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Chapter II.1

Introduction to radio frequency engineering

Andrea Mostacci

Sapienza University of Rome, Italy

RF engineering in particle accelerators is a multidisciplinary field that combines principles of
electromagnetism, RF technology, control systems, and beam physics to ensure the efficient and
reliable acceleration of charged particles for various scientific and industrial applications. The aim
of this chapter is to review the electromagnetic field theory behind the practice discussed in the
following RF engineering section. Starting from Maxwell’s equation in vacuum and their solution,
we discuss the most commonly used boundary conditions. We review the general boundary value
problem to show the properties of electromagnetic fields in cylindrical metallic waveguides. We
discuss as well examples relevant for particle accelerator technology.

Radio frequency (RF) engineering applied to particle accelerators involves the design, implementation,

and optimization of RF systems and components used in accelerating charged particles to high ener-

gies within the accelerator. Particle accelerators are essential tools in various scientific and industrial

applications, including high-energy physics research, medical treatment, and material science.

There are several key aspects of RF engineering in the context of modern particle accelerators.

For instance, RF cavities, or resonators, are crucial components in particle accelerators. These structures

use RF fields to accelerate charged particles. The design of these cavities is a critical aspect of RF

engineering, involving considerations such as the frequency of the RF field, the shape of the cavity,

and the RF power requirements. RF cavities need to be conditioned to handle the high RF power levels,

ranging from few to few tens of MW; such process involves gradually increasing the power levels applied

to the RF structure while monitoring and managing various parameters to prevent damage and achieve

stable operation.

RF power sources provide the necessary energy to generate the RF fields within the cavities. RF

engineers work on designing and optimizing the power sources to ensure efficient and reliable accel-

eration of particles. RF power is typically distributed with waveguides optimised to minimise losses.

Particle accelerators often require high-power RF amplifiers to boost the signal strength. RF engineers

focus on developing and maintaining these amplifiers to meet the specific needs of the accelerator.

RF control systems play a vital role in managing and adjusting the RF fields within the accelera-

tor. RF engineers develop sophisticated control systems to ensure precise control over the acceleration

process, including feedback mechanisms to maintain stability. The so called low (power) level systems

use the most advanced concepts in analog electronics and signal processing to acquire and manipulate
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signals and use them in accelerator controls. Also analog/digital conversion, and thus digital electronics,

is becoming increasingly important in the control of modern accelerators.

RF engineers also contribute to the development of diagnostic systems that monitor and analyze

the performance of RF components. This includes measuring RF fields, beam characteristics, and overall

accelerator performance. In this context analog and digital electronics are used together.

In recent years, RF engineering has played a role in exploring and developing advanced accelerator

concepts, such as plasma-based accelerators or novel RF structures, which aim to push the limits of

current accelerator technologies.

Lastly, RF engineering is closely tied to the overall beam dynamics of particle accelerators. Engi-

neers work on optimizing the RF parameters to control the trajectory, energy, and focusing of the particle

beams.

RF engineering relies on electromagnetic field theory which is a discipline concerned with the

study of charges, at rest and in motion, which produce currents and electro-magnetic fields. Nowadays

electromagnetic field theory has become indispensable to the understanding, design, and operation of

many practical systems using antennas, scattering, microwave circuits and devices, radio-frequency and

optical communications, wireless communications, broadcasting, geosciences and remote sensing, radar,

radio astronomy, quantum electronics, solid-state circuits and devices, electromechanical energy conver-

sion, and even computers. Circuit theory is a special case of electromagnetic theory, and it is valid when

the physical dimensions of the circuit are small compared to the wavelength. Circuit concepts, which

deal primarily with lumped elements, must be modified to include distributed elements and coupling

phenomena in studies of advanced systems. For example, signal propagation, distortion, and coupling

in strip lines used in the design of sophisticated systems (such as computers and electronic packages

of integrated circuits as well as in particle beam diagnostics) can be properly accounted for only by

understanding the electromagnetic field interactions associated with them.

The study of electromagnetics includes both theoretical and applied concepts. The theoretical con-

cepts are described by a set of basic laws formulated primarily through experiments conducted during

the nineteenth century by many scientists—Faraday, Ampere, Gauss, Lenz, Coulomb, Volta, and others.

Although Maxwell had come up with 20 equations with 20 variables, it was Heaviside and Hertz that in-

dependently put them into a consistent and compact vector form. Both Heaviside and Hertz named them

in honour of Maxwell, and today they are the widely acclaimed Maxwell’s equations [1]. The applied

concepts of electromagnetics, which will be discussed in Section II.1.1, are formulated by applying the

theoretical concepts to the design and operation of practical systems.

In this chapter, we will review Maxwell’s differential equations, describe the relations between

electromagnetic field and circuit theories, derive the boundary conditions associated with electric and

magnetic field behaviour across interfaces, relate power and energy concepts for electromagnetic field

and circuit theories, and apply all these equations, relations, conditions, concepts, and theories to the

study of time-harmonic fields. We will review free space plane wave but the main focus is the solution of

Maxwell’s equations in closed metallic structures which are of paramount importance in the technology

of particle accelerators.
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II.1.1 Maxwell’s equations

The differential form of Maxwell’s equations is the most widely used representation to solve boundary-

value electromagnetic problems. It is used to describe and relate the field vectors, current densities,

and charge densities at any point in space at any time. For these expressions to be valid, it is assumed

that the field vectors are single-valued, bounded, continuous functions of position and time and exhibit

continuous derivatives [1].

II.1.1.1 Differential form of Maxwell’s equations in vacuum

In vacuum, the electric field E⃗ (V/m) and the magnetic flux density B⃗ (Wb/m2) are related to the

sources, i.e. the source electric charge density ρ (C/m3) and the source current density J⃗ (A/m2), by the

Maxwell’s equations, see Chapter I.1:

1.∇ · E⃗ =
ρ

ε0
, 2.∇ · B⃗ = 0, 3.∇× E⃗ = −∂B⃗

∂t
, 4.∇× B⃗ = µ0J⃗ + µ0ε0

∂E⃗

∂t
, (II.1.1)

where µ0 = 4π 10−7 (H/m) is the magnetic constant (also called permeability of the free space) and

where ε0 = 8.8542 10−12 (F/m) is the electric constant (also called permittivity of the free space). We

are therefore adopting SI units (Units of the International System) through all the chapter.

The physical meaning of the Maxwell’s equations can be better understood by recalling the mean-

ing of the divergence (∇· . . . ) and curl (∇× . . . ) differential operators for the field lines. For any vector

field C⃗, the scalar differential equation ∇ · C⃗ = a means that the sources (wells) of the field lines of C⃗

are the positions where the scalar quantity a is positive (negative). Instead for any vector fields C⃗ and G⃗,

the vector differential equations ∇ × C⃗ = G⃗ means that the field lines of C⃗ and G⃗ are linked together.

Therefore, according to Maxwell’s equations II.1.1, the field lines of E⃗ and B⃗ are as shown in Fig. II.1.1.

Fig. II.1.1: E⃗ and B⃗ field lines according to Maxwell’s equations II.1.1.

Since for any vector function ∇ · (∇× . . . ) = 0, from 4th Maxwell’s equation one can write that

∇ ·
(
∇× B⃗

)
= µ0∇ ·

(
J⃗ + ε0

∂E⃗

∂t

)
= 0. (II.1.2)

Therefore the current density always has closed field lines: the current, due to the flow of charges ( i.e.

J⃗), is closed by the displacement current ( i.e. ε0∂E⃗/∂t). By using the 1st Maxwell’s equation II.1.1 in

Eq. II.1.2, one can prove that at any given position the source (well) of J⃗ is the decrease (increase) of
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II.1.1. Maxwell’s equations

charge with time, i.e. the so-called continuity equation for the current density

∇ · J⃗ +
∂ρ

∂t
= 0, (II.1.3)

which is simply the mathematical expression of the electric charge conservation.

In the case of time independent fields ∂ . . . /∂t = 0 the continuity equation states that ∇ · J⃗ = 0,

the current density always has closed field lines and the flux of J⃗ ( i.e. the current) on any closed surface

is always null. Therefore if the charges are moving in a conductor, the amount of charge flowing in any

cross section S of the conductor per unit time, i.e. the current I =
∫
S J⃗ · dS⃗ is constant. An electric

network is a closed conductor in which the current flows. ∇ · J⃗ = 0 and Ohm’s law, when applied to

electric networks, are known as Kirchhoff’s laws. The static limit for electric networks is called lumped

element model.

The lumped element model for electric networks is used also when the typical time of the field vari-

ation is negligible with respect to the time needed by the light to travel along the network (∂ . . . /∂t ≈ 0).

In this case, one always assumes the existence of electric current I and at any time instant the Kirchhoff

laws are valid.

The 3rd Maxwell’s equation II.1.1 in the static limit imposes that the E⃗ field is conservative and

thus the energy gain of a charge in closed circuit is zero. This is the fundamental reason why it is not

possible to have static circular accelerators; in any circular accelerator the energy of charged particles is

changed by using time varying RF E⃗ fields such that ∇× E⃗ ̸= 0.

In the static limit, E⃗ and B⃗ are decoupled. In the early days of accelerator history, electrostatics

played a major role (see for instance Cockcroft–Walton accelerators). The fundamental equations of

electrostatics are

∇× E⃗ = 0 → E⃗ = −∇V → ∇2V = − ρ

ε0
, (II.1.4)

being V the scalar electric potential. The last equation for V is called Poisson equation for electrostatics

and the Laplace equation is the corresponding homogeneous one, i.e. ∇2V = 0.

II.1.1.2 Generalised Maxwell’s equations

In the most general case, Maxwell’s equations are written with the addition of auxiliary fields to account

for the polarisation and magnetisation of matter, namely the electric flux density D⃗ (C/m2) and the

magnetic field H⃗ (A/m), see Chapter I.1:

1.∇·D⃗ = ρ, 2.∇·B⃗ = ρm, 3.∇×E⃗ = −J⃗m− ∂B⃗

∂t
, 4.∇×H⃗ = J⃗+J⃗c+

∂D⃗

∂t
. (II.1.5)

J⃗c is the conduction electric current density (A/m2) accounting for charges moving inside conductors,

following the microscopic Ohm’s law. Two additional source terms are present, namely the magnetic

current density J⃗m (V/m2) and the magnetic charge density ρm (Wb/m3) [1]. The continuity equation

for J⃗ + J⃗c can be obviously derived from 4th Maxwell’s equation II.1.5, following the same reasoning

used to derive Eq. II.1.3.
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The electric displacement current ∂D⃗/∂t was introduced by Maxwell to complete Ampere’s law

for statics. For free space, the displaced current was viewed as a motion of bound charges moving

in “ether” an ideal weightless fluid pervading all space. Since ether proved to be undetectable and its

concept was not totally reasonable with the special theory of relativity, it has since been disregarded.

Instead, for dielectrics, part of the displacement current density has been viewed as a motion of bound

charges creating a true current. Because of this, it is convenient to consider, even in free space, the

∂D⃗/∂t term as a displacement current density.

Because of symmetry, the magnetic current density J⃗m and the magnetic charge density ρm have

been introduced and sometimes the ∂B⃗/∂t is referred to as magnetic displacement current density. Al-

though we have been accustomed to viewing magnetic charges and source magnetic current densities as

not being physically realisable, they have been introduced to balance Maxwell’s equations [1]. Equiva-

lent magnetic charges and currents are commonly used in many RF engineering problems, both for open

space propagation (e.g. with antennas) and for fields propagating in closed structures (e.g. in waveg-

uides). In addition, source magnetic current densities, like source electric current densities, can be con-

sidered energy sources that generate fields whose expressions can be written in terms of these current

densities.

The solution of some relevant electromagnetic problems can often be aided by the introduction of

“equivalent” source electric and magnetic current densities but most of them are outside the scope of this

chapter. However, to give the reader a glimpse of the importance and interpretation of the electric and

magnetic current densities, let us consider two familiar circuit examples [1].

In Fig. II.1.2 (left), an electric current source is connected in series to a resistor and a parallel-

plate capacitor. The electric current density J⃗ can be viewed as the current source that generates the

conduction current density J⃗c through the resistor and the displacement current density ∂D⃗/∂t through

the dielectric material of the capacitor. In Fig. II.1.2 (right), a voltage source is connected to a wire

that, in turn, is wrapped around a high-permeability magnetic core. The voltage source can be viewed as

the source magnetic current density J⃗m that generates the displacement magnetic current density ∂B⃗/∂t

through the magnetic material of the core.

Fig. II.1.2: Circuits with electric (left) and magnetic current densities (right), taken from Ref. [1].

737



II.1.1. Maxwell’s equations

II.1.1.3 Time-harmonic electromagnetic fields

In many practical systems involving electromagnetic waves, the time variations are of sinusoidal form

and are referred to as time-harmonic. In general, such time variations can be represented mathematically

by exp jωt (ω = 2πf and f being the frequency), and the instantaneous electromagnetic field vectors

can be related to their complex forms in a very simple manner. For time-harmonic fields, we can relate

the instantaneous fields, current density and charge, e.g. E⃗ (r⃗, t), to their complex form, e.g. E⃗ (r⃗, ω), by

E⃗ (r⃗, t) = Re
{
E⃗ (r⃗, ω) ejωt

}
. (II.1.6)

The complex quantity E⃗ (r⃗, ω) is called a phasor and it can be defined for any time dependent term of

Eq. II.1.5. It represents the complex spatial form and it is only a function of position coordinates. In

the following, we will use the same symbol for real and complex vectors; when the meaning will not be

obvious, we will write t or ω to make clear which vectors we are using.

The temporal (real) field vector represents instantaneous field vectors; their magnitudes represent

peak values that are related to their corresponding root-mean-square (RMS) values by the square root of

2 (peak =
√
2 rms). If the complex spatial quantities can be found, it is then a very simple procedure to

find their corresponding instantaneous forms by using relations similar to Eq. II.1.6.

Note that, with phasors, the time evolution of the instantaneous quantities is identical to phase

rotation of the complex quantities. Such property is mostly used in modern numerical codes to visualize

the evolution of the e.m. quantities with time, after the solution of Maxwell’s equations.

When dealing with power and energy we will often be interested in the time average of a quadratic

quantity. This can be found very easily for time harmonic fields. For example, the average of the square

of the magnitude of an electric field E⃗ (r⃗, t) is

〈 ∣∣∣E⃗ (r⃗, t)
∣∣∣2 〉

T
=

1

T

∫ T

0
E⃗ (r⃗, t) · E⃗ (r⃗, t) = · · · = 1

2
E⃗ (r⃗, ω) · E⃗ (r⃗, ω)∗ =

∣∣∣E⃗RMS (r⃗, ω)
∣∣∣2 . (II.1.7)

The field of radio frequency (RF) and microwave engineering generally covers the behavior of

time-harmonic fields with frequencies in the range of 100 MHz to 1000 GHz. RF frequencies range from

very high frequency (VHF) (30–300 MHz) to ultra high frequency (UHF) (300–3000 MHz), while the

term microwave is typically used for frequencies between 3 and 300 GHz, with a corresponding electrical

wavelength between λ = 10 cm and λ = 1 mm, respectively. Electromagnetic waves with wavelengths

on the order of millimeters are often referred to as millimeter waves. Figure II.1.3 shows also the location

of the RF and microwave frequency bands in the electromagnetic spectrum.

Table II.1.1 describes the nomenclature of the frequency bands mostly relevant for modern particle

accelerators. The frequency spectrum from L band (1–2 GHz) to W band (75–110 GHz) encompasses

a range of electronic engineering applications. In the L band, frequencies between 1 and 2 GHz find

prevalent use in mobile and satellite communication systems due to their ability to provide reliable data

rates over extended distances. Progressing to the higher S band (2–4 GHz), applications extend to radar

systems and weather monitoring, benefiting from a balance between data rate and signal propagation

characteristics. Moving further up, the C band (4–8 GHz) serves roles in satellite communication, mi-
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Table II.1.1: Approximate band designation [2].

Frequency range Frequency range
Today L band 1–2 GHz S band 2–4 GHz

accelerators C band 4–8 GHz X band 8–12 GHz
Ku band 12–18 GHz K band 18–26 GHz

Near future Ka band 26–40 GHz Q band 33–50 GHz
accelerators U band 40–60 GHz V band 50–75 GHz

E band 60–90 GHz W band 75–110 GHz

crowave links, and weather radar, striking a balance between atmospheric absorption and signal reliabil-

ity. The X band (8–12 GHz), known for finer radar resolution, is commonly employed in military and

weather radar applications. The Ku band (12–18 GHz) excels in satellite communication for high-data-

rate transmission. The K band (18–26 GHz) and Ka band (26–40 GHz) further extend capabilities in

communication, radar, and remote sensing applications. As we progress into the millimeter-wave spec-

trum, the Q band (33–50 GHz), U band (40–60 GHz), V band (50–75 GHz), and W band (75–110 GHz)

find applications in plasma heating, millimeter-wave communication, short-range communication sys-

tems, point-to-point links, and high-frequency microwave signals, enabling precise sensing and imaging

capabilities in various fields. Particle accelerators profit continuously of the technological development

driven by all those applications.

As shown in Tab. II.1.1 particle accelerators presently in operation typically use devices with

frequencies from L-band to X-band. Higher frequency devices are undergoing a worldwide R&D effort

to be used (hopefully) in the next generation accelerators.

Figure II.1.3 shows the electromagnetic spectrum in the interval of interesting for RF engineers [2]

from hundreds of kHz up to the optical region, emphasising applications to RF particle accelerators.

Structures operating in different frequency ranges require to be built from different materials. Up to

the infrared region, devices are typically built in copper which has high conductivity as well as optimal

vacuum performances. Higher frequencies result in increasing losses, and dielectric materials are thus

preferred.

The range of frequencies used for structures capable of manipulating the beam (through accel-

eration and/or deflection) is influenced by various competing factors, as discussed in Chapter I.11, for

example. One critical factor is the availability of stable, reliable RF power sources in the range of tens

of megawatts, as required in modern accelerators. Consequently, the development of accelerators is

intricately connected to the RF industry. Figure II.1.3 illustrates the frequencies currently utilised in ac-

celerators (white background). It also highlights (green background) ongoing research and development

directions (R&D) that, ideally, will shape the future of next generation particle accelerators.

In Fig. II.1.3, we also report examples of accelerating cavities (see Chapter I.1) working at different

frequencies. The oldest one is the cavity of a 1.5 GeV electron positron storage ring (ADONE at National

Laboratory of Frascati, Italy, 1965) operating at 8.58 MHz [3]. The one working at 800 MHz is a low

beam energy Side Coupled Drift Tube Linac (SCDTL) copper structure [4], shown at the right bottom

corner. One example of superconducting cavities is the 1.3 GHz multi-cell cavity from the TESLA linear

accelerator at DESY laboratory (Hamburg, Germany) [5]. The 3 GHz cavity is the state-of-the-art of

739

https://doi.org/10.23730/CYRSP-2024-003.479
https://doi.org/10.23730/CYRSP-2024-003.3


II.1.1. Maxwell’s equations

Fig. II.1.3: Modern accelerator devices and their occupancy in the electro-magnetic spectrum.

most of high beam brightness linacs used in modern Free Electron Lasers [6]. Compact copper structure

at 110 GHz are presently in the R&D phase [7]. Sub-THz (and THz as well) structures are believed to

be of promise for future accelerators and they are being investigated worldwide; Fig. II.1.3 shows an

example from Ref. [8]. The high intensity laser fields can not directly accelerate particles in free space,

but they can be used to feed a dielectric structure as shown in the Fig. II.1.3 bottom right device [9].

II.1.1.4 Constitutive relations

Materials contain charged particles, and when these materials are subjected to electromagnetic fields,

their charged particles interact with the electromagnetic field vectors, producing currents and modifying

the electromagnetic wave propagation in these media compared to that in free space. To account on a

macroscopic scale for the presence and behavior of these charged particles, without introducing them in

a microscopic lattice structure, usually one gives a set of three expressions relating the electromagnetic

field vectors. These expressions are referred to as the constitutive relations.

Field equivalence principle [10] suggests that the behaviour of polarized or magnetized materials

can be treated as equivalent to free space with the addition of specific sources, namely polarization

charges or magnetization currents acting in vacuum ( i.e. according to Maxwell’s equations II.1.1). This

simplifies the mathematical treatment of the interactions between electromagnetic fields and materials.

A more complete discussion of this is given in Chapter I.1 or in modern electromagnetic engineer-

ing textbooks, e.g. Ref. [1]. Since the late 1990s a renewed interest has been spurred in the application,
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integration, modelling, and optimisation of materials in a plethora of electromagnetic radiation, guiding,

and scattering structures. An inclusive name for all these materials is metamaterials. It is the class of

metamaterials that has captivated the interest and imagination of many leading researchers and practition-

ers, scientists, and engineers from academia, industry, and government. When electromagnetic waves

interact with such surfaces, they result in some very unique and intriguing characteristics and phenomena

that can be used, for example, to optimise the performance of antennas, microwave devices, and other

electromagnetic wave guiding structures.

Such materials are not so common in accelerator practice, because of practical reasons related to

vacuum performances or the presence of high electric field, potentially damaging such materials. In ac-

celerator technology, we deal mainly with high electrical conductivity materials (i.e. electric conductors)

when building accelerator devices or high magnetic permeability materials (i.e. ferromagnetic materi-

als) in magnets. Ferrite is used in some devices such as high power phase shifters. Magnetic (perfect)

conductors are sometimes used in RF device simulations, but this will be discussed in the context of

boundary conditions.

We will limit our analysis to linear, homogeneous, isotropic and stationary media, where one can

write

D⃗ = εcE⃗ with εc = ε′ − jε′′ and B⃗ = µH⃗ with µ = µ′ − jµ′′. (II.1.8)

The imaginary part of the complex permeability ε′′ (permittivity µ′′) account for losses ( i.e. heating) due

to damping of vibrating dipoles (magnetic currents). Due to the Ohm’s law, the current density in the

conductor J⃗c is such that

J⃗c = σE⃗, (II.1.9)

with σ the electric conductivity in (S/m) accounting for losses ( i.e. heating) due to moving charges

colliding with the lattice. The three relations in Eqs. II.1.8 and II.1.9 are referred to as the constitutive

relations for time harmonic fields (or in the frequency domain) [1].

Constitutive relations in tensor form are commonly used in electromagnetic engineering when

dealing with anisotropic materials, i.e. materials exhibiting different electromagnetic properties in differ-

ent directions; such an approach is beyond the scope of this work.

II.1.1.5 A solution of Maxwell’s equations: the plane waves

Using phasors, Maxwell’s equations in differential (and even integral forms) for time-harmonic electro-

magnetic fields can be written in much simpler forms, since

ej ω t = ej 2πf t → ∂

∂t
· · · = jω . . .

If the source terms are zero, Eqs. II.1.5 imply that

1. ∇ · D⃗ = 0, 2. ∇ · B⃗ = 0, 3. ∇× E⃗ = −jωµH⃗ 4. ∇× H⃗ = jωεE⃗ (II.1.10)
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which are the general homogeneous Maxwell’s equations, provided that

ε = ε′−jε′′−j
σ

ω
= εrε0(1−j tan δ) being tan δ =

ωε′′ + σ

ωε′
∝ Losses

Displacement current
; (II.1.11)

tan δ is called loss tangent and εr is the relative dielectric constant.

The wave equation for the electric field in vacuum

∇2E⃗ = µ0ε0
∂2E⃗

∂t2
becomes ∇2E⃗ + ω2µεE⃗ = 0 (II.1.12)

for a general linear, homogeneous, isotropic and stationary media. The last equation is called the

Helmholtz equation and k = ω
√
εµ is the propagation constant or wave number (1/m).

The simplest solution is the plane wave, i.e. a wave with a plane wave-front. For instance, if

E⃗ = Exx̂, uniform in x̂ and ŷ and the medium is lossless

∂

∂x
· · · = ∂

∂y
· · · = 0 → d2Ex

dz2
+ k2Ex = 0 → Ex(z, ω) = E+e−jkz + E−ejkz. (II.1.13)

The instantaneous electric field reads

Ex (z, t) = Re
{
Ex (z, ω) e

jωt
}
= E+ cos (ωt− kz) + E− cos (ωt+ kz), (II.1.14)

which is a wave moving in the positive and negative ẑ-direction.

The velocity at which a fixed phase point on the wave front travels, namely the phase velocity vp,

is such that ωt± kz is constant and thus

if ωt± kz = const, vp =
∣∣∣∣dzdt

∣∣∣∣ = ∣∣∣∣ ddt
(
ωt± const

k

)∣∣∣∣ = ω

k
=

1
√
εµ

, (II.1.15)

which is the speed of light in the medium. The wavelength λ is defined as the distance between two

successive maxima (or minima, or any other corresponding reference points) on the wave at a fixed

instant of time, i.e.

(ωt− kz)− [ωt− k (z + λ)] = 2π, λ =
2π

k
=

2πvp
ω

=
vp
f
.

Using Eq. II.1.13 in the 4th Maxwell’s equation II.1.10

Hx = Hz = 0 Hy =
j

ωµ

∂Ex

∂z
=

1

η

(
E+e−jkz − E−ejkz

)
with η =

ωµ

k
=

√
µ

ε
=

1

εv
= µv;

(II.1.16)

η is called intrinsic impedance of the medium and η0 =
√
µ0/ε0 =377Ω is its value for vacuum. Note

that the E⃗ and H⃗ vectors are orthogonal to each other and orthogonal to the direction of propagation (⃗k),

i.e.

H⃗ =
1

η
k⃗ × E⃗; (II.1.17)

this is a peculiar property of Transverse Electro-Magnetic (TEM) waves. The ratio between electric and
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magnetic field components is an impedance and it is called wave impedance ZTEM = η. In optical engi-

neering, in which the wavelength is much shorter than the dimensions of the component, the plane wave

solution is very often used, leading to the geometrical optics regime; optical systems can be designed

with the theory of geometrical optics.

II.1.1.6 Energy conservation and Poynting theorem

In a volume τ bounded by a closed surface A, the energy of the e.m. field is

U =

∫
τ

1

2
E⃗ · D⃗ dτ +

∫
τ

1

2
H⃗ · B⃗ dτ =

∫
τ
uEdτ +

∫
τ
uHdτ ;

uE (uH) is the density of electric (magnetic) energy in J/m3. Using Maxwell’s equations, vector identi-

ties and divergence theorem, the rate of decrease of e.m. energy in τ can be written

− dU

dt
= −

∫
τ

(
E⃗ · ∂D⃗

∂t
+ H⃗ · ∂B⃗

∂t

)
dτ =

∫
τ
E⃗ · J⃗ dτ +

∮
A
S⃗ · dA⃗, (II.1.18)

where S⃗(r⃗, t) = E⃗ (r⃗, t) × H⃗ (r⃗, t) is called Poynting vector with dimensions of W/m2. The E⃗ · J⃗
term accounts for energy per unit time transferred from electric field to moving charges in τ , namely

dissipated power P (Joule effect) in τ , since

J⃗ · E⃗dτ = E⃗ · nev⃗dτ = dqE⃗ · v⃗ = d⃗F · v⃗ = dP.

Electromagnetic energy flowing through surface A per unit time (exiting from τ ), namely the radiated

power Prad through A, is taken into account by the surface integral of S⃗.

Equation II.1.18 is known as Poynting’s theorem, after the physicist J. H. Poynting (1852–1914).

It is basically a power balance equation stating that the variation of energy in the volume τ per unit time

is due to the power dissipated in τ for Joule effect and power radiated through its boundary A.

If in the volume τ there is free space and there are not charges, applying the divergence theorem,

the integral Eq. II.1.18 is very often written in its differential form, that is

∇ · S⃗ +
∂u

∂t
= 0 being u = uE + uH . (II.1.19)

For time-harmonic fields, we can use phasor notation and the Poynting vector reads

S⃗ (r⃗, t) = Re

{
E⃗ (r⃗, ω)× H⃗ (r⃗, ω)∗

2

}
+Re

{
E⃗ (r⃗, ω)× H⃗ (r⃗, ω) ej2ωt

2

}
, (II.1.20)

where the first term is constant with time and it is the time average over a period T , i.e. ⟨S⃗(r⃗, t)⟩T ;

the second term at the right-hand side (r.h.s.) is oscillating with the double frequency. One can now

understand one possible definition of phasor of S⃗ (r⃗, t) which is

S⃗(r⃗, ω) =
E⃗ (r⃗, ω)× H⃗ (r⃗, ω)∗

2
. (II.1.21)
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Such definition is used in state-of-the-art electromagnetic codes, which are nowadays extensively used

for the design RF devices of particle accelerators. The real part of S⃗(r⃗, ω) accounts for the active power

and it is important to compute the net transfer of energy in a given direction over time. Its imaginary part

is related to the reactive power in the volume τ which does not contribute to the net power transfer but it

must be taken into account when doing energy balance.

II.1.1.6.1 Analogy among transport phenomena descriptions

To better understand the physical meaning of the Poynting vector S⃗(r⃗, t), let’s consider plane waves;

because of Eq. II.1.17, one can write

S⃗ =
1

η
E⃗ ×

(
k⃗ × E⃗

)
=

1

η
E⃗ · E⃗k̂ = ε

∣∣∣E⃗∣∣∣2 v⃗ =

ε
∣∣∣E⃗∣∣∣2
2

+
µ
∣∣∣H⃗∣∣∣2
2

 v⃗ = (uE + uH) v⃗ = u v⃗.

(II.1.22)

Therefore the propagation of electromagnetic energy is described by S⃗(r⃗, t) which is the product of the

volume density of electromagnetic energy times its velocity of propagation. Energy per unit time is

conserved and thus S⃗(r⃗, t) must satisfy Eq. II.1.19. The quantity of electromagnetic energy per unit time

passing through a generic surface A is computed by the flux of S⃗(r⃗, t) on A. Thus

S⃗ = u v⃗

(
W

m2

)
with ∇ · S⃗ +

∂u

∂t
= 0 being Prad =

∫
A
S⃗ · dA⃗ =

dU

dt
through A (II.1.23)

where dU/dt is called Prad as radiated power (measured in W).

In various branches of physics, it is customary to describe transport processes through the util-

isation of a vectors being the product of the volume density of the quantity being transported and its

velocity.

For instance, when dealing with the motion of charges, one defines the current density J⃗ as the

product of the volume density of the moving charges ρmob and their speed v⃗. The total charge must be

conserved at any time; therefore J⃗ and ρmob satisfy an equation mathematically identical to Eq. II.1.19,

which is often called the continuity equation for charges. Indeed

J⃗ = ρmob v⃗

(
A

m2

)
with ∇ · J⃗ +

∂ρmob

∂t
= 0 being I =

∫
A
J⃗ · dA⃗ =

dQ

dt
through A (II.1.24)

where the current, i.e. the charge per unit time passing through a surface A, is the flux of J⃗ .

In fluid dynamics, the continuity equation refers to the conservation of mass, which states that

the mass flow rate into a control volume must equal the mass flow rate out of that volume. Usually one

introduces the mass flux density J⃗m as the product of the volume mass density ρm and the speed v⃗. In

formulae:

J⃗m = ρm v⃗

(
kg/s

m2

)
with ∇ · J⃗m +

∂ρm
∂t

= 0 being
∫
A
J⃗m · dA⃗ =

dm

dt
through A; (II.1.25)

that is the mass moving through a surface per unit time is the flux of J⃗m.
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Continuity equation states that the rate of change of a certain quantity within a specified volume is

equal to the net flow of that quantity into or out of the volume. In various contexts, the continuity equation

takes different forms, but they all express the same underlying principle of conservation. Equation II.1.19

is thus the continuity equation for electromagnetic energy.

For the electromagnetic energy, in a more general form, i.e. including also the energy transferred

from the wave to moving charges (Joule effect), Eq. II.1.19 becomes

∇ · S⃗ +
∂u

∂t
= −E⃗ · J⃗ . (II.1.26)

The left-hand side of the equation represents the change in energy density within the specified volume

due to the flow of electromagnetic energy. The r.h.s. represents the rate at which work is done on the

charges within the volume by the electromagnetic field.

In essence, Eq. II.1.26 is a form of continuity equation for electromagnetic energy. It describes

how the energy within a given volume changes over time due to the flow of electromagnetic energy into

or out of the volume, similar to how a continuity equation describes the conservation of mass or charge

within a system.

II.1.2 Boundary conditions

We have seen that Maxwell’s equations assume that the field vectors are single-valued, bounded, con-

tinuous functions of position and time and exhibit continuous derivatives. Field vectors associated with

electromagnetic waves possess these characteristics except where there exist abrupt changes in charge

and current densities. Discontinuous distributions of charges and currents usually occur at interfaces

between media where there are discrete changes in the electrical parameters across the interface. The

variations of the field vectors across such boundaries (interfaces) are related to the discontinuous dis-

tributions of charges and currents by what are usually referred to as the boundary conditions. Thus a

complete description of the field vectors at any point (including discontinuities) at any time requires not

only Maxwell’s equations in differential form but also the associated boundary conditions [1].

A detailed description can be found in Chapter I.1 or in Refs. [1, 2]. In this chapter we limit

ourselves to the general results and discuss a couple of examples common in RF engineering for accel-

erators.

Consider a plane interface between two media, as shown in Fig. II.1.4 where
(
J⃗m,S , J⃗S

)
and

(ρm,S , ρS) are the magnetic and electric linear (per meter) current and surface (per square meter) charge

densities, respectively.

Maxwell’s equations in integral form can be used to deduce conditions involving the normal and

tangential fields at this interface. In the most general form, i.e. electric and magnetic sources (charges

and current densities) are present along the interface between the two media with neither one being a

perfect conductor, the boundary conditions on the tangential and normal components of the fields can be
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Fig. II.1.4: Fields, currents, and surface charge at a general interface between two media (picture adapted
from Ref. [2]).

written as

−n̂×
(
E⃗2 − E⃗1

)
= J⃗m,S , n̂×

(
H⃗2 − H⃗1

)
= J⃗S , n̂·

(
D⃗2 − D⃗1

)
= ρS , n̂·

(
B⃗2 − B⃗1

)
= ρm,S .

(II.1.27)

The three most common cases in practice are finite conductivity media with no sources on the boundaries

and the perfect electric and magnetic conductor cases.

In the first case, at the interface with two finite conductivity media, no charge or surface current

densities will ordinarily exist; thus Eqs. II.1.27 become

n̂× E⃗1 = n̂× E⃗2, n̂× H⃗1 = n̂× H⃗2, n̂ · D⃗1 = n̂ · D⃗2, n̂ · B⃗1 = n̂ · B⃗2. (II.1.28)

In words, these equations state that the normal components of D⃗ and B⃗ are continuous across the inter-

face, and the tangential components of E⃗ and H⃗ are continuous across the interface. Because Maxwell’s

equations are not all linearly independent, the six boundary conditions contained in the above equations

are not all linearly independent. Thus, the enforcement of the conditions for the four tangential field

components, for example, will automatically force the satisfaction of the equations for the continuity of

the normal components.

Many problems in microwave engineering involve boundaries with good conductors (e.g., metals),

which can often be assumed as lossless (σ → ∞). In this case of a perfect conductor, all field components

must be zero inside the conducting region (medium 1 if we assume the notation of Fig. II.1.4). Assuming

σ1 → ∞, σ2 < ∞, J⃗m,S = 0 and ρm,S = 0 in Fig. II.1.4, we get

n̂× E⃗ = 0, n̂× H⃗ = J⃗S , n̂ · D⃗ = ρS , n̂ · B⃗ = 0, (II.1.29)

since now the electromagnetic field exists only in medium 2. A picture of the field at the perfect conduc-

tors surface is given in the left plot of Fig. II.1.5. Such a boundary is sometimes called Perfect Electric

Conductor (PEC) and it is also known as an electric wall because the tangential components of E⃗ are

“shorted out,” as seen from the first of Eqs. II.1.29, and it must vanish at the surface of the conductor.

Dual to the preceding boundary condition is the magnetic wall boundary condition, where the
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Fig. II.1.5: Fields, surface current and charge for a perfect electric conductor (left picture) and a perfect
magnetic one (right picture).

tangential components of H⃗ must vanish. The magnetic wall condition, then, provides a degree of

completeness in our formulation of boundary conditions and is a useful approximation in several cases

of practical interest. As shown in the right picture of Fig. II.1.5,

n̂× E⃗ = −J⃗m,S , n̂× H⃗ = 0, n̂ · D⃗ = 0, n̂ · B⃗ = ρm,S . (II.1.30)

In general, a magnetic conductor is defined as a material inside of which both time-varying electric and

magnetic fields vanish when it is subjected to an electromagnetic field [1]. The tangential components of

the magnetic field also vanish next to its surface. In addition, the magnetic charge moves to the surface

of the material and creates a magnetic current density that resides on a very thin layer at the surface.

Although such materials do not physically exist, they are often used in electromagnetics to develop

electrical equivalents that yield the same answers as the actual physical problems. In reality, perfect

magnetic conductors can be synthesized approximately over a limited frequency range (band-gap). In

the accelerator technology, high µ materials used to increase B⃗-field in magnets can be approximated

with a Perfect Magnetic Conductor (PMC).

II.1.2.1 Plane waves in lossy media

Electromagnetic waves that travel in lossy media undergo attenuation. In this section we want to discuss

the solution for the electric and magnetic fields of uniform plane waves as they travel in lossy media.

Considering the complex permittivity, one can define a γ factor such that

jω
√
µε = γ = α+ jβ = jω

√
µε0εr(1− j tan δ), (II.1.31)

where α is the attenuation constant and β the phase constant (as in lossless space). Considering a x-

polarisation and since Ex is uniform in x and y, Helmholtz equation II.1.12 becomes

d2Ex

dz2
− γ2Ex = 0 then Ex(z, ω) = E+e−γz + E−eγz being e−γz = e−αze−jβz. (II.1.32)

To resume the time dependence of the E⃗ field from the phasor, one should take the real part as in

Re
{
E+e−αzej(ωt−βz) + . . .

}
=
∣∣E+

∣∣ e−αz cos
(
ωt− βz + ∠E+

)
+ . . . (II.1.33)
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where the . . . stands for the regressive wave. The wave phase velocity vp = ω/β and the wavelength

λ = 2π/β are not affected by the losses. E+ is a complex number of which the modulus contributes to

the wave amplitude, while its phase affects the wave initial phase.

From Maxwell’s equations one can get the H⃗ field, which results to be only Hy, i.e.

Hy =
j

ωµ

∂Ex

∂z
=

1

η

(
E+e−jγz − E−ejγz

)
with η =

jωµ

γ
= ZTEM and H⃗ =

1

η
β̂ × E⃗.

(II.1.34)

Therefore, a plane wave in a lossy medium is an “attenuated” Transverse Electro-Magnetic (TEM) wave.

For a good electric conductor, when the conduction current σE is much bigger than the displace-

ment current ωεE, one can write

tan δ =
ωε′′ + σ

ωε′
≈ σ

ωε0εr
, γ ≈ (1 + j)

√
ωµσ

2
with δS =

1

α
=

√
2

ωµσ
(m)

called the skin depth. Therefore the amplitude of a TEM wave travelling in a good conductor will exhibit

a behaviour qualitatively shown in Fig. II.1.6, assuming the (infinite) space divided in two parts, one

semi-space of vacuum and one of a good conductor. The flat plane interface between the vacuum and a

good conductor is placed at z = 0; the wave propagating in the positive z-direction has an amplitude E0

when it impinges on the conductor. According to the first of Eqs. II.1.28, the E-field is continuous at the

boundary, then its amplitude is reduced exponentially with z according to Eq. II.1.33. The skin depth δS

is the inverse of the attenuation constant α; the linear expansion of the exponential for small z intersects

the horizontal axis at z = δS , allowing an estimations of the field penetration inside the conductor. The

right-hand picture underlines that the wave-length λ is not changing while entering the conductor.

Fig. II.1.6: Exponential attenuation of the electric field entering in a lossy medium and physical meaning
of the skin depth δS .

If a TEM plane wave impinges on a good planar conductor, the field actually entering in the

conductor is very small (cancelling out for σ → 0). Indeed most of the field is reflected back and the

transmitted part is attenuated. In thickness of 5–6 skin depths the field is usually assumed negligible

(e.g. δS < 1µ m for copper at 10 GHz) and in practice one assumes always that the power transmitted

into the conductor is dissipated as heat within a very short distance from the surface. The situation is

schematically shown in Fig. II.1.7.

748



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.1.7: Surface impedance approximation to account electromagnetic field propagation in presence
of good conductors.

The widely used approximation to deal with waves impinging in good conductors is called “surface

impedance” approximation: the main idea is to replace the exponentially decaying current in the whole

conductor volume with a uniform current extending a distance of one skin depth. The volume current J⃗τ

J⃗τ =

{
J⃗S/δS if 0 < z < δS

0 if z > δS
being J⃗S = n̂× H⃗

∣∣∣
S

when σ → ∞.

Applying Ohm’s law, the power loss Pt reads

Pt =
1

2σ

∫
S

∫ δS

0

|J⃗S |2

δ2S
dSdz =

1

2

1

σδS

∫
S
|J⃗S |2dS =

RS

2

∫
S
|n̂× H⃗|2dS, (II.1.35)

where RS = 1/σδS is called surface resistance.

This method is very general, applying to fields other than plane waves and to conductors of arbi-

trary shape, as long as bends or corners have radii on the order of a skin depth or larger. The method is

also quite accurate, as the only approximation was that η << η0, which is a good approximation. As an

example, copper at 1 GHz has |η| = 0.012 Ω , which is indeed much less than η0 = 377 Ω.

II.1.3 Solution of Maxwell’s equations in closed structures

II.1.3.1 General boundary value problem

A boundary value problem in microwave engineering involves finding a solution to Maxwell’s equations

within a certain region of space, while satisfying prescribed boundary conditions on the surfaces that

define the boundaries of that region. These boundary conditions specify how the electromagnetic fields

behave at the interfaces or boundaries of the structure or device under consideration. For example, in

the design of a waveguide or an antenna, the boundary conditions may specify the continuity of the

tangential components of the electric and magnetic fields across the boundary, as well as the absence of

electric charges or currents on the boundary surfaces.

It is common practice in the analysis of electromagnetic boundary-value problems to use auxiliary

vector potentials as aids in obtaining solutions for the electric E⃗ and magnetic H⃗ fields. The most

common vector potential functions are the A⃗, magnetic vector potential, and F⃗ , electric vector potential.
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They are used extensively in the solution of antenna radiation problems. Although the electric and

magnetic field intensities E⃗ and H⃗ represent physically measurable quantities, for most engineers the

vector potentials are strictly mathematical tools. The introduction of the potentials often simplifies the

solution, even though it may require determination of additional functions. Much of the discussion in

this section is borrowed from [1].

The Hertz vector potentials Π⃗e and Π⃗h make up another pair. The Hertz vector potential Π⃗e

is analogous to A⃗ and Π⃗h is analogous to F⃗ , with a proportionality constant that is a function of the

frequency and the constitutive parameters of the medium. In the solution of a problem, only one set, A⃗

and F⃗ or Π⃗e and Π⃗h, is required.

The main objective of this section is to obtain electromagnetic field configurations ( i.e. modes) of

boundary-value propagation problems in waveguides. These field configurations must satisfy Maxwell’s

equations or the wave equation, as well as the appropriate boundary conditions. The procedure is to

specify the electromagnetic boundary-value problem, which may or may not contain sources, and to

obtain the field configurations that can exist within the region of the boundary-value problem. This can

be accomplished in either of two ways, as shown in Fig. II.1.8.

Fig. II.1.8: Block diagram for computing radiated fields from electric and magnetic sources, taken from
Ref. [1].

One procedure for obtaining the electric and magnetic fields of a desired boundary-value problem

is to use Maxwell’s or the Helmholtz equations for the fields E⃗, H⃗ . This is accomplished essentially in

one step, and it is represented in Fig. II.1.8 by the black path. In a homogeneous medium, any solution

for the time-harmonic electric and magnetic fields must satisfy Maxwell’s equations

1.∇ · E⃗ = ρ/ε, 2. ∇ · H⃗ = ρm/µ, 3. ∇× E⃗ = −jωµH⃗ − J⃗m 4. ∇× H⃗ = jωεE⃗ + J⃗

(II.1.36)
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or the vector Helmholtz equations

∇2E⃗ + k2E⃗ = ∇× J⃗m + jωµJ⃗ +∇ρ/ε

∇2H⃗ + k2H⃗ = −∇× J⃗ + jωεJ⃗m +∇ρm/µ
being k2 = ω2µε. (II.1.37)

In regions where there are no sources, J⃗ = J⃗m = 0 and ρ = ρm = 0. In these regions, the preceding

equations are of simpler form. Whereas the electric current density J⃗ may represent either actual or

equivalent sources, the magnetic current density J⃗m can only represent equivalent sources.

Although all of these equations will still be satisfied, an alternate two-step procedure is commonly

used for the solution of the electric and magnetic fields using the auxiliary vector potentials, A⃗ and F⃗ ,

as shown in the red path of Fig. II.1.8. In the first step, the vector potentials A⃗ and F⃗ are found, once the

boundary-value problem is specified; they satisfy the vector Helmholtz equations for the potentials, i.e.

∇2F⃗ + k2F⃗ = −µJ⃗m and ∇2A⃗+ k2A⃗ = −µJ⃗ with k2 = ω2µε. (II.1.38)

In the second step, the electric and magnetic fields are found, after the vector potentials are determined.

The electric and magnetic fields are functions of the vector potentials according to

E⃗A = −jωA⃗− (j/ωµε)∇
(
∇ · A⃗

)
,

H⃗A = (1/µ)∇× A⃗,

E⃗F = − (1/ε)∇× F⃗ ,

H⃗F = −jωF⃗ − (j/ωµε)∇
(
∇ · F⃗

)
,

(II.1.39)

that is

E⃗ = E⃗A + E⃗F and H⃗ = H⃗A + H⃗F . (II.1.40)

Although it requires two steps, it is often simpler and more straightforward and hence it is often preferred.

In electromagnetic theory, a mode refers to a specific pattern of electromagnetic fields that satisfies

the boundary conditions within a given structure or device. These modes represent distinct ways in which

electromagnetic energy can propagate and resonate within the system. Understanding and computing the

modes in electromagnetic structures is crucial in RF problems for several reasons.

Firstly, modes provide valuable insight into how electromagnetic energy behaves within a structure

or device. By computing the modes, engineers can determine the distribution of electric and magnetic

fields, as well as the corresponding frequencies and propagation characteristics associated with each

mode. This information is essential for optimising the performance of RF systems, such as antennas,

waveguides, resonators, and transmission lines.

Secondly, modes help in analysing and designing RF components. Different modes can exhibit

unique characteristics, such as varying field distributions, polarisation states, and propagation velocities.

By studying the properties of each mode, engineers can tailor the design parameters of RF components

to meet specific performance requirements, such as impedance matching, bandwidth, radiation pattern

(in antennas) and loss reduction.

Moreover, computing the modes allows engineers to identify resonant frequencies and resonant

modes within a resonant structure. Resonant modes occur when the electromagnetic energy stored in the

system oscillates at a particular frequency with minimal energy losses. These resonances are crucial in
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RF devices devoted to particle manipulation in accelerators. A detailed description of such devices will

be subject of Chapter II.2 on RF engineering.

The rest of the section is devoted to applying the previous equations to the computation of modes

in cylindrical metallic waveguides. Modes are solutions of the homogeneous equations

∇2F⃗ + k2F⃗ = 0 and ∇2A⃗+ k2A⃗ = 0 with k2 = ω2µε. (II.1.41)

Equation II.1.40 implies that the modes are the superposition of modes related to the A⃗ potential, i.e.

E⃗A, H⃗A and modes related to the F⃗ potential, i.e. E⃗F , H⃗F . By knowing them, RF designers can foresee

the shape of the field inside any structure. We will see that E⃗A, H⃗A as well as E⃗F , H⃗F have peculiar

properties useful in the applications to particle accelerators.

II.1.3.2 Cylindrical metallic waveguides

A cylindrical metallic microwave waveguide is a structure designed to guide and propagate electromag-

netic waves at microwave frequencies. It is a hollow metal tube with a circular cross-section, and its

primary purpose is to confine and control the transmission of microwave signals within its structure.

Unlike free-space radiation, a waveguide ensures that microwave energy is directed from one point to

another without significant loss. They also have the capability to handle high power levels without

substantial degradation, making them essential in delivering high-power to accelerating or deflecting

structures. Typical geometries are shown in Fig. II.1.9: a cylindrical waveguide has always one direction

in which the size is much bigger than the others; this is the field propagation direction and we label it

ẑ-direction.

Fig. II.1.9: Cylindrical waveguides along the ẑ-direction, taken from Ref. [2].

Because of the symmetry, we can assume

A⃗ = ẑAz(x, y)e
−jβz = ẑA and F⃗ = ẑFz(x, y)e

−jβz = ẑF. (II.1.42)
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The ∇2 acts on the z-coordinate as well as on the transverse coordinate, i.e.

∇2 · · · = ∇2
t · · ·+

∂2

∂z2
. . . , (II.1.43)

where ∇2
t acts on the x, y-plane orthogonal to the propagation axis. Depending on the coordinate system

used to describe the problem, ∇2
t will have different expressions, as shown in Sec. II.1.3.3.

The two Helmholtz equations read now

∇2
tAz +

(
k2 − β2

)
Az = 0 and ∇2

tFz +
(
k2 − β2

)
Fz = 0; (II.1.44)

using Eq. II.1.39, written for potential with only ẑ component as in Eq. II.1.42, one gets

H⃗A = h⃗te
−jβz and E⃗A = (e⃗t + ẑez) e

−jβz. (II.1.45)

Such a field propagates in the positive ẑ direction, with the interesting feature of having the magnetic field

always transverse to the waveguide axis or, equivalently, having only the electric field with a component

on the waveguide axis ( i.e. the ẑ axis). For this reason, the resulting mode is called Transverse Magnetic

(TM) mode or E-mode.

Analogously, inserting F⃗ from Eq. II.1.42 into Eq. II.1.39, one gets

H⃗F =
(
h⃗t + ẑez

)
e−jβz and E⃗F = e⃗te

−jβz, (II.1.46)

which is a field propagating in the positive ẑ direction having the electric field always transverse to the

waveguide axis or, equivalently, having only the magnetic field with a component on the waveguide axis

( i.e. the ẑ axis). For this reason, the resulting mode is called Transverse Electric (TE) mode or H-mode.

To conclude, Eq. II.1.40 is telling us that any propagating field in the waveguide is a superposition

of fields having a magnetic field transverse to the waveguide axis (TM modes) and fields having electric

the field transverse to the waveguide axis (TE modes).

Modes in a waveguide are solutions of the homogeneous equations, i.e. they are a complete set

for the solutions of the eigenvalue problem, thus any field existing in the waveguide is a superposition of

those modes. Moreover those modes can propagate independently, one from the other, that is we could,

in principle, excite them independently.

II.1.3.2.1 Example: TEM waves in metallic waveguides

We now look for the possibility of having a Transverse Electric Magnetic (TEM) mode, i.e. a mode being

simultaneously TE and TM, as is the plane wave in free space seen in Sec. II.1.1.5.

We can look for the condition needed for a TM mode (vector potential A⃗, Hz = 0) for having also

Ez = 0. Considering A⃗ as in Eq. II.1.42, we can write

∇ · A⃗ = −jβAze
−jβz → E⃗A = − j

ωµε

(
ω2µε− β2

)
Aze

−jβz ẑ − β

ωµε
∇tAze

−jβz. (II.1.47)
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Then if β2 = ω2µε = k2, ez is vanishing and the field becomes

E⃗ = − 1
√
µε

∇tAze
−jω

√
µεz H⃗ =

1

µ
∇t × (ẑAz) e

−jω
√
µεz. (II.1.48)

Moreover Az satisfies the Laplace equation, as for static scalar potential V in Eq. II.1.4, since

∇2
tAz = −

(
k2 − β2

)
Az = 0.

The electric field is the ∇t of a solution of a Laplace equation, therefore it has transversely the same

“shape” as an electrostatic field even if is propagating in the ẑ-direction at vp = 1/
√
µε, that is the speed

of light, as stated by the exp
(
−jω

√
µεz
)

term.

In conclusion, a TEM wave in metallic waveguides is possible if there are at least two conductors.

It can be computed by considering the electrostatic boundary value problem ( i.e. including the boundary

conditions) to get e⃗t, then

h⃗t =

√
ε

µ
ẑ × e⃗t =

1

ZTEM
ẑ × e⃗t and E⃗ = e⃗te

−jω
√
µεz, H⃗ = h⃗te

−jω
√
µεz. (II.1.49)

TEM waves are synchronous with relativistic particles, since they propagate with a phase velocity equal

to the speed of light, but unfortunately they can not be used directly to accelerate particles, since the

electric field is transverse to the propagation direction. Nevertheless Fig. II.1.10 shows an example of a

strip-line waveguide used in beam position monitor in a high brightness LINAC. The signal excited by

the beam is “guided” away by the strip towards a detector.

Fig. II.1.10: TEM waveguides: strip-line Beam Position Monitor in SPARC high brightness LINAC [11].
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II.1.3.3 General solution for fields in cylindrical waveguides

The potentials satisfy the Helmholtz equations in the transverse coordinates

∇2
tAz + k2tAz = 0 ∇2

tFz + k2tFz = 0 with k2t = k2 − ω2µε, ε = ε0εr (1− j tan δ) ; (II.1.50)

the Az equation refers to TM-modes, while the solution of the Fz equation are the TE-modes.

Figure II.1.11 defines the coordinate systems in two very common cylindrical waveguides, the

rectangular cross-section and the circular cross-section ones. According to such coordinates, one can

write the Laplacian operator

∇2
t =

∂2

∂x2
+

∂2

∂y2
and ∇2

t =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
(II.1.51)

in rectangular and cylindrical coordinates respectively.

As shown in [ref. to Heino Henke], a very common way to solve Eq. II.1.50 is with the separation

of variables technique, i.e. for example for Az one seeks solution in the form

Az(x, y) = X(x)Y (y) and Az(ρ, ϕ) = R(ρ)Φ(ϕ) (II.1.52)

for rectangular and cylindrical coordinates respectively. The solution of the eigenvalue problem of

Eq. II.1.50 is an eigenunction ( i.e. Az or Fz) with a corresponding eigenvalue (kt). Then, for every

eigenfunction one can compute the fields from Eq. II.1.39 and then apply the boundary conditions. Such

fields are called modes and they are ordered according to two indices; each mode has a field shape and a

propagation constant, i.e.

e⃗m,n, h⃗m,n and βm,n =
√
ω2µε− k2t (m,n). (II.1.53)

Because of the general properties of solutions of eigenvalue problems, any field in the waveguide can

always be imagined as a superposition of the modes, that is

E⃗ =
∑
m,n

am,ne⃗m,ne
−jβm,nz and H⃗ =

∑
m,n

bm,nh⃗m,ne
−jβm,nz. (II.1.54)

βm,n can be an imaginary or a real number, meaning that the field can propagate (βm,n real) or be

attenuated (βm,n imaginary). The am,n, bm,n coefficients, i.e. the field amplitude, depend on the sources;

on the contrary the shape of field depends on the modes, i.e. on the shape and on the dimensions of the

waveguide.

II.1.3.3.1 Example: TE mode (H-mode) in rectangular waveguide

Transverse Electric (TE) modes can be computed from Fz using the separation of variables, thus from

Eqs. II.1.50, II.1.51, II.1.52

Fz = X(x)Y (y) → ∇2
tFz + k2tFz = Y X ′′ +XY ′′ + k2tXY = 0 → X ′′

X
+

Y ′′

Y
+ k2t = 0.
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Fig. II.1.11: Rectangular and circular waveguides, taken from Ref. [2].

The last equation is a sum of three terms: the first is a function only of x, the second only of y and the

third is a constant. Therefore it can be valid only if the three terms are constant themselves, i.e.

X ′′

X
= −k2x,

Y ′′

Y
= −k2y where k2t = k2x + k2y; (II.1.55)

the last equation is called the constraint condition. The solutions of Eqs. II.1.55 are straightforward:

X(x) = C1 cos (kxx) +D1 sin (kxx) and Y (y) = C2 cos (kyy) +D2 sin (kyy),

being C1, C2, D1, D2 integration constants depending on the boundary conditions on the electric field

which is proportional to

ex = −1

ε

∂Fz

∂y
= −1

ε
XY ′ = −ky

ε
[C1 cos (kxx) +D1 sin (kxx)] [−C2 sin (kyy) +D2 cos (kyy)] .

Considering the geometry in the left picture of Fig. II.1.11 and assuming a perfect conductor, the Ex

must be vanishing at the bottom and top walls, thus

ex (0 ≤ x ≤ a, y = 0) = 0 → D2 = 0

ex (0 ≤ x ≤ a, y = a) = 0 → kyb = nπ n = 0, 1, 2, . . .

Using the same reasoning on Ey, one finds a similar condition on ky and from the constraint condition

of Eq. II.1.55, eventually we get

βm,n =

√
ω2µε−

(mπ

a

)2
−
(nπ

b

)2
(II.1.56)

which used in Eq. II.1.54 gives the field expressions.

Depending on the frequency, the propagation constant can be either a real positive number or an

imaginary one. When the βm,n is real, the mode (m,n) field is propagating along ẑ-direction while if
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βm,n is imaginary the field is exponentially decaying and the mode is referred to as an evanescent mode.

The frequency at which βm,n = 0 is called cutoff frequency fc

(fc)m,n =
1

2π
√
µε

√(mπ

a

)2
+
(nπ

b

)2
m,n = 0, 1, 2, . . . m = n ̸= 0. (II.1.57)

The mode can propagate without attenuation at frequencies above its cutoff frequency, while it is evanes-

cent ( i.e. exponentially attenuated) for frequencies smaller than its cutoff one.

The plot of the propagation constant βm,n for frequencies above the cutoff is called waveguide

dispersion curve. Figure II.1.12 is the dispersion curve for the standard rectangular waveguide for X-

band (called WR90). Each mode has a different dispersion curve in the plot and the name of the mode

is shown in the same colour of the corresponding curve. Different modes may have identical dispersion

curve, as for TE1,1 and TM1,1. We did not explicitly derive TM modes, i.e. modes descending from A⃗

potential. The procedure is analogues to the previous one and details can be found in Ref. [1].

Fig. II.1.12: Dispersion diagram of the WR90 rectangular waveguide for X-band. (a = 22.86 mm,
b = 10.16 mm).

The mode with the smaller cutoff frequency is called the fundamental mode; in metallic waveg-

uides the fundamental mode is always a TE and for the rectangular waveguide is the TE1,0. The frequen-

cies range below the fundamental mode cutoff frequency is called waveguide cutoff region since no field

can propagate in the waveguide.

The frequency range between the first and second mode cutoff frequencies is called the uni-modal

propagation range since only one mode (the fundamental one) is propagating and all the others are

evanescent. This is the region preferred for applications since the field properties are known, since it

must be TE1,0 mode. Actually, the frequency range used for applications is a bit smaller, typically from

a frequency 25% bigger than the fundamental mode cutoff frequency to the one 5% smaller than the first

high order mode cutoff frequency. Thus, according to the dispersion diagram of WR90 waveguide in

Fig. II.1.12, the practically used single mode bandwidth is 1.25(fc)1,0 to 0.95(fc)2,0. Where the disper-

sion curve is vertical, it implies that slightly different frequencies may have very different propagation

constants, that is phase velocity; such regions are referred to as high dispersion frequency ranges. The
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white region between the red one (waveguide cutoff) and the green one (used for uni-modal propagation)

is a high dispersion region for the fundamental mode and it is not used in applications even if the in

principle only the fundamental mode is propagating.

The transverse field pattern of a TEm,n mode exhibits variations along both the x and y axes of

the waveguide cross-section. The electric field distribution typically varies sinusoidally along each axis,

with m and n representing the number of half periods or maxima/minima along the respective axes. In

general, for a TEm,n mode, the transverse field pattern can be visualised as having m maxima or minima

along the x-axis and n maxima or minima along the y-axis within the waveguide cross-section. The

specific distribution of electric field maxima and minima along these axes depends on the mode order

and the geometry of the waveguide. Figure II.1.13 shows the most common ones, namely the lower order

ones: for TE-modes (TM-modes) electric (magnetic) field component is shown. To understand which

field is shown, reader should recall that those plots are usually done for perfectly conducting walls;

therefore electric field E⃗ is always perpendicular to the walls while H⃗ is tangential.

Fig. II.1.13: Electric field for TE modes and magnetic field for TM modes in the rectangular waveguide
on a generic cross section of a the waveguide. (CST simulation [12], courtesy of L. Ficcadenti).

II.1.3.4 Modes impedance and propagation constant

The solution of Maxwell’s equations for a given problem is complete, giving electric and magnetic fields

at all points in the space. Usually we are interested in voltages or currents at a set of terminals and/or

power flow, and not in fields at all points of the space.

One typical problem to be solved is the study and characterisation of microwave circuits and

components within a larger network through microwave network analysis. To this extent transmission

line models are often used, thus considering each mode of the waveguide as a transmission line with its

own properties, which are frequency dependent. For instance the propagation constant is

βm,n =
√
ω2µε− k2t (m,n), (II.1.58)
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while the impedance differs for TEm,n and TMm,n modes according to

ZTE
m,n =

ex,m,n

hy,m,n
=

−ey,m,n

hx,m,n
=

ωµ

βm,n
= η

k

βm,n
,

ZTM
m,n =

ex,m,n

hy,m,n
=

−ey,m,n

hx,m,n
=

βm,n

ωϵ
= η

βm,n

k
. (II.1.59)

For the reader’s convenience, we summarise here the three different impedances that are usually

used in RF engineering.

– Intrinsic impedance of the medium
This impedance is dependent only on the material parameters of the medium and it is equal to the

wave impedance for plane waves.

η =

√
µ

ε
and η0 =

√
µ0

ε0
= 377Ω.

– Wave impedance
This impedance is a characteristic of the particular type of wave. TEM, TM, and TE waves each

have different wave impedance (ZTEM, ZTM, ZTE), which may depend on the type of guide, the

material, and the operating frequency. Sometimes one uses also its inverse, called admittance.

Zwave =
et
ht

=
1

Ywave
.

– Characteristic impedance
The characteristic impedance is the ratio of voltage to current for a travelling wave on a trans-

mission line. Because voltage and current are uniquely defined for TEM waves, the characteristic

impedance of a TEM wave is unique. TE and TM waves, however, do not have uniquely defined

voltages and currents, so the characteristic impedance for such waves may be defined in different

ways.

Z0 =
1

Y0
=

V +

I+
.

II.1.4 Exercises

II.1.4.1 Single mode operation of a commercial rectangular waveguide

II.1.4.1.1 Question

A WR90 waveguide, also known as WG16 in Europe, is a standard rectangular waveguide that is widely

used in microwave and millimeter-wave technology. The “WR” stands for “Waveguide Rectangular” and

the number “90” indicates the internal width of the waveguide in hundredths of an inch. Specifically, the

WR90 waveguide has internal dimensions of 0.9 inches (22.86 mm) in width and 0.4 inches (10.16 mm)

in height. The WR90 waveguide is engineered to operate effectively within the frequency range of

8.2 GHz to 12.4 GHz, used in state-of-the-art X-band accelerating structures. Its dispersion diagram was

given in Fig. II.1.12.
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Labelling the longest side of the waveguide cross-section as a and the shortest one as b, as done

in the rectangular waveguide shown in Fig. II.1.11, find the smallest ratio a/b allowing the largest band-

width of single mode operation. Moreover, defining the single mode bandwidth as done in the text,

i.e.

1.25 (fc)1,0 < f < 0.95 (fc)2,0 ,

find the single mode bandwidth for WR90 waveguide.

II.1.4.1.2 Solution

The cutoff frequencies fc for TE-modes of a rectangular waveguide are given by Eq. II.1.57 and they

are marked on the frequency axis in Fig. II.1.14. The fundamental mode TE1,0 has the cutoff frequency

(fc)1,0 while the position of the cutoff frequency (fc)0,1 depends on the value of b, that is the shortest side

of the cross section. Since the position of (fc)2,0 is fixed, the largest bandwidth of single mode operation

happens to be when (fc)0,1 = (fc)2,0, that is a/b = 2. It explains why most of the commercially

available rectangular waveguides are designed with a/b ≈ 2.

Fig. II.1.14: Cutoff frequencies of the TE modes of a rectangular waveguide in Fig. II.1.11. The cutoff
frequency of the second mode (red line) depends on the geometry and it can be either a TE0,1 or a TE2,0.
The upper formulae remind the cutoff frequencies of the TE1,0, TE2,0 and TE0,1 modes respectively.

Because of the sizes, i.e. b > 2a, the first two cutoff frequencies are TE1,0 and TE2,0 with

(fc)1,0 = c/2a = 6.56 GHz and (fc)2,0 = c/a = 13.11 GHz,

and the single mode operation bandwidth, as for instance specified by the vendors, is

1.25 (fc)1,0 = 8.20 < f < 12.46 GHz = 0.95 (fc)2,0 .

II.1.4.2 Field pattern of the fundamental mode in a rectangular waveguide

II.1.4.2.1 Question

Compute the expression for the TE fields and draw the field pattern of the fundamental mode of a rect-

angular waveguide. Try to sketch the field of the mid-plane of a waveguide with length equal to 3λ/2.

Sketch also the Poynting vector S⃗ (r⃗, t) as defined in Eq. II.1.20.
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II.1.4.2.2 Solution

The TEm,n modes propagating in the positive z direction have m (n) half periods (or maxima/minima)

along the x (y) axis in the cross-section. Applying the solution method discussed in the text, the fields

of the modes are

E+,(m,n)
x = am,n

nπ

εb
cos
(mπ

a
x
)
sin
(nπ

b
y
)
e−jβm,nz,

E+,(m,n)
y = −am,n

mπ

εa
sin
(mπ

a
x
)
cos
(nπ

b
y
)
e−jβm,nz,

E+,(m,n)
z = 0,

H+,(m,n)
x = am,n

mπ

εa

βm,n

ωµε
sin
(mπ

a
x
)
cos
(nπ

b
y
)
e−jβm,nz,

H+,(m,n)
y = am,n

nπ

εb

βm,n

ωµε
cos
(mπ

a
x
)
sin
(nπ

b
y
)
e−jβm,nz,

H+,(m,n)
z = −jam,n

k2t
ωµε

cos
(mπ

a
x
)
cos
(nπ

b
y
)
e−jβm,nz.

The fundamental mode field, i.e. for m=1 and n=0, are depicted in Fig. II.1.15, where it is clear

that the boundary condition of a null tangential electric field on the waveguide surfaces is satisfied.

Fig. II.1.15: Field distribution of the TE1,0 mode according to the geometry of the left picture. For
clarity, we have omitted Ez , as it is zero in a TE mode.

The electric and magnetic 3D field pattern in the mid-plane of the waveguide is shown in

Fig. II.1.16 for a structure 3λ/2 long. The reader can find the behaviour expected from the formulae

of TE1,0 fields.

The Poynting vector of Eq. II.1.20 at a fixed time along the waveguide symmetry plane is shown

in the top left picture of Fig. II.1.17. The power flowing through a surface is the flux of the Poynting

Vector over that surface. The right top picture of Fig. II.1.17 shows the time average over a period of

S⃗ (r⃗, t); it is evident that the direction of the power flow is along the z-axis and the power value ( i.e.

the flux of S⃗) is constant. It is important noticing that, according to our definition, the time average over

one period is the real part of the phasor of the Poynting vector S⃗ (r⃗, ω) of Eq. II.1.21. The left bottom

picture of Fig. II.1.17 shows the second term of Eq. II.1.20; it contributes to the instantaneous value of

the Poynting vector, but not on its time average over one period. The right bottom picture of Fig. II.1.17

shows the imaginary part of S⃗ (r⃗, ω). The flux of this term along the cross section is null, meaning that

it is not associated to the power flowing and it thus accounts for reactive power.
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Fig. II.1.16: Electric (left plot) and magnetic field (right plot) of the TE1,0 in the rectangular waveguide.
The length of the simulated structure is 3λ/2. (CST simulation [12], courtesy of L. Ficcadenti).

Fig. II.1.17: Poynting vector S⃗ of the TE1,0 in the rectangular waveguide. The length of the simulated
structure is 3λ/2. The left top plot is S⃗ at a fixed time along the waveguide symmetry plane. The average
of S⃗ on one period is the right top plot. The bottom plots are respectively the 2ωt oscillating part and the
imaginary part of the phasor of the Poynting vector. (CST simulation [12]).
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