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Chapter II.2

RF engineering

Christine Vollinger and Manfred Wendt

CERN, Geneva, Switzerland

Radio-frequency (RF) engineering is a subset of electrical engineering, here focused on the
application of resonant accelerating structures (cavities), transmission-lines, and a variety of RF
components, based on electromagnetic field principles, operating in the frequency range between a
few MHz up to tens of GHz.

The JUAS RF engineering lecture, and this summary of the lecture, tries to close the gap between

theoretical electromagnetism and radio-frequency (RF) theory on one side and practical RF engineer-

ing problems on the other. Among the broad range of RF engineering topics only a limited choice of

items could be covered, which include some general aspects on RF engineering discussed in the intro-

duction and the most essential topics related to radio-frequency technologies used in particle accelerators

outlined in the following sections.

Among the various RF topics presented here, a good understanding of a single cylindrical, so-

called “pill-box” cavity resonator is of particular importance, as it is the foundation for charged particle

acceleration using radio-frequencies. This write-up of the RF engineering lectures is also intended to

help the interested student to prepare for the RF exam with a summary of the most important equations

and relationships.

II.2.1 Introduction

In this lecture, the basic concepts of RF engineering are discussed as they apply in particle accelerators

of today. Since the field of RF is large, it will only be possible to scratch the surface, and we will give our

own selection of topics. Also, we rely on the explanations of basic concepts of electromagnetism (see

Chapter I.1) as well as the general introduction into RF (see Chapter II.1) which are presented in greater

detail elsewhere in these proceedings, therefore reading and understanding of these two chapters are a

prerequisite for this RF chapter. The aim of this chapter is to introduce basic RF concepts in the frame-

work of the JUAS series to an audience of Master students and PhD students coming from different fields

of studies and with different backgrounds. While we may repeat a few topics for better understanding,

and while there also may be some overlap on topics presented in Chapter II.5 on superconducting RF

cavities, we try to give a valuable, condensed introduction to RF engineering used in the field of particle

accelerator technology. Evidently, this RF engineering section is not comprehensive and is not indented

to replace any text books or special literature, instead, it focuses on the introduction of RF principles
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II.2.1. Introduction

relevant for the design of RF systems in particle accelerators. For more detailed reading, we will refer to

our bibliography.

Before we dip into the radio frequency engineering details, it is worth to look into a table of the

frequency ranges used in RF-engineering, see Table II.2.1. The onset of what is called RF starts around

3 kHz in the range of extremely low frequency – however, this is not what most people consider RF when

thinking about particle accelerators. Here, the frequency range starts with what is commonly called “high

frequency” at about 1 MHz.

Let’s recall from very basics that Hertz (Hz) is the unit of frequency: 1 Hz = 1 sec−1. Equally, remember

that 1 MHz = 106 Hz, and 1 GHz = 109 Hz, and that frequency f and wavelength λ are inversely

proportional: large frequency means small wavelength.

In vacuum, f and λ are coupled by the speed of light, so f · λ = c0. Fi-

nally, some numbers you should know by heart: A signal with a frequency of 1 GHz has

a wavelength of 30 cm, whereas a frequency of 3 MHz corresponds to about 100 m.

Table II.2.1: Example frequency ranges in RF engineering. Numbers taken from Wikipedia.

RF band name Abbreviation ITU band number Frequency range

High frequency HF 7 3–30 MHz
Very high frequency VHF 8 30–300 MHz
Ultra high frequency UHF 9 300–3000 MHz
Super high frequency SHF 10 3–30 GHz

Extremely high frequency EHF 11 30–300 GHz

The RF-system in an accelerator is one of the most central elements as it is the part which does the

actual acceleration. Most pronouncedly visible is the cavity where the acceleration takes place, however,

other beam operations like beam chopping, bunch compression etc. are equally carried out with the help

of the electromagnetic fields of RF cavities. It will not be possible to explain an entire RF system in two

lectures, therefore, we will explain the topic of RF transmission lines in section II.2.3, and concentrate

in section II.2.4 on the simplest accelerating structure, the so-called pill-box cavity. It is important to un-

Fig. II.2.1: Schematic of accelerating single gap cavity with external components.
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derstand that cavity design is an engineering branch in its own and a cavity that is used for acceleration

is not a self-sufficient system. As can be seen in Fig. II.2.1, the resonant structure of a single gap cavity

is hooked up to a high power RF system, consisting of a complex amplifier structure which is connected

to the cavity via a feeder line. The feeder line is used for transmitting the amplifier power to the cavity. It

typically consists of a waveguide or a coaxial line which terminates in a high power RF coupler to bring

in the power that is needed to excite the cavity resonance. In addition, an RF-source and a low-level

RF system are required for cavity operation, e.g. to provide the RF power with the correct frequency,

amplitude and phase. Note that the cavity is operated under vacuum and the beam passage takes place

by connecting the cavity body to the metallic vacuum beam pipe. The accelerating force is provided by

the electric field inside the cavity.

II.2.2 RF Engineering Terms: deci-Bel

II.2.2.1 Decibel, dB, (“dee-bee”), or not to be . . .

Decibels are used to express large number ranges by using the base 10 logarithm of numbers. Hence,

decibels are very handy to cover several orders of magnitude, for example power from mW to MW. . .

In this context, the Bel is a logarithmic unit expressing ratios between values, and particular pop-

ular is the tenth fraction, deci-Bel:

1 dB =
1

10
B = 0.1B (Bel)

While used in many engineering disciplines, the dB used in electrical and RF engineering usually ex-

presses ratios between two electrical power values

PdB = 10 log10

(
P1

P2

)

Table II.2.2: Some important values of dB ratios.

dB ratio P1/P2 V1/V2

n× dB 10n 10n/2

40 dB 10000 100
20 dB 100 10
10 dB 10 ∼3.16
6 dB ∼4 ∼2
3 dB ∼2 ∼1.41
0 dB 1 1
−3 dB ∼0.5 ∼0.71
−20 dB 0.01 0.1
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II.2.2. RF Engineering Terms: deci-Bel

or between two voltages or currents:

VdB = 20 log10

(
V1

V2

)
IdB = 20 log10

(
I1
I2

)
with:

P1

P2
= 10(

PdB
10

) V1

V2
= 10(

VdB
20

) I1
I2

= 10(
IdB
20

)

ò
Please note, the 3 dB ratio (resulting from the half power definition) is common specifica-

tion for the bandwidth!

II.2.2.2 “dB” is not “dBm”

dBm is defined as a logarithmic power unit, based on dB (deci-Bel) and a reference power of Pref =

1mW

PdBm = 10 log10

(
P

Pref

)
, with: P = Pref10

(
PdBm
10

)

dBm may also be used as logarithmic voltage unit, e.g. for the popular Z0 = 50Ω impedance we

calculate Vref =
√
Z0Pref =

√
0.05V ≊ 0.2236V (RMS).

VdBm = 20 log10

(
V

Vref

)
, with: V = Vref10

(
VdBm
20

)

-
The use of dBm as logarithmic voltage (or current) unit strictly requires the waveform to

be sinusoidal!

Table II.2.3: Some important values for dBm values

dBm P V (RMS)

90 dBm 1MW 7.07 kV

60 dBm 1kW 223.6V

30 dBm 1W 7.07V

20 dBm 100mW 2.24V

10 dBm 10mW 707mV

6dBm 4mW 446mV

0 dBm 1.0mW 224mV

−20 dBm 10 µW 22.4mV

−60 dBm 1nW 224 µV
−120 dBm 1 fW 224 nV

−174 dBm 4× 10−21W 0.446 nV
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ò
Please note, −174 dBm is the equivalent noise power in a bandwidth BW = 1Hz at room

temperature.

II.2.3 Transmission lines

So far, you have learned about Maxwell’s equations which describe the macroscopic electromagnetic

theory. The lectures given by Henke (see Chapter I.1) and Mostacci (see Chapter II.1), explain about the

propagation of waves in unbounded media. The possibility of using guided wave propagation by means

of transmission lines such as coaxial lines or waveguides opened a new era and the use of waveguides

was an enormous milestone in RF-engineering [1].

Coaxial lines and hollow wave guides are fully described by electromagnetic field theory. This

kind of electromagnetic analysis is heavy, and it can be observed that today, a considerable number

of RF engineers design components without any direct use of the underlying electromagnetic analysis.

Simulation software tools are used instead, even for advanced calculation and sophisticated measurement

tools, like spectrum and network analysers, for the experimental testing of the obtained design.

In this section, general transmission line theory will be introduced and will be used to understand

the use of waveguides and coaxial lines. Transmission line theory bridges the gap between classical

electromagnetic field analysis (Maxwell’s theory) and basic circuit theory of lumped elements. Circuit

theory assumes that the dimensions of the elements (like resistors or simple cable lengths) are much

smaller than the wavelength of the signal. This means voltage or current do not change along the lumped

element dimension.

Transmission lines, however, cover a fraction of the wavelength which means that the associated

voltages and currents vary in magnitude and phase along the element. Such elements can be expressed

by distributed circuits to allow a wave description along geometrical dimensions of the transmission

line. Consequently, transmission lines are modelled piecewise by a lumped-element circuit. Consider a

transmission line of a certain length aligned in the z-direction as is shown in Fig. II.2.2. Voltage and

current along the line depend on the coordinate z and their variation along the line depends on their

wavelength. This variation increases with increasing frequency since high frequency signals have short

wavelengths. The line is now split into infinitesimal increments of length dz, and each length dz is

modeled by means of lumped elements. The entire line can then be seen as a series of lumped element

circuits as is shown in Fig. II.2.3 (left).

The lumped elements of each line length dz are expressed per unit length as follows:

series resistor R′ = R
dz in [Ω/m], series inductor L′ = L

dz in [H/m]

parallel conductance G′ = G
dz in [S/m], parallel capacitance C ′ = C

dz in [C/m].

The goal is now to derive wave-describing equations from the equivalent circuit model with

lumped elements which so far only describe a line of length dz.

By applying Kirchhoff’s laws to derive the voltages and currents in our equivalent circuit, as is
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II.2.3. Transmission lines

Fig. II.2.2: Transmission line split in infinitesimal small increments of dz, and equivalent circuit repre-
sentation by lumped elements.

Fig. II.2.3: Transmission line increment with voltage and current distribution as equivalent circuit with
lumped elements.

illustrated in Fig. II.2.3, we get from the mesh rule

v(z) = vR + vL + v(z + dz)

v(z) = R′ dz i(z) + jωL′ dz i(z) + v(z + dz)

v(z + dz)− v(z)︸ ︷︷ ︸
dv
dz

dz

= −R′ dz i(z)− jωL′ dz i(z).

Hence an equation for the voltage of our equivalent circuit

dv

dz
= −(R′ + jωL′) i(z) . (II.2.1)

Equally, the junction rule gives an equation for the current within our equivalent circuit, as is illustrated
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in Fig. II.2.3 by evaluating the sum of the currents in the node (see red dashed circle)

i(z) = iC + iG + i(z + dz)

i(z) = jωC ′ dz v(z + dz) +G′ dz v(z + dz) + i(z + dz) ,

from which we get an equation for the current within the equivalent circuit

i(z + dz)− i(z)︸ ︷︷ ︸
di
dz

dz

= −jωC ′dz v(z + dz)−G′dz v(z + dz)

di

dz
= −(G′ + jωC ′) v(z) . (II.2.2)

The two differential equations (II.2.1) and (II.2.2) are the so-called telegrapher equations, expressed for

harmonic time dependence here, i.e. the time-derivative is indicated as jω, as already explained in greater

detail in Chapter I.1. By means of these two equations, it is possible to describe wave propagation for

voltage v and current i on the transmission line by taking the 2nd derivative of the terms, and combining

the two. Mathematically, one obtains the one-dimensional, scalar Helmholtz’ equation for EM-fields:

d2v

dz2
= (R′ + jωL′)(G′ + jωC ′) v(z) (II.2.3)

d2i

dz2
= (R′ + jωL′)(G′ + jωC ′)︸ ︷︷ ︸

γ2

i(z) (II.2.4)

It is now possible to define a propagation constant γ and a characteristic line impedance Zc for the

transmission line length dz by using the lumped elements of Eqs. (II.2.3) or (II.2.4):

γ =
√
(R′ + jωL′)(G′ + jωC ′) and Zc =

√
R′ + jωL′

G′ + jωC ′ .

With the complex propagation constant and the characteristic line impedance, we have described the

general case for all two-conductor lines in TEM-mode. Note that if you compare transmission line theory

with general EM-field theory, the complex propagation constant is mathematically derived as the wave

number. Unfortunately, the notation is not unique, in particular the signs of γ and the wave number can

differ. It is therefore important to check the definitions used in the respective literature. The propagation

constant γ can be split into two parts, where the real part α is denoted attenuation constant and describes

the attenuation of the line, whereas β denotes the phase constant

γ = α+ jβ.

The notation used here leads to the following expressions for the attenuation and phase constants

α =

√
1

2

[√
(R′2 + ω2L′2)(G′2 + ω2C ′2)− (ω2L′C ′ −R′G′)

]
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II.2.3. Transmission lines

β =

√
1

2

[√
(R′2 + ω2L′2)(G′2 + ω2C ′2) + (ω2L′C ′ −R′G′)

]
The definition of the general case for all two conductor lines allows one to consider three typical cases:

the lossless line, the small loss case, and the high loss case. For the case of a lossless line, α = 0

and the terms simplify greatly. The small loss case is the most common case and it is defined by the

reactive elements dominating the transmission line description over the lossy elements, i.e. ωL′ ≫ R′

and ωC ′ ≫ G′ - this feature allows the line to be used as an RF-element!

Finally, in the high-loss case, wave propagation on the line is suppressed. The table below summarises

these cases (see [2], [3] for details and further reading).

Table II.2.4: Summary of different cases grouped by losses for a two-conductor line.

Lossless line Small loss case High loss case
(high frequency) (low frequency)

R′ = 0 G′ = 0 ωL′ ≫ R′ ωC ′ ≫ G′ ωL′ ≪ R′ ωC ′ ≪ G′

α = 0 β = ω
√
L′C ′ α ≈ 1

2
R′√
L′/C′ +

G′
√

L′/C′

2 α ≈
√
R′G′ β ≈ 0

β = ω
√
L′C ′

Z0 =
√

L′

C′ Z0 ≈
√

L′

C′

[
1 + j

(
G′

2ωC′ − R′

2ωL′

)]

II.2.3.0.1 The coaxial line in TEM-mode

The coaxial line is largely used in laboratories, and as a two-conductor system the line carries TEM-

signals. Most common are the SMA and the N-connector. SMA is the acronym for SubMiniature

Version A connector and the N-connector is named after its inventor Paul Neill of Bell Labs/USA.

Depending on the application, BNC connectors (Bayonet Neill-Concelman) are also used, which provide

a quick connector/de-connector clamp, or SMB connectors (SubMiniature Version B) which are slightly

smaller than SMA connectors. Also, other connector types exist to be used in different specific working

fields. The choice of the cable and the connector depends on the frequency range of the work carried

out.

Coaxial cables carry signals from DC frequencies onwards, however, they are limited towards higher

frequencies when higher order (non-TEM) modes start propagating. While there are some applications

in which coaxial lines are used for propagating higher order modes, this feature is commonly unwanted

as it can lead to a mixture of modes and superposition of the related EM-fields (see, e.g. [3] for further

reading). Figure II.2.4 shows a variety of coaxial lines and their names (left side), as well as different

connectors, including transition pieces to connect different cable types, as well as elbows and coaxial

T-junctions (right side).

The coaxial line consists of an inner conductor, a dielectric separator and an outer conductor that

also has a shielding function. Figure II.2.5 (right) shows the illustration of coaxial cross-section, whereas

the right side of Fig. II.2.5 shows a cut through a coaxial line with flexible inner and outer conductors.
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Fig. II.2.4: Coaxial lines and their names (left side), different coaxial connectors, transition pieces and
other coaxial parts (right side). Source: www.pinpoint.com.tw

The coaxial shielding is achieved since the EM-fields are carried in the area between the inner and the

outer conductor such that radiation is fully suppressed. The inner conductor or the outer conductor (or

both) can be made out of braided or stranded material, or it can be solid, and is usually made out of

copper, and in some cases, a thin foil layer is added to the outer conductor before it is surrounded by a

protective non-conducting jacket. Sandwiched between the two conductors is a dielectric that isolates

the two conductors and holds the inner conductor in place. Typical dielectrics are polyethylene (PE) or

polytetraflourethylene (PTFE). Also so-called air-lines exist, where the dielectric is omitted and the inner

conductor is held in place by spacers that are inserted as supports. These air-lines without dielectric are

used for example, when signal propagation speed is critical, i.e. to avoid signal delay. The best known

application in every day life is the coaxial antenna cable for video, radio or TV distribution.

Fig. II.2.5: Illustration of the coaxial cross-section (left), and cut-through a coaxial cable with braided
outer conductor and thin protection foil (right).

The characteristic impedance of a coaxial line is calculated from the ratio of inner to outer con-

ductor

Z0 =

√
µ

ε

ln
(
D
d

)
2π

, (II.2.5)

with d being the outer diameter of the inner conductor and D being the inner diameter of the outer

conductor, and µ = µ0µr being the permeability, and ε = ε0εr the permittivity of the dielectric. For
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II.2.3. Transmission lines

low-loss dielectric without any magnetic properties (µr = 1), the equation simplifies to

Z0 =
60 Ω
√
εr

ln

(
D

d

)
, (II.2.6)

and for a so-called airline, i.e. a coaxial line without any dielectric, the characteristic impedance reads

Z0 =

√
µ0

ε0

ln
(
D
d

)
2π

= 120πΩ. (II.2.7)

In these cables, the inner conductor is supported by small centering rings, usually in star shape, of which

the impact on the impedance and on other cable parameters can be neglected.

Also take note that the value 120πΩ ≈ 377 Ω is the so-called vacuum impedance and is often

indicated as η0 in literature. For measurements, cables with characteristic impedance of 50 Ω are used in

most cases, to have the cable matching with the characteristic impedance of the instruments used. The

ratio of outer-to-inner diameter is ∼ 2.3, but also other characteristic impedances are used. Table Ta-

ble II.2.5 gives some examples. However, the ratio between inner and outer diameters of the conductors

Table II.2.5: Characteristic impedance vs. conductor ratio for coaxial cable structures.

Z0/
√
εr [Ω] ratio D

d

24.3 1.5
41.56 2.0

50 ∼2.3
75 ∼3.5

is not only important to obtain a certain Z0, the optimum ratio D/d which is chosen also depends on the

application, for example:

– optimum ratio to minimise losses (minimum of cable damping),

– equally for maximum voltage carriage of the cable to avoid RF cable break-down, and

– maximum power transition, that is e.g. used for connecting a cavity to the amplifier.

While all cables have losses, the amount of losses can limit the performance of the entire system

(e.g. limit the power that can be transported to an accelerating cavity by the feeder-line), and these

losses are also a function of cable length. For lower frequencies, typically below 3 GHz, losses in

coaxial cables are usually small, and the main loss at low frequencies is due to the skin effect in the

inner conductor. With increasing frequencies, dielectric losses of the insulating medium between inner

and outer conductor become dominant. Figure Fig. II.2.6 illustrates a typical loss contribution of the

different parts of a coaxial line, and their frequency dependence (see e.g. [4] for details).

Losses are not the only concern in coaxial cable optimisation. A power line, used to connect the

RF-amplifier to the accelerating cavity, for example, needs to be optimized for efficient power transport

and to avoid voltage breakdown, whereas for a measurement cable, phase-stability is very often most

important. The attenuation constant of a coaxial line can be split into two terms, the first term is indi-

cating resistive losses, αR and the second term shows dielectric losses αD. The total attenuation is then
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Fig. II.2.6: Illustration of loss contribution of the different parts for a coaxial cable, and frequency
dependence.

calculated from

α =

√
εr

Z0 ln
(
D
d

) (1

d
+

1

D

) √
µ ω

2 σ︸ ︷︷ ︸
αR

+πf

√
εr
c0

tan δε︸ ︷︷ ︸
αD

(II.2.8)

Note that the expression
√

µ ω
2 σ denotes the frequency-dependent surface resistance Rs, and Z0 is the

vacuum impedance, often also denoted as η0 = 120πΩ.

Coaxial line with minimum damping - Example

1. How to get the optimal ratio D/d of outer conductor diameter to inner conduction diameter

for a coaxial cable to obtain minimum loss?

Fig. II.2.7: Characteristic impedance Z0 and form factor of the loss calculation vs. ratio of diam-
eters outer to inner conductor D/d for a coaxial line.

Since the term of the dielectric losses is independent of the ratio of the two diameters, we

will carry out the following steps to find a ratio D/d, such that the first term reaches a
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minimum:

(a) Re-write the resistive (ohmic) losses to single out the ratio D/d reads:

αR =

√
εr Rs

Z0 ln
(
D
d

) (1

d
+

1

D

)
=

√
εr Rs

Z0 ln
(
D
d

) 1

D

(
D

d
+ 1

)
We note that the resulting term not only depends on the ratio, but also on 1/D. This is

an indicator for the obvious result that damping of the line is reduced, if the line has a

very large outer diameter.

(b) Group all terms that depend on the ratio D/d in a form factor which we denote fα

fα =
1 + D

d

ln D
d

= αR
Z0D

Rs
√
εr
. (II.2.9)

This form factor is of the type x+1
ln(x) and its dependence on the ratio D/d is illustrated

in Fig. II.2.7. The plot also shows the characteristic impedance for a coaxial line

without dielectric between inner and outer conductor (Z0).

(c) From the plot, we can see that fα reaches a minimum for the ratio D/d = 3.6 which

corresponds to a characteristic impedance of 77 Ω.

(d) If we select PTFE for dielectric which has a permittivity of εr = 2.1, we obtain for the

characteristic impedance of the line ≈ 53 Ω.

Note that the value obtained is valid only if the inner and the outer conductor of the line are

of the same material. In the case that different materials are used, the calculation can follow

the same principle, but will become slightly more complex. It is obvious that optimisations

for coaxial lines can be carried out for other applications as well, e.g. to maximise the power

transport capability or for minimum sparking (see e.g. [5] for details).

II.2.3.0.2 Planar Transmission Lines

Beyond coaxial lines and hollow wave guides, the group of planar transmission lines comprises all types

of wave guides where at least one conductor has a flat (planar) shape. This conductor is usually supported

by or embedded in dielectric material, denoted a substrate. The idea of using this type of geometry for

signal transmission is from the 1950s [6], however, only once the technology was developed to produce

planar transmission lines for microwave integrated circuits (MICs), planar lines got tremendously pop-

ular. Nowadays, this is the standard in circuit design, making use of the fact that circuit elements at

higher frequencies can be built in planar transmission line techniques by means of thickfilm or thinfilm

technologies or the more modern photolithographic processes. Three main versions of the planar trans-

mission line exist, these are the stripline, the microstripline, and the slotline, but many other variations of

the three main versions exist, depending on the application [7] As a caveat of this technology, it should be

mentioned that open planar transmission lines start to radiate as soon as the transit time of the transported

RF signal comes close to the range of the time period of the RF signal.
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A particular type of planar transmission lines is the so-called stripline which consists of a flat con-

ductor, in the simplest case sandwiched symmetrically between two large ground plates, see fig:stripline.

A dielectric substrate between the two ground plates supports the inner conductor. A stripline can be

easily produced by etching a conductor strip on a substrate and then covering the set with a second sub-

strate layer. Afterwards, the second ground plate is added in a metallisation process. The fundamental

mode of propagation for the stripline is transverse electromagnetic (TEM) mode, provided that the con-

ductors can be considered perfectly conducting, the embedding substrate is homogeneous and lossless,

the line is not exposed to external fields, and the dimensions are chosen such that the ground plates are

large compared to the flat conductor. Further, the distance between the two conducting ground plates

and the conductor width needs to be kept below λ/2 to avoid that higher order modes are building up

in the structure. Figure II.2.8 illustrates a cross-section of a stripline with the TEM-field distribution.

To calculate the EM-fields for TEM-mode operation, electrostatic field expressions are sufficient, and

often conformal mapping is used to solve for the field distributions. As soon as the structure becomes

slightly asymmetric, the exact EM-calculation is mathematically getting heavy, however, closed-form

expressions can be found in good handbooks (see, e.g. [3, 7, 8]).

Fig. II.2.8: Symmetric stripline on substrate with electromagnetic field configuration.

Similar to the coaxial line, described in Sec. II.2.3.0.1, the loss-less stripline in TEM-mode is

characterised by the three parameters vp, Z0, and β. Phase velocity vp, and phase constant β can be

either calculated from the material parameters, or from the equivalent circuit of the line:

vp =
1

√
µ0ε0εr

=
c0√
εr

=
1√
L′C ′

, (II.2.10)

β =
ω

vp
= ω

√
µ0ε0εr,

where L′ and C ′ denote inductance and capacitance of the lumped elements in the equivalent circuit

expression of a line of length dz, and have the units [H/m], and [F/m], respectively (see Sec. II.2.3 for

details).

II.2.3.0.3 Waveguides in TE- and TM-modes

As was already mentioned, we generally distinguish between two types of wave propagation: So-called

free wave propagation that is carried out by waves in unbounded media (see Chapters I.1 and II.1), and

so-called guided waves, which means that the wave propagation is confined by material boundaries,

typically metallic walls or dielectric materials. Recall that in the case of TEM wave propagation, the

magnetic and the electric field components only exist in the plane transverse to the propagation direction
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and that the resulting wave patterns depend on the number of conductors that are used.

Fig. II.2.9: Illustration of waveguides with rectangular (left) and circular cross-section (right).

Contrary to coaxial lines and striplines, waveguides are a single conductor system, i.e. propagation

of TEM-waves is prohibited by design. Geometrically, waveguides are just hollow metallic tubes with

uniform cross-sections of which different cross-sectional shapes exist. Figure II.2.9 shows the illustration

of waveguides with a rectangular and a circular cross-section. A major advantage for wave propagation

in waveguides and coaxial lines is that both build an enclosed system without any radiation losses.

Propagating waves inside a waveguide are following the waveguide shape, even if it is bend.

Figure II.2.10 shows a picture of a rectangular waveguide with a connecting flange and a bending shape,

as well as a waveguide termination with a coaxial N-connector attached that works as a transmission

from waveguide to coaxial line. Inside the waveguide, the propagating waves need to fulfill the boundary

conditions on the waveguide walls. From the electromagnetic field description, we know that on perfectly

conducting surfaces, the tangential electric field has to vanish to fulfill the boundary condition. We speak

of an electric wall, where Etang = 0. This boundary condition for the electric field can be fulfilled with

the use of trigonometric functions, where the roots of the sinusoidal pattern matches the position of the

conducting walls. The derivation of the EM-fields can be found in Chapter II.1. Except for the case of

loss calculation, the well conducting walls of a waveguide can be approximated as a perfect conductor.

Fig. II.2.10: Picture of a rectangular waveguide (left) and a waveguide termination with a coaxial N-
connector attached (images: www.pasternak.com).

Wave propagation inside a waveguide is building up in discrete frequency patterns, so-called waveguide

modes, and depending on their field distribution, it is distinguished between

– TE-modes (transverse electric), where the electric field component in the waveguide’s cross-

section is building up only in the plane transverse to the propagation direction, and no electric

field component in propagation direction exists, and

– TM-modes (transverse magnetic), where the magnetic field component in the waveguide’s cross-
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section is building up only in the plane transverse to the propagation direction, and no magnetic

field component in propagation direction exists.

Each mode has a so-called cut-off frequency, a lower frequency limit below which wave propa-

gation in the waveguide is not possible. The cut-off frequency is depending on the waveguide cross-

sectional dimensions, only, and the mode with the lowest cut-off frequency is called the dominant mode.

Note that for higher frequencies, also so-called hybrid waves will build up their field patterns in the

waveguide. Hybrid mode propagation can be considered as a combination of the resulting field patterns

of TE- and TM-modes, and will be omitted here.

Fig. II.2.11: Cross-sectional dimensions of rectangular waveguide with wave propagation in z-direction.

The cut-off frequency of rectangular waveguides can be easily calculated from the waveguide cross-

sectional dimensions shown in Fig. II.2.11. It is identical for TE- and TM-mode propagation

fc,mn =
1

2
√
µε

√(m
a

)2
+
(n
b

)2
.

Note that if n = m = 0, all field components become zero, as there is no TE00 mode. The dominant mode

is TE10-mode as it has the lowest cut-off frequency which simplifes to

fc,10 =
1

2a
√
µε

.

Figure II.2.12 shows the electric field of the TE10-mode in the cross-section, as obtained from EM-

simulation codes. We can clearly see the field maximum building up in the center of the cross-section,

while vanishing on the conducting waveguide walls. Equally interesting are the EM-field patterns as

illustrated in RF-engineering books (see pictures in the lower part of Fig. II.2.13). Here, the electric field

is shown by continuous lines, and the increased field strength is indicated by using a denser pattern of

arrows in the center, and no field lines next to the conducting walls. The corresponding magnetic field is

shown in dashed lines, and the views 1 and 2 are the EM-field patterns in the respective longitudinal cuts

(pictures courtesy: Pozar [3]). Figure II.2.13 shows also the next higher modes field patterns [3].

Equally to the rectangular waveguide, the propagation patterns of the EM-fields build up in discrete

modes, and the cut-off frequency of a circular waveguide (see Fig. II.2.14) depends only on the inner

radius R of the tube.

Due to the cylindric geometry, trigonometic functions cannot be used any more, instead we need

Bessel functions of 1st type to fulfill the boundary conditions on the cylindric wall. In the case of a

perfectly conducting tube with radius R with no resistive attenuation, we obtain different propagation
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Fig. II.2.12: Field pattern of the TE10-mode as obtained from EM-simulations together with the field
patterns as illustrated in RF-engineering books (simulation: E. Jensen, picture courtesy: Pozar [3]).

constants for the TE-mode and the TM-mode as follows:

βnm =

√
ω2εµ−

(
p′nm or pnm

R

)2

,

where pnm denote the roots of the Bessel function for a TM -mode, i. e. Jn(pnm) = 0, and p′nm

denote the roots of the derivative of the Bessel function for the TE-mode, i. e. J ′
n(p

′
nm). This leads to the

cut-off frequencies for the different modes (see Fig. II.2.15)

fc,nm =
1

2π
√
µε

(
p′nm or pnm

R

)
.

Figure II.2.15 shows the Bessel functions of first type J0, J1, J2, as well as the derivative of the

Bessel function of first type J ′
0 together with their 1st and 2nd roots. The notation for the roots of the

Bessel function is as follows:

p01 := 1st root of Bessel function of first type, J0
p02 := 2nd root of Bessel function of first type, J0
p′01 := 1st root of derivative of Bessel function of first type, J ′

0,

and the values of the roots of the Bessel function, as well as the derivative of the Bessel function can be

found in Table II.2.6 below.

Let’s see an example: calculate the cut-off frequencies for a circular waveguide with inner radius

R = 60 mm. Our waveguide is filled with vacuum, hence we take the vacuum material parameters
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Fig. II.2.13: Field pattern of the TE11-, and the TE21-mode as obtained from EM-simulations together
with the field patterns as illustrated in RF-engineering books (simulation: E. Jensen, picture courtesy:
Pozar [3]).

Fig. II.2.14: Waveguide with circular cross-section of inner radius R, and wave propagation in z-
direction.

Table II.2.6: Values of roots of the Bessel functions for TE- and TM-modes of a circular waveguide.

Root values p′nm Root values pnm
for TE-modes for TM-modes

n p′n1 p′n2 pn1 pn2
0 3.832 7.016 2.405 5.520
1 1.841 5.331 3.832 7.016

µ0 = 4π ·10−7 Vs/Am, and ε0 = 8.854 ·10−12 As/Vm, and from Table II.2.6, we insert the correct roots

of the Bessel functions, to obtain:

fc(TE11) =
1

2π
√
µ0ε0

p′11
R

=
2.9 · 108

2π

1.841

0.06
= 1.416 GHz,

fc(TM01) =
1

2π
√
µ0ε0

p01
R

=
2.9 · 108

2π

2.405

0.06
= 1.850 GHz,
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Fig. II.2.15: Bessel function of first type, J0 and derivative of Bessel function of first type, J ′
0. Root

values of the Bessel functions are indicated.

Fig. II.2.16: Calculation of cut-off frequencies for TE- and TM-modes in a circular waveguide for a
given inner radius.

as the frequencies where these modes start propagating. Figure II.2.17 shows the electric field of the

TE11-mode, which is the fundamental mode in a circular waveguide. Due to the circular symmetry, this

mode comes with two possible orientations of the electrical field, we speak of mode polarisations. The

magnetic field of the mode with the next higher frequency is shown in Fig. II.2.18.

Fig. II.2.17: Simulated electric field pattern of TE11-mode in the cross-section of a round waveguide
with two polarisations.

Note that occasionally, more than one mode is propagating in a waveguide at the same time. Such

a waveguide is called overmoded. This case is typically unwanted during waveguide operations, as it can
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Fig. II.2.18: Simulated magnetic field pattern of TM01-mode in the cross-section of a round waveguide.

lead to an undesired propagation pattern, and the transported energy is split between the two modes.
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II.2.4 The standing wave “pill-box” resonator

Microwave resonators can be built from waveguides by closing the two open ends. We call such an RF-

resonator a cavity. The cavity interacts directly with the beam, providing acceleration or energy increase

to the beam, it is also used for all kind of RF manipulations within an accelerator. A cavity stores electric

and magnetic energy inside the hollow body, and the frequency of its electromagnetic field resonance

depends on the cavity dimensions. In the same way as for the EM-field distributions that we know from

the rectangular and the circular waveguide, the electromagnetic field has to fulfil the boundary conditions

on the resonator walls, and also in this case, the field builds up in so-called resonant modes.

Cavities which are used for the acceleration of particles in our accelerators are mostly of a cylin-

drical and flat shape. This is why we call them pill-box cavities. Generally, resonators are classified by

their quality factor Q (often simply called the Q-value) which can be used as a measure of “how well the

cavity is resonating”.

The Q-value is defined as the ratio between the energy stored in the resonator vs. the energy

dissipated in the resonator’s wall:

Q0 = 2πf0
energy stored in the resonator

energy dissipated in the resonator
.

We distinguish between Q0, denoting the so-called unloaded Q-value that describes the pure res-

onator, independent of the external world, and Q-values that consider the cavity being connected to its

surroundings, for example by a feeder-line, the amplifier, vacuum beam pipes, or even the impact of the

beam passing through the cavity. The Q-value of a cavity reduces, if loss mechanisms are introduced, in-

cluding losses that are simply due to the power that is dissipated in the metallic wall of a cavity. Equally,

all the abovementioned connections to the cavity resonating body leads to a reduction of the unloaded

Q0, and we speak of cavity loading when the cavity is introduced to external, not resonator-intrinsic loss

mechanisms. In the case that the cavity is filled with a dielectric, these losses will have to be considered

as well, as can be done in this case via the dielectric’s material parameters (not considered here).

As an example, we can compare measurements taken on the PS 80 MHz pill-box cavity (shown in

Fig. II.2.19) which was tested for Q-value deterioration by connecting a lossy tuner geometry that shifted

the cavity out of its fundamental mode. In this case, the tuner is the external system (with its external

Qext), and the connection of the cavity to the tuner is a cavity loading mechanism.

Fig. II.2.19: Measurement of unloaded Q0 and loaded QL on 80 MHz cavity after introducing an external
loading mechanism.
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Figure II.2.19 shows the measurement of unloaded Q0 ≈ 13557 taken in transmission at reso-

nance, at its fundamental frequency fres ≈ 80 MHz (left) and the loaded QL taken on the same cavity

with the tuner connected as load mechanism. The connection of a load mechanism is leading to a small

shift in resonance frequency to fres ≈ 79.98 MHz, and at the same time causing a Q-reduction to QL =

2267. Measurement was taken with a Vector Netwerk Analyser (VNA) as S-parameter measurement in

transmission, and Q-values were determined via the 3dB-method.

II.2.4.0.1 Transit time effect

At this stage, it is important to introduce the so-called transit time effect, and the transit time factor T .

Since the cavity is providing a time-varying electric field over gap of the type V0 cos (ω0t), the energy

that can be given to the particle by this harmonically oscillating field always will be less than what the

particle would gain if it passes through a DC field of voltage V0, due to the limited particle velocity v.

Hence, the transit time factor takes into account the time which is needed by the particle to pass through

the cavity (and the fact that the cavity will not be always on maximum voltage during this passage).

Figure II.2.20 illustrates this concept.

Fig. II.2.20: Concept of accelerating gap within a cavity of harmonically changing electric field com-
pared to a DC electric field of voltage V0.

This way, the transit time factor T can be considered as a parameter that describes the reduced

energy gain for the particle passing the accelerating gap. T is defined as follows

T =
energy gained in time− varying RF−field

energy gained in a DC− field of voltage V0
,

and can be written as:

T =

∫ L/2
−L/2E(0, z) cos(2πz/βλ)dz∫ L/2

−L/2E(0, z)
.

Recall that the cosine argument can be derived from

ωt = ω
z

v
= 2πf

z

βc0
=

2πz

βλ
.

From the explanations given above, it can be seen that to achieve the maximum energy gain from the

voltage in the accelerating gap, we would like a transit time factor T = 1. From the formulae, however,
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this would mean that the gap length g = 0 inside the cavity. Although this is not possible, a cavity design

request can be formulated from this, i. e. for a single gap cavity, keep the gap as small as possible.

However, other considerations like the increasing risk of electric breakdown that scales inversely to the

gap size also impacts on the optimum gap geometry. Note that for the consideration of the transit time

factor, it is assumed that the particle does not change velocity along the gap length.

II.2.4.0.2 Accelerator efficiency figures-of-merit

As a means to compare different cavity designs, several figures-of-merit are commonly used to charac-

terize accelerating cavities which will be introduced here:

– (unloaded) Q0-value which was just mentioned above, is a measure of the quality of the resonator’s

resonance. It is dimensionless and calculated from

Q0 =
ω0U

P
,

where ω0 denotes the angular resonance frequency, and the term ω0U is the energy stored in the resonator,

whereas P is the energy dissipated in the resonator.

– Shunt impedance rs, given in [MΩ]. rs is a measure of the effectiveness of the cavity to produce

an axial voltage V0, hence a typical design goal for a single-gap (pill-box) cavity is to read a high

shunt impedance. The shunt impedance is calculated from

rs =
V 2
0

P
.

– Effective shunt impedance rs,eff , given in [MΩ/m]. This parameter is a measure of effectiveness

of the cavity to deliver energy to a particle, normalised per unit power loss. The effective shunt

impedance is calculated from, making use of the transit time factor T

rs,eff =
(V0 T )

2

P
= rsT

2.

– R-over-Q (also often called R-upon-Q), given in [Ω], is a measure of cavity acceleration efficiency

at a given frequency. It is calculated from

rs/Q =
(V0 T )

2

ω0U
.

II.2.4.0.3 Rectangular cavity resonators

Rectangular cavity resonators have less applications in accelerators, however, since the resonance pattern

of rectangular cavity resonators can be easily derived from the already known field pattern of the TE10-

mode of the rectangular waveguide, we will start with this shape.

Figure II.2.21 shows a rectangular cavity resonator with a quadratic ground plate. The arrows

illustrate the electric field pattern of the lowest mode, TE101 which can be derived from the field pattern

of the TE10-mode of the rectangular waveguide. TE101 is the fundamental mode of this type of resonator,

i. e. the mode with the lowest resonant frequency which is also the dominant mode. From the boundary
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Fig. II.2.21: Rectangular cavity resonator with quadratic bottom plate. Electric field patterns are illus-
trated.

condition on the well-conducting walls in the x/y-planes and the y/z-planes, the electric field needs to

be zero, consequently, multiples of the electric field maxima are building up inside the resonator. The

mode indices can be obtained by counting the maxima of the electric field along one axis (we see either

a TExyz or a TMxyz- mode). From the side lengths of the resonator, the resonant frequencies for the

TEmnl-modes and the TMmnl-modes can be easily calculated from

fmnl =
1

2π
√
µε

√(mπ

a

)2
+
(nπ

b

)2
+

(
lπ

c

)2

,

and the resonant wavelength for the fundamental mode results to

λ0 =
2√(

m
a

)2
+
(
n
b

)2
+
(
l
c

)2 .
Note that the equation for the resonant frequency is given for the general case, including the possibility

to fill the resonator with a dielectric by making use of the filling material parameters µ and ε. The use of

a dielectric will lead to a frequency increase. The Q-value for the TE101-mode is given by

QTE101 =
λ0

δ

b

2

(a2 + b2)3/2

c3(a+ 2b) + a3(c+ 2b)
.

In all cases, the parameters a, b, c are indicating the resonator’s dimensions in x, y and z-directions.

Recall that δ denotes the skin depth by which the EM-fields penetrate the resonator wall, defined as

δ =
√

2
ωσµ where σ is the material’s conductivity and µ the permeability.

In the case of a quadratic ground plate, when a = c, these formulae for the TE101-mode simplify

to

λ0 =
√
2a,

and

Q0 =
1

δ

ab

a+ 2b
.
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II.2.4.0.4 Cylindric cavity resonators

Compared to rectangular cavity resonators, cylindrically shaped "pill-box" cavity resonators are much

more common in accelerator design. Indeed, the so-called "pill-box" cavity is the best visible and best

recognised element in an accelerator chain. As it is the one element that transforms the actual string of

magnets into an accelerator, it is on top of the RF system food chain. However, as was already mentioned

earlier, the cavity requires power to be obtained from the high power RF system via a high power RF

coupler to excite the cavity resonance, as well as an RF-source and a low-level RF system for cavity

operation (also see Fig. II.2.1).

Figure II.2.22 shows the 80 MHz single gap cavity of the CERN Proton Synchrotron (PS) installed

in the PS accelerator (left), and seen from the installation side with its RF amplifier connected to the

cavity (right). The pill-box type shape of the cavity is clearly visible in both pictures.

Fig. II.2.22: 80 MHz cavity of pill-box type installed in the CERN PS accelerator, sandwiched between
normal conducting dipole magnets (left), and same cavity in side view with its RF amplifier and vacuum
pumps connected (right).

Same as for the rectangular shaped cavity, cylindric cavity resonators can be derived from the cir-

cular (round) waveguide by closing the waveguide openings. Recall that the TE11-mode is the dominant

mode for a circular waveguide - by shortening both waveguide ends, we obtain a cylindrical cavity for

which the TE111-mode is the dominant TE-mode, whereas the TM010-mode is the dominant TM-
mode. Our requirement for acceleration of particles is a strong electric field in direction of the particle’s

trajectory, hence the TM010-mode with a transversal magnetic field, and a longitudinal electric field is to

be used.

Figure II.2.23 shows an illustration of the electric and the magnetic field distribution in a pill-box

cavity resonator. The red arrows indicate the electric field strength described by the Bessel function J0

which has its maximum value along the z-axis, whereas the magnetic field which has its maximum close
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Fig. II.2.23: Left: illustration of electric and magnetic field distributions in a cylindrical cavity of "pill-
box" type. Right: simulated electric field in the cross-section of a "pill-box" cavity with vacuum beam
pipes attached.

to the outer boundary is indicated by the black dashed line. Note the negative sign of the magnetic field

resulting from the derivative of the Bessel function J ′
0, having opposite sign on either side of the axis (see

Bessel functions in Fig.II.2.15 for details). For a pill-box cavity with radius a and height h, the resonant

frequencies for the TE- and TM-modes can be calculated from:

fTE,mnl =
c0
2π

√(
p′nm
a

)2

+

(
lπ

h

)2

fTM,mnl =
c0
2π

√(pnm
a

)2
+

(
lπ

h

)2

.

Note that the TM010-mode is independent of the cavity height h, and as long as the cavity remains

in its pill-box shape, i. e. the cavity remains in a maximum diameter-to-height-ratio of ≈ 1, most of

the formulae used for the calculation of cavity parameters can be simplified from the general case. The

validity of this criteria can be cross-checked by using a so-called mode chart for cylindrical resonators.

Mode charts are used in RF-practice as a fast means to identify which mode(s) are currently building-up

in a cavity. Figure II.2.24 shows a mode chart for a general cylindrical cavity indicating the resonantly

excited modes as a function of cavity dimensions, taken from [3].

The same mode chart is also used in section II.2.5, where the numerical calculation of a cavity is

carried out, and reads as follows:

– moving along the ordinate axis, where the ratio of the cavity diameter to cavity height is indicated

(2R/h)2, the first mode showing up is TE111 for all values roughly below 1;

– the TE-modes have no electric field along the particle’s trajectory, and hence are not used for

acceleration;

– First TM-mode is TM010 showing up for ratios (2R/h)2 > 1. The larger the values for this ratio

789



II.2.4. The standing wave “pill-box” resonator

Fig. II.2.24: Resonant mode chart for a general cylindrical cavity showing the excited modes as function
of cavity dimensions, R is the cavity radius, and h is the cylinder height (picture courtesy Pozar [3]).

become, the "flatter" our cavity will be, and the more the modes TE111 and TM010 are separated in

frequency. A sufficient frequency separation of modes is usually desired as it reduces the risk that

two different modes show up simultaneously in the cavity.

The calculation of a single gap cavity which fulfils the geometric criteria of pill-box cavity when

we have no dependence of the resonance frequency on the cavity height h, allows the use of simpler

formulae to calculate the accelerator figures-of-merit. For a TM010-cavity with radius a, the wavelength

can be calculated from the simple expression

0.383 λTM,010 = a,

and the calculation of unloaded Q0 equally simplifies to the expression which can often be found in

handbooks of accelerator physics

Q0 =
0.383 λTM,010

δ

[
1 +

a

h

]−1
=

a

δ

[
1 +

a

h

]−1
.

Recall that δ denotes the skin depth by which the EM-fields penetrate the resonator wall, defined as

δ =

√
2

ω0σµ0
, (II.2.11)

where ω0 is the resonance frequency, σ is the material’s conductivity, and µ0 the vacuum permeability.
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The accelerator figure-of-merit R/Q for a pill-box cavity resonator is calculated from

R/Q =
4η0

π p301 J
2
1 (p01)

sin2
(p01

2
h
a

)
h/a

,

where η0 denotes the vacuum impedance which was already introduced in Sec. II.2.3.0.1, and p01 =

2.405 and J1(p01) = 0.51911 are to be found and calculated with the help of Table II.2.6, showing the

roots of the Bessel functions for a circular waveguide. Inserting all numbers, we obtain for R/Q the

simple expression

R/Q = 128
sin2

(p01
2

h
a

)
h/a

, (II.2.12)

which for small numbers of the sinusoidal function can be even further simplified to

R/Q ≈ 185 h/a.

Depending on the cavity type, the values for the accelerator efficiency figure-of-merit can vary

considerably. For orientation, some typical numbers are given in Table II.2.7 below:

Cavity type R/Q-value Q0 rs

Ferrite loaded cavity
(low frequency, rapid cycling) 4 kΩ 50 200 kΩ

Room temperature copper cavity
(type 1 with nose cone) 192 Ω 30 ×103 5.75 MΩ

Superconducting cavity
(type 2 with large iris) 50 Ω 1 ×1010 500 GΩ

Table II.2.7: Typical values of accelerator efficiency figures-of-merit (following Caspers et al.,
JUAS 2021).

Figures II.2.25 and II.2.26 show some pill-box cavities (single gap) which where used in different

accelerators. From these pictures, it can be clearly seen that the resonance frequency of the fundamental

mode scales directly with the size of the cavity, and this can lead to very large diameters, taking precious

space in the accelerator and making the cavities inconveniently large to handling.
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Fig. II.2.25: Large pill-box cavities. Left: cavity from DORIS Storage ring (1970, picture courtesy:
H. Damerau), right: PS 80 MHz cavity (currently installed).

Fig. II.2.26: Large pill-box cavities. Example of PS 19 MHz cavity (1966, picture courtesy: E. Jensen).
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It should be mentioned that in practice, a pure pill-box cavity is unfortunately not very efficient for

particle acceleration. However, a simple shape modification can be done by using so-called nose cones

within the resonating body. A nose cone is a protrusion on the cavity wall that leads to a concentration

of the electrical field in the accelerating gap.

Fig. II.2.27: Concept of nose cones to be used on a pill-box cavity (left) and implementation with EM-
simulation code (right). The goal is to enhance the electric field in the accelerating gap. Illustrations
taken from Puglisi, RF-CAS 92, CERN.
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II.2.5 Numerical analysis

This document aims to cover the topics discussed and exercises performed in the RF tutorial concern-

ing electromagnetic simulations. The simulations covered involve the analysis of Eigenmodes in a

resonant cylindrical cavity and are performed using the free student version of the software ANSYS

Electronics Desktop (AEDT) 2022 [9]. The latest available student version is easily accessible and

it can be downloaded from the ANSYS website: https://www.ansys.com/academic/students/

ansys-electronics-desktop-student. This tutorial is based on the write-ups performed for the

CERN Accelerator School (CAS) for the Advanced Accelerator Physics and Radio Frequency train-

ing [10, 11].

II.2.5.1 Ansys HFSS

Ansys HFSS is a 3D electromagnetic (EM) simulation software for designing and simulating high-

frequency electronic products such as antennas, RF or microwave components. It uses the Finite El-

ement Method (FEM) and it subdivides the structure in tetrahedral elements where Maxwell’s equations

are solved.

Settings

1. Open ANSYS Electronics Desktop.

2. Select the solver HFSS from the Desktop toolbar on top. A new project and the new HFSS

Design will be accessible from the Project Manager window on the left.

Fig. II.2.28: AEDT Graphical User Interface - Creation of HFSS design

3. After the creation of the HFSS design, the Eigenmode solver must be selected from the

"HFSS" Tab (top menu) → Solution types → Eigenmode 1 .

4. The project units can be chosen from "Modeler" → Units → cm 2 .

5. Finally, the project can be saved with the name ‘Cavity-JUAS23’. A HFSS project will have

a file extension *.aedt 3 .
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Fig. II.2.29: Solver definition, project units and saving of HFSS project.

II.2.5.2 Modelling

The Eigenmodes analysis is carried out on a cylindrical cavity with given dimensions which will be

defined as parameters in the HFSS project and which are indicated in Fig. II.2.30.

Fig. II.2.30: Model geometry and cavity dimensions.

The geometry can be built using three cylinders, one representing the cavity and two small ones

for the input and output ports, by following the steps below.

Model geometry

1. Select the cylinder shape from the Draw toolbar (top panel).

2. Bring the cursor at the origin of axis and click to fix the center.

3. Drag and click to fix the cylinder radius.

4. Drag and click to fix the cylinder length. Note that the dimensions can be defined in a

following step (Fig.II.2.31).
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Fig. II.2.31: Modelling of the cylindrical cavity.

5. From the History Tree window, under Model → Solids → vacuum → Cylinder1, double-

click on CreateCylinder - 1 - Fig. II.2.32.

6. Type the coordinates of the center position, the symmetry axis, radius and length (height)

of the cylindrical resonator, by using the variables as defined in Fig. II.2.30 - 2.

7. When typing a variable, a new window will pop up and you will be able to select the

variable type, unit and value - 3.

8. The new variables will appear under properties when the correspondent HFSSDesign is

selected in the project manager window - 4.

Fig. II.2.32: Defining cavity dimensions.

9. The input and output beam-ports can be built following the same procedure. The output

port center coordinates will be: (0, 0, lcavity/2).

10. The input port can be created mirroring the output port with respect to the XY plane. Select

the Cylinder2 from the History Tree. From the Draw toolbar, select Thru Mirror.
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11. One click in the center of the axis (0,0,0).

12. Hold ‘Z’ on the keyboard and drag the pointer until you don’t reach the point with coordi-

nate z = −lcavity/2. When the cavity input surface, and therefore the desired coordinate,

is reached, a big black dot will appear, like in Fig. II.2.33.

Fig. II.2.33: Mirroring output port.

13. After creating the three cylinders, it is convenient to unite them as one solid. For doing this,

select Cylinder1, Cylinder2 and Cylinder2_1 from the History Tree window and click on

Unite from the Draw toolbar.

14. In order to have a better visualization of the field plot later, it is useful to increase the trans-

parency of the solid. Select the Cylinder in the History Tree and modify the transparency
value to 0.8 from the Properties window (bottom left) - Fig. II.2.34.

Fig. II.2.34: Increasing the transparency of the created geometry.

II.2.5.3 Eigenmode simulation

In this section, we will show how to set-up an Eigenmode simulation in HFSS. The cylindrical cavity

will be simulated considering the case first without losses and then including the finite conductivity of

the wall material. The result of the eigenmode simulation gives all eigen-frequencies of the resonant

modes, allowed by the geometry and the boundaries. The mode type (TE, TM or TEM) can be identified
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by looking at the field map for each frequency of resonance. Finally, by adding the losses, given by the

finite conductivity of the cavity wall, two figures of merit can be computed: the Q factor and the R/Q.

Simulation set-up

1. From the Project manager window, under the HFSS Design, right click on Analysis → Add
solution setup. A pop-up window will appear (Fig. II.2.35).

2. Under the menu General, give the name ‘Eigenmode’ to the simulation - 1 .

3. Set the starting frequency to 1 MHz - 2 .

4. We want to see the first three eigenmodes- 3 .

5. HFSS does an adaptive mesh refinement, automatically refining the mesh until convergence

criterion is satisfied. Maximum number of passes and maximum delta frequency per pass

(maximum percentage of error - accuracy indicator) can be defined to guide the analysis.

We choose Maximum Number of Passes = 6, Maximum Delta Frequency Per Pass = 10% -

4 .

Fig. II.2.35: Setting up Eigenmode simulation.

6. Other settings for the adaptive mesh analysis can be set-up under the menu Options (Fig.

II.2.36). We select 2 Minimum Converged Passes, the analysis will stop when at least con-

secutive 2 iterations will stay under the Delta Frequency limit - 5 .

7. Select Second order under Order of Basis Functions, which is preferable when dealing

with curved structures - 6 .
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Fig. II.2.36: Refining the adaptive mesh analysis.

8. Other mesh settings can be found under the Simulation toolbar (panel on top) → Mesh set-
tings. Select ’Apply curvilinear meshing to all curved surfaces’. Higher order (curvilinear)

elements will be used to represent the geometry and will give a better resolution than with

rectilinear mesh elements - 7 .

Fig. II.2.37: Using curvilinear meash elements for curved surfaces.

9. Before running the simulation, in HFSS it is possible to check if everything is correct, by

clicking on the Validation button in the Simulation toolbar. Any error would be indicated

by a red cross - 8 .

10. Finally, if everything is green in the validation process, you can click on Analyze to start

the simulation - 9 .
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Fig. II.2.38: Validation and run of eigenmode analysis.

II.2.5.3.1 Eigenmode results

After the simulation is finished, the eigen frequencies of the modes can be inspected. Each mode can be

recognised, distinguishing between TE, TM and TEM mode, by looking at the field plot.

Eigenmodes results: eigen frequencies and field plots

1. From the Project Manager window, under the HFSS Design → Analysis, right click on

’Eigenmode’ and then select Convergence. The frequencies of the first three resonant

modes can be read in the Eigenmode Data menu, as in Fig. II.2.39.

Fig. II.2.39: Eigen frequencies results.

To identify transverse electric (TE) and transverse magnetic (TM) modes, the electric field

on the longitudinal plane can be plotted. The TM mode would have a longitudinal (on the

z-axis) electric field component, while a TE mode would show a transverse electric field.

2. In order to plot the E-field, the source, and so the correspondent mode we want to see,
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must be selected. This can be done in the Project Manager window, right click on Field

Overlays → Edit Sources. Just one mode per time can be excited. Choose ’Stored Energy’

as Excitation Type with magnitude 1 Joule for Mode 1 (Fig. II.2.40).

Fig. II.2.40: Selecting Eigenmode excitation source.

3. In the History Tree window, under Planes, select YZ plane (Fig. II.2.41) - 1 .

4. In the Project Manager window, right click on Field Overlays → Plot Fields → E →
Vector_E - 2 .

Fig. II.2.41: Setting up the plot of electric field on the longitudinal plane.

5. The instructions above will give, as a result, the plot of the vector electric field for the mode

1 (first eigen frequency) as in Fig. II.2.42. The procedure can be repeated by exciting a

different mode (editing the source as in Fig. II.2.40) and looking at the field pattern.

801



II.2.5. Numerical analysis

Fig. II.2.42: Plot of electric field on the longitudinal plane (YZ) for mode 1 and 3.

From Fig. II.2.42 the Mode 1 gives a transverse electric mode (TE) because the electric field has

no longitudinal component. The same behaviour is given by Mode 2, which has not been plotted. It gives

the same TE mode as mode 1, but with a different polarisation. Of much interest is the third eigenmode

where the electric field is longitudinal and a TM mode can be recognised. The TM010 mode is the

mode used for particle acceleration, and it is the fundamental mode of a pillbox cavity. Two important

conclusions can be drawn by this analysis:

– The cavity fundamental mode (lowest cut-off frequency) is a TE mode.

– The simulated cylindrical resonator is not a pillbox cavity. If we look at the Mode Chart in

Fig. II.2.43, we can see that the TM010 mode is the fundamental one only if the cavity is flat

enough: ratio
2a

h
> 1 (diameter-over-length greater than 1). The mode chart shows what modes

can be excited at a given frequency for a given cavity size.

Fig. II.2.43: Mode chart for a cylindrical cavity [3]. On the y-axis is a quantity proportional to the
resonant frequency of the cavity, and on the x-axis the cavity diameter/length ratio. The red dot is the
working point obtained by using the cavity dimensions defined in section II.2.5.2.
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II.2.5.3.2 Inclusion of material finite conductivity: Q factor and ’R-over-Q’

The cylindrical resonator considered so far was ideal, made of perfect conducting wall material. A more

realistic case can be reproduced by adding a finite conductivity to the cavity walls. We consider stainless-

steel walls in this study case. By including the electrical properties of the material, two figures of merit

for the cavity can be computed: the quality factor Q and the R-over-Q.

Inclusion of material finite conductivity: Q factor and ’R-over-Q’

1. From the History Tree window, under Model → Solids → vacuum → right click on Cylin-

der1 → Select → All Faces.

2. Keeping all the faces selected, in the Project Manager window, under the HFSS Design,

right click on Boundaries → Assign → Finite Conductivity.

3. Input the finite conductivity of Stainless-Steel, σ = 1330000 S/m -Fig. II.2.44.

Fig. II.2.44: Assigning electrical conductivity of stainless-steel to the cavity walls.

4. The previous Solution has been invalidated by the boundary change, therefore the Analysis

needs to be run again. From the Project Manager window, under the HFSS Design →
Analysis, double-click on ’Eigenmode’.

5. In order to focus on the TM010 mode, set a minimum frequency higher than the first two

eigen frequencies previously found: Minimum Frequency = 770 MHz.

6. We want to see just one mode: Number of Modes = 1. The rest of the settings remains

unchanged.

7. Repeat the Validation process and run the simulation as in steps 9 and 10 as in Section

II.2.5.3.

8. Find the value of the unloaded Q factor from the Project Manager window, under the

HFSS Design → Analysis, right click on ’Eigenmode’ and then select Eigenmode Data -

Fig. II.2.45. The result is Q0 = 6509.
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Fig. II.2.45: Result of the unloaded Q factor for the TM010 mode.

HFSS does not provide an automatic function to compute the value of R-over-Q. To obtain it, the

integral of the electric field along the beam line needs to be computed, therefore a BeamLine
must be defined. The complete formula has to be manually implemented in the HFSS Fields
Calculator. The Linac definition of R-over-Q is used here:

R

Q
=

V 2
acc

ωU
=

∣∣∣∫beamlineEze
jωz
c dz

∣∣∣2
ωU

. (II.2.13)

1. From the Draw toolbar on top, select Draw line. The software will ask you if you want to

create a non model object, you can select Yes.

2. Draw the line along the z-axis. The line should go from z = − lcavity
2

− lport to z =

lcavity
2

+ lport. Hold ‘Z’ on the keyboard to draw the line along z.

3. After drawing the line, right-click on the working plane and select Done.

4. In the Project Manager window, right click on Field Overlays → Calculator (Fig. II.2.46).
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Fig. II.2.46: HFSS Fields Calculator.

The eq. II.2.13 has to be manually defined by making use of the buttons’ palette at the

bottom of the calculator. More information about the use of the Fields Calculator can be

found in the "HFSS Fields Calculator Cookbook" [12].

5. Starting from the numerator, let’s define the argument of the exponential in the integral.

From the Input column, select Output Vars → Freq (Fig. II.2.47) - 1 .

Fig. II.2.47: Definition of the exponential factor of the R-over-Q expression.

6. From the General column, click on Complex → CmplxMag - 2 .

7. From the Input column, select Number → type 6.28319, equivalent to 2π - 3 .

8. Under the General column, click on the multiplication operator "*" - 4 .

9. From the Input column, select Constant → c - 5 .
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10. Under the General column, click on the division operator "/" - 6 .

11. From the Input column, select Function → Scalar, Z - 7 .

12. Under the General column, click on the multiplication operator "*" - 8 .

13. Save the expression in the Named Expressions stack on the top left by clicking on "Add"

and giving it a name.

14. Define all the expressions you need to calculate the R-over-Q according to the formula

II.2.13, as it is shown in Fig. II.2.48. Note that you can use any saved Named Expressions

at the top left by selecting it and clicking on Copy to stack. The expression will then appear

in the Data Stack in the middle of the calculator.

Fig. II.2.48: Definition of R-over-Q formula.

15. Select RoverQ from the Named Expression and click on Copy to stack. From Output

column in the buttons’ palette at the bottom, click on Eval to calculate the R-over-Q. The

result will give a value of about RoverQ = 26, see Fig. II.2.49.

Fig. II.2.49: Evaluation of R-over-Q for the cylindrical cavity.
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II.2.6 Introduction to the Smith chart

Exercise II.2.6.1: Reflections in the time-domain

Fig. II.2.50: CircuitJS1 demo for reflections in the time-domain.

Before starting with the Smith chart, let’s have a little intuitive exercise on signal reflections – due

to a mismatch of impedance’s – in the time domain:

1. Go to Paul Falstad’s circuit simulator page [13] and set up a simple transmission-line circuit

as shown as in Fig. II.2.50. You can either directly modify the interactive webpage (mouse,

right click), or download one of the Standalone (offline) versions and setup the circuit

schematic. Here we use a 50Ω transmission-line of 20 ns delay time. A circuit node list

for this schematic IdealTL_pulsed_Z050-RL.txt can also be found on the JUAS InDiCo

page, and can be imported to the CiruitJS1 code under Open File....

2. Select reasonable parameters for the circuit elements, e.g. A/C Voltage Source:

Max Voltage=10V, Waveform=Pulse, Frequency=20MHz, Duty Cycle=10;

Resistor: R_source=50Ω;

50 Ohm transmission-line: Delay=20 ns, Impedance=50Ω

3. Add a Voltmeter/Scope Probe at the beginning of the transmission-line and don’t forget

to add a Ground!

4. Run the circuit and change R_load, e.g. to 50Ω, 25Ω and 100Ω, and observe the reflected

signal on the transmission-line.

5. Inspect the values of the signal waveforms after a STOP by hovering with the mouse cursor.
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Fig. II.2.51: A loss-less transmission-line setup with a steady-state sine-wave source (upper part)
and the corresponding voltage standing waves (lower part).

Figure II.2.51 (upper part) basically shows the same transmission-line schematic as the circuit

simulation, Fig. II.2.50, but now with a sine-wave generator as source, indicating we are operating the

circuit in steady-state at a frequency f = ω/(2π). In practice the source could also be a power amplifier

or any other type of RF power source, and is characterised by its source impedance ZS , which in most

cases is resistive (real value only). The value of the load impedance ZL in general is complex, and in

many cases frequency dependent. In practice the load could be the input impedance of an amplifier or any

other RF component, or e.g. the power coupling loop antenna of a cavity resonator. The source at port

p1 and the load at port p2 are interconnected by a homogeneous transmission-line, e.g. a coaxial cable or

a waveguide of physical length ℓ, having cross-section dimensions and made out of materials that define

the characteristic impedance Z0 = E⊥/H⊥, which in most cases can be approximated as real value

Z0 =
√

(R′ + jωL′)/(G′ + jωC ′) ≈
√
L′/C ′, and the complex propagation constant γ = α+ jβ.
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Example II.2.6.1: When do we apply RF principles?

Fig. II.2.52: Setup of two RF amplifiers and an oscilloscope (upper right),
and transmission-line equivalent circuit (lower left).

Figure II.2.52 shows the output of a RF pre-amplifier connected to the input of a RF power

amplifier with a 50Ω coaxial cable. The coaxial transmission-line is terminated at both ends in

its characteristic impedance because RS = Z0 = RL, therefore no reflections occur.

By adding a T-junction between the end of the coaxial cable and the power amplifier input, an

extra coaxial cable of length ℓ is added, allowing one to observe the signal, e.g. with an oscillo-

scope. In this example we select a high input impedance (1MΩ) for the instrument to minimise

additional power losses.

– Let’s assume the extra coaxial cable length is ℓ = 0.5m and is of type RG58 (vp ≃ 2/3 c).

Operating the setup with a steady state, continuous wave (CW) sinusoidal signal of fre-

quency f = 10MHz, we find λg = vp/f = 20m, i.e. 40× larger than the length of

the cable. At f = 10MHz the extra cable of ℓ = 0.5m, which is basically open at the

end, can be approximated as semi-lumped element and acts mainly as a capacitor of value

C ≈ ℓ/(Z0vp) = 50 pF, see also the equivalent circuit in the lower left of Fig. II.2.52.

This additional capacitive effect will almost not alter characteristics of the setup, the signal

transmission is basically the same and the reflections are below 10%.

– But, operating the setup at a higher frequency, e.g. f = 100MHz leads to λg = vp/f =

2m, which gives ℓ = λg/4 for the piece of coaxial cable. Now this transmission-line acts

as λ/4-transformer, and will transform the open (1MΩ) impedance at its end to a short at

its beginning at the power amplifier input, thus short circuit the signal at RL!

In the general case ZS ̸= Z0 ̸= ZL signal reflections will occur at both ports, p1 and p2, due to

the impedance mismatches.
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�
As a rule of thumb, if the physical length of the transmission-line is short compared to

the guided wavelength, e.g. ℓ ≲ λg/10, we often don’t need to care about those reflection

effects, as they are small and the impact on the signal transmission is minimum (see also

Example II.2.6.1).

In the following however, we assume the length of the transmission-line to be large compared to

the guide wavelength, ℓ > λg/10, and we will only consider reflections at port p2, ZL ̸= Z0, while the

source at port p1 is matched, ZS = Z0 (see Fig. II.2.51).

II.2.6.1 The complex reflection coefficient Γ

In the steady-state regime of Fig. II.2.51 the E-fields of the forward travelling incident wave Einc and

the backward travelling reflected wave Erefl perform a superposition along the transmission-line, which

lead to standing voltage waves in the form

v(z) = V +e−γz + V −eγz (II.2.14)

Assuming a lossless transmission line, γ = jβ, and normalising V (z) = v(z)/V + follows

e−jβz +
V −

V +
ejβz = V (z,Γ) = e−jβz + Γejβz (II.2.15)

with:

Definition II.2.6.1: Complex reflection coefficient Γ

Γ =
V −

V +
=

Erefl

Einc
=

b

a
=

ZL − Z0

ZL + Z0
(II.2.16)

being the complex reflection coefficient.

The lower part in Fig. II.2.51 visualises Eq. (II.2.15), plotted in modulus and phase of V (z,Γ) for

Γ = 0 . . . 1, along z/λ = 0 . . . 1. Equation (II.2.16) gives the definition of the reflection coefficient Γ

as ratio between the reflected wave b and the incident wave a, and in terms of the impedance mismatch

between the reference impedance of the system Z0 and a load impedance ZL.

Often the modulus of the reflection coefficient, |Γ|, is expressed as logarithmic value in dB, which is

called the return loss

RL [dB] = −20 log10 |Γ| = 10 log10
P+

P− (II.2.17)

which is equivalent to the logarithmic ratio between the incident (P+) and the reflected (P−) power.

For completeness the voltage standing wave ratio, V SWR, needs to be mentioned

V SWR =
|Vmax|
|Vmin|

=
|a|+ |b|
|a| − |b|

=
1 + |Γ|
1− |Γ|

=

∣∣∣∣ZL

Z0

∣∣∣∣ (II.2.18)

which expresses the ratio between the maximum and minimum of |V (z,Γ)|, which are
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|Vmax| = |V +|+ |V −|

|Vmin| = |V +| − |V −|

ò
In practice, reflections in RF systems are basically unavoidable, and in most cases Γ in-

creases with frequency f . As a rule of thumb, reflections of Γ < 0.1 in a RF system, are

viewed as acceptable, see also Table II.2.8.

It also should be noticed that Eq. (II.2.16) follows an equivalent circuit simplification

of the electromagnetic behaviour of guided waves in transmission-lines. Consider two

TEM transmission-lines of same characteristic impedance Z0, but different cross-section

dimensions. From an impedance point of view, following Eq. (II.2.16), there should be no

reflections, but due to the discontinuity between the two transmission-lines the TEM field

characteristic is locally distorted and reflections will occur.

Table II.2.8: The reflection coefficient Γ and related metrics.

Γ V SWR Return loss [dB] Refl. power Inc. power
= |ZL/Z0| −20 log10 |Γ| |Γ|2 1− |Γ|2

0.0 1.00 ∞ 0.00 1.00

0.1 1.22 20.0 0.01 0.99

0.2 1.50 14.0 0.04 0.96

0.3 1.87 10.5 0.09 0.91

0.4 2.33 8.0 0.16 0.84

0.5 3.00 6.0 0.35 0.75

0.6 4.00 4.4 0.36 0.64

0.7 5.67 3.1 0.49 0.51

0.8 9.00 1.9 0.64 0.36

0.9 19.00 0.9 0.81 0.19

1.0 ∞ 0.0 1.00 0.00

II.2.6.2 Reminder: the complex impedance plane

Many electrical, electronics or electromagnetic systems are built using circuit components. Instead of us-

ing EM field equations, their function are approximated by ideal lumped or distributed circuit elements,

which are defined by the respective currents and voltages in the time or frequency domain. Table II.2.9

lists the most basic lumped circuit elements and their impedance and/or admittance in the frequency do-

main. Combining many of those circuit elements to a network enable the design of a specific subsystem
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Table II.2.9: Symbols for the most basic linear, passive circuit elements.

Admittance Circuit symbol Impedance

conductor, with:
conductance G [S]

resistor, with:
resistance R [Ω]

susceptance BL = 1/ωL [S]

inductor, with:
inductance L [H]
reactance XL = ωL [Ω]

capacitor, with:
capacitance C [F ]
susceptance BC = ωC [S] reactance XC = −1/ωC [Ω]

complex impedance example:
Z = R+ jωL [Ω]

complex admittance example:
Y = G+ jωC [S]

complex admittance Y complex impedance Z

or more complex component with well defined characteristics, e.g., a RF filter, an amplifier, etc.

Any complex impedance Z or admittance Y can be based on a combination of two linear, passive

components, a reactive (inductive of capacitive) element and a resistive (conductive) element. Resis-

tance R, impedance Z and reactance X are inverse proportional to conductance G, admittance Y and

susceptance B:

R =
1

G
(II.2.19) Z =

1

Y
(II.2.20) X = − 1

B
(II.2.21)

The characteristic of a complex impedance (or admittance) can be visualised in different ways. Fig-

ure II.2.53 illustrates how a RL-series circuit (Fig. II.2.53a) behaves vs. frequency, which always requires

two graphs, i.e. magnitude (Fig. II.2.53c) and phase (Fig. II.2.53d) or real / imaginary part (Fig. II.2.53b).

Alternatively the behaviour of Z(f) can be visualised as single trace in the complex impedance

plane, with the frequency f as parameter. Figure II.2.54 show the parametric plot of Z(f) for the RL-

series circuit example (Fig. II.2.53a) in the frequency range 5MHz < f < 500MHz.
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(a) Equivalent circuit of a complex impedance. (b) Re{Z} and Im{Z} vs. f

(c) Modulus (magnitude) |Z| vs. f . (d) Argument (phase) ∠Z vs. f .

Fig. II.2.53: Characteristic of a complex impedance Z vs. frequency f

ò
The complex impedance (or admittance) plane is only defined for Re{Z} ≥ 0, i.e. in the

positive “half-plane”, as there is no negative resistance or conductance.

Fig. II.2.54: Z(f) in the complex impedance plane.
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II.2.6.3 The Smith chart

Fig. II.2.55: The Smith chart.

After this lengthy introduction we finally can head to the Smith chart. Fig. II.2.55 shows the traditional

“paper” version of the Smith chart, the upper circular part is the Smith chart with overlaid normalised

impedance (in red) and admittance (in blue) planes, the lower part are the “rulers”.

Fig. II.2.56 tries to visually explain the concept of the Smith chart, which uses a Möbius trans-

formation to map the complex impedance plane – actually only the “right” side for Re{Z} ≥ 0, in
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Fig. II.2.56: Mapping the complex impedance plane Z on the plane of the complex reflection coefficient Γ.

Cartesian coordinates – on the plane of the complex reflection coefficient Γ, in Polar coordinates, fol-

lowing Eq. (II.2.16):

Γ =
Z − Z0

Z + Z0
(II.2.22)

Similar to the complex impedance plane Fig. II.2.54, the Smith chart is a parametric graph, with the

complex impedance Z (or the complex admittance Y = 1/Z), linked to the complex reflection coefficient

Γ, as variable and the frequency f as parameter. In the paper version of the Smith chart the impedance Z

is normalised to the reference impedance Z0:

z =
Z

Z0
(II.2.23)

again, typically to Z0 = 50Ω. For this normalized impedance z the transformation is then:

Γ =
z − 1

z + 1
⇒ Z

Z0
= z =

1 + Γ

1− Γ
(II.2.24)

ò
The paper version of the Smith chart, Fig. II.2.55, utilises the normalised complex

impedance z(f), Eq. (II.2.23). Software tools, network analyser displays, etc. typically

visualise the un-normalised complex impedance Z(f) in their Smith chart applications.

?
Test your knowledge!
Fill the missing words:

The Smith chart transforms the

onto the complex Γ-plane (Reflection coefficient) within the unit circle.

815



II.2.6. Introduction to the Smith chart

(a) Γ = |Γ|ejφ is expressed in polar coordinates. (b) |Γ| = const. circles.

Fig. II.2.57: Γ(f) in the Smith chart.

Figure II.2.57 illustrates how the complex reflection coefficient Γ = |Γ|ejφ is mapped into the

Smith chart using polar coordinates and Fig. II.2.58 indicates “important” points and areas along with

their values for Γ and the normalised impedance z.

Fig. II.2.58: “Important” points and areas in the Smith chart.
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Example II.2.6.2: A simple RL-series circuit in the Smith chart

Fig. II.2.59: A 50Ω transmission-line terminated with a lumped element RL-series circuit.

Consider a 50Ω transmission-line terminated with the RL-series of Fig. II.2.53a, as shown in

Fig. II.2.59. Let’s find out how the graphical locus will look in the normalised Smith chart in the

frequency range 50MHz < f < 500MHz?!

– Calculate the resistive and reactive values of Z = R+XL, with R = 25Ω and XL = jωL

for f = ω/(2π) = 50MHz. You should get: Z ≊ (25 + j6.28)Ω.

– Calculate the normalised load impedance z = Z/Z0 for our reference impedance Z0 =

50Ω given by the characteristic impedance of the transmission-line. You should get: z ≊
0.5 + j0.126

(a) Locate z ≊ 0.5 + j0.126 . . . (b) . . . and mark it as 50MHz point.

Fig. II.2.60: Locate the normalised load impedance z(f = 50MHz) in the Smith chart.

– Print out the Smith chart (Fig. II.2.55), locate Re(z) = 0.5 and Im(z) = 0.126 as illustrated

in the simplified Smith chart in Fig. II.2.60a and mark the 50MHz impedance point, see

Fig. II.2.60b.
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(a) Measure |Γ| and ∠Γ . . . (b) . . . and continue with the 250MHz point.

Fig. II.2.61: Evaluate the reflection coefficient Γ.

– With help of a ruler and a pair of compasses evaluate |Γ| and ∠Γ.

You find the angle of Γ by extending a straight line “origin (zero) – z(50MHz)” with a

ruler to the outer rim of the Smith chart. On the 3rd outer circle read ∠Γ ≊ 161°.

Take the length “origin (zero) – z(50MHz)” with the pair of compasses and measure the

length equivalent |Γ| value at the RFL. COEFF, E or I ruler below the Smith chart. You

should read |Γ| ≊ 0.34.

ò
It is important to fully understand this procedure before moving on!

(a) Measuring r = |Γ| at f = 250MHz. (b) The final locus of z(f).

Fig. II.2.62: Finalise the locus with points for z at 50, 250 and 500MHz.
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– Repeat the procedure for f = 250 and 500MHz. With the three points, z(50MHz),

z(250MHz) and z(500MHz) marked in the Smith chart it is easy to connect them with

the appropriate circle: You now have completed the locus of z(f) in the Smith chart,

Fig. II.2.62b.

?
Test your knowledge!

Fill the centre column with the correct answer, 1 . . . 7

Prompts Possible Answers

A. Point A 1. Γ = 1, z → ∞

B. Point B 2. Γ = −j

C. Point C 3. Γ = 0, z = 1, match

D. Point D 4. Point in the capactive half plane

E. Point E 5. Γ = +j

6. Γ = −1, z = 0

7. Point in the inductive half plane
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Exercise II.2.6.2: A Smith chart exercise

The following exercise helps you to better understand the Smith chart:

point # P1 P2 P3 P4 P5

Z/Ω ∞ 0 100 + j100

Γ 0 0.7∠− 62°

1. Print out the Smith chart, Fig. II.2.55.

2. Mark points P1 . . . P5 of the table above into the Smith chart, assuming a reference

impedance of Z0 = 50Ω.

3. Fill the missing Z and Γ in the empty fields of the table using the Smith chart!

This exercise was a part of an exam in 2016.

II.2.6.4 Impedance matching with the Smith chart

In accelerator RF, as well as in any RF engineering domain, impedance matching is one of the most

common challenges, i.e. match a given complex load impedance ZL (e.g. the input impedance of an

amplifier, filter network, etc.) to the RF system reference impedance Z0, which typically is 50Ω. In the

past the Smith chart was the preferred impedance matching tool, but today it is replaced by dedicated

software tools.

The visualisation freeware Dellsperger Smith [14] fills the gap between the traditional paper Smith

chart (Fig. II.2.55) and commercial RF software tools for simple impedance matching problems and ed-

ucation. The software applies closed-form analytical expressions and the mapping between the complex

impedance plane Z(f) of the complex admittance plane Y (f) = 1/Z(f) and the complex reflection

coefficient Γ(f), Eq. (II.2.22), for a given reference impedance Z0.

An important goal for the transfer of RF energy between a source, e.g. a transmitter, power source,

amplifier, etc., and a load, like an RF cavity or accelerating structure, is to minimise unwanted reflections,

thus maximising the power transfer. The maximum RF power is transferred from a transmission line with

a reference characteristic impedance Z0 to a load of complex impedance ZL if

ZL = Z = Z0, (II.2.25)

and from Eq. (II.2.22) follows Γ = 0, i.e. no reflections!

Unfortunately, in many practical situations, ZL = Z ̸= Z0. Also, please note that in most RF sys-

tems, the reference impedance Z0 is based on the characteristic impedance of coaxial cable transmission-

lines, with a real value of Z0 = 50Ω. In most cases where ZL ̸= 50Ω, an impedance-matching network

has to be designed to minimise the unwanted reflections and maximise the power transfer. While there

are many ways to solve an impedance-matching problem, the Smith chart has proven to be the most effi-
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cient, and the software-supported Dellsperger Smith software makes the impedance-matching particular

handy.

?
Test your knowledge!

When do no signal reflections occur at the end of the transmission-line?

(Mark all correct answers)

□ Rsource = Rload

□ Rsource = Z0

□ Z0 = Rload

□ Rsource = Z0 = Rload

II.2.6.4.1 A simple impedance-matching problem

(a) General lumped element matching network. (b) Solution with an inductance.

Fig. II.2.63: A simple impedance matching problem.

Consider a RF system operating at a frequency f = 500MHz on a load impedance

Zload = R+
1

jωC
= 50Ω +

1

j2π × 500MHz× 12.7 pF
≃ (50− j25)Ω (II.2.26)

see also Fig. II.2.63. Following Eq. (II.2.22), this results in a reflection coefficient Γ ≃ 0.242e−j76°.

Figure II.2.63a indicates a general lumped element matching-network, Fig. II.2.63b the solution with
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Zp → ∞ and an inductance Zs = Ls = 7.96 nH, which is the dual network of the capacitance C:

ωLs =
1

ωC
(II.2.27)

II.2.6.4.2 Impedance-matching exercises with Dellsperger Smith

The Dellsperger Smith software [14] is a freeware which runs only under the MS Windows operating

system.

Perform the following steps and exercises:

Exercise II.2.6.3: Dellsperger Smith impedance matching exercise

1. Start the Smith V4.1 tool by Fritz Dellsperger.

2. Under Tools → Settings, turn off the blue Y-plane for this exercise. Leave all other settings

at default.

In this first exercise, use R, L and C lumped elements in series to match the load

impedances at f = 500MHz to Z0 = 50Ω. It requires only two components for each

matching circuit.

3. Enter ZL as first data point in the Smith chart by clicking on the “Keyboard” tab, which

opens the “Data Point" panel. Here you may have to switch from “polar" to “cartesian"

input coordinates to insert the “Re” and “Im" values of ZL.

4. You will need only the Z-plane for this exercise, the Y-plane can be turned off in the “Set-

tings” dialog.

5. Make use of “Undo”, eventually multiple times, if something goes wrong, even to return to

the start.

6. Please complete the table:

ZL C Series L Series R Series

(50 + j25)Ω

(50− j25)Ω – 7.96 nH –

(4 + j21)Ω

(20− j50)Ω

7. Now use R, L and C lumped elements in parallel to match the load impedances at

f = 500MHz for Z0 = 50Ω. Again, it takes only two components for each matching

circuit.
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�
You will only need the Z-plane for this exercise!

ZL C Shunt L Shunt R Shunt

(50 + j25)Ω

(50− j25)Ω

(4 + j21)Ω

(20− j50)Ω

8. Match impedances at f = 500MHz to Z0 = 50Ω. Use only 2 reactive components, in

series or in parallel, to create a lossless matching circuit.

Hint: You will need both, the Z-plane and the Y-plane for this exercise!

There are multiple solutions possible for this exercise!

ZL C Series L Series C Shunt L Shunt

(32− j66)Ω

(13− j9)Ω

(37 + j34)Ω

(78 + j78)Ω

9. The input impedance ZL = (17− j18)Ω of an amplifier shall be matched to Z0 = 50Ω at

f = 500MHz. Use only two coaxial lines with the characteristic impedances of 50Ω and

25Ω in a series configuration.

What are the electrical length’s of the two lines? (multiple solutions possible!)

Figure II.2.64 and Fig. II.2.65 show screenshots of the Dellsperger Smith software taken from

Exercise II.2.6.3 #6 and #9, respectively.

ò
Please note, the paper version of the Smith chart operates always with normalised

impedances, Eq. (II.2.23), while the Dellsperger Smith software displays the absolute

impedance Z, scaled by Z0 given under Tools → Settings → Default Z0.
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Fig. II.2.64: Screenshot impedance matching Exercise II.2.6.3 #6.

Fig. II.2.65: Screenshot impedance matching Exercise II.2.6.3 #9.
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Fig. II.2.66: A transmission-line as impedance transformer.

II.2.6.4.3 The transmission-line impedance transformer

Clearly, Exercise II.2.6.3 #9 addresses the more advanced RF engineer, but still demonstrates the use

of lossless transmission-lines operating as an impedance transformer. Fig. II.2.66 illustrates the con-

cept, using a lossless transmission-line to add a phase delay of 2βℓ to an existing load impedance Z.

Consequently, the reflection coefficient at the input of the transmission-line:

Γin = Γe−j2βℓ (II.2.28)

with: βℓ = θ phase delay (electrical length), and: β =
2π

λg
= k wave number

relates to the reflection coefficient Γ at the load end of the line. This results in a transformation of the

load impedance Z to a new, different impedance Zin at the input of the line. The Smith chart offers an

effective, simple graphical way to calculate this transmission-line based impedance transformation.

Exercise II.2.6.4: Transmission-line impedance transformation

Fig. II.2.67: A λ/5 impedance transformation.

Figure II.2.67 shows our RL-series impedance from Example II.2.6.2, now operating at a fre-

quency f = 345MHz and extended with a 50Ω transmission-line of length ℓ = λ/5. While

the results of the associated impedance transformation are already given, you should perform the

exercise and verify the result, either using the paper Smith chart, Fig. II.2.55, or the Dellsperger

Smith software.

Using the paper Smith chart requires to use the normalised load impedance z = Z/Z0 = 0.5 +

j0.87, with the Dellsperger Smith you can directly go with Z = (25 + j43.4)Ω. Key element

of the impedance transformation is to add the transmission-line of length ℓ = λ/5 by rotating Γ
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clockwise by 2βℓ = 4π/5 ≡ 144°, i.e. from 0.125λ to 0.325λ in the Smith chart, as shown in

Fig. II.2.68.

Complete the exercise by sketching the lumped element equivalent of Zin and determining the

values, and by calculating the physical length ℓ, assuming the transmission-line is a coaxial cable

with PTFE (Teflon) as insulator (dielectric constant εr = 2.1).

Fig. II.2.68: Smith chart of the λ/5 impedance transformation.

Of particular interest is a transmission-line of length

ℓ =
λ

4
≡ βℓ =

π

2

which transforms a reflection coefficient Γ at the end of the line to its input as

Γin = Γe−j2βℓ = Γe−jπ = −Γ
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(a) General case. (b) “Short”-to-“open” case (or vice versa).

Fig. II.2.69: λ/4 impedance inverter in the Smith chart.

This results in the dimensionless, normalised impedance z at the end of the line to be inverted:

zin =
1

z
(II.2.29)

thus, the λ/4-line acts as (normalised) impedance inverter! (see also Fig. II.2.69a)

With z = 0, i.e. a short at the end of the transmission-line (Fig. II.2.69b) or z → ∞ (open end

of the transmission-line), the transmission-line effectively becomes a λ/4-resonator, also applied for

acceleration of heavy ions or protons in linacs.
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?
Test your knowledge!

Trace with marker points in the simplified Smith chart for an RL series impedance.

(Mark the correct answer)

□ fB > fA

□ fB < fA

□ There is no frequency f related to Points A and B

□ fB = fA

II.2.6.5 Smith chart summary

In this introduction to the Smith chart we touched only a few, general aspects, also because, today, the

Smith chart has lost it’s core function as impedance / reflection coefficient calculation tool. Many aspects

of the Smith chart, like the various rules are replaced by software tools or conversion scripts. Still,

the Smith chart not only helps to better understand the link between the reflection coefficient Γ and the

complex impedance Z in a RF system with a reference impedance Z0, it also remains relevant for the

visualisation of complex impedances as parametric plot, e.g. the Sii(f) scattering parameter measured

with a vector network analyzer (VNA). As a matter of fact, the Smith chart format measuring S11 with

a VNA of an accelerating mode of a cavity resonator is the most efficient way to characterise its eigen-

frequency and unloaded-Q.
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II.2.7 Scattering parameters

II.2.7.1 Electrical networks

The behaviour of RF components, circuits and systems, like any other electrical or electronics circuit,

system or phenomena can be described very well applying Maxwell’s equations:

∇ ·E =
ρ

ε
, ∇×B− ∂E

c2∂t
= µJ,

∇×E− ∂B

∂t
= 0, ∇ ·B = 0.

(II.2.30)

Equation (II.2.30) needs to be solved taking all the boundaries and materials into account, which can be

accomplished numerically, e.g. for simple RF components like antennas, cavity resonators, etc. How-

ever, for more sophisticated, complex electrical circuits and systems a design and optimisation, e.g. of

a telecommunication device like a cell-phone with hundreds of semiconductors and other electronics

components based on Maxwell’s equations quickly becomes unwieldy to impossible.

Fig. II.2.70: Examples of electrical circuit elements.

To circumvent this problem, a well-established method in electrical engineering is based on circuit

elements forming an electrical network. Figure II.2.70 illustrates a few examples for those electrical

circuit elements. Each circuit element is represented by an unique symbol and it’s electrical characteristic

and values are defined by the laws of Ohm and Kirchhoff. A meaningful linear or non-linear, passive

or active function, e.g. an amplifier, a NAND-gate, a RF band-pass filter, etc., is then made from a

combination of circuit elements forming the desired function as electrical network. Complex systems,

described as electrical networks, can be divided into sub-networks, with each sub-network performing a

well-defined function.

(a) 2-port network. (b) 2-port Y-parameters.

Fig. II.2.71: 2-port Y-parameter network.

Functional blocks described by an electrical network have n ports and each port has two terminals.

Linear networks are the most popular ones, Fig. II.2.71 shows a linear 2-port network which is defined
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by a matrix formalism based on the currents and voltages at the ports, here expressed in terms of the so-

called Y-parameters, with the matrix coefficients being admittances defined by the dependent currents at

the terminals. As Fig. II.2.71b shows, a linear 2-port network has four parameters, given as port voltages

(V1, V2) and currents (I1, I2), here for the Y-parameter description the voltages are the independent,

and the currents are the dependent parameters. Evidently there are other definitions for linear networks,

known as Z-, h- and g-parameters.

Fig. II.2.72: Measurement characterisation of a linear 2-port network.

In practice it is more convenient to express the parameters for linear networks in steady state, i.e. in

the frequency-domain. This avoids using and solving differential equations, but again, is only applicable

to time-invariant, linear systems! Figure II.2.72 shows a RC low-pass filter as example for a simple

linear 2-port network, indicating V1 and I1 at port 1, and V2 and I2 at port 2. Based on the Y-parameter

definition, Fig. II.2.71b, follows:

Y-parameter: Y =
1

R

[
1 −1

−1 1 + jωRC

]

and similar for the Z-parameter follows:

Z-parameter: Z =
1

jωC

[
1 + jωRC 1

1 1

]

Both descriptions, based on the port voltages and currents, are equivalent, however, the characterisation

by a measurements of those voltages and currents at the ports is difficult and fails at high frequencies.

Any measurement instrument has to be connected via cables to the ports, in Fig. II.2.72 indicated

as “TL”, i.e. transmission-lines of a given physical length. As we have learned, the voltages and currents

on a transmission-line are a function of frequency (or time) AND space (location), Vi(ω, z), Ii(ω, z),

originating from the associated space/time varying EM-fields. This means, at higher frequencies V́i ̸= Vi

and Íi ̸= Ii, and therefore give errors when trying to characterise a linear network at RF frequencies

based on port voltages and currents. Moreover, the circuit may become unstable or might be damaged

when operating on a short or open end, following the definition of the network parameter. Parasitic

effects, e.g. “stray”-capacitances and inductances, given by the measurement setup can further degrade

the accuracy of the voltage or current measurement, and may make the characterisation of the network

parameters impossible, in particular at microwave frequencies.
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Fig. II.2.73: Transmission and reflections of optical waves at a car window (courtesy Piotr Kowina).

II.2.7.2 Power-waves and generalised S-parameters

Instead of defining the characteristics of an electrical linear network by the voltages and currents at its

ports, a definition through incident and reflected waves at the ports proves to be more practical for linear

RF networks. Figure II.2.73 shows analogous optical waves at a car window, with the incident optical

waves (sun light) scattered at the surface of the car windows with partial reflections and transmission of

the optical waves, defined by the refractive index of the window glass.

Figure II.2.74 illustrates the concept of incident ai and reflected power-waves bi at the ports i ∈
1 . . . n of a linear RF network, referred as device-under-test (DUT) [15]. These power-waves will be

scattered at the ports and inside the DUT RF network, thus the related parameters are called scattering

or S-parameters.

Fig. II.2.74: Power waves a the ports of a device-under-test (DUT).
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Definition II.2.7.1: Generalised S-parameters

The generalised S-parameters for an arbitrary n-port microwave or RF network (DUT) are defined

through a set of normalised complex voltage (power) waves:

incident wave at port i : ai=
Vi + ZiIi

2
√

Re{Zi}
=

V inc
i√

Re{Zi}

reflected wave at port i : bi=
Vi − Z∗

i Ii

2
√

Re{Zi}
=

V refl
i√

Re{Zi}

(II.2.31)

with Z∗
i being the complex conjugate of Zi. The incident ai and reflected / transmitted power

wave bi at the ith-port are given by the terminal voltage Vi and current Ii, and an arbitrary refer-

ence impedance Zi.

ò
Please note, the complex notation of Eq. (II.2.31) implies linear, time-invariant networks,

and is described in the frequency-domain.

ò
Each port of a DUT is defined by a reference plane, which is a well defined physical

location, in Fig. II.2.74 indicated as dashed lines.

In practice, the characterisation of an RF network, the so-called device-under-test (DUT), is per-

formed as a measurement using a vector network analyzer (VNA), or by a numerical analysis or optimi-

sation, simulated on the computer. In case of the VNA, the DUT needs to be connected by transmission-

lines, in most cases coaxial cables with a characteristic Z0 = 50Ω, to the ports. Therefore, we usually

define the reference impedance of all DUT ports to be Zi = Z0 = 50Ω.

ò
Please note, some VNAs with a physical reference impedance of Z0 = 50Ω allow a

mathematical port impedance conversion to adapt to a port reference impedance Z0 ̸=
50Ω.

II.2.7.3 1-port S-parameter

Before we continue with the definition of the most simple, the 1-port S-parameter, let’s briefly sum-

marise:

Electrical / electronic networks are

– electrical / electronic circuits with 1 . . . n ports.

– defined by the voltages Vi(ω) or vi(t) and currents Ii(ω) or ii(t) at their port terminals.

– characterised by circuit matrices, e.g. Z, Y , h, g, etc. based on Vi and Ii.
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RF / microwave networks are

– RF or microwave circuits or subsystems, i.e. DUTs, like amplifiers, filters, transmission-

lines, resonators, hybrids, circulators, etc., which may include distributed elements, having

1 . . . n ports.

– defined by incident ai and reflected / transmitted power-waves bi at the ith-port, taking the

physical location, i.e. reference plane, of the port into account.

– characterised by a matrix of scattering (S)-parameters based on the power-waves at the ports.

The S-parameters are a function of frequency f = ω/2π.

– The power-waves are normalised to a reference impedance, which in most cases is Zi =

Z0 = 50Ω.

Fig. II.2.75: 1-port DUT.

Figure II.2.75 shows the most simple case, a 1-port DUT, here as example of a RLC parallel

resonant circuit. It has only one port, with two terminals 1 and 1′, defining the reference plane. Evidently,

a 1-port RF network has only one S-parameter, S11, defined as ratio of the reflected wave b1 to the

incident wave a1:

S11 =
b1
a1

= Γ (II.2.32)

and is nothing else than our reflection coefficient Γ. As Fig. II.2.75 suggests, the measurement equipment

can be located at some physical distance from the DUT, and is connected with a transmission-line of

characteristic impedance Z0, usually a coaxial cable, only for some specific microwave applications a

rectangular waveguide, to the reference plane of the port.

II.2.7.4 2-port S-parameters

2-port RF networks are the most popular, e.g. amplifiers, attenuators, filters, transmission-lines, isolators,

etc., to name but some, are all 2-port DUTs. Figure II.2.76 shows a particular simple 2-port DUT, a

complex impedance Z series circuit between the ports. Indicated is the setup for the definition of the
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Fig. II.2.76: 2-port DUT: forward S-parameters.

forward S-parameters:

S11 =
b1
a1

∣∣∣∣
a2=0

≡ input reflection coefficient (II.2.33)

S21 =
b2
a1

∣∣∣∣
a2=0

≡ forward transmission gain (II.2.34)

with:

independent parameters: a1 =
V inc
1√
Z0

=
V1 + I1Z0

2
√
Z0

(II.2.35)

dependent parameters: b1 =
V refl
1√
Z0

=
V1 − I1Z0

2
√
Z0

(II.2.36)

b2 =
V refl
2√
Z0

=
V2 − I2Z0

2
√
Z0

(II.2.37)

In a practical measurement setup the independent parameter a1, Eq. (II.2.35), is supplied by the signal

generator in the VNA, indicated as source voltage V0 in Fig. II.2.76. The two dependent parameters, b1,

Eq. (II.2.36), and b2, Eq. (II.2.37), are measured with the VNA, enabling to calculate S11, Eq. (II.2.33),

and S21, Eq. (II.2.34).

-
IMPORTANT:
Please note a2 = 0 in Eqs. (II.2.33) and (II.2.34). This means, no reflections should appear

on port 2, otherwise the measurement would be uncontrolled. To insure this, port 2 needs

to be terminated in its reference impedance, thus the load impedance at port 2 has to be:

ZL = Z0, see also Fig. II.2.76. Of course, also the stimulus signal generator at port 1 is

impedance matched, i.e. the source impedance is equal to the reference impedance, ZS =

Z0, and therefore will absorb all reflected waves b1 to ensure controlled measurement

conditions without multiple reflections!

In addition:

ALWAYS terminate unused ports in their reference impedance, typically the charac-
teristic impedance of the coaxial cables, e.g. Z0 =50Ω!
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Fig. II.2.77: 2-port DUT: reverse S-parameters.

The definition of the reverse S-parameters follows a similar path and is illustrated in Fig. II.2.77:

S22 =
b2
a2

∣∣∣∣
a1=0

≡ output reflection coefficient (II.2.38)

S12 =
b1
a2

∣∣∣∣
a1=0

≡ reverse transmission gain (II.2.39)

with:

independent parameters: a2 =
V inc
2√
Z0

=
V2 + I2Z0

2
√
Z0

(II.2.40)

dependent parameters: b1 =
V refl
1√
Z0

=
V1 − I1Z0

2
√
Z0

(II.2.36)

b2 =
V refl
2√
Z0

=
V2 − I2Z0

2
√
Z0

(II.2.37)

Of course, the dependent parameters b1 and b2 remain the same as for the forward S-parameters,

Eqs. (II.2.36) and (II.2.37). Now the stimulus signal is supplied at port 2, indicated by V0 in Fig. II.2.77,

in practice the VNA will automatically switch to the correct port 2 if a S22 or S12 measurement is re-

quested. In the case of the reverse S-parameters, port 1 has to be correctly terminated with the reference

impedance, ZL = Z0, and again, the source impedance of the stimulus signal generator is matched to

the reference impedance of port 2, ZS = Z0.

�
Most vector network analyzers are equipped with two ports. Still, it is possible with a 2-

port VNA to perform the characterisation of DUTs with ports n ≥ 3, again, unused ports

need to be terminated in their reference impedance!

Combining Eqs. (II.2.33), (II.2.34), (II.2.38) and (II.2.39) leads to a system of linear equations for the

2-port DUT:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2
(II.2.41)
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with:

S11 =
b1
a1

∣∣∣
a2=0

≡ input reflection coefficient

S22 =
b2
a2

∣∣∣
a1=0

≡ output reflection coefficient

 impedance measurements (II.2.42)

S21 =
b2
a1

∣∣∣
a2=0

≡ forward transmission gain (insertion loss)

S12 =
b1
a2

∣∣∣
a1=0

≡ reverse transmission gain (insertion loss)


transmission

(insertion)

measurements

(II.2.43)

ò
A load impedance ZL ̸= Z0 at port 2, see Fig. II.2.76, will result in a reflection coefficient

at the output (port 2):

Γload =
ZL − Z0

ZL + Z0

which translates to a reflection coefficient at the input (port 1):

Γin = S11 +
S21ΓloadS12

1− S22Γload

?
Test your knowledge!

Mark all correct answers for the S-parameters of a 2-port RF network

□ a1 and b1 are independent parameters.

□ S11 = b1/a1 (a2 = 0) is the input reflection coefficient Γ1.

□ a1 and a2 are the incident waves at port 1 and port 2, respectively.

□ b1 and b2 are the transmitted waves between port 1 and port 2, and vice versa.

□ S21 and S12 are the forward and reverse transmission gains / losses.

□ To characterise the S-parameters at port 2, port 1 needs to be terminated in its char-

acteristic port impedance.
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II.2.7.5 n-port S-parameters and the scattering matrix

The definitions in the previous two sections for 1- and 2-port S-parameters can be generalised to n-port

DUTs. For the reflection coefficient, Eq. (II.2.32) for the 1-port, we get for the n-port network (DUT):

Sii =
bi
ai

=

Vi
Ii

− Z0

Vi
Ii

+ Z0

=
Zi − Z0

Zi + Z0
= Γi (II.2.44)

with

Zi = Z0
1 + Sii

1− Sii
(II.2.45)

and

Zi =
Vi

Ii
(II.2.46)

being the input impedance at the ith port.

The electrical power reflected at the ith port is:

|Sii|2 =
power reflected from port i

power incident on port i
(II.2.47)

and the electrical power transmitted between ports is:

|Sij |2 = power transmitted between ports i and j (II.2.48)

-
Again, all ports are terminated in their reference impedance, usually Zi = Z0, i.e. the

characteristic impedance of the coaxial cables, and also the source impedance is ZS =

Zi = Z0.

From the definition of power waves scattered at the ports of a linear n-port network, Eq. (II.2.31),

we can further conclude:

a =
[
a1 a2 a3 . . . an

]
waves travelling towards the n-port

b =
[
b1 b2 b3 . . . bn

]
waves travelling away from the n-port

incident a and reflected waves b being vectors, and the relation between ai and bi (i = 1 . . . n) can be

written as a system of n linear equations:

1-port: b1 = S11a1 +S12a2 +S13a3 +S14a4 + . . .

2-port: b2 = S21a2 +S22a2 +S23a3 +S24a4 + . . .

3-port: b3 = S31a1 +S32a2 +S33a3 +S34a4 + . . .

4-port: b4 = S41a2 +S42a2 +S43a3 +S44a4 + . . .
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with ai being the independent and bi being the dependent variables. Following that, and generalising

Eq. (II.2.41), the S-parameters of a linear n-port network can be simply expressed as scattering (S)-

matrix

S =


S11 S12 . . . S1i

S21 S22 . . . S2i

...
. . .

...

Si1 Si2 . . . Sii

 (II.2.49)

of the above described system of linear equations:

b = Sa (II.2.50)

?
Test your knowledge!
Select all correct answers

□ Y- and Z-parameters of electrical networks require a reference impedance Z0.

□ Scattering parameters of RF networks are based on normalised, complex power

waves, incident and reflected at their ports.

□ DUT stands for “Device Under Test”, as acronym for a RF network to be charac-

terised.

□ S-parameters are only defined for a reference impedance of Z0 = 50Ω.

□ Unused ports in a S-parameter measurement setup always need to be terminated in

their characteristic port impedance.

II.2.7.6 Some properties of the S-matrix

II.2.7.6.1 Matched ports

The ith port of a RF network is matched if

Sii = 0 (II.2.51)

i.e. no reflections occur from that port!

II.2.7.6.2 Reciprocal networks

A n-port network is reciprocal if

ST = S ⇒ Sij = Sji ∀ i, j (II.2.52)

with ST being the transposed matrix of S. Reciprocal networks have a symmetric S-matrix. Most passive

components are reciprocal, e.g. resistor, capacitor, inductor, transformer, etc.
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ò
Passive components using non-homogeneous materials like magnetised ferrites, plasma,

etc. are non-reciprocal. Also most active components, like amplifiers, are non-reciprocal.

II.2.7.6.3 Symmetric networks

A n-port network is symmetric if

Sij = Sji ∧ Sii = Sjj (II.2.53)

i.e. it needs to be reciprocal and the reflection coefficients at the ports need to be identical (matrix and

electrical symmetry).

ò
Without proof: A symmetric network is always reciprocal.

II.2.7.6.4 Passive and lossless networks

A n-port is passive and lossless if its S-matrix is unitary

S†S = STS∗ = I (II.2.54)

where ST = (S∗)T is the conjugate transposed (Hermitian) matrix and I is the identity matrix.

For a passive, lossless 2-port network follows:

(S∗)T S =

[
S∗
11 S∗

21

S∗
12 S∗

22

][
S11 S12

S21 S22

]
=

[
1 0

0 1

]

which lead to the following conditions:

∠S11 − ∠S12 = ∠S21 − ∠S22 − π

|S11| = |S22|

|S12| = |S21|

|S11| =
√
1− |S12|2

(II.2.55)
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Example II.2.7.1: Examples of reciprocal and symmetric S-parameter networks

(a) general π-network. (b) symmetric π-network.

Fig. II.2.78: The 2-port π-network.

Consider a 2-port π-network, Fig. II.2.78. The S-parameters for a general π-network,

Fig. II.2.78a, can be derived from the “classical” network parameters, e.g. from the 2-port Y-

parameters:

S11 =
(1− Z0Y11)(1 + Z0Y22) + Z2

0Y12Y21
∆

S12 = −2
Z0Y12
∆

S21 = −2
Z0Y21
∆

S22 =
(1 + Z0Y11)(1− Z0Y22) + Z2

0Y12Y21
∆

with: ∆ = (1 + Z0Y11)(1 + Z0Y22)− Z2
0Y12Y21

(II.2.56)

by replacing:

Y11 =
1

Za
+

1

Zb
, Y12 = Y21 = − 1

Za
, Y22 =

1

Za
+

1

Zc
(II.2.57)

following Fig. II.2.78a. We find S12 = S21, therefore the network is reciprocal, but S11 ̸= S21,

thus it is not symmetric. Setting Zc = Zb, see Fig. II.2.78b, the S-matrix simplifies to:

S(π, symm) =
1

∆

[
ZaZ

2
b − Z2

0 (Za + 2Zb) 2Z0Z
2
b

2Z0Z
2
b ZaZ

2
b − Z2

0 (Za + 2Zb)

]
with: ∆ = (Za + Zb) [ZaZb + Z0(Za + 2Zb)]

(II.2.58)

with S12 = S21 ∧ S11 = S22, therefore this π-network is reciprocal and symmetric.
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Fig. II.2.79: A simple voltage divider as 2-port network.

Setting in Fig. II.2.78a Zb → ∞ and Zc = Zb leads to the simple voltage divider circuit as shown

in Fig. II.2.79. From the S-parameters

S(div) =
1

∆

[
Za(Z0 + Zb)− Z2

0 2Z0Zb

2Z0Zb ZaZb − Z0(Z0 + Za)

]
with: ∆ = Z0(Z0 + Za) + Zb(2Z0 + Za)

(II.2.59)

follows S12 = S21 ∧ S11 ̸= S22, i.e., this 2-port is reciprocal but not symmetric.

Exercise II.2.7.1: Passive and lossless S-matrices

Fig. II.2.80: A simple series impedance 2-port network.

Figure II.2.80 shows a simple 2-port network for a series impedance Z. Analyse some properties

of this network:

– Setup the S-matrix for the 2-port network of Fig. II.2.80

– Is the 2-port reciprocal and/or symmetric?

– For two numerical cases, Z = R = 10Ω and Z = jωL = j10Ω, test the 2-port to be lossy

/ lossless using Eq. (II.2.55).
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?
Test your knowledge!
Fill the centre column with the correct answer, 1 . . . 6

Prompts Possible Answers

A. matched 1. Sii = Sjj

B. symmetric 2. (S∗)T S = I

C. reciprocal 3. Sij = Sji ∧ Sii = Sjj

D. passive and lossless 4. Sii = 0

5. Γ = +j

6. Sij = Sji

II.2.7.7 Examples of S-matrices

II.2.7.7.1 1-port

Any passive R, L, C, RC, RL, LC, or RLC lumped element circuit, or any combination of those

elements leading to the single port network results in a 1-port S-matrix:

S = S11 = Γ (II.2.60)

Of course, the network may also include, or be solely made from, distributed elements (transmission-

lines). “Special” cases of 1-port networks are:

– Ideal (matched) termination: Z = Z0 ⇒ S11 = 0

– Ideal short: Z = 0 ⇒ S11 = −1

– Ideal open: Z = ∞ ⇒ S11 = +1

While strictly speaking any simple cavity resonator is at least a 3-port, two waveguide beam-ports

Fig. II.2.81: 1-port lumped element equivalent circuit of a cavity resonance.
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Fig. II.2.82: Signal flow graph (SFG) for an ideal, matched transmission-line.

which are part of the vacuum system, and a coaxial or waveguide port for the RF power coupler, it often

can be treated as 1-port RF network. In that case we assume the eigenmode resonance of interest is

trapped in the resonator with no or negligible fields near the beam-ports. We consider only a single RF

coupler to characterise the 1-port S-parameter of a particular eigenmode, e.g. the TM010 accelerating

mode of a cylindrical “pill-box” cavity. Figure II.2.81 shows the parallel RLC equivalent circuit for a

cavity resonant mode, with an ideal transformer acting as coupling antenna.

II.2.7.7.2 2-port

2-port RF components and elements are the most popular, ranging from simple transmission-lines, atten-

uators, filters, etc. to complex RF power amplifiers.

S =

[
0 e−γℓ

e−γℓ 0

]
with:

γ = α+ jβ : propagation constant

α : attenuation constant [Np/m]1

β = 2π/λ : phase constant [rad/m]

(II.2.61)

Equation (II.2.61) gives the S-parameter matrix for ideal, matched transmission-line, i.e. the charac-

teristic impedance of the transmission-line ZTL is equal the reference impedance Z0 of the RF system,

ZTL = Z0. Figure II.2.82 shows the corresponding signal flow graph (SFG), a graphical representa-

tion of the waves propagating through the S-matrix. For a lossless line of length ℓ = λ/4 operating at

f = vp/λ the S-matrix simplifies to

S =

[
0 −j

−j 0

]
(II.2.62)

The 2-port S-matrix for an ideal attenuator is

S =

[
0 k

k 0

]
with:

k = V2/V1 = 10−(∆dB/20) : attenuation k < 1, k ∈ Re

∆dB = 20 log10 V1/V2 : attenuation in [dB]

α = − ln k : attenuation in [Np]

(II.2.63)

and is evidently independent of the frequency. Figure II.2.83 shows two variants of an RF attenuator, the

T -network (Fig. II.2.83a) and the π-network (Fig. II.2.83b), and Fig. II.2.84 illustrates the signal flow

graph, with the specific values for a 3 dB attenuator.
1Np = Neper, unitless ratio named after John Napier based on the natural logarithm base e: Np = ln(a/b).
Compares to dB = 20 log10(a/b): dB/Np = 20 log10(a/b)/ ln(a/b) = 20/ ln(10) ≊ 8.68588
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(a) Attenuator T -network

RA =
1− k

1 + k
Z0

RB =
2k

1− k2
Z0

(b) Attenuator π-network.

R1 =
1− k

1 + k
Z0

R2 =
1− k2

2k
Z0

Fig. II.2.83: 2-port RF attenuator circuits.

S21 =
b2
a1

=
1√
2

S12 =
b1
a2

=
1√
2

Fig. II.2.84: Signal flow graph for a 3 dB attenuator.

The S-matrix for an ideal amplifier, or gain stage, is:

S =

[
0 0

GV 0

]
with:

GV = Vout/Vin = 10g/20 : voltage gain |GV | > 1

g = 20 log10 Vout/Vin : gain in [dB]
(II.2.64)

The corresponding signal flow graph is shown in Fig. II.2.85a. While the S-parameters of an ideal

amplifier are frequency independent, this is not the case for a “real-world” amplifier. Equation (II.2.65)

shows the S-parameters for a E-pHEMT GaAs FET 2 at 10GHz, not only the S-parameters are frequency

dependent; neither the input, nor the output are matched and require an impedance-matching circuit.

S =

[
0.78ej158° 0.08e−j24°

3.43ej42° 0.3e−j159°

]
with:

Datasheet Avago VMMK-1218:

f = 10GHz, Z0 = 50Ω, TA = 25 °C

Vds = 2V, Ids = 20mA

(II.2.65)

ò
Amplifiers are non-reciprocal.

2HEMT = high electron mobility transistor (single atomic layer functional principle), GaAs = gallium arsenide (transistor
material), FET = field-effect transistor (transistor type)
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Fig. II.2.86: 3-port resistive power divider.

(a) Ideal amplifier. (b) Microwave transistor operating at 10GHz.

Fig. II.2.85: 2-port signal flow graphs for gain stages.

II.2.7.7.3 3-port

From the large variety of 3-port RF networks, Fig. II.2.86 shows the resistive power divider (or power

splitter) as an example, with the S-matrix given as:

S =
1

2

0 1 1

1 0 1

1 1 0


b1 =

1

2
(a2 + a3)

b2 =
1

2
(a1 + a3)

b3 =
1

2
(a1 + a2)

(II.2.66)

The resistive power divider is frequency independent and the transfer-loss (and isolation) between ij

ports is 6 dB. The resistive power divider circuit can be expanded to more ports.

ò
There is a large variety of 3-port power dividers / splitters / combiners, notably the Wilkin-

son type. While many of those power divider networks offer better properties in terms

of insertion loss and isolation compared to the resistive power divider, they are frequency

dependent.

S =

0 0 1

1 0 0

0 1 0

 b1 = a3

b2 = a1

b3 = a2

(II.2.67)

Equation (II.2.67) shows the S-matrix of an ideal circulator and Fig. II.2.87 the corresponding schematic.

The incident power wave at any port is circulated, here shown clockwise, to the next port.
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Terminating one port, e.g. port 3, with a matched load results in a 2-port network, called isolator,

see also Fig. II.2.88:

S =

[
0 0

1 0

]
b2 = a1 (II.2.68)

The most popular application of an isolator, or a circulator with an external load, is in “isolating” a power

amplifier, e.g. triode, solid-state power amplifier, klystron, etc., from an reflective load, e.g. an acceler-

ating cavity, to avoid damage of the amplifier by the reflected power. Both, isolator and circulator, are

matched, but non-reciprocal devices, and in their real-world implementations are based on magnetised,

anisotropic microwave ferrites and therefore frequency dependent.

II.2.7.7.4 4-port

Many of the RF couplers and hybrids are 4-port RF networks, and the directional coupler is the most

popular one. Figure II.2.89a shows the operational schematic and Fig. II.2.89b a practical implemen-

tation of the most simple, single-stage directional coupler. As Fig. II.2.89b illustrates, this coupler is

based on two TEM transmission-lines, which electromagnetically couple over a length ℓ = λ/4, here

implemented as coupled micro-strip lines on a printed circuit board (PCB). The directional coupler has

a 2-fold symmetry, therefore inputs and outputs can be assigned in different ways to the ports without

Fig. II.2.87: 3-port circulator. Fig. II.2.88: 2-port isolator.

(a) Schematic of a directional coupler. (b) PCB micro-strip line implementation
of a directional coupler.

Fig. II.2.89: The 4-port directional coupler.
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altering the function.

S =


0 τ κ 0

τ 0 0 κ

κ 0 0 τ

0 κ τ 0

 τ : transmission coefficient

κ : coupling coefficient
(II.2.69)

Equation (II.2.69) shows the S-matrix for an ideal directional coupler, i.e. infinite isolation and perfectly

matched. In general, τ and κ have complex, frequency dependent values. The property of particular

interest is the directivity of the coupler, a signal at the input port 1 of the main line (ports 1-2) results in

a coupled signal at the coupled line port 3, but no signal on the coupled line port 4 (see Fig. II.2.89a).

The same is true if port 2 is used as input, now the coupled power shows only on port 4 of the coupled

line. In practice this means, the coupled ports 3 and 4 can distinguish between forward and backward

travelling waves on the main line, ports 1 and 2. This made the directional coupler the preferred tool

for the S-parameter test sets in early generation network analyzers, in accelerator RF applications high

power directional couplers are connected between the RF power system and the input coupler of the

acceleration cavity, to measure the beam loading by comparing forward and reflected power between the

cavity and the RF power amplifier.

ò
The schematic Fig. II.2.89a seems to be misleading wrt. Fig. II.2.89b. Please note, the

coupled port of a pair of coupled TEM transmission-lines is always upstream with zero

phase delay, the downstream port with π/2 phase delay is the isolated port – so-called

reverse coupling – as indicated in Fig. II.2.89b. Waveguide implementation often leads to

a forward coupling as indicated in the schematic Fig. II.2.89a.

Example II.2.7.2: The ideal, lossless TEM directional coupler

The coupled port 3 of a directional coupler based on coupled TEM transmission-lines is in-phase

with the input signal at port 1, while the main-line output signal is in quadrature phase, i.e. delayed

by π/2, see also Fig. II.2.89b. This leads to

κ = k, τ = −jt, with: k, t ∈ Re (II.2.70)

in Eq. (II.2.69).

The condition for a lossless directional coupler is given in Eq. (II.2.54), from which follows:

N∑
k=1

SkiS
∗
kj = 0 ∀ i ̸= j ∧

N∑
k=1

SkiS
∗
ki =

N∑
k=1

|Ski|2 = 1 ∀ i = j (II.2.71)

Testing the S-matrix of the ideal TEM directional coupler, Eq. (II.2.69) with the condition

Eq. (II.2.70), satisfies the first condition in Eq. (II.2.71):

S11S∗
12+S21S∗

22+S31S∗
32+S41S∗

42=0·jt+(−jt)·0+k·0+0·k=0
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S11S∗
13+S21S∗

23+S31S∗
33+S41S∗

43=0·k+(−jt)·0+k·0+0·jt=0

S11S∗
14+S21S∗

24+S31S∗
34+S41S∗

44=0·0+(−jt)·k+k·jt+0·0=0

S12S∗
13+S22S∗

23+S32S∗
33+S42S∗

43=(−jt)·k+0·0+0·0+k·jt=0

S12S∗
14+S22S∗

24+S32S∗
34+S42S∗

44=(−jt)·0+0·k+0·jt+k·0=0

S13S∗
14+S23S∗

24+S33S∗
34+S43S∗

44=k·0+0·k+0·jt+(−jt)·0=0

while the second condition in Eq. (II.2.71)

|S11|2+|S21|2+|S31|2+|S41|2=02+t2+k2+02=1

|S12|2+|S22|2+|S32|2+|S42|2=t2+02+02+k2=1

|S13|2+|S23|2+|S33|2+|S43|2=k2+02+02+t2=1

|S14|2+|S24|2+|S34|2+|S44|2=02+k2+t2+02=1

leads to:

t2 + k2 = 1 ⇒ t =
√

1− k2 (II.2.72)

Finally, here the S-matrix for an ideal, lossless TEM directional coupler operating at the center

frequency fc =
vp
4ℓ :

S =


0 −j

√
1− k2 k 0

−j
√
1− k2 0 0 k

k 0 0 −j
√
1− k2

0 k −j
√
1− k2 0

 (II.2.73)

with k being the coupling coefficient:

0 ≤ k ≤ 1√
2

II.2.7.8 S-parameters in practice

In practice, the scattering parameters are a function of the frequency, S(f), but also some instruments

or software applications can provide the time-domain equivalent by applying an inverse Fourier trans-

form of the measured or calculated S-parameter data, sometimes referred as synthetic pulse time-domain

analysis. There are basically only a few real-world, practical ways to acquire S-parameters:

– The characterisation of a RF component or subsystem by measurement, using a vector network

analyzer (VNA). This is the most common case, with the instrument sweeping the DUT at a fixed

stimulus RF power level over a range of frequencies fmin < f < fmax, usually in equidistant steps

∆f .

– The S-parameters are supplied as data set by the manufacturer of the RF component or subsystem.

– Also, S-parameters are supplied by certain numerical simulation tools, like circuit analysing and
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PCB software, e.g. Keysight Pathwave ADS, Cadence AWR Microwave Office and Allegro, Qucs,

etc., or electromagnetic modeling software, e.g. Dassault CST Studio, Ansys HFSS, etc.

In all cases the S-parameter data is supplied by a standardised convention, as ASCII readable text file in

the so-called Touchstone SnP format, which de-facto is the industry standard. In the Touchstone filename

extension filename.snp the n indicates the number of ports of the S-parameter dataset.

Fig. II.2.90: Touchstone s2p S-parameter file of a 2-port VNA measurement.

Figure II.2.90 shows the first couple of lines of a Touchstone v1.13 ASCII file, highlighting some

of the key aspects:

– The file name extension specifies the number n of ports, that number is not equal to the number of

columns in the file! Also please note, there might be some differences between s1p, s2p, s3p and

s4p files wrt. the carriage return (CR) symbol.

– The comment header (!) includes some general information, e.g. type of instrument or software,

date and time the analysis was performed, with or without correction and on which ports, and the

S-parameter column order.

– The format line (#) defines the data format of the S-parameter, e.g. mag[dB]/angle[deg],

mag/angle[rad], real/imag, the units for the frequency, e.g. Hz, MHz, GHz, and the reference

impedance, e.g. 50 Ω.

– Following the # format line the actual S-parameter starts, with the first column being the frequency.

For the given example Fig. II.2.90 the columns are

f[Hz] S11mag[dB] S11phase[deg] S21mag[dB] S21phase[deg]

S12mag[dB] S12phase[deg] S22mag[dB] S22phase[deg].

Please note, the column delimiter may vary, e.g. space, comma, semicolon, etc.
3Touchstone v2.0 uses a different format, has the file extension *.ts and is less common.
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II.2.7.9 T-parameters

Fig. II.2.91: Cascading of two 2-port RF networks using T-parameters.

The S-parameters characterise linear, n-port RF networks by incident waves ai travelling towards

the ports and the reflected waves bi travelling away from the ports, see Fig. II.2.74. The S-matrix ex-

pressed the dependent parameters – the reflected waves bi – as linear function of the independent param-

eter – the incident waves ai, Eq. (II.2.50). While this makes logical sense, it hinders a simple cascading

of two or more 2-port networks defined by their S-matrices.

The transfer scattering parameters, T-parameters, circumvent this shortcoming and use a less

intuitive definition of the power waves, expressing the waves at the (input) port 1 as function of the

waves at the (output) port 2 for a 2-port RF network:

b1 = T11a2 + T12b2

a1 = T21a2 + T22b2
with: T =

[
T11 T12

T21 T22

]
(II.2.74)

The T-parameter definition, Eq. (II.2.74), enables a cascading of 2-port networks by simple multiplication

of the individual T-matrices, see also Fig. II.2.91:

T = T(1)T(2) . . .T(N) (II.2.75)

The conversion 2-port between S- and T-parameters is given as:

T =
1

S21

[
−|S| S11

−S22 1

]
S =

1

T22

[
T12 |T|
1 −T21

]
with: |S| = S11S22 − S12S21 with: |T| = T11T22 − T12T21

(II.2.76)
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ò
Please note:

– The multiplication of the cascading T-matrices in Eq. (II.2.75) is not commutative.

– The flow direction of the waves ai, bi, for T-parameters is different compared to the

S-parameters, see Fig. II.2.91.

– There exists another definition for the scattering T-parameters, slightly different

from Eq. (II.2.74).

– Sometimes the term T-parameters is used for other types of network parameters.

II.2.7.10 ABCD-parameters

Fig. II.2.92: Cascading of two 2-port networks using ABCD-parameters.

Similar to the scattering T-parameters described in the previous paragraph, Section II.2.7.9, the

ABCD-parameters – also referred as chain, cascade, or transmission parameters – are defined by the

voltages and currents at the ports to enable a cascading of 2-port networks by matrix multiplication, see

also Fig. II.2.92. Among the different definitions for ABCD 2-port parameters, this is the most popular

one:

V1 = AV2 −B I2

I1 = C V2 −D I2
with: ABCD =

[
A B

C D

]
(II.2.77)

ò
Please note the current arrow on port 2 being inverted, therefore defining the current at

port 2 with a negative sign, −I2, see Fig. II.2.92.

Like for the T-parameters, a complex system of two or more 2-port networks defined by their

ABCD-parameters can be analysed by multiplication of their ABCD-matrices:

ACBD = ABCD(1)ABCD(2) . . .ABCD(N) (II.2.78)
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The conversion 2-port between S- and ABCD-parameters is given as:

ABCD =
1

2S21

[
(1 + S11)(1− S22) + S12S21 [(1 + S11)(1 + S22)− S12S21]Z0

[(1− S11)(1− S22)− S12S21] /Z0 (1− S11)(1 + S22) + S12S21

]

S =
1

A+B/Z0 + C Z0 +D

[
A+B/Z0 − C Z0 −D 2(AD −BC)

2 −A+B/Z0 − C Z0 +D

] (II.2.79)

Example II.2.7.3: Stretched-wire measurement of the beam-coupling impedance

Fig. II.2.93: Schematic of a stretched-wire beam-coupling impedance measurement setup.

The characterisation of the longitudinal beam-coupling impedance Z∥ of machine components

is of vital importance in accelerator technology and beam dynamics. Among various ways to

calculate or measure this impedance, the so-called “stretched-wire” measurement method plays

a role to characterise the beam coupling-impedance in an effective way over a wide range of

frequencies, here briefly mentioned in connection to the ABCD-parameters.

Figure II.2.93 illustrates the stretched-wire impedance measurement method for an arbitrary DUT,

e.g. a beam pickup, kicker, bellow, etc., utilising a thin wire stretched through the symmetric cen-

tre of a beam pipe, thus composing a coaxial TEM transmission-line of characteristic impedance:

Zpipe ≊ 60 ln
Dpipe

dwire
(II.2.80)

The method requires two S21 measurements, performed with a VNA in the frequency range on

interest, S21DUT on the device-under-test and S21REF on an unperturbed reference line of same

physical length L, leading to:

S21 =
S21DUT

S21REF

(II.2.81)
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The measurement results, Eq. (II.2.81), directly leads to longitudinal beam-coupling impedance:

Z∥ = −2Zpipe lnS21

(
1 + j

lnS21

2Θ

)
with: Θ = 2π

L

λ
(II.2.82)

A = 1 A = cosΘ A = 1

B = Rmatch B = jZpipe sinΘ B = Rmatch

C = 0 C = jYpipe sinΘ C = 0

D = 1 D = cosΘ D = 1

Fig. II.2.94: Schematic of the reference (REF) pipe with matching resistors Rmatch

and the related ABCD-parameters for the individual 2-port networks.

As of the beam pipe and wire dimensions, Zpipe ≫ Z0, typically Zpipe is in the order of

200 . . . 300Ω, while Z0 = 50Ω. To minimize uncontrolled reflections several impedance-

matching improvements need to be applied, for the lower frequency range a lumped, low-

inductance resistor of value

Rmatch = Zpipe − Z0

is used in series with Z0 to provide the correct termination impedance to Zpipe.

If a reference pipe is unavailable, e.g. because too complicated, expensive, cumbersome, etc., the

S21REF can be calculated based on cascading three 2-port networks based on the chain ABCD-

parameters, see the equivalent schematic Fig. II.2.94. Following Eq. (II.2.78) we have to multiply:

ABCDREF =

[
AREF BREF

CREF DREF

]
=

[
1 Rmatch

0 1

][
cosΘ jZpipe sinΘ

jYpipe sinΘ cosΘ

][
1 Rmatch

0 1

]

and then applying the ABCD-to-S conversion of Eq. (II.2.79) to calculate

S21REF =
2

AREF +BREF /Z0 + CREF Z0 +DREF

II.2.7.11 General n-port networks

A general n-port network may include different technologies, e.g. a combination of waveguides (rect-

angular, circular, elliptical) and TEM transmission-lines, such as coaxial lines, microstrip lines, etc.,

providing the ports. Figure II.2.95 illustrates on the left side a general RF network which shows 3 phys-
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ical ports:

1. A TEM coaxial transmission-line

2. A rectangular waveguide

3. A circular waveguide

Using different port technologies results in different frequency ranges for the transmission of RF

power into / out of the RF network. The frequency / mode chart in Fig. II.2.96 illustrates the situation

for the example Fig. II.2.95.

At low frequencies only the coaxial TEM transmission-line transmits RF power, while both waveg-

uides are used below the cut-off frequency of their fundamental modes. The physical 3-port network

operates as a modal (or logical) 1-port network. This case is quite common in the analysis or measure-

ment of resonant cavities, with a resonant frequency fres (mostly the TM010 mode for standing wave

cylindrical resonators) of the cavity well below the waveguide cut-off frequency of the beam pipe ports,

i.e. fTE11 for the TE11 (H11) mode for beam pipes with circular cross-section, fres < fTE11 .

At higher frequencies, in our example Fig. II.2.96, the fundamental H10 (TE10) mode of the

rectangular waveguide comes into play, and now we have a modal 2-port network.

Further increasing the operation frequency of the general RF network enables the H11 (TE11) fun-

damental mode of the circular waveguide to propagate, see Fig. II.2.96. As this mode has two orthogonal

polarisation, Hx
11, Hy

11 (TEx
11, TEy

11), and we need to account for two additional modes, which now

makes the physical 3-port network a modal 4-port!

At even higher frequency the rectangular waveguide in our example starts to propagate the higher-

order H20 (TE20) waveguide mode, in parallel to the fundamental H10 (TE10) mode, thus adds another

modal port. Operating the physical 3-port network at those frequencies results in a 5-port modal network,

which is illustrated on the right side of Fig. II.2.95. Of course, in practice to operate a waveguide in a

over-moded frequency regime is always questionable! Interestingly, there is no situation where this

physical 3-port network actually has 3-ports!

Fig. II.2.95: Example of a general n-port network with 3 physical, but 5 or more modal ports.

854



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.2.96: Frequency / mode chart for the general RF network, Fig. II.2.95.

-
The situation of general n-port networks often appears in numerical electromagnetic sim-

ulations. It is of utmost importance that the energy of ALL modes is absorbed at the ports,

i.e. each EM-mode must be terminated by a distinct modal port! Please note, also TEM

transmission-lines (coaxial lines) can propagate higher-order modes at high frequencies,

which then need to be terminated as well!

II.2.7.12 Scattering parameter summary

The scattering S-parameters are used to characterise linear, time-invariant RF networks as function of the

frequency. The inverse Fourier transformation allows to calculate the related time-domain behaviour of

the system, however, some caveats have to be considered, e.g. sin(x)/x artefacts, some will be covered

in the RF measurement techniques Section II.2.9. Today, most RF components and subsystems are

described by their S-matrix, either by a measurement or by a numerical simulation, using the ASCII

Touchstone SnP file format. It is of utmost importance to terminate unused ports in their characteristic

impedance during the measurement or simulation, including “modal” ports caused my higher-order port

modes or their polarisation.

In this introduction we could only cover some of the main aspects of S-parameters and their ap-

plication. More advanced techniques and applications, e.g. on the signal flow graph (SFG), using S-

parameters to analyse the stability of RF amplifiers, etc. are found in the literature.
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Fig. II.2.97: A RF System-on-Chip (RF-SoC).

II.2.8 RF components, devices and subsystems

Any attempt for a comprehensive list of RF components, devices and subsystems in this chapter would

fail, without speaking about a more detailed discussion. Instead, we try to cover a few selected RF

devices which are typical and / or popular in accelerator RF systems, with the focus on their basic

functional principle.

All of the examples of RF devices in this chapter are based on “classic” analog RF technologies,

i.e. distributed and lumped elements, linear and / or non-linear networks and building blocks, having one,

two or many ports. However, it should be noted than many of those RF functions can be replaced by

equivalent, often better, performing digital functions. While the evolution in analogue RF technologies

is slowing down, the advances on digital RF technologies are making substantial progress, at the time of

writing, e.g. the RF System-on-Chip (RF-SoC), see Fig. II.2.97, seems to have the potential to replace

many, if not all, the traditional components in a low-level RF (LLRF) system.

On the other hand, digital RF functions are always limited to low power levels, a few dBm’s,

therefore RF components and subsystems for higher power levels remain an analog domain.

II.2.8.1 RF components based on transmission-lines

While lumped elements, such as resistors, capacitors, inductors, semiconductors, etc. are used in general

purpose, power, analog, digital and RF electronics, distributed elements, like transmission-lines and

resonant structures, are typically found only in RF networks. The following examples of RF components

are limited to TEM transmission-lines.

II.2.8.1.1 Low-loss/lossless transmission-line as phase-shifter

A reasonable short piece of a low-loss transmission-line can be assumed as lossless, i.e. with the attenu-

ation constant α = 0. For a matched transmission-line, Eq. (II.2.61) simplifies to:

S11 = S22 = 0

S21 = S12 = e−jβℓ
(II.2.83)

In other words, a lossless or low-loss transmission line changes the phase of the output port wrt. the input

port by θ = βℓ, while the magnitude (amplitude) ratio stays at 1. Therefore, the most simple, intuitive

application of a transmission-line is as phase shifter or delay-line. Figure II.2.98 shows some examples
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Fig. II.2.98: Coaxial TL components: Phase-shifters (delay-lines) and a 3-stub tuner.

of coaxial phase shifters / delay-lines, most of them with variable length ℓmin < ∆ℓ < ℓmax. We can use

the variable length transmission-line to shift the phase by ∆θ of a CW RF signal of frequency f :

θ = θmin +∆θ =
2πf(ℓmin +∆ℓ)

vp

Most popular is the “trombone” style coaxial phase shifter. Sometimes they are motorised and used to

remotely adjust the phase of medium or high-power RF wrt. to the accelerating structures (beam phase).

At the JUAS RF hands-on training days we use the trombone shifter shown in Fig. II.2.98 to let the

students verify vp ≈ c for this “air” coaxial-line (air is the dielectric between the coaxial conductors).

For small phase adjustments of low-level RF signals SMA-type “phase trimmers” are used, also little

“barrel” coaxial elements are popular for a fixed phase delay.
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Of course, the variable transmission-line can also be used as time-delay for broadband signals:

tdelay = tmin +∆t =
ℓmin +∆ℓ

vp

As a matter of fact, any coaxial cable acts as time-delay, and at CERN many standard RF cables have a

length with a specific signal delay value indicated on the cable.

ò
Please note, the time-delay of longer cables is frequency dependent (dispersion effects)

also, due to the frequency dependent losses, the shape of the signal waveform is altered,

i.e. longer cables cannot anymore be assumed as low-loss or lossless!

II.2.8.1.2 Transmission-line terminated with an arbitrary load

Fig. II.2.99: Transmission-line with arbitrary load.

A TEM transmission-line, defined by its characteristic impedance Z0 and propagation constant

γ = α + jβ is terminated with an arbitrary, complex impedance Z, see also Fig. II.2.99. This load

impedance Z is transformed through the transmission-line to a different impedance Zin, seen at the input

of the line:

Zin = Z0
1 + Γin

1− Γin
with: Γin = Γe−2γℓ and Γ =

Z − Z0

Z + Z0

⇒ Zin = Z0
Z cosh γℓ+ Z0 sinh γℓ

Z0 cosh γℓ+ Z sinh γℓ
= Z0

Z + Z0 tanh γℓ

Z0 + Z tanh γℓ

(II.2.84)

In many non-resonant applications, using short transmission-lines, the line can be approximated

as lossless:
α = 0 ⇒ γ = jβ

⇒ Zin = Z0
Z cosβℓ+ Z0 sinβℓ

Z0 cosβℓ+ Z sinβℓ
= Z0

Z + Z0 tanβℓ

Z0 + Z tanβℓ

(II.2.85)

Popular applications for lossless transmission-lines are:

Quarter-wave transmission-line transformer:

ℓ =
λ

4
⇒ θ = βℓ =

π

2
⇒ Zin =

Z2
0

Z
(II.2.86)
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Terminated (matched) transmission-line:

Z = Z0 ⇒ Zin = Z0 (II.2.87)

Open transmission-line:
Z → ∞ ⇒ Zin = −jZ0 cotβℓ (II.2.88)

Short transmission-line:
Z = 0 ⇒ Zin = jZ0 tanβℓ (II.2.89)

Example II.2.8.1: Meaning of the electrical length θ of a transmission-line

Fig. II.2.100: Physical length ℓ and electrical length θ of a lossless TEM transmission-line.

A lossless TEM transmission-line (TL) is fully characterised by its characteristic impedance Z0

and its propagation constant γ = jβ, were Z0 is defined by the cross-section geometry and

dimensions. The phase constant β, also called the wave number k, expresses the characteristic

length of the TL in terms of an angle per unit length for a given guide wavelength λg:

β = ω
√
L′C ′ =

2π

λg
= k [

rad

m
] (II.2.90)

For a TL of a specific physical length ℓ we then define the electrical length θ as:

βℓ = θ =
2πℓ

λg
=

2πfℓ

vp
=

ωℓ

vp
(II.2.91)

In other words:

The electrical length θ expresses the length of a TL in terms of a phase angle for the guide

wavelength λg at the operating frequency f , e.g. for θ = 2π the physical length ℓ of the TL is

such that one full oscillation of the frequency f = vp/λg fits on the line. Figure II.2.100 tries to

illustrate this link between the physical and the electrical length of a TL.
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Fig. II.2.101: Normalized input impedance of a transmission-line, terminated with an open or a short.

Table II.2.10: Open or shorted lossless transmission-line, acting “inductive” or “capacitive” at the input.

physical length ℓ 0 < ℓ < λg/4 λg/4 < ℓ < λg/2 λg/2 < ℓ < 3λg/4 3λg/4 < ℓ < λg

electrical length θ 0 < θ < π/2 π/2 < θ < π π < θ < 3π/2 3π/2 < θ < 2π

lossless TL, open “capacitive” “inductive” “capacitive” “inductive”

lossless TL, shorted “inductive” “capacitive” “inductive” “capacitive”

II.2.8.1.3 Open / shorted transmission-line

Following Eq. (II.2.88) and Eq. (II.2.89), the input impedance Zin of a lossless transmission-line, see

also Fig. II.2.101, is either “inductive” or “capacitive”, depending on the length of the line. Table II.2.10

summarises the facts for short, lossless TEM transmission-lines, i.e. a lossless transmission-line with

open (Z → ∞) or short (Z = 0) termination acts a lumped reactive element, capacitor or inductor, at

the operating frequency.

ò
Please remember:

– A “capactive” element has the form: ZC =
1

jωC
= −j

1

ωC

– An “inductive” element has the form: ZL = jωL

II.2.8.1.4 Transmission-line resonators

A short section of a TEM transmission-line can also be used as a resonator, for use in a RF circuit, as well

as for the application to accelerate charged particles. To operate as resonator, the boundary conditions

at both ends of the transmission-line need to be appropriate wrt. the guide wavelength. That fact results

in four cases, half-wave, nλ/2, and quarter-wave, (2n − 1)λ/4, resonators with shorted or open end
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(a) half-wave, shorted. (b) quarter-wave, shorted.

(c) half-wave, open. (d) quarter-wave, shorted.

Fig. II.2.102: Transmission-line resonators.
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termination, as summarised in Fig. II.2.102.

The upper part of each case illustrates the voltage standing waves along the transmission-line given by

the shorted or open termination condition at the end of the line for the fundamental mode, n = 1, and the

dashed trace for the first higher-order mode, n = 2. Below, the middle part, shows the shorted or open

TEM transmission-line itself and in the lower, bottom part the appropriate lumped element equivalent

circuit is given.

For the analysis, we need to take the losses into account, but we assume them to be small:

αℓ ≪ 1 ⇒ tanhαℓ ≊ αℓ (II.2.92)

Furthermore we assume the transmission-line resonator is operated at or near the resonance:

ω = ω0 +∆ω (II.2.93)

with ω0 being the resonant angular frequency and ∆ω being a small deviation. The analysis reveals the

parameters for the lumped elements of the equivalent circuit, as shown in Fig. II.2.102, shown here as

example for shorted half-wave resonator:

II.2.8.1.4.1 Half-wave resonator, shorted end

Input impedance, see also Eq. (II.2.84) with Z = 0

Z = 0 ⇒ Zs
in = Z0 tanh (α+ jβ) ℓ = Z0

tanhαℓ+ j tanβℓ

1 + j tanhαℓ tanβℓ
(II.2.94)

With:

ℓ =
λ

2
= π

vp
ω0

⇒ βℓ = π + π
∆ω

ω0
⇒ tanβℓ = tan

(
π + π

∆ω

ω0

)
= tan

(
π
∆ω

ω0

)
≊ π

∆ω

ω0

follows for the input impedance of the shorted half-wave TL resonator:

Z2s
in ≊ Z0

αℓ+ jπ∆ω
ω0

1 + j αℓπ∆ω
ω0︸ ︷︷ ︸

≊0

≊ Z0

(
αℓ+ jπ

∆ω

ω0

)
(II.2.95)

and has the form:

Z2s
in = R+ j2∆ωL = R+ j

(
ωL− 1

ωC

)
(II.2.96)

which leads to the values for the lumped elements of the series equivalent circuit (Fig. II.2.102a):

R = Z0αℓ; L =
π

2

Z0

ω0
; C =

1

ω2
0L

The unloaded Q-factor for this resonator follows as:

Q0 =
ω0L

C
=

π

2αℓ
=

β

2α
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ò
Please note, due to the periodic behaviour of the TL resonator, the resonances appear at:

ℓ =
n

2
λg, with: n = 1, 2, 3, . . .

Superconducting half-wave resonators (SC-HWR) became popular as accelerating structures for

low-β heavy ion linacs. Figure II.2.103 shows an example of a 322.5MHz SC-HWR for the Facility of

Rare Isotope Beams (FRIB). As the section view indicates, the coaxial TL resonator is shorted at both

ends and has its maximum E-field in the centre of the structure. Therefore, the beam-ports and a hole in

the centre conductor are located in this symmetry plane, allowing the beam to pass and be accelerated by

the E-field peaking at the two gaps.

The following three paragraphs summarise the formalism for the other TL resonator cases shown

in Figs. II.2.102b to II.2.102d for completeness.

II.2.8.1.4.2 Quarter-wave resonator, shorted end

Input impedance:

Z = 0 ⇒ Zs
in = Z0 tanh (α+ jβ) ℓ = Z0

1− j tanhαℓ cotβℓ

tanhαℓ− j cotβℓ
(II.2.97)

Fig. II.2.103: Sectional view of a 322.5MHz SRF half-wave resonator for FRIB (courtesy
J. P. Holzbauer). The relative E-field strength is sketched left of the cavity for illustration.
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With:

ℓ =
λ

4
=

π

2

vp
ω0

⇒ βℓ =
π

2
+

π

2

∆ω

ω0
⇒ cotβℓ = − tan

(
π

2

∆ω

ω0

)
≊ −π

2

∆ω

ω0

follows for the input impedance of the shorted quarter-wave TL resonator:

Z4s
in ≊ Z0

1 + j

≊0︷ ︸︸ ︷
αℓπ2

∆ω
ω0

αℓ+ j π2
∆ω
ω0

≊
Z0

αℓ+ j π2
∆ω
ω0

(II.2.98)

It has the form:

Z4s
in =

1

1/R+ j2∆ωC
=

1
1
R − j 1−ω2LC

ωL

(II.2.99)

which leads to the values for the lumped elements of the parallel equivalent circuit (Fig. II.2.102b):

R =
Z0

αℓ
; C =

π

4

1

ω0Z0
; L =

1

ω2
0C

The unloaded Q-factor for this resonator follows as:

Q0 = ω0RC =
π

4αℓ
=

β

2α

The resonances appear at:

ℓ =
2n− 1

4
λg, with: n = 1, 2, 3, . . .

II.2.8.1.4.3 Half-wave resonator, open end

Input impedance:

Z = 0 ⇒ Zo
in = Z0 coth (α+ jβ) ℓ = Z0

1 + j tanhαℓ tanβℓ

tanhαℓ+ j tanβℓ
(II.2.100)

With:

ℓ =
λ

2
= π

vp
ω0

⇒ βℓ = π + π
∆ω

ω0
⇒ tanβℓ = tan

(
π + π

∆ω

ω0

)
= tan

(
π
∆ω

ω0

)
≊ π

∆ω

ω0

follows for the input impedance of the open half-wave TL resonator:

Z2o
in ≊ Z0

1 + j

≊0︷ ︸︸ ︷
αℓπ∆ω

ω0

αℓ+ jπ∆ω
ω0

≊
Z0

αℓ+ jπ∆ω
ω0

(II.2.101)

It has the form:

Z2o
in =

1

1/R+ j2∆ωC
=

1
1
R − j 1−ω2LC

ωL

(II.2.102)
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which leads to the values for the lumped elements of the parallel equivalent circuit (Fig. II.2.102c):

R =
Z0

αℓ
; C =

π

2

1

ω0Z0
; L =

1

ω2
0C

The unloaded Q-factor for this resonator follows as:

Q0 = ω0RC =
π

2αℓ
=

β

2α

The resonances appear at:

ℓ =
n

2
λg, with: n = 1, 2, 3, . . .

II.2.8.1.4.4 Quarter-wave resonator, open end

Input impedance:

Z = 0 ⇒ Zo
in = Z0 coth (α+ jβ) ℓ = Z0

tanhαℓ− j cotβℓ

1− j tanhαℓ cotβℓ
(II.2.103)

With:

ℓ =
λ

4
=

π

2

vp
ω0

⇒ βℓ =
π

2
+

π

2

∆ω

ω0
⇒ cotβℓ = − tan

(
π

2

∆ω

ω0

)
≊ −π

2

∆ω

ω0

follows for the input impedance of the open quarter-wave TL resonator:

Z4o
in ≊ Z0

αℓ+ j π2
∆ω
ω0

1 + j αℓπ2
∆ω
ω0︸ ︷︷ ︸

≊0

≊ Z0

(
αℓ+ j

π

2

∆ω

ω0

)
(II.2.104)

It has the form:

Z4o
in = R+ j2∆ωL = R+ j

(
ωL− 1

ωC

)
(II.2.105)

which leads to the values for the lumped elements of the series equivalent circuit (Fig. II.2.102d):

R = Z0αℓ; L =
π

4

1

ω0Z0
; C =

1

ω2
0L

The unloaded Q-factor for this resonator follows as:

Q0 =
ω0L

C
=

π

4αℓ
=

β

2α

The resonances appear at:

ℓ =
2n− 1

4
λg, with: n = 1, 2, 3, . . .

Figure II.2.104 shows an example of a so-called interdigital-line band-pass filter, which is based on

coupled, quarter-wave resonators. The resonators are implemented as λ/4 air-stripline elements, which

keeps the losses low, and have an adjustable capacitive loading at the open ends, which allows one to

fine-tune the resonant frequency. The filter approximates a Bessel filter function, i.e. a constant phase vs.
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Fig. II.2.104: 4.8GHz band-pass filter based on coupled quarter-wave resonators.

frequency, and is used for the LHC Schottky monitor. As the resonators exhibit higher-order eigenmodes,

RF filters like this one develop so-called spurious passbands at multiples of the fundamental resonant

frequency, at ≈14.4GHz, etc.

More details on the theory of coupled resonators and RF/microwave filters can be found in text-

books like [3, 16, 17].

II.2.8.1.5 TEM Transmission-lines as semi-lumped elements

Industry deliver high-quality passive lumped circuit elements, which approximate the ideal lumped el-

ements, see also Table II.2.9, e.g. a coil-like inductor with the inductance L, a single or multi-layer

Fig. II.2.105: Equivalent lumped element models for short TEM transmission-lines, θ < π/4.
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Fig. II.2.106: A 9-element “tubular” low-pass filter made of short TEM transmission-line sections.

parallel-plate capacitor with capacitance C, etc. At higher frequencies however, the behaviour deviates

from the ideal lumped element due to uncontrolled parasitic effects, e.g. at some higher frequency an

inductor becomes a resonator and at even higher frequency may become capacitive!

A short piece of a TEM transmission-line, satisfying θ < π/4, can approximate a lumped in-

ductive or capacitive elements with well-defined parasitic behaviour, as shown in Fig. II.2.105. As the

equivalent circuits in Fig. II.2.105 suggests, the low-pass LC ladder filter network is a perfect application

using short pieces of TEM transmission-lines as semi-lumped circuit elements to realise a RF low-pass.

Figure II.2.106 shows as example a 9-element Gaussian low-pass filter with a ∼500MHz 3 dB cut-off

frequency. Here the capacitors are approximated by very short coaxial TL sections of low-Z0 (large

diameter of the coaxial inner conductor) and the inductors by somewhat longer coaxial TL sections of

high-Z0 (small diameter of the coaxial inner conductor), see also the right-hand side of Fig. II.2.106.

For a successful implementation of this so-called “tubular” low-pass filter the capacitive effect of the

discontinuities between the TL sections of low and high characteristic impedance have to be taken into

account.

II.2.8.1.6 Power divider / combiner

Combining / adding two or more RF signals or dividing / splitting a single RF line in two, or more

lines, of course without reflections, is a common RF engineering task. The power levels range from low-

level RF (LLRF) signal applications, ≪0 dBm, to the high-power RF output from klystrons or inductive

output tubes (IOT) to feed, e.g. multiple accelerating structures from a single power source. The resistive

power divider, Fig. II.2.86, has limited use because of its high insertion loss, 6 dB, and no isolation

between the ports, Eq. (II.2.66).

II.2.8.1.6.1 Wilkinson power divider / combiner

The Wilkinson power divider / combiner is popular to add / split lower level RF signals, and is typically

implemented in a stripline or micro-strip planar transmission-line technology, see Fig. II.2.107. It utilises
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Fig. II.2.107: Stripline / micro-strip planar schematic of the Wilkinson power divider / combiner.

two λ/4 impedance transformers of
√
2Z0, see also Eq. (II.2.86), to match the impedances of the two

output ports 2 and 3, which are in parallel to the input port 1. A resistor of value 2Z0 between ports 2

and 3 is required for matching and isolation of the output ports, it will not dissipate any power in case

of equal level signals at those output ports. At the operating frequency f = 4vg/λg the S-matrix of the

ideal 3-port Wilkinson power divider / combiner is:

S =
−j√
2

0 1 1

1 0 0

1 0 0

 (II.2.106)

The 3-port network is matched, reciprocal and symmetric, but is not lossless. Compared to the 3-port

6 dB resistive power divider, Eq. (II.2.66), the coupling loss of the Wilkinson power divider is:

|S21| = |S31| = |S12| = |S13| =
1√
2
≡ 20 log10

1√
2
= −3 dB

This comes at the expense of a limited bandwidth spanning one octave, however, the bandwidth can

be increased using multi-stage stepped impedance transformers. Other variants of the Wilkinson power

divider / combiner include multiple ports and different characteristic impedances at the ports.

II.2.8.1.6.2 Waveguide T-junction power divider

Dividing / splitting the RF power is particular relevant for the distribution of the high-power RF in an

accelerator RF system, which is typically supplied by waveguides for RF frequencies >1GHz. A single

RF power source, may feed two or more cavities or acceleration structures by splitting the RF power.

Figure II.2.108 (left and center) shows the two waveguide power divider options:

E-plane T The sidearm (port 3) couples in series to the parallel E-field, and the RF power signals out of

868



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.2.108: Waveguide T-junction, left: E-plane T, center: H-plane T,
right: |E|-field of a S-Band waveguide H-plane T-junction.

the collinear output ports 1 and 2 have opposite phase. The S-matrix follows as:

SE =
1

2

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 (II.2.107)

H-plane T The sidearm (port 3) couples in parallel to the parallel H-field, and the RF power signals out

of the collinear output ports 1 and 2 are in phase. The S-matrix follows as:

SH =
1

2

 1 −1
√
2

−1 1
√
2√

2
√
2 0

 (II.2.108)

Similar the TEM transmission-line Wilkinson power divider, the waveguide T-junctions have 3 dB cou-

pling losses. But, the coupled ports 1 and 2 are neither impedance matched, nor isolated, only the input

port 3 is impedance matched.

ò
Attention: The nomenclature for the S-parameter ports of the Wilkinson power divider is

different from that of the waveguide T-junctions:

Wilkinson: input: port 1, output: ports 2 and 3

T-junction: input: port 3, output: ports 1 and 2

II.2.8.1.7 RF coupling structures

RF coupling structures, or simple RF couplers typically are passive 4-port4 RF transmission-line (TL)

networks, with two or more TLs, or TL ports coupled to each other in various ways, e.g. by quarter-wave

impedance transformers or electromagnetically. In the following some of the most popular examples of

RF couplers, often used in accelerator RF systems are shown.
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(a) Indicating the isolated ports 1–3 and 2–4. (b) Opposite-phase power divider operation.

(c) In-phase power divider operation. (d) ∆-Σ operation.

Fig. II.2.109: 4-port 180° “rat-race” hybrid coupler in planar TEM stripline or micro-strip technology.

II.2.8.1.7.1 180° hybrid coupler

Figure II.2.109 shows the schematic of the 180°, 3 dB hybrid coupler, also called “ring” or “rat-race”

coupler, realised in a planar TEM stripline or micro-strip technology. It utilises nλ/4 impedance trans-

formers arranged in a ring to couple the four ports together, which results in a passive, lossless, matched,
4Couplers may have more than four ports. 3-port couplers usually have the 4th-port internally terminated.
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reciprocal and anti-symmetric 4-port network:

S =
−j√
2


0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

 (II.2.109)

Ports 1–3 and 2–4 are isolated to each other, as indicated in the S-matrix of Fig. II.2.109a. Among a

variety of applications, Fig. II.2.109b indicates the operation as 3 dB power divider with port 1 as input

and ports 2 and 4 as outputs. In this configuration the output signals have opposite, 180° phase to each

other. Instead, using port 3 as input divides the signal between ports 2 and 4, but now those output signals

are in-phase, 0° to each other, see Fig. II.2.109c.

Feeding two RF signals, A and B, of same frequency and different amplitude simultaneously into

ports 1 and 3 enables the 180° hybrid coupler to operate as ∆-Σ hybrid; at port 2 the sum and at port 4

the difference of the amplitudes of the applied input signals will appear, see the details in Fig. II.2.109d.

The 180° hybrid coupler is a narrow-band device, however, using multi-stage impedance trans-

formers the bandwidth can be increased.

II.2.8.1.7.2 Waveguide “magic-T”

The “magic-T” is a 180°, 3 dB coupler in waveguide technology, see the photo in Fig. II.2.110.

As Fig. II.2.110 suggests, it is a combination of a E-plane T and a H-plane T, presented in Para-

graph II.2.8.1.6.2, in a single waveguide coupling element. As a result, the 4-port S-matrix of the ideal

waveguide magic-T

S =
1√
2


0 0 1 1

0 0 1 −1

1 1 0 0

1 −1 0 0

 (II.2.110)

Fig. II.2.110: Waveguide “magic-T”.
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is almost identical to that of the ideal TEM 180° hyrbid ring coupler, Eq. (II.2.109).

ò
The port labels of the waveguide magic-T differ from the TEM planar hybrid ring coupler!

Hybrid ring coupler: Inputs: ports 1 and 3, outputs: ports 2 and 4

Waveguide magic-T: Inputs: ports 1 and 2, outputs: ports 3 and 4

The hybrid ring coupler adds a 90° phase shift to all S-parameters, the magic-T does not.

Similar to the TEM planar hybrid ring coupler of the previous Paragraph II.2.8.1.7.1, the magic-T

waveguide coupler offers several functions depending on the supplied RF signals, Fig. II.2.111. Also

here we have isolated ports, the collinear ports 1–2 are isolated to each other, as well as the ports 3–4,

see Fig. II.2.111a. Figure II.2.111b shows the operation as in-phase power divider and Fig. II.2.111c as

opposite-phase power divider. Applying in-phase RF signals of same frequency and different amplitude

simultaneously at ports 1 and 2 results in the ∆-Σ arithmetic’s, with the Σ-signal at port 3: EΣ ∝
E1 + E2, and the ∆-signal at port 4: E∆ ∝ E1 − E2.

II.2.8.1.7.3 90° quadrature hybrid coupler

Similar to the other couplers described in this section, also the 90° quadrature hybrid coupler has a

coupling loss of 3 dB. The 4-port S-matrix of the ideal quadrature hybrid at the operation frequency:

S =
−1√
2


0 j 1 0

j 0 0 1

1 0 0 j

0 1 j 0

 (II.2.111)

shows, this components is passive, lossless, has matched ports and is reciprocal, as well as symmetric.

Figure II.2.112 shows layout and operation of the quadrature hybrid coupler, here illustrated in TEM

planar stipline or micro-strip technology. The four ports are coupled by two-plus-two quarter-wave

transmission-lines, one pair acts as an impedance transformer, the other pair just as a 90° phase shifter.

Ports 1–4 and 2–3 are isolated from each other, as shown in Fig. II.2.112a.

Figure II.2.112b shows the operation of the quadrature hybrid as power divider, please note, the

phase argument of the signals at the output ports 2 and 3 always have 90° phase difference! This be-

haviour gives the name: quadrature hybrid, as the output signal are in quadrature to each other. The

quadrature hybrid is very popular in I-Q (in-phase, quadrature-phase) RF applications, which is de-facto

the standard in most RF signal processing applications, e.g. in accelerator LLRF and beam instrumenta-

tion systems, as well as more general in the telecommunication industry.

Figure II.2.112 shows the operation of the quadrature hybrid if RF signals of same frequency and

different amplitudes are simultaneously supplied at the isolated ports 1 and 4. This results in signals at

the outputs 2 and 3 which have the same amplitude, but their phase difference

tan−1

(
VA

VB

)
− tan−1

(
VB

VA

)
= 2 tan−1

(
VA

VB

)
− π

2
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(a) Indicating the isolated ports 1–2 and 3–4. (b) as 0° H-plane divider.

(c) as 180° E-plane divider. (d) as ∆-Σ coupler.

Fig. II.2.111: Operation of the “magic-T”.

is a function of the amplitude ratio VA/VB of the input signals. Thus, the quadrature hybrid operates

as amplitude-ratio to phase difference converter. Similar to the ∆-Σ operation of the 180° hybrid, see

Paragraph II.2.8.1.7.1, this RF arithmetic feature is used in some beam instrumentation applications, e.g.

for the processing of beam position monitor signals.
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II.2.8.1.7.4 Directional coupler

The S-matrix and some key characteristics of an ideal directional coupler were already mentioned in

Section II.2.7.7.4. This 4-port transmission-line component is based on two transmission-lines which are

electromagnetically coupled over some distance, which is the physical coupling length ℓ = λg/4. The

most simple coupling configuration are two symmetrically arranged TEM transmission-line in planar

(a) Indicating the isolated ports 1–4 and 2–3.

(b) I-Q signal divider operation. (c) Amplitude-ratio to phase-difference converter.

Fig. II.2.112: 4-port 90° quadrature hybrid coupler in planar TEM stripline or micro-strip technology.

Fig. II.2.113: Cross-section geometry of a symmetric pair of coupled strip transmission-lines.
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Fig. II.2.114: Even (left) and odd (right) modes of coupled striplines;
Upper: E-field, lower: equivalent schematics.

stripline or micro-strip technology, as shown in Fig. II.2.89b.

For the understanding of the coupling mechanism an electrostatic analysis of the 2-dimensional

(2D) cross-section geometry is sufficient. Figure II.2.113 illustrates the cross-section of two symmetri-

cally arranged strip transmission-lines (striplines), i.e. flat conductors between ground-planes embedded

in a dielectric substrate εr. The two conductors are spaced by some distance, space s, from each other.

The upper part of Fig. II.2.114 shows the E-field as result of an electrostatic analysis of this conductor

configuration. On the left side of Fig. II.2.114 both stripline conductors are excited with the same pos-

itive (+) potential wrt. ground, called even-mode excitation. The right side instead shows the E-field in

odd-mode excitation, the left conductor has a + potential, while the right conductor has a − potential (of

same value) wrt. ground.

The lower part of Fig. II.2.114 shows the equivalent circuit schematic of the coupled striplines for

the two cases, with C ′
p covering the parallel plate capacitance and C ′

f the fringe field capacitance (both

per unit length). In the even-mode case C ′
f between the conductors becomes C ′

fe, while in the odd-mode

case the fringe capacitance between the conductors C ′
fo dominates. This leads to:

even-mode: odd-mode:

C ′
0e = C ′

p + C ′
f + C ′

fe C ′
0eo = C ′

p + C ′
f + C ′

fo

Z0e =

√
εr

cC ′
0e

Z0o =

√
εr

cC ′
0o

(II.2.112)

with Z0e being the even-mode characteristic impedance and Z0o the odd-mode characteristic impedance

of the coupled TL configuration. The coupling coefficient or coupling factor k is defined from those

characteristic impedance’s as:

k =
Z0e/Z0o − 1

Z0e/Z0o + 1
(II.2.113)
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Example II.2.8.2: Differential signal transmission with coupled transmission-lines

Fig. II.2.115: Beam current measurement in an electromagnetically “polluted” environment.

Coupled transmission-lines have many applications beyond directional couplers, one of them

being differential signal transmission. Examples range from audio engineering to gigabit serial

data signal transmission in computational hardware.

Figure II.2.115 shows an example that is quite typical in particle accelerators, the measurement

of the beam intensity, i.e. the usually rather low beam current, in presence of an environment

that is “polluted” by external electromagnetic fields of high intensities (EMI: electromagnetic

interference), which can originate from pulsed sources like kicker or septa power supplies, or

other RF or pulsed high power installations with limited shielding. A long, single-ended coaxial

cable is used to transfer the signal from the accelerator tunnel to the read-out system. But due

to the non-zero impedance (resistance) of the outer cable shield conductor an unwanted error

signal VEMI adds to the beam pickup signal Vbeam that is to be measured, see Fig. II.2.116a. A

differential signal transmission, e.g. using a so-called “twinax” or similar 2-conductor plus shield

cable can substantially reduce this so-called common-mode interference, see Fig. II.2.116b.

(a) Single-ended coaxial cable. (b) Differential “twinax” shielded cable.

Fig. II.2.116: Signal transmission in presence of EMI.
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Fig. II.2.117: Single-section directional coupler operating at the center frequency.

ò
Please note:

The differential-mode termination impedance is:

Zdiff = 2Z0o

In the same way a common-mode termination impedance would calculate:

Zcommon =
Z0e

2

but this type of signal transmission is rare.

The S-matrix for an ideal TEM directional coupler, Eq. (II.2.73), was given for the operation at

the center frequency fc, which follows from the physical length ℓ = λg/4 as:

θ = βℓ =
π

2
⇒ fc =

c

4ℓ
√
εr

Figure II.2.117 illustrates the operation using the main line port 1 as input, port 2 as main line output,

and the coupled line port 3 as coupled output. Ports 1–4 and 2–3 are isolated from each other.

As the electrical length is a function of the frequency

θ(f) =
2πfℓ

√
εr

c

see also Eq. (II.2.91), so are the S-parameters of the ideal TEM directional coupler:

Sii = 0 (all ports are matched)

S31(θ) = S13(θ) = S42(θ) = S24(θ) =
jk sin θ√

1− k2 cos θ + j sin θ

S21(θ) = S12(θ) = S43(θ) = S34(θ) =

√
1− k2√

1− k2 cos θ + j sin θ

S41 = S14 = S32 = S23 = 0 (isolated ports)

(II.2.114)
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Figure II.2.118 shows |S31|/k = f(θ), each “lobe” has an octave bandwidth, which can be increased by

using multiple coupling sections of same length and slightly varying coupling coefficient as illustrated in

Fig. II.2.119 for n = 3 coupling sections.

The directional coupler is a very popular RF component, many variants exist beside the discussed

coupler based on coupled TEM transmission-lines, e.g. waveguide directional couplers, broadband,

multi-section directional couplers, dual directional couplers with two coupled lines, directional couplers

with transmission-lines of different characteristic impedances, etc.

TEM directional couplers are backward couplers, waveguide directional couplers are based on slot

or hole coupling, and exists as forward and backward couplers. Figure II.2.120a illustrates the forward

slot-coupling mechanism, here the backward port is internally terminated. Figure II.2.120b shows a

photo of a commercial waveguide directional coupler, here both ports of the coupled waveguide are

accessible.

Directional couplers are also used in particle accelerators as beam diagnostics or manipulation

devices, Fig. II.2.121 shows some examples. Usually the beam itself acts as main line, and two or more

coupling lines are arranged symmetrically for beam pickup or manipulation.

Example II.2.8.3: Monitoring of forward and reflected power on an accelerating structure

Fig. II.2.122: Monitoring of forward and reflected power.

Fig. II.2.118: |S31|/k of the ideal TEM directional coupler as function of the electrical length θ.

878



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.2.119: TEM directional coupler with n = 3 coupling sections.

As already explained in section Section II.2.7.7.4, the directional coupler has the unique feature

to distinguish between forward and backward travelling waves on the main line via the ports of

the coupled line. This leads to an important application in accelerator RF engineering, illustrated

in Fig. II.2.122:

RF power is supplied from a high power source, e.g. a klystron, IOT, triode or semiconductor

power amplifier to an accelerating structure (resonant cavity or travelling wave structure) via

(a) WG forward slot-coupling.

(b) Commercial WG directional coupler.

Fig. II.2.120: Waveguide directional coupler.
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a coaxial or waveguide transmission-line. At times the beam is present, most of the supplied

(a) Stripline beam position monitor (BPM).

(b) LHC Schottky beam pickup (CERN).

(c) SPS intra-bunch broadband stripline kicker (CERN).

Fig. II.2.121: Directional couplers as beam pickups and kickers.
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RF power will be absorbed by the beam, only little power is reflected depending on the precise

tuning of the system to e.g. prevent the Robinson instability. However, at times the beam is not

present, for injection / extraction kicker gaps, or beam formats required by the users or the stable

operation of the machine, all RF power is reflected! Therefore, the continuous monitoring of

forward (incident) and reflected RF power on the main RF supply line is mandatory, and is often

included in a feedback system. As of the high power on the RF supply line, a low coupling

coefficient of the directional coupler is in most cases sufficient, typical are values k ≤ −20 dBa,

such that the insertion loss on the main line is negligible, see also Table II.2.11.

Table II.2.11: Directional coupler main line insertion loss vs. coupling factor, as of Eq. (II.2.73).

coupling factor [dB] main line insertion loss [dB]

3 3.00

6 1.25

10 0.46

20 0.044

30 0.004

ò
For a coupling factor of 3 dB, precisely: −3 dB ≡ 1/

√
2, also the main line loss

is 3 dB, see Table II.2.11. In this case the S-matrix of the directional coupler,

Eq. (II.2.73) is similar to that of the quadrature hybrid, Eq. (II.2.111), and thus

allows similar functionality.

Adding a λ/4 transmission-line to one of the ports of a 3 dB directional coupler

leads to a S-matrix similar to that of the 180° hybrid, Eq. (II.2.109).

aUsually the sign is omitted when describing the coupling in dB values, and is defined as coupling loss

ò
Most of the 4-port couplers discussed in this section are symmetric. This allows to ex-

change the ports used for input and output signals in various ways without compromising

the function.

II.2.8.2 The circulator

The circulator, and the isolator as well, have already been introduced in Section II.2.7.7.3, for the ideal

circulator as example of a 3-port S-matrix, Eq. (II.2.67). As mentioned, the circulator is passive and

matched, but non-reciprocal as it “circulates” the incident RF power signal from one port to the next

port, but not vice versa.

Figure II.2.123 shows the practical realisation of the circulator, Fig. II.2.123a the waveguide ver-

sion, often used in high power applications, and Fig. II.2.123b the stripline version which often is ex-
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ploited with coaxial connectors and used for low power applications. As the operational principle of

the circulator is based on the anisotropic and non-reciprocal properties of magnetised microwave ferrite

materials, sometimes between a pair of biasing permanent magnets, it has a given operating frequency

range based on geometric and technology details.

ò
Please note, circulators don’t exist for DC or very low frequencies. Typical operating

frequencies start at ⪆ 100MHz. Four-port versions of the circulator also exist, some

realised as high isolation, dual circulator based on two 3-port isolators.

Example II.2.8.4: Protection of the power output stage from reflected RF power

Fig. II.2.124: RF power output stage protection.

There are several popular applications for the circulator, e.g. as duplexer in radar systems, how-

ever, in accelerator RF the circulator is mostly utilised as isolator, i.e. one port of the circulator is

terminated with a dummy load.

Figure II.2.124 shows a typical application to protect the output stage of the high power RF

amplifier from the power that might be reflected from the accelerating cavity in absence of beam

loading. It is basically an extension of Fig. II.2.122 by a high power isolator, which in practice

is made of separate components, a high power circulator (often in waveguide technology) and a

high power dummy load, usually water cooled. In this way no, or only very little RF power can

reach the output of the RF power amplifier, it’s sensitive output stage is protected against reflected

RF power!

(a) Waveguide circulator. (b) Stripline circulator.

Fig. II.2.123: The circulator.
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ò
To reduce the CO2 footprint of accelerators, R&D is underway to reuse the energy

of the otherwise unused reflected RF power.

II.2.8.3 RF filters

There are many types of filters: coffee filters, oil filters, air filters,. . . , and then there are electrical

/ electronic filter networks. Here we introduce the RF filter as a 2-port, passive electrical network, see

Fig. II.2.125, which in most cases is symmetric and reciprocal, often lossless, and usually is not perfectly

matched at the ports. A passive electrical or RF filter can be as simple as a RC two-component circuit

shown in Fig. II.2.72, still, the theory behind it is rather complex, among the many articles and books

here just two references for further studies [18, 19].

Electrical and RF filters are usually defined by their behaviour in the frequency domain and cate-

gorised in low-pass, high-pass, band-pass and band-stop filters, see the |S21|(ω/ωc) frequency domain

responses in Fig. II.2.126. There are also other types of filters, e.g. all-pass filters used as time-delay net-

work, diplexers or multiplexers with three or more ports, or filters which are defined in the time-domain

to approximate a specific TD response waveform.

ò
As the RF filters are usually characterised in the frequency-domain, by their S21(ω) trans-

fer function, this “automatically” results in a specific time-domain behaviour, e.g. the re-

sponse to a δ-Dirac or step function. Please remember the link between time- and fre-

quency domain behaviour of linear systems.

In Fig. II.2.126 ωc specifies the so-called cut-off frequency, which divides passband and stopband

of the filter, i.e. the frequency range in which the filter passes or stops the RF signal between input and

output port. Usually ωc ≡ ω3dB , the 3 dB cut-off frequency, is defined as

Definition II.2.8.1: 3 dB bandwidth

|S21|(ω = ω3dB) =
1√
2

(voltage definition) (II.2.115)

|S21|2(ω = ω3dB) =
1

2
(power definition) (II.2.116)

All four filter categories are based on a so-called low-pass prototype filter, which is a well defined

Fig. II.2.125: A 2-port, passive RF filter network.
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(a) Low-pass filter (LPF). (b) High-pass filter (HPF).

(c) Band-pass filter (BPF). (d) Band-stop filter (BSF).

Fig. II.2.126: Filter categories.

transfer function S21(ω) for ωc = 1 and RL = 1Ω that also specifies the characteristics of the transition

region between passband and stopband. Popular LP-prototype designs are e.g., Chebyshev, Butterworth,

Bessel-Thomson, Gaussian, etc., approximating a specific, analytical defined goal.

The circuit operating as RF filter between ports 1 and 2 in Fig. II.2.125 is in most cases re-

alised of linear, passive components, e.g. lumped elements (capacitors, inductors, resistors) and / or

distributed elements (transmission-lines, resonators), thus, RF filters are passive. If the filter circuit is

made only of reactive lumped components, ideal capacitors and inductors, we have a lossless 2-port

network, Eq. (II.2.55) applies, and all power from the RF source is then absorbed in either the source

resistor RS and / or the load resistor RL, or to be more precise, in a ratio between them defined by

S21(ω). Evidently, the ports of a lossless filter are not matched. However, there exist a lossy absorptive

filter design with matched ports, and also a combination of e.g. a low-pass and a high-pass filter into a

so-called 3-port diplexer allows the matching of its input port.

884



CERN Yellow Reports: Monographs, CERN-2024-003

Exercise II.2.8.1: RF filter analysis

Fig. II.2.127: Low-pass filter sub-circuit used in Qucs.

While the synthesis of a new type of RF filter can be complicated, the analysis of known filters

with help of a numerical circuit analysis software is rather trivial and educational! For this ex-

ercise we use the QucsStudio freeware [20], which has evolved from the original Qucs circuit

simulator.

ò
Both, QucsStudio and the original Qucs are sufficient for this exercise. Qucs is not

anymore maintained, but runs on a variety of computer platforms, while QusStudio

is maintained but requires MS Windows.
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(a) 2-port S-parameter analysis. (b) Impulse response analysis.

Fig. II.2.128: Filter analysis with Qucs in frequency- and time-domain.

1. Download QucsStudio (or Qucs) and start the software with start.bat.

2. Familiarise yourself with the tool, you will find many examples and tutorials on the inter-

net. Please note, your Qucs files will be stored in the .qucs directory under your username

directory. Also please note, the file formats of QucsStudio and Qucs are different! (incom-

patible!)

3. Create a New project and fill the schematic window (untitled) with a s-parameter

simulation similar to Fig. II.2.128a. Replace the SUB1 sub-circuit block by a simple

RC or RL low-pass circuit from the Components → lumped components palette.

4. Simulate the s-parameter simulation with reasonable values of the circuit compo-

nents and display the results, e.g. with a Cartesian plot of dB(S[1,1]).

5. Once you are more familiar with the Qucs software, arrange a sub-circuit block with the

5th-order low-pass ladder network as shown in Fig. II.2.127 and analyse the filter circuit in

the frequency-domain (s-parameter simulation, Fig. II.2.128a) and in the time-domain

(transient simulation, Fig. II.2.128b).

(a) Frequency-domain. (b) Time-domain.

Fig. II.2.129: Filter analysis results.
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6. Fig. II.2.129 shows the results for a Gaussian low-pass filter approximation, as it was se-

lected in the schematic, Fig. II.2.127.

If you dig deeper in the QucsStudio simulator, you will find under Tools → Filter

synthesis more sophisticated filter tools, however, advanced tools for RF filters, like optimi-

sation based on distributed elements, filter matching, etc., are only available on commercial soft-

ware.

Industry offers a wide selection of RF filters, with a suitable solution for most applications. How-

ever, our field of accelerator RF engineering sometimes may require a more exotic filter characteristic

and therefore an in-house developed RF filter. This requires filter and network theory, with the starting

point at the requirements, e.g. cut-off or center frequency, bandwidth, filter characteristic, number of sec-

tions, etc. Based on an existing or a new established lumped element LP prototype, a LPproto → LPF,

HPF, BPF or BSF transformation has to be performed, followed by the often non-trivial implementation

of real-world components.

Figure II.2.130 shows the design of a RF band-pass filter for beam instrumentation purposes, op-

erating at 200MHz with a bandwidth of 10MHz. Figure II.2.130a shows the equivalent circuit of the

3rd-order Gaussian filter approximation and Fig. II.2.130b the practical realisation as so-called “hair-pin”

stripline filter based on coupled λ/4 resonators. The |S21|(f) measurement, Fig. II.2.130c left, shows a

satisfactory behaviour around the center frequency of 200MHz, however, Fig. II.2.130c center illustrates

the fundamental problem of RF filters based on transmission-lines or resonators:

The filter exhibits unwanted higher-order, so-called “spurious” pass-bands.

Still, the time-domain performance, Fig. II.2.130c right, relevant for this application, fulfilled the re-

(a) 3rd-order lumped element equivalent network. (b) Coupled resonator stripline realisation.

(c) Measured filter performance.

Fig. II.2.130: A 200MHz Gaussian RF band-pass filter with 10MHz bandwidth.
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quirements. Of course, in practice a low-pass filter was added to suppress the spurious pass-bands.

II.2.8.4 RF amplifiers

The ideal RF amplifier, see also Fig. II.2.131, was briefly mentioned in Section II.2.7.7.2, with

Eq. (II.2.64) being the S-matrix. In practice, the voltage gain of an amplifier is given as a scalar value,

the phase is of no relevance:

|GV | = |S21| =
|Vout|
|Vin|

= 10
g
20 (II.2.117)

and in most cases the gain is expressed in the logarithmic dB scale

g = 20 log10
|Vout|
|Vin|

= 10 log10
Pout

Pin
(II.2.118)

with
Pout

Pin
= GP = |GV |2 (II.2.119)

being the power gain of the matched ideal amplifier, which is also called transducer gain.

ò
Equations (II.2.64) and (II.2.117) to (II.2.119) are defined for an ideal amplifier with

matched ports (S11 = S22 = 0)! Power gain and other definitions are different for un-

matched gain stages with matching sections at the input and output.

As simple as the ideal amplifier is from a mathematical point of view, the real world RF amplifier

is the most complicated RF component, and for particle accelerators also a very important component!

Before going through a few examples of RF power amplifiers typically used for accelerators, let us briefly

cover the most important figures of merit of the general RF amplifier.

II.2.8.4.1 3dB bandwidth (BW)

The gain g of RF amplifiers, sometimes also called gain stages, is frequency dependent, in other words,

any RF amplifier is designed for a given frequency range, and most RF amplifiers have zero gain at

DC (direct current, 0Hz). Therefore, the RF amplifier has a band-pass filter like characteristic, see

Fig. II.2.132, with the 3 dB bandwidth defined by the higher fHI and lower fLO 3 dB cut-off frequencies

Fig. II.2.131: Schematic symbol for an ampli-
fier. Fig. II.2.132: Amplifier bandwidth definition.
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Fig. II.2.133: Output vs. input power and 1 dB compression point of an amplifier.

based on Eq. (II.2.115):

BW = fBW = fHI − fLO (II.2.120)

In most cases in accelerators, the RF amplifiers don’t require to be broadband, as the RF signal to be

amplified is a continuous-wave (CW) signal or a narrow-band signal, perhaps with some modulation.

Exceptions exist, e.g. amplifiers for pulsed RF or beam instrumentation applications. In the latter case

the transient behaviour of the amplifier needs to be taken into account, please note, the band-pass char-

acteristic of industry broadband RF amplifiers typically is of Butterworth or Chebyshev response, thus,

the group-delay varies substantially at the band edges (near fLO and fHI ) which may result in unwanted

ringing (oscillations) in the time-domain transient response.

�
A good rule of thumb in selecting the appropriate bandwidth for an RF amplifier applica-

tion: Just as much bandwidth as necessary!

Unnecessary large bandwidth results in additional noise and / or the amplification of un-

wanted signal content.

II.2.8.4.2 Linearity

The ideal amplifier is a linear element

Pout = GPPin or Pout = 10
g
10Pin ∀ Pin (II.2.121)

as indicated by the dashed theoretical response trace in Fig. II.2.133.

II.2.8.4.2.1 1 dB compression point (P1 dB)

Unfortunately, the ideal amplifier does not exist, as a matter of fact, any amplifier exhibits a non-linear

behaviour, in particular at higher excitation levels at the input. Figure II.2.133 displays the actual re-
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sponse (solid trace) of the output power Pout vs. the input power Pin for a typical RF amplifier, indicating

the deviation from the theoretical response (dashed trace) of an ideal amplifier at higher input power

levels.

Definition II.2.8.2: 1 dB compression point (P1dB)

The 1 dB compression point of an amplifier, also called P1dB , indicates the power level at which

the output power differs by 1 dB from that of an ideal amplifier, see also Fig. II.2.133

The gain elements used in a RF amplifier, e.g. semiconductors (transistors, FETs, etc.) or some-

times vacuum tubes, have an intrinsic non-linear characteristic, but fortunately their non-linear behaviour

can be linearised to almost perfectly by an appropriate feedback circuit topology. Therefore, the dom-

inant non-linear effect of an amplifier is related to the internal supply rail voltage levels, the maximum

output voltage – and the equivalent output power into a load resistor – is limited by that rail voltage. If

we drive the amplifier beyond, e.g. with a perfect sinusoidal signal, the amplifier will saturate and the

output waveform “clipped”, the pure sinusoidal waveform deforms and the amplifier generates unwanted

higher-order harmonics at the output (compression region in Fig. II.2.133).

ò
As Fig. II.2.133 indicates, the 1 dB compression point is defined for the output power of

the amplifier, P1dB = OP1dB , i.e. the output 1 dB compression point. However, some-

times RF amplifier manufacturers specify the 1 dB compression for the equivalent input

power, IP1dB , which is related to OP1dB:

P1dB [dBm] = OP1dB [dBm] = IP1dB [dBm] + g [dB] (II.2.122)

Example II.2.8.5: dBm is not dB: dBm ̸= dB

The SI unit for power is Watt [W = V I], however, in RF engineering often the preferred unit

for power is dBm, as Fig. II.2.133 and Eq. (II.2.122) indicate. dBm is a power unit utilising an

absolute logarithmic scale similar to the dB scale, but with a reference of Pref = 1mW:

P [dBm] = 10 log10
P [W ]

Pref
with: Pref = 1mW (II.2.123)

Equation (II.2.123) simplifies the power calculation in a chain of RF components with gain (am-

plifiers) and insertion loss (attenuators, transmission-lines, and other passive elements) to a simple

addition of their dB(m)-values, see as example Eq. (II.2.122). Some popular values reflecting

Eq. (II.2.123) are listed in Table II.2.12, along with the equivalent RMS voltage for a sinusoidal

signal into a load resistor of value Rl = 50Ω.

In practice the maximum output power level for a low or medium power RF amplifier is usually

expressed in dBm, in terms of the 1 dB compression point, however, the output level for high

power RF amplifiers is usually expressed in W .
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Table II.2.12: RF power and voltage into Rl = 50Ω.

P [dBm] P [W ] V [RMS] for Rl = 50Ω

+ 30 dBm 1 W 7.07 V

+ 20 dBm 100mW 2.24 V

0 dBm 1mW 224mV

− 20 dBm 10µW 22.4mV

−120 dBm 1 fW 224 nV

−174 dBm 4× 10−21W 446pV

noise power in a bandwidth BW = 1Hz at room temperature

II.2.8.4.2.2 3rd-order intercept (TOI) point, IP3

The non-linear compression region of an RF amplifier results in so-called intermodulation (IM) effects

for two-tone or other more complex signals beyond a pure sinusoidal signal excitation. This leads to

another specification for the linearity of a RF amplifier, the 3rd-order intercept (TOI) point, and it is de-

facto the most common, simple, safe and reproducible way to quantify the linearity of a device. Instead

of driving the amplifier into the highly non-linear saturation region – as e.g. required to characterise

the 1 dB compression point – and expressing the non-linearities, generated by the amplifier for a pure

sinusoidal input signal excitation as Taylor series expansion for the higher-order harmonics at the output,

a two-tone excitation measurement method is applied, keeping the amplifier in the quasi-linear regime

and still characterising it’s non-linear behaviour.

Again, linearity means the output signal of the device is directly proportional to the input signal,

see Eq. (II.2.121). The higher the TOI point, the better the linearity of the amplifier and the lower the

level of the so-called intermodulation distortion it may generate. As explained, most active devices (RF

amplifiers, gain blocks, etc.) are typically linear only over a certain input power range, but if a certain

power level is exceeded, the device becomes non-linear. What happens then?

Operating in the non-linear compression region (see Fig. II.2.133) will create signal distortions,

for a pure sine wave signal at the input there will be additional unwanted harmonics and intermodulation

(IM) products (also called intermodulation distortion or IMD).

Harmonics are copies of a sinusoidal signal appearing at multiples of the fundamental frequency (f1 is

the fundamental or 1st harmonic, 2f1 is the 2nd harmonic, 3f1 is the 3rd harmonic, etc.). Typically

the amplitude of the harmonics decreases as their order increases.

Intermodulation products occur when at least two (or more) signals (tones) mix in a non-linear device.

Mixing produces new, additional signals as sum and difference of the original frequencies.

Not only the input tone signals of slightly different frequencies fL and fU can mix with each other,

but they can also mix with the higher order harmonics, such as 2fL, 2fU etc. Hence, we have ad-
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fLfUfU − fL fU + fL2fL 2fU2fL − fU 2fU − fL

Fig. II.2.134: Two-tone (fL, fU ) intermodulation products due to amplifier non-linearities.

Fig. II.2.135: Output vs. input power and 3rd-order intercept (TOI) point of an amplifier.

ditional products at: 2fL + fU , 2fL − fU , 2fU + fL, 2fU − fL, . . . (see Fig. II.2.134).

The order i of the harmonics and intermodulation product is the sum of their (unsigned) coeffi-

cients.

In most cases the intermodulation products are easy to handle, higher order harmonics typically

have very low amplitudes and can usually be ignored or filtered, and even higher-frequency products

often fall outside the amplifier bandwidth.

The typical safe way to reject these products is through, e.g. band-pass filtering, however, this

becomes particular difficult if the unwanted mixing products are very close to the operating frequency

band of the fundamental signals. This is the case for the 3rd-order products 2fL − fU and 2fU − fL,

which are difficult to reject by filtering due to their proximity to the two fundamentals fL and fU , see

Fig. II.2.134.

Figure II.2.135, as an extension of Fig. II.2.133, illustrates the TOI point concept graphically. In

this double-logarithmic output vs. input power graph we have the ideal and the actual response of an

amplifier, dashed and solid dark-red traces, which expresses the gain g of the amplifier. The green trace
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Fig. II.2.136: Symmetric voltage transfer function O(vin) of a typical RF amplifier.

shows the response of the amplifier for the 3rd-order intermodulation harmonic if the imperfect amplifier

is supplied with a two-tone signal fL, fU .

ò
Please note, the response to the 3rd-order IM harmonic is different from the response to

the fundamental tone, it shows up at higher input power levels and has a steeper gradient

of 3g. This leads to the definition of the 3rd-order intercept point:

Definition II.2.8.3: 3rd order intercept point (IP3)

The 3rd-order intercept (TOI) point, also called IP3, is the crossing of the extrapolated ideal linear

gain response g of an amplifier in a Vout [dBm] = f(Vin [dBm]) graph with the also extrapolated

3rd-order intermodulation response to a two-tone excitation signal, see Fig. II.2.135. The TOI

point is a purely mathematical concept, the actual IP3 value lies in the compression region, beyond

the saturation of the amplifier.

In practice it is sufficient to characterise the slopes (the gradients) of the linear response and of

the 3rd-order IM response to locate the IP3, and as Fig. II.2.135 demonstrated, this can be accomplished

with modest signal levels.

Manufactures of RF amplifiers specify the IP3 value, often along with the P1dBvalue, and again atten-

tion has to be paid if this value is related to the input power IIP3, or to the output power OIP3, see

Fig. II.2.135.

II.2.8.4.2.3 Relation between TOI point and 1 dB compression point

As explained in the previous paragraph, the 3rd-order intercept point is based on the 3rd-order IM non-

linearities of an amplifier caused by two sinusoidal RF signals

vin(t) = â cosωt = â cos 2πft (II.2.124)
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of same amplitude â and slightly different frequency:

f ∈ fL, fU with: ∆f =
fU − fL

2
≪ fU + fL

2

resulting in the 3rd-order IM products:

fU3rd =
fU + fL

2
+ 3∆f

fL3rd =
fU + fL

2
− 3∆f

While non-linear at large signals, the voltage transfer function O(vin) of most RF amplifiers is

symmetric:

O(−vin) = −O(vin),

as depicted in Fig. II.2.136, and of course is limited due to the internal supply voltages. The non-linear

behaviour of O(vin) can be expressed as Taylor series expansion

O(vin) = GV vin −D3v
3
in + . . .

with GV being the linear voltage gain and D3 accounting for the 3rd-order distortions. If we further make

use of the Taylor series approximation:

cos3(ωt) ≊
4

3
cos(ωt) +

1

4
cos(3ωt)

we find that the output signal of the amplifier follows approximately

O (vin(t)) ≊
(
GV − 3

4
D3â

2

)
â cos(ωt)− 1

4
D3â

3 cos(3ωt) (II.2.125)

The 3rd-order intercept point is found were the linear component GV and the non-linear component D3

of the fundamental harmonic cos(ωt) in Eq. (II.2.125) are equal:

â2 =
4GV

3D3
(II.2.126)

The 1 dB compression point is located 1 dB ≡ 101/20 ≊ 1.122 below the linear (ideal) amplifier charac-

teristic:

1.122

(
GV − 4

3
D3â

2

)
â = GV â ⇒ â2 =

101/20 − 1

101/20
4GV

3D3
≊ 0.10875

4GV

3D3
(II.2.127)

Comparing Eq. (II.2.126) and Eq. (II.2.127), we find 10 log10(0.10875) ≊ −9.6357 dB, thus the 1 dB

compression point is approximately 9.6 dB below the TOI point.
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II.2.8.4.3 Noise in RF amplifiers

The noise figure (NF ) characterises the degradation of the signal-to-noise ratio (SNR) of an electronic

device, component, (sub)system, etc., here our low-noise RF amplifier. As a signal passes through a

system or device, t he noise figure tells us the relative amount of noise that is being added to the signal

as it travels through the system or device.

By evaluating the noise figure of e.g. an amplifier, we can calculate the sensitivity from its band-

width. The value of the noise figure value is a key parameter when handling low-level signals and enables

to quantify the added noise of the amplifier, network or system.

In an ideal world, an amplifier with nothing connected at the input, should have no signal at the

output. However, in the real world we have noise!

Different types of noise exist, but the most dominant is thermal noise. In a real-world application we

expect the thermal noise at the input will be amplified by the gain of the amplifier, appearing at the

output.

II.2.8.4.3.1 Noise basics

Before introducing noise factor and noise figure of an amplifier, let’s briefly review what noise in elec-

tronics and RF systems mean:

The concept of “noise” was originally studied for audible sound caused by statistical variations of

the air pressure over a wide, flat frequency spectrum (white noise). It is also used for electrical signals,

with the “noise floor” determining the lower limit of the signal transmission. Typical noise sources are:

Brownian movement of charges (thermal noise), variations of the number of charges involved in the

conduction (flicker noise) and quantum effects (Schottky noise, shot noise). Thermal noise is only emitted

by structures with electromagnetic losses, which, by reciprocity, also absorb power. Pure reactances do

not emit noise (emissivity = 0).

Different categories of noise have been defined:

white which has a flat spectrum,

pink being low-pass filtered and

blue being high-pass filtered.

In addition to the spectral distribution, the amplitude density distribution is also required in order to

characterise a stochastic signal. For signals generated by superposition of many independent sources, the

amplitude density has a Gaussian distribution. The noise power density delivered to a load by a black

body is given by Planck’s formula:

PN

∆f
= hf

(
ehf/kBT − 1

)−1
, (II.2.128)

where PN is the noise power delivered to a load, h = 6.625 × 10−34 Js the Planck constant, and kB =

1.380 56× 10−23 J/K the Boltzmann constant.
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Fig. II.2.137: Equivalent circuit of a noisy resistor terminated by a noiseless load.

Equation (II.2.128) indicates a constant noise power density up to about f = 120GHz (at T =

290K) with 1% error. Beyond that, the power density decays and there is no “ultraviolet catastrophe”,

i.e. the total integrated noise power is finite.

The radiated power density of a black body is given as

Wr(f, T ) =
hf3

c2
[
ehf/kBT − 1

] . (II.2.129)

For hf ≪ kBT the Rayleigh–Jeans approximation of Eq. (II.2.128) holds, and:

PN ≊ kBT∆f, (II.2.130)

is the noise power delivered to a matched load of a given frequency range of bandwidth B = ∆f , T is

called the noise temperature, which does not have to be equal to the physical temperature of the device.

The noise voltage v(t) of a resistor R with no load is given as

v2(t) = 4kBTR∆f (II.2.131)

and the short-circuit current i(t) by

i2(t) = 4
kBT∆f

R
= 4kBTG∆f, (II.2.132)

where v(t) and i(t) are stochastic signals, and G is 1/R. The linear averages v(t), i(t) vanish, of im-

portance are the quadratic averages v2(t), i2(t), which do not vanish. The available power, which is

independent of R, is given by (see also Fig. II.2.137):

v2(t)

4R
= kBT∆f. (II.2.133)
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Fig. II.2.138: Noisy 1-port with j = 3 resistors of different temperatures [21, 22].

from which the spectral density function is defined as [21]5

Wv(f) = 4kBTR,

Wi(f) = 4kBTG,

v2(t) =

∫ f2

f1

Wv(f)df.

(II.2.134)

A noisy resistor may be composed of several components (resistive network). Typically, it is

made from a carbon grain structure, which has a homogeneous temperature. But if we consider a net-

work of resistors with different temperatures, and hence with an inhomogeneous temperature distribution

(Fig. II.2.138), the spectral density function becomes

Wv =
∑
j

Wvj = 4kBTnRi, (II.2.135)

where Wvj are the individual noise sources (see also Fig. II.2.139), Tn is the total noise temperature, and

Ri the total input impedance. For simplicity we assume all Wvj are uncorrelated.

The relative contribution (βj) of a lossy element to the total noise temperature Tn is equal to the

relative dissipated power multiplied by its temperature Tj :

Tn = β1T1 + β2T2 + β3T3 + · · · =
∑
j

βjTj (II.2.136)

5All citations in this paragraph are text books in German language, however, similar books and articles exist in English.

Fig. II.2.139: Equivalent sources for the circuit of Fig. II.2.138.
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Please note, in Eq. (II.2.135) βj are the coefficients related to the fractional part of the input power

dissipated in each resistor Rj .

So far, only pure resistors have been considered. Looking at complex impedances, it is evident,

losses occur only from dissipation in Re(Z). The available noise power is independent of the magnitude

of Re(Z) with Re(Z) > 0. For Figs. II.2.138 and II.2.139, Eq. (II.2.135) still applies, except Ri is

replaced by Re(Zi). However, in complex impedance networks the spectral power density Wv becomes

frequency dependent [22].

Example II.2.8.6: Noise temperature

A good example is the noise temperature of a satellite receiver, which is nothing else than a

directional antenna. The noise temperature of free space amounts roughly to 3K. The losses in the

atmosphere, which is an air layer of 10 . . . 20 km height, causes a noise temperature at the antenna

output of approximately 10 . . . 50K. This is well below our reference ambient temperature of

T0 = 290K.

The rules mentioned above apply to passive structures. A forward-biased (by an external power

supply) Schottky diode has a noise temperature of about T0/2+10%. As the biased Schottky diode

is not in it’s thermodynamic equilibrium, only half of the carriers contribute to the noise [21]. Still,

it represents a real 50Ω resistor when properly forward biased.

For transistors, in particular field-effect transistors (FETs), the physical mechanisms are some-

what more complicated. Noise temperatures of 50K have been observed for a FET operating at a

physical (device) temperature of 290K.

II.2.8.4.3.2 Noise factor and noise figure

The Noise factor or noise figure is a figure of merit that applies for RF amplifiers operating near the

noise floor, i.e. amplifying RF signals of very low levels. These types of amplifiers are called low-noise

amplifiers (LNA).

As explained in the previous paragraph, any resistive source impedance R at the input of an RF

amplifier will contribute with some noise power NP = Ni, Eqs. (II.2.130) and (II.2.133), to the signal

power at the input Si to be amplified. An ideal amplifier would not alter the signal-to-noise ratio (SNR),

Fig. II.2.140: Noise power Nr added by an amplifier.
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SNRi = SNRo:
SNRi

SNRo
=

Si/Ni

So/No

= 1

Definition II.2.8.4: Noise factor F

However, even a very good real-world LNR will add some noise power Na, which leads to the

definition of the noise factor (see also Fig. II.2.140):

F =
SNRi

SNRo
=

Si/Ni

So/No

= 1 +
Na

NiGP︸ ︷︷ ︸
added noise

(II.2.137)

which is always greater than 1 (F > 1).

�
Noise factor F and noise temperature T are related as:

F = 1 +
T

T0
(II.2.138)

with T0 being the physical temperature of the amplifier or device.

�
Cascading (daisy chaining) RF amplifiers or devices, each with a given power gain GPi

and noise factor Ni leads to an overall noise factor

Ftot = F1 +
F2 − 1

GP1
+

F3 − 1

GP1GP2
+ · · ·+ Fn

GP1GP1 . . . GPn−1
(II.2.139)

Evidently, the overall noise factor Ftot is dominated by the noise factor F1 of the 1st ele-

ment in the chain.

Definition II.2.8.5: Noise figure NF

The definition of the noise figure NF is based on the noise factor, Eq. (II.2.137), and is simply

the logarithmic ratio of input and output SNR:

NF = 10 log10(F ) = 10 log10

(
SNRi

SNRo

)
(II.2.140)

�
The noise figure of an attenuator, Eq. (II.2.63), is equal to it’s attenuation value, NF =

∆dB, assuming it is operating at T = T0. Following Eq. (II.2.139), it becomes clear that,

minimising the noise contribution, also minimises attenuation and insertion losses from

passive devices, e.g. cables, filters, attenuators, hybrids, located in front of the 1st LNA

gain stage!
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II.2.8.4.4 RF power amplifiers

Going back to the principle schematic of an accelerator RF system, Fig. II.2.1, the high power RF system

has to bridge the gap between the output signal generated by the LLRF system, which typically is in

the mW-regime, 0 . . . + 20dBm, and the high power RF drive signal for the accelerating structure, as

required by the beam, typically in the kW or even MW-regime, e.g. +60 . . .+90dBm, please remember

Eq. (II.2.123). As for the large gain required, g > 60 dB, the RF power amplifier (PA) of an accelerator

is sometimes separated into a drive stage and a high power stage. The drive stage is often an off-the-

shelf commercial RF power amplifier, Pout = 1 . . . 10 kW, while the high power stage in most cases is

a custom tailored or in-house developed RF power stage, optimised for a particular accelerator and it’s

beam conditions.

In the following we focus on the RF power amplifier output stage. The ideal RF power amplifier

should:

– have a perfect linear gain, g = 10 log10(Pout/Pin) [dB], no saturation and infinite power.

– have no, or only minimum delay.

– be perfectly impedance matched at input and output, i.e. no reflections S11 = S22 = 0.

– not add any noise.

– be unconditionally stable and resistant against reverse power, S12 = 0

– be radiation hard.

Furthermore, the ideal power amplifier should be efficient and convert all AC wall plug power into RF

power at the output.

Definition II.2.8.6: Power amplifier efficiency (PAE)

PAE =
Pout − Pin

PACwall
(II.2.141)

Beside operating frequency fRF and / or the bandwidth BW , a major question we are facing for

the specification of a RF power amplifier, e.g. for a new accelerator is: How much power is required?!

Fig. II.2.141: RF power requirement for a storage ring.
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Figure II.2.141 illustrates the RF power requirement in a simplified graph for a storage ring accelerator.

The amplifier has to deliver sufficient RF power:

– to accelerate the beam → wanted

For a storage ring this equivalent to the power loss the beam experiences, e.g. due to synchrotron

radiation.

∆Pbeam = ∆Uturnfrev

For a synchrotron or linac this is the power required to increase the beam momentum, thus the

beam energy.

– to compensate the beam induced voltage Vind → Prefl → heat

This is the power required to compensate the beam loading, e.g. generated in the accelerating mode

of a standing wave cavity, which appears as reflected power at the main coupler and ultimately is

transformed into heat in the dummy load of the circulator.

Pbeamload = IbeamVind

Also the power losses due to the beam coupling impedance of passive elements like beam monitors,

kickers, vacuum pumps, bellows, etc. need to be taken into account.

– to compensate the resistive wall losses of the cavity → heat

This power loss is defined by the unloaded Q-factor Q0 of the accelerating mode, e.g. for a normal

conducting standing-wave mode cavity,

Pdiss =
V 2

2Rshunt
with: Rshunt =

R

Q
Q0,

and basically is related to the electric conductivity (ρ or κ) of it’s surface wall material within the

skin-depth δ.

– to compensate the electrical losses in the RF distribution system → heat

This is the sum of all insertion losses of the RF distribution system located between the output

of the power amplifier and the main RF power coupler input of the accelerating structure. It is

mainly the losses of the high power transmission-lines (coaxial lines or waveguides), but also

includes the losses of the directional coupler and the circulator. Figure II.2.124 illustrates a very

simple arrangement of a single power amplifier driving a single accelerating cavity, however, often

a single power stage has to drive multiple accelerating cavities or vice versa, in that case the losses

of the power splitters / combiners need to be included.

II.2.8.4.4.1 The tetrode-based RF power amplifier

While vacuum tubes no longer play a role in today’s consumer and commercial electronics systems, they

are still an important asset as high RF power source for particle accelerators. Let’s walk through some

basics in a simple, graphically oriented way:
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Example II.2.8.7: Basics of a grid tube power amplifier

(a) Diode vacuum tube in forward operation. (b) Diode vacuum tube in reverse operation.
∗the symbol for voltage in vacuum tube amplifier schematics is U instead of V .

(c) Triode vacuum tube operation. (d) Tetrode vacuum tube operation.

Fig. II.2.142: From a diode to a tetrode.

A vacuum tube with a cathode based on coated metals, e.g. carbites, borides, nitrides, etc., and

heated by a filament enables the thermionic emission of electrons, forming a cloud of free elec-

trons near the cathode. Adding another electrode, the anode, and supplying a potential difference

Ua between cathode and anode results in an anode current Ia, see Fig. II.2.142a. Reversing the

supply voltage Ua stops the anode current, Ia = 0, see Fig. II.2.142b. Thus, this configuration is

a diode.

Adding a control grid, see Fig. II.2.142c, transforms the passive vacuum diode to an active ele-

ment, the triode, with the control grid voltage Ug1 proportionally modulating the anode current

Ia ∝ Ug1. The most important parameter of a vacuum tube is the transconductance gm, defined

as

gm =
∆Ia
∆Ug1

At higher modulation frequencies on Ug1 the parasitic capacitance Cag1 between anode a and

control grid g1 limits the operation and tends to cause uncontrolled oscillations.
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Fig. II.2.143: RF power requirement for a storage ring.

Adding another grid, the screen grid (sometimes called lower anode) between anode and con-

trol grid, biased with a fixed positive potential Ug2, decouples anode a and control grid g1, see

Fig. II.2.142d. This tetrode configuration is most popular for high power RF vacuum tube am-

plifiers and typically gives a higher gain compared to a triode. However, some limitations are

linked to the secondaries, generated at the anode from the incoming Ia electrons, which are ac-

celerated towards the screen grid. This requires a special surface treatment of the anode to reduce

the emission of secondaries.

Figure II.2.143 shows the highly simplified schematics of a grounded grid tetrode 200MHz RF

power amplifier, as it is still in operation since 1976 at the CERN Super Proton Synchrotron (SPS),

based on RS2004 tetrodes, see also Fig. II.2.144. Here the screen grid is on ground potential and

the cathode is elevated to a negative potential.

Fig. II.2.144: CERN SPS 200MHz, 1MW transmitter station with eight RS2004 tetrodes.
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ò
Tetrode vacuum tube RF power amplifiers are still a good choice for high RF power output,

>100 kW CW per tube, on a small footprint, radiation tolerant(!), and therefore able to be

located in very close proximity to the accelerating structures inside the accelerator tunnel.

Unfortunately the know-how of this technology is vanishing!

RF power amplifiers based on tetrodes typically have a narrow-band operating frequency range,

often tuned using an internal resonator to the specific RF frequency of interest. Tetrode-based RF ampli-

fiers can reach an output power of 1MW and more, the operating frequency is usually below 200MHz.

II.2.8.4.4.2 A high output power RF source: The klystron

For high RF output power at high frequencies the linear beam type, the so-called klystron, is the only

option. The klystron is not a typical RF amplifier, instead it is a kind of mini linear accelerator in itself,

perhaps the most complicated piece of accelerator RF technology! Here we cover only the operational

principle in a non-mathematical way:

Example II.2.8.8: Basics of a linear beam tube

Figure II.2.145 explains the operating principle of a klystron graphically in several steps:

At the lower part in, see Fig. II.2.145a, we have the electron gun of the klystron, which is similar

to a vacuum diode, see also Fig. II.2.142a. Here we illustrate the emission of the electrons from

the heated cathode and accelerated by Ua towards the anode.

The anode of the klystron has a “hole”, allowing the free electrons to pass through and be further

accelerated by the Ubeam voltage, through a drift space, towards the collector, which is on the

higher potential than the anode. This results in a DC beam current, with the electrons moving at

constant velocity between gun and collector, illustrated as dark blue stroke in Fig. II.2.145b.

The beam voltage Ubeam is in the order of some 100 kV, therefore the electrons travel with non-

relativistic velocity. A single cell buncher cavity is located at the beginning of the drift space,

see Fig. II.2.145c, and supplied with a RF drive power for a velocity modulation of the electrons

passing the cavity gap.

Due to the time-varying E-field the leading electrons in the gap of the buncher cavity receive less

force compared to the trailing electrons, such that in the following drift space the leading electrons

travel with lower velocity and fall behind, while the trailing electrons travel with higher velocity

and catch-up. This results in a bunching process along the drift, such that the maximum (optimal)

bunching happens at it’s end, where one or more catcher cavities are located, see Fig. II.2.145d.

Here the kinetic energy of the bunched electrons is converted into RF power.

Figure II.2.145e illustrates the bunching process of the electron beam along the drift space. Please

note, buncher and catcher cavities operate at the same resonant frequency. To compensate for the

space-charge of the electron beam a solenoidal magnet is wrapped around the drift space, see

Fig. II.2.145f.

ò
Notably, the klystron offers a relatively high gain on the order of 60 dB, and also,

to improve the efficiency multi-beam klystrons (MBK) have been developed.
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(a) Electron emission at the gun. (b) An e-beam of constant velocity reaches the collector.

(c) Energy / velocity modulation of the e-beam. (d) RF power capture after the drift space.

(e) Illustration of the e-beam bunching. (f) Solenoidal magnet system to compensate space charge.

Fig. II.2.145: Operating principle of a klystron.
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(a) 352MHz, 1.3MW klystron for CW operation,
used at CERN LEP (until 2000).

(b) 12GHz klystron for pulsed operation (CLIC),
50MW during 1.5 µs pulse-length.

Fig. II.2.146: Two examples of a klystron.

Figure II.2.146 illustrates two examples of a klystron:

Figure II.2.146a shows the 352MHZ CW klystron used at the CERN LEP ring accelerator until year

2000. LEP used many of those klystrons, a total of approximately 50MW RF power was installed.

Figure II.2.146b shows the 12GHz klystron developed for the CERN Compact LInear Collider (CLIC),

operating in pulse mode.

Beside the klystron itself, there is a substantial set of auxiliary systems required to complete a

klystron-based RF transmitter, e.g. high-voltage (HV) power supply, water cooling (mainly for the col-

lector), radiation shielding, technical interlock and control systems, etc. For klystrons operating in pulse

mode, a HV pulse modulator with a pulse-forming network (PFN) is required, moreover, sometimes a

pulse compressor, e.g. a SLED (SLAC Energy Doubler) structure, composed out of two resonant cavities

and a 3 dB, 90° waveguide hybrid coupler, is used as an efficient way to provide higher RF power.

ò
Two-beam linear collider
Please note the two-beam acceleration principle, which is a spin-off of the klystron,

proposed by CERN for a Compact LInear Collider (CLIC) [23]. Instead of individual

klystrons feeding the acceleration structures via a waveguide distribution system, a 2nd,

low-energy linear accelerator with a high current drive beam is located parallel to the

high-energy linear accelerator, feeding the acceleration structures with the extracted RF

power via very short waveguides. In a simplistic view, the two-beam acceleration princi-

ple acts as transformer, transforming the RF energy from a high-current, low-energy beam

into a high-energy, low-current beam.

II.2.8.4.4.3 Solid-state RF power amplifiers

Tetrodes, klystrons and other vacuum tube based RF power sources have some common disadvantages,

e.g.

– Ageing effects of the cathode limit the lifetime.

– A failure of a single element in the RF power source usually trips the beam stored in a ring accel-

erator.
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Fig. II.2.147: Ampleon AN11325 2-way Doherty RF amplifier module using BFL888A LDMOS transi-
tors.

Recent developments in solid state technologies enable the use of semiconductor-based RF power ampli-

fiers for accelerator applications. Instead of a single, or a few high-power RF gain elements, as typical for

a tetrode, klystron, IOT or similar high-power RF sources, this transistor-based RF amplifier approach is

based on small, compact gain modules, each delivering only moderate RF power, but with many of them

combined, to provide the total required RF power. Figure II.2.147 pictures a typical industry RF power

module for 200W CW output power in the UHF frequency range. The solid-state RF power gain stage

is based on a push-pull amplifier. Here we illustrate the principle of operation:

Example II.2.8.9: Basics of solid-state RF amplifiers

Solid-state RF amplifiers are based on the transistor as active element, and while there are different

types of transistors, with different characteristics and operating principles, here we explain the

basic principle of the RF power gain stage based on the traditional bipolar junction transistor

(BJT), again, in a very simplistic, graphically supported way:

BJT’s are manufactured in two flavours:

As NPN transistor, with the basis semiconductor area, made of e.g. silicon (Si), being doped with

a material of positive (P) majority carriers, while the emitter and collector areas are doped with

a negative (N) majority carrier material, and as PNP transistors with the doping of those areas in

a complementary way, N-doping for the basis and P-doping for emitter and collector. As a result

of this doping a BJT without or with little DC bias at the basis – in so-called class B or class AB

operation – amplifies only positive (NPN) or negative (PNP) signals:

NPN BJT are active for positive signals at the input, Vin > 0,

and stays passive for negative input signals (Vin < 0).

PNP BJT are active for negative signals at the input, Vin < 0,
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and stays passive for positive input signals (Vin > 0).

Fig. II.2.148: Operation principle of a NPN / PNP BJT pair in push-pull amplifier configuration.

Combining a NPN and a PNP BJT as illustrated in the very simplified schematic Fig. II.2.148

results in the push-pull amplifier configuration, which has a low bias current running through

the transistors and therefore a high efficiency. A biasing network (not shown in Fig. II.2.148) is

required to optimise for efficiency and low distortions, also impedance matching networks at in-

and output are required.

Fig. II.2.149: Operation principle of two NPN BJT’s as push-pull amplifier.

The scheme of Fig. II.2.149 requires two complementary BJT’s, NPN and PNP, with perfect

symmetrical characteristics! Unfortunately industry so far is unable to deliver this ambitious

goal. In practice, the characteristics of the NPN BJT’s are far superior to their PNP counterparts.

Figure II.2.149 shows the push-pull amplifier solution based on two identical NPN BJT’s. For

it’s operation, a signal inverter is required at in- and output, here illustrated in form of a passive

bal-un, i.e. balanced-to-unbalance network, here shown in the form as short piece of coaxial

transmission-line. The balun provides a non-inverted (0°) and a inverted (180°) signal for the

basis’s of the two NPN BJT’s, so that they operate in push-pull mode, i.e. only one transistor at

a time is active per half-wave (see Fig. II.2.149). A similar balun is required to combine the two
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symmetric output waveforms into a single asymmetric (unbalanced) output signal.

Fig. II.2.150: Balun: A balanced-to-unbalanced transformer (or vice versa).

There is a large variety of balun implementations, the coaxial-line realisation shown in

Fig. II.2.149 is only one example. Circuit layout and implementation details depend a lot on

the operating frequency and required RF power rating. For completeness and as reference,

Fig. II.2.150 shows the balun in form of an ideal transformer.

The balun-based push-pull RF amplifier approach substantially simplifies the complementary

symmetric transistor technology obstacle, now the amplifier module can be realised with two

identical transistor of the same technology. Still, the design of an appropriate balun, particular for

the output remains a challenge!

At the time of writing, LDMOS Si and GaN field-effect transistors (FET) are the preferred choice

for most RF power amplifier modules. Their operation principle differs from a BJT, however, the balun-

based push-pull mode operation remains. Typically, an individual RF power module achieves a few

100W output power, therefore attention is given on a non-reflective power combiner with minimum

insertion loss to combine the output power of many modules with correct timing, i.e. phase balance.

Figure II.2.151 illustrates a solid-state RF power amplifier installation for the Super Proton Synchrotron

(a) Hall with 2× 16 solid-state RF amplifier towers. (b) 16-to-1 power combination schema.

Fig. II.2.151: 200MHz, 2× 1.6MW solid-state RF amplifier installation at the SPS (CERN).

909



II.2.8. RF components, devices and subsystems

(SPS) at CERN. It requires an entire hall, see Fig. II.2.151a to accommodate one (of two) 200MHz,

1.6MW peak power RF amplifiers, each consisting of 2 × 16 towers, and each tower holding 80 RF

amplifier modules (a total of 5120 modules). Figure II.2.151b shows a simplified schematic of the power

combination for 16 PA towers, of course, here the “devil is in the details”.

�
RF power amplifier: Tube or solid-state?

Table II.2.13: Tube vs. solid-state RF power amplifiers.

Prefer tube amplifier, when Prefer solid-state amplifier, when

Amplifier(s) must be installed in

the accelerator tunnel

Amplifier(s) can be located

in a non-radioactive environment

Expecting substantial “spikes”

from beam induced voltage

Circulator(s) can be installed

to protect the amplifier

Large output power of a single device

is required, without combiners

Time delay due to unavoidable combiner

stages is of little relevance

Not much real-estate is available Sufficient space can be made available

High peak power in pulse mode Continuous wave (CW) operation

Amplifier(s) must be compact and/or

in close proximity to the cavity

Amplifier(s) can be located far away

from the cavity

Table II.2.13 gives some guidelines for choosing tube vs. solid-state RF power amplifiers.

However, these are not hard limits and need to be re-evaluated on the specific case!

The double-logarithmic graph of Fig. II.2.152 illustrates power output capability vs. operating fre-

quency for different RF power sources, including some not discussed in this paragraph (IOTs, CCTWTs).

Please note, the blue-dashed trace for solid-state modules is enhanced 32×, meaning for a combination

of 32 solid-state based RF power modules.

II.2.8.5 Summary of RF components, devices and subsystems

The topics covered in this section are neither complete nor comprehensive. From the almost infinite

variety of RF components, devices and subsystems only a few could be introduced and briefly discussed.

The selection made was based on a personal, subjective choice, with some focus on transmission-line

based RF components. However, the topics covered here do play a major role in accelerator RF and

related fields. Even as digital signal processing, see Fig. II.2.97, increasingly takes over the classical

domain of low-level RF signal processing and manipulation, traditional RF components remain relevant,

important and continue to be required, e.g. for high-power RF applications, for the signal conditioning of

very low-level RF signals, for the processing of RF signals which cover an instantaneous, high dynamic

range, and for many other accelerator RF applications.
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Fig. II.2.152: Power capability of commercially available RF amplifier type (as of 2020).

911



II.2.9. RF measurement techniques

II.2.9 RF measurement techniques

The design, engineering and realisation of most technical hardware systems or scientific apparatuses fol-

low some systematic procedures, e.g. to divide large, complex structures in smaller pieces, and to study

and analyse the individual building blocks, first by a simplified formalism using analytical equations,

and then followed by improved numerical approximations, analysis and optimisation. In the final design

stage, a prototype is manufactured and it’s performance, characteristics and limitations are tested with

the help of measurements. This is also true, but not limited, to accelerator RF systems. The measure-

ment characterisation is the ultimate test and verification if the design goals and specifications of a RF

apparatus, component or subsystem are met.

�
Performing reproducible and precise RF measurements is an art! It requires many repeats

of a variety of measurement exercises and experiments, and over the years sufficient skills

and experience maybe collected to correctly setup a RF measurement and get meaningful

results. This cannot be trained by just reading this section, or by watching online videos,

but requires practical exercises, as given, e.g. in the RF measurement training part during

the JUAS Practical Days, or at the Advanced CERN Accelerator School (CAS) course, or

at a dedicated training course at the US Particle Accelerator School (USPAS).

II.2.9.1 Overview

RF measurements are performed using dedicated, often highly specialised instruments, usually provided

by the industry of RF measurement equipment. Still, in most cases RF measurements are a subset of

electrical measurements, our RF instruments are basically electrical measurement equipment and there-

fore we have to follow the underlying electrical principles and procedures to successfully execute our RF

measurements.

We can separate two basic forms of RF measurements, usually performed in any accelerator insti-

tute or laboratory, see also Fig. II.2.153

– The RF measurements are performed in situ, i.e. in the field, at the running machine and / or the

active RF system (Fig. II.2.153a). We measure RF signals somewhere within the RF system or

(a) In situ at the accelerator RF system. (b) On the test bench.

Fig. II.2.153: RF measurements.

912



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.2.154: Popular test functions used as stimulus signal.

follow more closely the beam induced signals from antennas in the accelerating structures or from

beam pickups. This requires the RF instrument being able to detect and analyse those signals, like

the spectrum analyser, the oscilloscope, or the diode detector.

– We test and characterise a RF component or subsystem in the laboratory room, i.e. on a test bench

(Fig. II.2.153b). Unless the RF Device Under Test (DUT) is a RF source generator, this requires a

RF generator to supply a stimulus signal, and again an RF measurement instrument to detect and

analyse the signal response from the DUT.

For the characterisation of RF and electrical systems we use dedicated test functions as stimulus

signal to execute our DUT measurements in the laboratory, see Fig. II.2.154. For most RF measurements

the cos or sin functions are the preferred test signals.

Moreover, most RF components and subsystems to be analysed and tested are characterised by

their S-parameters, see Section II.2.7, and the measurement is performed by a vector network analyser

(VNA), as illustrated in Fig. II.2.155. As explained later in this section, the VNA combines the RF mea-

surement instrument and the RF generator for the sinusoidal stimulus signal, as shown in Fig. II.2.153b,

into a single instrument. The “standard” VNA has two ports, but VNAs with four or many more ports

are also available to simultaneously characterise multi-port DUTs. The inverse Fourier transform option

of the VNA enables the mathematically equivalent of a Dirac δ or step stimulus function, to analyse the

time-domain impulse or step response of linear DUTs, of course with some limitations.

Here a brief overview of the most popular instruments used for measurements on RF systems and

components:
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Fig. II.2.155: S-parameter measurement with a vector network analyser (VNA).

Oscilloscope The oscilloscope displays the waveform of a voltage signal as function of time, i.e. it

allows to observe and analyse one or more signals as time-domain (TD) waveform. The signal to

be displayed can be of periodic nature, or a transient or a burst signal with an arbitrary waveform.

The oscilloscope can be used in the field, e.g. to analyse beam-related signals from a beam pickup

or cavity antenna, but also on the test bench, in connection with a pulse or arbitrary waveform

generator. Most oscilloscopes have two, four or more inputs, enabling the display of different

signals simultaneously, and also a external trigger input to synchronise the displayed signal to

other signal sources.

Fig. II.2.156: Schematic of a traditional CRT-based oscilloscope.
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Today, the traditional form of the oscilloscope based on a cathode-ray tube (CRT) exists only in

the museum, see the schematic Fig. II.2.156 for “historic” reasons. All “modern” oscilloscopes

are based on analog-to-digital converters (ADC), and most of the internal signal processing is

performed in the digital domain. Still, look and feel of many oscilloscopes of today resemble the

traditional analog CRT oscilloscope.

While the oscilloscope is a very versatile instrument, able to display any signal directly as time-

domain waveform, thus in an intuitive format, it’s use in RF engineering has some limitations. This

is mainly because of the limited dynamic range, typically 40 to 60 dB, and the upper frequency

limit. The dynamic range of oscilloscopes operating to high frequencies, e.g. > 40GHz, have an

even lower dynamic range, while being costly, which substantially limits their use, e.g. to evaluate

non-linear effects in RF systems.

RF diode detector / power meter A zero-bias Schottky diode is often used as RF diode detector or RF

power meter. It provides the rectified video output signal which is proportional to the power of

the RF signal at the input, thus, provides the information of the power of an high frequency RF

signal. The RF power meter is a passive, simple and robust instrument, and operates over a wide

range of frequencies, few MHz to many GHz, and has a large dynamic range. Of course, the

phase information of the RF input signal is lost by the detection, still this very simple RF power

meter is very useful, e.g. for the monitoring of the forward / reflected power in the feed-line of an

accelerating structure.

Vector signal / spectrum analyser The spectrum analyser (SA) is used to display a RF signal in a

“frequency-domain (FD) like” fashion. It utilises a narrow-band receiver to sweep across a given

range of frequencies to detect and display the RF signal power as function of the frequency.

ò
This requires the input signal to be time invariant during the SA sweep period!

Unlike the oscilloscope, the spectrum analyser has a very large dynamic range, 140 dB and more,

and can be used in the field to observe and analyse the signals in the RF system, the signals

from beam pickups, or to located unwanted EM fields or EMI signals in an accelerator using an

appropriate antenna. On the laboratory test bench the spectrum analyser is used, e.g. for noise

measurements (requires a noise source) and for intermodulation measurements (TOI) of amplifiers

(requires two RR signal generators).

The traditional analog spectrum analyser today is replaced by a vector signal / spectrum analyser

(VSA), sometimes called FFT analyzer, which comes in a hybrid format, with an analog RF up

/ down converter front-end, followed by a digital signal processing section. These blocks of the

VSA combine all the functions of the traditional analog spectrum analyser with some of a digital

oscilloscope, e.g. using a digital signal processor (DSP) to perform a fast-Fourier transform (FFT)

to analyse the down-converted input signal. While the traditional spectrum analyser requires the

input signal to be periodic, the VSA can also analyse non-periodic and transient signals, and can

provide phase information. Typical applications of the SA / VSA are the observation of tune
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sideband signals, bunched-beam spectrum measurements, or the transient behaviour of phase-

locked loops in the low-level RF (LLRF) system.

� – The digital oscilloscope directly digitises the input signal using a fast sam-

pling, high bandwidth ADC. It has a limited dynamic range and a very wide

bandwidth, up to many GHz.

– The input signal of the VSA is down-converted to an intermediate frequency

(IF) band, which then is digitised by an ADC with high resolution. The VSA

has a large dynamic range, the bandwidth is given by the IF-band and the

performance of the ADC, and is typically in the 100MHz regime.

Slotted coaxial (or waveguide) transmission-line The slotted line was used in the early days of RF en-

gineering to measure the VSWR, and therefore to evaluate an arbitrary, complex load impedance

ZL terminating the slotted transmission-line of known characteristic impedance Z0. Today this

measurement is performed with a VNA, however, for illustration of standing waves along a

transmission-line an exercise with the slotted line still gives a very valuable introduction into RF

measurements.

Vector network analyser The vector network analyser (VNA) combines the functions of a vector signal

/ spectrum analyser, a RF source generator and a S-parameter test set, i.e. a set of broadband

directional couplers. It excites a port of a device-under-test (DUT), a RF component or subsystem

(e.g. RF network, filter, antenna, amplifier, etc.), with a steady-state, sinusoidal waveform of a

given frequency (at a constant amplitude), and measures the DUT response in magnitude and

phase, thus, determining the S-parameters.

Similar to the spectrum analyser, the VNA measurement covers a selectable frequency range, and

the instrument measures the S-parameters in predefined frequency steps. Again, the DUT has to

be time-invariant during the frequency sweep.

The VNA allows the S-parameter characterisation of passive and active RF components as function

of the frequency, and by applying an inverse Fourier transformation, also enables time-domain

response measurements and time-domain reflectometry (TDR). Beside the frequency sweep, the

VNA also has a power sweep function, which allows to characterise the 1 dB compression point

of RF amplifiers. Four-port VNAs have additional functions, e.g. they allow to combine two

physical ports into a virtual port, and therefore a mix of single-ended and differential port DUT

characterisation.

ò
The value of a modern VNA in the RF laboratory cannot be overstated! It de-facto

is the most versatile and comprehensive RF measurement tool!
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ò
Today, basically all RF measurement instruments are equipped with coaxial input ports,

with a characteristic impedance of 50Ω. To ensure a mode-free TEM operation to

100GHz and beyond, related high performance coaxial test cables and connectors are

utilised. Waveguide measurements are done via appropriate WG-to-coaxial adapters.

II.2.9.2 RF signal modulation

The concept of signal modulation is linked to RF engineering, as well as to RF measurement techniques,

since the early days of wireless telecommunication. Among the many modulation methods we briefly

discuss the two most common modulation methods:

II.2.9.2.1 Amplitude modulation

In electronics, telecommunications, and mechanics, modulation means varying some aspect of a sinu-

soidal, continuous wave (CW) carrier signal with an information-bearing waveform, to then transmit it

in the radio frequency regime.

Why do we modulate signals? There are at least two reasons:

To allow the simultaneous transmission of two or more information, i.e. message signals, by translating

them to different frequencies, and to take advantage of a wireless transmission on a RF carrier frequency,

utilising the greater efficiency and smaller size of antennas operating at high frequencies.

II.2.9.2.1.1 Theoretical background

In amplitude modulation (AM), the amplitude of the wave carrier, which has a much higher frequency

than the message signal, is varied proportionally to the message signal. Although the message signal

is the one we want to transmit, what actually is transmitted is the carrier signal, which “carries” the

desired message signal. This simply means that the message signal is imprinted on the envelope of the

carrier signal. This carrier signal is called the modulated signal, while the information carrying signal,

is referred to as the modulating signal. From an accelerator physics point of view, amplitude modulation

resembles to betatron oscillations.

Let m(t) be the modulating signal, a baseband signal with a total bandwidth w and a spectrum

that satisfies:

|M(f)| = 0, |f | ≥ w

−w

M(0)

w
f

|M(f)|

and let the modulated (carrier) signal be:

c(t) = Ac cos 2πfct,

where Ac is the amplitude and fc is the frequency of the carrier signal.
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t

m(t)

t

c(t)

−Ac

Ac

t

Ac +m(t)

x(t)

envelope

t

Fig. II.2.157: Carrier and baseband signals before and after amplitude modulation, following
Eq. (II.2.142)

In this so-called Double Side Band-Amplitude Modulation-Total Carrier (DSB-AM-TC)6, the am-

plitude of the modulated signal changes linearly with the amplitude of the modulating signal, while the

addition of a strong carrier component facilitates demodulation. If fm is the highest frequency compo-

nents in the modulating signal m(t), the AM-modulated signal has the form (see also Fig. II.2.157):

x(t) = [Ac +m(t)] cos 2πfct, with fc ≫ fm (II.2.142)

The modulation index µ is an important parameter, and is defined as ratio between the absolute

minimum value of the baseband information signal (assuming that it does not contain a DC component)

and the peak value of the carrier signal:

µ =
|min(m(t))|

Ac

6DSB-AM-TC is the standard AM method that produces sidebands on each side of the carrier frequency. Single-sideband
modulation uses bandpass filters to eliminate one of the sidebands and possibly the carrier signal, which improves the ratio
of message power to total transmission power, reduces power handling requirements of line repeaters, and permits better
bandwidth utilisation of the transmission medium. Other forms of amplitude modulations can be:
Vestigial Side Band (VSB-AM), Double Side Band-Amplitude Modulation-Suppressed Carrier (DSB-AM-SC), Single Side
Band-Amplitude Modulation (SSB-AM), or variations of these. Here, we focus only on the DSB-AM-TC, for simplicity.
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t

Ac +m(t) x(t)

t

Fig. II.2.158: The effect of “overmodulation”, µ ≥ 1, in the modulated carrier signal x(t).

If Ac + m(t) < 0, then overmodulation occurs. This phenomenon leads to a distortion of the carrier

envelope, which does follow any more according to the information signal and therefore does not allow

a correct demodulation in the receiver, in case an asynchronous demodulation method is applied.

-
Therefore simply follows: Avoid overmodulation!
µ < 1 must hold and in the following µ < 1 is always assumed.

In this case, asynchronous demodulation can be applied, which is considerably easier to implement by

using a simple envelope detector.

The effect of overmodulation in the modulated carrier signal is shown in Fig. II.2.158. A standard

asynchronous demodulator would follow the wrong indicated envolope ̸= m(t). It would require a more

complicated synchronous demodulator to still detect m(t) correctly.

ò
Note: An equivalent formula for the modulation index can be deduced:

xmax

xmin
=

Ac(1 + µ)

Ac(1− µ)
=⇒ µ =

xmax − xmin

xmax + xmin

where x = x(t) = [Ac +m(t)] cos 2πfct is the AM-modulated signal.

In the frequency domain representation, the amplitude modulation produces a signal with the

power concentrated at the carrier frequency and two adjacent sidebands. Each sideband is equal in

bandwidth to that of the modulating signal, and is a mirror image of the other.

Finally, at the receiving station, the message signal is extracted from the modulated carrier by a

process called demodulation.

To calculate the frequency spectrum, in its general form, we apply the Fourier transform to

II.2.142:

X(f) = F [x(t)] = F [(Ac +m(t)) cos 2πfct]

= F [m(t) cos 2πfct] + F [Ac cos 2πfct]

=
1

2
[M(f − fc) +M(f + fc)] +

1

2
Ac[δ(f − fc) + δ(f + fc)]

(II.2.143)
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with M(f) = F [m(t)]. Figure II.2.159 illustrates the frequency spectrum of the amplitude modulated

carrier signal, shown is the modulus |X(f)|, i.e. the magnitude spectrum. The total bandwidth of each

sideband is 2w, which is related to negative frequencies of the baseband signal. The total bandwidth of

the modulated signal is 2(fc + w).

II.2.9.2.1.2 A practical AM measurement exercise

For the analysis of modulated signals it is very useful to observe the signal in a twofold manner:

– On the oscilloscope, as time-domain waveform.

– On a spectrum analyser, in terms of it’s frequency spectrum.

The spectrum analyser displays a signal, equivalent to the Fourier transform of successive segments of

the signal. Any changes of the baseband message signal or the modulation index will also be reflected in

the spectral content and displayed by the spectrum analyser.

In the following we present a test bench measurement example, analysing the amplitude modu-

lation with a simple sine-wave signal. Below we refer to the following RF measurement equipment,

however, similar instruments can serve as well:

1. A RF signal generator, Agilent technologies, E8257D, to generate the desired signals, and in

our case it also serves to internally modulate the carrier CW signal.

2. An oscilloscope, LeCroy, WaveRunner, to observe the signals as time domain waveform.

3. A vector network analyser (VNA), utilising the build-in spectrum analyser functionality,

Keysight, P5024A, to analyse the signal by its Fourier components, and to observe the spec-

tral content of the signal.

4. A power divider, Suhner & Suhner, 4901.01.B, to split the signal from the RF generator to

simultaneously observe the signal on the oscilloscope and the spectrum analyser.

5. Various cables and connectors, wherever needed. Preferably, use coaxial cables with BNC con-

nectors. Minimum required: 2 cables.

−fc − w −fc + w−fc fc − w fc + wfc

Ac
2

f

|X(f)|

1
2M(0)

Fig. II.2.159: Frequency spectrum (magnitude) of the amplitude modulated signal, following
Eq. (II.2.143)
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Lab Procedure II.2.9.1: AM Measurement setup

Consider a carrier signal of fc = 100MHz and an amplitude of 6 dBm, and a modulating signal

of fm = 10 kHz. Set these frequency and amplitude values of the modulated signal on the RF

signal generator, and press the AM button.

1. Set the AM depth softkey to 10%, the AM Rate softkey to 10 kHz and the AM

Waveform softkey to Sine. Make sure that the AM softkey is On. Leave all other soft-

keys as default (unchanged). Make sure that you press MOD ON and RF ON.

2. Set the correct timebase on the oscilloscope, in order to be able to see the modulating signal

properly, e.g. 10µs/division should be fine.

3. Set the VNA to spectrum analyser mode. Go to Response > Meas > Meas Class and

set it to spectrum analyser. Then select A. Set the center frequency to 1MHz and the span

approximately 3 times the modulating frequency (10 kHz for now, but later you should

change it accordingly). Set the RBW to 500Hz or so, to ensure a reasonable resolution.

Let’s now try to change the modulation index, given as percent value (i.e. the amount of carrier

amplitude), so we can observe the effects in both domains.

Lab Procedure II.2.9.2: AM Measurement parameters

Vary AM Depth in a range 25% to 90% and observe the differences between 25%, 50% and

90%.

Fig. II.2.160: 25% modulation depth of a carrier with a sine wave as modulating signal
for fm = 10 kHz and fc = 100MHz, observed as time domain waveform on the oscilloscope.

The measurement results from the oscilloscope, Figs. II.2.160 to II.2.162, indicate, as the modu-

lation depth increases, the message signal becomes better visible as envelope of the carrier signal in the

time-domain view on the oscilloscope. On the spectrum analyser, observing the signals in a “frequency-

domain like” fashion on a logarithmic dBm scale for the magnitude, the two sidebands are clearly visible

for all settings of the modulation depth, see Fig. II.2.163.
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Fig. II.2.161: 50% modulation depth of a carrier with a sine wave as modulating signal
for fm = 10 kHz and fc = 100MHz, observed as time domain waveform on the oscilloscope.

Fig. II.2.162: 90% modulation depth of a carrier with a sine wave as modulating signal
for fm = 10 kHz and fc = 100MHz, observed as time domain waveform on the oscilloscope.

(a) 25% modulation depth. (b) 50% modulation depth.

(c) 90% modulation depth.

Fig. II.2.163: AM Modulation of a CW carrier with a sine wave as modulating signal
for fm = 10 kHz and fc = 100MHz, observed as frequency spectrum with a spectrum analyser.
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Exercise II.2.9.1: Arithmetic exercise for AM with a sine wave as modulating signal

To evaluate the amplitude values of the carrier and sideband signals, set the AM Depth to 25%. Set

a marker to fc, another marker to fc + fm and a 3rd marker to fc − fm, as shown in Fig. II.2.163.

Consider the modulation depth as µ · 100%, with a sine wave as modulating signal.

If m(t) = α cos(2πfmt), the modulating signal becomes:

x(t) = [Ac + α cos(2πfmt)] cos(2πfct)

= Ac cos(2πfct) +
α

2
cos(2π(fc − fm)t) +

α

2
cos(2π(fc + fm)t)

or, using the modulation index µ,

x(t) = Ac[cos(2πfct) +
µ

2
cos(2π(fc − fm)t) +

µ

2
cos(2π(fc + fm)t) (II.2.144)

For the frequency domain follows:

X(f) =
Ac

2
[δ(f − fc) + δ(f + fc)] +

α

4
[δ(f − fc + fm) + δ(f + fc + fm)]

+
α

4
[δ(f − fc − fm) + δ(f + fc + fm)]

=
Ac

2

[
δ(f − fc) + δ(f + fc) +

µ

2
[δ(f − fc + fm) + δ(f + fc + fm)]

+
µ

2
[δ(f − fc − fm) + δ(f + fc + fm)]

]
(II.2.145)

Figure II.2.164 illustrates Eqs. (II.2.144) and (II.2.145).

To demonstrate the arithmetic example, lets take µ = 0.25 or 25% as modulation depth, for the

amplitude of the modulated signal of equivalent 6 dBm power. As of the 6 dB-power divider on

the output of the RF signal generator, the signal power that reaches both, the oscilloscope and

the spectrum analyser, will be ≈0 dBm, assuming the cables are sufficiently good and add no

significant insertion losses.

Then, using the oscilloscope, we measure: Ac + α = 396mV and Ac + α = 242.5mV, as

indicated in Fig. II.2.160 by the coloured lines. From that follows α = 152.5mV, and we find:

AcRMS = 319.25mV/
√
2 = 225.74mV. Hence, µ = a/Ac = 0.24, which is very close to the

desired 25% modulation depth.

In a 50Ω system with sinusoidal waveforms:

VdBm = 20 log10(
V

Vref
)

with: Vref =
√
PrefZ0 = 223.6mV(RMS), Z0 = 50Ω.

Since V = AcRMS , we have VdBm = 20 log10(
225.74mV
223.6mV ) ≈ 0 dBm.

Therefore, the amplitude of the delta-function related to the carrier is 0 dBm.
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t

m(t)
α

−α

Tm = 1
fm

1
2α

1
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c(t)
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−Ac

t

x(t)

f

M(f)

−fm fm

f

C(f)

−fc fc

f

X(f)

−fc fcfc − fm fc + fm

Fig. II.2.164: Time and frequency domain view of a sine-wave modulated carrier signal

ò
Note: Given the Fourier transform of a cosine, we would expect the amplitude of

the carrier to be −3 dBm. However, the spectrum analyser processes only “posi-

tive” frequencies, while the Fourier transform returns a symmetric result in form of

negative and positive frequencies. Therefore, the power received by the spectrum

analyser is not separated in positive and negative frequency bands, but is just de-

tected, processed and displayed as a positive frequency band, Thus, the amplitude

is twice the value of the Fourier transform, in our case equal to 0 dBm.
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For the amplitude of the sidebands, relatively to the carrier amplitude, we find:(
α/4

Ac/2

)
dB

=

(
µAc/4

Ac/2

)
dB

= −20 log10
µ

2
= −20 log10

0.24

2
≈ −18 dB

which is confirmed by our measurement shown in Fig. II.2.163a.

Fig. II.2.165: 50% modulation depth with a sine wave as modulating signal
for fm = 10 kHz and fc = 100MHz, displayed over a larger frequency range.

Lab Procedure II.2.9.3: AM Measurement parameters

Set the AM depth to 50%. Set the frequency range of the spectrum analyser to 10× fm, keep the

central frequency at fc.

The large dynamic range, displayed on a logarithmic scale, enables for more detailed signal anal-

yses, e.g. for modulation distortions.

With the broader frequency span setting, as given in Lab Procedure II.2.9.3, clearly many

more sidebands are observable in the measured spectrum than the two given by the theory, see also

Fig. II.2.165. We observe distortions in form of 2nd, 3rd and 4th harmonics in the spectrum, while those

distortions stay unnoticed in the time-domain view of the oscilloscope (Fig. II.2.161). The second har-

monic sidebands at fc±2fm are 40 dB below the carrier. However, the distortion is characterised relative

to the primary sidebands, here a 28 dB difference between the primary and 2nd harmonic sidebands rep-

resents a distortion of 4%.

Lab Procedure II.2.9.4: AM Measurement parameters

Now set the AM depth to 25%, set the AM Rate to 500 kHz and keep the AM Waveform to Sine.

Make sure that the AM softkey is set to On.
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Fig. II.2.166: 25% modulation depth of a carrier with a sine wave as modulating signal for fm =
500 kHz
and fc = 100MHz, observed as frequency spectrum, applying a wider span on the spectrum analyser.

Changing the frequency fm of the modulating signal, here a 50× increase, changes the bandwidth

of the modulated signal. Therefore, the frequency axis on the spectrum analyser (frequency span, see

Fig. II.2.166) and the time axis on the oscilloscope need to be adjusted accordingly, demonstrating the

inverse behaviour of time and frequency, t = 1/f .

�
The sinusoidal waveform as message signal is the most simple case. Experiment with

other waveforms for the message signal, e.g. triangular or rectangular signals. Try to com-

pare the measured amplitude values of the sideband harmonics with the theory, following

Eq. (II.2.143).

II.2.9.2.2 Frequency modulation

Frequency modulation (FM) and phase modulation (PM) are variants of the angle modulation. FM

is more popular compared to PM, and therefore we here cover only FM, and only a few fundamental

aspects.
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II.2.9.2.2.1 Theoretical background

Angle modulation modifies the frequency or the phase of carrier signal, while keeping the amplitude

fixed:

Ac cos

(
2πfct+ ϑ︸ ︷︷ ︸

θ(t)

)

As its name implies, the baseband information signal is imprinted on the angle θ(t) of the carrier signal.

This modulation can be phase modulation (PM) or frequency modulation (FM). Although it re-

quires a more expensive and complex electronics, its advantage over, e.g. AM, is a better quality for the

information to be transmitted, because it is not as much affected by noise and has a lower distortion.

Frequency modulation (FM) is most commonly used for radio and television broadcast, but also in

telemetry, radar, seismic prospecting and monitoring systems, two-way radio systems, sound synthesis,

magnetic tape-recording systems and some video-transmission systems. From an accelerator physics

point of view, frequency modulation resembles to synchrotron oscillations.

FM signals can be generated either as direct frequency modulation, e.g. supplying the message

signal directly into a voltage-controlled oscillator, or as indirect frequency modulation, i.e. by integrating

the message signal to generate a phase-modulated signal, which then is used to modulate a crystal-

controlled oscillator, followed by a frequency multiplier to produce the FM signal.

Consider the carrier signal:

x(t) = Ac cos 2πfct︸ ︷︷ ︸
θ(t)

(II.2.146)

with the frequency given as:

fc =
θ(t)

2πt
=

ωc

2π

which is the number of cosine cycles per unit of time:

fc =
[θ(t+ dt)− θ(t)] /2π

dt

For the carrier signal x(t) = Ac cos [θi(t)] at an instantaneous phase θi(t) we define the mean frequency:

f∆t(t) =
θi(t+∆t)− θi(t)

2π∆t

and at the limit ∆t → 0, we define the instantaneous frequency:

fi(t) = lim
∆t→0

f∆t(t) = lim
∆t→0

θi(t+∆t)− θi(t)

2π∆t
=⇒ fi(t) =

1

2π

dθi(t)

dt
(II.2.147)
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Thus, we have a modulation signal with either con-

stant (PM) or variable frequency (FM). Practically,

a change in frequency means, the cosine function

will not cross the horizontal time axis at equidistant

points:

t
0 1

fc
1
f ′
c

Definition II.2.9.1: Frequency modulation - FM

We define the frequency modulation as:

fi(t) = fc + kfm(t) (II.2.148)

where kf is a constant, namely the frequency sensitivity, measured in Hz/V.

To calculate the signal, we use fi(t) =
dθi(t)
2πdt :

1

2π

dθi(t)

dt
= fc + kfm(t) =⇒

θi(t) = 2πfct+ 2πkf

∫ t

0
m(τ)dτ

Hence, our frequency modulated signal follows as:

x(t) = Ac cos

[
2πfct+ 2πkf

∫ t

0
m(τ)dτ

]
(II.2.149)

If we just consider a sinusoidal modulating message signal of frequency fm:

m(t) = Am cos(2πfmt)

the instantaneous frequency follows as:

fi(t) = fc + kfAm cos(2πfmt)

= fc +∆f cos(2πfmt) with ∆f = kfAm

Definition II.2.9.2: Maximum frequency deviation

We define:

∆f = kfAm (II.2.150)

as the maximum frequency deviation, which depends only on the amplitude of the modulating

signal.
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We recall the definition of the instantaneous frequency:

1

2π

dθi(t)

dt
= fi(t) =⇒ θi = 2π

∫ t

0
fi(t)dt

Hence, for a sinusoidal signal:

θi(t) = 2πfct+
∆f

fm
sin 2πfmt

follows the modulated FM signal as:

x(t) = Ac cos

[
2πfct+

∆f

fm
sin 2πfmt

]

Definition II.2.9.3: Modulation index β

We define the modulation index β in FM as:

β =
∆f

fm
=

Amkf
fm

(II.2.151)

which expresses the maximum frequency deviation in the modulated carrier signal.

The final expression for a FM signal follows as:

x(t) = Ac cos(2πfct+ β sin 2πfmt) (II.2.152)

Typical modulation indices range 1 ≤ β ≤ 20. Keep in mind that β affects the required bandwidth

of the modulated signal. For larger values of β the modulation is called wideband FM, while for smaller

β, e.g. β < 0.3, we have narrowband FM (NB-FM).

To evaluate the spectral content of the FM signal, we express Eq. (II.2.152) in its complex expo-

nential form:

x(t) = Re [Ac exp(j2πfct+ jβ sin 2πfmt)]

= Re [Ac · exp(jβ sin 2πfmt) · exp(j2πfct)]

= Re [x̃(t) exp(j2πfct)]

with x̃(t) given as the complex envelope function:

x̃(t) = Ac exp [jβ sin(2πfmt)]

The complex envelope function has a time period of Tm = 1/fm and can be rewritten in form of

a Fourier expansion:

x̃(t) =

∞∑
n=−∞

cn exp(j2πnfmt)
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Fig. II.2.167: Bessel functions of first kind.

with the complex Fourier coefficient:

cn = fm

∫ 1
2
Tm

− 1
2
Tm

x̃(t) · exp(−j2πnfmt)dt

cn = fmAc

∫ 1
2
Tm

− 1
2
Tm

exp [jβ sin(2πfmt)− j2πnfmt] dt

Substituting x = 2πfmt results in:

cn =
Ac

2π

∫ π

−π
exp [j(β sinx− nx)] dx (II.2.153)

The above integral has no closed-form analytical solution, but follows the Bessel functions of first kind:

Definition II.2.9.4: Bessel functions of first kind

The Bessel function of the first kind has an argument β and is defined as follows:

Jn(β) =
1

2π

∫ π

−π
exp [j(β sinx− nx)] dx (II.2.154)

Numerical values of this function can be obtained from tables, diagrams, calculators or computer

software, see also Fig. II.2.167.

Substituting Eq. (II.2.154) in Eq. (II.2.153) gives:

cn = AcJn(β)

and for the complex envelope function follows:

x̃(t) = Ac

∞∑
n=−∞

Jn(β) exp(j2πnfmt)
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f

X(f)

fc fc + fm

· · ·

Fig. II.2.168: Spectral harmonics of a FM signal with a sinusoidal message signal.

Now we can express Eq. (II.2.152) in form of a Fourier series expansion:

x(t) = AcRe

[ ∞∑
n=−∞

Jn(β) exp [j2π(fc + nfmt)]

]

x(t) = Ac

∞∑
n=−∞

Jn(β) cos [2π(fc + nfm)t] (II.2.155)

with Jn being the Bessel function (of first kind).

From Eq. (II.2.155) follows the frequency domain equivalent:

X(f) =
Ac

2

∞∑
n=−∞

Jn(β) [δ(f − fc − nfm) + δ(f + fc + nfm)] (II.2.156)

as an infinite sum of sideband spectral harmonics ±nfm, see also Fig. II.2.168. Due to the Bessel

function characteristic the amplitude of those harmonics decrease with increasing n, i.e. as we move

away from the carrier frequency fc. We also notice that the FM spectrum extends to infinity, which at a

first look seems problematic.

Recalling Definition II.2.9.3 of the modulation index, we notice how a change in amplitude Am

and/or frequency fm of the modulation (baseband) signal is reflected in the frequency spectrum. For

example, if we vary β, while keeping the modulation signal frequency fm constant, thus by varying

the amplitude Am, we notice the effect of the Bessel function on the total bandwidth of X(f). More

harmonics appear as we increase β by increasing Am, see Fig. II.2.169. However, in practice we can

limit the required bandwidth to a harmonic number nmax given by the frequency deviation ∆f , which

appears symmetric to the carrier frequency fc. This is expressed by an empirical rule-of-thumb based on

Carson’s rule for the transmitting bandwidth BT :

BT ≃ 2∆f + 2fm

= 2βfm + 2fm

= 2(β + 1)fm

(II.2.157)

Let’s compare this bandwidth to the AM counterpart, which is 2w = BT = 2fm for a sinusoidal

modulation signal. The FM signal, especially for high values of the modulation index, e.g. β = 5,

requires a higher bandwidth, here BT = 12fm, and therefore is considered as a broadband signal.
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In general, for a given bandwidth BT , we have to ensure that nmax harmonic frequencies are

covered, where:

BT = 2nmaxfm (II.2.158)

and nmax or BT are given following Carson’s rule.

A different way to evaluate the required bandwidth for the FM spectrum is based on the level of

the harmonics, and define the bandwidth as threshold for > 1% of Ac. Alternatively, we could include

frequencies until we reach 98% of the strength of the transmitted signal.

The above analysis was performed for a purely sinusoidal waveform of the modulating signal,

and cannot be simply used for a signal with arbitrary waveform of bandwidth w. Instead, we still may

consider a sinusoidal signal of frequency fs, and get correct results if we consider the most adverse case,

i.e. the highest frequency content, see also Fig. II.2.170.

f

X(f)

β = 1 fc fc +m

· · ·

f

X(f)

β = 2 fc

· · ·

f

X(f)

β = 5

fc · · ·

Fig. II.2.169: FM spectrum for different modulation indices of the sinusoidal modulation signal.
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f

M(f)

fs−fs

Fig. II.2.170: FM spectrum for arbitrary baseband signal waveforms.

Definition II.2.9.5: FM signal analysis for arbitrary waveforms of the modulation signal

For this analysis, we reassign the variable names as follows:

fm ↔ fs, β ↔ D is the frequency deviation ratio

which results in:

D =
∆f

fs
BT = 2(D + 1)fs

(Carson’s rule)

ò
Note: A typical value in FM radio is ∆f = 75 kHz.

II.2.9.2.2.2 FM measurements

Measurements exercises for FM are similar to the measurement example given for AM. Here we assume

the same measurement equipment and basic setup, however, for better visualisation in this script we use

different carrier and modulation frequencies compared to the AM measurement exercise.

Lab Procedure II.2.9.5: FM Measurement setup

Let’s exercise with a carrier signal of fc = 10MHz, at an amplitude of 6 dBm, and a modulating

signal of fm = 1MHz. Set these frequency and amplitude values of the modulated signal on the

RF signal generator, and press the FM/ΦM button.

1. Set the FM Rate softkey to 1MHz, the FM Dev softkey to 2MHz, and the Waveform soft-

key to Sine. Make sure that the FM softkey is On. Leave the all other softkeys as default.

Make sure you press MOD ON and RF ON.

2. Set an appropriate values for the timebase on the oscilloscope to see the modulating signal

properly, e.g. 1µs/division should be fine.

3. Set the VNA to spectrum analyzer mode. Go to Response > Meas > Meas Class and

set it to spectrum analyzer. Then select A. Set the center frequency tp 10MHz and the span

approximately 10× the modulating frequency (1MHz for now, but later you should change

it accordingly). Set the RBW to 500Hz or similar, to ensure a reasonable resolution.
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Now observe the FM-modulated signal on the oscilloscope, see Fig. II.2.171. It should look like

the yellow waveform, which is the modulated signal. In red shown, the sinusoidal modulating

signal.

Lab Procedure II.2.9.6: FM Measurement parameters

For the measurement of the spectral harmonics with the spectrum analyser, set the carrier fre-

quency to 50MHz and the FM Deviation to 50 kHz. Set the modulating frequency fm to the

following values:

– fm = 500 kHz =⇒ β = 0.1

– fm = 50 kHz = ∆f =⇒ β = 1

– fm = 10 kHz =⇒ β = 5

– fm = 5kHz =⇒ β = 10

– fm = 3.33 kHz =⇒ β = 15

– Finally set fm as low as possible, e.g. < 1Hz, =⇒ β → ∞

Figure II.2.172 summarises the measured FM spectras for the parameters given in Lab Proce-

dure II.2.9.6. For the narrowband FM case, β = 0.1, Fig. II.2.172a, the frequency span setting of the

spectrum analyser, 150 kHz, was too narrow, the FM sideband harmonics of fm = 500 kHz lie outside

the visible range, and we see only the fc = 50Mhz carrier signal. Therefore, an example for a “bad”

measurement, the SPAN should be changed to e.g. 3MHz. All other FM frequency spectrum measure-

ments shown in Fig. II.2.172 make sense, and illustrate the metrics of the underlying Bessel function

behaviour.

Fig. II.2.171: FM with a sinusoidal waveform as modulating signal at fm = 1MHz and fc = 10MHz,
with β = 2, observed as time domain waveform on the oscilloscope.
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(a) fm = 500 kHz =⇒ β = 0.1. (b) fm = 50 kHz = ∆f =⇒ β = 1.

(c) fm = 10 kHz =⇒ β = 5. (d) fm = 5kHz =⇒ β = 10.

(e) fm = 3.33 kHz =⇒ β = 15. (f) fm → 0 =⇒ β → ∞.

Fig. II.2.172: FM modulation of a CW carrier with as sine wave as modulation signal,
for fc = 50MHz and ∆f = 50 kHz, observed as frequency spectrum with a spectrum analyser.

�
For the extreme case of a very low modulation frequency, fm < 1Hz, Fig. II.2.172f, it is

worth to alter the SWEEP TIME setting of the spectrum analyser, which then will automati-

cally result in change of the RBW and VBW bandwidths. The unsynchronised internal sweep

of the spectrum analyser and the time period Tm = 1/fm of the modulating sine wave

signal are bouncing with each other, and remember that the spectrum analyser assumes a

time invariant behaviour of the signal during the sweep period!
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II.2.9.3 RF measurement instruments – some fundamentals and a brief overview

Modern RF measurement instruments, like the vector signal / spectrum analyser or the vector network

analyser, are complicated, and still evolving, measurement systems. Therefore, the following introduc-

tion is focused on a few concepts and principles utilised in those instruments, also some historical notes

are given.

II.2.9.3.1 The RF diode detector

(a) A coaxial RF diode detector. (b) Schematics of the RF diode detector.

Fig. II.2.173: RF diode detector.

The RF diode detector, or just short RF detector, is the most basic RF measurement instrument,

see Fig. II.2.173, details beyond the scope in this section can be found in [24]. This simple, passive

2-port element acts as broadband RF envelope detector, similar to a AM demodulator. Figure II.2.174

illustrates the principle of operation:

A RF signal waveform supplied at the input of the detector (see also Fig. II.2.173b) is rectified by a diode

(D), here only the positive part of the input signal (blue trace), VRF > 0, is passed, and then low-pass

filtered such that the envelope of the RF signal appears at the output, Vdet in Fig. II.2.173b, illustrated as

red trace. If the RF signal amplitude is constant, or varies only slowly over time, the detected RF signal

envelope can be measured by connecting a digital voltmeter (DVM) at the detector output, to visualise

faster, high-frequency baseband signal content, an oscilloscope can be used.

Key element of the RF detector is the diode. We briefly introduced this passive, non-linear circuit

element in the discussion of the tetrode RF amplifier, see Example II.2.8.7. However, for the RF diode

detector the so-called Schottky7 diode is preferred, which is based on a semiconductor-metal Schottky-

barrier junction. Compared to the more popular p-n junction diode, the Schottky diode has two favourable

features, making it more beneficial for RF signal detection:

Reverse recovery time , i.e. the time it takes to switch from the conducting forward region to the non-

conduction reverse region, which is much lower compared to pn semiconductor diodes.

Forward bias voltage , i.e. the bias voltage required to achieve the conducting state. The forward bias

voltage for a pn diode is typically 600 . . . 700mV, while the Schottky barrier diode starts already to

conduct at 150 . . . 450mV. As of this low bias voltage, some manufactures call them “zero-bias”

Schottky diode.

7named after Walter H. Schottky
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Fig. II.2.174: Envelope detection of a RF signal.

(a) Diode current vs. applied voltage. (b) IV characteristic in the reverse region.

Fig. II.2.175: IV characteristics of a “zero-bias” Schottky barrier diode, compared to an ideal diode
switch.

The IV -characteristic of the Schottky diode follows

ID = IS

(
e

VD−IDRS
nVT − 1

)
(II.2.159)

with VD being the voltage applied to the diode, ID the current through the diode, IS the reverse-bias

saturation current, VT = kT/q the thermal voltage (VT ≈ 26mV at room temperature), n the ideality

or quality factor, and RS the series resistance. Figure II.2.175 illustrates Eq. (II.2.159) for IS = 3µA,

RS = 25Ω and n = 1.06, in comparison to an ideal diode switch.

ò
Please note the rather high values of RS and IS of the Schottky diode, which are negligible

for a traditional pn-junction diode.

A self-biasing circuit and some impedance matching elements are added to the Schottky diode

to complete the RF diode detector circuit, Fig. II.2.173b shows a simplified schematic of a positive
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Fig. II.2.176: RF diode detector characteristic: DC output voltage vs. RF input power.

operating detector circuit. For most applications a coaxial implementation of a broadband RF detector

is suitable, see Fig. II.2.173a, here shown with a N-type coaxial connector for the RF input and a BNC

connector for the detected DC output signal.

Figure II.2.176 shows the DC output voltage vs. RF input power characteristic of a typical RF

diode detector, here based of a simulation following [25] for a HP HSMS-286x series Schottky diode

detector8. Please note the double-logarithmic scales, the RF input power is given in logarithmic dBm

values and the detected output voltage axes is presented in a logarithmic scale! The detected output

voltage Vout follows the RF input signal power Pin by

Vout = K
(√

Pin

)x
(II.2.160)

For low power RF input signals, ≲ −30 dBm, x ≈ 2, i.e. the detected output voltage is proportional to

the input signal power

Vout = γPin (II.2.161)

and we are operating the detector in the so-called square-law region, indicated as blue, dashed slope

in Fig. II.2.176, with γ = K being the diode voltage sensitivity (in mV/mW). For high power RF

input signals, ≳ −10 dBm, the diode impedance varies with the power level, and the slope is related to

the diode capacitance, operating frequency and load resistance, x ⪅ 1 in Eq. (II.2.160). This is called

the linear operating region of the RF diode detector, indicated as red, dashed slope in Fig. II.2.176. In

between those two regions, within a range of approximately −30 dBm < PRF < −10 dBm, the diode

detector operates in the transition region.

The usable dynamic range of the RF diode detector is usually referred to the square-law region,

the upper end is sometimes defined as a 0.5 dB compression of the voltage sensitivity γ, the lower end is
8at CW RF input frequency 1.8GHz, operating temperature 25° C, load resistance 47 kΩ, and a bias voltage of 380mV.
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related to the signal-to-noise ratio (SNR) of the detected output signal measured by the following video

amplifier, and is given by the tangential signal sensitivity (TSS). The TSS value depends on a variety of

factors, e.g. RF frequency, video bandwidth (of the detected output signal), DC bias current of the diode,

noise figure of the video amplifier, etc., and is defined in different ways, e.g.

PTSS =
3.23× 10−10

√
BW F Rv

γ
@300° K

for SNR = 8dB, with Rv being the video resistance of the diode, F the noise factor of the video

amplifier and BW the video bandwidth. Another definition is based on the minimum pulsed RF input

signal that causes an output signal that is equal, or tangential to the output noise peaks. Typical values

for TSS are PTSS ≈ −50 . . . − 60 dBm, which leads to a dynamic range in the square-law region of

∼ 40 dB, which can be extended with some biasing “tricks” [26].

On the other hand, by careful measurement and correction of the non-linearities of V out = f(Pin), also

accounting for the ambient temperature, load impedance, operating frequency, etc., e.g. using a look-up

table or fitting function, the diode detector can be used beyond the square-law region, which results in a

large dynamic range of ∼ 60 dB, or more.

As of the time of writing, RF detectors based on Schottky diodes are offered for a variety of

broad frequency ranges up 100GHz and beyond, while starting at a few MHz. Beside the RF detector

implemented in a coaxial housing, see Fig. II.2.173a, RF detectors are also available for the different

types of rectangular waveguides. Of course, the measured RF power as quasi DC voltage at the output

of the detector is always a scalar value, there is no information about the RF phase! However, for many

applications in accelerator RF this is sufficient, and still a very important and useful information, e.g. the

monitoring of the forward and reflected power at a directional coupler near the cavity feed point with a

pair of RF diode detectors, followed by a digitizer system, see also Fig. II.2.122.

ò
An impedance matching circuit helps to match the RF input of the diode detector to, e.g.

50Ω for coaxial detectors. However, the rectified waveform caused by the switching diode

generates a wide range of higher order harmonics, and a major portion of this harmonic

RF power is reflected. Therefore, a circulator / isolator located in front of the RF detector

can reduce this unwanted harmonic power penetrating into the RF system.

II.2.9.3.2 The slotted transmission-line

The maximum transfer of RF power along a RF system is one of the most important goals in accelerator

RF, and in RF engineering in general. This requires a good matching of the characteristic impedance

of the transmission-lines used – typically 50Ω for coaxial-lines – throughout all interconnections of the

installation, leading to minimum reflections and best RF power transmission. This requires a measure-

ment of the complex impedances at the ports of the various components, e.g. amplifiers, couplers, filters,

isolators, etc., used in the RF system.

In practice, the measurement of a complex impedance Zi at port i is performed as measurement

of the reflection coefficient Γi = Sii of this unknown load impedance ZL = Zi in a system of a well-

known reference impedance Z0, Eqs. (II.2.16) and (II.2.44). In the “early days” of RF engineering,
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sophisticated measurement instruments like a vector network analyzer were not available, and this type

of measurement was realised with the so-called slotted line setup, see Fig. II.2.177. The slotted line

measurement utilises the fact of standing waves appearing along a transmission-line of characteristic

impedance Z0 if it is terminated with an arbitrary load ZL ̸= Z0, Fig. II.2.51. The slotted line illustrated

in Fig. II.2.177 is a straight, air-dielectric 50Ω coaxial line, having a thin slot along the entire length,

enabling a little pin antenna to probe the electric field along this almost lossless TEM transmission-line.

Similar slotted lines exist also in form of waveguide measurement setups.

Figure II.2.178 illustrates the details of the slotted line V SWR measurement setup, which requires

a matched RF signal source providing a CW sinusoidal RF stimulus signal of a selected frequency f to

the input of the slotted line, a RF detector as discussion in Section II.2.9.3.1, and a digital (or analogue)

voltmeter (DVM) to measure the detected output voltage. The E-field pin probe can be moved along the

line – a precision scale helps to mark the exact location along the longitudinal z-axis – and the detected

output voltage |V (z)| will follow the standing wave E-field pattern given by an unknown DUT load

impedance ZX . Following Section II.2.6.1 the V SWR is found from the maxima Emax ∝ |Vmax| and

the minima Emin ∝ |Vmin| of the measured standing wave E-field signal along the line:

V SWR =
|Vmax|
|Vmin|

(II.2.162)

As the slotted line is air-dielectric, vp ≊ c, the spacing of two consecutive minima ∆min = λ/2 can be

used to verify the frequency of the stimulus signal

f =
c

2∆min

Fig. II.2.177: A slotted coaxial transmission-line for V SWR measurements.
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Fig. II.2.178: Impedance measurement through a VSWR characterisation along a slotted line.

From Eq. (II.2.162) it is straightforward to calculate the modulus of the reflection coefficient

|Γ| = V SWR− 1

V SWR+ 1
, (II.2.163)

see also Eq. (II.2.18). However, to evaluate the phase is a bit more tricky. It requires to measure the

distance zmin between the last minima on the line, i.e. the first minima from the end of the line, and the

actual end of the line at the DUT, see Fig. II.2.178, taking the length of connectors, etc. to the DUT

correctly into account. Now we can calculate the argument of the reflection coefficient

∠Γ =
4π

λ
zmin − π (II.2.164)

With Eq. (II.2.163) and Eq. (II.2.164) we finally find the value of the unknown load impedance

ZX = Z0
1− Γ

1 + Γ
(II.2.165)

with Z0 being the known characteristic impedance of the slotted line.

To successfully measure the E-field with a little pin probe, the low input impedance of the diode

detector needs to be transformed, a λ/4 transmission-line transformer, Eq. (II.2.86) is used to transform

towards a high impedance at the pin antenna see Fig. II.2.178. A variable capacitor or similar element is

still required to tweak the matching as the λ/4 TL-transformation is frequency dependent.
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Fig. II.2.179: Waveform of a periodic signal in time and frequency domain.

ò
The slotted line measurement is low-cost, but extremely time consuming and error prone!

Please note, also the non-linear behaviour of the RF diode detector, Eq. (II.2.160), has to

be taken into account, and note, we have to measure the RF voltage of the standing wave

maxima and minima, not the RF power!

Today, the slotted line measurement is obsolete, it would take hours, or even days to char-

acterise an unknown load impedance over a larger frequency range with many points,

which would take a modern VNA less than a second. Still, the educational benefit of the

slotted line is tremendous, and we always introduce this type of RF measurement at the

hands-on RF training during the JUAS Practical Days!

II.2.9.3.3 The spectrum analyzer

Spectrum analyzer (SA), vector signal analyzer (VSA) and FFT-analyzer are different names for basi-

cally the same type of instrument, to detect, analyse and monitor RF signals by it’s frequency content,

using slightly different technologies. In the following we simply stick with spectrum analyzer (SA), but

try to explain some of the still evolving technology principles.

The spectrum analyzer is the counterpart to the oscilloscope, while the oscilloscope presents the

signal waveform as a function of time, the spectrum analyzer retrieves the spectral content of the signal

to present it as function of the frequency – for positive frequencies only – Fig. II.2.179 illustrates the

principle for a periodic signal waveform. As the frequency domain is a purely mathematical concept, the

signal to be measured has to be time-invariant during the time it takes the spectrum analyzer to sweep the

entire frequency axis. The traditional analogue RF spectrum analyzer requires the signal waveform to be

periodic, today most spectrum anlyzers have a digital back-end for the signal processing (vector signal

analyzer, FFT-analyzer) and have not this limitation.
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II.2.9.3.3.1 The superheterodyne principle

To understand the internal function and operation of a spectrum analyser (and as well the vector network

analyzer, discussed in the next section), we have to understand how a radio works! Even as radios

and TVs have been replaced by other technologies, some of their internals are still applied in modern

telecommunication products, as well as in RF instruments like the spectrum and network analyzer.

Figure II.2.180 shows the block schematic of a traditional, simple radio receiver. The weak signal

from the antenna is amplified by a low-noise RF gain stage, followed by a selective band-pass filter,

tunable to receive the desired radio station. Another RF amplifier may be required in front of the de-

modulator, which separates the modulated audio content from the RF carrier. Finally we need an audio

amplifier and a speaker. BUT, this simple radio receiver cannot be build, it is not realisable!

So, what is wrong here?!

It is the tunable band-pass filter! As a matter of fact, even with modern, most sophisticated tech-

nologies a band-pass filter, tunable in the range 87 . . . 108MHz, with a bandwidth of a few 10 kHz cannot

be made. Moreover, also the demodulation at the high carrier frequency is difficult.

Figure II.2.181 shows the way out of the dilemma, it is called the superhetorodyne receiver, also called

superhet, or simply super. Instead of trying to design and build RF components at high frequencies,

which is difficult, expensive and sometimes impossible, we realise those RF components at a favourable,

fixed frequency, called the intermediate frequency (IF). In Fig. II.2.181 this IF stage is indicated in purple,

and consist of a band-pass filter and a high-gain IF amplifier, e.g. operating at a IF of 10.7MHz.

In front of the IF-stage is the heart of the superheterodyne receiver, the down-converter, which

consist of a frequency mixer and a tunable local oscillator (LO), both shown in red (Fig. II.2.181). The

mixer is a non-linear RF 3-port and acts as a frequency-converter, the RF and LO signal frequencies at

its inputs are “mixed”, delivering a signal at the IF output of the mixer that contains difference and sum

frequencies, fIF = fRF ± fLO. The LO is a tunable RF sine-wave generator, it has to be tuned to a

frequency that is the offset of the IF frequency, e.g. above the RF frequency of the desired radio station.

The superheterodyne receiver, Fig. II.2.181, looks more complicated than the simple receiver in

Fig. II.2.180. However, it was, and still is the most successful RF receiver principle, it is also converted

into the “digital domain” and has many applications beyond RF engineering. Figure II.2.181 illustrates a

single-stage superhet, for the operation at higher frequencies double and triple superheterodyne receivers

have been developed, which than have two or three down-converter and IF stages. An automatic gain

control (AGC) feedback-loop is used to keep the demodulates signal level constant by automatically con-

Fig. II.2.180: A “too simple” radio receiver.
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Fig. II.2.181: A superheterodyne radio receiver.

(a) Symbol of the mixer. (b) Frequency conversion with the mixer.

Fig. II.2.182: The mixer operating as frequency converter.

trolling the gain of the IF stage(s), indicated as dashed feedback signal path in Fig. II.2.181. preventing

saturation effects on the following gain stages.

ò
To cover a single large frequency range, as required for the spectrum analyzer, a common

technique is to first up-convert to a higher frequency and then down-convert in one or

several IF steps.

Also please note, the IF stage may consist of several gain stages and (band-pass) filters.

II.2.9.3.3.2 The mixer

Strictly speaking, the mixer is a RF component and could have already been introduced in the previous

section. However, the mixer, operating as frequency converter (see also Fig. II.2.182), is mission critical

in the RF up- and down-converters of the superheterodyne receiver sections in spectrum and network

analysers, and therefore discussed in this section.

The frequency down-conversion with a mixer in a superheterodyne receiver circuit enables the

detection and characterisation of RF signals over a very large dynamic range, from almost thermal noise

level (≡ −174 dBm/Hz) up to ≈ 10 dBm. The mixer acts as a frequency multiplier, RF is the RF input

signal, LO is a sinusoidal input signal from a local oscillator, and IF is the down-converted intermediate
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(a) Operational principle. (b) The double-balanced mixer.

Fig. II.2.183: Schematics of the frequency mixer.

Fig. II.2.184: Time-domain signals of a mixer for fLO = 1.6fRF .

frequency signal at the output, see Fig. II.2.182a. For sinusoidal signals at the inputs of the mixer we get:

vRF (t) = ARF sin (ωRF t+ φRF )

vLO(t) = ALO sin (ωLOt+ φLO)

vIF (t) = vRF (t)× vLO(t)

vIF (t) =
1

2
ARFALO {sin [(ωRF − ωLO)t+ (φRF − φLO)] down-conversion

+sin [(ωRF + ωLO)t+ (φRF + φLO)]} up-conversion

(II.2.166)

Figure II.2.182b illustrates the frequency conversion for a frequency band at the RF input, (shown in

blue). The mixer will always produce the difference (fRF − fLO) and the sum frequencies (fRF + fLO)

between fRF and fLO, the selection of down- or up-conversion is performed by the band-pass (plus

eventual low- or high-pass) filter in the IF stage.

From an operational point of view, the mixer is basically a cross-bar switch controlled by fLO,

see Fig. II.2.183a. Every half LO-cycle, 1/(2fLO), the sign of RF input signal is flipped at the IF -

output, which in practice requires the LO control signal to always be larger then the RF input signal,

ALO > ARF . Therefore, in a time-domain signal visualisation, the LO signal can be assumed as

rectangular switch control waveform, see Fig. II.2.184.

Industry offers a large variety of passive (diode-based) and active (transistor-based) RF mixers, as

chips, with coaxial connectors and for waveguides. High-frequency mixers – mm-wavelength regime –

with waveguide RF input and coaxial IF output can be attractive to extend the frequency range of existing

measurement equipment, spectrum and/or network analysers. Figure II.2.183b shows as example the
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Fig. II.2.185: Simplified block schematic of a “traditional” spectrum analyzer.

schematic of the popular double-balanced mixer, which is based on four diodes in a bridge configuration,

and the RF - and LO-signals supplied via baluns. Form the LO-signal view, the diodes are always

switched fully in saturation, while from the RF -signal perspective the diodes stay in the square-law

regime. This symmetric circuit arrangement offers a good LO-to-RF signal isolation and the rejection

of other unwanted spurious signals in the IF -output.

ò
Please note the difference of an ideal mixer and its “real-world” implementation:

fIF = fRF ± fLO ideal mixer

fIF = mfRF ± nfLO “real-world” mixer
(II.2.167)

Beside that, most mixers also produce an “image”, i.e. a side-band of the RF -signal,

indicated in orange in Fig. II.2.182b, which then unfortunately gets down-converted to the

same IF baseband. The careful section of LO and IF frequencies, the use of appropriate

filters and eventually using so-called image-rejection mixers can address this problem.

II.2.9.3.3.3 The “traditional” spectrum analyzer

After this lengthy introduction we finally come to the spectrum analyzer. Figure II.2.185 shows a sim-

plified block schematic of the “traditional” version of this measurement instrument, as it was build unit

the early 2000s, almost entirely based on RF and analogue components, but microprocessor controlled.

It is not too difficult to recognise the superheterodyne receiver sections, but, there are a few additional

blocks, e.g. a sweep generator, a reference oscillator, a logarithmic amplifier, and a display (CRT or

digital), among others.

The sweep generator is used to define the Start and the Stop frequencies by controlling the

local oscillator, and – directly or indirectly – the Sweep Time of the trace cursor moving horizontally

across the display. The vertical axis of the display is controlled by the down-converted and demodulated

RF input signal, which in combination with the horizontal sweep ramp results in a frequency-domain

representation of the signal waveform at the RF input. A few remarks to the operational relevant circuit
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blocks:

sweep generator The graticule of the SA display is divided in 10×10 Divisions, see Fig. II.2.186a. As

mentioned, the saw-tooth waveform of the sweep generator is controlled by the user setting to the

desired frequency range, i.e. by selecting a Start and a Stop frequency, or alternatively as Center

and Span frequencies for the horizontal axis of the graticule. The sweep-rate df/dt = SPAN/ST

of the saw-tooth ramp is usually automatically selected and defines the Sweep Time (ST ) based

on the Span setting.

IF gain The vertical axis is for most cases scaled in logarithmic dBm units and the scaling is provided

by the user in terms of, e.g. dB/div. The user also has to set a Reference level (Ref) in dBm

to the vertical scale, e.g. to the center division (5 Div) or to the upper division (10 Div). These

settings of the vertical scale will modify the IF gain accordingly, but will also modify other offset

and gain settings not shown in Fig. II.2.185.

IF bandwidth The Fourier transform of a pure sine-wave is a Dirac δ-function, located at the frequency

f = ω/(2π). The measurement and display of a perfect sine-wave signal with the spectrum

analyzer would however require the bandwidth of the IF band-pass filter to be infinite narrow. In

practice the user has to select a Resolution Bandwidth (RBW ), which is the IF bandwidth, to

a reasonable value, typically in a range between a few Hz and a few MHz. The more narrow the

bandwidth of the Gaussian IF band-pass filter, the higher is the resolution, resulting in a better

SNR. However, selecting a narrow IF filter bandwidth takes the filter more time to settle to a

steady-state, thus the sweep-rate has to decrease accordingly, and a frequency sweep between

Start and Stop frequency will take longer. The SA automatically follows the coupling rule

df

dt
=

SPAN

ST
<

RBW 2

k
(II.2.168)

for a given IF filter bandwidth RBW , ensuring a steady-state condition, i.e. a stable signal ampli-

tude within ∆T = 1/RBW . k ≈ 2 . . . 3 in Eq. (II.2.168) accounts for the synchronously-tuned,

Gaussian-like IF filter characteristic.

video bandwidth (V BW ) is the bandwidth of the low-pass video filter of the demodulated signal. Usu-

ally the SA automatically sets V BW = RBW as part of the automatic coupling of SPAN , ST ,

RBW , and V BW . Decreasing V BW has the effect similar to a signal averaging over several

frequency sweeps, it improves the SNR but increases the sweep time.
9courtesy F. Caspers, CERN.
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(a) Spectrum analyzer display with typical settings for a high resolution bandwidth.

(b) Spectrogram display for 200 measurement traces, arranged in a colour-coded con-
tour graph. Time runs vertically from top to bottom.

Fig. II.2.186: Spectrum analyzer measurements of electron cloud studies in the SPS (CERN)9

ò
The measurement of low-level RF signals, e.g. < −120 dBm, requires a low noise-floor,

thus a low RBW value, which automatically leads to a long, eventually very long sweep

time! Therefore, it is advisable to reduce the Span as much as possible, and of course to

set the RF input attenuator to 0 dB. Furthermore, the rather poor noise performance of

the SA can be substantially improved with a build-in pre-amplifier (optional, not shown in

Fig. II.2.185) or a dedicated external LNA.
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Fig. II.2.187: Simplified block schematic of a “modern” vector signal (FFT) analyzer.

The “traditional” analogue RF SA, Fig. II.2.185, utilises a logarithmic amplifier in the IF stage,

which acts as a dynamic compressor, a large IF input range, > 120 dB, is mapped on a small range of

a few volts for the demodulated video signal. In practice, logarithmic amplifier and envelope detector

(demodulator) are interleaved on a single chip.

The tunable local oscillator is based on a phase-lock loop (PLL) RF generator and needs to be

stabilised by a reference oscillator.

II.2.9.3.3.4 Vector signal (FFT) analyzer

Today, all spectrum analysers are vector signal or FFT analysers, see Fig. II.2.187, which digitise the

IF signal and apply the digital signal processing techniques used in telecommunication systems. Key

element is the analog-to-digital converter (ADC), which provides a digital replica of the IF signal to a

digital down-converter (DDC), which in may cases is integrated on the ADC chip itself. The DDC acts

as baseband demodulator with two orthogonal outputs, an in-phase I-channel, equivalent to the real part

of a complex number, and a quadrature-phase Q-channel, equivalent to the imaginary part of a complex

number. The numerically controlled oscillator (NCO) is tuned to the IF frequency and phase-locked to

the reference oscillator of the system (sorry, some of these details are not depicted in Fig. II.2.187), and

therefore enabling the frequency analysis of the RF signal waveform – not limited to a scalar, like for the

“traditional” analogue RF spectrum analyzer – in a vector format, plus the measurement of non-periodic

and transient RF waveforms. The performance of the vector signal analysis is mostly given by the ADC

characteristics, i.e. the maximum IF bandwidth is less then half the ADC clock rate (Nyquist-Shannon

theorem), and the spurious-free dynamic range is linked to the effective number of bits (ENOB) of the

ADC.

Figure II.2.186 shows electron cloud measurements performed long time ago with an older gen-

eration of a vector signal spectrum analyzer, still, gives an impression of the many display options. The

“modern” vector signal analyser, Fig. II.2.188 is / can be equipped with an almost infinite number op-

tions and features, mostly tailored to the telecommunications industry. However, noise figure and IP3
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measurements, phase-noise and clock-jitter analysis are some of the very useful options also for accel-

erator RF engineering. Another feature of the vector signal analyzer is the fact to better understand AM

and FM modulation sidebands in complicated RF signals as the sign information of each harmonic is

available.

ò
The block schematics discussed in this section, Figs. II.2.185 and II.2.187, present a very

simplistic picture of the spectrum analyser technology. In most cases, the spectrum an-

alyzer utilises two to four frequency converters, with the first one being an up-converter.

The layout of frequency ranges, and LO and IF frequencies has to be optimised to avoid

unwanted image and spurious frequencies in the detection system of the SA. More details

on this, and on the technology of spectrum analyzers in general can be found in literature

from industry [27].

Lab Procedure II.2.9.7: TOI measurement with the spectrum analyzer

The measurement of the 3rd intercept point (TOI or IP3) of a RF amplifier, see also para-

graph II.2.8.4.2.2, is straightforward, however, beside the spectrum analyzer it requires some

additional equipment, see also Fig. II.2.189:

1. A spectrum analyzer, here a Anritsu MS2692A, 50Hz − 26.5GHz was used to observe

the spectral content of the signals Fig. II.2.188.

2. Two RF signal generators (ideally identical one), e.g. Agilent E8257D, 250 kHz −
20GHz, to generate the two sinusoidal RF tone signals, Fig. II.2.189a.

3. A RF power combiner, to combine the two signals from the generators. Please ensure the

Fig. II.2.188: An older, but still “modern” vector signal analyzer (Anritsu).
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power combiner operates up to the frequency range of interest, here 1GHz, Fig. II.2.189b.

4. Three RF attenuators, 2× 10 dB (or similar) attenuation, and one of 4 dB (or similar) at-

tenuation, Fig. II.2.189b.

(a) Two RF signal generators. (b) Power combiner and attenuators.

Fig. II.2.189: Additional equipment for a TOI (IP3) measurement.

Preferably use BNC cables for the following setup:

1. Connect the two same value attenuators to ports 1 and 2 of the power combiner, they are

essential to improve the isolation between the input ports of the power combiner. It is

recommended to use attenuators of 10 dB attenuation, or more, except a power combiner

with very high isolation (> 40 dB) is available.

2. Connect the 4 dB (or similar) attenuator to the 3rd sum port (S). This attenuator is optional,

but recommended to improve the return loss of the sum port of the power combiner.

3. Connect the outputs of the signal generators to the two ports (1 and 2) of the combiner, to

the two attenuators.

4. Connect the 3rd (S) sum port to the input of the amplifier.

5. Connect the output of the amplifier to the input of the spectrum analyzer.

6. Set the frequency of the 1st RF signal generator to 499.5MHz and to 500.5MHz on the 2nd

generator.

7. Set the amplitude of both the signal generators to −20 dBm, or less.

8. On the spectrum analyzer, from Measure menu choose the TOI automatic measurement.
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9. Press TOI:On and press Frequency Auto Tune. You should see four harmonic signal

peaks, if you see more, you should check again your setup. In the latter case, the sources

may be not properly isolated from each other.

10. Verify if the two main harmonic peaks in the spectrum are of equal amplitude. If not,

correct the amplitude of one signal accordingly until they are equal.

Fig. II.2.190: Spectrum for the TOI measurement

Figure II.2.190 shows the measured spectrum of the two tones and the 3rd-order intermodulation

harmonics. By locating markers to the peaks of the harmonics we measure the level of the funda-

mental tones as ≈ −8.04 dBm, and for the intermodulation tones as ≈ −64.8 dBm. Hence, their

difference is 56.25 dBm.

Now the TOI can be calculated:

(TOI)dBm = Ptone +
P∆

2
= −8.04 +

56.76

2
= −8.04 + 28.34 = 20.34dBm

which is very close to the value given by the automated process of the signal analyzer

(Fig. II.2.191).
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Fig. II.2.191: Automated TOI measurement values from the signal analyzer.

Lab Procedure II.2.9.8: Noise figure measurement with the spectrum analyzer

Noise in RF amplifiers was discussed in Section II.2.8.4.3, including giving definitions for the

noise factor F , Definition II.2.8.4, and the noise figure NF , Definition II.2.8.5.

Consider an ideal (noiseless) amplifier, terminated at its input (and output) with a source (and

load) resistor, operating at 290K ambient (room) temperature with an available power gain GP .

At the output we measure:

Pa = kBT0∆fGP

For T0 = 290K a we obtain kBT0 = −174 dBm/Hz. At the input we determine a given signal

with a certain signal-to-noise ratio Si/Ni, and at the output a SNR of So/No, which results in

the definitions of noise factor, Eq. (II.2.137), and noise figure Eq. (II.2.140).

NF indicates the performance of a device due to its internal components and physical limits. Of

course, we want the noise figure value to be as low as possible because this indicates a better

noise performance of the device. A low noise figure means, the device adds very little noise, and

a high noise figure means it adds a lot of noise.

An ideal amplifier has F = 1 or NF = 0dB. The noise temperature of this amplifier is 0K,

and the signal and noise levels at the output will linearly increase with the gain. A real-world

amplifier will adds some noise on its own, which leads to a decrease in So/No due to the added

noise Na, see also Eq. (II.2.138):

F =
Na +NiGa

NiGP
=

Na + kT∆fGa

kBT0∆fGP
(II.2.169)

The noise factor F and the noise temperature T are related as:

T = Te =
Na

kB∆fGP
= T0(F − 1) (II.2.170)

with Te being the equivalent temperature of a source impedance into a perfect, noise-free device,

e.g. a RF amplifier with power gain GP , that would produce the same added noise Na, please

compare with Eqs. (II.2.130) and (II.2.138).

The Y-factor method is a popular way to measure the noise figure. It is based on a switchable noise

source with two calibrated values N1 and N2 for the noise temperature, Tc and Th, corresponding
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to “cold” and “hot”. Usually a dedicated noise diode is used as noise source, switched between

non-bias and bias operation to provide the two noise temperatures. The calibrated noise level is

defined as excess noise ratio (ENR):

ENRdB = 10 log
Th − Tc

T0

or in linear form:

ENR = 10
ENRdB

10

The noise source is connected to the amplifier or device-under-test (DUT )to be analysed, pro-

viding noise “on” (N2) and “off” (N1) conditions. The ratio of these noise powers is called

the Y-factor, and it is essentially the ratio of the noise power at the output of the DUT with and

without the added noise:

Y =
N2

N1

Y-factor and ENR can be used to determine the noise slope of the DUT. The calibrated ENR of

the noise source represents a reference level for the input noise, which allows the calculation of

the internal (added) noise Na of the DUT:

Na = kBT0∆fGP

(
ENR

Y − 1
− 1

)
Most spectrum analyzers (SA) have the option for operating in an automatised noise figure mea-

surement mode, which automatically controls the noise diode, i.e. switching between “hot” (on)

and “cold” (off) states, acquiring the DUT output signal, and computes – based on the calibrated

ENR of the noise diode – the total system noise figure:

F =
ENR

Y − 1
(II.2.171)

which includes noise contributions from all parts of the system. In case the “cold” noise temper-

ature Tc ̸= T0 = 290K:

F =
ENR− Y (Tc

T0
− 1)

Y − 1

To perform noise figure and gain measurements with the SA, a noise source is needed, which adds

a well-defined and ideally white noise to the DUT, the excess noise ratio (ENR), see Fig. II.2.192.
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Fig. II.2.192: A noise source, Agilent 346A, 10MHz− 18GHz.

The output of the noise source has a minor frequency and temperature dependency, and the user

has to upload the ENR tables into the analyzer. Typically, this data is printed a table on the back of

the noise source (Fig. II.2.192). In our case, we will assume that value to be constant, ≈ 5.4 dB,

as our frequency range of interested is ≈ 0− 2GHz.

Preferably use BNC cables for the following setup:

1. Connect the noise source control output on the back of the spectrum analyzer with

a cable to the input of the Agilent 346A noise source, and then connect its output to

the input of the amplifier.

2. Connect the output of the amplifier to the input of the spectrum analyzer.

3. On the SA from the Application Switch select the automatic Noise Figure measure-

ment.

4. Go to Sweep Setting and set Start to 10MHz, or similar (it doesn’t really matter as long

as it is a reasonable low frequency) and Stop to 2GHz.

Set Sweep Points, e.g. to 21. (For the graphs presented here 51 points were used, but that

would take a lot more time, 21 measurement points are sufficient).

5. From Frequency Mode select Sweep.

6. Go to Common Setting > ENR > Noise Source Select > NC346A to match the one we

use.
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7. ENR mode > spot, spot ENR > 5.3 dB, to approximately match the ENR from the table

on the back side of our noise diode.

8. Go to Common setting > cal setup > set min ATT to 0 dBm, if it is not already set.

9. As you notice, the CAL Status indicated the instruments is uncalibrated. To fix that, press

Calibration Now, and after waiting some seconds you should see OK on the CAL Status.

Figure II.2.193 shows the measurement results, in the upper graph the noise figure vs. frequency,

in the lower graph the gain vs. frequency. With increasing frequency, the noise figure increases,

hence it degrades. The same applies for the gain, however, the specified operational region of the

amplifier ends at 1GHz, and in this region the noise figure is always below 4 dB, and the gain

is > 30 dB, as indicated in the amplifier specifications. Overall, the amplifier seems to operate

satisfactorily in its specified frequency range.

Fig. II.2.193: Noise figure and gain vs. frequency measured by the spectrum analyzer.

aIt is important that the device (e.g. the amplifier) stays at constant room temperature of 290K. This temperature
plays a role because the noise contribution in electronics is mainly caused by thermal agitation of electrons, the
thermal noise. Sometimes T0 is referred to 300K, in any case, this T0 value should be kept constant throughout the
measurement procedure, as it is important to achieve correct results!
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Fig. II.2.194: A simple method to measure S-parameters.

II.2.9.3.4 The vector network analyzer

As mentioned in Section II.2.9.1, the RF vector network analyzer (VNA) is a laboratory instrument to

characterise RF components, elements and subsystems, primary by measuring their S-parameters, see

also Fig. II.2.155. As the name “vector” network analyzer suggests, there have also been scalar network

analyzers, however, today all RF network analyzers are vector network analyzers and the related acronym

“VNA” is used for the naming.

II.2.9.3.4.1 How to measure S-parameters?

The scattering parameters (S-parameters), and their advantages to describe the characteristics of RF

components and subsystems have been discussed in Section II.2.7. A method to measure the reflection

coefficient Γ = Sii at a given port ii of the DUT, based on a V SWR measurement utilising a slotted

transmission-line, was introduced in Section II.2.9.3.2. However, this method appears to be too time-

consuming and error prone, and it cannot measure the transmission coefficients Sij .

Figure II.2.194 shows a simple measurement setup based on a directional coupler, see also para-

graph II.2.8.1.7.4, to measure Sii(f) and Sij(f), here illustrated for a 2-port DUT S-parameter character-

isation. Beside a directional coupler with well known parameters, we also need three well characterised

RF diode detectors, as discussed in Section II.2.9.3.1, and a RF source which delivers a sinusoidal wave-

form of adjustable frequency, e.g. a RF sweep generator or synthesizer. The RF diode detectors must

have a perfect match to the DUT, resp. directional coupler port impedances, i.e. a resistance of 50Ω at

the RF input, to avoid uncontrolled reflections in the measurement setup (a2 = 0). Of course, a control

and data acquisition (DAQ) system is also required, but not shown in Fig. II.2.194.

The measurement of the 2-port DUT S-parameters is then performed in two steps:

1. Set the RF source generator to the desired frequency, or frequency range f , and acquire a1(f) and

b1(f) at the directional coupler and b2(f) at the output port of the DUT. From a1(f) and b1(f)

follows

S11(f) =
b1(f)

a1(f)

∣∣∣∣
a2=0
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and a1(f) and b2(f) gives

S21(f) =
b2(f)

a1(f)

∣∣∣∣
a2=0

2. Swap the ports of the DUT and repeat the procedure, now we are acquiring a2(f), b2(f) and b1(f),

while a1 = 0, which results in S22(f) and S12(f).

For DUTs with more than two ports, more port “swapping” is required, while ensuring the unused ports

are always perfectly terminated in their port impedance!

Unfortunately the RF diode detectors do not measure signals ∝ ai or ∝ bi, they do measure only

the rectified RF envelope, thus the scalar values of the RF signals ∝ |ai| and ∝ |bi|, as explained in

Section II.2.9.3.1. Therefore, our simple S-parameter setup, Fig. II.2.194, is a scalar “network analyzer”

(SNA), measuring |Sii(f)| and |Sij(f)|!

II.2.9.3.4.2 VNA principle of operation

The vector network analyzer (VNA) is based on the superheterodyne receiver principle and share some

hardware aspects of the vector signal analyzer, see the previous Section II.2.9.3.3. Figure II.2.195 shows

a simplified block schematic of a 2-port VNA, illustrating the key elements of the instrument10. The DUT

is connected via high-quality 50Ω coaxial cables to the two ports. The RF- and LO-source generators

are phase-locked to a reference oscillator (not shown) and provide the RF and LO signals for the four

down-converters, enabling a simultaneous measurement of the four power waves, a1, b1, a2 and b2, as

a function of the frequency f of the RF source stimulus signal at the two ports of the DUT. A cross-bar

switch toggles to feed the RF source signal to the couplers of port 1 and port 2, providing the incident

ai power wave. The IF sections (1-of-4 shown) resemble similar technologies like in the vector signal

analyzer, Fig. II.2.187, and provide a vector representation of the demodulated signals.
10Different block configuration schemes exist, depending of VNA type and manufacturer.

Fig. II.2.195: Simplified block schematic of a vector network analyser.
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Fig. II.2.196: Front-panel with ports, display and input buttons of a typical VNA.

ò
The separation of forward ai and backward bi travelling to the ports of the DUT can be

performed by directional couplers, as indicated in Fig. II.2.195. However, some VNAs

span a very large frequency range, starting at a few kHz or MHz, and spanning up to

100GHz and more! It is difficult to impossible to make a directional coupler for such a

wide frequency range, therefore, resistive bridge couplers or other proprietary techniques

are used to facilitate that challenge.

Figure II.2.196 shows the front-panel of a typical VNA, here with four test ports using N-type

coaxial connectors. The look and feel of the VNA varies a bit between the manufacturers, but it is

similar to driving a car, the differences are manageable and in some aspects the operation of a VNA is

similar to that of a spectrum analyzer. Usually there are a few main menus to setup and operate the VNA,

each can have one or more levels of sub-menus to go into the details. The stimulus buttons allows to

setup the frequency range, RF power, etc., and with the measurement buttons we can select one or more

S-parameters to be displayed in the format of interest, e.g. S11 in a Smith-chart format and / or S21 in

magnitude and phase. Other menus allow to set markers, automatic measurements, the display, etc.

ò
Beside the typical VNA shown in Fig. II.2.196, there exist a class of very compact, so-

called USB-VNAs with similar, or even more advanced performance. These instruments

have no front-panel and are entirely operated via a laptop computer.
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II.2.9.3.4.3 VNA calibration

The hardware the even most advanced, expensive “ultra-modern” VNA is not perfect, e.g. the internal

source is not perfectly matched to 50Ω port impedance – over the entire frequency range –, its internal

directional couplers or bridge networks have a finite directivity, since there exists no ideal, infinite direc-

tivity in practice, and finally, the coaxial cables between VNA and DUT ports have frequency-dependent

attenuation (dispersion) effects.

This calls for a calibration to correct all these unwanted, but systematic errors, to guarantee a

precise S-parameter characterisation of the DUT itself, independent of most systematic imperfections of

the measurement instrument and cables. There are several calibration procedures to eliminate some, or

even all of the mentioned deficiencies, and while their names differ a bit among the VNA manufacturers,

the methods are basically the same. The simplest calibration method is called the response correction,

and is applied for transmission coefficients Sij . It basically is a Sij (or Sji) transmission measurement

of a quasi “zero length” ideal transmission-line, often referred as “thru” calibration, by connecting the

two cable ends of the two-port VNA with each other. For the given setting of the VNA, i.e. Start / Stop

frequency, # of frequency Points, Resolution Bandwidth, Power level, etc., magnitude and phase

are acquired and stored as calibration reference data file Sijref in the non-volatile memory of the VNA

for each frequency point. Now, a DUT can be connected between the cable ports, with the connectors

serving as reference planes of the calibrated system setup, i.e. the VNA plus the cables. The VNA is then

measuring in corrected calibrated mode and continuously performs:

Sijcorr =
Sijmeas

Sijref

ò
Strictly speaking, a “zero-length” thru transmission-line is only given for coaxial VNA

cables with different genders at the DUT side, i.e. female and male connectors. The use

of any coaxial gender adapter will add a small section of uncalibrated, but basically loss-

less transmission-line, which in many cases can be ignored, except for measurements that

require knowledge of the absolute phase ∠Sij .

However, this simple calibration procedure eliminates only a few of the twelve systematic errors

being present in a 2-port VNA measurement setup, basically the frequency response errors transmission

tracking of the setup. Other errors, such as the impedance mismatch of the RF source, the impact of the

finite directivity in the separation of forward / backward travelling waves, and the impedance mismatch

of the test port cables (reflection tracking), are still present. Therefore, a more sophisticated, and widely

popular calibration technique is applied to the reflection measurements Sii, called the vector correction,

and is also known as the Short-Open-Load (SOL) calibration technique.

This technique corrects for three independent error sources mentioned above and needs to be applied to

each VNA test port.

For the vector correction, the VNA applies an internal, mathematical error model, the error adapter,

as illustrated in Fig. II.2.197. Without error adapter the reflection coefficient ΓiM = SiiM measured by

the VNA at DUT port i and the true reflection coefficient of the DUT, ΓiDUT = SiiDUT , are different,
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Fig. II.2.197: Error model of the VNA.

Fig. II.2.198: Interpretation of VNA error terms

error term interpretation

eD directivity
eS source match
eRT reflection tracking

SiiM ̸= SiiDUT . The error adapter is a matrix with three parameters, eD, eS , and eRT to correct for the

three systematic error mentioned above, see also Fig. II.2.198,:

SiiM = eD + eRT

(
SiiDUT

1− eSSiiDUT

)
(II.2.172)

The three, frequency dependent unknowns, eD, eS , and eRT , in Eq. (II.2.172) are found by a measure-

ment, i.e. the calibration procedure, using three standards, a short, an open and a load, to be located at

the physical reference plane at the end of the VNA cable instead of the VNA port. In other words, we

need to carry out three independent calibration measurements for each frequency point, to solve the three

coupled equations hidden in Eq. (II.2.172) for three complex unknowns, eD, eS , and eRT .

The unknowns of the error network are determined applying a calibration measurement with three

different, but known, calibration DUTs. These calibration DUTs do not need to be perfect, but, the

electromagnetic properties need to be known to a great precision. The tabulated complex, frequency-

dependent S-parameters of the calibration standards are provided by the manufacturer of the calibration

hardware ( they are often referred as calibration kit), and are stored in the VNA memory as calibration

kit reference data. Usually the calibration DUTs represent a Short circuit, an Open circuit, and an

impedance matched Load, i.e. a 50Ω termination resistor, enabling the VNA to determine the frequency-

dependent error model. However, the error model becomes invalid if different test cables are used, or

if the VNA settings are modified, and would require a re-calibration under those circumstances. Now

the VNA continuously applies the error correction, Eq. (II.2.172), during the DUT measurement, and the

reference plane is mathematically “moved” to the end of the test cables. Only the DUT network “behind”

the reference plane is taken into account for the measurement.

The impact of the VNA calibration is shown in Fig. II.2.199, which presents a S11f measurement

of a high-quality 50Ω termination, with and without SOL calibration (vector correction). For an ideal

termination, no reflection should be present, i.e. S11 = 0 ≡ −∞ dB. In this example the calibration of

the VNA improves the measurement quality by approximately 20 dB! In case of an ideal short or open,

i.e. a total reflection of the incident RF wave a1, S11 = 1 ≡ 0 dB), the non-calibrated S11 response

typically displays a residual with values of a fraction of a dB, up to a few dBs below the 0 dB line; after

calibration these errors typically reduces to few milli-decibels.

From the VNA calibration discussion so far we can follow:

Response calibration removes the frequency response errors. Requires a “zero-length” lossless TL

Thru (T) standard and strictly also an [Isolation] standard. (However, the isolation calibration

can often be omitted.
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Fig. II.2.199: S11(f) return loss for an almost ideal terminated port, with and without SOL calibration.

1-port calibration removes directivity, source match, and reflection tracking errors by a vector correc-

tion method that uses a textttShort-Open-Load (SOL) calibration.

full n-port calibration removes all systematic errors of the VNA setup by combining response and 1-

port calibration, and expanding the method to n-ports. E.g. a full 2-port calibration corrects for

twelve systematic errors – directivity, source and load match, reflection and transmission tracking,

and crosstalk – therefore a 12× 12 complex error matrix has to be established for each measured

frequency point.

For measurements on devices with popular RF coaxial connectors, e.g. SMA (3.5mm) or N-type,

calibration standards such as a load termination, an open and a short circuit are available as calibration

kits, see the example Fig. II.2.200a. As mentioned, to successfully perform the calibration procedure for

the reflection coefficient, the tabulated values, representing the electromagnetic properties of the calibra-

tion standards, have to be present in the VNA. Obviously, those tables provided by the manufacturer of

the calibration kit do not have an infinite frequency resolution. The instrument applies an interpolation

(a) Mechanical with Short, Open, Load, and accessories. (b) 4-ch electronic (USB).

Fig. II.2.200: VNA calibration kits for 3.5mm (SMA) connectors.
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procedure if the selected frequency points don’t match with the tabulated values of the calibration kit.

The calibration technique described so far is a well established industry standard for RF and mi-

crowave VNA measurements. However, it has a substantial disadvantage for the user: it is tedious and

time consuming, in particular for the calibration of a multiport VNA setup that requires three, four or

more ports.

Already for the full 2-port calibration requires eight different connections of a calibration standard to

satisfy the 12-term error model. The manual procedure of connection and de-connection of the calibra-

tion standards and the correct interaction with the VNA calibration procedure is time consuming and

error prone. The situation becomes even worse when performing a full four-port calibration, requiring

32 connections and de-connections of standards! For this reason, the electronic calibration kit method is

available and now very popular. For this procedure, each port is connected via the measurement cable to

the electronic calibration box (shown in Fig. II.2.200b), which holds the different calibration standards,

and switches them automatically controlled by the VNA. This method enables to perform a full four-port

calibration in less than a minute.

-
Any VNA measurement result without proper calibration of the setup is questionable!

II.2.9.3.4.4 Options and features

The vector network analyzer comes with a set of standard options and features, which can be expanded

with even more options to be purchased.

Standard features typical, but incomplete list:

– One or more S-parameters can be visualised simultaneously on the display, in the same, or in

separate graphs.

– There is a large variety of formats available, in Cartesian coordinates (magnitude and phase,

real and imaginary part, group delay, etc.), but also in polar coordinates or as Smith-chart

display, for Sii measurements.

– The data can be displayed in linear or logarithmic (log10) scaling.

– VNA settings include Start and Stop, or Center and Span frequencies, IF Bandwidth,

number of frequency Points, port Power, to name a few.

– Instead of a frequency sweep the VNA can perform a power sweep at a given frequency, e.g.

to simplify the 1 dB compression point measurement of a RF amplifier.

– Frequency sweep points are usually placed equidistant along the linear scaled frequency axis,

but can also be spread logarithmic, or in segments of different spacing.

– Interpolation techniques are applied whenever possible to minimise re-calibration efforts.

– Marker and marker functions enable simple measurements, e.g. 3 dB bandwidth of a band-

pass filter, markers on the Smith-chart provide additional information like R and L or C

values of a series / parallel circuit equivalent impedance.

– A variety of trace data transformations, most popular is Z ⇔ Γ.
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– A variety of advanced calibration and data manipulation procedures, like adding offsets or

factors to the measured data. Popular is the port extension that allow the calibrated reference

plane to be “moved” mathematically, defined by a piece of transmission-line, e.g. to account

for inaccessible TL hardware.

– A variety of VNA settings, display (picture capture) and data file formats. Most popular is

the SnP Touchstone file format for the S-parameters, see also Section II.2.7.8.

ò
Please note, the VNA always performs the measurement of all S-parameters

simultaneously, as defined by the calibration, regardless of what measurement

and format is on the display. Therefore, the SnP data file includes all S-

parameters in form of complex, calibrated values vs. frequency, and not only

what is on the VNA display!

Hardware options a few examples:

– Four, ore more more test ports. The 4-port VNA is quite popular and offers an entire set of

additional features, based of virtual ports. Virtual ports enable, e.g. balanced-to-unbalanced

(balun) transformations (and vice versa) and therefore the characterisation of coupled TL

properties, e.g. Z0e, Z0o, see also paragraph II.2.8.1.7.4.

– Additional 2nd RF source that enables 3-port measurements on mixers and up-/down-

converters.

– Integrated spectrum analyzer functionality.

– Automatic calibration system down to DC.

Software options It is impossible to list the many software options! Like for the spectrum analyzer,

most are tailored to the telecommunications industry. Of more general interest are the noise figure

measurement option and the options related to the time domain transformation, discussed in the

next paragraph.

Example II.2.9.1: Characterisation and measurements of a simple “pill-box” cavity

The characterisation of eigen-modes of of a resonant cavity by a VNA-based measurement is one

of the most fundamental task in accelerator RF engineering, and will be presented in this example

in some detail.

ò
Here we cover only normal conducting cavities, superconducting accelerating

structures are very different “animals” and require highly tailored measurement

methods. Furthermore, we focus on a simple, single-cell cylindrical “pill-box”

cavity, and here on the characterisation of it’s TM010 eigen-mode by VNA mea-

surements.
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(a) 3D geometry. (b) Photo of the cavity.

Fig. II.2.201: A simple “pillbox” cavity.

Analytical calculations and theory

Table II.2.14: Dimensions of the cylindrical pill-box cavity with beam-ports.

pill-box cavity dimensions

cavity radius a 148mm

cavity height h 310mm

beam-port radius a′ 48mm

beam-port extension h′ 92mm

Figure II.2.207 shows he geometry with dimension and a photo of the cavity, the dimensions are

summarised in Table II.2.14.

Applying a modal expansion to the boundary problem, here as ideal cylinder without the beam-

ports, the transverse magnetic modes propagate at cut-off frequencies given by Eq. (II.2.173),

while the frequencies of the transverse electric modes follow Eq. (II.2.174):

fTMnml =
c

2π

√(pnm
a

)2
+

(
πl

h

)2

(II.2.173)

fTEnml =
c

2π

√(
p′nm
a

)2

+

(
πl

h

)2

(II.2.174)

where pnm and p′nm are the m roots of the Bessel function Jn(x) and the derivative Bessel function

J ′
n(x), respectively. Table II.2.15 shows the first two roots of these functions, which are of interest

for our cavity, in our case these two lowest modes are the TE111 and the TM010 eigen-modes.

Theoretically, their cut-off frequencies are 766MHz and 776MHz, but the exact values may vary

due to inaccuracies of the dimensions and geometric variations (like the beam-ports).
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Table II.2.15: Some roots of the Bessel functions.

m
Bessel Function Derivative Bessel Function

J0(x) J1(x) J ′
0(x) J ′

1(x)

1 2.4048 3.8317 3.8317 1.8412

2 5.5201 7.0156 7.0156 5.3314

The mode of particular interest is the TM010 mode, as it is the one which has an E-field along

the z-axis, which enables to accelerate the charged particles of the beam.

Another important parameter which characterises the “quality” of the eigen-mode, and can be

used to compare cavities of same geometry but made out of different materials, is the quality

factor, or Q-factor. It is defined by the losses of the cavity compared to the stored energy,

Q = 2π
energy stored

energy dissipated per cycle
= ωres

energy stored
energy loss/second

=
ωresU

Pd
=

fres
fBW

(II.2.175)

and can be calculated by measuring the bandwidth relative to its central frequency, as shown in

Eq. (II.2.175), where fres is the resonant frequency of the particular eigen-mode to be analysed,

and fBW = f+3dB − f−3 dB is it’s 3 dB bandwidth, see also Definition II.2.8.1. The Q-factor

depends on the materials of the cavity walls (conductive losses), and on losses due to fillings or

open boundaries (dielectric and radiation losses), but is also impacted by an external network, like

in our case, where a measurement setup is attached. The unloaded Q-factor, Q0, considers only

out of the intrinsic losses, while the loaded-Q, QL, takes into account also the external loading

effects, and this is the value that is actually measured!

1

QL
=

1

Q0
+

1

Qext
(II.2.176)

They are related as shown in Eq. (II.2.176), where Qext reflects the Q-factor due to the external

network, e.g. the RF generator with its source impedance and the coupling circuit. For an ideal

cylindrical cavity (without beam-ports), Q0 can be calculated analytically

Q0 =
a

δ

(
1 +

a

h

)−1
(II.2.177)

with: δ =

√
2

ωresσµ
(II.2.178)

following Eq. (II.2.177) – using the skin depth, δ, as defined by Eq. (II.2.178) – where ω0 is

the angular resonant frequency of the eigen-mode, σ is the conductivity and µ is the magnetic

permeability. For the cavity under test, considering a conductivity of stainless steel of σ = 1.3×
106 S/m and a permeability of µ = µrµ0, with µ0 = 4π1 × 10−7H/m, and µr = 1 for air or

vacuum, the analytical calculated Q-factor is Q0 = 6321.8.

966



CERN Yellow Reports: Monographs, CERN-2024-003

The last important figure of merit is the R/Q, called R-over-Q. It describes how efficient the cav-

ity transfers its stored energy to the beam and it is defined as ratio between the shunt impedance,

R, and the unloaded Q-factor Q0, as defined in Eq. (II.2.177), with Vacc being the accelerating

voltage and U the stored energy:(
R

Q

)
=

V 2
acc/Pd

2ωresU/Pd
=

V 2
acc

2ωresU
(II.2.179)

For the TM010-mode of the cylindrical cavity follows:(
R

Q

)
=

4η0
χ3
01πJ

2
1 (χ01)

sin2
(χ01

2
h
a

)
h
a

≈ 128
sin2

(
1.2024h

a

)
h
a

(II.2.180)

Analytically, for a cylindrical cavity operating at the TM010 mode, the value of R/Q can be

determined using Eq. (II.2.180), with η0 being the characteristic impedance of free space (η0 =

120πΩ), and χ01 the 1st root of the 0th-order Bessel function. For the given dimensions of our

cavity follows R/Q = 10.4Ω.

Table II.2.16: Analytically derived parameters of our cylindrical cavity without beam-ports.

parameter value

fTE111 766MHz

fTM010 776MHz

Q0 (TM010) 6321.8

R/Q (TM010) 10.4Ω

Table II.2.16 summarises the parameters acquired analytically for our idealised cylindrical cavity.

Please note fTM010 > fTE111, which strictly speaking makes it not a pill-box cavity, as this

requires fTM010 to be the lowest mode!

ò
In summary, please note the three important parameters of the TM010 ac-

celerating mode to be characterised:

fres The resonant frequency fres of the eigen-mode, here the TM010-

mode, given by the size of the cavity.

Q0 The unloaded Q-factor Q0 of the eigen-mode, given by the material

properties of the cavity.

R/Q The equivalent characteristic impedance R/Q of the eigen-mode,

given by geometric shape of the cavity.
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VNA measurement setup

(a) Inductive loop antenna (H-field coupling). (b) Capacitive pin antenna (E-field coupling).

Fig. II.2.202: Coupling to the TM010-mode.

A resonant cavity for particle acceleration needs to have one or more coupling ports to feed the RF

energy and for measurement purposes. Our cylindrical “demo” cavity (Fig. II.2.201b) is equipped

with several coupling ports at different locations for measurement purposes. Figure II.2.207 illus-

trates the two coupling options to the TM010-mode, i.e. to the magnetic field using an inductive

operating loop-antenna located at the cavity rim (Fig. II.2.202a), or to the electric field using

a capacitive operating pin-antenna, e.g. slide in through the beam-port (Fig. II.2.202b). Fig-

ure II.2.203 shows some probe antennas use in our VNA measurement setup, on the left three

loop-antennas of different size, on the right a small pin-antenna. In practice the loop-antenna is

preferred as it does not interfere with the beam-ports and by using an appropriate, simple mechan-

ical setup, the loop can be rotated, changing the effective cross-area to the TM010-mode E-field,

and therefore modifying the coupling to the mode.

Fig. II.2.203: Probe antennas for the
pill-box cavity characterisation.

Fig. II.2.204: |S11|(f) VNA measurement of the first two
modes of the cylindrical pill-box cavity of Fig. II.2.201a.
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We basically have two options for the VNA measurement characterisation of the TM010 mode

of the pill-box cavity:

– A S11 reflection measurement using a single probe antenna.

– A S21 (or S12) transmission measurement, which requires the installation and tuning of two

probe antennas.

For the characterisation of the mode frequency fres = fTM010 and the related unloaded Q-factor,

Q0, the S11 reflection coefficient measurement is more meaningful and simple, and therefore the

preferred choice. For the measurement of the R/Q both methods will be discussed.

After setting up all the measurement hardware, i.e. the VNA, the pill-box cavity with the loop-

antenna installed and rotated such that it’s area is perpendicular to the TM010-mode H-field (in

the xy-plane) for high coupling, and the cabling, an initial verification of the first two eigen-

modes is performed by a quick |S11|(f) measurement in the range 740MHz < f < 780MHz,

see Fig. II.2.204. For this initial measurement no VNA calibration or “fancy” setup parameters are

required, instead, we need to verify which of the two resonances displayed on the trace belongs

to the TM010-mode? Therefore, a little perturbation is required, e.g. by inserting a metallic

rod through the beam-port along the z-axis into the cavity. The metallic object will couple to

the longitudinal E-field of the TM010-mode, but not to the TE111-mode, as the latter one has

no longitudinal E-field components on or near the z-axis. As a result, the TM010 resonance on

the |S11(f)| VNA trace will change when inserting the rod perturbation, as a wider resonance,

also shifting its resonance frequency, while the TE111 stays unchanged. For this measurement

procedure, the trace memory of the VNA is a very helpful tool to better identify changes of the

setup during the measurement. We now have identified the TM010 eigen-mode, which has a

resonance frequency of fres = 773.18MHz, see also Fig. II.2.204.

Measurement of fres and Q0

With the TM010-mode now clearly identified, we can “zoom-in” by setting the VNA center

frequency Center to fres = 773.18MHz and to a reasonable narrow Span, e.g. to 4MHz, see

Fig. II.2.205: |S11(f)| of the TM010-mode.
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Fig. II.2.205. It also is advisable to increase the default value of the number of frequency Points

for the measurement, e.g. to 8001 points or an even higher value, if the instrument permits.

Fig. II.2.206: Equivalent circuit of the S11(f) TM010-mode VNA measurement setup.

For the required VNA 1-port calibration, as well as for the following measurement procedure,

the equivalent circuit of the setup, with the TM010 resonance as RLC parallel circuit, helps to

understand the details, see Fig. II.2.206. The goal: the measurement of the unperturbed, intrinsic

TM010-mode parameters fres and Q0, highlighted as the unloaded RLC parallel equivalent

circuit part in Fig. II.2.206. Evidently, the coupling loop-antenna connected to the VNA port

alters that picture, the cavity is always loaded by source impedance Rs of the connected setup,

here the VNA. The probe antenna is represented in the equivalent circuit as ideal transformer,

thus transforming the source impedance Rsk
2 = Rsh to the shunt impedance of the resonance.

To complete the picture, a small piece of transmission-line is added into the overall equivalent

circuit Fig. II.2.206, representing the coaxial connection of the loop-antenna, which in our setup

can be up to a few cm long. Also indicated in Fig. II.2.206 is the reference plane for the VNA

calibration at the end of the VNA cable, which connects to the coaxial connector of the loop-

antenna.

With the cavity loaded by the attached VNA source impedance, the most simple and elegant way

to retrieve the unloaded-Q, Q0, is to bring the resonance into critical coupling, i.e. arranging the

coupling coefficient k of the probe antenna such that

Q0 = Qext ⇒ Q0 = 2QL (critical coupling) (II.2.181)

This means, at the resonant frequency, fres, the resonator as load to the VNA is impedance

matched, and we have maximum power transfer. The straightforward way to achieve the criti-

cal coupling condition Eq. (II.2.181) is to display and observe the measured S11(f) while slowly

rotating the coupling loop-antenna until the displayed circle at fres precisely hits the Z = 50Ω

match point in the center of the Smith chart, see also Fig. II.2.207a.

Now the setup measures the TM010-mode in critical coupling and e.g. taking fBW from the

modulus |S11(f)| displayed on the VNA screen – with help of the VNA trace markers – and
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using Eqs. (II.2.175) and (II.2.181) returns QL = Q0/2, see also Fig. II.2.205.

(a) S11(f) in Smith chart format. (b) Imaginary part Im[S11(f)].

Fig. II.2.207: TM010-mode measured in critical coupling.

Still, the S11 measurement is not perfect! As we did not account for the small piece of

transmission-line of the probe antenna connector, the parametric impedance circle of our S11(f)

measurement displayed in the Smith chart format is not located on the left side of the chart,

symmetrically wrt. the real axis, at the so-called detuned short position, see also Fig. II.2.207a.

Instead, the circle is somehow at a “rotated” location on the chart, which requires to be corrected.

As we cannot include the probe antenna connector into the VNA calibration, we need to apply

a port extension or an electrical delay, i.e. a mathematical compensation for this small piece of

uncalibrated, lossless transmission-line of some ∼ 100 ps delay. We can estimate the delay-time

at put the values into the VNA as Port Extension or Electrical Delay, and then verify the

trace of the imaginary part Im[S11(f)] over a large frequency Span being perfectly horizontal,

it should have no slope. This procedure probably requires an extra VNA calibration step, as we

have to change the frequency Span setting. Now, going back to the Smith chart format on the

VNA, with the previous frequency Span and VNA calibration setting, the measured circle should

be at or near the detuned open position. A fine adjustment using the VNA phase offset adds or

subtracts some ∆∠S11 to the measured ∠S11(f) argument, thus rotates the circle in the Smith

chart.

It may take some iterations to set and fine-tune all parameters of the VNA and adjust the loop-

antenna correctly, but finally the VNA display should look like Fig. II.2.207. For convenience, we

can display the S11(f) Smith chart format and the ImS11(f) imaginary format simultaneously.

With help of the VNA trace Markers and Marker Search functions it is simple to extract fBW

and calculate Q0. From the ImS11(f) display we can set minimum and maximum Markers on

the trace to located f+3 dB and f+3 dB , and a 3rd Marker to the zero-crossing to locate fres, see
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Fig. II.2.207b. We then calculate:

QL =
fres

f+3 dB − f−3 dB

Q0 = 2

√
f+3 dBf−3 dB

f+3 dB − f−3 dB
≊

f+3 dB + f−3 dB

f+3 dB − f−3 dB

In a similar fashion we can use Markers on the S11f Smith chart format, which can be set to

display the values e.g. frequency, and real and imaginary part of Z(f), which are updated as the

marker is moved along the measured S11 circle, i.e. the frequency points of the VNA measure-

ment. To get fBW for QL we need to located two Markers to the minimum and maximum value

of ImS11, plus a a 3rd Marker has to be set to Z = (50 + j0)Ω ≡ Γ = 0 for the match-point at

fres, see Fig. II.2.207a.

�
As mentioned before, a sufficient number of measurement points is

important to ensure the markers can be set to the exact locations!

Fig. II.2.208: Smith chart for a critical and an over-critical coupled resonance.

Sometimes the coupling is fixed, it cannot be changed by rotating or sliding a probe antenna

or is fixed and defined by a measurement using the main coupler. In that case the VNA S11
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measurement results in an arbitrary coupling:

O0 > Qext over-critical coupling

O0 < Qext under-critical coupling

Figure II.2.208 illustrates the situation for an over-critical coupled mode (dashed circle) in com-

parison to critical coupling of the mode (continuous circle), always assuming the VNA setup is

calibrated, with the measured circle in the Smith chart aligned to the detuned short position by

applying appropriate adjustments for electrical length or port extension and phase offset. Thanks

to the various Marker display value options of the VNA, we can not only calculate Q0 for an

arbitrary coupled mode from the Smith chart format, but also QL and Qext. The trace Markers of

the VNA allow to display – beside the frequency f itself or other parametric values – the complex

load impedance Re(Z) + j Im(Z) (or admittance Re(Y ) + j Im(Y )), transformed by k2, or the

complex reflection coefficientRe(Γ) + j Im(Γ). One of the three markers should always be set

onto the real axis of the Smith chart, its frequency value returns fres. Two additional markers

set to fn and fm are used to defined a 3 dB-bandwidth fBW = fm − fn, which translates with

fres into a Q-value, Eq. (II.2.175), for the loaded, unloaded or external Q-factor depending on

the marker location as shown in Fig. II.2.208 and summarised in Table II.2.17.

Table II.2.17: Q-value calculation from the marker values in the S11 Smith chart format.

marker fn,m set marker value to Q-value calculation

f1,2, (f−3 dB , f+3 dB) | Im(S11)| = | Im(Γ)| = max. QL = fres
f2−f1

f3,4 Y = (Re±j)/Z0
a Qext =

fres
f4−f3

f5,6 |Re(Z)| = | Im(Z)| Q0 =
fres
f6−f5

a Re = any real part value.

The values found from the VNA measurements, fres = 773.058MHz and Q0 = 4900, differ

from the theoretical values due to the beam- and probe-ports, some mechanical imperfections and

tolerances, as well as unknowns of the exact material properties.

Measurement of the R/Q

The R/Q is a geometric parameter of the cavity and was introduced earlier in this exercise.

Vacc =

∣∣∣∣∫ dzE(z) cos

(
ωz

βc

)∣∣∣∣ (II.2.182)

The accelerating voltage Vacc in Eq. (II.2.179) is given as integral of the longitudinal electric field

components E∥ for a given eigen-mode - here the TM010-mode – along the path of the beam

through the cavity, Eq. (II.2.182), i.e. on the z-axis (x = y = 0), which usually is the symmetry
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axis of the resonant structure. In Eq. (II.2.182) the factor cos
(
ωz
βc

)
is related to the transit time it

takes a particle of velocity βc to pass the cavity gap.

The measurement of E∥(z), and therefore of Vacc ⇒ R/Q, is based on a perturbation method that

slides a small object through the cavity, perturbing the EM-field resonance which can be observed

with the VNA as frequency shift ∆f = f − fres
b.

f − fres
fres

=
∆f

fres
=

1

U

[
µ0

(
kH∥ |H∥|2 + kH⊥ |H⊥|2

)
− ε0

(
kE∥ |H∥|2 + kE⊥|H⊥|2

)]
(II.2.183)

Equation (II.2.183) gives the relative frequency shift, knows as Slater’s perturbation theorem, with

kH∥ , kH⊥ , kE∥ and kE⊥ being the coefficients proportional to the magnetic or electric “polarisability”

of the object, acting on the related EM-field component. For our analysis, an elongated metallic

object is preferred, such that it perturbs only the dominant longitudinal E∥-field of the TM010-

mode on the z axis, which simplifies Eq. (II.2.183) to:

E(z) = E∥(z) =

√
U
∆f(z)

fres

−1

kE∥ ε0
(II.2.184)

with the electric field E∥ being normalised to the root of the stored energy, U . The coefficient kE∥
in Eq. (II.2.184) depends on the geometry of the perturbing object. For practical reasons we use

a syringe needle which can be approximated as ellipsoid of half length l and radius r, following

Eq. (II.2.185), see also [28].

kE∥ =
π

3
l3
[
sinh−1

(
2

3π

l

a

)]−1

(II.2.185)

ò
Again, please note in Eq. (II.2.185)) l refers to the half of the

length of the object!

The syringe needle used in our measurements had a total length of 10mm, therefore l = 5mm

and a radius a = 0.59mm, therefore follows kE∥ ≊ 9.65× 10−8m3.
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Fig. II.2.209: Schematic of the bead-pull measurement,
indicating the wire in red and the perturbation needle in blue.

Figures II.2.209 and II.2.210 illustrate our simple, manual bead-pull measurement setup. The

syringe needle as perturbation object was fixed on a thin, non-metallic fishing line, and a ruler

was used to locate its position in the cavity. We opted to close the beam-ports with metal-flanges,

just with a little hole for the wire, which present a better defined boundary.

There are two bead-pull methods to measure the frequency shift:

Fig. II.2.210: Bead-pull measurement setup with the pill-box cavity (center),
and detail of the wire pulling structure (left) and the ruler to located the bead-pull position (right).

Direct frequency shift measurement using the S11 reflection coefficient Using a single mag-

netic loop probe, first the resonant frequency has to be measured without the perturbing

object. Then, the object is pulled through the cavity, and the frequency shift is monitored,

e.g., in steps of 1 cm. Because of the symmetry of the cavity, it is sufficient to probe only

half of the cavity. The results are shown in Fig. II.2.211a. From the integration of the

electrical field, which follows from Eq. (II.2.182), a value R/Q = 15.5Ω was obtained.
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(a) S11 frequency shift measurement. (b) S21 phase shift measurement.

Fig. II.2.211: Measured frequency shift (left) and calculated electric field (right).

Phase shift measurement based on the S21 transmission coefficient The second method is an

indirect measurement, were the frequency shift is obtained by a phase shift of a transmitted

signal, i.e. a S21 measurement precisely at the resonance frequency fres:

f(z)− fres
fres

=
1

2QL
tanϕ(z) (II.2.186)

with tanϕ(z) = ∠S21@fres being the measured S21 phase as the bead is pulled through

the structure along the z-axis. Therefore, two magnetic loop probes are used.

ò
It is of utmost importance to precisely excite

the TM010-mode at the resonance frequency

(center frequency fres), as all following mea-

surement steps depend on it. Additionally, both

probes should be tuned for a very weak cou-

pling, approximately −0.5 dB peak amplitude

for |S11| and |S22|.

Once the exact value of the TM010 resonance frequency is determined, the center fre-

quency of the VNA is set to fres, and the VNA is configured for a zero-span frequency

(0Hz) to excite and analyse only at that particular frequency. With the perturbation needle

at the out of the cavity position, a reference phase of S21 is measured and, if necessary, a

phase offset may added to set it to 0 degrees. Similar to the direct frequency shift measure-

ment method, the syringe needle is pulled step-wise through the cavity, now monitoring the

phase in steps of 1 cm. The results are shown in Fig. II.2.211b, in this case R/Q = 16.5Ω

is obtained, a similar value to the previous method.

It has been observed that phase drifts over time, most likely due to temperature variations,
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may tarnish the measurement result. To minimise this influence, the bead-pull phase mea-

surement has to be performed quickly.

In practice, the ∠S21 phase shift method is preferred. Utilising a computer controlled setup

with motorised pulling mechanics of the bead, several sets of ∠S21 phase measurements

can be performed, with some small offset in frequency above and below fres in a range

0.5 <
Ω+ − Ω−

2
< 5 where Ω = QL

(
f

fres
− fres

f

)
(II.2.187)

Measuring |S21(f±)|, evaluating

|S21(f+)| − |S21(f−)| = g( ˜fres) (II.2.188)

and minimising ||S21(f+)| − |S21(f−)|| through several bead-pull sweeps by changing

f+ and f− until ˜fres does not vary ensures the measurement is performed exactly at

min. ˜fres ≃ fres. Moreover, synchronising the VNA Zero Span sweep and setting the

Sweep Time to the value of the pull time of the bead through the structure, will already

give a qualitatively display E∥(z) on the VNA ∠S21 trace.

bPlease note, ∆f is defined and used in different ways throughout this chapter!

II.2.9.3.4.5 Time-domain transformation (synthetic pulse technique)

For any linear system, the frequency-domain information (data) can be converted to the time-domain

by an inverse Fourier transformation11and vice versa, assuming the vector data (magnitude and phase,

or real and imaginary) is present over the entire frequency range of interest. This is the basis of the

time-domain measurement, also referred as synthetic pulse technique, today available as option on most

VNAs. It was commercially introduced by Hewlett-Packard in the 1980s for their network analyzer

applications.

It renders the VNA even more versatile, allowing to display the impulse and/or step response of

the DUT, and to perform time-domain reflectometry (TDR) measurements. Typical applications of this

measurement techniques are:

– Localising and evaluating discontinuities (faults) in transmission lines.

– Separating the scattering properties of sections of complicated RF networks by time-domain gat-

ing.

– Echo cancellation, e.g. in multipath environments.

– The synthetic pulse time-domain reflectometry (TDR) is very useful in the prototyping phase of

TL-based beam pickups and kickers, as well as for trouble-shooting of accelerator installations,
11More precisely: by an inverse discrete Fourier transformation (iDFT). The fast Fourier transformation (FFT), and its inverse

variant iFFT, is an optimised form of the DFT, originally exploiting the symmetry of 2n data samples, therefore saving
computation time. Today the 2n factorisation requirement is obsolete, and of course, both algorithms will produce the same
result for the same input data.

977



II.2.9. RF measurement techniques

(a) Frequency domain characteristic. (b) Time domain impulse response.

Fig. II.2.212: S21 transmission measurement of a band-pass filter.

e.g. faults in coaxial signal cables and/or connections, and even issues in the accelerator beam-pipe.

By using waveguide modes it was successfully used to detect an obstacle in the LHC beam-pipe at

CERN.

-
The important constraint of the applicability of the time domain transformation / synthetic

pulse measurement technique, the DUT has to be a linear system, and has to be time-

invariant during the measurement (sweep) time, i.e. it has to be a LTI system.

Figure II.2.212 illustrates the principle of the time domain transformation technique of the VNA,

here for a S21 transmission measurement of the band-pass filter shown in Fig. II.2.130. On the left

side shown, Fig. II.2.212a, the “usual” display of S21(f), formatted in magnitude (dB) and phase (deg ,

unwrapped), here presented from the stored SnP data file. On the right side, Fig. II.2.212b, the same

VNA measurement, but now displayed using the build-in time domain Transformation, i.e. the inverse

discrete Fourier transform (iDFT) of the data, F−1(S21), again presented from the stored VNA data file

(as csv time-series).

ò
Please note, the time domain transformation is implemented differently among the var-

ious manufacturers of VNAs. For example, Kesight (also Agilent and Hewlett-Packard)

VNAs require the S(f) measurement to be displayed in Real format before activating the

Transformation, given the fact the time domain data are real values.
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ò
Like the spectrum analyzer, the VNA acquires the complex S-parameters only for positive

frequencies, f > 0. For the iDFT the VNA makes use of the conjugate symmetry S(f) =

S∗(−f), mandatory for a real signal in the time-domain, F−1(S) ∈ Re. The VNA applies

the transformation

s(t) = F−1[S(f)] =

∫ +∞

0
Re[S(f)] cos(2πft)− Im[S(f)] sin(2πft)dt

of course as discrete variant of the inverse Fourier transform.

There are a few, but important details linked to the VNA time-domain transformation:

Band-pass mode The VNA samples S(f) with equidistant steps ∆f in a frequency range fmin < f <

fmax, see also Fig. II.2.213a, a DUT with values of |Sf | reasonable small at the band-ends, fmin

and fmax, i.e. covering the entire pass-band and beyond of band-pass like system. The band-pass

mode is the default Transformation setting in most VNAs, and is applicable for analysing any

band-pass like system, as it was performed for the example shown in Fig. II.2.212. Please note the

low values of |S21| < −50 dB ≊ 0.0032 at the band-ends fmin = 100MHz and fmax = 300MHz.

In most cases the band-pass mode don’t require any “special care”.

Low-pass mode The VNA is a RF measurement instrument that does not operate at 0Hz, direct-current

(DC), instead, the lowest operating frequency is typically a few kHz or MHz. This is a problem

for analysis of low-pass like systems to be transformed into the time domain, and requires the

user to set the Transformation of the instrument in Low-pass mode. For given settings of

Start and Stop frequency, and the number of Points, which defines the equidistant sampling

interval df = (Start − Stop)/(Points − 1) the VNA will slightly adjust the Start and Stop

frequency settings automatically, if needed, to ensure an extrapolation of the equidistant frequency

sampling will exactly fall on f = 0Hz, see Fig. II.2.213b. The VNA will then take some of

the low frequency samples of S(f) and its conjugate complex S∗(−f) to extrapolate the value

S(f = 0Hz). A wrong setting of these parameters is usually sensed by the instrument and results

in a warning, if ignored, the time-domain response may show some unphysical artefacts, like a

“crawling” baseline.

(a) Band-pass mode. (b) Low-pass mode.

Fig. II.2.213: Sampling of the frequency-domain S-parameter measurement S(f).
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(a) Infinite band. (b) Finite band.

Fig. II.2.214: Signal transformation between time and frequency-domain.

ò
Industry offers electronic calibration kits that perform down to DC to simplify the

calibration of the VNA for broadband time-domain measurements of low-pass sys-

tems.

Windowing An ideal Dirac δ-pulse in the time-domain transforms into an infinite spectrum in the

frequency-domain, and vice verse, it has an infinite band, see Fig. II.2.214a. Due to the nature

of the VNA, measuring to an upper frequency limit with a RF stimulus of constant power, we al-

ways have a signal response with a finite band in the frequency domain, which for e.g. Sij = 1 has

a rectangular distribution and transforms into a sinc-function signal waveform in the time-domain,

and vice versa (see Fig. II.2.214b):

Frequency domain ⇐⇒ Time domain

rect
(

f

∆f

)
⇐⇒ sin (π∆ft)

πt
= ∆f · sinc (π∆ft) .

(II.2.189)

i.e. into an non-physical, non-causal time-domain signal waveform. Any VNA sweeps to a perhaps

very high, but limited Stop frequency (≡ ∆f/2), which still may not be a problem, as long as the

system under analysis converges |SDUT (f = ∆f/2)| → 0 (or to a very low value) at the Stop

frequency ∆f/2. But if |SDUT (f = ∆f/2)| ̸= 0 the “sinc-function windowing effect” appears

in the time-domain signal, see Fig. II.2.214b, as the transformation is always the multiplication of

SDUT (f) and the VNA measurement window:

s(t) = F−1

[
SDUT (f)× rect

(
f

∆f

)]
with ∆f = 2fStop

12. This unwanted effect can appear when measuring high-pass or all-pass

systems, e.g. made from low-loss coaxial transmission lines, waveguides, or cavity resonators.

To mitigate the windowing effect, the VNA has one or more windowing low-pass weighting func-

tions build in. Popular is the Kaiser window function, also called the Kaiser-Bessel window

wkb(f, β) =


I0(β

√
1−2f

√
1+2f)

I0(β)
for − 1/2 < f < 1/2

0 otherwise

12To keep things reasonable simple, we limit this discussion to the analysis of low-pass systems, with fStart being near f = 0.
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(a) in the frequency-domain. (b) in the time-domain.

Fig. II.2.215: The Kaiser window function.

Figure II.2.215 illustrates the Kaiser window multiplication in the frequency-domain

(Fig. II.2.215a) and the result in the time-domain (Fig. II.2.215b), here normalised to S(t =

0) = 1. In most cases the default setting of the Kaiser window parameter β, beta=6, turns

out to be the best compromise between a good time resolution and low sin(x)/x ripple effects, see

Fig. II.2.215b. Instead, setting beta=0, effectively disables the Kaiser window, and improves the

time resolution at the cost of a large sin(x)/x ripple, while setting β to a high value, e.g. beta=13,

typically the maximum value in many Keysight VNAs, minimises the ripple at the cost of a low

time resolution.

Dirac δ or step function response The time-domain transformation of the VNA can be applied to any

of measured S-parameter, Sii or Sij , and results in the time-domain impulse response, equivalent

to the response of the system to a Dirac δ-function in the time-domain, see the S21 example

Fig. II.2.212b. In some cases the response to a unit step function u(t), also called Heaviside

function H(t) is of interest, which is performed in the VNA by multiplying the measured SDUT (f)

with the Fourier transform of the Heaviside function F [H(t)] = δ(f)/2− j/(2πf), numerically.

The step response is of particular interest for reflection coefficient measurements, Γi = Sii, of

transmission-line arrangements, this type of analysis is equivalent to the time-domain reflectometry

(TDR), see also Exercise II.2.6.1. Basically all VNAs equipped with the time-domain option allow

the used to select the Dirac δ or the step response.

Gating The gating feature allows to set Start and Stop gate markers along the time-domain trace to

set a gate, which will zero the measurement between the gate markers (notch gate) or outside the

gate markers (band-pass gate). Figure II.2.216 illustrates the use of gate markers, in Fig. II.2.216a

the Start and Stop gate markers are set, also a Center marker is displayed, but the gate is still

Off. In Fig. II.2.216b the gate is On, here activated as band-pass gate, “zeroing” the parts of the

measurement outside of the gate.

The time-domain gating function enables the VNA to selectively “remove” parts of the measure-

ment, e.g. of a transmission-line circuit, as time and physical location (space) are connected, see

also the example on time-domain reflectometry. A typical application could be to remove the effect

of a vacuum feedthrough to better analyse the actual circuit behind, e.g. a stripline kicker or beam
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(a) Gate off. (b) Gate on.

Fig. II.2.216: Applying a band-pass gate in the time-domain.

monitor, or to de-embed a RF PCB circuit from the effects of the coaxial-to-stripline connectors.

Figure II.2.217 shows the use of the gating function for a simple example, a S11 measurement

of a terminated cable. Figure II.2.217 (a) displays |S11(f)| and Fig. II.2.217 (b) the transformed

time-domain impulse response S11(t), clearly visible are the reflections caused by the impedance

discontinuities of the cable connectors at both ends. In Fig. II.2.217 (c) a gate is applied to notch-

out the effect of the first connector, and Fig. II.2.217 (d) illustrates the result in the frequency

domain by turning of the time-domain transformation while the gate is active.

ò
The gating function is not a “brick-wall” as the gate markers on the time=domain

trace may imply. Instead, the gating is transformed back into the frequency-domain

and applied via a Kaiser or similar window function. As the gating is a non-linear

operation, is may generate artefacts in the signal which were not in the original

measured response! Clearly, the gating is an advanced function of the VNA and

requires special training. As a rule of thumb, gating into resonant waveforms will

give unpredictable results, instead, it is a good practice to always set the gate markers

to locations of the time trace that have an asymptotically “zero” value, i.e. please do

not cut into a signal trace different from zero!

Example II.2.9.2: Time-domain reflectometry with the VNA

The time-domain reflectometry (TDR) measurement was introduced to broadband sampling os-

cilloscopes in the 1960s, it basically is a measurement of the reflection coefficient Γ in the time-

domain, similar to the principle discussed in Exercise II.2.6.1. Instead of a short pulse, for the

TDR the stimulus function is a very long rectangular pulse (µs regime) with a fast rise time (ps

regime), while only the first part of the pulse is used, approximating a unit step function.

The applications of TDR measurements in accelerator RF and beam instrumentation are numer-

ous, in the laboratory to analyse and optimise all kind of transmission-line systems, for quality

control of industry components and in the R&D phase of TL-based components and systems, as
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Fig. II.2.217: Operational sequence of time-domain gating:
(a) |S11(f)| frequency response of a cable. (b) S11(t) time-domain response. (c) gating applied to
“remove” the first discontinuity. (d) |S11(f)| frequency response with gate On and Off.

well as in the field to trace errors on cables, connections, feedthroughs and TL-based components

and subsystems. The use of the synthetic pulse technique, i.e. the time-domain transformation

feature of the VNA, connected with gating and other signal processing features gives the TDR

measurement further benefits, however, at the cost to be limited to LTI systems.

Figure II.2.218 illustrates the VNA-based TDR measurement on a transmission-line, i.e. on a

50Ω coaxial cable with a open end, for both, the unit step response (Fig. II.2.218a) and the Dirac

δ impulse response. The TDR measurement follows the procedure already been discussed:
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(a) Using the Step stimulus function. (b) Using the Impulse stimulus function.

Fig. II.2.218: VNA TDR measurement on an open transmission-line (cable).

– Select Start and Stop frequency to a wide range, preferable to the minimum and maxi-

mum frequency range of the VNA to give the best possible time resolution.

– Select reasonable values for the number of Points, stimulus Power, IF Bandwidth, etc.

– Select the Low-pass mode for the time-domain transformation, and allow the VNA to

adjust Start and Stop frequency, or select the frequency values and number of points

following the discussed guidelines.

– Perform a 1-port calibration.

– Select a S11 measurement, displayed in Real format for Keysight VNAs.

– Select the Step stimulus function response (preferred), or the Impulse stimulus function

response, and turn on the Time-Domain Transform.

– Adjust Start and Stop time, and the vertical scale accordingly for a good visualisation of

the time-domain result.

For the TDR measurement the Step function result seems more intuitive, the vertical axis directly

gives the reflection coefficient Γ, now as real value in the range −1 < Γ < +1. In the example,

(Fig. II.2.218a, the cable has a fault (“Irregularity”), which is displayed as reflection of Γ ≈ −0.2.

The VNA has the transformation Eq. (II.2.165) build-in, which allows the vertical axis, and any

markers accordingly, to be displayed in Z[Ω] units. The time axis t is linked to the physical

location z as:

z =
c

√
εr

1

2
t

with εr being the dielectric constant of the homogeneous filling of cable insulation (for non-

homogeneous TL dielectrics εeff has to be evaluated), e.g. εr = 2.1 for PTFE Teflon. The factor

1/2 accounts for the incident and reflected pulse passing twice the transmission-line. Assuming
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a PTFE-filled coaxial cable, we find the length to be approximately t ≈ 22 ns ≡ ℓ ≈ 2.28m, and

the location of the “irregularity” is approximately at 0.31m. A velocity factor can be set in the

VNA, such that the marker value on the trace directly displays the Γ or Z value as function of the

physical location z.

Table II.2.18: Some examples of values for the reflection coefficient wrt. the load impedance.

load impedance ZL reflection coefficient Γ

∞ (open circuit) +1

0 (short circuit) -1

Z0 (matched load) 0

Z0/2 -1/3

2Z0 1/3

ò
Please note the reflection coefficient Γ(t), transformed into the time-domain, al-

ways is a real number, Table II.2.18 shows some example values, however, they are

still in-line with Definition II.2.6.1.

ò
The TDR procedure described in this example follows a manual setup of the

VNA, utilising the time-domain transformation based on equidistant sam-

ples (frequency Points) of the S11 measurement in connection with a unit

step function. Some VNAs provide more sophisticated TDR measurement

implementations, advanced TDR, with a mostly automatised setup, also us-

ing a segmented sampling approach with fewer, wider spaced samples at

low frequencies and more, dense spaced samples at higher frequencies, e.g.

to improve the S/N . Display and look-and-feel of the advanced TDR re-

sembles the classic TDR, while displaying the measurement results simul-

taneously in time and frequency-domain. 4-channel VNA enable even more

sophisticated differential TDR measurements on coupled transmission-lines

by combining two physical, unbalanced ports into a single virtual, balanced

port.

Evidently, the synthetic pulse time-domain technique gives the VNA an additional range of mea-

surement applications, however, in some cases it cannot replace a traditional pulse generator / oscillo-

scope or TDR measurement setup. The VNA time-domain transformation always requires the DUT to

be linear and time-invariant (LTI system) throughout the sweep time, which makes the actual measure-

ment, including the internal calculations, rather slow compared to a traditional time-domain measurement
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setup. Some time-domain measurements, like the response of a RF feedback system, or a RF oscillator

during startup, RF amplifiers near saturation, etc., with the DUT not in a steady-state, time-invariant

status, or being non-linear, cannot be performed using the VNA synthetic pulse time-domain technique,

still, the range of VNA time-domain applications remains very large. Moreover, the dynamic range of a

VNA, typically > 100 dB is superior compared to oscilloscopes, in particular when operating in a high

frequency regime > 20GHz, which leads to a substantial better signal-to-noise ratio.

Similar, or even more then the spectrum / signal analyzer, the vector network analyzer is a complex

RF measurement system, and thanks to the combination of RF and signal processing technologies, can

perform almost any RF measurement. This is particular true for the latest generation of 4-port (or more)

high-end USB VNAs with integrated spectrum analyzer hardware, 2nd RF source and all software options

including the advanced TDR functionality, capable to operate up to 50GHz and beyond. To learn and

understand more about the VNAs, please have a look at the documentation and seminars from the vendors

[29–32].

Exercise II.2.9.2: The reflection coefficient Γ in the time-domain

(a) TDR measurement principle. (b) The unit step (Heaviside) stimulus function.

(c) ZL = 50Ω, no reflections! (d) ZL = 100Ω, 33% reflections.

(e) Capacitive load ZL = 2pF. (f) Inductive load ZL = 5nH.

Fig. II.2.219: Examples of the time-domain reflection coefficient Γ(t)
for different load impedances ZL.
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Figure II.2.219 illustrates the behaviour of the reflection coefficient Γ(t) for different load

impedances ZL, as measured by a TDR using a unit step pulse as stimulus function. Instead

of an actual TDR measurement, the examples were generated by a QucsStudio simulation, see

Fig. II.2.220. For simplicity, a transient simulation was used, with a ideal voltage

pulse source as unit step stimulus function, and delaying the step pulse by 0.2 ns for better

illustration. This means, the first 0.2 ns of the time traces in Fig. II.2.219 are undefined. Please

notice, the time-delay due to a 30mm long piece of is tD = ℓ/c ≈ 0.1 ns, as the signal velocity

for this ideal transmission line model uses v = c (ε = 1).

Instead of the transient simulation, we also could chose the s-parameter simulation or

AC simulation in QucsStudio, and make use of the build-in Freq2Time inverse discrete Fourier

transform, as well as form the build-in Kaiser window function, to adapt the TDR simulation to

the actual VNA TDR functionality.

Fig. II.2.220: QucsStudio schematic for a simple TDR simulation.

II.2.9.4 Summary RF measurement techniques

While this chapter gives some theoretical background and the fundamental concepts of RF measure-

ments, it cannot replace experience and know-how of those techniques, which only can be a accrued by

performing, and continuously exercising hands-on RF measurements in the laboratory and in the field!

Again, please note a systematic work order in RF engineering, and beyond:

– Start with the conceptual design, and divide large and complex systems into smaller subsystems

and components.

– Design, analyse and understand those components or subsystems by approximation with analytical

mathematical descriptions, which allows modifications and changes of parameters in a quick way.
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– Model the design numerically, with more accuracy to the details, as basis for a prototype.

– Test and measure the prototype in the laboratory, and compare the results with the analytical and

numerical analysis.

– Complete the entire system following the above steps and then test and measure the system with

beam in the accelerator.

Numerical software tools and simulation suites are an excellent help in the R&D phase of accelerator RF

components and systems, but they cannot replace the analysis and characterisation of the performance

and the limitations of those systems by hands-on RF measurements.

In this chapter we could only give a brief introduction to the two most important RF measurement

instruments, the spectrum / signal analyzer and the vector network analyzer, plus a few notes on “historic”

and other RF measurement techniques. More information is found from the manufacturers, but the most

important lessons will be leaned by execution of your own, hands-on RF measurements.
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A Decibel [dB] (“dee-bee”), or not to be . . .

Bel is a logarithmic unit to express large ratios between values, popular is the tenth fraction, deci-Bel:

1 dB =
1

10
B = 0.1B (Bel)

While used in many engineering disciplines, the dB used in electrical and RF engineering usually ex-

presses large radios between two electrical power values

PdB = 10 log10

(
P1

P2

)
or between two voltages or currents:

VdB = 20 log10

(
V1

V2

)
IdB = 20 log10

(
I1
I2

)
with:

P1

P2
= 10(

PdB
10

) V1

V2
= 10(

VdB
20

) I1
I2

= 10(
IdB
20

)

Some important values:

dB ratio P1/P2 V1/V2

n× dB 10n 10n/2

40 dB 10000 100
20 dB 100 10
10 dB 10 ∼3.16
6 dB ∼4 ∼2
3 dB ∼2 ∼1.41
0 dB 1 1
−3 dB ∼0.5 ∼0.71
−20 dB 0.01 0.1

ò
Please note, the 3 dB ratio (half power) is common specification for the bandwidth!
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B “dB” is not “dBm”

dBm is defined as a logarithmic power unit, based on dB (deci-Bel) and a reference power of Pref =

1mW

PdBm = 10 log10

(
P

Pref

)
, with: P = Pref10

(
PdBm
10

)

dBm may also be used as logarithmic voltage unit, e.g. for the popular Z0 = 50Ω impedance we

calculate Vref =
√
Z0Pref =

√
0.05V ≊ 0.2236V (RMS).

VdBm = 20 log10

(
V

Vref

)
, with: V = Vref10

(
VdBm
20

)

-
The use of dBm as logarithmic voltage (or current) unit strictly requires the waveform to

be sinusoidal!

Some important values:

dBm P V (RMS)

90 dBm 1MW 7.07 kV

60 dBm 1kW 223.6V

30 dBm 1W 7.07V

20 dBm 100mW 2.24V

10 dBm 10mW 707mV

6dBm 4.0mW 446mV

0 dBm 1.0mW 224mV

−20 dBm 10 µW 22.4mV

−60 dBm 1.0 nW 224 µV
−120 dBm 1.0 fW 224 nV

−174 dBm 4× 10−21W 0.446 nV

ò
Please note, −174 dBm is the equivalent noise power in a bandwidth BW = 1Hz at room

temperature.
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C Exercises

1. An “empty” (air), cylindrical “pill-box” cavity (ideal cylin-

der, no beam-ports) is made of aluminium, which has a

conductivity of σAL = 3.8× 107 S/m.

The eigen-mode, used for the acceleration of charge parti-

cles should have a resonant frequency of fres = 500MHz.

(a) What type of eigen-mode is used to accelerate

charged particles?

(b) Calculate the diameter of the cavity.

(c) Why is it a good idea to keep the height h of the cylindrical cavity always smaller than the

diameter 2a: h < 2a ?

(d) For this cavity we chose the height h to be half of the radius a. What is the dimension of h?

(e) What is the Q-factor of the cavity?

(Hint: Start by calculating the skin depth for aluminium at the resonant frequency)

2. The fundamental, accelerating mode of an

“empty” (air), cylindrical “pillbox” prototype

cavity (ideal cylinder, no beam ports) was charac-

terised by S-parameter measurement with a vec-

tor network analyser (VNA). The three markers

distributed on the Smith chart display – see the

graph on the right – of the S11 measurement read:

m1: 999.96MHz

m2: 1000.00MHz

m3: 1000.04MHz

A bead-pull perturbation measurement determined the “geometric factor” of the cavity:

R/Q = 90Ω

(a) What is the resonant frequency of the cavity?

(b) What is the ±3 dB bandwidth of the cavity, and what kind of coupling is performed?

(c) Calculate the unloaded Q-factor of the cavity.

(d) Sketch the equivalent lumped circuit for the accelerating mode of this cavity.

(e) Compute the element values of the equivalent circuit.

(f) The cavity is fed from a RF power amplifier with a source impedance of Rs = 50Ω. What

is required transformer ratio of the coupling loop to match the cavity shunt impedance to the

generator source impedance?
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C. Exercises

(g) Calculate the necessary RF power for a gap voltage of 1MV peak.

Bonus question

(h) Compute the transit-time factor of the pillbox resonator.

i. Compute the radius a of the cavity.

ii. Compute the height h of the cavity.

(Hint: You may use the approximation for small arguments sin(x) ≊ x in the analytical

expression of R/Q.)

iii. Compute the transit-time factor T , assuming the gap length g is equal to the height h of

the cavity, for a beam travelling with a velocity v = 0.9c.

3. Given are the S-matrices for five ideal RF components:

SA =

[
0 0

20 0

]
SB =

0 0 1

1 0 0

0 1 0

 SC =


0 −j0.995 0.1 0

−j0.995 0 0 0.1

0.1 0 0 −j0.995

0 0.1 −j0.995 0


SD =

1

2

 1 −1
√
2

−1 1
√
2√

2
√
2 0

 SE =

[
0 −1

−1 0

]

(a) Assign the S-matrices SA . . .SE to the components:

component transmission-
line

power
splitter

directional-
coupler

amplifier circulator

S-matrix

(b) What are the properties of the S-matrices in terms of impedance-matched, reciprocal and

symmetry? Please complete the table:

SA SB SC SD SE

matched X

reciprocal

symmetric

(c) What is the gain in dB of the amplifier?

(d) What is the length of the transmission-line, expressed in wavelengths?

(e) What is the coupling coefficient κ in dB of the directional-coupler?
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D Solutions

D.1 In-text questions

Section II.2.6.3

The Smith chart transforms the complex impedance plane

onto the complex Γ-plane (Reflection coefficient) within the unit circle.

Prompts Possible Answers

A. Point A A5 1. Γ = 1, z → ∞

B. Point B B4 2. Γ = −j

C. Point C C1 3. Γ = 0, z = 1, match

D. Point D D3 4. Point in the capactive half plane

E. Point E E6 5. Γ = +j

6. Γ = −1, z = 0

7. Point in the inductive half plane

Exercise II.2.6.2

point # P1 P2 P3 P4 P5

Z/Ω ∞ 50 0 31− j74 100 + j100

Γ 1∠0° (+1) 0 1∠180° (−1) 0.7∠− 62° 0.62∠30°
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D. Solutions

Section II.2.6.4

When do no signal reflections occur at the end of the transmission-line?

□ Rsource = Rload

□ Rsource = Z0

□✗ Z0 = Rload

□✗ Rsource = Z0 = Rload

Exercise II.2.6.3 #6

ZL C Series L Series R Series

(50 + j25)Ω 12.7 pF – –

(50− j25)Ω – 7.96 nH –

(4 + j21)Ω 15.2 pF – 46Ω

(20− j50)Ω – 15.9 nH 30Ω

Exercise II.2.6.3 #7

ZL C Shunt L Shunt R Shunt

(50 + j25)Ω 2.55 pF – 251.5Ω

(50− j25)Ω – 39.8 nH 250.8Ω

(4 + j21)Ω 14.6 pF – 89.3Ω

(20− j50)Ω – 18.5 nH 76.8Ω
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Exercise II.2.6.3 #8

ZL C Series L Series C Shunt L Shunt

(32− j66)Ω – 24.5 nH – 102.1 nH ∗

(13− j9)Ω 24.5 pF ∗ – – 9.44 nH

(37 + j34)Ω 26.3 pF ∗ – 3.77 pF –

(78 + j78)Ω 4.38 pF – – 108.1 nH ∗

ò
The first element is marked with a ∗.

Other solutions are possible!

Exercise II.2.6.3 #9: see Fig. II.2.65.

Trace with marker points in the simplified Smith chart for an RL series impedance.

(Mark the correct answer)

□ fB > fA

□✗ fB < fA

□ There is no frequency f related to Points A and B

□ fB = fA
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D. Solutions

Section II.2.7.4

Mark all correct answers for the S-parameters of a 2-port RF network

□ a1 and b1 are independent parameters.

□✗ S11 = b1/a1 (a2 = 0) is the input reflection coefficient Γ1.

□✗ a1 and a2 are the incident waves at port 1 and port 2, respectively.

□ b1 and b2 are the transmitted waves between port 1 and port 2, and vice versa.

□✗ S21 and S12 are the forward and reverse transmission gains / losses.

□✗ To characterise the S-parameters at port 2, port 1 needs to be terminated in its characteristic port

impedance.

Section II.2.7.5

Select all correct answers

□ Y- and Z-parameters of electrical networks require a reference impedance Z0.

□✗ Scattering parameters of RF networks are based on normalised, complex power waves, incident

and reflected at their ports.

□✗ DUT stands for “Device Under Test”, as acronym for a RF network to be characterised.

□ S-parameters are only defined for a reference impedance of Z0 = 50Ω.

□✗ Unused ports in a S-parameter measurement setup always need to be terminated in their character-

istic port impedance.
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Section II.2.7.6

Fill the centre column with the correct answer, 1 . . . 6

Prompts Possible Answers

A. matched A4 1. Sii = Sjj

B. symmetric B3 2. (S∗)T S = I

C. reciprocal C6 3. Sij = Sji ∧ Sii = Sjj

D. passive and lossless D2 4. Sii = 0

5. Γ = +j

6. Sij = Sji

D.2 Solutions to the exercises, Section C

1. (a) TM010 (≡ E010)

(b) diameter 2a = 0.459m

(c) To keep the frequency of the accelerating TM010 mode below that of the unwanted higher-

order TE111 mode.

(d) h = a/2 = 0.1147m

(e) δ = 3.65µm, Q = 20650

2. (a) fres = fm2 = 1000.00MHz

(b) fBW3dB = fm3 − fm1 = 80 kHz. The cavity is in critical coupling.

(c) Q0 = 2QL = 25000

(d)

(e) R = 2.25MΩ, L = 14.324 nH, C = 1.7684 pF

(f) k = 212.1

(g) P = 222.2 kW

(h) i. a = 0.1147m

ii. h/a ≊ 0.4865 ⇒ h ≊ 55.82mm

iii. λTM010 = 0.2998m ⇒ T = 0.931

997



D. Solutions

3. (a)

component transmission-
line

power
splitter

directional-
coupler

amplifier circulator

S-matrix SE SD SC SA SB

(b)

SA SB SC SD SE

matched X X X X

reciprocal X X X

symmetric X X

(c) g = 20 log10G = 20 log10 |S21| = 26dB

(d) S21 = S12 = −1 = exp(−jπ) ⇒ θ = βℓ = π ⇒ ℓ = λ/2

(e) S31 = S13 = S24 = S42 = k ⇒ κ = 20 log10 k = −20 dB
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