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This chapter includes a short introduction on colliders with their main figure of merit, the luminosity,
and the pile-up in the experiments’ detectors, followed by seven sections, offering an overview of
the different types of colliders used for particle physics experiments, which have been discussed
during the past JUAS schools:

– LHC and HL-LHC,
– Nuclear collisions at the LHC,
– The Future CERN Circular hadron collider (FCC-hh),
– Electron-positron circular colliders,
– Future high-energy linear lepton colliders,
– The US Electron-Ion Collider,
– Muon collider.

III.4.1 Introduction

Elias Métral
CERN, Geneva, Switzerland

At the end of an acceleration chain, particle accelerators can be used in two modes, the fixed-target mode
and the collider mode (see Fig. III.4.1) and the first role of the beam energy is to produce new particles
through Einstein’s relation E = mc2, with E the total particle energy, m the relativistic mass and c the
speed of light. The huge advantage of the collider mode is that the energy available in the centre-of-mass
(CM), to create new particles, is much higher than the one from an accelerator working in fixed-target
mode. This can be easily seen starting from the relativistic invariant with one particle

E2 � p2c2 = E2
0 , (III.4.1)
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COLLIDERS FOR PARTICLE PHYSICS

Fig. III.4.1: The two modes of operation of linear or circular particle accelerators (at the end of an
acceleration chain): fixed-target mode and collider mode.

where p is the momentum and E0 = m0c2 is the rest energy (with m0 the rest mass). The same result is
obtained for any isolated system, composed of e.g. two particles called 1 and 2, which will collide [1]

(E1 + E2)
2 � (~p1 + ~p2)

2c2 = (invariant mass)2c4 . (III.4.2)

In this case, the available energy in the CM, ECM (also written sometimes
p
s), is thus given by

ECM =
p
s =

p
(E1 + E2)2 � (~p1 + ~p2)2c2 , (III.4.3)

which can be rewritten as

ECM =
q
m2

01c
4 +m2

02c
4 + 2(E1E2 � ~p1.~p2c2) , (III.4.4)

with m01 and m02 the rest masses of the particles 1 and 2. It can then be deduced from Eq. (III.4.4) that
for an accelerator working in fixed-target mode (for which ~p2 = 0) at sufficiently high energy (i.e. such
that the rest masses can be neglected)

ECM,FT =
p
2E1m02c2 , (III.4.5)

whereas for a collider colliding similar particles (for which ~p2 = �~p1),

ECM,C = E1 + E2 = 2E1 . (III.4.6)

Comparing Eqs. (III.4.5) and (III.4.6), it can be concluded that, to have the same energy as in the CM of
a collider colliding similar particles, the energy required for the accelerator working in fixed-target mode
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EFT is given by

EFT = 2�CEC , (III.4.7)

where �C and EC are the relativistic mass factor and total (one) beam energy of the collider. In the
CERN LHC, for instance, �C ⇡ 7460 and therefore 2�C ⇡ 15 000. This means that the beam energy
of the accelerator working in fixed-target mode should be ⇠ 15 000 times higher than the beam energy
of the LHC (of 7 TeV), i.e. it should be ⇠ 100 PeV. This figure explains the considerable advantage of
using colliders for particle discoveries and for precision measurements.

The second role of the beam energy is to resolve the inner structure of matter through de Broglie’s
relation E = hc/�, with h the Planck’s constant and � the associated wave length. The wave length
should be smaller than the dimension of the object to be resolved (see Table III.4.1).

Table III.4.1: The second role of the beam energy: resolve the inner structure of matter.

Object’s size [m] Energy needed [GeV]
Atom ⇠ 10�10 ⇠ 10�5

Nucleus ⇠ 10�14 ⇠ 10�1

Nucleon ⇠ 10�15 ⇠ 1
Quark ⇠ 10�18 ⇠ 103

< Quark ⇠ 10�19 ⇠ 104

It is worth reminding that accelerators contributed to twenty-six Nobel Prizes in physics since
1939, as can be seen in Fig. III.4.2, and a short history of colliders is summarised in Fig. III.4.3. It can be
observed in particular that both linear and circular colliders have been built to collide hadrons or leptons
or both. In a hadron collider, the simplest case is to collide protons, each made of three quarks. Such a
collider is used to study the frontier of physics, it is a discovery machine with collisions of several quarks
with not all nucleon energy available in collision and a huge background. On the contrary, a lepton
collider is used for precision physics, it is a study machine with elementary particles collisions and a
well-defined CM energy per elementary constituent. As concerns the limitations, the hadron colliders
are limited by the dipole field available and the ring size (reminder: p [GeV/c] ⇡ 0.3 B [T] ⇢ [m], with
B the magnetic induction and ⇢ the dipole bending radius) and therefore the way forward is to go to
higher magnetic fields or/and larger circumferences. The lepton colliders are limited by the energy lost
from synchrotron radiation (reminder: Ulost / E4/⇢E4

0 ) and therefore, there, the way forward is to go
to large diameter circular colliders, linear colliders or heavier leptons (such as muons).

The main figure of merit of a collider is its luminosity [2, 3]. The number of events generated per
unit time Nexp/time (which is given by the detector) is the product of the reaction cross-section of interest
�exp (which is given by nature) and the (instantaneous) luminosity L (which is given by the collider)

Nexp/time = �expL , (III.4.8)

and the total number of events Nexp is given by
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Fig. III.4.2: Nobel Prizes in physics linked to particle accelerators since 1939 (Courtesy of P. Lebrun).

Fig. III.4.3: Some milestones in the history of colliders (Courtesy of P. Lebrun).

Nexp = �exp

ˆ
L(t)dt = �expLint , (III.4.9)

with Lint the integrated luminosity. By definition, the luminosity L is the time-averaged integral over the
interaction volume V of the number of reactions per unit time and volume and it is given by

L =
1

Tb

ˆ
Tb

0

ˆ
V

SdtdV , (III.4.10)

where Tb is the bunch collision period (T�1
b = fb = f0M with f0 the revolution period and M the

number of bunches) and S is the luminosity density. Considering two bunches of particles with densities
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⇢1 and ⇢2 (both normalised to one), the luminosity density is given by

S = N1N2⇢1(x, y, s, t)⇢2(x, y, s, t)MKLF , (III.4.11)

where N1 and N2 are the numbers of particles per bunch for beams 1 and 2, while MKLF is the Møller
Kinematic Luminosity factor [4], given by

MKLF =

r
(~v1 � ~v2)2 �

(~v1 ⇥ ~v2)2

c2
, (III.4.12)

with ~v1,2 the velocities of beams 1 and 2 in the laboratory frame. The first term of MKLF corresponds
to the natural (nonrelativistic) case and the second term is a correction factor that makes S a relativistic
invariant. Combining Eqs. (III.4.10) and (III.4.11), yields

L = MN1N2f0MKLF

ˆ
Tb

0

ˆ
V

⇢1(x, y, s, t)⇢2(x, y, s, t)dtdV . (III.4.13)

Changing the time variable from time t to s0, with s0 = ct, Eq. (III.4.13) can be rewritten (see also
Figs. III.4.4 and III.4.5)

L = MN1N2f0
MKLF

c

ˆ ˆ ˆ ˆ
⇢1(x, y, s,�s0)⇢2(x, y, s, s0)dxdydsds0 . (III.4.14)

Fig. III.4.4: Collisions without crossing angle (Courtesy of W. Herr).

Using a frame such that in Fig. III.4.5, the x-axis points to the top of the page, the y-axis points towards
the reader and the s-axis points to the right of the page, MKLF can be written as

MKLF

c
=

q
�2
1 + �2

2 + 2�1�2 cos�� �2
1�

2
2 sin

2� , (III.4.15)

where �1 and �2 are the relativistic velocity factors for beams 1 and 2 respectively. In case �1 = �2 = 1,
Eq. (III.4.15) becomes
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Fig. III.4.5: Collisions with crossing angle (Courtesy of W. Herr).

MKLF

c
= 2 cos2

�

2
, (III.4.16)

which simplifies to 2 when � = 0 (i.e. in the absence of crossing angle).

Let’s assume first the simplest case without crossing angle (� = 0), then Eq. (III.4.14) becomes

L = MN1N2f02

ˆ ˆ ˆ ˆ
⇢1(x, y, s,�s0)⇢2(x, y, s, s0)dxdydsds0 . (III.4.17)

Assuming then that the densities are uncorrelated in all planes, i.e. ⇢1(x, y, s,�s0) =

⇢1x(x)⇢1y(y)⇢1s(s � s0) and ⇢2(x, y, s, s0) = ⇢2x(x)⇢2y(y)⇢2s(s + s0), given by Gaussian distribu-
tions in all dimensions, Eq. (III.4.17) becomes

L =
2MN1N2f0

(2⇡)3�1x�1y�2x�2y

ˆ ˆ ˆ ˆ
e
� x2

2�2
1x e

� y2

2�2
1y e

� x2

2�2
2x e

� y2

2�2
2y e

� (s�s0)
2

2�2
1s e

� (s+s0)
2

2�2
2s

�1s�2s
dxdydsds0 .

(III.4.18)

Assuming �1s = �2s = �s, yields

L =
MN1N2f0

4⇡2�1x�1y�2x�2y

ˆ ˆ
e
� x2

2�2
1x e

� y2

2�2
1y e

� x2

2�2
2x e

� y2

2�2
2y dxdy , (III.4.19)

using the relation
´ ´

e

� s2

�2
s e

�
s2
0

�2
s

�2
s

dsds0 = ⇡. Finally, assuming also �1x = �2x = �x and �1y = �2y =

�y and using the relation
´ ´

e

� x2

�2
x e

� y2

�2
y

�x�y
dxdy = ⇡, yields the simplest formula for the (instantaneous)

luminosity in the case of head-on collisions, which we call L0,

L0 =
MN1N2f0
4⇡�x�y

. (III.4.20)
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In the case of round beams (�x = �y = �) of equal number of particles (N1 = N2 = Nb), Eq. (III.4.20)
simplifies even further to

L0 =
MN2

bf0��

4⇡�⇤✏n
, (III.4.21)

where � and � are the relativistic velocity and mass factors of the two beams, �⇤ is the betatron function
at the collision point (also called Interaction Point, IP) and ✏n is the normalised transverse beam emittance
given by

✏n = ��✏ = ��
�2

�⇤ . (III.4.22)

As an example, the numerical application for the nominal case of the CERN LHC gives
L0 = 1.2 ⇥ 1034 cm�2 s�1. Now that we defined the simplest scenario, let’s have a closer look
to more complicated cases, noting that, in the general case, the luminosity is given by

L = L0F , (III.4.23)

with 0  F  1.

A crossing angle is often needed to separate the two counter-rotating beams in the part of the
machine where they share the same vacuum chamber, to avoid unwanted collisions outside of the detector
(see Fig. III.4.6). Furthermore, the exact (minimum) crossing angle is defined after careful analyses of
the long-range beam-beam effects (see Fig. III.4.7).

Fig. III.4.6: The two counter-rotating beams of the CERN LHC sharing the same vacuum chamber for
⇠ 120 m around the IP (Courtesy of W. Herr).

In the case of a crossing angle (CA) in the s-x plane, beam 1 is rotated by �/2 while beam 2 is rotated
by ��/2 and the luminosity can be written as

LCA = 2 cos2
�

2
MN1N2f0

ˆ ˆ ˆ ˆ
⇢1x(x1)⇢1y(y1)⇢1s(s1�s0)⇢2x(x2)⇢2y(y2)⇢2s(s2+s0)dxdydsds0 ,

(III.4.24)

with
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Fig. III.4.7: The two beam-beam effects when the two counter-rotating beams share the same vacuum
chamber (Courtesy of W. Herr).

"
x1

s1

#
=

"
cos �

2 � sin �
2

sin �
2 cos �

2

#"
x

s

#
, (III.4.25)

and

"
x2

s2

#
=

"
cos �

2 sin �
2

� sin �
2 cos �

2

#"
x

s

#
. (III.4.26)

Assuming the same dimensions in the three planes, i.e. �1x = �2x = �x, �1y = �2y = �y, �1s = �2s =

�s and y1 = y2 = y, and using the following relation

ˆ +1

�1
e�(at2+bt+c)dt =

r
⇡

a
e

b2

4a�c , (III.4.27)

it can be shown that

LCA = L0FCA , (III.4.28)

with

FCA =
1q

1 + ( �s
�x

tan �
2 )

2
. (III.4.29)

Figure III.4.8 depicts the evolution of the luminosity reduction factor from a crossing angle as a function
of the longitudinal rms bunch length. It is worth noting that this geometric luminosity loss factor can
be compensated by using crab cavities (see Fig. III.4.9), as it has been already the case in some leptons
machine (KEK-B in Japan) and as it will be the case for the future upgrade of the LHC (the HL-LHC [5]).

In the presence of a transverse offset (TO) between the two beams, e.g. in the horizontal plane, but
without crossing angle, using the same frame as before one has, in the general case, x1 = x + d1 and
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Fig. III.4.8: Evolution of the luminosity reduction factor from a crossing angle as a function of the rms
bunch length (example of the nominal LHC).

Fig. III.4.9: (Left) Collisions with a crossing angle; (right) compensation of the crossing angle at the IP
by crab cavities (Courtesy of W. Herr).

x2 = x + d2. Making again the assumptions �1x = �2x = �x, �1y = �2y = �y, �1s = �2s = �s and
y1 = y2 = y yields

LTO = L0FTO , (III.4.30)

with

FTO = e�(
d1�d2
2�x

)2 . (III.4.31)

The evolution of the luminosity reduction factor as a function of the transverse beam offset is depicted
in Fig. III.4.10.

Another important effect, called the hourglass effect (HE), needs to be taken into account when
�⇤ is comparable or smaller than the rms bunch length �s, remembering that close to the IP, the variation
of the betatron function is given by
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Fig. III.4.10: Evolution of the luminosity reduction factor as a function of the transverse beam offset.

�(s) = �⇤[1 + (
s

�⇤ )
2] . (III.4.32)

Following the same approach as before, considering also the presence of a crossing angle in the s-x plane
but no transverse offset, yields

LCA�HG = LCAFHG , (III.4.33)

with

FHG =

vuut sin2 �

2

�⇤2
x

+
cos2 �

2

�2
s

⇡

ˆ +1

�1

e
�s

2{ sin
2 �

2

�⇤2
x [1+(

s
�⇤ )2]

+
cos

2 �
2

�2
s

}

1 + ( s

�⇤ )2
ds . (III.4.34)

The evolution of the luminosity reduction factor as a function of �⇤ is depicted in Fig. III.4.11, where it
can indeed be checked that this effect starts to become important when �⇤ is comparable or smaller than
the rms bunch length �s.

It is worth reminding here that the luminosity L depends only on the beam parameters and that it is
independent of the physical reaction. It is given by the ratio between the number of events per second
generated in the collisions and the cross-section of the reaction under study and therefore its unit is
cm�2 s�1. It is computed by the accelerator physicists using the formulae described above and measured
by the particle physicists. As the luminosity is directly proportional to the interaction rate, luminosity
measurements are usually based on fast counting devices which provide such a signal.

As we saw from Eq.III.4.9, the maximisation of the integrated luminosity Lint is what matters in
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Fig. III.4.11: Evolution of the luminosity reduction factor from the hourglass effect as a function of �⇤

(example of the nominal LHC).

the end as it gives the maximum number of events. Collisions in a high-luminosity collider result in a
continuous burn-off of the circulating beams, which is the dominant effect that reduces the instantaneous
luminosity over time. Some other effects like emittance growth can also reduce it and let’s assume for
simplicity an exponential decay of the instantaneous luminosity given by

L(t) = Lpeake
� t

⌧l , (III.4.35)

where Lpeak is the (peak) luminosity at the beginning of the collisions (one often speaks of a "fill"
during which the collider experts declare "stable beams" and the experiments take their data) and ⌧l the
luminosity lifetime. Then, the question is: what is the best run time tr? To answer this question, let’s call
tp the preparation time (time needed to put the beams in collision after the end of the previous physics
fill). The average luminosity is thus given by

< L >=
1

tr + tp

ˆ
tr+tp

0
L(t)dt = Lpeak⌧l

1� e
� tr

⌧l

tr + tp
, (III.4.36)

which is maximum (optimum) for

toptr ⇡ ⌧l ln

✓
1 +

r
2
tp
⌧l

+
tp
⌧l

◆
. (III.4.37)

A numerical example is shown in Fig. III.4.12 with ⌧l = 15 h and tp = 10 h, for which it can be deduced
from Eq. (III.4.37) that the optimum run time is toptr ⇡ 15.5 h (in good agreement with Fig. III.4.12).

The nuclear unit of the cross-section (�exp) is the barn, with 1 barn = 10�24 cm2, and the in-
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Fig. III.4.12: Numerical example of maximisation of the integrated luminosity, with (top) the evolution
of the luminosity with time and (bottom) the evolution of the average luminosity with the run time tr
(example of the nominal LHC). Here, ⌧l = 15 h and tp = 10 h.

verse femtobarn (fb�1) is the unit typically used to measure the number of particle collision events per
femtobarn of target cross-section and is the conventional unit for time-integrated luminosity. Thus, if a
detector has accumulated 100 fb�1 of integrated luminosity, one expects to find 100 events per femtobarn
of cross-section within these data. As an example, Fig. III.4.13 shows the evolution of the integrated and
peak luminosities over the years for the CERN LHC .

Another important consideration for the experiments is the pile-up (PU), which describes the num-
ber of events per crossing for a given luminosity and is given by
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Fig. III.4.13: Integrated and peak luminosities over the years for the CERN LHC.

PU =
L�exp
Mf0

. (III.4.38)

This is a limit coming from the experiments’ detectors and is thus better to have the largest number of
bunches for the same beam intensity. In case the PU is too big (for instance it was ⇠ 20 for the CERN
LHC with nominal parameters and it should reach 200 for the ultimate HL-LHC), luminosity-leveling
techniques can be used to remain at the limit, playing with the different parameters which can reduce the
luminosity (transverse beam offset, �⇤, etc.).

In summary, to reach a high luminosity, we need

– High beam intensities,

– A high bunch intensity is more efficient (for the same beam intensity) but it can lead to a PU
issue for the experiments’ detectors
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– A high number of bunches is less efficient but better for the PU

– Small transverse beam sizes (small transverse emittance and beta function at the IP),

– High energy,

– Small crossing angle,

– Small transverse offset,

– Short bunches.

Finally, to conclude this introduction on particle colliders, it is worth emphasising the current six
major challenges for the future high-energy colliders, which are

– Synchrotron radiation,

– Bending magnetic fields,

– Accelerating gradient,

– Particle production (positrons, antiprotons, muons),

– Power consumption and sustainability,

– Cost.
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