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Chapter II.3

Normal conducting magnets
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This chapter aims to provide the guidance and tools necessary to carry out the analytical design of
a simple accelerator magnet. As the chapter unfolds, we will explain some basic concepts, magnet
types, and important aspects to consider before moving on to the actual design phase. The central
part of this chapter is dedicated to a step-by-step explanation of how to develop a basic magnet
design. We will cover a range of subjects like the layout of the magnetic circuit, excitation coils and
cooling circuits, along with a short introduction to materials for the yoke and coil construction to
complement this topic. The chapter also includes a practical part with problems and a case study for
the reader to solve independently. Having worked through this chapter, the reader should be able to
design an elementary magnet according to their needs.

II.3.1 Introduction

The goal of the JUAS lecture series “Analytical and numerical design of normal-conducting accelerator

magnets” is to give an overview of the electromagnetic technology as used in and around particle accel-

erators and limited to normal-conducting iron-dominated electromagnets. In these lectures, we restrict

our discussions to static current situations where we can assume that voltages generated by the change

of flux and resulting eddy currents are negligible. Permanent and super-conducting magnet technologies

are not covered there.

While the lectures deal with many more subjects like Maxwell’s equations, numerical design, mag-

net manufacturing techniques, cost estimates, and quality assurance, this chapter concentrates only on the

analytical design process. This restriction became necessary to ensure that this important subject is dis-

cussed with the required diligence without going beyond the scope of these proceedings. We consciously

focus on applied and practical design aspects with the primary goal in mind to provide clear, workable

instructions on how to approach the task of designing a standard accelerator magnet. These guidelines

should also help to draft a list of critical parameters—with paper and pencil—without resorting to any

complex computer programs.

Mathematics is reduced to a necessary minimum to keep it concise: The derivation of equations

in this text might sometimes appear condensed. Should the reader need a more detailed and solid math-

ematical background, the references cited at the end of this chapter might help. We will systematically

use SI units (MKSA) to guarantee consistency throughout the text, except when stated otherwise.

This chapter should be cited as: Normal conducting magnets, T. Zickler, DOI: 10.23730/CYRSP-2024-003.1001, in: Proceed-
ings of the Joint Universities Accelerator School (JUAS): Courses and exercises, E. Métral (ed.),
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II.3.2. Terms, definitions and conventions

The chapter starts with a short overview of the most common magnet types and materials for

magnet construction, followed by a section on design requirements and constraints. The central part

introduces basic analytical magnet design, covering topics such as yoke design, coil dimensioning, and

cooling layout.

A case study in the second part highlights this chapter’s practical focus, allowing the readers

to design a magnet on their own. For those willing to go deeper into the subject, the bibliography

recommends scientific literature for further exploration.

II.3.2 Terms, definitions and conventions

For the sake of clarity, we will give definitions for the following terms and conventions.

II.3.2.1 Magnetic field

The magnetic field is a vector field that surrounds magnetised materials, electrical currents, and electrical

fields varying in time and describes the magnetic influence on moving electrical charges and magnetic

materials.

In the domain of electromagnetism, the term magnetic field is regularly used for two distinct but

closely related vector fields, namely the magnetic field strength H and the magnetic flux density B.

While the definition of magnetic field is unambiguously defined and widely accepted, there is a certain

confusion in the literature about the terms and definitions of magnetic field strength and magnetic flux

density. Not claiming any universal validity, we define these terms within this chapter as follows:

The magnetic field strength H [H] = 1A s−1 is a physical quantity used to measure the intensity

of a magnetic field and can be seen as the part of the magnetic field in a material that arises from an

external current; its magnitude is independent of the type of the surrounding medium (not intrinsic to the

material itself) [1].

The magnetic flux density B [B] = 1T = 1V s m−2 is a separate physical quantity used to measure

the intensity of a magnetic field and can be thought of as the response of a medium to the magnetic

field strength H. Magnetic flux density should not be confused with magnetic flux: The magnetic flux

Φ [Φ] = 1wb = 1 kg m2 A−1 s−2 is defined as the surface integral of the flux density component

perpendicular to this surface.

The total quantification of a magnetic field requires knowledge of the vector fields of both the

magnetic field strength H and magnetic flux density B. In vacuum, the vectors H and B at each point

are oriented in the same direction and are directly proportional through

B = µ0H , (II.3.1)

where µ0 is the magnetic permeability of free space µ0 = 4π × 10−7 V s A−1 m−1. In other media than

free space, the vectors of the magnetic field strength H and magnetic flux density B can point in different

directions yet follow the relation

B = Pm + µ0H = µ0 (H+M) , (II.3.2)
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where Pm is the magnetic polarization [Pm] = 1T, and M is the magnetization [M ] = 1A m−1.

The magnetization M is the vector field that expresses the density of permanent or induced mag-

netic dipole moments in magnetic material and is defined as the quantity of magnetic moment per unit

volume. The magnetic polarization Pm is the magnetization M scaled by the magnetic permeability of

free space µ0.

In anisotropic materials, the three vectors B, H and Pm can point in different directions, but al-

ways in such a way that the vector sum in Eq. (II.3.2) is fulfilled. For uniaxial magnetization, Eq. (II.3.2)

can be simplified to a scalar form, which is widely used in engineering applications [2]:

B = µH . (II.3.3)

The magnetic permeability µ in materials has always two components

µ = µ0 µr , (II.3.4)

where µr is the relative permeability, a dimensionless quantity representing the permeability of a specific

medium. In vacuum, µr = 1, so that H and B are strictly proportional. If µr is much larger than 1, we

speak about ferromagnetic materials (µiron > 1000).

We can think about the magnetic field strength H as the part of the magnetic field produced only

by electrical currents and the magnetic flux density B as the total magnetic field that also includes

the contribution from the magnetic properties of the materials in the field. Although we define them

differently, the term magnetic field will interchangeably be applied for both the magnetic field strength

and magnetic flux density.

II.3.2.2 Polarity conventions

A positive current flows from the positive terminal of a power supply to the negative terminal. In this

chapter, we will use the following colour convention: red for the electrical current entering the plane and

blue for the current pointing out of the plane. The same convention is valid for the direction of charged

particles.

The magnetic flux flows from the positive (North) pole to a magnet’s negative (South) pole. The

direction of the magnetic flux as a result of a positive electrical current in a coil is determined by the

right-hand rule: When wrapping the right hand around the coil with the fingers in the direction of the

electrical current, the thumb points in the direction of the magnetic south pole.

A similar rule exists to describe the effect of the Lorentz force

F = q (E+ v ×B) , (II.3.5)

where q is the particle charge [q] = 1C = 1A s, E is the electric field vector [E] = 1A m−1, and v is

the velocity vector [v] = 1m s−1 of the charged particle. We should remember that the direction of the

particle motion has to be perpendicular to the magnetic field to see the Lorentz force. In other words, v

and B create a plane, and F is perpendicular to this plane. When using the right-hand rule, this means

1003



II.3.2. Terms, definitions and conventions

that the index finger represents v, the middle finger indicates the direction of B, and the thumb points in

the direction of the resulting force F.

II.3.2.3 Coordinate system

To express the vector components of a magnetic field, we will use a right-handed, orthogonal coordinate

system (x, y, z). The z-axis goes through the centre of the magnet aperture and is parallel to the trajectory

of the particle beam. The positive z-axis points out of the plane. There is no universal definition of where

z = 0 is located, but in practice, we will set it in the longitudinal centre of the magnet.

The x-axis and y-axis are the horizontal and vertical axes, respectively. Using a right-handed

coordinate system, the positive curling motion of the x-axis towards the y-axis counterclockwise around

the z-axis defines the positive directions of the x- and y-axis.

Fig. II.3.1: Right-handed, orthogonal magnet coordinate system (x, y, z) with the z-axis pointing in the
direction of the particle trajectory.

II.3.2.4 Field description by multipoles

An arbitrary field vector B in a 2D-plane at a point defined by the complex coordinate z = x + iy can

be represented by its vector components Bx and By with

B = By + iBx .

Instead of describing the entire field in the aperture of a magnet by establishing a field map where

we assign the vector components Bx and By to every single point in the plane, we can use a more elegant

approach. Without providing a proof here in this chapter, the equation

B = By + iBx = Cn z
n−1 (II.3.6)
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with the complex coefficient

Cn = Bn + iAn

is a possible solution to Maxwell’s equations for a magnetostatic situation in free space. In other words,

we can describe a complex field vector by a complex scalar coefficient and the complex position vector.

Magnetic fields that conform to this description are called multipole fields.

The complex number Cn has a real part Bn and an imaginary part An. If we consider only the real

part Bn and neglect the imaginary part An, we speak about normal multipole fields (see Fig. II.3.2).

Fig. II.3.2: Normal multipole fields. Left: normal dipole with B1 = Re{C1}. Middle: normal
quadrupole with B2 = Re{C2}. Right: normal sextupole with B3 = Re{C3}.

The index n indicates the order of the multipole field: For example, if Cn is real and n = 1, we

get a normal dipole field; for n = 2, we get a normal quadrupole field, and so on. On the x-axis, normal

multipole fields involve only field components perpendicular to the x-axis, which suggests that the field

is vertical in the horizontal plane.

Fig. II.3.3: Skew multipole fields. Left: skew dipole with A1 = Im{C1}. Middle: skew quadrupole
with A2 = Im{C2}. Right: skew sextupole with A3 = Im{C3}.

On the other hand, if we consider only the imaginary part An we talk about skew fields. In the

skew family, the field on the x-axis is always tangential to the x-axis, which means we have a horizontal

field in the horizontal plane, as shown in Fig. II.3.3. The skew fields can be obtained from the normal

ones with a rotation by π/2n; this means a rotation of 90◦ for a dipole and 45◦ for a quadrupole, and so

on.
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The flux lines of the magnetic field shown in Figs. II.3.2 and II.3.3 are also known as vector

equipotential lines with the field vector always tangential to these flux lines. Scalar equipotential lines

are orthogonal to the vector equipotential line. They define the boundary conditions for shaping the field

(not shown here in these figures).

Since Maxwell’s equations are linear, we can superpose any number of multipole fields and always

obtain a valid solution to this equation. Hence, we can describe an arbitrary 2D vector field within a circle

of validity rmax by a series of scalar coefficients

By + iBx =

∞∑
n=1

(Bn + iAn)

(
x+ iy
rref

)n−1

. (II.3.7)

These coefficients, Bn and An, are commonly named multipole coefficients and have units of tesla.

The Bn-terms are the normal terms, whereas An-terms are called skew terms. The reference radius rref
is used for normalisation, and when assigning a value to it, we choose one that defines the good-field

region needed for the beam. A typical value is 2/3 of the physical aperture. Since the value of Bn

and An depend on rref , it is always necessary to attribute the value for rref together with the multipole

coefficients.

It is important to highlight that this 2D multipole decomposition holds only within a region:

– without magnetic materials: in practice, this means in air or vacuum;

– without currents;

– when Bz is constant or zero.

We would theoretically need an infinite number of these coefficients for an accurate field recon-

struction. Yet, in practice, we don’t need all terms: A few coefficients in this convergent Fourier series

are generally more than enough. We never practically go beyond n = 20, and in most cases, we terminate

the series already at n = 14.

We should remember the following difference when defining the index n: In Europe, we go from

1 to ∞, but in the United States, the indexing starts from 0. This inconsistency could sometimes lead to

confusion if you read papers written by colleagues from the United States.

II.3.3 Magnet types

This section gives an overview of the classical normal-conducting magnet types, highlights their main

characteristics, and briefly explains their function and purpose in particle accelerators. In addition, we

will show the most typical representatives of each type and explain their advantages and drawbacks. But

before we do so, we will discuss the difference between coil-dominated superconducting magnets and

iron-dominated normal-conducting magnets.

II.3.3.1 Magnet technologies

Accelerator magnets can fall into different categories and subcategories depending on the criteria ap-

plied. One of the criteria is the technology used to produce the magnetic field: We differentiate between
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electromagnets and permanent magnets. In electromagnets, the field is produced by electrical currents in

the coil windings; in permanent magnets, the field is produced by hard magnetic materials. Permanent

magnets are rarely used in particle accelerators mainly because they can only provide a constant field, in

general. We can further distinguish electromagnets by the conductor technology applied: superconduct-

ing or normal-conducting.

Superconducting technology relies on superconducting materials as a conductor for the excitation

current. These materials have zero electrical resistance at cryogenic temperatures and, therefore, no

ohmic losses. Very high current densities can be achieved in the coils, but only with the help of cryogenic

cooling.

For the construction of normal-conducting coils, resistive conductor materials like copper or alu-

minium are used, which sets a natural limit for the usable current densities due to ohmic losses and power

dissipation in the coils—hence, only moderate current densities are possible.

Magnets can also be categorised based on how the magnetic field in the aperture is shaped. Simply

speaking, we have two different ways to create a specific field distribution in the aperture of a magnet:

In coil-dominated magnets, the magnetic field in the aperture is shaped by the position of the

conductors or, rather, the current distribution around the aperture. In coil-dominated magnets that need

to generate magnetic fields of strength necessary for particle accelerators like the LHC, the current in the

coils needs to be significant. These elevated currents are the reason why these magnets are often built

from superconducting materials.

In contrast to coil-dominated magnets, the field distribution in the aperture of iron-dominated

magnets is determined by the geometry of the iron poles, with the position of the coils being of minor

importance for the strength and homogeneity of the field. The ideal pole profiles are curves of constant

scalar potential with the flux lines perfectly perpendicular to these ideal iron poles. The field in iron-

dominated magnets is limited to moderate field strength by saturation effects. So, resistive conductor

materials are adequate to drive the magnetic flux in a magnetic circuit.

The two most widespread types are coil-dominated, superconducting magnets and iron-dominated,

normal-conducting magnets. None of these technologies is superior to the other: Both types successfully

co-exist because they are complementary in covering a more expansive field range.

II.3.3.2 Dipole magnets

In a circular particle accelerator or a curved beam transfer line, dipole magnets are the most commonly

used elements. A dipole provides a uniform field between its two poles (North and South) excited by

a current circulating in the coils. The system respects the right-hand convention—this means a current

circulating counterclockwise around the poles produces a magnetic field that points upwards as indicated

in Fig. II.3.4 (middle).

The purpose of dipole magnets is to bend or steer a charged particle beam. Following the right-

hand rule, a beam of positively charged particles directed into the plane is deflected to the right when

the magnetic field points upwards. This scheme is demonstrated in Fig. II.3.4 (right). The equation

describing the ideal (infinite) pole profile for a normal (non-skew) dipole is
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Fig. II.3.4: Normal dipole. Left: 2D field distribution of |B|. Middle: cross section, magnet polarity and
corresponding flux lines in the aperture. Right: interaction with positively charged particles moving into
the plane.

y = ±r ,

where r is the half-aperture height. The magnetic flux density between these two poles is ideally constant,

as in Fig. II.3.4 (left), and has only a field component in y-direction:

Bx = 0 and By = B1 = constant .

Although the design and layout of a dipole magnet can differ from case to case, depending on the

application, we can identify three standard families, each with its advantages and drawbacks.

The H-type magnet, as shown in Fig. II.3.5, is fully symmetric, with a closed iron circuit and coils

around the poles. Sharing the same field characteristics with the C-type magnet, this design is more

compact and mechanically more stable—although at the cost of some access problems to the aperture,

making the installation of coils and vacuum chamber more complicated. The coils can either sit in their

coil window or extend to the mid-plane. In the latter case of the so-called bedstead coils, the coil heads

must be bent upwards to clear the aperture region. In the specific case when the coils get close to the

aperture, their position can negatively impact the field quality, especially at higher fields.

Fig. II.3.5: H-type dipole magnet: Due to its two-fold symmetry, this type provides a good magnetic
field homogeneity.

1008



CERN Yellow Reports: Monographs, CERN-2024-003

Reducing the pole height to zero results in the O-type or window-frame magnet (see Fig. II.3.6)

that is known for providing the best field quality due to the extra wide poles. Yet the particular design

of the coils intrinsic to this magnet type makes the field quality sensitive to the correct positioning of the

windings. The window-frame magnet has the same access problems as the H-type magnet.

Fig. II.3.6: O-type or window-frame dipole magnet (type 1): Although providing an excellent magnetic
field quality, the field quality is sensitive to the correct positioning of the coil windings.

Another variant of the window-frame magnet, shown in Fig. II.3.7, is often used as a layout for

short magnets, like corrector or steering magnets, that can only produce a magnetic field of moderate

strength. For the same flux density in the aperture, this type needs twice as many ampere-turns compared

to type 1. This is a consequence of the fact that the coils are twined around the return legs, and the parts

of the coils outside the yoke do not contribute to the magnetic field in the aperture—they just serve as a

return path for the current.

Fig. II.3.7: O-type or window-frame dipole magnet (type 2): This type is frequently used as a corrector
or steering magnet.

As shown in Fig. II.3.8, the magnetic circuit of the C-type dipole is open on one side. This

design offers excellent transversal accessibility to the magnet aperture and the beam pipe, thus making

it a perfect candidate for light sources where the synchrotron light has to be extracted all along the

circumference of the synchrotron. Due to its asymmetric layout, this magnet type is also suitable for

injection and extraction regions or zones with adjacent beams very close to each other, such as the

transfer lines of experimental areas.
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Fig. II.3.8: C-type dipole magnet: The particular design of this type makes it a perfect candidate for light
sources where the synchrotron light has to be extracted all along the circumference of the synchrotron.

The yoke volume, and hence the weight of the C-type magnet, is considerably higher than that of

the H-type magnet with a similar performance. Compared to the H-type or O-type magnet, the mechani-

cal stability of the C-type is less good. When the magnet is pulsed, the attracting magnetic forces on the

poles and its only one return leg may lead to a movement of the poles.

II.3.3.3 Quadrupole magnets

The second most commonly used magnetic element is the quadrupole magnet. Its purpose is to focus

the beam. We should note that a horizontally focused beam is vertically defocused at the same time.

The quadrupole magnet has four poles with a hyperbolic contour that can be described for a normal

(non-skew) quadrupole by

2xy = ±r2 ,

where r is the aperture radius.

Fig. II.3.9: Normal quadrupole. Left: 2D field distribution of |B|. Middle: cross section, magnet
polarity and corresponding flux lines in the aperture. Right: interaction with positively charged particles.

This type of magnet produces a zero magnetic field at the centre, and its intensity increases linearly

with the radial distance. The equipotential lines are hyperbolas (xy = constant), and the field lines are

perpendicular to them. The Cartesian components of the flux density in an ideal quadrupole are not
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coupled: The x-component of the flux density on a point in the aperture only depends on the y-coordinate,

and the y-component only depends on the x-coordinate following the relation

Bx =
B2

rref
y and By =

B2

rref
x .

The characteristic parameter of the quadrupole is the field gradient G [G] = 1T m−1, which is defined

as

G = B′ =
B2

rref
=

dB

dr
.

With the polarity shown in Fig. II.3.9 (middle), the horizontal component of the Lorentz force

on a positively charged particle moving into the plane is directed towards the axis; the vertical compo-

nent is directed away from the axis. Figure II.3.9 (right) illustrates this horizontal focusing and vertical

defocusing.

Like dipoles, quadrupoles come in different designs. The quadrupole in Fig. II.3.10 features four

symmetric quadrants and 90◦ coils. Whereas the space for the coils is limited, the large poles ensure

improved field quality.

Fig. II.3.10: Quadrupole type 1 with 90◦ coils: The large poles ensure an improved field quality.

Figure II.3.11 shows a quadrupole with parallel poles and racetrack coils. The advantage of this

design is a larger space for the coils. On the negative side, the smaller poles can lead to saturation on the

pole roots, resulting in reduced field quality.

The third type (see Fig. II.3.12) is a so-called figure-of-eight or Collins quadrupole. It features

a slim design and openings on the sides, allowing the radial extraction of beams or synchrotron light.

As a result of the missing vertical back legs, this design is obviously mechanically less stable and more

expensive to produce. Like the C-type dipole, the Collins quadrupole can often be found in light sources

and beam transfer lines.
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Fig. II.3.11: Quadrupole type 2 with parallel poles: The advantage of this design is the enlarged space
for the coils.

Fig. II.3.12: Figure-of-eight or Collins quadrupole: The slim design makes this type suitable for transfer
lines with limited transversal space.

II.3.3.4 Sextupole magnets

Sextupole magnets, which have six poles of round or flat shape, are used in circular accelerators and

less often in transfer lines. Their primary function is to correct chromatic aberrations in accelerators.

Off-momentum particles are incorrectly focused in quadrupoles, which means that in the case of high-

momentum particles with higher beam rigidity, the beam is underfocused, leading to the distortion of

betatron oscillation frequencies.

A positive sextupole field can correct this effect: Off-momentum particles circulate with a radial

displacement with respect to the central orbit and see, therefore, a correcting field in the sextupole as

shown in Fig. II.3.13 (right) reducing the chromaticity to zero. An analogous principle applies to over-

focused low-momentum particles. The equation for a normal (non-skew) sextupole with ideal poles is

3x2y − y3 = ±r3 ,

1012



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.3.13: Normal sextupole. Left: 2D field distribution of |B|. Middle: cross section, magnet polarity
and corresponding flux lines in the aperture. Right: interaction with positively charged particles.

where r is the aperture radius. However, a simple circular arc often approximates the pole profile of a

sextupole.

The magnetic field varies quadratically with the radial distance from the magnet centre. Sextupoles

are non-linear beam-optics elements, which means that the y-component of the flux density at a certain

point in the aperture depends on both the x- and y-coordinate and is described by

Bx =
B3

r2ref
xy and By =

B3

r2ref

(
x2 − y2

)
.

The characterising parameter of the sextupole is the second derivative of the field:

B′′ =
2B3

r2ref
=

d2B

dr2
.

II.3.3.5 Skew magnets

In the previous section, we have dealt with magnets capable of producing either a normal or a skew

field—an intrinsic quality irrespective of their multipole order. A skew field is a result of rotating a

normal field along the longitudinal axis by π/2n. A rotation of a quadrupole produces skew quadrupole

components and, therefore, leads to some linear betatron coupling.

Fig. II.3.14: Skew quadrupole. Left: 2D field distribution of |B|. Middle: cross section, magnet polarity
and corresponding flux lines in the aperture. Right: interaction with positively charged particles.

Figure II.3.14 demonstrates a skew quadrupole—its purpose is to control the coupling of horizon-
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tal and vertical betatron oscillations. In a skew quadrupole, a beam that is displaced in the horizontal

plane is deflected vertically, and a beam that is displaced in the vertical plane is deflected horizontally.

II.3.4 Materials

This chapter will give an overview of the characteristics and properties of materials used for magnet

manufacturing, such as ferromagnetic materials and electrical conductors. Although most readers will

probably never build a magnet with their own hands, it is essential to have a basic knowledge of material

characteristics as they directly impact the preceding design process.

II.3.4.1 Yoke materials

Magnetic circuits or magnet yokes are made from materials with a high relative permeability µr ≫ 1,

called ferromagnetic materials. In particular, soft ferromagnetic materials are of interest—the metals that

can be easily magnetised and demagnetised feature a high permeability, a narrow hysteresis loop, and a

high magnetic saturation induction.

II.3.4.1.1 Solid vs. laminated yokes

Iron-dominated magnets can be built from massive iron blocks, which makes them sensitive to eddy

currents. This undesired effect prevents them from being pulsed or cycled rapidly. To reduce or avoid

eddy currents in pulsed operation, the yoke has to be laminated. In the past, the decisive factor in selecting

the yoke material—laminated or solid steel—was the requirement for the magnet to be operated either in

a cycled or static mode. Nowadays, most magnets are commonly manufactured from laminated steel.

Unlike laminated yokes, those machined from cast ingots require no specific tooling. A signifi-

cant problem with massive yokes is the difficulty of building a series of magnets with similar magnetic

performance.

Admittedly, yokes built from steel sheets are more labour-intensive and require expensive tooling

for stamping, stacking and assembling. That said, there are a lot of manufacturing and operational

advantages when opting for steel sheets over solid iron blocks: Steel sheets are less expensive than

blocks; the magnetic and mechanical properties can be adjusted by final annealing; the steel quality is

reproducible even in large series production; the magnetic properties (permeability, coercivity) remain

within small tolerances. Last but not least, laminated magnets are less expensive for larger series because

the tooling is part of the fixed costs: the more magnet units are produced, the smaller the contribution of

the tooling to the total costs.

II.3.4.1.2 NGO electrosteel

One of the most common materials for laminated magnets is fully annealed, cold-rolled, non-grain ori-

ented (NGO) electrosteel as defined in DIN EN10106 [3]. Table II.3.1 summarises typical material prop-

erties of cold-rolled NGO electrosteel. More detailed information on specific materials can be requested

from steel producers.
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Table II.3.1: Typical properties of cold-rolled NGO electrosteel.

Property Typical value

Steel thickness 0.3 ≤ t ≤ 1.5mm
Density 7.60 ≤ δ ≤ 7.85 g cm−3

Coercivity Hc < 65A m−1

Coercivity spread ∆Hc < ±10A m−1

Electrical resistivity at 20◦C 0.16 (low Si) ≤ ρ ≤ 0.61µΩm (high Si)

II.3.4.1.3 Insulation coating

Like in solid yokes, eddy currents can also be present in laminated yokes if there is an electrical contact

between the stacked laminations. The individual laminations should be coated on one or both sides with

a micrometre-thin insulation layer to avoid this undesired effect.

Apart from the classical coating techniques, like blue steaming or phosphatization, steel suppliers

nowadays offer a wide range of organic and inorganic coatings with different properties. Some epoxy-

based coatings provide electrical insulation and act as a bonding agent to glue the individual laminations

together at the same time. This distinguishing characteristic makes them particularly interesting for man-

ufacturing laminated yokes because it offers an alternative assembly technique without welding involved.

II.3.4.1.4 Steel permeability and saturation

At the beginning of this chapter, we have discussed the relation between the magnetic field strength H

and magnetic flux density B. This relation is called permeability µ and consists of two components:

the permeability of free space µ0 and the relative permeability µr. The latter, a dimensionless quantity

describing the magnetic behaviour of materials, is large in ferromagnetic materials (sometimes as high

as 10 000) but not constant—it changes as a function of the flux density. We can see this non-linearity

in Fig. II.3.15 (left), where the magnetic induction B as a function of the magnetic field strength H is

plotted for different ferromagnetic materials. This plot is called the B(H) curve.

Fig. II.3.15: Non-linear permeability for different magnetic steel types. Left: Flux density B as a
function of magnetic field strength H . Right: Relative permeability µr as function of flux density B.

The non-linearity appears even more apparent when we plot the permeability as a function of the
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magnetic flux density, as shown in Fig. II.3.15 (right). If we look at very high induction levels, the

permeability is significantly reduced, an effect known as saturation. This reduction in permeability is

also true for the low-induction region.

From these curves, we can conclude that increasing flux density B above 1.5 − 1.6T in iron

requires a non-proportional field strength H increase. We should remember that ignoring the above-

mentioned relation may cause saturated areas in the iron yoke. Saturation means a local decrease in

relative permeability (small µiron), which can lead to inefficiencies of the magnetic circuit.

By analogy with electrical circuits, we can define the resistance of a magnetic circuit called mag-

netic reluctance Rm[Rm] = 1H−1 = 1A2 s2 kg−1 m−2. The equivalent of Ohm’s law for electrical

circuits, Hopkinson’s law describes the relation between the magnetomotive force NI and the resulting

magnetic flux Φ:

Rm =
NI

Φ
=

λm

am µo µr
, (II.3.8)

with λm being the flux path length [λm] = 1m and am the iron cross section perpendicular to the flux

[am] = 1m2.

II.3.4.1.5 Steel anisotropy

Ferromagnetic materials have another particularity related to the production process and its impact on

the crystal structure. As a result of the cold rolling process, electrosteel sheets show an anisotropy in

their material properties, especially in permeability. Parallel to the rolling direction, the permeability is

higher than perpendicular to the rolling direction. Although this anisotropy can be reduced to a certain

extent during the annealing process, the steel sheets will never become fully isotropic.

Fig. II.3.16: Anisotropy of standard cold-rolled NGO steel grades. The permeability depends on the
orientation with respect to the rolling direction. Left: grade M1300-100A. Right: grade M250-35HP
(high permeable material).

Figure II.3.16 (left) shows the anisotropic permeability of standard cold-rolled NGO steel of 1mm

thickness commonly used for yoke fabrication (grade M1300-100A). This steel grade has a low carbon

as well as relatively low silicon contents. The permeability in the rolling direction is almost twice as

high as that measured perpendicular to the rolling direction. This effect is even more pronounced in high

permeable materials like M 250-35 HP as shown in Fig. II.3.16 (right). This 0.35mm thick steel has a
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high silicon content that increases both the permeability and resistivity and decreases the coercivity at the

same time. The permeability in the two directions differs by a factor of more than three. In grain-oriented

(GO) materials, the anisotropy is even more pronounced.

This particularity of cold-rolled NGO steel impacts the manufacturing process. When stamp-

ing the laminations, their orientation with respect to the rolling direction is fundamental. Ignoring the

anisotropy of the magnetic properties can lead to asymmetries in magnetic flux distribution thus violating

the symmetry conditions in a magnet.

II.3.4.1.6 Hysteresis, remanence and coercivity

In ferromagnetic materials, we can observe that the flux density B as a function of the field strength H is

different, depending on whether the excitation is increasing or decreasing (see Fig. II.3.17). This effect

is called hysteresis and can be explained by the complex, intrinsic processes—movements and growth of

magnetic domains—in ferromagnetic materials when subject to an external magnetic field.

Fig. II.3.17: Hysteresis: the flux density B as a function of the field strength H is different, depending
on whether the excitation is increasing or decreasing.

With the excitation current switched off and zero magnetic field strength H as a result, there is still

some magnetic polarization remaining in the iron: This phenomenon is called remanent magnetic flux

density or magnetic remanence Brem. The width of the hysteresis curve is determined by the coercive

force or coercivity Hc. The quantity Hc is defined as a value of the field strength that reduces the mag-

netic flux density in steel to zero. Materials having Hc < 1000A m−1 are known as soft magnetic, and

materials with Hc > 1000A m−1 are called hard magnetic (see Fig. II.3.18). We are mostly interested

in soft magnetic materials for the construction of magnetic circuits. Hard magnetic materials are used to

produce permanent magnets.

II.3.4.2 Coil materials

Conductor materials that are commonly used for the construction of normal-conducting coils include

aluminium and copper. Both materials are available in different grades and purities. The material prop-
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Fig. II.3.18: The coercive force determines the width of the hysteresis curve. Left: hard magnetic
material with Hc > 1000A m−1. Right: soft magnetic material with Hc < 1000A m−1.

erties of two typical standard grades—pure aluminium and oxygen-free (OF) copper—are summarised in

Table II.3.2. Magnet designers and engineers looking for more detailed information and other available

grades should consult suppliers, material databases, or international standards.

While aluminium was a good alternative in the past thanks to its low price, copper coils are more

state-of-the-art nowadays. Assuming the electrical resistance in coils is the same, the material costs of

copper and aluminium coils are comparable today. However, the higher electrical conductivity of copper

means more compact coil dimensions, leading to a smaller magnet overall.

Table II.3.2: Typical properties of standard conductor materials.

Property Aluminium Oxygen-free (OF) Copper

Purity 99.7% 99.95%
Density 2.70 g cm−3 8.94 g cm−3

Electrical resistivity at 20◦C 2.83µΩm 1.72µΩm
Temperature coefficient of resistance 0.004K−1 0.004K−1

Thermal conductivity 2.37W cm−1 K−1 3.91W cm−1 K−1

When winding a coil—whether made of aluminium or copper—we have to avoid small bending

radii. A tight bending increases the risk of insulation damage, decreases the cross section of the cooling

duct and leads to a larger outer dimension of the conductor, known as keystone effect.

Fig. II.3.19: The keystone effect can lead to a significant deformation of the conductor when the bending
radius becomes too small.

1018



CERN Yellow Reports: Monographs, CERN-2024-003

The keystone effect, as demonstrated in Fig. II.3.19, is a deformation of the conductor in the

direction parallel to the bending axis. This results in a growth of the conductor dimension on the inner

bending radius of the coil. For square conductor cross sections, this effect is empirically quantified as

follows:

if r = 3 c ⇒ ∆b

b
=

b′ − b

b
= 3.6% .

For a bending radius of three times the conductor width c, we can expect a conductor growth of

3.6%, where c is the conductor dimension perpendicular to the bending axis. In the case of coils with

many turns, the cumulative effect can lead to a significantly increased coil size in the bending regions

and, consequently, to installation problems in the yoke. In principle, we can neglect the keystone effect

by systematically choosing a bending radius three times larger than the conductor width c. This rule

holds for all square or nearly square conductor cross sections; rectangular conductors bent around the

shorter side show a more pronounced keystone effect.

II.3.5 Magnet design

Before discussing magnet design, we need to collect all the relevant information that will influence

the design, construction, installation, and operation of the future magnet. This section explains what

“relevant” means and is preceded by a brief discussion of goals in magnet design and magnet life cycles.

II.3.5.1 Design process

The flow diagram in Fig. II.3.20 shows the typical life cycle of a magnet: from the design and construc-

tion with its subsequent installation and operation to its final disposal or destruction. We will concentrate

mainly on the part related to design and calculations. This phase can be split into different steps following

a more or less sequential order with possible feedback loops at certain stages. At the beginning of each

project, the requirements, constraints, and boundaries must be defined. This set of parameters serves

as a starting point for the first analytical design to be followed by a basic numerical design. After each

sequential step (electrical design, mechanical design, integration assessment, and cost estimation), one

or more iterations of the analytical design might become necessary. Once these steps deliver satisfactory

results, we can launch an advanced numerical design that includes field optimisation.

II.3.5.2 Input parameters

It is essential to realise that a magnet is not a stand-alone device. Along its life cycle, a magnet inter-

acts with other devices and its environment. In close cooperation with corresponding work packages,

the magnet designer must ensure that these interactions are fully considered in the early design phase.

Ignoring any of the critical aspects may result in the avoidable necessity of implementing difficult modi-

fications to the finished product.

The main work packages are summarised in Fig. II.3.21. Some of them, like beam optics, power

converters, and cooling work packages, are obvious partners to be involved in magnet design from the

very beginning. Others, such as vacuum, survey and integration teams, are often contacted at a later
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Fig. II.3.20: Left: Life cycle of a magnet. Right: Design phase with different steps.

stage of the project—sometimes too late and unnecessarily complicating the life of the concerned parties.

Examples of work packages most likely to be forgotten are safety and transport. As a result, substantial

and expensive engineering modifications might become necessary to install and operate a magnet safely.

It is good practice to contact the responsible partners, collect all necessary information, understand

the requirements, constraints, and interfaces, and summarise them in a functional specification that each

involved party should approve before starting the actual design work. Table II.3.3 lists the most relevant

aspects that need to be considered by a magnet designer before starting the design work.

II.3.6 Analytical design

Before moving on to a detailed numerical magnetic field study calculating the field distribution and field

quality of complex magnetic assemblies, we should focus on a basic analytical and conceptual design.

Such an approach allows us to derive the most important characteristics and parameters of a future

magnet with relatively good accuracy. The outcome of the analytical design process will serve as a solid

foundation for the ultimate numerical design, thus reducing the number of design iterations.

A magnet is an assembly of different components. Figure II.3.22 shows two typical normal-

conducting iron-dominated magnets—an air-cooled quadrupole (left) and a water-cooled quadrupole

(right)—and their main components: the magnetic circuit, the excitation coils, the cooling circuit, the

alignment targets, the interlock sensors, the electrical and hydraulic connections, and the magnet support.

In the following sections, we will explain how to design the magnetic circuit and coils and di-

mension the cooling circuits. The other components will not be discussed here since they have no direct

influence on the magnet performance but are part of the mechanical design.
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Fig. II.3.21: Magnet interaction partners.

Fig. II.3.22: The main components of an accelerator magnet include the magnet yoke and coils, but
also alignment equipment, interlock components, electrical and hydraulic connections, and adjustable
supports. Left: air-cooled quadrupole. Right: water-cooled quadrupole.

II.3.6.1 Yoke design

The first step in the yoke design process is to derive the geometry of the magnetic circuit from beam-

optic requirements. This means we have to define the yoke characteristics such as magnetic induction,

aperture size, and magnet excitation (ampere-turns). Magnetic flux density is one of the most relevant

parameters of a magnet. To determine the required flux density, we need to enter into the subject of beam

optics, as explained in the section below.
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Table II.3.3: Important aspects to be considered by the magnet designer.

General requirements Magnet type and purpose
Application
Quantity & spare policy

Performance requirements Beam parameters
Requirements on field quality
Magnet aperture and good-field region
Operation mode

Physical requirements Geometric boundaries
Transport & handling
Survey & alignment
Accessibility

Interfaces Power converter
Cooling
Vacuum
Machine protection

Environmental aspects Temperature
Ionising radiation
electromagnetic compatibility
Safety

II.3.6.1.1 Beam rigidity

A good starting point to define the necessary magnetic induction is determining the beam rigidity as a

function of the particle type and the envisaged beam energy [4]. The beam rigidity, which describes the

stiffness of a beam, can be seen as the resistance of a particle beam against a change of direction when

applying a bending force and is defined as

Bρ =
p

q
=

1

q c

√
E2

k + 2Ek E0 , (II.3.9)

where Bρ is the beam rigidity [Bρ] = 1T m, p is the particle momentum [p] = 1 kg m s−1, q is the

particle charge [q] = 1C = 1A s, c is the speed of light with c = 299.792× 106 m s−1, Ek is the kinetic

energy of the particle [Ek] = 1 J, and E0 is the particle rest mass energy [E0] = 1 J.

II.3.6.1.2 Flux density

From the beam rigidity and the magnet’s bending radius, we can calculate the dipole magnet’s flux

density B.

B =
Bρ

rm
, (II.3.10)

with rm being the magnet bending radius [rm] = 1m. Analogous to the dipole, the required quadrupole

field gradient G can be derived by using
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G = B′ = Bρ k , (II.3.11)

where k is the quadrupole strength [k] = 1m−2. Similarly, the differential field gradient B′′ of a sex-

tupole can be computed as follows:

B′′ = Bρ j , (II.3.12)

with j being the sextupole strength [j] = 1m−3.

II.3.6.1.3 Aperture size

The aperture size of a magnet, as presented in Fig. II.3.23, is mainly determined by the central region

around the theoretical beam trajectory. Referred to as good-field region (GFR), it specifies an area with a

field quality within specific tolerances. The good-field region characterised by different shapes—circular,

rectangular or elliptical—includes the maximum beam size as well as a certain margin for closed orbit

distortions.

Fig. II.3.23: The physical (mechanical) magnet aperture includes the good-field region, the thickness of
the vacuum chamber and some margin for installation and alignment.

The calculation of maximum beam size σ can be made with the help of Eq. (II.3.13) based on

the lattice functions (beta functions β and dispersion D), energy dependent transverse emittance ε, and

momentum spread ∆p/p:
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σ =

√
ε β +

(
D
∆p

p

)2

. (II.3.13)

The largest beam size can be expected at injection energy, where the beam envelope typically mea-

sures a few σ. The total required aperture size is the sum of the good-field region, the vacuum chamber

thickness (0.5–5.0mm) and a margin for installation and alignment (0–10mm). This is illustrated in

Fig. II.3.23. We should remember that the numbers quoted here present typical values for synchrotrons

indicating the order of magnitude. Depending on the individual case, actual values can significantly vary

from the quoted numbers, particularly for the material thickness of vacuum chambers. For a straight,

short vacuum chamber made of stainless steel with a circular cross section, a thickness of 1.0− 2.0mm

is sufficient, while a long aluminium chamber with a racetrack cross section requires a corrugated cham-

ber wall, which can easily reach a thickness of 5− 10mm.

II.3.6.1.4 Excitation current

Knowing a magnet’s aperture, we can calculate the excitation current in coils required to produce the

desired field strength.

Dipole magnets

For a dipole, we can work out the necessary ampere-turns by applying Ampere’s law:

∮
Hds = NI (II.3.14)

and

B = µH (II.3.15)

and

µ = µ0 µr . (II.3.16)

We can integrate B along a closed path as shown in Fig. II.3.24. Assuming that B remains constant

all along this path, we can split the integration path into two parts: one in the magnet aperture s1 = h,

the other in the iron circuit s2. Solving the integrals leads to

NI =

∮
B

µ
ds

=

∫
s1

B

µair
ds+

∫
s2

B

µiron
ds

=
B h

µair
+

B λiron

µiron
.

(II.3.17)
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In Eq. (II.3.17), the integration path in the aperture is expressed by h and the mean flux path in the

iron circuit by λiron. As long as the iron is not saturated, we can further assume that

h

µair
≫ λiron

µiron
(II.3.18)

such that Eq. (II.3.17) can be simplified to

NI ∼=
B h

µ0
, (II.3.19)

where h is the full aperture height [h] = 1m and NI are the total ampere-turns [NI] = 1A. We should

bear in mind that Eq. (II.3.19) only offers an approximate solution while neglecting fringe fields and iron

saturation. In order to account for these effects, we should extend Eq. (II.3.19) with an efficiency factor

η typically between 97% and 99%, depending on the design. This leads to the following equation, this

time with the ampere-turns per coil:

NI(per pole) =
B h

2 η µ0
. (II.3.20)

Fig. II.3.24: Closed integration path in a dipole magnet: the red line indicates the path in the iron, and
the blue one indicates the path in the air gap. Left: H-shape dipole magnet. Right: C-shape dipole
magnet.

In Section II.3.4.1.4, we have defined the resistance of a magnetic circuit, known as reluctance.

The second term from Eq. (II.3.17)

λiron

µiron

is called normalized reluctance of the yoke. It is a good practice to keep the iron yoke reluctance in the

order of 10−2 of the air reluctance h/µ0 through a sufficiently large iron cross section in a way that the

magnetic flux in the iron remains smaller than 1.5T to avoid saturation. If the recommendation
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λiron

µiron
< 0.01

h

µ0

is followed diligently, the efficiency η is normally better than 99%. Now we have a definition for the

efficiency η:

η =
Rm,air

Rm,air +Rm,iron
, (II.3.21)

where Rm,iron and Rm,air is the reluctance of the path in iron respectively in air.

Quadrupole magnets

The excitation current in a quadrupole can be calculated by applying logic similar to that of a dipole.

Choosing the integration path shown in Fig. II.3.25 we obtain

Fig. II.3.25: Closed integration path in a quadrupole magnet: the red and black lines indicate the path in
the iron, and the blue one is the path in the air gap.

NI =

∮
Hds

=

∫
s1

H1 ds+

∫
s2

H2 ds+

∫
s3

H3 ds .

(II.3.22)

For an ideal quadrupole, the gradient B′ = dB
dr is constant so that

Bx = B′y and By = B′x .

The field modulus along the path s1 (in blue) can be hence written down as

H(r) =
B′

µ0

√
x2 + y2 =

B′

µ0
r .
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Assuming that µiron is large and the reluctance Rm,s2 = s2/µiron in the iron is small compared

to the reluctance in the aperture, we can neglect H in the path s2 (in red). Because of Bx on the x-axis

being zero, the integral comes out to zero, too:

∫
s3

H3 ds = 0 .

As a result, we can also ignore the contribution of B along the path s3 (in black). This leads to

NI ∼=
∫ r

0
H(r) ds =

B′

µ0

∫ r

0
r ds

and finally, to

NI(per pole) =
B′ r2

2 η µ0
. (II.3.23)

The highest magnetic field in a quadrupole is concentrated around the pole vertex. As for the

dipole, we can also introduce an efficiency factor η, taking into account fringe fields and iron saturation.

Interestingly, the number of ampere-turns for a given gradient increases with the square of the quadrupole

aperture. The dissipated power rises even with the power of four:

NI ∝ r2 and PΩ ∝ r4 .

This fact makes it more difficult to accommodate the required ampere-turns and coil cross section

in the iron yoke and ensure adequate cooling. To make space for the coil, the hyperbola has to be

truncated—at the cost of deviating from the ideal pole profile. Depending on the cut-off position, the

resultant multipole errors may affect the field quality in the aperture sufficiently to warrant correction.

II.3.6.1.5 Field homogeneity

One of the simplest but most lucid ways to evaluate field quality is to plot the homogeneity of the field

or of the gradient along a path, like the transversal axis or the boundary of the good-field region.

For example, the field homogeneity in a dipole can be demonstrated by plotting ∆B/B0 as shown

in Fig. II.3.26. In such a plot—usually produced from results of numerical field computation or magnetic

field measurements—we compare field values along the mid-plane of a magnet with the field in the centre

as a reference. Achieving the following homogeneity values is reasonable but challenging:

Dipole:
∆B

B0
=

B(x, y)−B(0, 0)

B(0, 0)
≤ 0.01%

Quadrupole:
∆B′

B′
0

=
B′(x, y)−B′(0, 0)

B′(0, 0)
≤ 0.1%

Sextupole:
∆B′′

B′′
0

=
B′′(x, y)−B′′(0, 0)

B′′(0, 0)
≤ 1% .
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Fig. II.3.26: The transversal field error ∆B/B0 in a dipole can be plotted by comparing the field values
on the x-axis (here from −45mm to +45mm) with the reference field in the centre of the magnet.

II.3.6.1.6 Pole width for dipoles

Since the uniform field region is limited to a small fraction of the pole width, we need to dimension the

magnetic circuit in a way for the poles to be wide enough with the required field quality thus achieved

within the good-field region. On the other hand, the poles should not be unnecessarily wide in order to

keep the magnet compact.

To get the optimum pole width, we have several options: We can estimate the size of the poles

and calculate the resulting fields numerically, but this will most probably require quite a few iterations.

Experience shows that a field homogeneity ∆B/B0 in the order of 10−2 inside the good-field region can

be achieved when

wGFR = w − h ,

where wGFR is a full width of the good-field region and w is a full width of the pole as shown in

Fig. II.3.27. For a good-field region with

wGFR = w − 2h ,

the field uniformity would be in the order of 10−3. The aforementioned methods only allow a rough

estimate. For more accurate quantification of the field quality, in particular, when we search for a homo-

geneity better than 10−3, we either employ numerical simulations or make use of an empirical formula

proposed in [5] to calculate the necessary pole width analytically:

xp =
h

2
f

(
∆B

B0

)
, (II.3.24)

where xp is the pole overhang or excess of the pole beyond the edge of the good-field region, as indicated

in Fig. II.3.27. The width of the poles with respect to the good-field region depends ultimately on the

aperture height and the field uniformity either in the 10−2, 10−3 or 10−4 range. In the case of an
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unoptimised pole contour of a dipole, which means the pole is flat all the way to the pole edge, the

required pole width can be computed with:

f

(
∆B

B0

)
unopt.

= −0.36 ln
∆B

B0
− 0.90 . (II.3.25)

Fig. II.3.27: The pole width needs to be extended beyond the good-field region such that the required
field quality can be achieved within the good-field region.

II.3.6.1.7 Pole optimisation

Along with the unoptimised poles, we also need to discuss their opposites—optimised poles. The field

quality in the good-field region can be improved either by increasing the pole width, a trivial but disad-

vantageous method that accounts for a significant increase in a magnet’s size and mass, or by optimising

the pole profile.

An optimised pole is a pole with the edges adjusted by different methods to improve the field

homogeneity in the good-field region without increasing the pole width. A commonly used method to

achieve this is designing little bumps and dents at the pole edges—called shims. The shims can be seen

as pieces of ferromagnetic material added on each side of the poles to compensate for the cut-off of the

ideal pole. The area and shape of the shims determine the amplitude of multipole errors. An additional

way to ameliorate the field quality involves tapering or rounding off the pole edges, thus minimising their

saturation. Figure II.3.28 compares an unoptimised pole contour (left) of a dipole with an optimised pole

profile featuring a shim and a chamfered edge.

Should we intend to optimise the pole profile in any way, we can make use of our empirical

formula, tailoring it accordingly for an optimised pole:

f

(
∆B

B0

)
opt.

= −0.14 ln
∆B

B0
− 0.25 . (II.3.26)

A successful application of Eq. (II.3.26) to reduce the pole overhang depends mainly on the efforts

in the pole optimisation process. A similar approach exists for quadrupoles.
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Fig. II.3.28: Pole edge contours on a dipole. Left: unoptimised contour with flat pole and straight cut-
off. Right: optimised contour with shim and tapered cut-off to reduce saturation on the pole edge.

II.3.6.1.8 Yoke dimensioning

Having calculated and optimised the pole width, we can now dimension the rest of the magnetic circuit.

In Section II.3.4.1.4, we highlighted the necessity of avoiding saturated areas in the yoke. In order to

identify any saturation issue in the iron, we need to estimate the average flux density in the individual

parts of the yoke. Rather than immediately running a computer simulation, it is much easier to make a

first-order approach on paper using the concept of magnetic flux:

Φ =

∫
am

B⊥ da . (II.3.27)

We should keep in mind that the term magnetic flux Φ through a surface is defined as the surface

integral of the normal component of the total flux density passing through the cross section of this surface.

If we assume that there is no significant stray flux outside the iron and the flux in the iron circuit remains

more or less constant, the total flux Φf in the return yoke must be equal to the flux ΦF in the air gap (see

Fig. II.3.29 left).

This flux ΦF includes the flux from the aperture and the stray flux outside the aperture. The stray

flux extends approximately one aperture height on either side of the aperture, so the total flux from the

air gap is approximately

ΦF
∼= B (w + 2h) leff , (II.3.28)

where B is the flux density in the aperture, and leff is the effective magnetic length (we will define this

term in the next section). Applying the principle of flux conservation, we can now estimate the flux

density Bleg in any part of the yoke using

Bleg
∼= B

w + 2h

wleg
, (II.3.29)

where wleg is the width of a corresponding section in the yoke as shown in Fig. II.3.29 (right). With

this simple approximation, we can make a final check on whether all parts remain within the limits of

1030



CERN Yellow Reports: Monographs, CERN-2024-003

Fig. II.3.29: Constant flux in a magnetic circuit. Left: The flux in the iron yoke must equal the flux in
the aperture. Right: The flux in the aperture also includes the stray flux.

saturation. If one part turns out to be saturated, we need to adjust the width of this section so that it no

longer reaches the saturation limit.

II.3.6.1.9 Effective magnetic length

In the context of magnet design, we will frequently make use of the essential but often misinterpreted

term effective magnetic length, sometimes also referred to as effective length or magnetic length.

To understand the concept of magnetic length, we should look at the schematic representation of a

dipole magnet in Fig. II.3.30. Let us imagine approaching the magnet in longitudinal z-direction with a

measurement probe along the beam axis from infinity towards the magnet centre. What we should read

on the instrument is a steady increase in the magnetic flux density when moving closer to the edge of the

iron yoke through the stray field of the magnet.

The field should continue to rise even in the aperture of the magnet, reaching its maximum value

B0 towards the centre of the magnet, where it should remain stable. The field should decrease again

away from the centre towards the other end of the magnet and beyond the magnet to infinity, where the

field should finally be zero.

Integrating the magnetic field along the longitudinal axis, starting from far outside on one side

and ending far outside on the other side, gives a higher value than simply multiplying the central mag-

netic field with the yoke length of a magnet. Here, we can introduce the term effective magnetic length

expressed by

leff =

∫∞
−∞B(z) dz

B0
. (II.3.30)

The effective magnetic length leff is defined as the magnetic field integrated along the longitudinal
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Fig. II.3.30: Poles of a dipole magnet with flux lines: the true field shape is represented by the blue
curve with its maximum value B0 at the centre of the magnet; the red dashed line represents the hard-
edge model with the effective magnetic length.

axis of the magnet divided by the central field value B0. When calculating the integrated magnetic field

from the central field, we should not confuse the magnetic length leff and the yoke length lyoke. The

magnetic length leff must be used:

∫ ∞

−∞
B(z) dz = B0 leff . (II.3.31)

The hard-edge model, as shown in Fig. II.3.30 (red dashed line), is often used to represent a magnet

in beam-optic codes. This model uses the central field B0 of a magnet and its effective length. Contrary

to a real magnet, where the field fades out at the upstream and downstream edge of the magnet, the field

in the hard-edge model changes abruptly from B = B0 to B = 0.

We can conclude that the magnetic length is always longer than the yoke length. The magnetic

length depends on several factors: the existence of saturated regions, the shape of the coil ends, and the

shape of the pole ends in the longitudinal direction. The exact magnetic length can be determined by

magnetic measurements or 3D numerical simulations.

For our analytical design, though, it is possible to estimate roughly the magnetic length by this

simple relation

leff ∼= lyoke + h . (II.3.32)

This estimation works only for long magnets, where the longitudinal dimension is much larger

than the aperture. On the other hand, a 3D computation is compulsory for short magnets to find the

magnetic length.

The concept of magnetic length holds equally for quadrupoles by substituting the flux density B

with the gradient G. The magnetic length for a long quadrupole can be approximated with
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leff ∼= lyoke + 2h/3 . (II.3.33)

II.3.6.1.10 Sagitta

In Section II.3.6.1.3, we have seen that the centre of the good-field region is determined by the position

of the central orbit of the particle beam. This means that the good-field region must follow the theoretical

beam trajectory through all the magnets in our accelerator or beamline. For a curved dipole, the poles

follow more or less the curve of the beam trajectory, and so does the good-field region. The pole overhang

to the left and right from the good-field region remains constant, as we can see in Fig. II.3.31 (left).

Fig. II.3.31: Horizontal good-field region (top view on the pole). Left: curved dipole magnet. Right:
straight dipole magnet with sagitta.

What happens if we consider designing a straight magnet with rectangular poles that do not follow

the beam trajectory? If we theoretically take the same pole width as in the case of a curved magnet,

the size of the pole overhang would change along the magnet because the good-field region still had to

follow the curved beam trajectory. This would have a negative impact on the field quality in the good-

field region. Therefore, we need to enlarge the width of the rectangular poles to correctly accommodate

the curved good-field region as shown in Fig. II.3.31 (right). The transversal excursion of the beam when

travelling through a straight magnet is called sagitta S and can be calculated by using

S = rm

(
1− cos

(
Θ

2

))
, (II.3.34)

where rm is the bending radius of the beam trajectory and Θ is the bending angle of the magnet. The

new enlarged pole width w′ is then

w′ = w + S . (II.3.35)

II.3.6.2 Coil design

Coils are a fundamental part of electromagnets: They generate the magnetomotive force necessary to

produce the required flux density in the magnet aperture. We will dedicate the following section to

explaining the basic principles of coil design.

In the previous section, we saw how to calculate the ampere-turns necessary to create a magnetic

field. In this part, we will discuss how to define an appropriate current density, how to divide the ampere-

turns into current and number of turns in a sensible way, and how to find a good coil cross section.
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II.3.6.2.1 Coil cross section

The previously determined ampere-turns NI have now to be divided into the number of conductor turns

NT and current I within one conductor turn. While keeping the ampere-turns constant, we can either

choose a large number of turns and a low current (Fig. II.3.32 left) or opt for a small number of turns and

a high current (Fig. II.3.32 right) or go for something in-between. Before deciding the number of turns,

it is good to know some fundamental relations as presented in Table II.3.4.

Fig. II.3.32: Different coil layouts for the same ampere-turns. Left: a large number of turns combined
with low current. Right: a small number of turns with high current.

Table II.3.4: Design parameters depending on the number of turns in the excitation coils.

Large NT = low current = high voltage Small NT = high current = low voltage

Small terminals Large terminals
Small conductor cross section Large conductor cross section
Thick insulation for coils and cables Thin insulation in coils and cables
Less good filling factor in the coils Good filling factor in the coils
Low power transmission loss High power transmission loss

Many turns imply low current but high voltage, which consequently requires thicker insulation for

both coils and cables. Among the positive effects, we count low transmission power losses even across

long distances between the power converter and the magnets. Therefore, the choice for coils with many

turns is primarily for magnets with moderate magnetic field strength powered individually.

On the other hand, a small number of turns means high current but low voltage. However, there

are some drawbacks to note: bulky terminals and large conductor cross section. Among the advantages

are less stringent demands on the insulation of conductors and cables. Due to high transmission power

losses, we only opt for this solution when many magnets have to be electrically connected in series

with a relatively short distance, like in the example of bending magnets in a synchrotron. In this case,

coils with many turns would lead to an unreasonably high voltage between the coils and the magnet

yokes, increasing the risk of short circuits. The higher transmission power loss can be handled using

water-cooled cables or rigid bus bars with large cross sections.

In some instances, the coil layout depends on the topology of an existing power converter design.

This means that either the maximum current of the converter determines the current in coils and, there-

fore, the number of turns, or in cases of cycled or pulsed magnets, the coil inductance limits the number

of turns, and the coil current has to be adjusted accordingly. A large number of turns means a high

inductance and requires a high voltage to drive a certain change rate in current dI
dt .
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When the maximum current available from the converter Imax dictates the current in the coils, it

is a good practice to include a safety margin, typically 10%, between the two parameters to compensate

for possible imprecision during the design, manufacturing, or operation.

The decision on the number of turns has only a minor impact on the size of the coil as long as the

current density does not change. For coils with many turns, the insulation thickness needs to be increased

to cope with higher voltage. This results in a lower conductor filling factor in the coil leading to a slightly

larger coil cross section compared to coils with fewer turns.

II.3.6.2.2 Current density

Our next step will be to find a suitable value for the current density. The current density J [J ] = 1A m−2

is defined by

J =
I

ac
, (II.3.36)

where ac is the net conductor cross section [ac] = 1m2, including only the part of the conductor made

of any conducting material, but not the insulation or the cooling duct. The current density is an essential

parameter because, for a given magnetic field and magnet geometry, the total power loss in a magnet is

directly proportional to the current density. We can observe this in the following relations that describe

the power dissipated in a dipole, quadrupole, and sextupole, respectively:

PΩ,dip = ρe
B h

ηµ0
J lavg , (II.3.37)

PΩ,quad = 2ρe
B′ r2

ηµ0
J lavg , (II.3.38)

PΩ,sext = ρe
B′′ r3

ηµ0
J lavg , (II.3.39)

with lavg being the average length of one conductor turn [lavg] = 1m and ρe the conductor resistivity.

Without knowing the average length of the conductor yet, we do not use the Eqs. (II.3.37), (II.3.38),

or (II.3.39) for accurate power calculations. They are mentioned here only to illustrate the strict propor-

tionality of the selected current density to the dissipated power in a magnet.

In addition, the current density directly impacts the coil size, the coil cooling, the choice of power

converter, the investment and operating costs. A low current density means lower power consumption

but a larger coil and consequently a larger magnet cross section. Thus a low current density implies lower

operating costs but a higher capital investment due to higher material costs.

As mentioned above, the current density defines the type of cooling. A conservative upper limit

for water-cooled coils is 10A mm−2 and not much more than 1.5A mm−2 for air cooling with natural

convection. We will discuss it more extensively in Section II.3.6.3.

Additional constraints related to the maximum capacity of the power converter in terms of current,

voltage, and power might exist. If the parameters of the power converter are already fixed, we need to
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design a magnet matching these particular requirements. This restriction might, therefore, also limit the

current density. It becomes apparent that a sensible choice of the current density is crucial for a robust

and economical magnet design.

II.3.6.2.3 Electrical parameters

Besides the current density, we need to define and compute other electrical quantities, such as the resis-

tance of a coil, voltage drop along a coil, and dissipated power. As we can see here, the current density

also has a direct impact on these electrical parameters:

R ∝ N2
TJ U ∝ NTJ PΩ ∝ J .

The coil resistance R is proportional to the current density and to the square of the number of turns

in a coil; the voltage drop U is proportional to the current density and the number of turns; the power PΩ

is proportional just to the current density. Here, we will recall a few fundamental relations.

The resistance R of a coil is defined as

R =
NT lavg
acσe

, (II.3.40)

where σe is the electrical conductivity, the reciprocal value of the resistivity ρe, of the conductor material.

We must know that the electrical conductivity is temperature dependent: The coil resistance changes

with temperature. To obtain the accurate resistance value for the cooling parameters under operating

conditions, we have to correct the resistance at room temperature for the assumed operation temperature

by using

R(T ) = R(T0) (1 + α (Tavg − T0)) , (II.3.41)

where T0 is the room temperature of 20◦ C, Tavg is the average temperature of the conductor in operation,

and α is the temperature coefficient of the resistivity of the conductor material. Later in Section II.3.6.3

dedicated to water cooling of coils, we will introduce the terms Tin and Tout, which are the temperatures

of the coil at the cooling water inlet and outlet, respectively. The average temperature of the conductor

can then be calculated with

Tavg =
Tin + Tout

2
. (II.3.42)

Ohm’s law relates the static voltage across an electrical circuit with the current in the circuit via

the resistance of the circuit:

U = RI . (II.3.43)

The ohmic power dissipated in this electrical circuit is
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PΩ = UI = RI2 . (II.3.44)

For circuits not operated with a constant current, the effective current has to be used instead.

II.3.6.3 Coil cooling

The heat dissipated due to power losses must be removed from the coils to prevent overheating that can

seriously damage the coil insulation and cause short circuits between the coil conductor and surrounding

equipment. In the field of normal-conducting magnets, we distinguish between two different cooling

techniques: air cooling and water cooling. They are sometimes referred to as dry cooling and wet

cooling.

For slowly cycled magnets or those operated at constant current, it is usually sufficient to consider

only ohmic losses when designing a cooling circuit. In the case of fast-pulsed magnets, additional power

losses occur both in the coils and yokes due to induced eddy currents. These specific cases will not be

discussed here.

II.3.6.3.1 Air cooling

Air cooling by natural convection is suitable only for low current densities. This limits the application

to magnets with moderate field strength, like corrector or steering magnets. As a rule of thumb, the

maximum current density for voluminous coils, which are almost entirely enclosed in the magnet yoke,

should not exceed 1A mm−2. For small, thin coils, as shown in Fig. II.3.33 (left), the current density can

be higher but should remain below 2A mm−2.

A precise thermal study of air-cooled coils by analytical means proves to be difficult, if not im-

possible. Air cooling, a combination of convection, radiation, and heat conduction, depends on factors

such as coil geometry, coil surface characteristics (roughness, material, colour), thermal contact with

the surrounding materials, etc. Should we need a detailed analysis of the thermal behaviour, numerical

computations (see Fig. II.3.33 right) or measurements will be required. Information on air cooling and

cooling in general can be found in subject-related literature [6].

Air-cooled coils are typically made of round, rectangular or square wires. These conductors

are commercially available in various grades and dimensions. They can be ordered blank or pre-

impregnated with varnish (0.02 ⩽ thickness ⩽ 0.1mm) or wrapped in polyimide (Kapton®®) tape

(0.1 ⩽ thickness ⩽ 0.2mm). Depending on the winding precision, insulation thickness, and conductor

cross section, we can obtain a coil filling factor fc between 0.63 (round conductor) to 0.8 (rectangu-

lar conductor). The outer or ground insulation typically comprises epoxy-impregnated glass-fibre tapes

between 0.4 and 2.0mm thick. In specific cases, the cooling performance of air-cooled coils can be

slightly enhanced by mounting an appropriate heat sink with an enlarged radiation surface or by using

forced airflow (cooling fan).
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Fig. II.3.33: Air-cooled coils. Left: thin air-cooled coil suitable for current densities up to 2A mm−2.
Right: a thermal finite-element model of an air-cooled coil with an additional heat sink.

II.3.6.3.2 Water cooling

There are two types of water cooling: direct and indirect water cooling. Of minor importance and rarely

used, the latter has the advantage of not requiring cooling plants with water treatment for demineralized

water—normal tap water serves as a coolant. As illustrated in Fig. II.3.34 (left), the method, as mentioned

above, implies a more complex coil design. When air cooling reaches its maximum capacity, mounting

an external heat sink cooled with tap water can enhance the cooling performance by keeping the thermal

load within limits or permitting slightly higher current densities. With indirect cooling hardly used, we

will focus here on the engineering and construction of directly water-cooled coils.

The current density in a directly water-cooled coil can typically be as high as 10A mm−2. This

conservative value can be easily obtained with standard coil layouts. Higher current densities would

necessitate a sophisticated cooling circuit design with multiple parallel circuits in each coil and high

coolant velocity, which would increase the risk of erosion.

Standard water-cooled coils are made of copper or aluminium conductor with a rectangular or

square cross section and a central cooling duct for demineralized water, as shown in Fig. II.3.34 (right).

The interturn and the ground insulation consist of one or more layers of half-lapped glass-fiber tape

impregnated in epoxy resin. The interturn insulation thickness lies typically between 0.3 and 1.0mm,

the ground insulation should be between 0.5 and 3.0mm depending on the applied voltage.

II.3.6.3.3 Cooling parameters

Water cooling is necessary when we have to handle higher current densities and want to avoid larger

coil cross sections. The construction of water-cooled coils requires hollow conductors with a cooling

channel. Choosing the correct parameters and dimensions—such as the number of cooling circuits, size

of the cooling channel, and flow rate—is not easy, and it takes several iterations to arrive at a satisfactory

solution. This section addresses the calculation and design of an efficient cooling circuit.

Before entering the subject, there are a few recommendations and general rules that should help us

make adequate choices. It is essential to remember that these are rules of thumb and should be scrutinised

as to their validity and applicability in a particular situation.

As already mentioned, the current densities for water-cooled coils should be kept between
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Fig. II.3.34: Water-cooled coils. Left: coil with indirect water cooling. The heat is transferred from the
conductor through the insulation to the cooling circuit, which removes it using regular tap water. Right:
coil with direct water cooling. Demineralized water is circulating in the conductor’s central cooling duct,
removing the heat dissipated in the conductor.

2 and 10A mm−2. Below these values, air cooling is usually sufficient; exceeding this threshold im-

plies more complex and, thus, costly cooling layouts.

The pressure typically provided by modern cooling plants ranges between 0.1 and 1.0MPa, which

corresponds to 1.0 and 10 bar receptively. Advanced cooling stations can supply water with a pressure

up to 2.0MPa (20 bar). Low water pressure can be compensated to a certain extent by a higher cooling

flow rate as well as by a sophisticated and, hence, expensive coil design with several cooling circuits in

parallel.

The velocity of the cooling medium—in general, demineralized water—should be sufficiently

high to guarantee a turbulent flow but low enough to avoid erosion and vibration. With the absolute limit

usually fixed at 4m s−1, in more conservative and reliable designs, the value shall remain below 3m s−1.

To reduce or avoid accelerated ageing of insulation materials, particularly in the presence of ion-

izing radiation, it is advisable to specify the temperature of coil surfaces at 60◦C maximum. This upper

limit, together with an inlet water temperature of less than 30◦C leads to a maximum water temperature

rise of 30◦C in the coils, keeping the thermal stress under control.

Some applications require high mechanical stability and, consequently, good thermal stability. In

such cases, the maximum temperature rise has to be reduced accordingly. For synchrotron light sources

and medical accelerators, target values of 15◦C temperature increase are frequently quoted. The formulas

in the next section are valid under the following assumptions:

– the cooling pipes are always long, mostly straight and smooth inside without perturbations in the

cross section;

– the flow is turbulent, which suggests a high Reynolds number;

– a good heat transfer from conductor to coolant, with the temperature of the inner surface of the

conductor equal to that of the coolant;

– the conductor is isotherm over its cross section;

– the entire joule heating is removed by the coolant fluid;
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– the contribution from the air convection is negligibly small: In practice, the fraction of heat re-

moved by natural convection being only in the order of few percent.

II.3.6.3.4 Heat transfer basics

The topic of heat transfer is pretty comprehensive and fills many pages of fluid mechanics and thermo-

dynamics textbooks like [6]. As it is not within the scope of this chapter to treat the related aspects in

detail, we will restrict ourselves to a few crucial laws and expressions regarded as beneficial for the basic

understanding and design of cooling circuits for magnets.

Heat evacuation by a coolant fluid can be described by the heat balance equation

dW

dt
= Qδcp∆T , (II.3.45)

where W is the heat or the thermal energy, Q is the flow rate of the coolant, δ is the mass density of the

coolant, cp is the heat capacity of the coolant, and ∆T is the temperature difference between the cooling

water outlet temperature Tout and the inlet temperature Tin. If we consider a hollow conductor, which

is constantly heated by the ohmic losses PΩ, and we further assume that the heat flow from the inner

conductor surface to the coolant is constant, we can reformulate Eq. (II.3.45) to

Q =
PΩ

δcp∆T
, (II.3.46)

which defines now the coolant flow rate Q necessary to remove the electrical power PΩ dissipated in the

conductor material while keeping the temperature rise ∆T constant.

Having found an expression to calculate the cooling flow rate, the next step is to derive all other

cooling parameters: the pressure loss, coolant velocity, and dimensions of the cooling circuit. A good

starting point is to take the Darcy–Weisbach equation—an empirical equation that relates the pressure

drop due to friction along a given pipe length to the average fluid velocity:

∆P = fh
lh
dh

δv2avg
2

. (II.3.47)

In this equation, ∆P is the pressure loss, fh is a unit-less friction factor, lh is the length of the

cooling pipe, dh is the equivalent hydraulic diameter of the cooling pipe, and vavg is the average coolant

velocity. For pipes with noncircular cooling ducts, the equivalent hydraulic diameter can be determined

with

dh = fh
4 ah
sh

, (II.3.48)

where ah is the area of the cooling duct cross section and sh the wetted perimeter of the cooling duct;

for a circular pipe the hydraulic diameter dh = d.

The friction factor fh depends on the Reynolds number Re, which relates the inertial and viscous

forces in a fluid problem:
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Re =
vavgdh

ν
, (II.3.49)

with ν describing the temperature-dependent kinematic viscosity of a coolant. The Reynolds number

helps predict the flow pattern in a fluid under different conditions: It indicates whether a flow is laminar,

turbulent or in the transition regime. A flow with the Reynolds number below 2100 is always laminar.

In some cases, the flow can remain laminar up to Re = 10 000. In the transition regime, where the

Reynolds number is between 2300 and 4000, the flow is neither fully laminar nor fully turbulent. For a

flow to be thermally effective, it should be in the turbulent range. In our application context, we assume

that a flow is in the moderate turbulent regime if 4000 ⩽ Re ⩽ 100 000.

Erosion phenomena occur above the upper limit of Re = 100 000, so we should avoid going

beyond this limit.

The friction factor is also a function of the relative roughness of the cooling duct. There are several

formulas aimed at defining the friction factor for different flow conditions. Most of them are included in

the Moody diagram [7], which relates the friction factor, Reynolds number, and surface roughness for a

fully developed flow in a circular pipe. The accuracy of these formulas is in the order of ±5% for smooth

pipes and ±10% for rough pipes—usually sufficient for all practical purposes.

For a purely laminar flow, the friction factor is

fh =
64

Re
. (II.3.50)

Whereas for our application, where the flow needs to be turbulent, the relationship between the

friction factor, Reynolds number, and relative roughness is more complex. The Colebrook-White equa-

tion for turbulent flow serves as a model for this relationship:

1

fh
= −2 log10

(
ε

3.7 dh
+

2.51

Re
√
fh

)
. (II.3.51)

Due to its implicit nature, this equation normally needs to be solved iteratively for the friction

factor. The Blasius equation is an approximation of the Colebrook-White Eq. (II.3.51):

fh =
0.3164

4
√
Re

. (II.3.52)

Not including a term for the pipe roughness, this Eq. (II.3.52) represents a much simpler approach

for computing the friction factor. This model is valid only for smooth pipes and the Reynolds number of

up to 100 000. Inserting Eq. (II.3.52) into Eq. (II.3.47) and reformulating it to express vavg, we obtain

v2avg =
2∆P

δ

dh
lh

1

0.3164
4

√
vavgdh

ν
, (II.3.53)

which allows us to calculate the coolant velocity as a function of the pressure drop and the cooling hole

diameter in the conductor.
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II.3.6.3.5 Cooling circuit design

In the previous section, we derived the formulas required to calculate the main parameters of a cooling

circuit. Finding a good solution for a cooling layout is an iterative and sometimes lengthy process,

and different methods lead to a satisfactory design. In the following paragraphs, we will share a well-

established method of designing a cooling circuit.

For this specific section, we will make an exception. Instead of SI units we will use more practical

units for [Q] = 1L min−1 (litre per minute) for the flow rate, [P ] = 1 bar for the pressure, [PΩ] = 1 kW

for the dissipated power, and [dh] = 1mm for the hydraulic diameter. For all other parameters, we will

continue to use SI units.

First, we want to translate some of the equations from the previous section into a more compact

expression. Using water as a cooling medium, we introduce the values for the density δ = 993 kg m−3,

the kinematic viscosity ν = 6.982 × 10−7 m2 s−1 and the specific heat capacity cp = 4.18 kJ kg−1 K−1

of water at 310K.

Therefore we can simplify the Eq. (II.3.46) to

Q = 14.5
PΩ

∆T
, (II.3.54)

where Q is now the flow rate in Lmin−1. To increase the temperature of 1 kg of water by 1K, we need an

energy of 1 kcal corresponding to 4.186 kJ. By increasing its temperature by 1K, a water flow of 1L s−1

can consequently evacuate 4.186 kW. As a rule of thumb, for a temperature rise of ∆T = 30K, every

litre per minute can cool approximately 2 kW of dissipated power. Next, we will reduce Eq. (II.3.53) to

vavg = 2.188 d
5/7
h

(
∆P

lh

)4/7

. (II.3.55)

For a turbulent flow characterized by a Reynolds number larger than 4000, we define the minimum

average water velocity:

vavg,min =
4000

dh
ν ∼=

2.8

dh
. (II.3.56)

When rewriting Eq. (II.3.47), we can find an expression for the pressure loss:

∆P = 0.254
v1.75avg

d1.25h

lh . (II.3.57)

By using

vavg = 16.67
Q

dh
= 66.67

Q

d2hπ
, (II.3.58)

Equation (II.3.57) becomes

∆P = 53.32
Q1.75

d4.25h

lh , (II.3.59)
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which allows us to determine the required pressure loss for a given flow rate and hydraulic diameter.

However, we often know the required flow rate and the limitations of our cooling system in terms of

available pressure. In this case, it can be advantageous to reformulate Eq. (II.3.59) again so that we can

find the required hydraulic diameter from a given flow rate and an assumed pressure drop:

dh = 2.31Q0.368

(
lh
∆P

)0.21

. (II.3.60)

Finally, if we want to use millimetre as a unit for the hydraulic diameter dh to calculate the

Reynolds number Re, we need to adapt Eq. (II.3.49) accordingly:

Re =
vavgdh

ν
10−3 . (II.3.61)

In general, we start the design of our cooling system with the assumption that we have one single

cooling circuit per coil. In this case, the hydraulic length is equal to the total length of the conductor, and

the connection hoses or tubes can be neglected because they are short compared to the cooling circuit.

Coils with elevated current densities and power losses require high coolant flow rates, which might

not be achievable with a single cooling circuit because the upper limit for parameters like pressure drop

and coolant velocity would be quickly reached. To remedy this problem, we need to divide the coil

cooling into two or more parallel cooling circuits. Introducing Kh as the number of water circuits per

coil, we can use the new terms Q′ and l′h in our usual Eqs. (II.3.55), (II.3.59), and (II.3.60) to calculate

the cooling parameters for a coil with more than one cooling circuit:

Q′ =
Q

Kh
l′h =

lh
Kh

.

From Eq. (II.3.59), we can easily find out that the pressure drop is inversely proportional to ap-

proximately the third (precisely: 2.75th) power of the number of cooling circuits Kh per coil:

∆P ∝ 1

K2.75
h

. (II.3.62)

This implies that for a given flow the pressure drop is reduced by almost a factor of eight when

doubling the number of circuits.

Another relation is of interest as it affects the cooling performance even more and thus should be

considered in the system layout. The pressure drop is inversely proportional to approximately the fifth

(exactly: 4.75th) power of the cooling channel diameter:

∆P ∝ 1

d4.75h

. (II.3.63)

This implies that an increase in the cooling channel diameter by a small fraction can reduce the

required pressure drop significantly. Let us now establish a general procedure to derive step-by-step all

required cooling parameters:
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1. We calculate the conductor net cross section from the current density and the current.

2. From the number of turns and the average turn length, we can compute the coil resistance.

3. We define the allowed temperature rise and correct the coil resistance for the average conductor

temperature according to Eqs. (II.3.41) and (II.3.42) before computing the ohmic losses in the coil.

4. With Eq. (II.3.54), we can calculate the required flow rate of water to evacuate the total ohmic

losses from the coil by keeping the temperature increase within the defined limit.

5. For a given cooling duct diameter and flow rate, we can determine the pressure loss with

Eq. (II.3.59). Alternatively, we can use Eq. (II.3.60) to calculate the diameter of the cooling duct

from a given flow rate and pressure drop.

6. If necessary, we can change the pressure drop, the hydraulic diameter or the number of cooling

circuits per coil and iterate over point 5.

7. We check that the coolant velocity remains below the limit, where erosion phenomena become

apparent.

8. Finally, we need to verify that the Reynolds number is in the turbulent flow regime, for which the

Blasius equation holds. The Reynolds number should be between 4000 and 100 000.

The attentive reader might find some differences when comparing the formulas in this chapter with those

in textbooks; these discrepancies can be explained by the temperature dependence of some material

constants, which is sometimes neglected in the case of simplified formulas.

Exercises

Exercise 1: Right-hand rule

A proton enters the magnet in Fig. II.3.35 in the positive z-direction. A magnetic dipolar field points in

the negative y-direction. With the help of the right-hand rule, find out in which direction the particle will

be deflected (positive or negative x-direction).
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Fig. II.3.35: Exercise 1 - Application of right-hand rule.

Exercise 2: Beam rigidity

For a synchrotron, 16 bending magnets are required. The synchrotron accelerates the protons to the

energy between 60MeV and 220MeV and the fully-stripped carbon ions C6+ to the energy between

120MeV/u and 400MeV/u. The injection energy for both particle types is 7MeV/u.

For which operation range (minimum and maximum beam energy) do the magnets have to be designed?

Calculate the corresponding beam rigidity.

Exercise 3: Dipole field

Calculate the required flux density in the dipole of Exercise 2 for the carbon ion beam at 400MeV/u.

The bending radius rm of the dipole shall be 4.231m, and the bending angle shall be 22.5◦.

Exercise 4: Quadrupole field gradient

For a transfer line, which transports protons and fully stripped carbon ions C6+ with an energy of

7MeV/u from a LINAC to a synchrotron, 6 quadrupole magnets are needed. Each quadrupole shall

provide a quadrupole strength of k = 2.8m−2. Calculate the maximum required magnetic field gradient

G.

Exercise 5: Iron saturation

The C-type dipole magnet in Fig. II.3.36 has an aperture height of h = 100mm and a pole width of

w = 250mm. The flux density plot shows a flux density in the aperture of 1.0T, but the back legs of the

iron yoke are highly saturated and reach a flux density of almost 2T.
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Why should saturation in the magnetic circuit (iron yoke) be avoided as much as possible? Give at least

three arguments.

Calculate the necessary width of the back legs wleg to ensure that the flux density in the iron remains

below the saturation level of 1.5T.

Fig. II.3.36: Exercise 5 - Iron saturation in the magnetic circuit. The magnetic flux density Bmod is
indicated in units of tesla.

Exercise 6: Coil layout

A dipole magnet requires a total excitation current of 85 960A (ampere-turns). The power converter can

deliver a maximum current of Imax = 3000A. Calculate the number of turns per coil, assuming that the

magnet has two coils connected electrically in series. Propose a coil layout defining the number of layers

and the number of turns per layer.

Exercise 7: Pole design in a dipole

A straight R-bend dipole magnet with an aperture height of h = 56mm and a flux density in the aperture

of B = 1.43T shall provide a field homogeneity of ∆B/B0 = 5 × 10−4 inside a good-field region

with a horizontal width of wGFR = ±20mm. The bending radius of the magnet is rb = 13.0m, and the

bending angle is θ = 5◦.

Calculate the total pole width wp for an optimised pole profile.

Exercise 8: Sextupole excitation

Derive the formula to calculate the excitation current NI (= ampere-turns per pole) for a sextupole,

provided that the aperture radius r and the second derivative of the flux density B′′ are known. Indicate

in Fig. II.3.37 which integration path you have chosen.
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A hint: In a sextupole, the field component By on the x-axis is parabolic, and B′′ = d2B
dr2

is constant.

Fig. II.3.37: Exercise 8 - Cross section of a sextupole magnet with flux lines in the aperture.

Exercise 9: Power dissipated in a dipole coil

A dipole magnet is powered by a current of I = 1720A. The magnet has two water-cooled coils

connected electrically in series but hydraulically in parallel. Each coil has NT = 20 turns, and the

average conductor length per turn is lavg = 3370mm. The two coils have an electrical resistance of

R = 4mΩ at room temperature T0 = 20 ◦C. The temperature of the cooling water provided by the

cooling plant is Tin = 25 ◦C.

Calculate the dissipated power PΩ at operating temperature, taking into account a maximum allowed

temperature of Tmax = 40 ◦C in the coils.

Exercise 10: Water cooling I

For the dipole in Exercise 9, compute the flow rate Q of the cooling water per coil (in litres per minute)

required to remove the dissipated power. Also, calculate the cooling duct diameter provided that the

cooling water station can handle a pressure drop of ∆P = 8 bar.

Exercise 11: Water cooling II

Verify if the design from Exercise 10 respects the limits for the maximum allowed water velocity vavg <

3m s−1, and whether the flow is turbulent (Re > 4000).

Solutions
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Solution 1

The positively charged proton is deflected in the positive x-direction.

Solution 2

The minimum beam energy is with protons at injection (7MeV). The corresponding beam rigidity can

be calculated with the following formula

Bρ(p) =
1

Z e c

√
E2

k + 2Ek E0

=
1

e c

√
(7× 106 eV)2 + 2(7× 106 eV)(938× 106 eV)

= 0.383T m ,

using c = 299.792× 106 m s−1 and E0 = 938× 106 eV for the proton rest mass energy.

For the maximum beam energy, we can rule out the 60MeV proton beam and the 120MeV/u

carbon ion beam. For the two remaining options, we will need to compute the beam rigidity to find out

which beam is more rigid. The beam rigidity for protons at 220MeV is

Bρ(p) =
1

e c

√
(220× 106 eV)2 + 2(220× 106 eV)(938× 106 eV)

= 2.265T m ,

and for carbon ions at 400MeV/u it is

Bρ(C
6+) =

1

6 e c

√
(12× 400× 106 eV)2 + 2(12× 400× 106 eV)(12× 938× 106 eV)

= 6.366T m .

As we can see, the most rigid beam is a carbon ion beam at 400MeV/u. However, the magnet has

to cover the full operation range from 7MeV protons to 400MeV/u carbon ions. This corresponds to a

beam rigidity between 0.383T m and 6.366T m or a dynamic range of 1 : 16.

Solution 3

To calculate the required flux density, we need the beam rigidity Bρ of the carbon ion beam at 400MeV/u

and the bending radius rm of the dipole magnet:

B =
Bρ

rm
=

6.366T m
4.231m

= 1.5T .
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Solution 4

The maximum field gradient is needed for the carbon ion beam. The corresponding beam rigidity can be

calculated with the help of

Bρ(C
6+) =

1

Z e c

√
E2

k + 2Ek E0

=
1

6 e c

√
(12× 7× 106 eV)2 + 2(12× 7× 106 eV)(12× 938× 106 eV)

= 0.766T m ,

resulting in a maximum field gradient of

G = B′ = Bρ k = 0.766T m × 2.8m−2 = 2.14T m−1 .

Solution 5

Assuming that there is no significant stray flux outside the iron and the flux remains constant, the total

flux Φf in the return yoke must be equal to the flux ΦF in the air gap:

Φ = B (w + 2h) = Byokewleg .

Therefore

wleg =
B

Byoke
(w + 2h) =

1.0T
1.5T

(250mm + 2× 100mm) = 300mm .

Solution 6

With a 10% margin on the maximum current of the power converter, we get the nominal current for the

magnet:

Inom = 0.9× Imax = 0.9× 3000A = 2700A .

One coil has 85 960/2 = 42 980 ampere-turns. The number of turns per coil is

NT =
42 980A
2700A

= 15.92 turns .

The next largest integer is 16 turns, which can be divided into 2 layers of 8 turns each. The nominal

current has to be recalculated for 16 turns:

Inom =
42 980A

16
= 2686A .

This leaves a margin of 315A (> 10%) with respect to the maximum current of the power converter.
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Solution 7

The total pole width wp can be calculated using

wp = 2 (wGFR + xp) + s = 2

(
wGFR +

h

2
f

(
∆B

B0

))
+ s ,

with

f

(
∆B

B0

)
opt.

= −0.14 ln
(
5× 10−4

)
− 0.25 = 0.814 ,

and

s = rb

(
1− cos

(
θ

2

))
= 13m

(
1− cos

(
5◦

2

))
= 12.4× 10−3 m = 12.4mm .

The final width of the optimised pole yields

wp = 2

(
20mm +

56mm
2

0.814

)
+ 12.4mm = 98mm .

Solution 8

Fig. II.3.38: Solution 8 - Cross section of a sextupole magnet with integration path
∮
H ds to calculate

the ampere-turns NI .

To identify the required number of ampere-turns for a sextupole, we use the same approach as for

quadrupoles. In a sextupole, the field component By on the x-axis is parabolic, and B′′ = d2B
dr2

is

constant so that

H(r) =
B′′

2µ0
r2
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leads to

NI =

∮
H ds ≈

∫ R

0
H(r) dr =

B′′

2µ0

∫ R

0
r2 dr

and to

NI(per pole) =
B′′r3

6µ0
.

Solution 9

The maximum allowed temperature increase in the water-cooled coil is ∆T = Tmax − Tin = 15 ◦C,

and therefore the average temperature increase is 7.5 ◦C. So, we can calculate the resistance at operating

temperature using

R = R(T0) (1 + α (Tavg − T0)) = 2.0mΩ
(
1 + 0.004K−1 (32.5 ◦C − 20 ◦C)

)
= 2.1mΩ .

The dissipated power in one coil is

PΩ = RI2 = 2.1× 10−3Ω× (1720A)2 = 6213W = 6.21 kW .

Solution 10

For this exercise, we use non-Si units for the flow rate [Q] = 1L min−1, pressure drop [∆P ] = 1 bar,

and cooling hole diameter [dh] = 1mm. The required cooling flow rate per coil is

Q = 14.5
PΩ

∆T
= 14.5

6.21 kW
15 ◦C

= 6.01L min−1 .

The necessary cooling hole diameter is

dh = 2.31Q0.368

(
lh
∆P

)0.21

= 2.31
(
6.01L min−1

)0.368(20× 3.37m
8 bar

)0.21

= 7.0mm .

Solution 11

The average water velocity can be computed directly from the required cooling flow rate using

vavg = 16.67
Q

ah
= 66.67

Q

d2hπ
= 66.67

6.01L min−1

(7mm)2 π
= 2.61m s−1 ,

and is hence clearly below the limit of vavg < 3m s−1. The Reynolds number of

Re = dh
vavg
ν

10−3 = 7mm
2.61m s−1

6.982× 10−7 m2 s−1
10−3 = 27 711

indicates that the flow is in the turbulent range.

1051



II.3.6. Analytical design

Case study

This case study aims to apply the subjects discussed in the theoretical part, particularly the sections about

analytical design. To make this study as realistic as possible, we will take a magnet designed and built

for MedAustron—a medical accelerator and ion therapy centre for cancer treatment and clinical research

in Austria [8]. Such a case study is usually given to the students during the JUAS lectures; they are asked

to work out possible solutions in small groups and present their findings at the end of the lecture series.

Like in real life, not all parameters will be given explicitly, so we must make reasonable assump-

tions to progress in the design process. Of course, these assumptions always have to be cross-checked

and scrutinised at the end to ensure they do not contradict the initial requirements and constraints.

II.3.6.4 Introduction

MedAustron is located in Wiener Neustadt, 50 km south of Vienna. The main activities are related to

tumour treatment and clinical research, but also nonclinical research, like radiation physics and radiation

biology, is supported to a certain extent.

The accelerator is synchrotron-based and has a circumference of 76m. For medical applications,

the facility can produce proton beams with energies between 60 and 250MeV and carbon ion beams with

energies from 120 to 400MeV/u. Proton beams with higher energies of up to 800MeV can be provided

for experimental physics. Optionally and at a later stage, the use of other ions with a charge-to-mass

ratio of q/m > 1/3 will be possible. Figure II.3.39 shows a footprint of the beamlines and treatment

rooms at the MedAustron facility.

Fig. II.3.39: Footprint of the MedAustron facility showing the three ion sources, the LINAC part, the
synchrotron, the extraction beamlines, and the four treatment rooms.

Almost 300 magnets of more than 20 different types were built for MedAustron’s entire magnet

system. This includes solenoids, spectrometer magnets, bending dipoles, vertical and horizontal steering

magnets, quadrupoles, sextupoles, scanning magnets, a betatron core, and a large gantry magnet. The

magnet type selected for this case study is a bending magnet for the medium-energy beam transfer
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(MEBT) line.

II.3.6.5 Requirements and constraints

The functional specification requires three bending dipoles for the MEBT line between the LINAC and

the synchrotron. These magnets direct the protons and C6+ ions towards the injection region of the

synchrotron (see Fig. II.3.40). A summary of the beam parameters can be found in Table II.3.5.

Fig. II.3.40: Footprint of the MedAustron medium-energy beam transfer (MEBT) line with the three
bending magnets.

Table II.3.5: Beam parameters of the MedAustron MEBT line

Parameter Value

Particle type Protons, C6+

Beam energy 7MeV/u
Length of beamline 40.9m
Beta function βx, βy ≈ 10m
Beam size σx, σy ±10mm

The three dipoles together shall provide a total bending angle of θt = 108◦ for both ion species.

The beam entry and the beam exit angles with respect to the pole end faces shall be Ψ = ±72◦, which

means that the magnet shall have parallel end faces. The overall mechanical length, including yoke, coil

heads, and connections, is restricted to lmech = 0.9m per magnet.

The required field homogeneity ∆B/B0 within the good-field region shall be better than ±1 ×
10−3. The good-field region shall be GFRh = ±30mm in horizontal direction and GFRv = ±23mm

in vertical direction.

The magnets are operated in quasi-static mode with a field ramp rate of less than 0.3T s−1, and the

three dipoles are electrically connected in series. The power converter can deliver a maximum current of

Imax = 600A and a voltage of Umax = 100V. A water cooling station is available, which can provide

demineralized water to the magnets with a temperature of Tin = 25◦C and a pressure of Pin = 10 bar

but requires a minimum return pressure at the magnet outlet of Pout = 2 bar. For advanced operation

stability, the temperature increase in the magnet coils ∆T shall be kept below 15◦C. The constraints and
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requirements are summarised in Table II.3.6.

Table II.3.6: Magnet parameters of the MedAustron MEBT dipoles.

Parameter Value

Number of magnets in series 3
Bending angle Θ per magnet 36◦

Max. mechanical length lmech per magnet 0.9m
Operation mode quasi-static
Field ramp rate dB /dt 0.3T s−1

Horizontal good-field region GFRh ±30mm
Vertical good-field region GFRv ±23mm
Field quality ∆B/B0 inside GFR ±1× 10−3

Max. power converter current Imax 600A
Max. power converter voltage Umax 100V
Available cooling water pressure Pin 10 bar
Required return pressure Pout 2 bar
Cooling water temperature Tin 25◦C
Max. temperature increase ∆T 15◦C

II.3.6.6 Additional information

The total quantity of steel required for the entire project was supplied by one steel manufacturer.

MedAustron decided to use steel strips of grade M1200-100A with insulating epoxy coating for all

magnets. The MEBT magnet yokes shall be built from laminated steel of this type.

A stock of different copper conductor types was left over from the production of other MedAustron

magnets. All types have a square cross section and circular cooling duct in the centre. If possible, the

MEBT magnet coils shall be made from one of the conductors listed in Table II.3.7.

Table II.3.7: Dimensions of available copper conductor types.

Type Copper
grade

Outer
dimensions

Cooling duct
diameter

Edge
radius

Available
length

Type 1 OF-Cu 25mm × 25mm 12.0mm 1.5mm ≈ 300m
Type 2 OF-Cu 11mm × 11mm 5.5mm 1.0mm ≈ 600m
Type 3 OF-Cu 11mm × 11mm 5.0mm 1.0mm ≈ 800m
Type 4 OF-Cu 8mm × 8mm 5.0mm 1.0mm ≈ 500m

In addition to the three magnets to be installed in the transfer line, one complete spare unit is

required. The basic analytical and conceptual design is necessary to derive the most important parameters

of the magnet and should include at least the following:

– Yoke shape: straight or curved

– Yoke type: C-shape or H-shape

– Flux density B in the aperture
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– Aperture height h

– Yoke length lyoke and magnetic length leff

– Pole width w and return yoke thickness

– Excitation current or ampere-turns NI

– Coil cooling: water cooling or air cooling

– Nominal current I and number of turns NT

– Conductor dimensions and current density J

– Coil size: coil width, coil height, insulation thickness, conductor length

– Coil resistance R and dissipated power PΩ

– Coolant flow rate Q and required pressure drop ∆P for cooling water

– Average coolant velocity vavg and Reynolds number Re

Apart from the parameters mentioned above, the analytical design should first provide an idea of

the yoke and coil geometry for the numerical design phase. To facilitate the preparation of the numerical

model, it is a good practice to produce a sketch or a list identifying the x and y-coordinates of the key

points as shown in Fig. II.3.41 (red dots). These coordinates should be provided with respect to the beam

axis, which is typically identical to the centre of the magnet aperture.

Fig. II.3.41: Possible cross section of the MedAustron MEBT dipole indicating the most important key
points to be calculated.

All this information, together with the results from the numerical simulations, shall be eventually

summarised in a detailed magnet design report. This document shall describe the entire design pro-

cess, explain the reasoning for each design choice, and provide evidence that all input requirements and

constraints have been respected in the final magnet layout.
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