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This is an update of the lectures previously published in arXiv:1708.01046. The topics discussed
in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses
and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an
overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation
physics. We also briefly comment on the relevance of neutrinos in leptogenesis and in beyond-the-
Standard-Model physics.
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1 Introduction

Neutrinos made their first invisible appearance at the beginning of the 20th century as dark particles in
radioactive �-decay. In this process a nucleus undergoes a transition

A

ZX !A

Z+1 X 0
+ e�, (1.1)

emitting an electron, which, by energy–momentum conservation, should have an energy approximately
equal to the difference of the parent and daughter nuclear masses, Q, see Fig. 1.

Expected
Observed

Q
Energy

Number of electrons

Fig. 1: Electron spectrum of �-decay.

The spectrum of the electrons was measured to be instead continuous with an end-point at Q. It
took almost 20 years to come up with an explanation to this apparent violation of energy–momentum
conservation. W. Pauli called for a desperate remedy, suggesting that in the decay, a neutral and light
particle was being emitted together with the electron and escaped undetected. In that case the spectrum of
the electron would indeed be continuous since only the sum of the energy of the electron and the phantom
particle should equal Q. The dark particle got an Italian name: neutrino in honour of E. Fermi, who was
among the first to take seriously Pauli’s hypothesis, from which he constructed the famous theory of
�-decay [1]. In this theory, the interaction responsible for �-decay is shown in Fig. 2, a four-fermion
interaction with strength given by GF , the Fermi constant.

Such interaction implies that neutrinos should also scatter off matter through the inverse beta
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Fig. 2: Fermi four-fermion coupling responsible for �-decay.

process, ⌫̄ p ! ne+. Bethe and Pearls [2] estimated the cross section for such process to be

�⌫̄  10
�44 cm2, E⌫̄ ' 2 MeV, (1.2)

and concluded that “it is absolutely impossible to observe processes of this kin”. Indeed this tiny cross
section implies that a neutrino has a mean free path of thousands of light-years in water.

Pontecorvo [3] however was among the first to realise that it was not so hopeless. One could
get a few events per day in a ton-mass scale detector with a neutrino flux of 10

11⌫/cm2/s. Such is the
neutrino flux from a typical nuclear reactor at a few tens of meters distance from its core. Reines and
Cowen (RC) succeeded in detecting reactor neutrinos [4, 5]. They were able to detect neutrinos via
inverse beta decay in a very massive detector thanks to the extremely clean signal which combines the
detection of the positron and the neutron in delayed coincidence, see Fig. 3. This experiment not only led
to the discovery of anti-neutrinos, but introduced a detection technique that is still being used today in
state-of-the-art reactor neutrino experiments and continues to make fundamental discoveries in neutrino
physics.

Fig. 3: Detection technique in the Reines–Cowan experiment.

Shortly after anti-neutrinos were discovered, it was realised that they come in flavours or families.
The muon had been discovered in cosmic rays much earlier, and pion decay to muons is an analogous
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process to �-decay:

⇡� ! µ�⌫̄µ. (1.3)

It was understood that also in this case a (anti-)neutrino is emitted but, accompanying a µ instead of an
electron, it had a different identity to that in �-decay. Since the energy transfer in this process is higher
than in �-decay, and the neutrino cross-sections grow fast with energy in the Fermi theory, it would
actually be easier to detect this new type of neutrino.

In 1962 Lederman, Schwartz and Steinberger (LSS) detected for the first time neutrinos from pion
decay by creating the first accelerator neutrino beam [6]. The accelerated proton beam is made to hit a
fixed target producing pions and other hadrons that decay into neutrinos and other particles, mimicking
what happens in cosmic rays. If a thick shield intercepts the secondary particles, all particles except the
neutrinos are stopped, see Fig. 4. Finally a neutrino detector is located behind the shield. A neutrino
event will induce the appearance of a muon in the detector. Again this was such a great idea that we are
still making discoveries with the modern versions of the LSS experiment, in the so-called conventional
accelerator neutrino beams.

Fig. 4: Lederman, Schwartz, Steinberger experiment.

Kinematical effects of neutrino masses were searched for by measuring very precisely the end-
point of the lepton energy spectrum in weak decays, that gets modified if neutrinos are massive. In
particular the most stringent limit is obtained from tritium �-decay for the “electron” neutrino:

3H !3
He + e�

+ ⌫̄e. (1.4)

Figure 5 shows the effect of a neutrino mass in the end-point electron energy spectrum in this decay.

The best limit has been recently improved by the Katrin experiment [7]:

m⌫e
< 0.8 eV(90%CL) , (1.5)

which aims at reaching a sensitivity of 0.2 eV. The direct limits from processes involving µ, ⌧ leptons
are much weaker. The best limit on the ⌫µ mass (m⌫µ

< 170 keV [8]) was obtained from the end-
point spectrum of the decay ⇡+ ! µ+⌫µ, while that on the ⌫⌧ mass was obtained at LEP (m⌫⌧

<
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Fig. 5: Effect of a neutrino mass in the end-point of the lepton energy spectrum in � decay.

Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3), dSU(2))Y .

(1,2)
�

1
2

(3,2) 1
6

(1,1)�1 (3,1) 2
3

(3,1)
�

1
3
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◆
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eR ui
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R
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◆

L
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si

◆
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µR ci

R
si

R
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L

✓
ti

bi

◆

L

⌧R ti
R

bi

R

18.2 MeV [9]) from the decay ⌧ ! 5⇡⌫⌧ . Neutrinos in the Standard Model were therefore conjectured
to be massless.

2 Neutrinos in the Standard Model

The Standard Model (SM) is a gauge theory based on the gauge group SU(3) ⇥ SU(2) ⇥ UY (1). All
elementary particles arrange in irreducible representations of this gauge group. The quantum numbers
of the fermions (dSU(3), dSU(2))Y are listed in Table 1.

Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under
SU(3) and their hypercharge is �1/2. The electric charge, given by Q = T3 + Y , vanishes. They are
therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of Table 1 are its left–right or chiral asymmetry, and the three-
fold repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions

The left and right entries in Table 1 have well defined chirality, negative and positive respectively. They
are two-component spinors or Weyl fermions, the smallest irreducible representation of the Lorentz
group representing spin 1/2 particles. Only fields with negative chirality carry the SU(2) charge. For
free fermions moving at the speed of light (i.e., massless), the chiral states have a well defined helicity,
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i.e they are eigenstates of the helicity operator, ⌃ =
s·p
|p|

, that measures the component of the spin in
the direction of the momentum. This is not inconsistent with Lorentz invariance, since for a fermion
travelling at the speed of light, the helicity is the same in any reference frame. In other words, the
helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good quantum
number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic
building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any
left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed
particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and
an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak
interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious
than for neutrinos since the parity partner of the neutrino does not exist. All the remaining fermions in
the SM come in parity pairs, albeit with different SU(2) ⇥ U(1) charges. Since this gauge symmetry
is spontaneously broken, the left and right fields combine into massive Dirac fermions, that is a four
component representation of the Lorentz group and parity, which represents a particle and an antiparticle
with either helicity. The chirality components are recovered from the four-component Dirac spinor by
the chiral projectors

 L = PL =
1 � �5

2
 ,  R = PR =

1 + �5

2
 . (2.1)

The SM resolved the Fermi interaction as being the result of the exchange of the SU(2) massive
W boson as in Fig. 6.

p

n

W

Νe

e

Fig. 6: �-decay process in the SM.

Neutrinos interact in the SM via charged and neutral currents:

LSM � � gp
2

X

↵

⌫̄↵�µPLl↵W+

µ � g

2 cos ✓W

X

↵

⌫̄↵�µPL⌫↵Z+

µ + h.c. (2.2)

The weak current is therefore V –A since it only couples to the left fields: �µPL / �µ–�µ�5.
This structure is clearly seen in the kinematics of weak decays involving neutrinos, such as the classic
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π
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e+νe

pp eνe

S Sνe e +

Fig. 7: Kinematics of pion decay: two recoiling particles must have same helicity to ensure angular
momentum conservation.

Fig. 8: Triangle diagrams that can give rise to anomalies. W, B, G are the gauge bosons associated to
the SU(2), UY (1), SU(3) gauge groups, respectively, and g is the graviton

example of pion decay to e⌫̄e or µ⌫̄µ. In the limit of vanishing electron or muon mass, this decay is
forbidden, because the spin of the initial state is zero and thus it is impossible to conserve simultaneously
momentum and angular momentum if the two recoiling particles must have opposite helicities, as shown
in Fig. 7. The decay amplitude is therefore proportional to the lepton mass and the ratio of the decay
rates to electrons and muons, in spite of the larger phase space in the former, is strongly suppressed by

the factor
⇣

me

mµ

⌘
2

⇠ 2 ⇥ 10
�5.

Another profound consequence of the chiral nature of the weak interaction is anomaly cancella-
tion. The chiral coupling of fermions to gauge fields leads generically to inconsistent gauge theories due
to chiral anomalies: if any of the diagrams depicted in Fig. 8 is non-vanishing, the weak current which is
conserved at tree level is not at one loop, implying a catastrophic breaking of gauge invariance. Anomaly
cancellation is the requirement that all these triangle diagrams vanish, which imposes strong constraints
on the hypercharge assignments of the fermions in the SM, which are miraculously satisfied:

GGBz }| {X

i=quarks

Y L

i � Y R

i =

WWBz }| {X

i=doublets

Y L

i =

Bggz }| {X

i

Y L

i � Y R

i =

B
3

z }| {X

i

(Y L

i )
3 � (Y R

i )
3

= 0, (2.3)

where Y L/R

i
are the hypercharges of the left/right components of the fermionic field i, and the

triangle diagram corresponding to each of the sums is indicated above the bracket.

2.2 Family structure

Concerning the family structure, we know, thanks to neutrinos, that there are exactly three families in
the SM. An extra SM family with quarks and charged leptons so heavy that cannot be produced at the
energies explored so far in colliders, would also have massless neutrinos that would contribute to the
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Fig. 9: Z0 resonance from the LEP experiments. Data are compared to the case of N⌫ = 2, 3 and 4

invisible Z0 decay:

Z0 ! ⌫̄↵⌫↵. (2.4)

The invisible width of the Z0 has been measured at LEP with an impressive precision, as shown in
Fig. 9 [10]. This measurement has been recently revised [11, 12] with a reduced systematic error and
excludes any number of standard families different from three:

N⌫ =
�inv

�⌫̄⌫

= 2.9963 ± 0.00074. (2.5)

3 Massive neutrinos

Neutrinos are ubiquitous in our surroundings. If we open our hand, it will be crossed each second by
about O(10

12
) neutrinos from the sun, about O(10) from the atmosphere, about O(10

9
) from natural

radioactivity in the earth and even O(10
12

) relic neutrinos from the Big Bang. In 1987, the Kamiokande
detector in Japan observed the neutrino burst from a SuperNova that exploded in the Large Magellanic
Cloud, at a distance of 160 thousand light years from earth. For a few seconds, the supernova neutrino
flux was of the same order of magnitude as the flux of solar neutrinos!

Using many of these sources as well as others from reactors and accelerators, a decade of revolu-
tionary neutrino experiments have demonstrated that, for the time being, neutrinos are the less standard
of the SM particles. They have tiny masses and this necessarily requires new degrees of freedom with
respect to those in Table 1.

A massive fermion necessarily has two states of helicity, since it is always possible to reverse the
helicity of a state that moves at a slower speed than light by looking at it from a boosted reference frame.
What is the right-handed state of the neutrino? It turns out there are two ways to proceed.
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Let us consider the case of free fermions. A four-component Dirac fermion can be made massive
adding the following mass term to the Lagrangian:

�LDirac

m = m ̄ = m( L +  R)( L +  R) = m( L R +  R L). (3.1)

A Dirac mass term couples the left-handed and right-handed chiral components of the fermion field, and
therefore this coupling vanishes identically in the case of a Weyl fermion.

Can one give a mass to a two-component Weyl fermion? As first noticed by Majorana, this indeed
can be done with the following mass term:

�LMajorana

m =
m

2
 c +

m

2
  c

=
m

2
 T C +

m

2
 ̄C ̄T , (3.2)

where

 c ⌘ C ̄T
= C�0 

⇤. (3.3)

It is easy to check that the Majorana mass term satisfies the required properties:

1) It can be constructed with a two-component spinor or Weyl fermion: if  = PL 

 T C =  T

L i�2 L, (3.4)

which does not vanish in the absence of the right chiral component.

2) It is Lorentz invariant. It is easy to show, using the properties of the gamma matrices that under a
Lorentz transformation  and  c transform in the same way,

 ! e�
i

4!µ⌫�
µ⌫

 ⌘ S(⇤) ,  c ! S(⇤) c, (3.5)

with �µ⌫ ⌘=
i

4
[�µ, �⌫ ], and therefore the bilinear  c is Lorentz invariant.

3) The equation of motion derived from Eq. (3.2) for a free majorana fermion has plane wave solu-
tions satisfying the relativistic relation for a massive fermion:

E2 � p
2

= m2.

In the SM none of the mass terms of Eqs. (3.1) and (3.2) are gauge invariant. Spontaneous sym-
metry breaking allows to generate the Dirac mass term from Yukawa couplings for all fermions in the
SM, while the Majorana mass term can only be generated for neutrinos. Let us see how this works.

3.1 Massive Dirac neutrinos

We can enlarge the SM by adding a set of three right-handed neutrino, ⌫R states, with quantum numbers
(1, 1)0, i.e. singlets under all the gauge groups. A new Yukawa (Fig. 10) coupling of these new states
with the lepton doublet is exactly gauge invariant and therefore can be added to the SM:

�LDirac

m = L ��̃ ⌫R + h.c. (3.6)
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Fig. 10: Neutrino Yukawa coupling.
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Fig. 11: Fermion spectrum in the Standard Model.

where L = (⌫ l) is the lepton doublet, �̃ ⌘ i�2�⇤ and � is the Higgs field, with quantum numbers
(1,2)

�
1
2
. Upon spontaneous symmetry breaking the scalar doublet gets a vacuum expectation value

h�̃i = (
v

p
2

0), and therefore a neutrino Dirac mass term is generated

�LDirac

m ! � ⌫L �
vp
2
⌫R + h.c. (3.7)

The neutrino mass matrix is proportional to the Higgs vacuum expectation value, in complete analogy to
the remaining fermions:

m⌫ = �
vp
2
. (3.8)

There are two important consequences of Dirac neutrinos. First, there is a new hierarchy problem
in the SM to be explained: why are neutrinos so much lighter than the remaining leptons, even those in
the same family (see Fig. 11), if they get the mass in the same way? This requires a large hierarchy in
the Yukawa couplings that should differ in many orders of magnitude. Secondly, an accidental global
symmetry, lepton number L, that counts the number of leptons minus that of antilepton, remains exactly
conserved at the classical level,1 just as baryon number, B, is.

1As usual B + L is broken by the anomaly and only B � L remains exact at all orders.
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Higgs Higgs

Λij

"

Νi Ν j
c

Fig. 12: Weinberg operator.

3.2 Massive Majorana neutrinos

Since the combination L̄�̃ is a singlet under all gauge groups, the Majorana-type contraction (see
Fig. 12):

�LMajorana

m = L̄�̃ ↵C�̃T L̄T
+ h.c., (3.9)

is gauge invariant. This term, first writen down by Weinberg [13], gives rise to a Majorana mass term for
neutrinos upon spontaneous symmetry breaking:

�LMajorana

m ! ⌫̄L↵
v2

2
C⌫̄T

L + h.c., (3.10)

The neutrino mass matrix in this case is given by:

m⌫ = ↵v2. (3.11)

The Weinberg operator has dimension 5, and therefore the coupling [↵] = �1. We can write it in terms
of a dimensionless coupling as

↵ =
�

⇤
, (3.12)

where ⇤ is a new physics scale, in principle unrelated to the electroweak scale.

The consequences of the SM neutrinos being massive Majorana particles are profound. If the scale
⇤ is much higher than the electroweak scale v, a strong hierarchy between the neutrino and the charged
lepton masses arises naturally. If all dimensionless couplings � are of the same order, neutrino masses are
suppressed by a factor v/⇤ with respect to the charged fermions. On the other hand, Weinberg’s operator
violates lepton number L and provides a new seed for generating the matter/antimatter asymmetry in the
Universe as we will see.

Even though the Majorana mechanism to generate neutrino masses does not involve any extra
degree of freedom with respect to those in the SM, the existence of the Weinberg coupling implies that
cross sections involving for example the scattering of neutrinos and the Higgs will grow with energy,
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ultimately violating unitarity. The situation is analogous to that of the Fermi interaction of Fig. 2. The
SM resolved this interaction at higher energies as being the result of the interchange of a heavy vector
boson, Fig. 6. The Majorana coupling, if it exists, should also represent the effect at low energies of
the exchange of one or more unknown massive states. What those states are remains one of the most
interesting open questions in neutrino physics.

Finally, it is interesting to note that the anomaly cancellation conditions fix all the hypercharges
in this case (i.e., there is only one possible choice for the hypercharges that satisfies Eq. (2.3)), which
implies that electromagnetic charge quantization is the only possibility in a field theory with the same
matter content as the SM.

3.3 Neutrino masses and physics beyond the Standard Model

Any new physics beyond the standard model (BSM) characterized by a high scale, ⇤, will induce effects
at low energies E ⌧ ⇤ that can be described by an effective field theory [14, 15] of the form:

Le↵ = LSM +

X

i

↵i

⇤
Od=5

i +

X

i

�i

⇤2
Od=6

i + ... (3.13)

It is the most general Lagrangian which includes the SM and an infinite tower of operators constructed
out of the SM fields respecting Lorentz and gauge symmetries. In principle such a theory depends on
infinite new couplings, one per new independent operator, and it is therefore not predictive. However, if
we are interested in describing processes at energies E ⌧ ⇤, we can truncate the sum of operators up to
a given dimension d in such a way that our predictions are correct up to order

�
E

⇤

�d�4.

The operators of lowest dimension are the most relevant at low energies. It turns out that there
is only one such operator of the lowest possible dimension, d = 5, which is precisely the Weinberg
operator of Eq. (3.9). In this perspective, it is natural to expect that the first indication of BSM physics
is precisely Majorana neutrino masses. While many types of BSM theories can give rise to neutrino
masses, generically they will induce other new physics effects represented by the operators of d = 6 and
higher.

4 Neutrino masses and lepton mixing

Neutrino masses, whether Dirac or Majorana, imply lepton mixing [16, 17]. The Yukawa coupling in
Eq. (3.6) is a generic complex matrix in flavour space, while that in Eq. (3.9) is a generic complex
symmetric matrix, and the same holds for the corresponding leptonic mass matrices:

�LDirac

m = ⌫i

L
(M⌫)ij

⌫j

R
+ li

L
(Ml)ij

lj
R

+ h.c. (4.1)

�LMajorana

m =
1

2
⌫i

L
(M⌫)ij

⌫cj

L
+ li

L
(Ml)ij

lj
R

+ h.c. (4.2)

In the Dirac case, the two mass matrices can be diagonalized by a bi-unitary rotation:

M⌫ = U †

⌫Diag(m1, m2, m3)V⌫ , Ml = U †

l
Diag(me, mµ, m⌧ )Vl, (4.3)
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while in the Majorana case, the neutrino mass matrix, being symmetric, can be taken to a diagonal form
by

M⌫ = U †

⌫Diag(m1, m2, m3)U
⇤

⌫ . (4.4)

We can go to the mass basis by rotating the fields as:

⌫ 0

R = V⌫⌫R, ⌫ 0

L = U⌫⌫L, l0R = VllR, l0L = UllL. (4.5)

In this basis the charged-current interactions are no longer diagonal, in complete analogy with the quark
sector (see Fig. 13):

Llepton

CC
= � gp

2
l̄0i�µPLW+

µ (U †

l
U⌫)ij| {z }

UPMNS

⌫ 0

j + h.c. (4.6)

The mixing matrix in the lepton sector is referred to as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix, analogous to the CKM one in the quark sector.

W
+

_

i

u
j

d

j

W
+

l
_

i

ν

Fig. 13: Quark and lepton mixing.

The number of physical parameters in the lepton mixing matrix, UPMNS, can easily be computed by
counting the number of independent real and imaginary elements of the Yukawa matrices and eliminating
those that can be absorbed in field redefinitions. The allowed field redefinitions are the unitary rotations
of the fields that leave the rest of the Lagrangian invariant (only those that are not symmetries of the full
Lagrangian when lepton masses are included are efficient in absorbing flavour parameters).

In the Dirac case, it is possible to rotate independently the left-handed lepton doublet, together
with the right-handed charged leptons and neutrinos, that is U(n)

3, for a generic number of families n.
However, this includes total lepton number which remains a symmetry of the massive theory and thus
cannot be used to reduce the number of physical parameters in the mass matrix. The parameters that can
be absorbed in field redefinitions are thus the parameters of the group U(n)

3/U(1) (that is 3(n
2
�n)

2
real,

3(n
2
+n)�1

2
imaginary).

In the case of Majorana neutrinos, there is no independent right-handed neutrino field, nor is lepton
number a good symmetry. Therefore the number of field redefinitions is the number of parameters of the
elements in U(n)

2 (that is n2 � n real and n2
+ n imaginary).

The resulting real physical parameters are the mass eigenstates and the mixing angles, while the
resulting imaginary parameters are CP-violating phases. All this is summarized in Table 2. Dirac and
Majorana neutrinos differ only in the number of observables phases. For three families (n = 3), there is
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Table 2: Number of real and imaginary parameters in the Yukawa matrices, of those that can be absorbed
in field redefinitions. The difference between the two is the number of observable parameters: the lepton
masses (m), mixing angles (✓), and imaginary phases (�).

Yukawas Field redefinitions No. m No. ✓ No. �

Dirac �l, �⌫ U(n)
3/U(1)

Real, Im 2n2, 2n2
3(n2 � n)

2
,

3(n2
+ n) � 1

2
2n

n2 � n

2

(n � 2)(n � 1)

2

Majorana �l, ↵T
⌫ = ↵⌫ U(n)

2

Real,Im n2
+

n(n+1)

2
, n2

+
n(n+1)

2
n2 � n, n2

+ n 2n
n2 � n

2

n2 � n

2

just one Dirac phase and three in the Majorana case.

A standard parametrization of the mixing matrices for Dirac, UPMNS, and Majorana, ŨPMNS, is
given by

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�

0 1 0

�s13ei�
0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA ,

ŨPMNS = UPMNS(✓12, ✓13, ✓23, �)

0

B@
1 0 0

0 ei↵1 0

0 0 ei↵2

1

CA , (4.7)

where in all generality ✓ij 2 [0,⇡/2] and �,↵1,↵2 2 [0, 2⇡].

5 Majorana versus Dirac

It is clear that establishing the Majorana nature of neutrinos is of great importance, since it would imply
the existence of a new physics scale. In principle there are very clear signatures, such as the one depicted
in Fig. 14, where a ⌫µ beam from ⇡+ decay is intercepted by a detector, D. In the Dirac case, the
interaction of neutrinos on the detector via a charged current interaction will produce only a µ� in the
final state. If neutrinos are Majorana, a wrong-sign muon in the final state is also possible. Unfortunately
the rate for µ+ production is suppressed by m⌫/E in amplitude with respect to the µ�. For example, for
E⌫ = O(1) GeV and m⌫ ⇠ O(1) eV the cross section for this process will be roughly 10

�18 times the
usual CC neutrino cross section.

The best hope of observing a rare process of this type seems to be the search for neutrinoless
double-beta decay (2�0⌫), the right diagram of Fig. 15. The background to this process is the standard
double-beta decay depicted on the left of Fig. 15, which has been observed to take place for various
isotopes with a lifetime of T2�2⌫ > 10

19–10
21 years.

If the source of this process is just the Majorana ⌫ mass, the inverse lifetime for this process is
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Fig. 14: A neutrino beam from ⇡+ decay (⌫µ) could interact in the magnetized detector producing a µ+

only if neutrinos are Majorana.

given by

T�1

2�0⌫
' G0⌫

|{z}
Phase

��M0⌫
��2

| {z }
NuclearM.E.

�����
X

i

⇣
Ũ ei

PMNS

⌘
2

mi

�����

2

| {z }
|mee|2

. (5.1)

In spite of the suppression in the neutrino mass (over the energy of this process), the neutrinoless
mode has a phase factor orders of magnitude larger than the 2⌫ mode, and as a result present experiments
searching for this rare process have already set bounds on neutrino masses in the eV range as shown in
Table 3.

W

2�2⌫

W

eL

eL

⌫eL

⌫eL
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dL

W

2�0⌫

⇥

W
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⌫eL

⌫eL

uL
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Figure 1: 2� decay: normal (left) and neutrinoless (right)

1

Fig. 15: 2� decay: normal (left) and neutrinoless (right).

Table 3: Present bounds at 90%CL from some recent neutrinoless double-beta-decay experiments [18].

Experiment Nucleus |mee|
EXO-200 136

Xe < 0.093–0.286 eV
AMoRE 100

Mo < 1.2–2.1 eV
GERDA 76

Ge < 0.079–0.18 eV
KamLAND-Zen 136

Xe < 0.061–0.165 eV
CUORE 130

Te < 0.11–0.52 eV
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6 Neutrino oscillations

The most spectacular implication of neutrino masses and mixings is the macroscopic quantum phe-
nomenon of neutrino oscillations, first introduced by B. Pontecorvo [19]. The Nobel Prize of 2015 was
awarded to T. Kajita (from the SuperKakiokande collaboration) and A. B. McDonald (from the SNO
collaboration) for the discovery of neutrino oscillations, which shows that neutrinos have a mass.

We have seen that if neutrinos are massive the neutrino flavour fields (⌫e, ⌫µ, ⌫⌧ ), that couple via
CC to the leptons (e, µ, ⌧) , are unitary combinations of the mass eigenstates fields (⌫1, ⌫2, ⌫3):

0

B@
⌫e

⌫µ

⌫⌧

1

CA = UPMNS(✓12, ✓13, ✓23, phases)

0

B@
⌫1

⌫2

⌫3

1

CA . (6.1)

In a neutrino oscillation experiment, neutrinos are produced by a source (e.g. pion or µ decays, nuclear
reactions, etc) and are detected some macroscopic distance, L, away from the production point. They are
produced and detected via weak processes in combination with a given lepton flavour, that is in flavour
states or a combination of mass eigenstates. As these states propagate undisturbed in space-time from
the production to the detection regions, the different mass eigenstates, having slighly different phase
velocities, pick up different phases, resulting in a non-zero probability that the state that arrives at the
detector is in a different flavour combination to the one originally produced, see Fig. 16. The probability
for this flavour transition oscillates with the distance travelled.

Two ingredients are mandatory for this phenomenon to take place:

– neutrinos must keep quantum coherence in propagation over macroscopic distances, which is only
possible because they are so weakly interacting

– there is sufficient uncertainty in momentum at production and detection so that a coherent flavour
state can be produced2.

The master formula for the oscillation probability of ⌫↵ turning into a ⌫� is

P (⌫↵ ! ⌫�) =

X

i,j

U⇤

↵iU�iU↵jU
⇤

�j
e
�i

�m
2
ji

L

2|p| , (6.2)

where �m2

ji
⌘ m2

i
� m2

j
, U↵i are the elements of the PMNS matrix, L is the baseline and p is the

neutrino momentum.

There are many ways to derive this formula. The simplest way that appears in most textbooks
uses simple quantum mechanics, where neutrinos are treated as plane waves. A slightly more rigorous
method treats neutrinos as wave packets. Finally, it is also possible to derive it from QFT, where neutrinos
are treated as intermediate virtual states. The different methods make more or less explicit the basic
necessary conditions of neutrino oscillations mentioned above, and therefore are more or less prone to
quantum paradoxes.

2If the momentum uncertainty is sufficiently small one could kinematically distinguish the mass eigenstate being pro-
duced/detected.
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Fig. 16: Neutrino oscillations.

6.1 Plane wave derivation

Let us suppose that a neutrino of flavor ↵ is produced at t0. It is therefore a superposition of the mass
eigenstates that we assume to be plane waves with spatial momentum p:

|⌫↵(t0)i =

X

i

U⇤

↵i|⌫i(p)i. (6.3)

The mass eigenstates are eigenstates of the free Hamiltonian:

Ĥ|⌫i(p)i. = Ei(p)|⌫i(p)i, Ei(p)
2

= p
2
+ m2

i . (6.4)

The time evolution operator from t0 ! t is given by e�iĤ(t�t0) and therefore the state at time t is given
by

|⌫↵(t)i = e�iĤ(t�t0)|⌫↵(t0)i =

X

i

U⇤

↵ie
�iEi(p)(t�t0)|⌫i(p)i. (6.5)

The probability that at time t the state is in flavour � is

P (⌫↵ ! ⌫�)(t) = |h⌫� |⌫↵(t)i|2 =

�����
X

i

U�iU
⇤

↵ie
�iEi(p)(t�t0)

�����

2

, (6.6)

where we have used the orthogonality relation h⌫i(p)|⌫j(p)i = �ij .

Since the neutrinos are ultrarelativistic, we can approximate

Ei(p) � Ej(p) ' 1

2

m2

i
� m2

j

|p| + O(m4
), (6.7)

and L ' (t � t0), so that the master formula in Eq. (6.2) is recovered.

The well-founded criticism to this derivation can be summarized in the following questions: 1)
why are all mass eigenstates of equal spatial momentum, p? 2) is the plane wave treatment justified
when the production and detection regions are localized? 3) why is it necessary to do the t � t0 ! L

conversion?

A number of quantum paradoxes can be formulated from these questions, that can be resolved only
when the two basic conditions for neutrino oscillations above are made explicit. This can be achieved in
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a wave packet treatment.

6.2 Wave packet derivation

Many authors have derived the master formula treating neutrinos involved as wave packets. For exam-
ples, see Refs. [20, 21].

A neutrino of flavour ↵ is produced at time and position (t0,x0) = (0,0) as a superposition
of source wave packets, fS

i
(p), one for each mass eigenstate. The state at time and position (t,x) is

therefore

|⌫↵(t,x)i =

X

i

U⇤

↵i

Z

p
fS

i (p)e�iEi(p)teipx|⌫ii. (6.8)

For simplicity we will assume Gaussian wave packets, with an average momentum Qi and width �S :

fS

i (p) / e�(p�Qi)
2
/2�

2
S . (6.9)

Note that we have lifted the assumption that all mass eigenstates have the same spatial momentum.

A neutrino of flavour � is detected at time and position (T,L) as a superposition of detector wave
packets, fD

i
(p), created at this space-time position. The state detected is therefore

|⌫�(t,x)i =

X

j

U⇤

�j

Z

p
fD

j (p)e�iEj(p)(t�T )eip(x�L)|⌫ji, (6.10)

where we also assume Gaussian wave packets at detection, with average momentum Q
0
j

and width �D:

fD

j (p) / e�(p�Q0
j
)
2
/2�

2
D . (6.11)

The probability amplitude for the first state to turn into the second is therefore

A(⌫↵ ! ⌫�) /
Z

dxh⌫�(t,x)|⌫↵(t,x)i =

X

i

U⇤

↵iU�i

Z

p
e�iEi(p)T eipLfS

i (p)fD⇤

i (p) (6.12)

For Gaussian wave packets we can rewrite the product of the S and D wave packets as a Gaussian wave
packet:

fD⇤

i (p)fS

i (p) / fov

i (p)e�(Qi�Q0
i
)
2
/4(�

2
S
+�

2
D

), (6.13)

where the overlap wave packet

fov

i (p) ⌘ e�(p�Q̄i)
2
/2�

2
ov , Q̄i ⌘

✓
Qi

�2

S

+
Q

0
i

�2

D

◆
�2

ov, �2

ov ⌘ 1

1/�2

S
+ 1/�2

D

. (6.14)

The momentum integral in Eq. (6.12) can be done analytically if we approximate

Ei(p) ' Ei(Q̄i) +

X

k

@Ei

@pk

����
Q̄i

(pk � (Q̄i)k) + ... = Ei(Q̄i) + vi(p � Q̄i) + ..., (6.15)
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where vi is the overlap wave packet group velocity.

The amplitude obtained is

A(⌫↵ ! ⌫�) /
X

i

U⇤

↵iU�ie
�iEi(Q̄i)T eiQ̄iLe�(Qi�Q0

i
)
2
/4(�

2
S
+�

2
D

)e�(L�viT )
2
�

2
ov/2. (6.16)

Note that the two last exponential factors impose momentum conservation (the average momentum of
the source and detector wave packets should be equal up to the momentum uncertainty) and the classical
relation L = viT within the spatial uncertainty, ��1

ov .

Since we usually do not measure the detection time T in a neutrino oscillation experiment, we
should integrate the probability over this variable. For simplicity we assume Qi ' Q

0

i
and parallel to L.

In this case, the integral gives:

P (⌫↵ ! ⌫�) /
Z

1

�1

dT |A(⌫↵ ! ⌫�)|2

/
X

i,j

U⇤

↵iU�iU↵jU
⇤

�j
e
�i

�m
2
ji

L

2|p| e
�

⇣
L

Lcoh(i,j)

⌘2

| {z }
coherence

e
�

✓
Ei(Q̄i)�Ej(Q̄j)

2�ov

◆2

| {z }
momentum uncertainty

(6.17)

where the coherence length

Lcoh(i, j) ' �ov

|vi � vj |q
v

2

i
+ v

2

j

, (6.18)

represents the distance travelled by the two wave packets, moving at slightly different group velocities vi

and vj , such that the center of the two wave packets have separated spacially a distance of the order of the
spatial uncertainty ��1

ov . For L � Lcoh(i, j) the coherence between the wave packets i, j is lost and the
corresponding terms in the oscillation probability exponentially suppressed. The last exponential factor
in Eq. (6.17) leads to a suppression of the oscillation probability when the difference in average energies
of the two wave packets i, j is larger than the momentum uncertainty of the overlap wave packet, �ov.
Note that �ov is dominated by the smallest of the production and detection uncertainties, and therefore
both should be large enough to ensure that the wave packets of the different mass eigenstates remain
coherent. To the extent that L ⌧ Lcoh and |Ei � Ej | ⌧ Min(�S ,�D), the probability reduces to
the master formula, with one caveat: we have lost the normalization along the way. This is usually
unavoidable in the wave packet derivation. The right normalization can be imposed only a posteriori, for
example, from unitarity,

P
�

P (⌫↵ ! ⌫�) = 1.

In summary, the wave packet derivation is clearly more physical, as it makes explicit the two nec-
essary conditions for neutrino oscillations to take place: coherence and sufficient momentum uncertainty.

6.3 QFT derivation

Since we are dealing with relativistic quantum mechanics, QFT should be the appropriate framework to
derive the oscillation probability.

In QFT we consider scattering processes where some asymptotic in-states that we can prepare
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Fig. 17: Neutrino oscillations in QFT.

in the infinite past come close together at some finite time in an interaction region and scatter off into
other asymptotic out-states at time t ! 1. The probability amplitude for this process is just the scalar
product of the in and out states. In computing this amplitude we usually idealise the asymptotic states
as plane waves, which is a good approximation provided the interaction region is small compared to the
Compton wavelength of the scattering states. In reality however the proper normalization of the scattering
probability as a probability per unit time and volume requires that the initial states are normalized wave
packets.

In a neutrino oscillation experiment, the asymptotic states are not the neutrinos, we cannot re-
ally prepare the neutrino states, but the particles that produce the neutrino at the source and those that
interact with the neutrino in the detector. The neutrino is just a virtual particle being exchanged be-
tween the source and detector, see Fig. 17, and in this perspective the interaction region is as large as
the baseline and therefore macroscopic, in particular much larger than the Compton wavelength of the
asymptotic states involved. It is mandatory therefore to consider the in-states as wave packets to ensure
the localization of the source and detector.

Consider for example a neutrino beam produced from pions at rest and a detector some distance
apart, where neutrinos interact with nucleons that are also at rest, via a quasi-elastic event:

⇡n ! pµl� . (6.19)

The in-states therefore will be the two wave packets representing a static pion that decays and is localized
at time and position (0,0) within the uncertainty better defined than the decay tunnel, and a nucleon that
is static and localized within the detector, at time and position (T,L), when the interaction takes place.
The out-states are the muon produced in pion decay and the lepton and hadron produced in the quasi-
elastic event. The probability amplitude for the whole process includes the pion decay amplitude, the
neutrino propagation and the scattering amplitude at the detector. Therefore in order to extract from the
full amplitude an oscillation probability, it must be the case that there is factorization of the whole prob-
ability into three factors that can be identified with the flux of neutrino from pion decay, an oscillation
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probability and a neutrino cross section.

By explicit calculation [22], it is possible to show that such factorization does indeed take place
as long as kinematical effects of neutrino masses can be neglected. The oscillation probability defined
as the ratio of the probability for the whole process and the product of the neutrino flux from pion decay
and the neutrino scattering cross-section is properly normalized.

6.4 Neutrino oscillations in vacuum

Let us analyse more closely the master formula Eq. (6.2). The probability is a superposition of oscillatory
functions of the baseline with wavelengths that depend on the neutrino mass differences �m2

ij
= m2

j
�

m2

i
, and amplitudes that depend on different combinations of the mixing matrix elements. Defining

W ij

↵�
⌘ [U↵iU⇤

�i
U⇤

↵j
U�j ] and using the unitarity of the mixing matrix, we can rewrite the probability in

the more familiar form:

P (⌫↵ ! ⌫�) = �↵� � 4

X

j>i

Re[W
ij

↵�
] sin

2

 
�m

2

ij
L

4E⌫

!

⌥ 2

X

j>i

Im[W
ij

↵�
] sin

 
�m

2

ij
L

2E⌫

!
, (6.20)

where the ⌥ refers to neutrinos/antineutrinos and |p| ' E⌫ .

We refer to an appearance or disappearance oscillation probability when the initial and final
flavours are different (↵ 6= �) or the same (↵ = �), respectively. Note that oscillation probabilities
show the expected GIM suppression of any flavour changing process: they vanish if the neutrinos are
degenerate.

In the simplest case of two-family mixing, the mixing matrix depends on just one mixing angle:

UPMNS =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
, (6.21)

and there is only one mass square difference �m2. The oscillation probability of Eq. (6.20) simplifies to
the well-known expression where we have introduced convenient physical units:

P (⌫↵ ! ⌫�) = sin
2
2✓ sin

2

✓
1.27

�m2
(eV2

) L(km)

E⌫(GeV)

◆
, ↵ 6= � .

P (⌫↵ ! ⌫↵) = 1 � P (⌫↵ ! ⌫�). (6.22)

The probability is the same for neutrinos and antineutrinos, because there cannot be CP violation when
there are only two families. Indeed CPT implies that the disappearance probabilities are the same for
neutrinos and antineutrinos, and therefore according to Eq. (6.22) the same must hold for the appearance
probability. The latter is a sinusoidal function of the distance between source and detector, with a period
determined by the oscillation length:

Losc (km) = ⇡
E⌫(GeV)

1.27�m2(eV2
)

, (6.23)
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Fig. 18: Left: two-family appearance oscillation probability as a function of the baseline of L at fixed
neutrino energy. Right: same probability shown as a function of the neutrino energy for fixed baseline.

which is proportional to the neutrino energy and inversely proportional to the neutrino mass square differ-
ence. The amplitude of the oscillation is determined by the mixing angle. It is maximal for sin

2
2✓ = 1

or ✓ = ⇡/4. The oscillation probability as a function of the baseline is shown on the left plot of Fig. 18.

In many neutrino oscillation experiments the baseline is not varied but the oscillation probability
can be measured as a function of the neutrino energy. This is shown on the right plot of Fig. 18. In this
case, the position of the first maximum contains information on the mass splitting:

Emax(GeV) = 1.27
�m2

(eV2
)L(km)

⇡/2
. (6.24)

An optimal neutrino oscillation experiment in vacuum is such that the ratio of the neutrino
energy and baseline are tuned to be of the same order as the mass splitting, E/L ⇠ �m2. If
E/L � �m2, the oscillation phase is small and the oscillation probability is approximately P (⌫↵ !
⌫�) / sin

2
2✓(�m2

)
2, so the mixing angle and mass splitting cannot be disentangled. The opposite limit

E/L ⌧ �m2 is the fast oscillation regime, where one can only measure an energy or baseline-smeared
oscillation probability

hP (⌫↵ ! ⌫�)i ' 1

2
sin

2
2✓, (6.25)

sensitivity to the mass splitting is lost in this limit. It is interesting, and reassuring, to note that this
averaged oscillation regime gives the same result as the flavour transition probability in the case of
incoherent propagation (L � Lcoh):

P (⌫↵ ! ⌫�) =

X

i

|U↵iU�i|2 = 2 cos
2 ✓ sin

2 ✓ =
1

2
sin

2
2✓. (6.26)

Flavour transitions via incoherent propagation are sensitive to mixing but not to the neutrino mass split-
ting. The smoking gun for neutrino oscillations is not the flavour transition, which can occur in the
presence of neutrino mixing without oscillations, but the peculiar L/E⌫ dependence. An optimal exper-
iment that intends to measure both the mixing and the mass splitting requires running E/L ⇠ �m2.
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6.5 Neutrino propagation in matter

When neutrinos propagate in matter (earth, sun, etc.), their propagation is modified owing to coherent
forward scattering on electrons and nucleons [23]:
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Figure 1: 2� decay: normal (left) and neutrinoless (right)
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The effective Hamiltonian density resulting from the charged current interaction is

HCC = 2

p
2GF [ē�µPL⌫e][⌫̄e�

µPLe] = 2

p
2GF [ē�µPLe][⌫̄e�

µPL⌫e]. (6.27)

Since the medium is not polarized, the expectation value of the electron current is simply the number
density of electrons:

hē�µPLeiunpol.medium = �µ0

Ne

2
. (6.28)

Including also the neutral current interactions in the same way, the effective Hamiltonian for neutrinos
in the presence of matter is

hHCC + HNCimedium = ⌫̄Vm�
0
(1 � �5)⌫ (6.29)

Vm =

0

BB@

GFp
2

�
Ne � Nn

2

�
0 0

0
GFp

2

�
�Nn

2

�
0

0 0
GFp

2

�
�Nn

2

�

1

CCA , (6.30)

where Nn is the number density of neutrons. Due to the neutrality of matter, the proton and electron
contributions to the neutral current potential cancel.

The plane wave solutions to the modified Dirac equation satisfy a different dispersion relation

E2
= |p|2 + M2

⌫ ± 4EVm, (6.31)

where ± is for neutrinos/antineutrinos. The phases of neutrino oscillation phenomena change.

The effect of matter can be simply accommodated in an effective mass matrix:

M̃2

⌫ = M2

⌫ ± 4EVm. (6.32)
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The effective mixing matrix ṼMNS is the one that takes us from the original flavour basis to that which
diagonalizes this effective mass matrix:

0

B@
m̃2

1
0 0

0 m̃2

2
0

0 0 m̃2

3

1

CA = Ṽ †

MNS

0

B@M2

⌫ ± 4E

0

B@
Ve 0 0

0 Vµ 0

0 0 V⌧

1

CA

1

CA ṼMNS. (6.33)

The effective mixing angles and masses depend on the energy.

The matter potential in the center of the sun is Vm ⇠ 10
�12 eV and in the earth Vm ⇠ 10

�13 eV.
In spite of these tiny values, these effects are non-negligible in neutrino oscillations.

6.6 Neutrino oscillations in constant matter

In the case of two flavours, the effective mass and mixing angle have relatively simple expressions:

�m̃2
=

r⇣
�m2 cos 2✓ ⌥ 2

p
2E GF Ne

⌘
2

+ (�m2 sin 2✓)2, (6.34)

sin
2
2✓̃ =

�
�m2

sin 2✓
�
2

(�m̃2)2
, (6.35)

where the sign ⌥ corresponds to neutrinos/antineutrinos. The corresponding oscillation amplitude has a
resonance [24], when the neutrino energy satisfies

p
2 GF Ne ⌥ �m2

2E
cos 2✓ = 0 ) sin

2
2✓̃ = 1, �m̃2

= �m2
sin 2✓. (6.36)

The oscillation amplitude is therefore maximal, independently of the value of the vacuum mixing angle.

We also note that

– oscillations vanish at ✓ = 0, because the oscillation length becomes infinite for ✓ = 0;

– the resonance is only there for ⌫ or ⌫̄ but not both;

– the resonance condition depends on the sign(�m2
cos 2✓):

resonance observed in ⌫ ! sign(�m2
cos 2✓) > 0,

resonance observed in ⌫̄ ! sign(�m2
cos 2✓) < 0.

The origin of this resonance is a would-be level crossing in the case of vanishing mixing. In the
case of two families, for ✓ = 0, the mass eigenstates as a function of the electron number density, at
fixed neutrino energy, are depicted in Fig. 19 for �m2 > 0. As soon as the mixing is lifted from zero, no
matter how small, the crossing cannot take place. The resonance condition corresponds to the minimum
level-splitting point.

6.7 Neutrino oscillations in variable matter

In the sun the density of electrons is not constant. However, if the variation is sufficiently slow, the
eigenstates will change slowly with the density, and we can assume that the neutrino produced in an
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Fig. 19: Mass eigenstates as a function of the electron number density at fixed neutrino energy for ✓ = 0

(left) and ✓ 6= 0 (right).

eigenstate in the center of the sun, remains in the same eigenstate along the trajectory. This is the so-
called adiabatic approximation.

We consider here two-family mixing for simplicity. At any point in the trajectory, it is possible to
diagonalize the Hamiltonian fixing the matter density to that at the given point. The resulting eigenstates
can be written as

|⌫̃1i = |⌫ei cos ✓̃ � |⌫µi sin ✓̃, (6.37)

|⌫̃2i = |⌫ei sin ✓̃ + |⌫µi cos ✓̃. (6.38)

Neutrinos are produced close to the centre x = 0 where the electron density is Ne(0). Let us suppose
that it satisfies

2

p
2GF Ne(0) � �m2

cos 2✓. (6.39)

Then the diagonalization of the mass matrix at this point gives

✓̃ ' ⇡

2
) |⌫ei ' |⌫̃2i, (6.40)

in such a way that an electron neutrino is mostly the second mass eigenstate. When neutrinos exit the
sun, at x = R�, the matter density falls to zero, Ne(R�) = 0, and the local effective mixing angle is the
one in vacuum, ✓̃ = ✓. If ✓ is small, the eigenstate ⌫̃2 is mostly ⌫µ according to Eq. (6.38).

Therefore an electron neutrino produced at x = 0 is mostly the eigenstate ⌫̃2, but this eigenstate
outside the sun is mostly ⌫µ. There is maximal ⌫e ! ⌫µ conversion if the adiabatic approximation is a
good one. This is the famous MSW effect [23, 24]. The conditions for this to happen are:

– Resonant condition: the density at the production is above the critical one

Ne(0) >
�m2

cos 2✓

2
p

2EGF

. (6.41)

– Adiabaticity: the splitting of the levels is large compared to energy injected in the system by the
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Fig. 20: MSW triangle: in the region between the two lines the resonance and adiabaticity conditions
are both satisfied for neutrinos of energy 1 MeV.

variation of Ne(r). A measurement of this is given by � which should be much larger than one:

� =
sin

2
2✓

cos 2✓

�m2

2E

1

|r log Ne(r)|
> �min > 1, (6.42)

where r = @/@r.

At fixed energy both conditions give the famous MSW triangles, if plotted on the plane
(log(sin

2
2✓), log(�m2

)):

log
�
�m2

�
< log

 
2
p

2GF Ne(0)E

cos 2✓

!
(6.43)

log
�
�m2

�
> log

✓
�min2Er log Ne

cos 2✓

sin
2
2✓

◆
. (6.44)

For example, taking Ne(r) = Nc exp(�r/R0), R0 = R�/10.54, Nc = 1.6 ⇥ 10
26 cm�3, E = 1 MeV,

these curves are shown in Fig. 20.

It should be stressed that neutrino oscillations are not responsible for the flavour transition of solar
neutrinos. The survival probability of the solar ⌫e in the adiabatic approximation is the incoherent sum
of the contribution of each of the mass eigenstates:

P (⌫e ! ⌫e) =

X

i

|h⌫e|⌫̃i(R�)i|2|h⌫̃i(0)|⌫ei|2, (6.45)

where ⌫̃i(r) is the i-th mass eigenstate for the electron number density, Ne(r), at a distance r from the
center of the sun. If the mass eigenstates contribute incoherently, how can we measure the neutrino mass
splitting? The answer is that the resonance condition of Eq. (6.41) depends on the neutrino energy. If we
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Fig. 21: Schematic survival probability of solar neutrinos as a function of the energy.

define

Eres ⌘ �m2
cos 2✓

2
p

2GF Ne(0)
, (6.46)

the MSW effect will affect neutrinos with E > Eres, while for E < Eres, the oscillation probability
is close to that in vacuum for averaged oscillations. The spectrum of the solar neutrino flux includes
energies both above and below Eres:

P (⌫e ! ⌫e) ' 1 � 1

2
sin

2
2✓, E ⌧ Eres

P (⌫e ! ⌫e) ' sin
2 ✓, E � Eres (6.47)

The sensitivity to �m2 relies on the ability to locate the resonant energy. This behaviour is schematically
depicted in Fig. 21.

7 Evidence for neutrino oscillations

Nature has been kind enough to provide us with two natural sources of neutrinos (the sun and the atmo-
sphere) where neutrino flavour transitions have been observed in a series of ingenious experiments, that
started back in the 1960s with the pioneering experiment of R. Davies. This effort was rewarded with
the Nobel prize of 2002 to R. Davies and M. Koshiba for the detection of cosmic neutrinos.

7.1 Solar neutrinos

The sun, like all stars, is an intense source of neutrinos produced in the chain of nuclear reactions that
burn hydrogen into helium:

4p �! 4
He + 2e+

+ 2⌫e. (7.1)
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¿How many neutrinos from the Sun ? 

Bahcall (died 2005)�

Fig. 22: Spectrum of solar neutrinos [26]. The arrows indicate the threshold of the different detection
techniques.

The theory of stellar nucleosynthesis was established at the end of the 30’s by H. Bethe [25]. The
spectrum of the solar ⌫e, for massless neutrinos, is shown in Fig. 22. The prediction of this flux, obtained
by J. Bahcall and collaborators [26], is the result of a detailed simulation of the solar interior and has
been improved over many years. It is the so-called standard solar model (SSM).

Neutrinos coming from the sun have been detected with several experimental techniques that have
a different neutrino energy threshold as indicated in Fig. 22. On the one hand, the radiochemical tech-
niques, used in the experiments Homestake (chlorine, 37Cl) [27], Gallex/GNO [28] and Sage [29] (using
gallium, 71Ga, and germanium, 71Ge, respectively), can count the total number of neutrinos with a rather
low threshold (E⌫ > 0.81 MeV in Homestake and E⌫ > 0.23 MeV in Gallex and Sage), but they cannot
get any information on the directionality, the energy of the neutrinos, nor the time of the event.

On the other hand, Kamiokande [30] pioneered a new technique to observe solar neutrinos using
water Cherenkov detectors that can measure the recoil electron in elastic neutrino scattering on electrons:
⌫e + e� ! ⌫e + e�. This is a real-time experiment that provides information on the directionality
and the energy of the neutrinos. The threshold on the other hand is much higher, ⇠ 5 MeV. All these
experiments have consistently observed a number of solar neutrinos between 1/3 and 1/2 of the number
expected in the SSM and for a long time this was referred to as the solar neutrino problem or deficit.

The progress in this field over the last two decades has been enormous culminating in a solution
to this puzzle that no longer relies on the predictions of the SSM. There have been three milestones.

1998: The experiment Super-Kamiokande [31] measured the solar neutrino deficit with unprece-
dented precision, using the elastic reaction (ES):

(ES) ⌫e + e� ! ⌫e + e� Ethres > 5 MeV. (7.2)

The measurement of the direction of the events demonstrated that the neutrinos measured definitely come
from the sun: the left plot of Fig. 23 shows the distribution of the events as a function of the zenith angle
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Total 3.43 ⇥ 107

A. Noise reduction
(a) 2.66 ⇥ 107

(b) 2.51 ⇥ 107

(c) 2.50 ⇥ 107

(d) 2.50 ⇥ 107

(e) 2.48 ⇥ 107

(f) 1.81 ⇥ 107

B. Spallation cut
1.29 ⇥ 107

C. Ambient B.G. cut
(a) 3.61 ⇥ 106

(b) 2.72 ⇥ 106

(c) 1.86 ⇥ 106

D. Gamma cut
2.96 ⇥ 105

E. 16N cut
2.87 ⇥ 105

TABLE VII: The summary of number of events remaining
after each reduction step

E (signal events) and ui(cos ✓sun) is the background shape

in energy bin i. Each of the ni events in energy bin i is

assigned the background factor bij = ui(cos ✓ij) and the

signal factor sij = p(cos ✓ij , Ej).

The signal shape p(cos ✓sun, E) is obtained from the

known, strongly forward-peaked angular distribution of

neutrino-electron elastic scattering with smearing due to

multiple scattering and the detector’s angular resolution.

The background shape ui(cos ✓sun) has no directional cor-

relation with the neutrino direction, but deviates from a

flat shape due to the cylindrical shape of the SK de-

tector: the number of PMT’s per solid angle depends

on the SK zenith angle. In order to calculate the ex-

pected background shape, we use the angular distribu-

tion of data itself. The presence of solar neutrinos in the

sample biases mostly the azimuthal distribution, so at

first we fit only the zenith angle distribution and assume

the azimuthal distribution to be flat. We generate toy

Monte Carlo directions according to this fit and calcu-

late cos ✓sun. We also fit both zenith and azimuthal dis-

tributions, approximately subtracting the solar neutrino

events from the sample and repeat the toy Monte Carlo

calculation. We compare the obtained number of solar

neutrino events from both background shapes and as-

sign the di�erence as a systematic uncertainty. Since the

azimuthal distributions don’t deviate very significantly

from flat distributions, we quote the solar neutrino events

obtained from the first shape (assuming a flat azimuthal

distribution). The dotted area in Figure 40 shows this

background shape. The systematic uncertainty due to

the background shape is 0.1% for the entire data sample

(5.0-20.0 MeV). If the data sample is divided into a day

and a night sample, the systematic uncertainty is 0.4%.

The amount of background contamination is much less

above 10 MeV than it is near the SK–I energy thresh-

old (5.0 MeV), so small di�erences in background shape

between the two methods become important only in the

lowest energy bins: between 5.0 and 5.5 MeV, the sys-

tematic uncertainty is estimated to be 1.2%, between 5.5

and 6.0 MeV 0.4%, and above 6.0 MeV 0.15%.
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FIG. 40: Angular distribution of solar neutrino event candi-
dates. The shaded area indicates the elastic scattering peak.
The dotted area is the contribution from background events.

B. Observed solar neutrino flux

Figure 40 shows the cos ✓sun distribution for 1496 days

of SK–I data. The best fit value for the number of

signal events due to solar neutrinos between 5.0 MeV

and 20.0 MeV is calculated by the maximum likeli-

hood method in Eq. (8.1), and the result for SK–I is

22, 404 ± 226 (stat.)+784
�717 (sys.). The corresponding

8B
flux is:

2.35 ± 0.02 (stat.) ± 0.08 (sys.) ⇥ 10
6

cm
�2

s
�1.

The systematic errors for the solar neutrino flux, sea-

sonal variation and day-night di�erences for the energy

range 5.0 MeV to 20.0 MeV are shown in Table VIII. The

detailed explanations are written in each topic’s section,

but the total systematic error for the solar neutrino flux

measurement is estimated to be
+3.5%
�3.2%.

C. Time variations of solar neutrino flux

1. Day-Night di�erence

The day time flux and night time flux of solar neutrinos

in SK–I are calculated using events which occurred when

the solar zenith angle cosine was less than and greater

than zero, respectively. The observed flux are:

�day = 2.32 ± 0.03 (stat.)+0.08
�0.07 (sys.) ⇥ 10

6
cm

�2
s
�1

�night = 2.37 ± 0.03 (stat.)+0.08
�0.08 (sys.) ⇥ 10

6
cm

�2
s
�1

22

Flux Seasonal day-night
Energy scale, resolution ±1.6 +1.2

�1.1
+1.2
�1.1

Theoretical uncertainty +1.1
�1.0

for 8B spectrum
Trigger e�ciency +0.4

�0.3 ±0.1
Reduction +2.1

�1.6 ±0.5
Spallation dead time ±0.2 ±0.1 ±0.1
Gamma ray cut ±0.5 ±0.25
Vertex shift ±1.3
Background shape ±0.1 ±0.4

for signal extraction
Angular resolution ±1.2
Cross section of �-e scattering ±0.5
Livetime calculation ±0.1 ±0.1 ±0.1
Total +3.5

�3.2 ±0.3 +1.3
�1.2

TABLE VIII: Systematic error of each item (in %).

Their di�erence leads to a day-night asymmetry, defined

as A = (�day � �night)/(
1
2 (�day + �night)). We find:

A = �0.021 ± 0.020 (stat.)+0.013
�0.012 (sys.)

Including systematic errors, this is less than 1 � � from

zero asymmetry. The largest sources of systematic error

in the asymmetry are energy scale and resolution (
+0.012
�0.011)

and the non-flat background shape of the cos ✓sun distri-

bution (±0.004). As described in the neutrino oscillation

analysis section, we can reduce the statistical uncertainty

if we assume two-neutrino oscillations within the Large

Mixing Angle region. The day-night asymmetry in that

case is

A = �0.017 ± 0.016 (stat.)+0.013
�0.012 (sys.) ± 0.0004 (osc.)

with the final, tiny additional uncertainty due to the un-

certainty of the oscillation parameters themselves. Fig-

ure 41 shows the solar neutrino flux as a function of the

solar zenith angle cosine.

2. Seasonal variation

Figure 42 shows the monthly variation of the flux,

which each horizontal bin covers 1.5 months. The fig-

ure shows that the experimental operation is very stable.

Figure 43 shows the seasonal variation of solar neu-

trino flux. As in Figure 42, each horizontal time bin is

1.5 months wide, but in this figure data taken at simi-

lar times during the year over the entire course of SK–I’s

data taking has been combined into single bins. The 1.7%

orbital eccentricity of the Earth, which causes about a

7% flux variation simply due to the inverse square law,

is included in the flux prediction (solid line). The ob-

served flux variation is consistent with the predicted an-

nual modulation. Its �2
/d.o.f. is 4.7/7, which is equiva-

lent to 69% C.L.. If we fit the eccentricity to the Earth’s

orbit to the observed SK rate variation, the perihelion
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FIG. 41: The solar zenith angle dependence of the solar neu-
trino flux (error bars show statistical error). The width of
the night-time bins was chosen to separate solar neutrinos
that pass through the Earth’s dense core (the rightmost Night
bin) from those that pass through the mantle. The horizontal
line shows the flux for all data.
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FIG. 42: Solar neutrino flux as a function of time. The bin-
ning of the horizontal axis is 1.5 months.

shift is 13± 18 days (with respect to the true perihelion)

and the eccentricity is 2.1±0.3% [14]. This is the world’s

first observation of the eccentricity of the Earth’s orbit

made with neutrinos. The total systematic error on the

relative flux values in each seasonal bin is estimated to

±1.3%. The largest sources come from energy scale and

resolution (
+1.2%
�1.1%) and reduction cut e�ciency (±0.5%),

as shown in Table VIII.

D. Energy spectrum

Figure 44 shows the expected and measured recoil elec-

tron energy spectrum. The expected spectrum is calcu-

Fig. 23: Left: distribution of solar neutrino events as a function of the zenith angle of the sun. Right:
seasonal variation of the solar neutrino flux in Super-Kamiokande (from Ref. ( [32])).

of the sun. A seasonal variation of the flux is expected since the distance between the earth and the sun
varies seasonally. The right plot of Fig. 23 shows that the measured variation is in perfect agreement
with that expectation.

2001: The SNO experiment [33, 34] measured the flux of solar neutrinos using also the two reac-
tions:

(CC) ⌫e + d ! p + p + e� Ethres > 5 MeV (7.3)

(NC) ⌫x + d ! p + n + ⌫x x = e, µ, ⌧ Ethres > 2.2 MeV (7.4)

Since the CC reaction is only sensitive to electron neutrinos, while the NC one is sensitive to all the types
that couple to the Z0 boson, the comparison of the fluxes measured with both reactions can establish if
there are ⌫µ and ⌫⌧ in the solar flux independently of the normalization given by the SSM. The result
is shown on the Nobel-prize-winning plot Fig. 24. These measurements demonstrate that the sun shines
(⌫µ, ⌫⌧ ) about twice more than it shines ⌫e, which constitutes the first direct demonstration of flavour
transitions in the solar flux! Furthermore the NC flux that measures all active species in the solar flux, is
compatible with the total ⌫e flux expected according to the SSM.

All solar neutrino data can be interpreted in terms of neutrino masses and mixings. The solar ⌫e

deficit can be explained for a �m2

solar
' 7–8⇥10

�5eV and a relatively large mixing angle. The fortunate
circumstance that

�m2

solar
⇠ hE⌫(1 MeV)i/L(100 km) (7.5)

implies that one could look for this oscillation measuring reactor neutrinos at baselines of ⇠ 100 km.
This was the third milestone.

2002: The solar oscillation is confirmed with reactor neutrinos in the KamLAND experiment [35].
This has 1 kilo ton of liquid scintillator which measures the flux of reactor neutrinos produced in a cluster
of nuclear plants around the Kamioka mine in Japan. The average distance is hLi = 175 km. Neutrinos
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Fig. 24: Flux of ⌫µ and ⌫⌧ versus the flux of ⌫e in the solar neutrino flux as measured from the three
reactions observable in the SNO experiment. The dashed band shows the prediction of the SSM, which
agrees perfectly with the flux measured with the NC reaction (from Ref. [34]).
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(from Ref. [36]).

are detected via inverse �-decay which has a threshold energy of about 2.6 MeV:

⌫̄e + p ! e+
+ n Eth > 2.6 MeV . (7.6)

Figure 25 shows the KamLAND results [36] on the antineutrino spectrum, as well as the survival
probability as a function of the ratio E⌫/L.

The low-energy contribution of geo-neutrinos is clearly visible. This measurement could have
important implications in geophysics.

Concerning the sensitivity to the oscillation parameters, Fig. 26 shows the present determination
of the solar oscillation parameters from KamLAND and other solar experiments. The precision in the
determination of �m2

solar is spectacular and shows that solar neutrino experiments are entering the era of
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Fig. 26: Analysis of all solar and KamLAND data in terms of oscillations (from Ref. [36]).
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FIG. 84. Electron neutrino survival probability as a function
of neutrino energy according to MSW–LMA model. The band
is the same as in Fig. 83, calculated for the production region
of 8B solar neutrinos which represents well also other species
of solar neutrinos. The points represent the solar neutrino
experimental data for 7Be and pep mono–energetic neutrinos
(Borexino data), for 8B neutrinos detected above 5000 keV
of scattered-electron energy T (SNO and Super-Kamiokande
data) and for T > 3000 keV (SNO LETA + Borexino data),
and for pp neutrinos considering all solar neutrino data, in-
cluding radiochemical experiments.

including both the experimental and theoretical (solar

model) uncertainties and P 3�
ee (E� = 1440 keV) = 0.62 ±

0.17. A combined analysis of the Borexino data together

with those of other solar experiments allows to obtain

also the values of survival probability for the pp and
8
B

neutrinos. Figure 84 reports the results.

XXVIII. CONCLUSIONS AND PERSPECTIVES

The rich scientific harvest of the Borexino Phase-I was

made possible by the extreme radio–purity of the detec-

tor and of its liquid scintillator core in particular. Chal-

lenging design purity levels have been mostly met, and,

in some cases, surpassed by a few orders of magnitude.

The central physics goal was achieved with the 5%

measurement of the
7
Be solar neutrino rate. Three more

measurements beyond the scope of the original proposal

were made as well: the first observation of the solar pep
neutrinos, the most stringent experimental constraint on

the flux of CNO neutrinos, and the low-threshold mea-

surement of the
8
B solar neutrino interaction rate. The

latter measurement was possible thanks to the extremely

low background rate above natural radioactivity, while

the first two exploited the superior particle identifica-

tion capability of the scintillator and an e�cient cosmo-

genic background subtraction. All measurements benefit

from an extensive calibration campaign with radioactive

sources that preserved scintillator radio–purity.

In this paper we have described the sources of back-

ground and the data analysis methods that led to the

published solar neutrinos results. We also reported, for

the first time, the detection of the annual modulation of

the
7
Be solar neutrino rate, consistent with their solar

origin. The implications of Borexino solar neutrino re-

sults for neutrino and solar physics were also discussed,

both stand–alone and in combination with other solar

neutrino data.

Additional important scientific results (not discussed

in this paper) were the detection of geo–neutrinos [56]

and state-of-the art upper limits on many rare and exotic

processes [99].

Borexino has performed several purification cycles in

2010 and 2011 by means of water extraction [26] in batch

mode, reducing even further several background com-

ponents, among which
85

Kr,
210

Bi, and the
238

U and
232

Th chains. After these purification cycles, the Borex-

ino Phase-II has started at the beginning of 2012, with

the goal of improving all solar neutrino measurements.

Borexino is also an ideal apparatus to look for short base-

line neutrino oscillations into sterile species using strong

artificial neutrino and anti–neutrino sources [100]. An

experimental program, called SOX (Source Oscillation

eXperiment), was approved and it is now in progress.
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Fig. 27: Comparison of solar neutrino fluxes measured by the different solar neutrino experiments (from
Ref. [37]).

precision physics.

The last addition to this success story is the Borexino experiment [37]. This is the lowest-threshold
real-time solar neutrino experiment and the only one capable of measuring the flux of the monochromatic
7Be neutrinos and pep neutrinos. Their recent results are shown in Fig. 27. The result is in agreement
with the oscillation interpretation of other solar and reactor experiments and it adds further information
to disfavour alternative exotic interpretations of the data.

In summary, solar neutrinos experiments have made fundamental discoveries in particle physics
and are now becoming useful for other applications, such as a precise understanding of the sun and the
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E1!10 GeV and E2!1000 GeV for this work, HKKM95,
BARTOL, and FLUKA for !" and ! " fluxes. The median
energy is #100 GeV. We find a large difference in absolute
values as is expected from the left panel of Fig. 15. However,

the differences are small when they are normalized. The ratio
of the normalized weighted integral I2 is shown as a function
of zenith angle in the right panel of Fig. 15. The differences
in normalized fluxes are "3 %.

FIG. 15. $Color online% $a% Atmospheric neutrino fluxes averaged over all directions. $b% Flux ratios (!"#! ")/(!e#! e), !" /! " , and
!e /! e . Solid lines are for this work, dotted lines for HKKM95, dashed lines for FLUKA, and long dashed lines for BARTOL.

FIG. 16. $Color online% $a% Zenith angle variation of I1 defined by Eq. $2%. $b% The normalized ratio of I1 of each flux to this work as a
function of zenith angle. The solid lines are for this work, dotted lines for HKKM95, dashed lines for FLUKA, and long dashed lines for
BARTOL in both panels.

HONDA et al. PHYSICAL REVIEW D 70, 043008 $2004%

043008-12

Fig. 28: Comparison of the predictions of different Monte Carlo simulations of the atmospheric neutrino
fluxes averaged over all directions (left) and of the flux ratios (⌫µ + ⌫̄µ)/(⌫e + ⌫̄e), ⌫µ/⌫̄µ, and ⌫e/⌫̄e

(right). The solid line corresponds to a recent full 3D simulation. Taken from the last reference in
Ref. [38].

earth.

7.2 Atmospheric neutrinos

Neutrinos are also produced in the atmosphere when primary cosmic rays impinge on it producing K,⇡

that subsequently decay. The fluxes of such neutrinos can be predicted within a 10–20% accuracy to be
those in the left plot of Fig. 28.

Clearly, atmospheric neutrinos are an ideal place to look for neutrino oscillation since the E⌫/L

span several orders of magnitude, with neutrino energies ranging from a few hundred MeV to 10
3 GeV

and distances between production and detection varying from 10–10
4 km, as shown in Fig. 29 (right).

Many of the uncertainties in the predicted fluxes cancel when the ratio of muon to electron events
is considered. The first indication of a problem was found when a deficit was observed precisely in this
ratio by several experiments: Kamiokande, IMB, Soudan2 and Macro.

In 1998, Super-Kamiokande clarified the origin of this anomaly [39]. This experiment can dis-
tinguish muon and electron events, measure the direction of the outgoing lepton (the zenith angle with
respect to the earth’s axis) which is correlated to that of the neutrino (the higher the energy the higher
the correlation), in such a way that they could measure the variation of the flux as a function of the
distance travelled by the neutrinos. Furthermore, they considered different samples of events: sub-GeV
(lepton with energy below 1 GeV), multi-GeV (lepton with energy above 1 GeV), together with stopping
and through-going muons that are produced on the rock surrounding Super-Kamiokande. The different
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Fig. 29: Left: Parent neutrino energies of the different samples considered in Super-Kamiokande: sub-
GeV, multi-GeV, stopping and through-going muons. Right: Distances travelled by atmospheric neutri-
nos as a function of the zenith angle.

samples correspond to different parent neutrino energies as can be seen in Fig. 29 (left).

The number of events for the different samples as a function of the zenith angle of the lepton are
shown in the Nobel-prize-winning plot Fig. 30.

While the electron events observed are in rough agreement with predictions, a large deficit of muon
events was found with a strong dependence on the zenith angle: the deficit was almost 50% for those
events corresponding to neutrinos coming from below cos ✓ = �1, while there is no deficit for those
coming from above. The perfect fit to the oscillation hypothesis is rather non-trivial given the sensitivity
of this measurement to the E⌫ (different samples) and L (zenith angle) dependence. The significance of
the E⌫/L dependence has also been measured by the Super-Kamiokande Collaboration [41], as shown
in Fig. 31. The best fit value of the oscillation parameters indicate �m2 ' 3 ⇥ 10

�3 eV2 and maximal
mixing.

Appropriate neutrino beams to search for the atmospheric oscillation can easily be produced at
accelerators if the detector is located at a long baseline of a few hundred kilometres, and also with
reactor neutrinos in a baseline of O(1km), since

|�m2

atmos| ⇠ E⌫(1 � 10 GeV)

L(102 � 103 km)
⇠ E⌫(1 � 10 MeV)

L(0.1 � 1 km)
. (7.7)

A conventional accelerator neutrino beam, as the one used in the LSS experiment, is produced from
protons hitting a target and producing ⇡ and K:

p ! Target ! ⇡+, K+ ! ⌫µ(%⌫e, ⌫̄µ, ⌫̄e) (7.8)

⌫µ ! ⌫x. (7.9)

Those of a selected charge are focused and are left to decay in a long decay tunnel producing a neutrino
beam of mostly muon neutrinos (or antineutrinos) with a contamination of electron neutrinos of a few
per cent. The atmospheric oscillation can be established by studying, as a function of the energy, either
the disappearance of muon neutrinos, the appearance of electron neutrinos or, if the energy of the beam
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FIG. 31: The zenith angle distribution for fully-contained 1-ring events, multi-ring events, partially-contained events and upward muons. The
points show the data, box histograms show the non-oscillated Monte Carlo events and the lines show the best-fit expectations for νµ $ ντ
oscillations with sin2 2θ = 1.00 and Δm2 = 2.1⇥10�3 eV2. The best-fit expectation is corrected by the 39 systematic error terms, while the
correction is not made for the non-oscillated Monte Carlo events. The height of the boxes shows the statistical error of the Monte Carlo.

ergy scale uncertainty leads to a +0.9
�1.1 % error in the stop-

ping muons due to the 1.6 GeV/c cut; the reduction effi-
ciency for stopping (through-going)muons has an uncertainty
of +0.34

�1.25 % (+0.32�0.54 %); and stopping/through-going separation
+0.29
�0.38 % (where “+” means through-going muons misidenti-
fied as stopping). As in the contained event analysis, com-
parison of data and expectations is done between observed
number of events and the live-time-scaled MC number of
events. However, to facilitate comparisons with other exper-

iments, these numbers are also presented in units of flux as
described in [3, 4]. The additional systematic uncertainty in
the observed through-going (stopping) flux comes from effec-
tive area of 0.3% and the live-time calculation (0.1%). The
absolute expected flux has theoretical uncertainties of at least
20% in the normalization for high energy (> 100 GeV) neu-
trinos and 5 to 10% from interaction model differences.

The zenith angle distributions of the upward through-going
and stopping muons are shown in Fig. 31. The shape of

Fig. 30: Zenith angle distribution for fully-contained single-ring e-like and µ-like events, multi-ring µ-
like events, partially contained events, and upward-going muons. The points show the data and the boxes
show the Monte Carlo events without neutrino oscillations. The solid lines show the best-fit expectations
for ⌫µ $ ⌫⌧ oscillations (from Ref. [40]).

is large enough, the appearance of ⌧ neutrinos.

Three conventional beams confirmed the atmospheric oscillation from the measurement of the dis-
appearance of ⌫µ neutrinos: K2K (L = 235 km) [42], MINOS (L = 730 km) [43] and from the appearance
of ⌫⌧ , OPERA (L = 730 km) [44]. Fig. 32 shows the measurement of the ⌫µ survival probability as a
function of the reconstructed neutrino energy in the MINOS experiment.

Three reactor neutrino experiments, Daya Bay [46], RENO [47] and Double Chooz [48], have
discovered that the electron neutrino flavour also oscillates with the atmospheric wavelength: electron
antineutrinos from reactors disappear at distances of O(1 km), but with a small amplitude. See Fig. 33.

Finally the T2K and NOVA experiments have measured the appearance of ⌫e and ⌫̄e in an accel-
erator ⌫µ/⌫̄µ beam [49, 50] in the atmospheric range. The agreement of all these measurements with the
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Fig. 31: Ratio of the data to the non-oscillated Monte Carlo events (points) with the best-fit expectation
for 2-flavour ⌫µ $ ⌫⌧ oscillations (solid line) as a function of E⌫/L (from Ref. [41]).

Fig. 32: Ratio of measured to expected (in absence of oscillations) neutrino events in MINOS as a
functions of neutrino energy compared to the best fit oscillation solution (from Ref. [45]).

original atmospheric oscillation signal is excellent.

8 The three-neutrino mixing scenario

As we have seen, the evidence summarized in the previous section points to two distinct neutrino mass
square differences related to the solar and atmospheric oscillation frequencies:

|�m2

solar|| {z }
⇠8·10�5 eV2

⌧ |�m2

atmos|| {z }
⇠2.5·10�3 eV2

(8.1)

The mixing of the three standard neutrinos ⌫e, ⌫µ, ⌫⌧ can accommodate both. The two independent
neutrino mass square differences are conventionally assigned to the solar and atmospheric ones in the
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Fig. 33: Ratio of measured to expected reactor neutrino events as function of the baseline in the Daya
Bay experiment (from Ref. [46]).

following way:

�m2

13 = m2

3 � m2

1 = �m2

atmos, �m2

12 = m2

2 � m2

1 = �m2

solar . (8.2)

The PMNS mixing matrix depends on three angles and one or more CP phases (see Eq. (4.7) for the stan-
dard parametrization). Only one CP phase, the so-called Dirac phase �, appears in neutrino oscillation
probabilities.

With this convention, the mixing angles ✓23 and ✓12 in the parametrization of Eq. (4.7) corre-
spond approximately to the ones measured in atmospheric and solar oscillations, respectively. This is
because solar and atmospheric anomalies approximately decouple as independent 2-by-2 mixing phe-
nomena thanks to the hierarchy between the two mass splittings, |�m2

atmos| � |�m2

solar| , on the one
hand, and the fact that the angle ✓13, which measures the electron component of the third mass eigenstate
element sin ✓13 = (UPMNS)e3

, is small.

To see this, let us first consider the situation in which E⌫/L ⇠ |�m2
atmos|. We can thus neglect

the solar mass square difference in front of the atmospheric one and E⌫/L. The oscillation probabilities
obtained in this limit are given by

P (⌫e ! ⌫µ) ' s2

23 sin
2
2✓13 sin

2

✓
�m2

13
L

4E⌫

◆
, (8.3)

P (⌫e ! ⌫⌧ ) ' c2

23 sin
2
2✓13 sin

2

✓
�m2

13
L

4E⌫

◆
, (8.4)

P (⌫µ ! ⌫⌧ ) ' c4

13 sin
2
2✓23 sin

2

✓
�m2

13
L

4E⌫

◆
. (8.5)

The results for antineutrinos are the same (there is no CP violation if one mass difference is neglected).
All flavours oscillate therefore with the atmospheric frequency, but only two angles enter these formulae:
✓23 and ✓13. The latter is the only one that enters the disappearance probability for ⌫e or ⌫̄e in this regime
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since

P (⌫e ! ⌫e) = P (⌫̄e ! ⌫̄e) = 1 � P (⌫e ! ⌫µ) � P (⌫e ! ⌫⌧ ) ' sin
2
2✓13 sin

2

✓
�m2

13
L

4E⌫

◆
. (8.6)

This is precisely the measurement of reactor neutrino experiments like Chooz, Daya Bay, RENO and
Double Chooz. Therefore the oscillation amplitude of these experiments is a direct measurement of the
angle ✓13, which has been measured to be small.

Note that in the limit ✓13 ! 0, the only probability that survives in Eq. (8.5) is the ⌫µ ! ⌫⌧ one,
which has the same form as a 2-family mixing formula Eq. (6.22) if we identify

(�m2

atmos, ✓atmos) ! (�m2

13, ✓23) . (8.7)

Therefore the close-to-maximal mixing angle observed in atmospheric neutrinos and the accelerator
neutrino experiments like MINOS is identified with ✓23.

Instead if we consider experiments in the solar range, E⌫/L ⇠ �m2

solar
, the atmospheric oscil-

lation its too rapid and gets averaged out. The survival probability for electrons in this limit is given
by:

P (⌫e ! ⌫e) = P (⌫̄e ! ⌫̄e) ' c4

13

✓
1 � sin

2
2✓12 sin

2

✓
�m2

12
L

4E⌫

◆◆
+ s4

13. (8.8)

Again it depends only on two angles, ✓12 and ✓13, and in the limit in which the latter is zero, the survival
probability measured in solar experiments has the form of two-family mixing if we identify

(�m2

solar, ✓solar) ! (�m2

12, ✓12) . (8.9)

The results that we have shown in the previous section of solar and atmospheric experiments have been
analysed in terms of 2-family mixing. The previous argument indicates that when fits are done in the
context of 3-family mixing nothing changes too much.

On the other hand, the fact that reactor experiments have already measured the disappearance of
reactor ⌫̄e in the atmospheric range implies that the effects of ✓13 ' 9

� are not negligible, and therefore
a proper analysis of all the oscillation data requires performing global fits in the 3-family scenario.
Figure 34 shows the ��2 as a function of each of the six parameters from one recent global analysis [51].
See also Refs. [52, 53].

There are two parameters in which we observe two distinct minima, these corresponds to degen-
eracies that cannot be resolved with present data. The first corresponds to the neutrino mass ordering or
hierarchy: present data cannot distinguish between the normal (NH or NO) and inverted ordering (IH or
IO) represented in Fig. 35.

Note that we denote by �m2

13
= �m2

atmos the atmospheric splitting for NO and �m2

23
=

��m2
atmos for IO. The second degeneracy corresponds to the octant choice of ✓23. Present data are

mostly sensitive to sin
2
2✓23. If this angle is not maximal, there are two possible choices that are roughly

equivalent ✓23 $ ⇡/4 � ✓23. Due to this degeneracy, the largest angle is also the one less accurate. The
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1� limits for NO are:

✓23/
�

= 49.2+1

�1.3
, ✓12/

�
= 33.4+0.77

�0.74
, ✓13/

�
= 8.57(13),

�m2

12 = 7.42(21) ⇥ 10
�5 eV2, �m2

13 = 2.515(28) ⇥ 10
�3 eV2. (8.10)

The CP phase � remains roughly unconstrained at 3�, while there is about half of the region excluded at
2�. As we will see, the dependence on the phase requires sensitivity to both frequencies simultaneously.

9 Prospects in determining unknown neutrino parameters

An ambitious experimental program is underway to pin down the remaining unknowns and reach a 1%

precision in the lepton flavour parameters. The neutrino ordering, the octant of ✓23 and the CP violat-
ing phase, �, can be searched for in neutrino oscillation experiments with improved capabilities. The
determination of the absolute neutrino mass scale relies on tritium beta decay experiments or cosmology.

9.1 Neutrino ordering

Concerning the neutrino ordering, the best hope to identify the spectrum exploits the MSW effect in
the propagation of GeV neutrinos through earth’s matter. In the case of three neutrinos propagating in
matter, the ⌫ mass eigenstates as a function of the electron density for vanishing ✓12, ✓13 are depicted
in Fig. 36 for NO and IO. For NO we see that there are two level crossings giving rise to two MSW
resonances. The first one is essentially the one relevant for solar neutrinos, as it affects the smallest mass
splitting, with the resonance condition:

E(1)

res =
�m2

12
cos 2✓12

2
p

2GF Ne

. (9.1)

The second one affects the largest mass splitting

E(2)

res =
�m2

13
cos 2✓13

2
p

2GF Ne

. (9.2)

For IO, only the first resonance appears in the ⌫ channel.

For ⌫̄ the dependence on Ne of the first eigenstate has a negative slope and therefore there is no
resonance for NO and only the atmospheric resonance appears for IO.

The existence of the atmospheric resonance implies a large enhancement of the oscillation prob-
ability P (⌫e $ ⌫µ) for NO for energies near the resonant energy and at sufficiently long baseline. For
IO the enhancement occurs in P (⌫̄e $ ⌫̄µ) instead. For the typical matter densities of the earth’s crust
and mantle and the value of the atmospheric mass splitting, the resonant energy for neutrinos travelling
through earth is ' 6 GeV, an energy that can be reached in accelerator neutrino beams. The measure-
ment of the neutrino ordering becomes almost a digital measurement sending a conventional ⌫ beam
sufficiently far as shown in Fig. 37, which shows the oscillation probability P (⌫µ ! ⌫e) as a function of
the neutrino energy at a distance corresponding to the baseline from CERN-Kamioka (8770 km).

The first experiment that will be sensitive to this effect is the NOvA experiment, optimized like
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2
2✓13 = 0.101 and

for all other oscillation parameters we assume the central values of Table I. In left panel, the band portrays

the e�ect of unknown �CP. In middle panel, the band shows the e�ect of ± 5% uncertainty in the PREM

profile on Pµe. The combined e�ect of unknown �CP and ± 5% uncertainty in the PREM profile is depicted

as a band in right panel.

priors on these parameters, with the corresponding 1 � errors as mentioned in the second

column of Table I which are taken from [5]. Note that, in our study, we have imposed a

prior on sin2 �13(true) with the 1 � error of 13% based on the information from [5], but its

impact is marginal. The external information on the Earth matter density (�) is assumed

to come from the study of the tomography of the Earth [29, 30]. In the fit, we allow for

a 5% uncertainty in the PREM profile and take it into account by inserting a prior and

marginalizing over the density normalization. The CP phase �CP is completely free in the

marginalization.

In Fig. 2, we show the full three-flavor oscillation probability �µ ! �e using the PREM [28]

density profile for the CERN-Kamioka baseline as a function of neutrino energy. We allow

�CP to vary in its entire range of 0 to 2� and the resultant probability is shown as a band

in left panel of Fig. 2, with the thickness of the band reflecting the e�ect of �CP on Pµe.

Since this baseline is close to the magic baseline, the e�ect of the CP phase is seen to be

almost negligible. This figure is drawn assuming the benchmark values of the oscillation

parameters given in Table I. We present the probability for both NH and IH. As expected

the probability for the NH is a bit lower than 1/2 but still close to this maximal value. The

7

Fig. 37: Resonant increase of the Pµe for NH as a function of neutrino energy for L corresponding to the
distance CERN-Kamioka for NH/IH. The bands corresponds to the uncertainty in � (from Ref. [54]).

T2K to see the ⌫e appearance signal, with a baseline of 810km, which is however a bit short to see a
large enhancement. Nevertheless if lucky NOvA could discriminate the ordering at 3�.

The atmospheric resonance must also affect atmospheric neutrinos at the appropriate energy and
baseline. Unfortunately the atmospheric flux contains both neutrinos and antineutrinos in similar num-
bers, and the corresponding events cannot be told apart, because present atmospheric neutrino detectors
cannot measure the lepton charge. If we superimpose the neutrino and antineutrino signals, both order-
ings will give rise to an enhancement in the resonance region, since either the neutrino or antineutrino
channel will have a resonance. Nevertheless with sufficient statistics, there is some discrimination power
and in fact the biggest neutrino telescopes, IceCube and KM3NeT have proposed to instrument more
finely some part of their detectors (PINGU and ORCA projects) to perform this measurement. Also
the next generation of atmospheric neutrino detectors, such as Hyper-Kamiokande, with a factor O(20)

more mass than the present Super-Kamiokande, or the INO detector that is designed to measure the muon
charge in atmospheric events, could discriminate between the two orderings.

A very different strategy has been proposed for reactor neutrino experiments (e.g. JUNO project).
The idea is to measure very precisely the reactor neutrinos at a baseline of roughly 50 km, where the
depletion of the flux due to the solar oscillation is maximal. At this optimal distance, one can get a superb
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Figure 2-4: (left panel) The e�ective mass-squared di�erence shift �m2

�
[79] as a function of

baseline (y-axis) and visible prompt energy Evis ' E⌫ � 0.8MeV (x-axis). The legend of color
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�
in eV

2
. The solid, dashed, and

dotted lines represent three choices of detector energy resolution with 2.8%, 5.0%, and 7.0% at 1

MeV, respectively. The purple solid line represents the approximate boundary of degenerate mass-

squared di�erence. (right panel) The relative shape di�erence [65, 66] of the reactor antineutrino

flux for di�erent neutrino MHs.

explained in the models with the discrete or U(1) flavor symmetries. Therefore, MH is a

critical parameter to understand the origin of neutrino masses and mixing.

JUNO is designed to resolve the neutrino MH using precision spectral measurements of reactor

antineutrino oscillations. Before giving the quantitative calculation of the MH sensitivity, we shall

briefly review the principle of this method. The electron antineutrino survival probability in vacuum

can be written as [69,79,94]:

P⌫̄e!⌫̄e
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The ± sign in the last term of Eq. (2.1) is decided by the MH with plus sign for the normal MH

and minus sign for the inverted MH.

In a medium-baseline reactor antineutrino experiment (e.g., JUNO), oscillation of the atmo-

spheric mass-squared di�erence manifests itself in the energy spectrum as the multiple cycles.

The spectral distortion contains the MH information, and can be understood with the left panel

of Fig. 2-4 which shows the energy and baseline dependence of the extra e�ective mass-squared

di�erence,

�m2

�
= 4E�/L , (2.3)

36

Fig. 38: Reactor neutrino spectrum in JUNO for NO/IO (from Ref. [57]).

measurement of the solar oscillation parameters, (✓12, �m2

12
), and, with sufficient energy resolution, one

could detect the modulation of the signal due to the atmospheric oscillation [55, 56]. Figure 38 shows
how this modulation is sensitive to the neutrino ordering. A leap ahead is however needed to reach the
required energy resolution that would enable this measurement.

9.2 Leptonic CP violation

As we have seen, the CP phase, �, in the mixing matrix induces CP violation in vacuum neutrino oscil-
lations, that is a difference between P (⌫↵ ! ⌫�) and P (⌫̄↵ ! ⌫̄�), for ↵ 6= �. As we saw in the general
expression of Eq. (6.20), CP violation is possible if there are imaginary entries in the mixing matrix that
make Im[W jk

↵�
] 6= 0. By CPT, disappearance probabilities cannot violate CP however, because under

CPT
P (⌫↵ ! ⌫�) = P (⌫̄� ! ⌫̄↵) , (9.3)

so in order to observe a CP or T-odd asymmetry the initial and final flavour must be different, ↵ 6= �:

ACP

↵�
⌘

P (⌫↵ ! ⌫�) � P (⌫̄↵ ! ⌫̄�)

P (⌫↵ ! ⌫�) + P (⌫̄↵ ! ⌫̄�)
, AT

↵�
⌘

P (⌫↵ ! ⌫�) � P (⌫� ! ⌫↵)

P (⌫↵ ! ⌫�) + P (⌫� ! ⌫↵)
. (9.4)

In the case of 3-family mixing it is easy to see that the CP(T)-odd terms in the numerator are the same
for all transitions ↵ 6= �:

ACP(T)-odd
⌫↵⌫�

=

sin �c13 sin 2✓13

solarz }| {

sin 2✓12

�m2

12
L

4E⌫

atmosz }| {

sin 2✓23 sin
2

�m2

13
L

4E⌫

P CP-even
⌫↵⌫�

. (9.5)

As expected, the numerator is GIM suppressed in all the �m2

ij
and all the angles, because if any of

them is zero, the CP-odd phase becomes unphysical. Therefore an experiment which is sensitive to CP
violation must be sensitive to both mass splittings simultaneously. In this situation, it is not clear a priori
what the optimization of E/L should be.

It can be shown that including only statistical errors, the signal-to-noise ratio for this asymmetry is
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maximized for hE⌫i/L ⇠ �m2
atmos. In this case, only two small parameters remain in the CP-odd terms:

the solar splitting, �m2

solar (i.e., compared to the other scales, �m2
atmos and hE⌫i/L), and the angle ✓13.

The asymmetry is then larger in the sub-leading transitions: ⌫e ! ⌫µ(⌫⌧ ), because the CP-even terms in
the denominator are also suppressed by the same small parameters. A convenient approximation for the
⌫e $ ⌫µ transitions is obtained expanding to second order in both small parameters [58]:

P⌫e⌫µ(⌫̄e⌫̄µ) = s2
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where J̃ ⌘ c13 sin 2✓13 sin 2✓12 sin 2✓23. The first term corresponds to the atmospheric oscillation, the
second one is the solar one and there is an interference term which has the information on the phase �
and depends on both mass splittings.

These results correspond to vacuum propagation, but usually these experiments require the propa-
gation of neutrinos in the earth’s matter. The oscillation probabilities in matter can also be approximated
by a similar series expansion [58]. The result has the same structure as in vacuum:
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where

B± = |A ± �13| , �ij =
�m2

ij

2E⌫

, A =

p
2GF Ne . (9.8)

The oscillation probability for neutrinos and antineutrinos now differ not just because of leptonic CP
violation, but also due to the matter effects, that as we have seen can be resonant. In particular, the
atmospheric term which is the dominant one, shows the expected resonant enhancement in the neutrino
or antineutrino oscillation probability (depending on the ordering).

The sensitivity to the interference term requires very good knowledge of the leading atmospheric
term and the present degeneracies (the octant and the neutrino ordering) directly affect the leading term
compromising therefore the � sensitivity. Either both uncertainties are solved before this measurement,
or there must be sufficient sensitivity from the energy dependence of the signal to resolve all unknowns
simultaneously.

A rough optimization of L for fixed E/L for discovering CP violation is shown in Fig. 39. It shows
the signal-to-noise as a function of the true value of �, assuming only statistical errors, but including
the expected dependence of the cross sections and fluxes. At very short baselines, the sensitivity is
compromised due to the lack of knowledge of the neutrino ordering. In a wide intermediate region
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Fig. 39: Signal-to-noise for the discovery of CP violation at fixed E/L ⇠ �m2
atm as a function of

the true value of � for L = 295km (long-dashed), L = 650km (short-dashed), L = 1300km (dotted),
L = 2300km (solid). The ordering is assumed to be unknown.

Fig. 40: Sensitivity to CP violation as a function of the true value of � in Hyper-Kamiokande (left) [59]
and DUNE (right) [60]. Solid (dashed) lines on the left plot correspond to the mass ordering (MO)
known(unknown).

around O(1000)km the sensitivity is optimal, and at much larger baselines the sensitivity deteriorates
because the matter effects completely hide CP-violation.

Several projects have been proposed to search for leptonic CP violation, including conventional
beams, but also novel neutrino beams from muon decays (neutrino factories), from radioactive ion decays
(�-beams) or from spalation sources (ESS). The relatively large value of ✓13 has refocused the interest
in using the less challenging conventional beams and two projects are presently being developed: the
Hyper-Kamiokande detector, an up-scaled version of Super-Kamiokande that will measure atmospheric
neutrinos with unprecedented precision, and also intercept a neutrino beam from JPARC at a relatively
short baseline L = 295km, and the DUNE project that involves a liquid argon neutrino detector and a
neutrino beam from Fermilab to the Soudan mine at a baseline of L = 1500km. The expected sensitivi-
ties to CP violation of both projects are shown in Fig. 40.
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9.3 Absolute neutrino mass scale

Neutrino oscillation experiments are only sensitive to neutrino mass differences, so at present we do not
have information on the absolute neutrino mass scale, only upper limits. The sum of all neutrino masses
is tightly constrained by cosmological measurements of the cosmic microwave background (CMB) [61]:

X

i

mi  0.12 eV. (9.9)

As we have seen the kinematical effects of neutrino masses in this range can also modify the end-point
spectrum of beta decay. More precisely, this measurement can constrain the combination

m⌫e
⌘
sX

i

|Uei|2m2

i
. (9.10)

The strongest upper limit of 0.8 eV as we saw has been set by the Katrin experiment [7].

In Fig. 41 we show the allowed regions on the plane m⌫e
vs
P

i
mi from the known neutrino

masses and mixings. The limit from cosmology on the right axis is already more stringent (although
cosmological model dependent) than the present and future expected sensitivity of the Katrin experiment.
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Fig. 41: Allowed region for m⌫e
for IO (blue contour) and NO (red contour) from a global analysis of

neutrino data (from Ref. [51]) on the plane m⌫e
vs the sum of all neutrino masses.

10 Outliers: the LSND anomaly

The long-standing puzzle brought by the LSND experiment is still unresolved. This experiment [62]
observed a surplus of electron events in a muon neutrino beam from ⇡+ decaying in flight (DIF) and a
surplus of positron events in a neutrino beam from µ+ decaying at rest (DAR). The interpretation of this
data in terms of neutrino oscillations, that is a non-vanishing P (⌫µ ! ⌫e), gives the range shown by a
coloured band in Fig. 43.
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4

driven oscillation effect must be corrected for in each detec-
tor. A normalization factor R was defined to scale the mea-
sured rate to that predicted with a fissile antineutrino spectrum
model. The value of R, together with the value of sin

2
2✓13,

were simultaneously determined with a �2 similar to the one
used in Ref. [4]:
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where Md is the number of measured IBD events in the d-th
detector with backgrounds subtracted, Bd is the correspond-
ing number of background events, Td is the number of IBD
events predicted with a fissile antineutrino spectrum model
via Eq. (2), and !d

r is the fractional IBD contribution from
the r-th reactor to the d-th detector determined with baselines
and reactor antineutrino rates, �r (0.9%) is the uncorrelated
reactor uncertainty, �d (0.2% [17]) is the uncorrelated de-
tection uncertainty, �Bd is the background uncertainty listed
in Ref. [17], and �D (2.1%) is the correlated detection un-
certainty, i.e. the uncertainty of detection efficiency in Ta-
ble I. Their corresponding nuisance parameters are ↵r, ✏d,
⌘d, and ✏D, respectively. The best-fit value of sin

2
2✓13 =

0.090 ± 0.009 is insensitive to the choice of model. The best-
fit value of R is 0.946±0.022 (0.991±0.023) when predicting
with the Huber+Mueller (ILL+Vogel) model. Replacing the
Mueller 238U spectrum with the recently-measured spectrum
in Ref. [35] yields negligible change in R. The uncertainty in
R is dominated by the correlated detection uncertainty �D.

With the oscillation effect for each AD corrected using
the best-fit value of sin

2
2✓13 in Eq. (3), the measured IBD

yield for each AD is expressed in two ways: the yield per
GWth per day, Y , and equivalently, the yield per nuclear fis-
sion, �f . These results are shown in the top panel of Fig. 1.
The measured IBD yields are consistent among all ADs after
further correcting for the small variations of fission fractions
among the different sites. The average IBD yield in the three
near ADs is Y = (1.55 ± 0.04) ⇥ 10

�18 cm2/GW/day, or
�f = (5.92 ± 0.14) ⇥ 10

�43 cm2/fission. These results are
summarized in Table II along with the flux-weighted average
fission fractions in the three near ADs.

A global fit for R was performed to compare with previous
reactor antineutrino flux measurements following the method
described in Ref. [36]. Nineteen past short-baseline (<100 m)
measurements were included using the data from Ref. [14].
The measurements from CHOOZ [37] and Palo Verde [38]
were also included after correcting for the effect of standard
three-neutrino oscillations. All measurements were compared
to the Huber+Mueller model. All predictions were fixed at
their nominal value in the fit. The resulting past global average
is Rpast

g = 0.942±0.009 (exp.)±0.025 (model). Daya Bay’s
measurement of the reactor antineutrino flux is consistent with
the past experiments. Including Daya Bay in the global fit, the

TABLE II. Average IBD yields (Y and �f ) of the near halls, flux nor-
malization with respect to different fissile antineutrino model predic-
tions, and flux-weighted average fission fractions of the near halls.

IBD Yield
Y ( cm2/GW/day) (1.55 ± 0.04) ⇥ 10�18

�f (cm2/fission) (5.92 ± 0.14) ⇥ 10�43

Data / Prediction
R (Huber+Mueller) 0.946 ± 0.022

R (ILL+Vogel) 0.991 ± 0.023
235U : 238U : 239Pu : 241Pu 0.586 : 0.076 : 0.288 : 0.050

new average is Rg = 0.943 ± 0.008 (exp.) ± 0.025 (model).
The results of the global fit are shown in the bottom panel of
Fig. 1.

Extending the study from the integrated flux to the en-
ergy spectrum, the measured prompt-energy spectra of the
three near-site ADs were combined after background subtrac-
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FIG. 1. Top: Rate of reactor antineutrino candidate events in the six
ADs with corrections for 3-flavor oscillations (closed circles), and
additionally for the variation of flux-weighted fission fractions at the
different sites (open squares). The average of the three near detectors
is shown as a gray line (and extended through the three far detectors
as a dotted gray line) with its 1� systematic uncertainty (gray band).
The rate predicted with the Huber+Mueller (ILL+Vogel) model and
its uncertainty are shown in blue (orange). Bottom: The measured
reactor �̄e rate as a function of the distance from the reactor, nor-
malized to the theoretical prediction with the Huber+Mueller model.
The rate is corrected for 3-flavor neutrino oscillations at each base-
line. The blue shaded region represents the global average and its 1�
uncertainty. The 2.7% model uncertainty is shown as a band around
unity. Measurements at the same baseline are combined for clarity.
The Daya Bay measurement is shown at the flux-weighted baseline
(573 m) of the two near halls.

Fig. 42: Reactor neutrino flux measured by various near detectors compared with the recent flux predic-
tions (from Ref. [70]).

⇡+ ! µ+ ⌫µ

⌫µ ! ⌫e DIF (28 ± 6/10 ± 2)

µ+ ! e+⌫e⌫̄µ

⌫̄µ ! ⌫̄e DAR (64 ± 18/12 ± 3)

A significant fraction of this region was already excluded by the experiment KARMEN [63] that has
unsuccessfully searched for ⌫̄µ ! ⌫̄e in a similar range.

The experiment MiniBOONE was designed to further investigate the LSND signal, with incon-
clusive results [64]. They did not confirm the LSND anomaly, but found a significant excess at lower
energies [65]. Recently the MicroBoone experiment [66], designed to have improved discrimination
capabilities of NC background, did not find evidence for the MiniBOONE anomaly.

On the other hand, the results of various short baseline (tens of meters) reactor neutrino experi-
ments were revised, after an update on the reactor neutrino flux predictions [67–69], which increased
these fluxes by a few per cent. While the measured neutrino flux was found to be in agreement with
predictions before, after this revision some reactor neutrinos seem to disappear before reaching near
detectors, L = O(10)m. This is the so-called reactor anomaly shown in Fig. 42. This result brought
some excitement because if this disappearance is due to oscillations, it might reinforce the oscillation
interpretation of the LSND anomaly.

The required mass splitting to describe both anomalies is �m2

LSND
' 1eV2, which is much

larger than the solar and atmospheric, and therefore requires the existence of at least a fourth neutrino
mass eigenstate, i. If such a state can explain the LSND anomaly, it must couple to both electrons and
muons. Unfortunately the smoking gun would require that also accelerator ⌫µ disappear with the same
wavelength and this has not been observed:

P (⌫µ ! ⌫e) / |UeiUµi|2 LSND

1 � P (⌫e ! ⌫e) / |Uei|4 reactor

1 � P (⌫µ ! ⌫µ) / |Uµi|4 not observed
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Fig. 43: Sterile neutrino search combining disappearance of ⌫µ’s and ⌫e (from Ref. [71]). At 90% CL
only the region to the left of the red line is allowed, excluding most of the regions favoured by LSND,
MiniBoone and the global fits.

The strongest constraint on the disappearance of ⌫µ in the LSND range has been recently set by MINOS+
and the tension between appearance and disappearance measurements is shown in Fig. 43.

Very recently a new update on the flux predictions has been presented and the significance of the
reactor anomaly has decreased. In parallel a plethora of new short baseline reactor neutrino experiments
(Prospect, DANSS, Stereo, NEOS, NEUTRINO-4) have taken data exploiting the L dependence of a
putative oscillation signal. The results have for the most part not confirmed the oscillation of reactor
neutrinos. A global analysis of all the reactor data results shows that at 2.6� the results are compatible
with the non-oscillation hypothesis. See Ref. [72] for a recent status and references.

11 Neutrinos and BSM physics

The new lepton flavour sector of the SM has opened new perspectives into the flavour puzzle. As we
have seen neutrinos are massive but significantly lighter than the remaining charged fermions. Clearly
the gap of Fig. 11 calls for an explanation. The leptonic mixing matrix is also very different to that in the
quark sector. The neutrino mixing matrix is approximately given in Ref. [51]

|UPMNS|3� '

0

B@
0.80 � 0.84 0.51 � 0.58 0.14 � 0.16

0.23 � 0.50 0.46 � 0.69 0.63 � 0.78

0.26 � 0.52 0.47 � 0.70 0.61 � 0.76

1

CA . (11.1)

The CKM matrix is presently constrained [73] to be:

|VCKM| '

0

B@
0.97435(16) 0.22500(67) 0.00369(11)

0.22486(67) 0.97349(16) 0.04182(85)

0.00857(20) 0.04110(83) 0.999118(31)

1

CA . (11.2)
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There is a striking difference between the two (and not only in the precision of the entries). The CKM
matrix is close to the unit matrix:

VCKM '

0

B@
1 O(�) O(�3

)

O(�) 1 O(�2
)

O(�3
) O(�2

) 1

1

CA , � ⇠ 0.2, (11.3)

while the leptonic one has large off-diagonal entries. With a similar level of precision, it is close to the
tri-bimaximal mixing pattern [74]
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Discrete flavour symmetries have been extensively studied as the possible origin of this pattern.

While we do not have yet a compelling explanation of the different mixing patterns, we do have
one for the gap between neutrino and other fermion masses. We saw that if the light neutrinos are
Majorana particles and get their mass via the Weinberg interaction of Fig. 12, they are signalling BSM
physics. As we have seen neutrino masses are then

m⌫ = �
v2

⇤
, (11.4)

where ⇤ represents the mass of the neutrino mass mediators, i.e. the heavy particles that give rise to the
Weinberg interaction. The more massive these particles are, the lighter neutrinos become. This is the
famous seesaw mechanism depicted in Fig. 44.

L

mn

Seesaw mechanism: 
Minkowski
Gell-Mann, Ramond Slansky
Yanagida, Glashow
Mohapatra, Senjanovic

Fig. 44: Seesaw mechanism: the higher the scale ⇤ of new physics is, the lighter neutrino masses
become.

� on the other hand is the strength of the coupling of the new states with the lepton and Higgs
doublets. Both parameters are in principle undetermined and only the combination �

⇤
is fixed by neutrino

masses. If we assume that the natural choice for � is O(1), then neutrino masses require ⇤ ⇠ MGUT,
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that is a grand unification scale. This is an intriguing fact, however it leads to the famous hierarchy
problem [75, 76]:

m2

H ⇠ ⇤
2. (11.5)

The recent discovery of the Higgs field and in particular the value of its mass mH = 125 GeV [77]
suggests that the SM is as healthy as ever. In spite of the Landau poles present in the theory, the value of
the SM couplings surprisingly conspire to make the model consistent up to the Planck scale [78].

On the other hand, the SM contains other small couplings, for example the electron Yukawa cou-
pling is Ye ⇠ O(10

�6
). It is then a fair question to ask how small can � be not to worsen the flavour

hierarchies in the charged lepton and quark sectors. Unfortunately the answer to this question depends on
the underlying model. We can for example consider the three types of seesaw models, which correspond
to the models that give rise to the Weinberg operator from the exchange of a massive particle, as depicted
in Fig. 45:

Type II see-saw:
a heavy triplet scalar

Konetschny, Kummer; 
Cheng, Li;
Lazarides, Shafi, Wetterich…

Resolving the neutrino mass operator at tree level

Type III see-saw:
a heavy triplet fermion

Foot et al; Ma; 
Bajc, Senjanovic…

Type I see-saw:
a heavy singlet scalar

Minkowski; 
Yanagida; Glashow; 
Gell-Mann, Ramond Slansky; 
Mohapatra, Senjanovic…

E. Ma

l ~ O(Y2) l ~ O(Y2)l ~ O(Yµ/MD)

l l lFig. 45: Magnifying-glass view of the Weinberg operator in seesaw models of Type I (left), Type II
(middle), Type III (right).

– type I see-saw: SM+ heavy singlet fermions, N , with mass MN [79–82],

– type II see-saw: SM + heavy triplet scalar, �, with mass M� [83–87],

– type III see-saw: SM + heavy triple fermions, ⌃ with mass M⌃ [88, 89],

In each of these cases ⇤ = MN/�/⌃ and the matching of the underlying theory to the Weinberg interac-
tion fixes �. For Type I and III:

TypeI/III : � = O(Y 2

N/⌃
), (11.6)

where YN,⌃ is the neutrino Yukawa coupling. In the case of Type II also the scalar trilinear coupling
enters. If we now plot the hierarchies in the Yukawa couplings as opposed to the masses for Type I and
III, we see that assuming a YN,⌃ ⇠ Ye, the scale ⇤ can be close to the electroweak scale, as shown in
Fig. 46.

It is also possible that Weinberg’s interaction is generated by new physics at higher orders, such as
in the famous Zee model [90] and related ones [91, 92]. In this case, neutrino masses have an additional
suppression by loop factors 1/(16⇡2

) and generically higher powers of the couplings of the underlying
theory.
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MN = GUT

MN~ v
n

Yukawa

Yukawa

MN~ GUT
n

Type I and III

Fig. 46: Yukawa hierarchies in the Type I and III seesaw model if MN ⇠ MGUT or ⇠ v.

Summarizing, for ⇤ 2 [v, MGUT], neutrino masses do not imply larger hierarchies than already
present in the minimal SM. Determining the scale ⇤ is one of the crucial problems in neutrino physics
that we will try to elucidate in the future.

If ⇤ � 100 MeV, there is a model-independent prediction: neutrinoless double-beta decay is
possible with an amplitude proportional to the combination

mee =

X

i=1,3

(UPMNS)
2

eimi. (11.7)

The information we already have about neutrino masses and mixings constrains this quantity to be in any
of the bands in Fig. 47 depending on the neutrino mass ordering.

Fig. 47: Allowed region for mee for IO (blue contour) and NO (red contour) from a global analysis of
neutrino data (from Ref. [51]) on the plane mee vs the sum of all neutrino masses. We have added by the
shaded region the exclusion from present neutrinoless double-beta decay searches.

Obviously if ⇤ is below the energies of present colliders, the new particles may be directly acces-
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sible. The dynamics of this new physics sector breaks lepton number and generically might induce the
generation of the baryon asymmetry in the universe or may be connected to dark matter. Unfortunately
both predictions: the production of these new states in colliders and their connection to baryogenesis or
dark matter are model dependent. The type I seesaw model is the better studied case so we will consider
this scenario in the following discussion.

11.1 One example: Type I seesaw model

It is arguably the most minimal extension of the SM explaining neutrino masses [79–82]. It involves
the addition of nR � 2 singlet Weyl fermions, ⌫R, to the SM. With nR = 2 two light neutrinos can be
massive, which is the minimum compatible with neutrino mass measurements, i.e. two neutrino mass
differences. The minimum number of singlets required to give non-zero mass to the three light neutrinos
is nR = 3, as shown in Fig. 48.
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Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3), dSU(2))Y

2 Neutrinos in the Standard Model
The Standard Model (SM) is a gauge theory based on the gauge group SU(3) ⇥ SU(2) ⇥ UY (1). All
elementary particles arrange in irreducible representations of this gauge group. The quantum numbers
of the fermions (dSU(3), dSU(2))Y are listed in table 1.

Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under
SU(3) and their hypercharge is �1/2. The electric charge, given by Q = T3 + Y , vanishes. They are
therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of table 1 are its left-right or chiral asymmetry, and the three-fold
repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions
The left and right entries in table 1 have well defined chirality, negative and positive respectively.
They are two-component spinors or Weyl fermions, that is the smallest irreducible representation of
the Lorentz group representing spin 1/2 particles. Only fields with negative chirality (i.e. eigenvalue of
�5 minus one) carry the SU(2) charge. For free fermions moving at the speed of light (i.e., massless), it
is easy to see that the chiral projectors are equivalent to the projectors on helicity components:

PR,L ⌘ 1 ± �5

2
=

1

2

✓
1 ± s · p

|p|

◆
+ O

⇣mi

E

⌘
, (6)

where the helicity operator ⌃ =
s·p
|p|

measures the component of the spin in the direction of the momen-
tum. Therefore for massless fermions only the left-handed states (with the spin pointing in the opposite
direction to the momentum) carry SU(2) charge. This is not inconsistent with Lorentz invariance, since
for a fermion travelling at the speed of light, the helicity is the same in any reference frame. In other
words, the helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good
quantum number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic
building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any
left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed
particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and
an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak
interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious

4

(1,1)0
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An extension of the SM table is mandatory
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Fig. 48: Particle content of the SM+Type I seesaw model with three light massive neutrinos.

The most general renormalizable Lagrangian which satisfies Lorentz and the gauge symmetries is
given by:

LTypeI = LSM �
X

↵,i

L̄↵Y ↵i

⌫ �̃ ⌫i

R �
nRX

i,j

1

2
⌫̄ic

R M ij

N
⌫j

R
+ h.c. , (11.8)

where the new parameters involved are a 3 ⇥ nR neutrino Yukawa matrix and a nR ⇥ nR symmetric
Majorana mass matrix for the singlet fields. Upon spontaneous symmetry breaking these couplings
become mass terms, that can be written in the Majorana basis (⌫c

L
, ⌫R) as

LTypeI ! LSM � 1

2

⇣
⌫̄L ⌫̄c

R

⌘ 
0 mD

mT

D
MN

! 
⌫c

L

⌫R

!
+ h.c. + ... (11.9)

where

mD = Y⌫

vp
2
. (11.10)
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Note that Dirac neutrinos are a particular case of the model for nR = 3. If we invoke a global lepton
number symmetry, under which ⌫R have charge +1, this forces MN = 0, the singlets are exactly equiva-
lent to the right-handed neutrinos in the Dirac case described in sec. 3.1. In the opposite limit MN � v,
the singlets can be integrated out and give rise to the Weinberg interaction as well as others at d = 6, etc.
For intermediate MN , the spectrum of this theory contains in general 3 + nR Majorana neutrinos, which
are admixtures of the active ones and the extra singlets.

It is easy to diagonalize the mass matrix in Eq. (11.9) in an expansion in mD/MN . The result to
leading order in this expansion is

UT

 
0 mD

mT

D
MN

!
U '

 
�mD

1

MN

mT

D
0

0 MN

!
+ O(✓2

), U =

 
1 ✓

�✓†
1

!
, (11.11)

where

✓ = m⇤

D

1

MN

. (11.12)

The matrix represents the active component of the heavy neutrino states and therefore controls their
gauge interactions. To this order therefore the light neutrino and heavy neutrino masses are given by

ml = Diag


�mD

1

MN

mT

D

�
, Mh = Diag[MN ]. (11.13)

Spectra of Type I seesaw models 

 �
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Fig. 49: Spectrum of the type I seesaw model for nR = 3 as a function of a common MN .

Figure 49 depicts the spectrum for the case of nR = 3 as a function of a common MN . In the
limit MN ! 0 the states degenerate in pairs to form Dirac fermions. As MN increases three states get
more massive proportional to MN . These are often referred to as heavy neutral leptons (HNL), while
three get lighter proportional to M�1

N
, as expected from the seesaw mechanism. The number of new free

parameters is large. For the case nR = 3 there are 18 fundamental parameters in the lepton sector: six of
them are masses, six mixing angles and six phases. The counting of parameters for general nR is shown
in Table 4. Out of these 18 parameters we have determined only five: two mass differences and three
neutrino mixing angles.

A very convenient parametrization in this model was introduced by Casas–Ibarra [93], which
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Table 4: Number of physical parameters in the see-saw model with n families and the same number of
right-handed Majorana neutrinos at high and low energies

Yukawas Field redefinitions No. m No. ✓ No. �

see-saw Yl, Y⌫ , MR = MT

R
U(n)

3

E � Mi 5n2
+ n 3(n

2
�n)

2
, 3(n

2
+n)

2
3n n2 � n n2 � n

see-saw Yl,↵T
⌫ = ↵⌫ U(n)

2

E ⌧ Mi 3n2
+ n n2 � n, n2

+ n 2n n
2
�n

2

n
2
�n

2

allows to write in all generality (up to corrections of O(✓2
)) the Lagrangian parameters in terms of

those of the light neutrino masses and mixings, and others related to the HNLs. In particular the phe-
nomenology of this model depends on the spectrum of neutrino mass eigenstates, that we denote by
(⌫1, ⌫2, ⌫3, N1, N2, ...NnR

), and their admixture in the flavour neutrino states :
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In the Casas–Ibarra parametrization we have

Ull = UPMNS + O(✓2
),

Ulh = iUPMNS

p
mlR

1p
Mh

+ O(✓2
), (11.15)

where R is a general complex orthogonal matrix, RT R = 1, which together with the heavy neutrino
masses, Mh, parametrizes the parameter space inaccessible to neutrino oscillation experiments. Note
that Ull is the mixing matrix that we measure in neutrino oscillation experiments, assuming the heavy
states are too heavy to play a role. This matrix is however no longer unitary,3 but the unitarity violations
are parametrically of O(✓2

) ⇠ ml/Mh .

Equations (11.15) indicate that in this model there is a strong correlation between flavour mixings
of the heavy states, Ulh, and the ratio of light-to-heavy neutrino masses. However the presence of the
unknown matrix R, which is not bounded, implies that the naive seesaw scaling, |Ulh|2 ⇠ ml/Mh, that
would hold exactly for one neutrino family, is far too naive for nR > 1. In fact there are regions of
parameter space where these mixings can be much larger than suggested by the naive scaling, and these
are precisely the regions with more phenomenological interest, as we will see below.

Let us discuss some phenomenological implications of the different choices of the scale MN .

3The Casas–Ibarra parametrization needs to be modified in the presence of large unitarity violations. A similar parametrization
valid to all orders in ✓ is given in Ref. [94].
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11.1.1 Neutrinoless double-beta decay

The amplitude for this process receives contributions from the light and heavy states:

mee ⌘
3X
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(UPMNS)
2

eimi +

nRX

j=1

(Ulh)
2

ejMj

M��0⌫
(Mj)

M��0⌫(0)
, (11.16)

where the ratio of matrix elements M��0⌫ for heavy and light mediators satisfy [95]:

M��0⌫
(Mj)

M��0⌫(0)
/
✓

100MeV

Mj

◆
2

, Mj ! 1. (11.17)

If all the heavy state masses � 100 MeV, the second term is suppressed and the amplitude contains only
the light neutrino masses and mixings, which is constrained as shown before in Fig. 47. A plethora of
experiments using different technologies have been proposed to reach a sensitivity in mee in the range
of 10

�2 eV , which could be sufficient to explore the full parameter space in the case of the IO. The
importance of this measurement can hardly be overstated. A non-zero mee will imply that neutrinos are
Majorana and therefore a new physics scale must exist, that lepton number is violated, and might give
very valuable information on the lightest neutrino mass, and even help establishing the neutrino mass
ordering. On the other hand, if the heavy states are not too heavy, within 100 MeV–few GeV, they could
also contribute to the process significantly and even dominate over the light neutrino contribution for
both orderings [96–98].

11.1.2 Cosmology and the seesaw scale

For MN  100 MeV, the heavy states in seesaw models can sizeably modify the history of the Uni-
verse: the abundance of light elements, the fluctuations in the CMB and the galaxy distribution at large
scales. This is the case because these extra states contribute to the expansion either as a significant extra
component of dark matter (⌦m) or radiation (�Ne↵ ).

The singlet states in this mass range are produced at T below the electroweak phase transition
via mixing. The state i will reach thermal equilibrium if their interaction rate, �si

(T ), is larger than the
Hubble parameter at some T . If this is the case, the extra species will contribute like one extra neutrino
for T > Mi or like an extra component of dark matter for T < Mi. The latest results from Planck
strongly constrain an extra radiation component at CMB:

Ne↵(CMB) = 3.2 ± 0.5. (11.18)

and also measures the dark matter component to be ⌦m = 0.308 ± 0.012. Similar bounds are obtained
from the abundance of light elements, BBN. These bounds exclude the possibility of having essentially
any extra fully thermalized neutrino that is sufficiently long-lived to survive BBN. It can be shown that
the ratio �si

(T )

H(T )
reaches a maximum at Tmax [99, 100] and

�si
(Tmax)

H(Tmax)
⇠
P

↵
|(Ulh)↵i|2Mip
g⇤(Tmax)

. (11.19)

191



PILAR HERNÁNDEZ

The naive seesaw scaling U2

lh
Mh ⇠ ml, would seem to imply that the thermalization condition depends

only on the light neutrino masses and is independent on the seesaw scale. In fact a detailed study shows
that indeed this naive expectation holds.

For nR = 2, the heavy states must be Mi � 100 MeV [101], so that they might decay before BBN.
For nR = 3 two things can happen [102]. If the lightest neutrino mass, mlightest � 3 ⇥ 10

�3 eV, all the
three heavy states thermalize and Mi � 100 MeV. If mlightest  3 ⇥ 10

�3 eV two states must be above
this limit, but one of the states with mass M1 might not thermalize and therefore be sufficiently diluted.
M1 may take any value provided mlightest, which is presently unconstrained, and is tuned accordingly.

11.1.3 Warm dark matter

For mlightest  10
�5 eV, M1 might be O( keV), and a viable warm dark matter candidate [103, 104].

This scenario is the so-called ⌫MSM model [104]. The most spectacular signal of this type of dark matter
is a monochromatic X-ray line from the decay of this keV neutrino. There has been some evidence for
an unexplained X-ray line in galaxy clusters that might be compatible with a 7 keV neutrino [105, 106].
These results are under intense scrutiny. If interpreted in terms of a keV neutrino, the mixing however is
too small and some extra mechanism is needed to enhance the production so that it matches the required
dark matter density, such as the presence of large primordial lepton asymmetries [107].

11.1.4 Direct searches for heavy neutral leptons

Naturalness arguments suggest that maybe the scale of MN is not far from the electroweak scale. States
with masses in this range could be produced in the lab [108]. The production of the HNL is mediated
by charged or neutral currents or Higgs interactions with strength given by the Uhl coupling, see Fig. 50.
The most important production mechanisms, from meson decays, at e+e� collisions at the Z peak or at
hadron colliders, are shown in Fig. 51.
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Fig. 50: Interactions of HNL in Type I seesaw model.

W/Z

l/�

N
1

a

Hadron colliders

M

e�

e+

Z
�

N �±

q

q̄

Meson decays e+e-@Z peake�

e+

Z
�

N �±

q

q̄

�, K, D, B W
�

N �
q

q̄

@Laboratory (fixed target, colliders) and cosmic rays  

(Uhl)�1

<latexit sha1_base64="rvM/fxMrGxVcOPZWpeCyuzLatuk=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSxCvZREKnosevFYwbSFpoTNdtMs3XywOxFK6M2Lf8WLB0W8+he8+W/ctjlo64OBx3szzMzzU8EVWNa3UVpZXVvfKG9WtrZ3dvfM/YO2SjJJmUMTkciuTxQTPGYOcBCsm0pGIl+wjj+6mfqdByYVT+J7GKesH5FhzANOCWjJM49dwQKoOV4eiokr+TCEMy93iUhDgu2JZ1atujUDXiZ2QaqoQMszv9xBQrOIxUAFUapnWyn0cyKBU8EmFTdTLCV0RIasp2lMIqb6+eyPCT7VygAHidQVA56pvydyEik1jnzdGREI1aI3Ff/zehkEV/2cx2kGLKbzRUEmMCR4GgoecMkoiLEmhEqub8U0JJJQ0NFVdAj24svLpH1etxv1i7tGtXldxFFGR+gE1ZCNLlET3aIWchBFj+gZvaI348l4Md6Nj3lryShmDtEfGJ8/vlKZOw==</latexit>

Heavy Neutral Leptons

H

N

�

(Uhl)�1

<latexit sha1_base64="rvM/fxMrGxVcOPZWpeCyuzLatuk=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSxCvZREKnosevFYwbSFpoTNdtMs3XywOxFK6M2Lf8WLB0W8+he8+W/ctjlo64OBx3szzMzzU8EVWNa3UVpZXVvfKG9WtrZ3dvfM/YO2SjJJmUMTkciuTxQTPGYOcBCsm0pGIl+wjj+6mfqdByYVT+J7GKesH5FhzANOCWjJM49dwQKoOV4eiokr+TCEMy93iUhDgu2JZ1atujUDXiZ2QaqoQMszv9xBQrOIxUAFUapnWyn0cyKBU8EmFTdTLCV0RIasp2lMIqb6+eyPCT7VygAHidQVA56pvydyEik1jnzdGREI1aI3Ff/zehkEV/2cx2kGLKbzRUEmMCR4GgoecMkoiLEmhEqub8U0JJJQ0NFVdAj24svLpH1etxv1i7tGtXldxFFGR+gE1ZCNLlET3aIWchBFj+gZvaI348l4Md6Nj3lryShmDtEfGJ8/vlKZOw==</latexit>

a

1

Fig. 51: Production processes of HNLs from meson decays, e+e� colliders and hadron colliders.
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The present experimental bounds on the e mixings of these heavy states are shown in Figs. 52,
on the plane

P
↵=e,µ,⌧

|(Uhl)↵i|2 versus Mi. The shaded regions correspond to existing constraints and
the unshaded ones to prospects of various new experiments. For masses below a few GeV, the best
constraints come from peak searches in meson decays. In particular the new beam dump experiment
SHiP [109] can improve considerably the sensitivity in the region between the Kaon and B meson mass.
Above the B meson mass and below the Z boson mass, searches in FCCee at the Z peak would improve
present limits by several orders of magnitude [110]. The best existing limits in this range come from the
LEP experiment DELPHI [111] and LHC searches from displaced vertices [112, 113]. The HNL in this
range are very long lived and lead to displaced decays [114–116] that have a negligible SM background.
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Fig. 52: Constraints from present and future experiments on a HNLs. Shaded regions are existing bounds
on the HNL electron mixing as a function of the HNL mass, from the various processes that are sensitive
to different mass ranges. The dashed line is the future sensitivity of SHiP at lower masses and FCCee at
higher ones. Below the seesaw line neutrino masses cannot be explained. The exclusion from BBN is
also added. Figure is courtesy of S. Sandner.

For masses above the W and Z masses, the best constraints are presently coming from LHC
searches [117–119].

12 Low-scale leptogenesis

The Universe is made of matter. The matter–antimatter asymmetry is measured to be [61]

⌘B ⌘ Nb � N
b̄

N�

⇠ 6.21(16) ⇥ 10
�10 . (12.1)

One generic implication of neutrino mass models is that they provide a new mechanism to explain this
asymmetry dynamically.

It has been known for a long time that all the ingredients to generate such an asymmetry from a
symmetric initial state are present in the laws of particle physics. These ingredients were first put forward
by Sakharov [120]:

1. Baryon number violation
B + L is anomalous in the SM [121] both with and without massive neutrinos. At high T in the early
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Fig. 53: Artistic view of a sphaleron.
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

sphaleron barrier (⇠ sphaleron energy), and special real-

time runs are performed to calculate the dynamical pref-

actors of the tunneling process. The physical rate is then

obtained by reweighting the measurements. For details

of this intricate technique, we refer to [12, 27]. As we will

observe, in the temperature range where both methods

work, these overlap smoothly.

Simulation results: We perform the simulations using lat-

tice spacing a = 4/(9g2
3) (i.e. �G = 4/(g2

3a) = 9 in

conventional lattice units), and volume V = 32
3a3

. In

ref. [12] we observed that the rate measured with this

lattice spacing in the symmetric phase is in practice in-

distinguishable from the continuum rate, and deep in the

broken phase it is within a factor of two of our estimate

for the continuum value, well within our accuracy goals.

In fact, algorithmic ine�ciencies in multicanonical simu-

lations become severe at significantly smaller lattice spac-

ing, making simulations there very costly in the broken

phase. The simulation volume is large enough for the

finite-volume e�ects to be negligible [12].

The expectation value of the square of the Higgs field,

v2/T 2
= 2h�†�i/T (here � is in 3d units), measures the

“turning on” of the Higgs mechanism, see Fig. 2. As

mentioned above, there is no proper phase transition and

v2
(T ) behaves smoothly as a function of the tempera-

ture. Nevertheless, the cross-over is rather sharp, and

the pseudocritical temperature can be estimated to be

Tc = 159 ± 1GeV. If the temperature is below Tc, v2
(T )

is approximately linear in T , and at T > Tc, it is close to

zero. The observable h�†�i is ultraviolet divergent and

is additively renormalized; because of additive renormal-

ization, v2
(T ) can become negative.

We also show the two-loop RG-improved perturbative
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FIG. 3: The measured sphaleron rate and the fit to the broken
phase rate, Eq. (7), shown with a shaded error band. The
perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
Pure gauge refers to the rate in hot SU(2) gauge theory [19].
The freeze-out temperature T⇤ is solved from the crossing of
� and the appropriately scaled Hubble rate, shown with the
almost horizontal line.

result [2] for v2
(T ) in the broken phase. Perturbation

theory reproduces Tc perfectly, and v2
is slightly larger

than the lattice measurement. In the continuum limit we

expect this di�erence to decrease for this observable; in

ref. [12] we extrapolated v2
(T ) to the continuum at a few

temperature values and with Higgs mass 115GeV. The

continuum limit in the broken phase was observed to be

about 6% larger than the result at �G = 9. Thus, for

v2
(T ) perturbation theory and lattice results match very

well.

Finally, in Fig. 3 we show the sphaleron rate as a func-

tion of temperature. The straightforward Langevin re-

sults cover the high-temperature phase, where the rate

is not too strongly suppressed by the sphaleron barrier.

In fact, we were able to extend the range of the method

through the cross-over and into the broken phase, down

to relative suppression of 10
�3

.

Using the multicanonical simulation methods we are

able to compute the rate 4 orders of magnitude further

down into the broken low-temperature phase. The results

nicely interpolate with the canonical simulations in the

range where both exist. In the interval 140 <⇠T<⇠155GeV

the broken phase rate is very close to a pure exponential,

and can be parametrized as

log
�Broken

T 4
= (0.83 ± 0.01)

T

GeV
� (147.7 ± 1.9). (7)

The error in the second constant is completely dominated

D’Onofrio, Rummukainen, Trangberg ‘14

/ log ↵5
W
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Fig. 54: Sphaleron rate in the SM normalized by T 4 as function of the temperature, from [123]. The
horizontal line corresponds to the Hubble expansion rate.

Universe, B + L violating transitions are in thermal equilibrium [122] due to the thermal excitation of
configurations with topological charge called sphalerons, see Fig. 53.

These processes violate baryon and lepton numbers by the same amount:

�B = �L. (12.2)

In seesaw models, there is generically an additional source of L violation (and B �L). If a lepton charge
is generated at temperatures where the sphalerons are still in thermal equilibrium, a baryon charge can
be generated.

The sphaleron rate in the SM has been computed accurately after the discovery of the Higgs
boson [123]. The rate normalized to the fourth power of the temperature is shown in Fig. 54 around the
electroweak phase transition. At T � 160GeV the rate is / ↵5

W
T 4, while it drops exponentially at lower

temperatures. The Hubble rate is indicated by the horizontal line. The temperature where the sphaleron
rate equals the Hubble expansion rate is the sphaleron decoupling temperature, T sph

dec
, below which no

baryon number violation is possible.
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2. C and CP violation
Any lepton or baryon asymmetry can only be generated if there is C and CP violation. Seesaw models
generically include new sources of CP violation. As we have seen in type I seesaw model with nR = 3

there are six new CP phases in the lepton sector. They can be absorbed in the Yukawa matrix, Y⌫ of
Eq. (11.8). Even though CP violation is connected to imaginary phases, CP violating observables such as
the baryon asymmetry depends on many flavour parameters. A very useful concept is that of the flavour
CP invariants [124]. Let us consider for example the minimal SM. Since quark Yukawa couplings are the
only source of CP violation and they are small, we expect that any CP violating asymmetry generated
at high temperatures (above the quark masses) can be expanded as a a polynomial in the up and down
Yukawa couplings, Yu and Yd. Furthermore we expect that this polynomial is independent of the flavour
basis used4 and it is not real, that is it must have a non-zero imaginary part. The lowest order polynomial
of Yu and Yd that satisfies these conditions is the famous Jarlskog invariant [124]

�
quarks

CP
= Im

h
det

⇣
[YuY †

u , YdY
†

d

⌘i
/ J

Y

i<j

(m2

di
� m2

dj
)

Y

i<j

(m2

ui
� m2

uj
), (12.3)

with

J ⌘ Im[V ⇤

ijViiV
⇤

jiVjj ] = c23s23c12s12c
2

13s13 sin �. (12.4)

We can then naively estimate the baryon asymmetry generated at the EW transition in the SM as

YB /
�

quarks

CP

T 12

EW

⇠ 10
�20, (12.5)

where the denominator is fixed by dimensional analysis. This simple analysis shows that the CP violation
in the minimal SM is far too small to explain the baryon asymmetry at the electroweak phase transition.
A detailed computation arrives to the same conclusion [125].

In the case of the Type I seesaw extension of the SM we have also CP violation in the lepton
sector encoded in the flavour parameters: Majorana mass matrix of the singlets, MN , and the neutrino
and charge lepton Yukawas, Y⌫ and Yl. The lowest order invariant involving Y⌫ and MN is [126, 127]:

�
leptons

CP
= Im

⇣
Tr[Y †

⌫ Y⌫M
†MM⇤

(Y †

⌫ Y⌫)
⇤M ]

⌘
, (12.6)

or including also the lepton Yukawa

�̃
leptons

CP
= Im

⇣
Tr[Y †

⌫ Y⌫M
†MY †

⌫ YlY
†

l
Y⌫ ]

⌘
⌘
X

↵

y2

l↵
�↵. (12.7)

Even at low scales, these invariants are potentially much larger that those in the quark sector [128].

3. Departure from thermal equilibrium
In order for a CP asymmetry to arise, it is necessary that the relevant processes occur out of thermal
equilibrium since otherwise the abundances are fixed by the thermal Fermi–Dirac distributions and are
4A unitary rotation in flavour space of left and right chiral fields leaves all the terms in the Lagrangian invariant except the
Yukawa couplings.
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Fig. 55: High scale seesaw: abundance of the heavy Majorana singlets at the decoupling temperature
and the lepton number generated in the decay.

equal for particles and antiparticles. Out-of-equilibrium conditions can happen in the evolution of the
universe in the presence of first-order phase transitions, or due to the presence of sufficiently weakly
coupled sectors that cannot keep up with the expansion of the universe. This happens when the interaction
rates become smaller than the Hubble expansion rate, �(T )  H(T ). This must happen at T above the
sphaleron decoupling, T sph

dec
to be effective in generating baryons.

No particle in the minimal SM satisfies this condition within the standard cosmological model,
not even neutrinos, that decouple much below sphaleron decoupling. On the other hand, the SM predicts
the existence of a phase transition from the broken phase at low temperatures to a symmetric phase
above, i.e. the EW phase transition. The critical temperature, TEW, is closely related to the sphaleron
decoupling temperature. The EW transition has been shown to be a crossover transition and therefore
with insufficient departure from thermal equilibrium [129].

In the Type I seesaw extension at low scales however, some of the states are more weakly interact-
ing than neutrinos and therefore can fulfil the requirement �Ni

(T )  Hu(T ), for T � T sph

dec
.

In the high scale scenario Mi � v, the non-equilibrium condition is met at freeze out of the
heavy neutrino states. These are thermally produced and freeze out at temperatures similar to their
masses [128]. A net lepton asymmetry can be produced if the decay rate is slower than the expansion of
the Universe at T ⇠ Mi, as shown in Fig. 55.

In contrast, in the low-scale scenario, for Mi < v, the out-of-equilibrium condition is met at
freeze-in [104, 130, 131], that is some of the states never reach thermal equilibrium above T sph

dec
. A non-

vanishing lepton and baryon asymmetry can survive and, if this is the case, sphaleron transitions can
no longer wash it out. It turns out that these conditions can be met naturally in type I seesaw models
for masses in the range [0.1, 100] GeV. The relevant CP asymmetries arise in the production of the
heavy seesaw states via the interference of CP-odd phases from the Yukawa couplings with CP-even
phases from propagation and oscillations, see Fig. 56. A quantum treatment of the corresponding kinetic
equations is mandatory in this case and quite complex.

A perturbative solution to the kinetic equations [132] allows to extract the analytical solution for
YB in terms of the CP invariants, and using the Casas–Ibarra parametrization can then be expressed in
terms of the neutrino masses and mixings, CP phases and HNL parameters.
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Leptogenesis via oscillations
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Fig. 56: Low-scale seesaw: abundance of the heavy Majorana singlets at TEW.Upper bound on the HNL mixing
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PH, Lopez-Pavon, Rius, Sandner ‘22Fig. 57: Numerical scan of points on the plane of mixing versus mass of the HNL where the baryon
asymmetry can be explained and within the sensitivity region of SHiP and/or FCCee (dashed line) in the
minimal Type I seesaw (nR = 2). The line is obtained analytically from a perturbative solution of the
kinetic equations that can be expressed in terms of CP flavour invariants and maximized over unknown
parameters. From Ref. [132].

In Fig. 57 we show the region on the plane U2 v.s. Mi, where the baryon asymmetry and neutrino
masses can be accounted for within the range of sensitivity of the future SHiP and FCCee projects. The
solid line is the analytical upper bound to explain the baryon asymmetry based on the analytical solutions,
and maximizing the asymmetry over the unknown parameters. This demonstrates the discovery potential
of the future projects.

Other interesting correlations between YB and other observables are shown in Fig. 58. On the left,
we show the HNL flavoured mixings for masses in the range accessible to FCC when neutrino masses are
explained for both hierarchies. On the right plot the constrain of generating the correct baryon asymmetry
is added. The correct baryon asymmetry therefore restricts the flavour of the HNL mixings as well as the
PMNS CP phases (only two for nR = 2), as shown in Fig. 59 for both hierarchies.
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Implications for HNL mixings
In the not-so-degenerate case YB constrains significantly flavour ratios because 
flavour effects are necessary
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Fig. 58: Normalized mixings to e, µ, ⌧ of HNLs with masses in the range of FCCee and mild degeneracy.
Only the constrain from neutrino masses is imposed on the left plot, while also the YB is imposed on the
right plot. The two regions correspond to neutrino orderings. From Ref. [132].

Implications for PMNS CP violation
In the not-so-degenerate case strong correlations with UPMNS CP phases because
flavour effects are necessary
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Figure 15. Points from the scan at �M/M = 10
�2

for NH (left) and IH (right). The black dashed

lines enclose the regions where ✏e  0.01 (NH), and ✏e  0.05 (IH), while the dashed blue lines

enclose the region ✏µ  0.03 and the green ones that corresponding to ✏�  0.03.

ings or the PMNS phases when �M/M is su�ciently large.

7.2 Neutrinoless double-beta decay

The amplitude for this process depends on the combination of neutrino parameters m�� ,

that gets contributions from the light and heavy neutrino sectors

m�� =

������

X

i=light

U2

eimi +

X

I=heavy

�
2

eIMIM (MI) /M (0)

������
, (7.1)

where M (Mi) are the Nuclear Matrix Elements (NME) as a function of the mass of

the neutrino mediating the process, as defined in [71]. In order to illustrate the main

dependence of m�� on the neutrino parameters, using eq. (3.11) together with eqs. (3.6)-

(3.8) and (A.11), the following approximated expression
8

can be derived [32, 71–73] for the

symmetry protected scenario considered here:
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8The approximation implies a scaling of the NMEs as M (MI) � 1/M2
I . For MI . 3 GeV the deviation

with respect to the nuclear computation [71] is larger than 1%.
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Majorana phase
Fig. 59: Numerical scan of points that explain YB on the plane of the Dirac CP violating phase, �, and
the Majorana phase, � in the minimal Type I seesaw (nR = 2). From Ref. [132].

An interesting question is whether the baryon asymmetry can be predicted quantitatively from the
measurements of CP violation in neutrino oscillations or from the CP violation in the neutrino mass ma-
trix. Unfortunately this is not the case generically, because the asymmetry depends on more parameters
than those in the light neutrino mass matrix. However, if the model is sufficiently constrained very strong
correlations can occur.

For example, in the minimal Type I seesaw model, nR = 2, and in the assumption that the two
eigenvalues of the matrix MN are degenerate, there are only two physical CP violating phases, that can
then be parametrized by the two in the light neutrino mass matrix. They determine both YB and CP
violation in neutrino oscillations. In this case, the measurement of the HNL mixings to electrons, muons
and ⌧ ’s can pin down the CP phase in neutrino oscillations and YB up to discrete degeneracies, as shown
in Fig. 60. If the phase � is also measured, a prediction of YB is possible from laboratory measurements.

This simple example demonstrates the interplay between YB and other observables in neutrino
physics.
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Figure 8. Result of a numerical likelihood inference in the case of a measurement of (M, U2
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µ)

(top), (M, U2
e , U2

µ, U2
� ) (middle) and (M, U2

e , U2
µ, U2

� , �) (bottom), with the true values and errors

given in Table 4. All plots show the correlation between � (left panel) and m�� (right panel)

with the baryon asymmetry. The blue regions represent the NH case and the red regions the IH.

The green vertical line represents the observed value of the asymmetry. The red and blue dashed

horizontal lines in the right panel indicate the range of m�� predicted by the model with current

neutrino oscillations data.

We find that the observed baryon asymmetry is only compatible with significant flavour

hierarchies in the Yukawa interactions, which restrict the CP violating phases, see Figures 3

– 27 –

Fig. 60: Assuming the minimal Type I seesaw model with nR = 2, and degenerate singlets within the
FCCee range, with parameters that can explain neutrino masses and YB . Upper Plot: determination
of � and YB from a putative measurement of HNL mixings to electrons and muons and masses with
accuracies as indicated, and for NO (blue) and IO(blue). Middle Plot: adding also a measurement of
the HNL mixing to ⌧ ’s. Bottom Plot: adding also a measurement of the phase � from future neutrino
oscillation experiments. From Ref. [133].
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13 Conclusions

The results of many beautiful experiments in the last decade have demonstrated that neutrinos are massive
and mix. The standard 3⌫ scenario can explain all available data, except that of the unconfirmed signal
of LSND. The lepton flavour sector of the Standard Model is expected to be at least as complex as the
quark one, even though we know it only partially.

The structure of the neutrino spectrum and mixing is quite different from the one that has been
observed for the quarks: there are large leptonic mixing angles and the neutrino masses are much smaller
than those of the remaining leptons. These peculiar features of the lepton sector strongly suggest that
leptons and quarks constitute two complementary approaches to understanding the origin of flavour in
the Standard Model. In fact, the smallness of neutrino masses can be naturally understood if there is new
physics beyond the electroweak scale.

Many fundamental questions remain to be answered in future neutrino experiments, and these can
have very important implications for our understanding of the Standard Model and of what lies beyond:
Are neutrinos Majorana particles? Are neutrino masses the result of a new physics scale? Is CP violated
in the lepton sector? Could neutrinos be the seed of the matter–antimatter asymmetry in the Universe?

A rich experimental programme lies ahead where fundamental physics discoveries are very likely
(almost warranted). We can only hope that neutrinos will keep up with their old tradition and provide a
window to what lies beyond the Standard Model.
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