass at the tt̄-threshold. The circumference must not exceed 100 km and the
maximum synchrotron radiation power is limited to 50MW per beam. Per year at least 100 000 tt̄ pairs should
be produced for sufficient experiment statistics.

1
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3 Topic I: Basic parameter set and general design aspects

Develop a basic parameter set for the machine and determine general design aspects.

3.1 Overview

• Energy, cross section, luminosity

• No. of bunches, particles per bunch, β∗ and emittance

• General layout, arcs and straight sections, magnet technology, focusing cell layout and dipole filling factor

• Synchrotron radiation power, resistive wall impedance induced power loss

3.2 Boundary Conditions

1. Maximum circumference: 100 km

2. Maximum synchrotron radiation power per beam: 50MW

3. Number of events per year: 100 000

4. Number of experiments: 2

3.3 Exercises

1. Why would we choose to collide electrons and positrons instead of protons?

2. The most important parameter for your particle collider is its luminosity. What beam energy is optimal
for tt̄-production? Think about the effective running time of the collider per year and consider the cross
section at this beam energy (use “Bare TOPPIK” computation). What average instantaneous luminosity
is required to obtain 100 000 number of events per year? (Consider the luminosity to be constant during
the run.)

Figure 1: Cross section for tt̄-production in electron-positron collisions1

2
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3. Consider e.g. the FCC-ee, where the interaction point beam sizes are of the order σ∗
x ≈ 50 µm and

σ∗
y ≈ 50 nm. How much beam current do you need for the previously computed luminosity? How many

bunches Nb do you accommodate per beam? What is the bunch population figure (Np, number of particles
per bunch)?

4. Estimate reasonable values for the transverse rms emittances via discussing with your colleagues (groups
working on the lattice design topic III). Comment on the ratio between horizontal and vertical emittance.

5. Define the requirements for the interaction region: what β∗ do you need? What consequences does this
have for the distance to the final focusing system, L∗, as well as the beam size figures there?

6. Think about a machine layout: What percentage of the ring consists of arc and straight sections? How
many straight sections do you include and for which purposes?

7. Outline a layout for your basic cell. What cell type would you use and why?

8. Estimate the dipole filling factor in the machine. What is the local bending radius ρ? Please justify which
magnet technology you would use – normal-conducting or superconducting?

9. Do you plan for one or two beam pipes? What are the consequences and limitations?

10. Check the feasibility of your parameters by estimating the expected synchrotron radiation power PSR.
Where would you adjust your parameter set to reach lower PSR figures?

11. If time permits: impedance induced energy loss.

(a) Another source of beam energy loss is given by the resistive wall impedance of the machine. Consider
a beam of Nb Gaussian-distributed bunches of rms length σz with Np particles of charge e travelling
inside a vacuum tube of radius rp made of copper (with a conductivity of σc ≈ 6× 107 S/m). In the
resistive vacuum tube walls the beam loses a power figure of

PRWI =
Nb (eNp)

2

T0
k|| (1)

with T0 the revolution period. The loss factor per circumference C is given by

k||
C

=
1.225c

4π2rpσz3/2

√
Z0

2σc
, (2)

where c denotes the speed of light and Z0 the vacuum impedance.

Estimate the corresponding impedance related total power loss for our two colliding beams. For the
equilibrium σz figure you can refer to your colleagues (groups working on the synchrotron radiation
topic II).

Compare the PRWI figure to the synchrotron radiation induced power loss PSR you computed before.

(b) Consider exploiting your designed machine also to study weak neutral current interactions around
the Z pole at a centre-of-mass energy of

√
s ≈ 91GeV. What would be the corresponding emitted

synchrotron radiation power PSR per beam?

Imagine hypothetically increasing the number of bunches Nb until the machine is filled with bunches1

spaced at 25 ns, leaving an abort gap of 10%. How does PSR compare to the resistive wall impedance
related PRWI now?

This might give you a feeling for the relevance of collective effects for constraining the beam and
bunch parameters.

1Juste, Aurelio et al., “Determination of the top quark mass circa 2013: methods, subtleties, perspectives”, The European
Physical Journal C, vol. 74, Oct. 2014

1This is of course unrealistic: collective effects such as single- and coupled-bunch instabilities as well as residual gas interaction
(fast beam-ion and electron cloud instabilities) pose more stringent limits to Nb (also dedicated beam filling schemes) and Np.

3
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4 Topic II: Synchrotron radiation emissions and Radio-Frequency
sections

4.1 Exercise summary

1. SR power, critical energy, beam current and comparison to proton particles

2. Momentum compaction factor, transition energy, RF voltage, synchronous phase

3. Number of RF cavities and length of the RF section, synchrotron tune, RF acceptance

4. Damping times, equilibrium emittance, energy spread and bunch length

5. Dipole length for Φx,y=60° or 90°, FODO cell length

4.2 Exercises

1. Geometry assumptions: the ring has four straight sections with two interaction regions, one RF section
and one injection section. You will design a lepton collider with a beam energy of 175GeV. In this study,
you will assume a circumference of 100 km and consider a bending radius ρ = 10.0 km (≈ 63% of the ring
is composed with dipole magnets).

(a) Compute the beam current in order to reach 50MW power lost per beam due to synchrotron radiation.
Estimate a number of bunches from the number of particles you obtain with the beam current. You
can discuss the results with your colleagues from Topic I.

(b) Compute the associated critical energy and energy loss per turn.

(c) Find the required cooling per arc using the line power density, assuming the arcs represent 80% of
the total circumference. For your information LEP had a cooling capability of 1.1 kW/m, will your
machine need more ?

(d) What proton beam energy could the same storage ring circumference handle assuming 0.06% of the
FCC-ee energy loss ? What would need to be modified to operate with proton beams ?

Unit LEP LHC FCC-ee FCC-hh

Beam particle e+/e- p e+/e- p

Circumference km 26.7 26.7 97.8 97.8

Beam energy TeV 0.1 7.0 0.1825 50.0

Beam current A 0.006 0.54 0.0064 0.5

Energy loss per turn MeV 2800 5.890 9200 4.670

Critical energy keV 700 0.044 1060 4.3

SR power kW 1.7× 104 7.5 1.0× 105 4.8× 103

Table 1: From: O. Grobner CERN-LHC/VAC VLHC Workshop Sept. 2008 and FCC-ee CDR.

4
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2. The orbit length fluctuation with the energy offset is proportional to the momentum compaction factor.
The momentum compaction factor is a property of the lattice and is assumed to be 7.3× 10−6.

(a) What is the transition energy ? Are we below or above transition ? Deduce the synchrotron phase.

(b) What total RF voltage is required to compensate the energy loss per turn ? Are we in an acceleration
or a stationary regime ? In order to have a stable phase, one needs to operate the RF cavities off-crest
so that the electron beam can be stored for many revolutions in the storage ring. The cavity phase
is set to 110°, re-compute the total RF voltage required, assuming an RF frequency of 400MHz.

(c) Compute the synchrotron tune and compare it to the transverse tune and to the revolution period.

(d) What type of RF cavities would you use? Given the RF cavity provide the energy restored by a
single RF cavity. How many cavities are needed to restore the energy lost for both counter-rotating
beams ? How could you reduce the number of RF cavities ?

(e) Estimate the straight section length required for the RF cavities assuming that a cryomodule is
composed of four RF cavities and measures 7m (one adds 20% for the other magnetic elements and
connections).

(f) Compute the RF energy acceptance or bucket height. It is common to have an RF energy acceptance
of more than ±3 %, how would you achieve it ? What are the implications ?

3. We will now focus on the equilibrium beam parameters.

(a) Compute the damping times for both transverse and longitudinal planes, and compare to the revo-
lution period, conclusion ? How many turns are needed to reach the steady state ?

(b) Compute the equilibrium energy spread. Which parameters could we adjust to tune it ?

(c) Compute the equilibrium bunch length. How many bunches fit in the ring ? To be realistic one can
consider a bunch spacing of 25 ns like in the LHC. How many bunches fit into the ring with a 25 ns
bunch spacing ? Using 1.a) compute the resulting bunch spacing.

4. If time permits: the arc lattice and its properties.

(a) Estimate a reasonable value for the horizontal rms emittance via discussing with your colleagues
(groups working on the lattice design topic III). Compute the average dispersion function from
this equilibrium emittance. Typically, electron storage rings have a phase advance of 60° or 90°.
Assuming the magnetic periodic arc structure is a FODO cell, from the average H-function find the
dipole magnetic length.

For 60° phase advance the formula is: ⟨H⟩ = 15

2

L3

ρ2
(3)

For 90° phase advance the formula is: ⟨H⟩ = 5

2

L3

ρ2
(4)

(b) The dipole filling factor is about 80% for the FODO cell, conclude on the FODO cell length. Estimate
the number of FODO cells and main dipole magnets (2 dipoles per cell).

5
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5 Topic III: Lattice Design

5.1 Exercise summary

1. Design basic cell according to beam requirements

2. Implement a MAD-X model of your basic cell, close the ring and calculate SR integrals and equilibrium
beam parameters

3. Include dispersion suppressors and straight sections to your model and match optics

4. Optional: include RF cavities and calculate equilibrium beam parameters with MAD-X

5.2 Boundary Conditions

1. Damping partition number: Jx = 1

2. A maximum circumference of 100 km

3. Maximum synchrotron radiation power: P = 50MW per beam

4. The basic cell should have about the same phase advance in both planes.

Jupyter notebook

5.3 Exercises

This group focuses on the lattice design of a new accelerator. A lattice is being developed to match a pre-defined
set of requirements.

1. Design of basic arc cell

(a) What lattice type do you choose for your basic cell, and why?

(b) What phase advance per cell do you choose, and why?

(c) Think about the layout of your basic cell: cell length, length of magnetic elements, dipole filling
factor. Hint: Start with a cell length of 50m. You should obtain a dipole filling factor of about 80%.

(d) Calculate the equilibrium emittance of your lattice. You will need the beam energy, which you can
discuss with your colleagues from Topic I. The equilibrium emittance can be approximately calculated
using following equation:

ϵx =
Cq

Jx
γ2θ3F (5)

Cq = 55
32

√
3

ℏc
m0c2

= 3.832 × 10−13 m, Jx ≈ 1 is the damping partition number, γ the Lorentz factor

(based on the beam energy), and θ the bending angle of all dipole magnets in a half-cell. For a
FODO cell with phase advance µ the factor F can be written as

FFODO =
1

2 sinµ

5 + 3 cosµ

1− cosµ

L

lB
. (6)

L is the cell length and lb is the length of all dipole magnets in the cell.

Calculate the bending radius and bending angle of the dipoles assuming 80% of your lattice is filled
with arc cells and 20% with straight sections.

(e) Calculate the quadrupole strength k1 using

sin
(µ
2

)
=

L

4f
and

1

f
= k1LQ (7)

where LQ is the length of the quadrupole magnets.
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(f) Define the elements and the basic cell in MAD-X. Ask your colleagues from topic I to indicate which
beam energy you should design for. Set up an MAD-X environment (define beam etc.) and implement
your basic cell using thick lenses. Advice: Use sequences, not lines! Check the tunes in the TWISS
summary table. Do they fit your expectation?

(g) Match the phase advance of your basic arc cell. Compare the maximum and minimum values of beta
functions and dispersion of MAD-X to the analytically calculated values.

(h) Match the chromaticity of your basic arc cell to zero. Can you explain why the sextupole strengths
for the “defocusing” sextupole are larger than for the “focusing” one?

(i) Build a full ring with your basic cells. How many cells do you need to close the ring? Do the tunes
fit your expectation? Check if the ring is closed (SURVEY command).

survey;

value, table(survey,yourSequence$END,theta);

(j) Calculate the synchrotron radiation integrals (TWISS, chrom;). Proceed to calculate equilibrium
emittance and energy loss per turn and compare to the requirements.

2. Dispersion suppressors and straight sections

(a) Design a dispersion suppressor section for your storage ring and implement it in MAD-X. What
scheme do you use and why? Why is it not possible to use the identical section on both sides of an
arc?

(b) Define a straight cell for the straight sections.

(c) Define matching sections for the beginning (“MSL”) and the end (“MSR”) of your straight sections.
Why do you need matching sections? How many parameters do you need to match? How many
degrees of freedoms (=quadrupoles) do you need? Match the optics.

(d) Include straight sections at four places in your ring.

(e) Observe tunes and chromaticities. Do they match your expectation? Re-match tunes and chromatic-
ities.

(f) Calculate and save the synchrotron radiation integrals of your storage ring for analytical calculations
later.

3. If time permits: RF sections

(a) Estimate the total RF voltage which is needed to compensate the synchrotron radiation energy loss.
The energy gain in the cavity is given by

U = eVRF sin (2π(ϕ− hf0t)), (8)

where ϕ is the phase lag (“synchronous phase”), h the harmonic number of the ring, and f0 the
cavity frequency.

(b) Define a straight cell and straight section that contains RF cavities.

(c) Switch on radiation and observe tunes and chromaticities. Can you explain what happens?

(d) Observe the transverse orbit. Can you explain the pattern you see?

(e) Calculate equilibrium beam parameters with the MAD-X EMIT command and compare them to the
analytical values from the calculation using the synchrotron radiation integrals calculated above.

(f) How many particles and bunches can you fill into the rings before you reach the limit of synchrotron
radiation power?

7

I.14.11. Summary
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I.14.12 Answers to the questions

Answer to question I.14.1: Muons carry an approximately two hundred-fold rest mass compared to

electrons (and positrons). At a given centre-of-mass energy, a muon collider would correspondingly

require much lower kinetic energies compared to an electron-positron collider. This significantly reduces

the radiation loss (the power of which scales with the energy to the fourth power) and, consequently,

enables the construction of circular colliders which are much smaller in circumference compared to an

equivalent electron-positron collider. A major challenge of muon-beam production, though, is given by

the short lifetime before the muons decay.

Answer to question I.14.2: When beams share a vacuum chamber, they encounter the same magnetic

fields. Due to their opposite charges, electrons and positrons are both deflected towards the ring center

when passing through a dipole magnet in opposite directions. Conversely, proton beams in the LHC,

having the same charge, would be deflected in opposite directions – one towards the inside and one

towards the outside. Thus, opposite dipole fields are essential which requires separate beam pipes.

Sharing a beam pipe is feasible only if the particles in beam 1 are the antiparticles of those in

beam 2. When colliding different particle species, such as electrons and protons, or when beams have

different energies as seen in B factories, individual vacuum chambers become necessary. Additionally,

double-ring colliders achieve higher luminosity as in single-ring colliders, the number of bunches must

be kept low to avoid parasitic crossings.

Answer to question I.14.3: For two proton beams in collision,
√
s = 2E. For

√
s = 200GeV,

two 100GeV proton beams are needed. In fixed-target geometry,
√
s =

√
2m2 + 2Em ⇒ E =

[(
√
s)2 − 2m2]/(2m). In this case a proton beam energy of 21 321GeV is required. The collider

geometry is obviously preferable.

Answer to question I.14.4: The synchrotron radiation losses per particle increase ∝ γ4. In order to

maintain the overall budget of 50MW/beam, the number of bunches has to be reduced, which leads to

lower luminosity. While the beams at 45.6GeV consist of 16640 bunches, only 48 bunches can be stored

at 182.5GeV leading to a luminosity reduction from L = 460× 1011 cm s−2 to L = 3.1× 1011 cm s−2.

Answer to question I.14.5:

p0
e

=
BNLB

2π
⇒ p0 =

8.3T · 1232 · 14.3m
2π

· 3× 108ms−1 · e
c
= 6.98TeV/c. (I.14.66)

The maximum momentum of the protons in LHC is 6.98TeV/c.

Answer to question I.14.6: The magnetic field strength of the bending magnets can be calculated using

the beam rigidity expression

Bρ =
p

e
⇒ B =

E

ecρ
=

182.5GeV

3× 108ms−110.760 kme
= 56.5mT. (I.14.67)
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For the example of the lepton collider FCC-ee, normal-conducting magnet technology is foreseen for

the bending magnets.

Answer to question I.14.7: The calculations of Eq. (I.14.6) and MAD-X agree well: β̂ = 182.5m and

β̌ = 31.3m.

Answer to question I.14.8: After passing the sextupole, the particle motion is defined by

x1 = x0 y1 = y0

x′1 = x′0 −
k2LS

2
(x20 − y20) y′1 = y′0 − k2LS x0 y0.

After the −I transformation the particle arrives at the second sextupole with

x2 = −x1 = −x0 y2 = −y1 = −y0

x′2 = −x′1 = −x′0 +
k2LS

2
(x20 − y20) y′2 = −y′1 = −y′0 + k2LS x0 y0.

Since x2 = −x0 and y2 = −y0, the second sextupole applies a kick of equal strength, which cancels the

additional transverse momentum created by the first sextupole

x3 = x2 = −x0 y3 = y2 = −y0

x′3 = x′2 −
k2LS

2
(x22 − y22) = −x′0 y′3 = y′2 − k2LS x2 y2 = −y′0.

Answer to question I.14.9: The Lorentz factor is γ = E/E0 = 3.57× 105. With a dipole filling factor

of LB/L = 0.8, the bending angle per half-cell is θ = 1.87mrad. 1680 cells are needed to close the ring

leading to an arc length of 84 km. Yes, these are realistic design parameters taken from the FCC-ee Study.

Answer to question I.14.10: In order to achieve low or even negative momentum compaction factors

the strength of the centre quadrupole has to be increased. This stretches the dispersion function and

pushes its periodic solution to negative values at the beginning and at the end of the cell. This adds

a negative contribution to the I1 integral and thus to a low or even negative value of the momentum

compaction factor.

Answer to question I.14.11: The solution on the rising edge of the sine wave is used below transition

energy, i.e. as long as the particle is non-relativistic, or with negative momentum compaction factor.

The solution on the falling edge is used for relativistic beams in storage rings with positive momentum

compaction factor, which is the common case.
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Answer to question I.14.12: There are two reasons in fact. First, larger beam size reduces brilliance

B(λ) =
F (λ)

(2π)2σxσx′σyσy′
∝ 1

ϵxϵy
.

Second, dispersion in insertion devices creates transverse oscillation due to the energy loss and

depending on the magnetic field to emittance increase because of the contribution to I5.

Answer to question I.14.13: In fact, there is no difference. The quadrupole-based dispersion suppressor

is nothing else than a matching section specifically used to suppress the dispersion function and re-match

the optics.

Answer to question I.14.14: At the LHC, the final focus triplet is shared by both beams. Since the

protons have same charge but travel in opposite direction, the quadrupoles have opposite focusing

properties for the two beams. If the two beams had opposite charge as in an electron-positron collider,

the optics would be symmetric. In the case of HERA, individual quadrupoles were needed for protons

and electrons because of the different beam energies and the optics was laid-out symmetrically.

Answer to question I.14.15: In case of flat beams, where the vertical emittance is in the percent or

per mille range of the horizontal one, a doublet is used. The quadrupole closer to the interaction point

focuses the vertically, the second the horizontally. If the beams are round in the sense that the emittances

are similar in both planes, a triplet has better focusing properties.

Answer to question I.14.16: Since particle trajectory and beam size is given by x(s) =√
ϵβ(s) sin(ψ(s)+ψ0) and σ(s) =

√
ϵβ(s), respectively, a quadratic increase of the β-function results

in a linear increase of transverse offset and beam size, as expected from free propagation in a drift space.
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