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In these lectures we give an introduction and overview of the electroweak Standard Model (EWSM)
of particle physics. We first introduce the basic concepts of quantum field theory necessary to build
the EWSM: abelian and non-abelian gauge theories, spontaneous symmetry breaking and the Higgs
mechanism. We also introduce some basic concepts of renormalization, so as to be able to understand
the full power of electroweak precision tests and their impact on our understanding of the EWSM and
its possible extensions. We discuss the current status of experimental tests and conclude by pointing
the problems still existing in particle physics not solved by the EWSM and how these impact the
future of the field.
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1 Quantum field theory basics and gauge theories

1.1 Quantum field theory basics

1.1.1 Why quantum field theory

Quantum field theory (QFT) [1] is, at least in its origin, the result of trying to work with both quantum
mechanics and special relativity. Loosely speaking, the uncertainty principle tells us that we can violate
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energy conservation by �E as long as it is for a small �t. But on the other hand, special relativity tells
us that energy can be converted into matter. So if we get a large energy fluctuation �E (for a short
�t) this energy might be large enough to produce new particles, at least for that short period of time.
However, quantum mechanics does not allow for such process. For instance, the Schrödinger equation
for an electron describes the evolution of just this one electron, independently of how strongly it interacts
with a given potential. The same continues to be true of its relativistic counterpart, the Dirac equation.
We need a framework that allows for the creation (and annihilation) of quanta. This is QFT.

We can say the same thing by being a bit more precise so that we can start to see how we are going
to tackle this problem. Let us consider a classical source that emits particles with an amplitude JE(x),
where x ⌘ xµ is the space-time position. We also consider an absorption source of amplitude JA(x).
We assume that a particle of mass m that is emitted at y propagates freely before being absorbed at x [2].

Fig. 1: Emission, propagation and absorption of a particle.

The quantum mechanical amplitude is given by

A =

Z
d4x d4y hx|e�iH�t|yi JA(x) JE(y) , (1.1)

where �t = x0 � y0. Here we have used the notation

d4x ⌘ dt d3x , (1.2)

to denote the Minkowski space four-volume, i.e. we are integrating over time and all space. We want to
check if the amplitude in (1.1) is Lorentz invariant, i.e. if it is compatible with special relativity. Writing

H =
p
p2 +m2 ⌘ !p , (1.3)

as the frequency associated with momentum p, then the amplitude is

A =

Z
d4x d4y hx|e�i!p(x0�yo)|yi JA(x) JE(y) . (1.4)

If we go to momentum space using
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|xi =
Z

d3p

(2⇡)3/2
|pi e�i~p·~x , (1.5)

and analogously for |yi, we obtain

A =

Z
d4x d4y

Z
d3p

(2⇡)3/2
hp| ei~p·~x e�i!p(x0�yo)

Z
d3p0

(2⇡)3/2
|p0i e�i~p0·~y JA(x) JE(y) . (1.6)

Using that

hp|p0i = �3(~p� ~p0)N2

p , (1.7)

where Np is the momentum dependent normalization, we now have

A =

Z
d4x d4y JA(x) JE(y)

Z
d3p

(2⇡)3
N2

p e�ipµ (xµ�yµ) , (1.8)

In the last exponential factor in (1.8) we use covariant notation, i.e.

pµ (xµ � yµ) = p0(x0 � y0)� ~p · (~x� ~y) = !p�t� ~p · (~x� ~y) . (1.9)

To check if A is Lorentz invariant we are going to define the four-momentum integration with a Lorentz
invariant measure. Defining

d4p = dp0 d3p , (1.10)

we now can compute the Lorentz invariant combination

d4p �(p2 �m2) , (1.11)

where the delta function ensures that p2 = pµ pµ = m2. Then we do the integral on p0 as in

Z
dp0 �(p

2 �m2) =

Z
dp0 �(p

2

0 � |~p|2 �m2) =

Z
dp0

�(p0 � !p)

|2p0|
=

Z
dp0

�(p0 � !p)

2wp
, (1.12)

remembering that !p = +
p
p2 +m2 positive. Only the positive root contributes in (1.12) since the

fact that pµ is always time-like means that the sign of p0 is invariant. This, in turn, means that the p0
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integration interval is (0,1), and the negative root is outside the integration region.

This allows us to rewrite the amplitude as

A =

Z
d4x d4y JA(x) JE(y)

Z
d4p

(2⇡)3
�(p2 �m2) 2!p N2

p e�ipµ (xµ�yµ) . (1.13)

The expression above appears Lorentz invariant other than for the momentum dependent factor

2!pN
2

p . (1.14)

Thus, the choice (up to an irrelevant constant)

N2

p =
1

2!p
, (1.15)

results in the Lorentz invariant amplitude

A =

Z
d4x d4y JA(x) JE(y)

Z
d4p

(2⇡)3
�(p2 �m2) e�ipµ (xµ�yµ) . (1.16)

Although the quantum mechanical amplitude in (1.16) is manifestly Lorentz invariant, there remains
a problem: this expression is valid even if the interval separating x from y is spatial, i.e. even if the
separation is non-causal. This is obviously wrong, since we started from the assumption that there is an
emitting source at y and an absorbing source at x, for which the causal order is crucial, which means that
the way it is now the separation should not be spatial.

In order to solve this problem, we are going to allow all sources to both emit and absorb, i.e. at any point
x we have

J(x) = JE(x) + JA(x) . (1.17)

The amplitude then reads

A =

Z
d4x d4y J(x) J(y)

Z
d3p

(2⇡)3 2!p

n
✓(x0 � y0) e

�ipµ (xµ�yµ) + ✓(y0 � x0) e
+ipµ (xµ�yµ)

o
.

(1.18)

The first term in (1.18) corresponds to the emission in y and absorption in x, since the function ✓(x0 �
y0) 6= 0 for x0 > y0. For the opposite time order, this term is zero and then only the second term
contributes. The sign inversion in the exponential of the second term in (1.18) needs some explaining.
Surely, the time component p0 (y0 � x0) = �p0 (x0 � y0) comes from just the inversion of the causal
order. However, the inversion of the space component from ~p · (~x � ~y) to � ~p · (~x � ~y) is possible
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by changing d3p to �d3p and switching the limits of the spatial momentum integration to preserve the
overall sign.

So for time like separations, when the order of the events is an observable, only one of these terms
contributes. On the other hand, for space like separations both terms contribute. Different observers
would disagree on the temporal order of the event, however all of them would write the same amplitude.
So this amplitude is both Lorentz invariant and causal. It is typically written as

A =

Z
d4x d4y J(x) J(y)DF (x� y) , (1.19)

where we defined

DF (x� y) ⌘
Z

d3p

(2⇡)3 2!p

n
✓(x0 � y0) e

�ipµ (xµ�yµ) + ✓(y0 � x0) e
+ipµ (xµ�yµ)

o
. (1.20)

The two-point function above is what is called a Feynman propagator. To summarize so far, in order
to obtain a Lorentz invariant and causal quantum mechanical amplitude for the emission, propagation
and absorption of a particle we had to allow for all points in spacetime to both emit and absorb, and we
needed to allow for all possible time orders. There is still one more thing we need to introduce.

1.1.2 Charged particles

Here is the problem: if the particle propagating between y and x is charged, for instance under standard
electromagnetism, i.e. electrically charged, then because the amplitude (1.19) does not tell us the order of
events in the case of space like separation, we do not know the sign of the current. For instance, suppose
a negatively charged particle. Is it being absorbed or emitted ? We concluded above that this absolute
statement should not be allowed. But this means that we cannot know the direction of the current.

Fig. 2: Emission, propagation and absorption of a charged particle. Consistency with either temporal
order is restored by having anti-particles. Emission of a negatively charged particle at y followed by ab-
sorption at x is equivalent to emission of the positively-charged anti-particle at x, followed by absorption
at y.

The solution to this problem is that for each negatively charged particle, there must be a positively
charged particle with the same mass, its anti-particle. With this addition, it will not be possible to
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distinguish between say the emission of a negatively charged particle or the absorption of its positively
charged anti-particle.

In general, any time a particle has an internal quantum number that may distinguish emission from
absorption it should have a distinct anti-particle that would restore the desired indistinguishability. For
instance, neutral kaons have no electric charge, but they carry a quantum number called “strangeness”
which distinguishes the neutral kaon from the neutral anti-kaon. In the absence of any distinguishing
internal quantum number, a particle can be its own anti-particle.

Finally, to illustrate the relationship between propagation and particle or anti-particle identity, we con-
sider the scattering of a particle off a localized potential. We first consider the situation with emission at
y, followed by interaction at z and finally absorption at x, i.e. the time order is x0 > z0 > y0.

Fig. 3: Scattering off a localized potential.

The amplitude for this is

Ascatt. =

Z
d4x d4y J(y)DF (z � y)Aint.(z)DF (z � x) J(x) , (1.21)

where Aint.(z) is the amplitude for the local interaction with the potential at z. But we know that the
amplitude is non-zero even if events are spatially separated. In this case then, it is possible to have a
non-zero amplitude corresponding to the following time order: y0, x0 > z0. This now would correspond
to the diagram in Fig. 4.

Fig. 4: Particle – anti-particle pair creation.

6



FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

In this time order, a pair is created from the “vacuum” at z. The arrows indicate that a particle propagates
between z and x, where it is absorbed, whereas an anti-particle travels from z to y. Thus, the creation
of a pair particle–anti-particle, assuming there is enough energy, is an unavoidable consequence of the
marriage between quantum mechanics and special relativity. All of the arguments above lead us to the
fact that relativistic quantum mechanics, compatible with causality, must be a theory of quantized local
fields. That is to say, we must be able to create or annihilate quanta of the fields locally, including
particles and anti-particles. We will define what we really mean by this below.

1.1.3 Some classical field theory

Here we start by considering a field or set of fields �(x), where x is the spacetime position. The La-
grangian is a functional of �(x) and its derivatives

@�(x)

@xµ
= @µ�(x) . (1.22)

Here �(x) can be a set of fields with an internal index i, such that

�(x) = {�i(x)} . (1.23)

We will start with the Lagrangian formulation. We define the Lagrangian density L(�(x), @µ�(x)) by

L =

Z
d3xL(�(x), @µ�(x)). (1.24)

In this way the action is

S =

Z
dtL =

Z
d4xL(�(x), @µ�(x)) , (1.25)

where we are again using the Lorentz invariant spacetime volume element

d4x = dt d3x . (1.26)

From (1.25) is clear that L must be Lorentz invariant. In addition, L might also be invariant under other
symmetries of the particular theory we are studying. These are generally called internal symmetries and
we will study them in more detail later in the rest of the course.

We vary the action in (1.25) in order to find the extremal solutions (i.e. �S = 0) and obtain the classical
equations of motion, just as we obtain classical mechanics from extremizing the action of a system of
particles. We get
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�S =

Z
d4x

⇢
@L
@�

��+
@L

@(@µ�)
�(@µ�)

�
(1.27)

But we have that

�(@µ�) = @µ(��) , (1.28)

so the variation of the action is

�S =

Z
d4x

⇢
@L
@�

��+
@L

@(@µ�)
@µ(��)

�
,

=

Z
d4x

⇢✓
@L
@�
� @µ

✓
@L

@(@µ�)

◆◆
��+ @µ

✓
@L

@(@µ�)
��

◆�
. (1.29)

In the second line in (1.29) we have integrated by parts. The last term is a four-divergence, i.e. a total
derivative. Since the integral is over the volume of all of spacetime, the resulting (hyper-)surface term
must be evaluated at infinity. But the value of the field variation at these extremes is �� = 0. Thus, the
(hyper-)surface term in (1.29) does not contribute.

Then imposing �S = 0, we see that the first term in (1.29) multiplying �� must vanish for all possible
values of ��. We obtain

@L
@�
� @µ

✓
@L

@(@µ�)

◆
= 0 , (1.30)

which are the Eüler-Lagrange equations, one for each of the �i(x), also known as equations of motion.

If now we want to go to the Hamiltonian formulation, we start by defining the canonically conjugated
momentum by

p(x) =
@L

@�̇(x)
=

@

@�̇(x)

Z
d3yL(�(y), @µ�(y)) , (1.31)

which results in the momentum density

⇡(x) =
@L
@�̇(x)

. (1.32)

Here ⇡(x) is the momentum density canonically conjugated to �(x). Then the Hamiltonian is given by

H =

Z
d3x⇡(x) �̇(x)� L , (1.33)
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which leads to the Hamiltonian density

H(x) = ⇡(x) �̇(x)� L(x) , (1.34)

where we must remember that we evaluate at a fixed time t, i.e. x = (t,x) for fixed t. The Lagrangian
formulation allows for a Lorentz invariant treatment. On the other hand, the Hamiltonian formulation
might have some advantages. For instance, it allows us to impose canonical quantization rules.

Example: We start with a simple example: the non-interacting theory of real scalar field. The Lagrangian
density is given by

L =
1

2
@µ�@

µ�� 1

2
m2 �2 , (1.35)

We will call the first term in (1.35) the kinetic term. In the second term m is the mass parameter, so
this we will call the mass term. We first obtain the equations of motion by using the Eüler-Lagrange
equations (1.30). We have

@L
@�

= �m2 � ,
@L

@(@µ�)
= @µ� , (1.36)

giving us

( @2 +m2)� = 0 , (1.37)

where the D’Alembertian operator is defined by @2 = @µ@µ. The equation of motion (1.37) is called
the Klein-Gordon equation. This might be a good point for a comment. In “deriving” the equations of
motion (1.37) , we started with the “given” Lagrangian density (1.35). But in general this is not how
it works. Many times we have information that leads to the equations of motion, so we can guess the
Lagrangian that would correspond to them. This would be a bottom up construction of the theory. In
this case, the Klein-Gordon equation is just the relativistic dispersion relation p2 = m2, noting that
�i@µ = pµ. So we could have guessed (1.37), and then derive L. However, we can invert the argument:
the Lagrangian density (1.35) is the most general non-interacting Lagrangian for a real scalar field of
mass m that respects Lorentz invariance. So imposing the symmetry restriction on L we can build it and
then really derive the equations of motion. In general, this procedure of writing down the most general
Lagrangian density consistent with all the symmetries of the theory will be limiting enough to get the
right dynamics1.

Now we want to derive the form of the Hamiltonian in this example. It is convenient to first write the
Lagrangian density (1.35) as

1Actually, in the presence of interactions we need to add one more restriction called renormalizability. Otherwise, in general
there will be infinite terms compatible with the symmetries.
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L =
1

2
�̇2 � 1

2
(~r�)2 � 1

2
m2�2 . (1.38)

The canonically conjugated momentum density is now

⇡(x) =
@L
@�̇

= �̇ . (1.39)

Then, using (1.34) we obtain the Hamiltonian

H =

Z
d3x

⇢
⇡2 � 1

2
⇡2 +

1

2
(~r�)2 + 1

2
m2 �2

�
(1.40)

which results in

H =

Z
d3x

⇢
1

2
⇡2 +

1

2
(~r�)2 + 1

2
m2 �2

�
. (1.41)

We clearly identify the first term in (1.41) as the kinetic energy, the second term as the energy associated
with spatial variations of the field, and finally the third term as the energy associated with the mass.

1.1.4 Continuous symmetries and Noether’s theorem

In addition to being invariant under Lorentz transformations, the Lagrangian density L can be a scalar
under other symmetry transformations. In particular, when the symmetry transformation is continuous,
we can express it as an infinitesimal variation of the field �(x) that leaves the equations of motion
invariant. Let us consider the infinitesimal transformation

�(x) �! �0(x) = �(x) + ✏�� , (1.42)

where ✏ is an infinitesimal parameter. The change induced in the Lagrangian density is

L �! L + ✏�L , (1.43)

where we factorized ✏ for convenience in the second term. This term can be written as

✏�L =
@L
@�

(✏��) +
@L

@(@µ�)
@µ(✏��)

= ✏��

⇢
@L
@�
� @µ

✓
@L

@(@µ�)

◆�
+ ✏ @µ

✓
@L

@(@µ�)
��

◆
. (1.44)
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The first term in (1.44) vanishes when we use the equations of motion. The last term is a total derivative
so it does not affect the equations of motion when we minimize the action. We can take advantage of this
fact and define

jµ ⌘ @L
@(@µ�)

�� (1.45)

such that its four-divergence

@µ j
µ = 0 , (1.46)

up to terms that are total derivatives in the action, and therefore do not contribute if we use the equations
of motion. We call this object the conserved current associated with the symmetry transformation (1.42).
We will illustrate this with the following example.

Example:

We consider a complex scalar field. That is, there is a real part of �(x) and an imaginary part, such that
�(x) and �⇤(x) are distinct. The Lagrangian density can be written as

L = @µ�
⇤ @µ��m2 �⇤� . (1.47)

The Lagrangian density in (1.47) is invariant under the following transformations

�(x) �! ei↵ �(x)

(1.48)

�⇤(x) �! e�i↵ �⇤(x) ,

where ↵ is an arbitrary constant real parameter. If we consider the case when ↵ is infinitesimal (↵⌧ 1),

�(x) �! �0(x) ' �(x) + i↵�(x) (1.49)

�⇤(x) �! �⇤
0
(x) ' �⇤(x)� i↵�⇤(x) , (1.50)

which tells us that we can make the identifications

✏�� = i↵�

✏��⇤ = �i↵�⇤ , (1.51)
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with ✏ = ↵. In other words we have

�� = i� , ��⇤ = �i�⇤ . (1.52)

Armed with all these we can now build the current jµ associated with the symmetry transformations
(1.48). In particular, since there are two independent degrees of freedom, � and �⇤, we will have two
terms in jµ

jµ =
@L

@(@µ�)
��+

@L
@(@µ�⇤)

��⇤ , (1.53)

From (1.47) we obtain

@L
@(@µ�)

= @µ�⇤ ,
@L

@(@µ�⇤)
= @µ� (1.54)

which results in

jµ = i {(@µ�⇤)�� (@µ�)�⇤} . (1.55)

We would like to check current conservation, i.e. check that @µ jµ = 0. However, as we discussed above,
this is only true up to total divergences that do not affect the equations of motion. So the strategy is
to compute the four-divergence of the current and then use the equations of motion to see if the result
vanishes. The equations of motion are easily obtained from the Eüler-Lagrange equations applied to L
in (1.47). This results in

(@2 +m2)�⇤ = 0 , (@2 +m2)� = 0 , (1.56)

i.e. both � and �⇤ obey the Klein-Gordon equation. Taking the four-divergence in (1.55) we obtain

@µj
µ = i

�
(@2�⇤)�� (@2�)�⇤

 
, (1.57)

Thus, this is not zero in general. But applying the equations of motion in (1.56) we get

@µj
µ = i

�
(�m2�⇤)�� (�m2�)�⇤

 
= 0 , (1.58)

which then verifies current conservation. We conclude that, at least at the classical level, as long as the
equations of motion are valid, the current is conserved.
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1.1.5 Field quantization

Since, as we saw before, quantum field theory (QFT) emerges as we attempt to combine quantum me-
chanics with special relativity it is natural to start with quantum mechanics of a single particle. We will
see that when trying to make this conform with relativistic dynamics, we will naturally develop a way of
thinking of the solution to this problem that goes by the name of canonical quantization. Besides being
conceptually natural, this formalism will be useful when trying to understand the statistics of different
states.

1.1.5.1 Quantum mechanics

The Schrödinger equation for the wave-function of a free particle is

i
@

@t
 (x, t) = � 1

2m
r2 (x, t) , (1.59)

where we set ~ = 1. In terms of states and operators, we can define the wave function as  (x, t) =

hx| , ti, i.e. in term of the state | , ti projected onto the position state |xi. More generally, eq. (1.59)
can be written as

i
@

@t
| , ti = H | , ti , (1.60)

where H is the Hamiltonian which in the non-relativistic free-particle case is just

H =
p2

2m
, (1.61)

resulting in (1.59). We would like to generalize this for the relativistic case, i.e. choosing

H = +
p

p2 +m2 , (1.62)

where again we use c = 1. If one uses this Hamiltonian in the Schrödinger equation one gets

i
@

@t
 (x, t) =

p
�r2 +m2  (x, t) . (1.63)

But this is problematic for a relativistic equation since time and space derivatives are of different order.
If the equation has to have any chance of being Lorentz invariant, it needs to have the same number of
time and space derivatives. One simple way to do this is to apply the time derivative operator twice on
both sides. This results in

� @2

@t2
 (x, t) =

�
�r2 +m2

�
 (x, t) . (1.64)
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This is the Klein-Gordon equation for the wave function  (x, t), and is clearly consistent with the rela-
tivistic dispersion relation (1.62), once we make the identifications

i
@

@t
$ H � ir $ p , (1.65)

where H and p are the Hamiltonian and momentum operators. In covariant notation, and using

@

@xµ
⌘ @µ = (

@

@t
,r) , @

@xµ
⌘ @µ = (

@

@t
,�r) , (1.66)

we can write the Klein-Gordon equation as

(@µ @
µ +m2) (x, t) = 0 . (1.67)

This is manifestly Lorentz invariant. However it has several problems. The fact that this equation has
two time derivatives implies for instance that | (x, t)|2 is not generally time independent, so we cannot
interpret it as a conserved probability, as it is in the case of the Scrödinger equation. This issue is tackled
by Dirac, which derives a relativistic equation for the wave-function that is first order in both time and
space derivatives. But this equation will be valid for spinors, not scalar wave-functions. We will study it
in more detail later. But it does not resolve the central issue, as we see below.

Both the Klein-Gordon and the Dirac equations admit solutions with negative energies. This would
imply that the system does not have a ground state, since it would be always energetically favorable to go
to the negative energy states. Since the Dirac equation describes fermions, one can use Pauli’s exclusion
principle and argue, as Dirac did, that all the negative energy states are already occupied. This is the
so-called Dirac sea. According to this picture, an electron would not be able to drop to negative energy
states since these are already filled. Interestingly, this predicts that in principle it should be possible to
kick one of the negative energy states to a positive energy state. Then, one would see an electron appear.
But this would leave a hole in the sea, which would appear as a positively charged state. This is Dirac’s
prediction of the existence of the positron. Is really nice, but now we need an infinite number of particles
in the sea, whereas we were supposed to be describing the wave-function of one particle. Besides, this
only works for wave-functions describing fermions. What about bosons?

What we are seeing is the inadequacy of the relativistic description of the one-particle wave-
function. At best, as in the case of fermions, we were driven from a one-particle description to one with
an infinite number of particles. At the heart of the problem is the fact that, although now we have the
same number of time and space derivatives, position and time are not treated on the same footing in
quantum mechanics. There is in fact a position operator, whereas time is just a parameter labeling the
states.

On the other hand, we can consider operators labeled by the spacetime position xµ = (t,x), such as in

�(t,x) = �(x) . (1.68)
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These objects are called quantum fields. They are clearly in the Heisenberg picture, whereas if we choose
the time-independent Schrödinger picture quantum fields they are only labeled by the spatial component
of the position as in �(x). These quantum fields will be our dynamical degrees of freedom. All spacetime
positions have a value of �(x) assigned. As we will see in more detail below, the quantization of these
fields will result in infinitely many states. So we will abandon the idea of trying to describe the quantum
dynamics of one particle. This formulation will allow us to include antiparticles and (in the presence
of interactions) also other particles associated with other quantum fields. It solves one of the problems
mentioned earlier, the fact that relativity and quantum mechanics should allow the presence of these
extra particles as long as there is enough energy, and/or the intermediate process that violates energy
conservation by �E lasts a time �t such that �E�t ⇠ ~.

The behavior of quantum fields under Lorentz transformations will define their properties. We can
have scalar fields �(x), i.e. no Lorentz indices; fields that transform as four-vectors: �µ(x); as spinors:
�a(x), with a a spinorial index; as tensors, as in the rank 2 tensor �µ⌫(x); etc. We will start with the
simplest kind, the scalar field.

1.1.5.2 Canonical description of quantum fields

First, let us assume a scalar field �(x) that obeys the Klein-Gordon equation. The exact meaning of
this will become clearer below. But for now it suffices to assume that our dynamical variable obeys a
relativistic equation relating space and time derivatives:

(@2 +m2)�(x) = 0 , (1.69)

where we defined the D’Alembertian as @2 ⌘ @µ@µ, and m is the mass of the particle states associated
with the field �(x). We also assume the scalar field in question is real. That is

�(x) = �†(x) , (1.70)

where we already anticipate to elevate the field to an operator, hence the †. It is interesting to solve the
Klein-Gordon equation for the classical field in momentum space. The most general solution has the
following form

�(x, t) =

Z
d3p

(2⇡)3
Np

n
ap e

�i(!pt�p·x) + b†p e
i(!pt�p·x)

o
, (1.71)

where, as defined earlier, !p = +
p
p2 +m2. Here, Np is a momentum-dependent normalization to

be determined later, and the momentum-dependent coefficients ap and b†P will eventually be elevated to
operators. In general ap and b†p are independent. However, when we impose (1.70), this results in

ap = bp . (1.72)
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This is not the case, for instance, if �(x) is a complex scalar field.

At this point and before we quantize the system, we remind ourselves of the fact that the Klein-Gordon
equation (1.69) is obtained from the Lagrangian density

L =
1

2
@µ�@

µ�� 1

2
m2 �2 . (1.73)

To convince yourself of this just use the Eüler-Lagrange equations from the previous lecture to derive
(1.69) from (1.73). Then, since �(x) is our dynamical variable, the canonically conjugated momentum
is

⇡(x) =
@L
@�̇(x)

= �̇ , (1.74)

which, using (1.71), results in

⇡(x, t) =

Z
d3x

(2⇡)3
Np

n
�i!p ap e

�i(!pt�p·x) + i!p a
†
p e

i(!pt�p·x)
o

. (1.75)

Having the field and its conjugate momentum defined we can then impose quantization conditions. It is
useful first to refresh our memory on how this is done in quantum mechanics.

1.1.5.3 Canonical quantization in quantum mechanics

Let us consider a particle of mass m = 1 in some units. Its Lagrangian is

L =
1

2
q̇2 � V (q) , (1.76)

where V (q) is some still unspecified potential, which we assume it does not depend on the velocities.
The associated Hamiltonian is

H =
1

2
p2 + V (q) , (1.77)

where the conjugate momentum is p = @L/@q̇ = q̇. To quantize the system we elevate p and q to
operators and impose the commutation relations

[q, p] = i, [q, q] = 0 = [p, p] . (1.78)

Notice that if we are in the Heisenberg description, the commutators should be evaluated at equal time,
i.e. [q(t), p(t)] = i, etc. We change to a description in terms of the operators
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a ⌘ 1

2!
(! q + ip)

a† ⌘ 1

2!
(! q � ip) , (1.79)

where ! is a constant with units of energy. It is straightforward, using the commutators in (1.78), to
prove that these operators satisfy the following commutation relations

[a, a†] = 1, [a, a] = 0 = [a†, a†] . (1.80)

We define the ground state of the system by the following relation

a|0i = 0 , (1.81)

where the 0 in the state refers to the absence of quanta. Then, assuming the ground state (or vacuum) is
a normalized state, we have

1 = h0|0i = h0|[a, a†]|0i = h0|aa†|0i � h0|a†a|0i . (1.82)

Since the last term vanishes when using (1.81), we arrive at

h0|0i = h0|aa†|0i . (1.83)

This is achieved only if we have

a†|0i = |1i ,

a|1i = |0i , (1.84)

which means that a and a† are ladder operators. We interpret the state |1i as a state with one particle.
In this way a and a† can also we called annihilation and creation operators. The simplest example is, of
course, the simple harmonic oscillator, with V (q) = !2 q2/2.

1.1.5.4 Quantizing fields

We are now ready to generalize the canonical quantization procedure for fields. We will impose com-
mutation relations for the field in (1.71) and its conjugate momentum in (1.75), which means that we
elevated them to operators, specifically in the Heisenberg representation. The quantization condition is
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[�(x, t),⇡(x0, t)] = i�(3)(x� x0) . (1.85)

Here we see that the commutator is defined at equal times, as it should for Heisenberg operators. All
other possible commutators vanish, i.e.

[�(x, t),�(x0, t)] = 0 = [⇡(x, t),⇡(x0, t)] (1.86)

Now, when we turned �(x) into an operator, so did ap and a†p. In order to see what the imposition of
(1.85) and (1.86) implies for the commutators of the operators ap and a†p, we write out (1.85) using the
explicit expressions (1.71) and (1.75) for the field and its momentum in terms of them. We obtain

[�(x, t),⇡(x0, t)] =

Z
d3p

(2⇡)3
Np

Z
d3p0

(2⇡)3
Np0

n
i!p0e

�i(!p�!p0 )teip·x�ip0·x0
[ap, a

†
p0 ]

�i!p0e
i(!p�!p0 )te�ip·x+ip0·x0

[a†p, ap0 ]
o

, (1.87)

where we have already assumed that

[ap, ap0 ] = 0 = [a†p, a
†
p0 ] . (1.88)

The question is what are the commutation rules for [ap, a
†
p0 ]. Now we will show that in order for (1.85)

to be satisfied, we need to impose

[ap, a
†
p0 ] = (2⇡)3 �(3)(p� p0) . (1.89)

If we do this in (1.85) we see that !p = !p0 , Np = Np0 , and we obtain

[�(x, t),⇡(x0, t)] = i

Z
d3p

(2⇡)3
N2

p !p

n
eip·(x�x0

) + e�ip·(x�x0
)

o
. (1.90)

But we notice that since

�(3)(x� x0) =

Z
d3p

(2⇡)3
eip·(x�x0

) =

Z
d3p

(2⇡)3
e�ip·(x�x0

) , (1.91)

then if

N2

p !p =
1

2
, (1.92)
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we recover the result of (1.85). In other words

[�(x, t),⇡(x0, t)] = i�(3)(x� x0)  ! [ap, a
†
p0 ] = (2⇡)3�(3)(p� p0) , (1.93)

as long as

Np =
1p
2!p

. (1.94)

We can now go back to the expression (1.71) for the real scalar field, and rewrite it in covariant form as

�(x) =

Z
d3p

(2⇡)3
p

2!p

n
ape

�ipµxµ
+ a†pe

ipµxµ
o

, (1.95)

where we used that

pµx
µ = p0x0 � p · x = !pt� p · x (1.96)

Once again, since we define the vacuum state by

ap|0i = 0 , (1.97)

we conclude that ap and a†p are ladder operators, just as in the quantum mechanical case seen above. In
other words we have

a†p|0i = |1pi , (1.98)

where |1pi corresponds to the state containing one particle of momentum p. Conversely, and analogously
to the quantum mechanical case, we have

ap|1pi = |0i . (1.99)

This allows us to interpret the operators �(x) and �†(x) in the following form:

The operator �(x):

– Annihilates a particle of momentum p

– Creates an anti-particle of momentum p

On the other hand,
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The operator �†(x):

– Annihilates an anti-particle of momentum p

– Creates a particle of momentum p

Of course in our case, a real scalar field, particles and anti-particles are the same due to (1.72). On the
other hand, if � was for instance complex, particles and anti-particles would be created and annihilated
by different operators, and they would carry different “charges” under the global U(1) symmetry of the
Lagrangian.

1.1.6 Quantization of fermion fields

We will consider the spinor  (x, t) as a field and use to quantize the fermion field theory. For this we
need to know its conjugate momentum. So it will be helpful to have the Dirac Lagrangian. We will
first insist in imposing commutation rules just as for the scalar field. But this will result in a disastrous
Hamiltonian. Fixing this problem will require a drastic modification of the commutation relations for the
ladder operators.

The first step for the quantization procedure is to have the Dirac Lagrangian. Starting from the
Dirac equation

(i�µ@µ �m) (x) = 0 , (1.100)

we can obtain the conjugate equation

 ̄(x) (i�µ@µ +m) = 0 , (1.101)

where in this equation the derivatives act to their left on  ̄(x). From these two equations for  and  ̄ is
clear that the Dirac Lagrangian must be

L =  ̄(x) (i�µ@µ �m) (x) . (1.102)

It is straightforward to check the the Eüler-Lagrange equations result in (1.100) and (1.101). For instance,

@L
@ ̄
� @µ

✓
@L

@(@µ ̄)

◆
= 0 . (1.103)

But the second term above is zero since L does not depend (as written) on @µ ̄. Thus, we obtain the Dirac
equation (1.100) for  . Similarly, if we use  and @µ as the variables to put together the Eüler-Lagrange
equations, we obtain (1.101).

From the Dirac Lagrangian we can obtain the conjugate momentum density defined by
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⇡(x) =
@L

@(@0 )
= i ̄�0 = i † . (1.104)

This way, if we follow the quantization playbook we used for the scalar field, we should impose

[ a(x, t),⇡b(x
0, t)] = [ a(x, t), i 

†
b(x

0, t)] = i�(3)(x� x0) �ab , (1.105)

or just

[ a(x, t), 
†
b(x

0, t)] = �(3)(x� x0) �ab , (1.106)

Following the same steps as in the case of the scalar field, we now expand  (x) and  †(x) in terms of
solutions of the Dirac equation in momentum space. As we will see later, this will not work. But it is
interesting to see why, because this will point directly to the correct quantization procedure. The most
general expression for the fermion field in terms of the solutions of the Dirac equation in momentum
space is

 (x) =

Z
d3p

(2⇡)3
1p
2Ep

X

s

⇣
asp u

s(p) e�iP ·x + bs†p vs(p) e+iP ·x
⌘

, (1.107)

 †(x) =

Z
d3p

(2⇡)3
1p
2Ep

X

s

⇣
as†p us†(p) eiP ·x + bsp v

s†(p) e+iP ·x
⌘

, (1.108)

The imposition of the quantization rule (1.106) on the field and its conjugate momentum in (1.107) and
(1.108) would imply that the coefficients asp, as†p , bsp and bs†p are ladder operators associated to the u-type
and v-type “particles”. But before we impose commutation rules on them we are going to compute the
Hamiltonian in terms of these operators.

Remember that the Hamiltonian is defined by

H =

Z
d3x {⇡(x) @0 (x)� L} ,

=

Z
d3x

n
i †(x) @0 (x)�  ̄(x) (i�µ@µ �m) (x)

o
, (1.109)

which results in

H =

Z
d3x  ̄(x) (�i� ·r+m) (x) , (1.110)
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Inserting (1.107) and (1.108) into (1.110) we have

H =

Z
d3x

(Z
d3k

(2⇡)3
1p
2Ek

X

r

⇣
ar†k ūr†(k) eiK·x + brk v̄

r(k) e�iK·x
⌘

(1.111)

⇥
Z

d3p

(2⇡)3
1p
2Ep

X

s

⇣
asp e

�iP ·x (� · p+m)us(p) + bs†p e+iP ·x (�� · p+m) vs(p)
⌘)

,

In the second line of (1.111) the Hamiltonian operator was applied to the exponentials. Since P · x =

Ex0 � p · x, the �i in the operator cancels with the +ip · x in when the derivative acts on the �P · x
exponential. The opposite sign is picked up when acting on the +P · x exponential. Furthermore, since

(6p�m)us(p) = 0 =) (Ep�
0 � � · p�m)us(p) = 0 , (1.112)

which results in

(� · p+m)us(p) = Ep �
0 us(p) . (1.113)

Similarly, applying

(6p+m) vs(p) = 0 =) (Ep�
0 � � · p+m)us(p) = 0 , (1.114)

which gives us

(�� · p+m) vs(p) = �Ep �
0 vs(p) . (1.115)

Using (1.113) and (1.115) and that

Z
d3xe±i(k�p)·x = (2⇡)3 �(3)(k� p) , (1.116)

in (1.111) we can get rid of 2 of the 3 integrals. Then we have

H =

Z
d3p

(2⇡)3
1

2Ep

X

r,s

n
ar†p asp u

r†(p) �0Ep�
0 us(p)

� brp b
s†
p vr†(p) �0Ep �

0 vs(p)
o

, (1.117)
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where we have also use the orthogonality of the us(p) and vs(p) solutions. Finally, using the normal-
ization os spinors

ur†(p)us(p) = 2Ep �
rs ,

vr†(p) vs(p) = 2Ep �
rs , (1.118)

we obtain

H =

Z
d3p

(2⇡)3

X

s

n
Ep a

s†
p asp � Ep b

s
p b

s†
p

o
. (1.119)

In order to have a correct form of the Hamiltonian, we must rearrange the second term in (1.119) into a
number operator, such as the first term. For this purpose, we need to apply the commutation rules on bsp
and bs†p . If we were to impose the same commutation rules we used for scalar fields, and also in (1.106),
we would have

[arp, a
s†
k ] = (2⇡)3 �(3)(p� k) �rs, [brp, b

s†
k ] = (2⇡)3 �(3)(p� k) �rs, (1.120)

and zero otherwise. This would result in a Hamiltonian

H =

Z
d3p

(2⇡)3
Ep

X

s

n
as†p asp � bs†p bsp

o
�
Z

Epd
3p �(3)(0) . (1.121)

The last term in (1.121) is an infinite constant. It corresponds to the sum over all the zero-point energies
of the infinite harmonic oscillators each with a “frequency” Ep. This will always be present in quantum
field theory (just as the zero-point energy is present in the harmonic oscillator! ) and we will deal with
it throughout the course. However, since it is a constant, we can always shift the origin of the energy in
order to cancel it2. So this is not what is wrong with this Hamiltonian. The problem is in the first term,
particularly the negative term. The presence of this negative term tells us that we can lower the energy
by producing additional v-type particles. For instance, the state |1̄pi with one such particle would have
an energy

h1̄p|H|1̄pi = �Ep < h0|H|0i , (1.122)

smaller than the vacuum. This means that we have a runaway Hamiltonian, i.e. its ground state corre-
sponds to the state with infinite such particles. This is of course non-sense. The problem comes from the
use of the commutation relations (1.120). On the other hand if we used anti-commutation relations such

2The fact that this constant is negative will remain true and is an important fact. For instant, for scalar fields is positive.
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as

{arp, a
s†
k } = (2⇡)3 �(3)(p� k) �rs, {brp, b

s†
k } = (2⇡)3 �(3)(p� k) �rs, (1.123)

together with

{arp, ask} = 0 = {ar†p , as†k } , {brp, bsk} = 0 = {br†p , bs†k } , (1.124)

and we go back to (1.119), using (1.124) instead of (1.120) we obtain

H =

Z
d3p

(2⇡)3
Ep

X

s

n
as†p asp + bs†p bsp

o
+ constant . (1.125)

This is now a well behaved Hamiltonian, where for each fixed value of the momentum we have a con-
tribution to the energy of as†p asp number of particles of type u, and bs†p bsp number of particles of type
v. This is the expected form of the Hamiltonian, and we arrived at it by using the anti-commutation
relations (1.123) and (1.124) for the ladder operators. It is straightforward to show that they imply anti-
commutation rules also for the fermion field and its conjugate momentum. That is

{ a(x, t), 
†
b(x

0, t)} = �(3)(x� x0) �ab , (1.126)

and zero otherwise, instead of (1.106).

1.1.6.1 Charge operator and fermion number

In order to better understand the meaning of the u and v solutions it is useful to build another operator
other than the Hamiltonian. We start with the Dirac current. We know that it is given by

jµ =  ̄�µ , (1.127)

satisfying current conservation

@µ j
µ = 0 . (1.128)

Noether’s theorem tells us that the conserved current is associated with a conserved charge defined by

Q =

Z
d3x j0(x) =

Z
d3x  ̄(x)�0 (x) =

Z
d3x †(x) (x) . (1.129)
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We have seen this before: it is the probability density obeying a continuity equation (1.128). The fact
that the charge Q is time independent is a direct consequence of (1.128). We build this operator in terms
of ladder operators in momentum space just as we did for the Hamiltonian. Using (1.107) and (1.108)
and following the same steps that lead to (1.111) we obtain

Q =

Z
d3p

(2⇡)3

X

s

n
as†p asp + bsp b

s†
p

o
, (1.130)

Using the anti-commutation relations (1.124) on the second term we arrive at

Q =

Z
d3p

(2⇡)3

X

s

n
as†p asp � bs†p bsp

o
, (1.131)

where we have omitted the a and b-independent, infinite constant. We see clearly that each u-type particle
contributes to Q with +1, whereas each v-type particle contributes with �1. The continuous symmetry
associated with the current jµ is just the global fermion number. That is the Lagrangian is invariant under

 (x) �! ei↵  (x) ,

 †(x) �! e�i↵  †(x) . (1.132)

with ↵ a real constant. This just says that the Dirac Lagrangian conserves fermion number, meaning that
there are fermions with charge +1 and anti-fermions (the v-type states) with charge �1. To summarize:

– asp: annihilates fermions

– bs†p creates anti-fermions

– as†p creates fermions

– bsp annihilates anti-fermions

Or, in other words

–  (x) annihilates fermions or creates anti-fermions

–  †(x) creates fermions or annihilates anti-fermions

1.1.6.2 Pauli exclusion principle and statistics

One of the most important consequences of having anti-commutation rules for the ladder and field oper-
ators is that fermions obey Fermi-Dirac statistics and the Pauli exclusion principle. To see this, consider
a two fermion state. It is built out of creation operators as
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|1sp 1rki = as†p ar†k |0i . (1.133)

The anti-commutation rules (1.124) imply

as†p ar†k = � ar†k as†p . (1.134)

which means that the state is odd under the exchange of two particles (for instance switching positions),
or

|1sp 1rki = �|1rk 1spi (1.135)

In particular if both fermions have the same exact quantum numbers, here in our example the helicity s

and the momentum p, we have

|1sp 1spi = �|1sp 1spi = 0 , (1.136)

which means that this state is forbidden. As a result, we cannot put two fermions (or two anti-fermions)
with the exact same quantum numbers in the same state. So the occupation numbers in states made
of fermions are either 0 or 1 for a given set of quantum numbers. This is what is called Fermi-Dirac
statistics. Equation (1.136) is an expression of the Pauli exclusion principle.

1.1.7 Interactions and Feynman rules

In Section 1.1.1 we derived an expression for the amplitude for a particle to be produce in one pont of
space time, propagate and be annihilated in another point. The kernel of the amplitude defined in (1.19)
is the two-point function DF (x�y) in (1.20). But since we now know that quantum fields act as creation
and annihilation operators for quanta of the fields, we can write

DF (x� y) =

Z
d3p

(2⇡)3 2!p

n
✓(x0 � y0) e

�ipµ (xµ�yµ) + ✓(y0 � x0) e
+ipµ (xµ�yµ)

o

= h0|T�(x)�(y)|0i . (1.137)

In the second line in (1.137) we see that DF (x� y) is the ground state (or vacuum) expectation value of
the product of two field operators evaluated at different points in spacetime in a time ordered form bu the
application of the time order operator T . The two-point function above is called the Feynman propagator.
It isa causal propagator, in the sense that both possible time orderings (x0 > y0 and x0 < y0) are taking
into account in it. But there are other correlation functions we can be interested in. For instance, we
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could want to know the four-point correlation function

G(4)(x1, x2, x3, x4) ⌘ h0|T�(x1)�(x2)�(x3)�(x4)|0i . (1.138)

But since this is a free theory and there are no interactions, the only thing that a particle created some-
where can do is propagate and be annihilated somewhere else. So this four-point function can be dia-
grammatically expressed as seen in Fig. 5.

Fig. 5: Four-point correlation function in the free scalar theory. It is the sum over the products of all
possible pairs of propagators.

The result is the sum over the product of all possible combinations of two propagators:

G(4)(x1, x2, x3, x4) = DF (x1 � x2)DF (x3 � x4) +DF (x1 � x3)DF (x2 � x4)

+DF (x1 � x4)DF (x2 � x3) . (1.139)

We can generalize this result for the n-point correlation function as

G(n)(x1, . . . , xn) =
X

all pairings

DF (xi1 � xi2) . . . DF (xn�1 � xn) . (1.140)

That is, in the free scalar theory the n-point correlation function is given by the product of all possible
products of pairings of two points into propagators (2-point functions). For instance, for the 6-point
correlation function we would need products of three propagators, etc. This result reflects something
called Wick’s theorem. And although it looks that it would be useful only in free theories, we will see
below how we can still use it in the presence of interactions, as long as we make use of perturbation
theory.

1.1.7.1 Perturbation theory

In the presence of interactions the correlation functions will change. But in general the solution of the
problem is better approached by using a controlled approximation, typically in powers of the interaction’s
strength, i.e. its coupling. The lagrangian now is given by

L = L0 + Lint. , (1.141)
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where 0 is the free theory Lagrangian and Lint. denotes the interaction Lagrangian. The latter involves
more than two fields and must respect not just Lorentz invariance, but also any other symmetry we
impose. For instance for real scalar field the interaction

Lint. = �
�

4!
�4 , (1.142)

is invariant under the discrete symmetry �(x)! ��(x), whereas for a complex scalar field the interac-
tion

Lint. = �
�

2
(��⇤)2 , (1.143)

respects a global U(1) transformation, i.e. the Lagrangian is invariant under �(x) ! ei↵�(x) with ↵ a
real constant. Since this is a continuous symmetry, there is a conserved current associated with it.3 For
simplicity, let us consider the case of a real scalar field with Lagrangian

L =
1

2
@µ�@

µ�� m2

2
�2 � �

4!
�4 . (1.144)

In general, the n-point correlation functions of the theory can be written in the functional integral ap-
proach as

h0|T�(x1) . . .�(xn)|0i = G(n)(x1, . . . xn) =

R
D� ei

R
d4xL �(x1) . . .�(xn)R
D�ei

R
d4xL . (1.145)

But since the Lagrangian in (1.145) and (1.144) contains term that are non-quadratic in the field �(x)
we cannot perform the functional integrals as easily as in the free theory, where they can be turned into
basically Gaussian integrals. As a result, we make use of perturbation theory in the interaction coupling
�. To implement this in the functional integral we must expand the exponential in powers of Lint.. We
start with the denominator in (1.145) above. It expansion reads

Z
D�ei

R
d4x{L0+Lint.} =

Z
D�ei

R
d4xL0 +

Z
D� ei

R
d4z L0 i

✓
� �
4!

◆Z
d4x�(x)4

(1.146)

+

Z
D� ei

R
d4zL0

i2

2!

✓
��
4!

◆
2 Z

d4x�4(x)

Z
d4y�4(y) + . . .

We interpret the first term in the right hand side of (1.146) as the vacuum-to-vacuum amplitude in the free
theory, whereas the terms or order � and higher can be seen as corrections to this “vacuum persistence”
due to the presence of interactions. Then, we see that the left hand side can be thought of as the corrected
vacuum persistence in the presence of the interactions

h0̃|0̃i = h0|0i+ . . . , (1.147)

where we denoted |0̃i as the corrected vacuum state. We can see this diagrammatically in Fig. 6. The
fact that the Lagrangian appearing in the exponent in the expressions in (1.146) is the free theory one,

3A local continuous transformation (basically with alpha = ↵(x)) is the case of gauge theories. We will discuss them later
below.
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+

x

+ x y + ...

x y

Fig. 6: Corrections to the vacuum state coming from the interactions. The first two bubbles are the order
�, whereas the third and fourth diagrams are the �2 corrections appearing in h0̃|0̃i � h0|0i.

allows us to apply Wick’s theorem also here. For instance, the contribution of order � can be written as

�i �
4!

Z
d4xh0|T�(x)�(x)�(x)�(x)|0i = �i �

4!

Z
d4xDF (x� x)DF (x� x) . (1.148)

The term of order �2 in the second line of (1.146) will result in the products of four propagators
giving terms such as

Z
d4x

Z
d4y DF (x� x)DF (x� y)DF (x� y)DF (y � y) , (1.149)

as represented in the third diagram in Fig. 6, or in the following combination
Z

d4x

Z
d4y DF (x� y)DF (x� y)DF (x� y)DF (x� y) , (1.150)

as represented by the last diagram of Fig. 6.The vacuum bubbles in Fig. 6 of the denominator in (1.145)
are just corrections to the vacuum state and will cancel with corresponding vacuum bubbles in the nu-
merator of the correlation functions. So we do not need to concern ourselves with these vacuum bubbles
since we are interested in diagrams with connection to external points and their connected corrections.

For example, let us consider the order � corrections to the two point correlation function.

Fig. 7: Order � corrections to the two-point function in the theory described in the text.

The two point function to this order comes from the perturbative expansion

G(2)(x1, x2) =
1R

D�e
R
d4xL0

Z
D� ei

R
d4xL0 �(x1)�(x2) ⇥

✓
1� i

�

4!

Z
d4x�4(x) + . . .

◆
,

(1.151)
where we are already omitting the corrections in the denominator since, as mentioned earlier, they will
be cancelled by vacuum bubbles in the numerator. Thus, the functional integrals can be performed using
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Wick’s theorem, since they only depend on the free Lagrangian L0. For instance, the first term is clearly
the free propagator DF (x1 � x2), the zeroth order in �. The second term, the contribution to order �, is
given by

�i �
4!

1R
D�e

R
d4xL0

Z
d4y

Z
D� ei

R
d4xL0 �(x1)�(x2)�

4(y) . (1.152)

The application of Wick’s theorem to the expression above in (1.152) results in two terms, corresponding
to the two ways to pair ( sometimes called contraction) the two fields evaluated in the external points
with the four fields in the local interaction. These are given by

�i �
4!

Z
d4y {3DF (x1 � x2)DF (y � y)DF (y � y) + 12DF (x1 � y)DF (x2 � y)DF (y � y)} ,

(1.153)
where the factors of 3 and 12 are the combinatoric factors of the two types of diagrams: free propaga-
tion from x1 to x2 plus vacuum correction, and correction of the propagator to order �. These terms
correspond to the two topologies shown in Fig. 7. The disconnected diagram on the left is just the free
propagator plus an order � correction of the vacuum. It will be cancelled by the corresponding vac-
uum correction in the denominator. The diagram on the right of Fig. 7 is more interesting: represents a
genuine order � correction to the propagator.

Let us now consider the four point function. Up to order � in perturbation theory we can write as

G(4)(x1, x2, x3, x4) =
1R

D�e
R
d4xL0

Z
D� ei

R
d4xL0 �(x1)�(x2)�(x3)�(x4)

✓
1� i

�

4!

Z
d4y�4(y) + . . .

◆
.

(1.154)
Of course, the order zero is the four point function of free theory, where there are no interactions, just
propagation from one point to another. The order � term leads to several diagrams. However, we want
to focus on a special diagram where each of the external points is connected via a propagator to the
interaction point, here denoted by the coordinate y. This fully connected contributions to the four point
function can be written as

(�i�)
Z

d4z DF (x1 � z)DF (x2 � z)DF (x3 � z)DF (x4 � z) , (1.155)

where we have used Wick’s theorem. Inspecting (1.154), we see that there are 4! ways to obtain the
result above, also represented in Fig. 8. This fully connected diagram will be used below in order to

Fig. 8: Connected diagram contribution to the four-[point function to order �.

define the basic rules of the interacting theory in question. Other, non-connected diagrams contributing
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to the four point correlation function to order � can be seen in Fig. 9. The diagram on the left is just the

Fig. 9: Disconnected diagram contributions to the four-point function to order �.

free theory contribution corrected by a vacuum bubble. On the other hand, the disconnected contribution
on the right is an order � correction of one of the two disconnected propagators. Unlike the previous one,
this contribution is not cancelled by the corrections in the denominator. However, in order to compute
the physical amplitudes of interest we will need only connected diagrams. We will discuss the reason for
this next to derive the Feynman rules in momentum space.

1.1.7.2 From correlation functions to amplitudes: Feynman rules in momentum space

Although the correlation functions we have obtained using perturbation theory are physically meaningful
objects, they are not as useful to compare with experimental observables. For this purpose it is necessary
to compute transition amplitudes, typically in momentum space. For instance, we may want to compute
the amplitude for the scattering of two particles of given momenta p1 and p2 in the initial state going
into a final state with several particles. i.e. we want to compute the

hp1p2|p3 . . .pni , (1.156)

from our knowledge of a given quantum field theory’s correlation functions. In order to do this, we
start by defining the initial state as asymptotic states in the far past, i.e. for t ! �1, and the final
states as asymptotic states in the far future, i.e. for t ! +1. In these n particle amplitude, we assume
that asymptotic states are well defined momentum states, well separated from each other, i.e. without
appreciable superposition between any two states. So in the far past or in the far future, these states are
not interacting with each other. On the other hand, this does not mean that asymptotic states do not
feel the effects of the interactions. They do not feel the interactions with the other real particles in the
amplitude, but they still feel the virtual effects of the interactions as they propagate. So the asymptotic
states are not free states. We will clarify these important different later on. For now, the aim is to write
the scattering amplitude in (1.156) in terms of the correlation functions of our quantum field theory.

We then start by defining the asymptotic states in the far past as satisfying

|pi =
p
2!p a

†
p(�1)|0i , (1.157)

where a†p(�1) creates a particle of momentum p at t! �1. Analogously,

|pi =
p
2!p a

†
p(+1)|0i , (1.158)

creates a particle of momentum p in the far future at t ! +1. If we consider the 2 ! n scattering
amplitude, we want to compute the momentum space amplitude
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hf |ii = hp3 . . . pn|p1p2i =
p
2!p1

p
2!p2

p
2!p3 . . .

p
2!pn

⇥ h0|ap3(+1) . . . apn(+1) a†p1(�1) a†p2(�1)|0i . (1.159)

Then, in order to obtain this observable from the correlation functions written in terms of fields, we need
to invert the expansion of fields in momentum space. In the case of a free scalar field, the momentum
expansion that needs to be inverted is

�(x) =

Z
d3k

(2⇡)3
1p
2!k

⇣
ake

�ik·x + a†ke
+ik·x

⌘
, (1.160)

From this, it is straightforward to prove that

h0|�(x)|0i = 0, h0|�(x)|pi = e�ip·x = e�i!pteip·x , (1.161)

These are in fact the two conditions that we will need to maintain once we consider an interacting theory.
The first one tells us that in fact ap annihilates the vacuum. The second condition ensures that the creation
operators a†p does create a single particle state with momentum p. In the presence of interactions, the
main difference regarding creation and annihilation operators is that they acquire time dependence. This
is implicit in (1.159) where we have t ! ±1 to the well separated asymptotic states. So if we use the
free field expansion (1.160) to invert it an obtain expression for the annihilation and creation operators of
asymptotic states in the presence of interactions, all we need to guarantee is that (1.161) are still satisfied.
We will comment on this point below.

Making use of the free field expansion (1.160) it is possible to arrive at vs

i

Z
d4x eip·x

�
@2 +m2

�
�(x) =

p
2!p [ap(+1)� ap(�1)] , (1.162)

for annihilation operators and

�i
Z

d4x e�ip·x �@2 +m2
�
�(x) =

p
2!p

h
a†p(+1)� a†p(�1)

i
, (1.163)

for the creation operators. Then, the amplitude of interest in (1.159) can be rewritten as

hf |ii =
p
2!p1

p
2!p2

p
2!p3 . . .

p
2!pn

⇥ h0|ap3(+1) . . . apn(+1) a†p1(�1) a†p2(�1)|0i

=
p
2!p1 . . .

p
2!pn h0|T ([ap3(+1)� ap3(�1)] . . . (1.164)
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[apn(+1)� apn(�1)]
h
a†p1(+1)� a†p1(�1)

i h
a†p2(+1)� a†p2(�1)

i⌘
|0i ,

where in the last equality we used the fact that the time-ordering operator T tells us to put all earlier
time operators (here, those evaluated at t ! �1) to the right, whereas the later time operators should
be going on the left. Since

ap(�1)|0i = 0 , h0|a†p(+1) = 0 , (1.165)

then the equality between the first and second line in (1.164) holds. We can finally obtain the Lehmann,
Symanzik and Zimmermann (LSZ) reduction formula by using (1.162) and (1.163) above, which results
in

hf |ii = i

Z
d4x3 e

ip3·x3
�
@2x3

+m2
�
· · ·
Z

d4xn e
ipn·xn

�
@2xn

+m2
�

⇥ i

Z
d4x1 e

�ip1·x1
�
@2x1

+m2
�
i

Z
d4x2 e

�ip2·x2
�
@2x2

+m2
�

⇥ h0|T (�(x1)�(x2)�(x3) . . .�(xn)) |0i . (1.166)

The equation above gives the desired relation between the 2 ! n � 2 amplitude in momentum space
on the left, and the n-point correlation function on the right. Although the LSZ reduction formula in
(1.166) is not the most convenient way to obtain the momentum space amplitudes, we will make use of
it to derive a set of rules, the Feynman rules, that will greatly speed up the procedure.

But before we derive the Feynman rules from (1.166) we must comment on its validity in the
presence of interactions. We derived the LSZ formula from the simple assumption of the free field
momentum expansion in (1.160). In the presence of interactions, on the other hand, we need to make
sure that the asymptotic states created and/or annihilated at t ! ±1 are single-particle well separated
momentum eigenstates. For this to be the case we need to guarantee that

h0|�(x)|0i = 0 , (1.167)

still holds. This is not always the case. In the presence of interactions we could have h0|�(x)|0i = v 6= 0.
However, in this case we can additively shift the definition of the field as in �(x)! �(x) + v, such that
the new field �(x) satisfies (1.167). The other condition we should worry about is

h0|�(x)|pi = e�ip·x , (1.168)

which, in the presence of interactions, would still guarantee that ap(±1) still annihilates a single-particle
state of momentum p. But in the interaction theory the coefficient of the exponential in (1.168) need not
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be equal to one. This requires that we redefine (renormalize) the field �(x) multiplicatively by a factor
in such a way as to ensure that the coefficient in front of the exponential is in fact one. Then, we see that
with the necessary redefinitions of the field in the presence of interactions, the LSZ reduction formula is
valid.

We are finally ready to derive the Feynman rules in momentum space from the LSZ reduction for-
mula. Since the correlation function on the right side of (1.166) will be expressed, in perturbation theory,
by sums of products of free propagators (Wick’s theorem) the action of the Klein-Gordon operators on
them will result in delta functions as in

(@2xi
+m2)DF (xi � y) = �i�(4)(xi � y) , (1.169)

where xi and y are external points. This removal of the external propagators, will result in only connected
correlation functions contributing to the amplitudes. The reason for this is that in the LSZ reduction
formula there is a Klein-Gordon operator for each external line. Disconnected diagrams contributing to
correlation functions will have less external propagators, resulting in the KG operators acting on delta
functions and finally a vanishing contribution.

As an example, let us consider the fully connected diagram in Fig. 8. The correlation function is given
by

G(4)

� (x1, x2, x3, x4) = (�i�)
Z

d4y DF (x1 � y)DF (x2 � y)DF (x3 � y)DF (x4 � y) . (1.170)

The application of the LSZ reduction formula (1.166) to the expression above results in

hp3p4|p1p2i = i

Z
d4x1 e

�ip1·x1
�
@2x1

+m2
�
i

Z
d4x2 e

�ip2·x2
�
@2x2

+m2
�

(1.171)

i

Z
d4x3 e

ip3·x3
�
@2x3

+m2
�
i

Z
d4x4 e

ip4·x4
�
@2x4

+m2
�
G(4)

� (x1, x2, x3, x4) .

Applying (1.171) to (1.170) we obtain

hp3p4|p1p2i = (�i�)
Z

d4y

Z
d4x1 e

�ip1·x1�(4)(x1 � y)

Z
d4x2 e

�ip2·x2�(4)(x2 � y)

⇥
Z

d4x3 e
ip3·x3�(4)(x3 � y)

Z
d4x4 e

ip4·x4�(4)(x4 � y)

= (�i�)
Z

d4y e�i(p1+p2�p3�p4)·y

= (�i�) (2⇡)4 �(4)(p1 + p2 � p3 � p4) (1.172)
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From this expression, we see that the amplitude is just the insertion of the vertex factor (�i�) times
a momentum conservation delta function. The appearance of this delta function is associated to the
fact that all external points are connected to the same internal point y where the interaction takes place.
That is, it comes from the fact that the interaction is local. Another important point is that, unlike for
the order �0 above, the singularities of the contribution to the four-point function G(4)

� (x1, x2, x3, x4)

exactly match the action of the Klein-Gordon operators in (1.171). The result above is a first example of
a Feynman rule in momentum space. Insert the interaction factor (�i�) and a momentum conservation
delta function in each vertex. Strip all external propagators (which is the result of applying the LSZ
reduction formula). This is schematically shown in Fig. 10.

Fig. 10: Momentum-space Feynman rule for the four-point amplitude to order � in �4 theory.

Another important case to consider is that of going beyond leading order. In the case of the four-
point function we just computed, this means going to order �2. The �2 contribution to the four-point
function can be obtained from

G(4)

�2 (x1, x2, x3, x4) =
1

Z[0]

Z
D��(x1)�(x2)�(x3)�(x4)⇥

1

2!

(�i�)2
(4!)2

Z
d4y �4(y)

Z
d4z �4(z) .

(1.173)

In (1.173), the factor of 1/2! coming from the exponential expansion cancelled by the exchange y $ z.
We will concentrate on connected diagrams. There are three ways of connecting the external fields to the
eight fields at points y and z of the interactions. They are depicted in Fig. 11.

Fig. 11: Connected diagrams contributing to the four-point function to order �2 in �4 theory.
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Let us focus on the first diagram (a) since the other two will be analogous with the obvious
replacements. The combinatoric factor in front of it can be obtained by counting the ways to match
�(x1) with �(y) (4), times the ways of matching �(x2) with the remaining �(y) (3), times the 4 ways
of matching �(x3) with �(z), times the 3 ways to match �(x4) with �(z). Finally, we need to contract
the remaining �(y) and �(z), which brings an extra factor of 2. All in all, the combinatoric factor times
1/(4!)2 results in an overall factor of

(�i�)2 1
2
. (1.174)

We can understand the factor of 1/2 above in this diagram as a symmetry factor. It is the factor we
need to divide by if we assume that at each vertex of the diagram we insert a factor of �i�, which
is the coefficient for the four-point function at order �. In this diagram, using �i� at each vertex is
overcounting the combinatoric factor since it is tantamount to assuming that all the lines at the two
vertices are un-contracted fields. But we know that the internal lines coming from the vertices result
in contractions into two propagators. To obtain the symmetry factors we see that the use of �i� will
result in counting diagrams interchanging the internal integration points y and z as distinct contributions.
But this is not the case. So we can think of this factor of 2 as obtained by exchanging the two internal
propagators, resulting in undistinguishable contributions. The result for the contribution to the four-point
function is

G(4)

(a)(x1, x2, x3, x4) =
(�i�)2

2

Z
d4y d4z DF (x1 � y)DF (x2 � y)DF (x3 � z)DF (x4 � z)

DF (y � z)DF (y � z) . (1.175)

We want to obtain the O(�2) contributions to the scattering amplitude for two particles of initial fixed
momenta to go to other two particles of known final momenta. Applying (1.166) on (1.175) we get

hp3p4|p1p2i(a) =
(�i�)2

2

Z
d4y d4z e�i(p1+p2)·y ei(p3+p4)·z DF (y � z)DF (y � z) , (1.176)

where the action of each Klein-Gordon operator (@2xi
+ m2) on the propagators containing an external

point xi in the argument resulted in factors of �i�(4)(xi � y) and �i�(4)(xi � z) which we used to inte-
grate over the xi’s. Since the two internal propagators do not have external positions in their arguments
they remain in (1.176). In order to make further progress we are going to express these propagators in
momentum space by making use of

DF (y � z) =

Z
d4q

(2⇡)4
e�iq·(y�z) i

q2 �m2 + i✏
, (1.177)
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in (1.176). The final expression fot the amplitude in momentum space is

hp3p4|p1p2i(a) =
(�i�)2

2
(2⇡)4 �(4)(p1 + p2 � p3 � p4)

⇥
Z

d4q

(2⇡)4
i

q2 �m2 + i✏

i

k2 �m2 + i✏
, (1.178)

where the value of k is fixed by delta functions at

k = �p1 � p2 � q = �p3 � p4 + q . (1.179)

As we can see from (1.178), there remains an undetermined momentum q which must be integrated over.
This can be easily understood by looking at the diagram once again, now in momentum space and with
all these momenta drawn explicitly as seen in Fig. 12. It is clear that, although we have two internal

Fig. 12: One of the Feynman diagrams in momentum space for the four-point amplitude to order �2 in
�4 theory.

lines, only one of the two internal momenta are independent: there is a delta function forcing momentum
conservation at each vertex, but the overall momentum conservation is not a constraint so there is one
undetermined momentum we still have to integrate over. Finally, before summarizing the Feynman rules,

Fig. 13: One of the Feynman diagrams in position space for the four-point amplitude to order �2 in �4

theory. It corresponds to an O(�) correction to one of the external lines.

we comment on another type of order �2 diagram, depicted in Fig. 13. Its contribution to the four-point
correlation function is
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G(4)(x1, . . . , x4)(d) =
(�i�)2

2

Z
d4y d4z DF (x1 � y)DF (y � z)DF (y � y)DF (x2 � z)

⇥DF (x3 � z)DF (x4 � z) . (1.180)

We can see from (1.180) above that applying the LSZ reduction formula will result in two remaining
propagators, but only one undetermined momentum. This is because, when doing to momentum space,
the propagator DF (y � z) will be on shell, resulting in an overall divergent contribution. These are in
fact part of the renormalization of the external legs of any diagram and should not be considered when
computing an amplitude. These diagrams should be excluded from the calculation, since they are going
to be included by the renormalization process, which redefines the fields (leading in this case to the
redefinition of the propagators) in the presence of interactions, as it was briefly mentioned at the end of
the derivation of the LSZ reduction formula. In order to avoid including these diagrams, a rule can be
imposed: only consider diagrams without on shell propagators (amputated diagrams).

We are finally ready to enumerate a set of rules to compute the amplitudes in momentum space
without the need to apply the LSZ reduction formula every time we need to compute one. These are the
Feynman rules of the theory.

1. Vertex: Insert a factor of �i� for each vertex in the diagram. It is clear from (1.178) that this
will get us the factor in front up to symmetry factors. Notice that this is the Feynman rule of the
diagram at order � (i.e. at “tree” level and without “loops”). In general, deriving the tree-level
interaction vertex is one of the first things we need to do in a theory in order to be able to obtain
its Feynman rules.

2. Momentum conservation at each vertex: The presence of the delta functions at each vertex that
appear integrating (1.176), tells us that momentum conservation must be enforced at each ver-
tex in the diagram. This always results in an overall delta function enforcing total momentum
conservation. For our case is the factor (2⇡)4�(4)(p1 + p2 + p3 + p4).

3. Loop momentum integration: Integrate over all the undetermined momenta. Our example in
Fig. 12, the product of the two delta functions after integrating (1.176) is equivalent to the overall
momentum conservation. So one of the two internal momenta remains free and must be integrated
over.

4. Symmetry factors: We must divide by the symmetry factor of the diagram. In Fig. 12 this is 2,
since the internal propagators can be exchanged without consequence. The need to divide by the
symmetry factors stems from the fact that in any generic diagram we use the vertex Feynman rule
(here �i�) for each interaction. But generally this has the correct combinatoric factor only in the
tree-level interaction vertex. This “mistake” must be corrected by the symmetry factor.

These Feynman rules are specific to the example of the real scalar field theory of (1.141). However,
the procedure to derive the Feynman rules for any other quantum field theory is always the same. The
one difference is in the derivation of the vertex Feynamn rule (Rule 1). The rest are analogous in all
cases, although in the presence of different kinds of fields, there may or may not be symmetry factor
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to worry about. Using the Feynman rules of an interacting theory, we can compute the amplitude of
a desired process in momentum space, and to the desired order in perturbation theory. For instance,
to leading order in perturbation theory, i.e. to leading order in the coupling �, the momentum space
scattering amplitude of two real scalar field going to two real scalar fields is given by (1.172). But if
order �2 accuracy is required one needs to add the diagrams such as that in Fig. 12. Once the momentum
space amplitude is obtained, the next step os to compute the actual physical observable, the cross section.

1.1.8 Cross sections

Now that we know how to compute amplitudes for given processes, we would like to make contact with
observables such as cross sections and decay rates based on those amplitudes. This will complete the
path from computing correlation functions and then amplitudes, which can be easily obtained by using
the derived Feynman rules of a given theory.

We will state the amplitude in the language of the S matrix. Let us consider a scattering process with a
given initial state and a final state. We define the asymptotic states by

|i, ini for t! �1

|f, outi for t! +1 , (1.181)

where the states labeled “in” are those asymptotic states created by creation operators evaluated at times
�1, e.g. a†(�1), etc; and the states labeled “out” are those created by creation operators evaluated at
times +1, such as a†(+1). These two distinct sets of asymptotic states are the ones we have used up
until now to write down the desired amplitude

hf, out|i, ini . (1.182)

The “in” and “out” asymptotic states are however isomorphic, i.e. there are the same set of states but
labeled differently. We can define a unitary transformation S such that

|i, ini = S|i, outi , (1.183)

in such a way that we can rewrite (1.182) in terms of either both “in” or“out” states.

hf, out|i, ini = hf, in|S|i, ini = hf, out|S|i, outi ⌘ hf |S|ii . (1.184)

The last equality stems from the fact that we can equally express the amplitude in terms of the “in” or
the “out” states as long as is an element of the S matrix. The S operator can be written as
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S ⌘ 1+ iT , (1.185)

where we defined the T matrix elements. The identity in the first term in (1.185) reflects the fact that the
amplitude must include the possibility of no interaction. But in order to compute a cross section we are
only concerned with the part of the amplitude that allows for interactions, i.e. the second term in (1.185).
Schematically, we can express this as

hf |S|ii = disconnected diagrams + LSZ formula , (1.186)

where the contributions of disconnected diagrams comes from the identity in (1.185). Thus, the LSZ
formula will give the contribution of the T matrix to a given amplitude.

In general we want to compute the transition probability from an initial state to a final state. In practice,
we are mainly interested in two cases: the decay of a particle to two or more particles, and the scattering
of two particles in the initial state into two or more particles in the final state.

We start with the scattering process 2! n. The transition amplitude is given by

hp1 . . .pn| iT |pApBi ⌘ (2⇡)4�(4)(PA + PB � P1 � · · ·� Pn) iA , (1.187)

where we have defined the amplitude A as the transition amplitude with the overall momentum conser-
vation delta function already factored out. In order to obtain a probability, we will define it as the squared
of the transition amplitude appropriately normalized.

P ⌘ |hp1 . . .pn| iT |pApBi|2
hp1 . . .pn|p1 . . .pnihpApB|pApBi

, (1.188)

where the denominator corresponds to the normalization of the initial and final states.

We start by considering the numerator of (1.188). This is

|hp1 . . .pn| iT |pApBi|2 =

0

@(2⇡)4�(4)(PA + PB �
nX

f=1

Pf )

1

A
2

|A|2

= (2⇡)4�(4)(PA + PB �
nX

f=1

Pf ) (2⇡)
4�(4)(0) |A|2 , (1.189)

where f = 1, . . . , n labels the final state momenta. However, we can write

�(4)(0) = �(0)�(3)(0) =
1

(2⇡)4

Z
d4x ei0·x . (1.190)
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If we consider for a moment a finite volume V and a finite time T , the integral in (1.190) results in

(2⇡)4�(4)(0) = V T . (1.191)

For the denominator, we consider the asymptotic momentum eigenstates normalized according to

|pi =
p

2Ep a
†
p|0i , (1.192)

such that the normalization of an eigenstate of momentum p is given by

hp|pi = 2Ep h0|ap a†p|0i

= 2Ep (2⇡)
3 �(3)(p� p) = 2Ep V , (1.193)

where in the last equality we used (1.190). Then, the two factors in the denominator of (1.188) are

hpA pB|pA pBi = 2EA 2EB V 2

hp1 . . .pn|p1 . . .pni = 2E1 . . . 2EnV
n =

Y

f

(2EfV ) . (1.194)

Replacing (1.190) and (1.194) into (1.188) and dividing by T , we obtain the probability of transition for
unit time

P

T
=

(2⇡)2�(4)(PA � PB �
P

f Pf )V |A|2

2EA 2EB V 2
Q

f (2EfV )
. (1.195)

But this probability requires that we have precise knowledge of all final state momenta. Often times we
will need to either partially or totally integrate over the phase space of the final states. For this we need
to know the probability that a given final state particle has momentum in the interval

(pf ,pf + d3pf ) , (1.196)

where d3pf contains information about the momentum vector. We would like then to convert (1.195)
into the differential probability that the final states are in a region of the final state phase space defined
by (1.196). In order to obtain this we need to multiply (1.195) by the number of states in each interval
defined by (1.196) for each final state particle. Given that we are using a finite volume V , the momentum
of each final state particle obeys the quantization rule
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p =
2⇡

L
(n1, n2, n3) , (1.197)

where L3 = V , and the ni with i = 1, 2, 3 refer to the number of states in each spatial direction. Then,
the number of states inside the interval (1.196) of size d3p is

n1 n2 n3 =
Ldpx
2⇡

Ldpy
2⇡

Ldpz
2⇡

=
V d3p

(2⇡)3
(1.198)

Putting all these together we obtain the differential probability per unit time

dP

T
=

(2⇡)2 �(4)(PA + PB �
P

f Pf ) |A|2

2EA 2EB V

nY

f=1

✓
d3pf

(2⇡)3 2Ef

◆
, (1.199)

Finally, in order to convert this into a differential cross section we need to account for the incident flux.
In other words, we are interested in the differential probability per unit time and per unit of initial flux so
that we obtain a probability that depends intrinsically on the amplitude A and the final state phase space,
not on how intense our beams of A and B particles were. The flux is the number of particles per unit
volume times the relative velocity of the particles. For instance, for a typical head on collision

Fig. 14: Head on collision. pB = �pA.

the initial flux “seen” by either the A or the B particle is given by

|vzA � vzB|
V

. (1.200)

So dividing (1.199) by the flux in (1.200) we obtain

d� =
1

2EA 2EB

1

|vA � vB|(2⇡)
4 �(4)(PA + PB �

X

f

Pf ) |A|2
Y

f

✓
d3pf

(2⇡)3 2Ef

◆
, (1.201)

which is the differential cross section for the scattering of the two initial particles with momenta PA and
PB going into an n-particle final state.
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At this point we will make some comments:

– We can define the final state phase space by

Z
d⇧n ⌘

Z nY

f=1

✓
d3pf

(2⇡)3 2Ef

◆
(2⇡)4 �(4)(PA + PB �

X

f

Pf ) . (1.202)

It is separately Lorentz invariant.

– The amplitude squared |A|2 is also Lorentz invariant by itself.

– The factor

1

EAEB|vzA � vzB| , (1.203)

is not Lorentz invariant, but it is invariant under boosts in the z direction.

1.1.8.1 Two-particle final state

A very paradigmatic example is the scattering of two particles in the initial state into two particles in the
final state. We first compute the two-particle phase space for A+B ! 1 + 2. We will use the center of
momentum frame. From (1.202) we have

Z
d⇧2 =

Z
d3p1
(2⇡)3

1

2E1

Z
d3p2
(2⇡)3

1

2E2

(2⇡)4 �(4)(PA + PB � P1 � P2)

=

Z
d3p1
(2⇡)3

1

4E1E2

2⇡ �(EA + EB � E1 � E2) , (1.204)

where the second line is obtained by using the spatial delta function to perform the d3p2 integral. The
final momentum differential is

d3p1 = p21 dp1 d⌦1 = p21 dp1 d cos ✓1 d�1 , (1.205)

with ✓1 the angle of p1 with respect to the direction of the incoming momentum pA, and �1 the corre-
sponding azimuthal angle. There is typically no azimuthal angle dependence in |A|2, so we can integrate
over �1 obtaining a factor of 2⇡. Then (1.204) now reads

Z
d⇧2 =

Z
p2
1
dp1

(2⇡)3 4E1E2

(2⇡ d cos ✓1) 2⇡ �

✓
EA + EB �

q
p2
1
+m2

1
�
q

p2
1
+m2

2

◆
, (1.206)

where we have used that p1 = �p2 in the delta function, which stems from the fact that we have used
the spatial delta function in the center of momentum frame. We are now in a position to perform the
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integral in the absolute value of the spatial momentum of the particle 1, p1, by using the delta function.
Restoring the differential solid angle to have a more general expression, we have

Z
d⇧2 =

Z
p2
1

(2⇡)2 4E1E2

d⌦1

| p1E1
+ p1

E2
|

=

Z
1

16⇡2
p1

E1 + E2

d⌦1 . (1.207)

But, since E1 + E2 = ECM then we obtain

Z
d⇧2 =

Z
1

16⇡2
p1

ECM

d⌦1 . (1.208)

Let us compute now the cross section in the CM frame. It is

d�

d⌦
=

1

2EA 2EB

1

|vzA � vzB|
p1

16⇡2ECM

|A|2 , (1.209)

where the solid angle refers to the final states particles, and z is the direction of the incoming A particle.

If we now consider the relative velocity we have

|vzA � vzB| =
����
pzA
EA
� pzB

EB

���� . (1.210)

If we now consider the simplified case mA = mB = m1 = m2 = m, we have

|vzA � vzB| = 2

ECM

|pzA � (�pzA)| =
4pA
ECM

=
4p1
ECM

, (1.211)

Then, we arrive at a final expression for the angular distribution for scattering in the CM of two particles
into two particles, all of the same mass m:

✓
d�

d⌦

◆

CM

=
1

64⇡2
1

E2

CM

|A|2 . (1.212)

1.1.8.2 Decay rate of an unstable particle

If instead of considering the transition probability per unit time from a two-particle initial state we start
with a state of one particle, we are computing the decay rate for the process A ! 1 . . . n, for the decay
of a particle A to n particles in the final state. The derivation is just straightforward and the result is the
differential decay probability per unit time given by
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d� =
1

2mA

nY

f=1

✓
d3pf
(2⇡)3

1

2Ef

◆
(2⇡)4 �(4)

0

@PA �
X

f

Pf

1

A |A|2 , (1.213)

where the factor of 2mA comes from using 2EA in the rest frame of the decaying particle, and A is the
amplitude for the decay process. For a given decay channel (i.e. a given final state), the integral gives the
so-called partial width of A into that channel

�(A! f1) =

Z
d�(A! f1) . (1.214)

The total width of A is a property of the particle and corresponds to the sum of the partial widths into all
the available channels into which A can possibly decay

�A ⌘
X

i

�(A! fi) . (1.215)

The lifetime of tha particle is then the inverse of the total decay rate or total width. Decay rates have
units of energy, thus if we want the lifetime in seconds we can use

⌧A =
~
�A

. (1.216)

For instance, if we initially have a given number of particles of type A, at a later time t we have

N(t) = N(0) e�t/⌧A . (1.217)

The lifetime also determines the typical displacement of a particle produced before it decays. This is

c ⌧A � , (1.218)

where c is the speed of light, and � is the relativistic factor.

Finally, the propagation of an unstable particle is affected by its decays. We will show later in the course
that the propagator of a particle with open decay channels gets modified to be

i

p2 �m2

A � i�AmA
, (1.219)

where we considered a scalar propagator and p is the four-momentum of A. We will derive (1.219)
in the context of renormalization and see that the new term appears as a consequence of an imaginary
shift in the pole of the propagator that arises due to the existence of open decay channels for A. As a
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result, unstable particles appear in cross sections for processes that are mediated by them as resonances
of widths characterized by �A. This is the reason why these particles are called resonances, and also
why the total decay rate �A is called the particle width.

1.2 Gauge theories

Here we introduce vector fields. Although it is generically possible to write the action for a theory with
such fields, it turns out that these generic theories are not well defined unless the vector fields are gauge
fields, i.e. vector fields associated with a local symmetry. We will eventually show this relation further
along our course. For now, let us introduce gauge fields as a consequence of gauge invariance. We will
start with a fermion theory so as to derive quantum electrodynamics.

1.2.1 Gauge invariance

Let us consider the Lagrangian for a free fermion of mass m

L =  ̄(i 6@ �m) . (1.220)

This is invariant under the global U(1) transformation4 defined by

 (x) �! ei↵  (x) ,

 ̄(x) �! e�i↵  ̄(x) , (1.221)

where ↵ is a real constant. The conserved charge associated with these symmetry transformations is
fermion number: +1 for fermions, �1 for antifermions.

But what if we want local U(1) invariance, i.e. what if ↵ = ↵(x) is a function of the spacetime position?
The local transformation now reads

 (x) �! ei↵(x)  (x) ,

 ̄(x) �! e�i↵(x)  ̄(x) , (1.222)

which leads to a transformation of the Lagrangian as

L! L0 = L =  ̄(i 6@ �m) � @µ↵(x)  ̄�µ 6= L . (1.223)

From (1.223) we see that the local or gauge transformation (1.222) does not leave the Lagrangian (1.220)
invariant. In order to obtain a theory invariant under these local transformations we will need to add a
4A unitary transformation determined by one parameter.
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new field that also transforms in some way that depends on ↵(x) and whose transformation cancels the
extra term that appears in (1.223). One way to do this is to define a covariant derivative on  (x), a
generalization of the normal derivative. We write

L =  ̄ (i 6D �m) , (1.224)

where we defined the covariant derivative Dµ (x) so that it must transform as the field  (x) in order for
(1.224) to be invariant, i.e. under the transformations (1.222) it must transform as

Dµ (x) �! ei↵(x)Dµ (x) . (1.225)

Clearly, we can see that if (1.225) is satisfied at the same time as (1.222) then (1.224) is invariant. Next,
we write the covariant derivative Dµ (x) by introducing a vector field as

Dµ (x) ⌘ (@µ + ieAµ(x))  (x) , (1.226)

where e is a constant. Then, it can be verified that in order for the covariant derivative defined in (1.226)
to satisfy (1.225) the vector field Aµ(x) must transform as

Aµ(x) �! Aµ(x)�
1

e
@µ↵(x) . (1.227)

We notice in passing that the vector field Aµ(x) must be real. This is a consequence of the fact that the
gauge parameter ↵(x) is real. Thus, to summarize, the theory in (1.224) is invariant under the gauge or
local U(1) transformations

 (x) �! ei↵(x)  (x) ,

 ̄(x) �! e�i↵(x)  ̄(x) ,

Aµ(x) �! Aµ(x)�
1

e
@µ↵(x) , (1.228)

with the covariant derivative defined by (1.226). Finally, if the gauge field Aµ(x) is to be a dynamical
degree of freedom, we need appropriate quadratic terms in it, i.e. a kinetic term and a mass term. A
kinetic term that is trivially invariant under the transformations (1.227) is built from the contraction of

Fµ⌫ ⌘ @µA⌫ � @⌫Aµ , (1.229)

with itself, since the tensor Fµ⌫ is invariant. Furthermore, a mass term for Aµ(x) must be something like
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m2

AAµA
µ . (1.230)

But since this is clearly not gauge invariant, we must assume that mA = 0. Thus a gauge field must have
zero mass in order to respect gauge invariance. Although there are exceptions to this statement, they
all correspond to the case when the mass is generated dynamically via a scalar field coupled to Aµ(x)

obtaining a non-zero vacuum expectation value. We will study this case in the second part of this course.
For now, gauge invariance means zero mass for the gauge fields. Then, the complete theory that is U(1)

gauge invariant is

L =  ̄ (i 6D �m) � 1

4
Fµ⌫F

µ⌫

=  ̄ (i 6@ �m) � eAµ ̄�
µ � 1

4
Fµ⌫F

µ⌫ , (1.231)

where in the last equality we can see that the gauge field Aµ(x) interacts with the fermion current with
a coupling e. The factor of �1/4 in front of the gauge field kinetic term is a convenient choice of
normalization which results in Fµ⌫ being the electromagnetic stress tensor in the case of quantum elec-
trodynamics (QED). In fact, this Lagrangian is the basis for QED, where  (x) is the charged electron
field and Aµ(x) is identified with the photon. The next step in order to obtain QED as a quantum field
theory would be to quantize the gauge field Aµ(x).

1.2.2 Gauge fields and quantization

From the Lagrangian for the gauge fields

L = �1

4
Fµ⌫F

µ⌫ , (1.232)

we can derive the equations of motion (Euler-Lagrange)

@2Aµ � @µ (@⌫A⌫) = 0 , (1.233)

As usual in the classical case, if we choose the Lorentz condition

@µA
µ = 0 , (1.234)

we obtain

@2Aµ = 0 . (1.235)
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Thus, imposing the Lorentz condition (1.234) gives us a simple equation with plane wave solutions, a
massless Klein-Gordon equation for each component of the four-vector Aµ(x). Naively, we would then
expand Aµ(x) in these solutions and quantize by imposing commutation relations between Aµ(x) and
its conjugate momentum ⇡µ(x). From (1.232) we obtain the form of the conjugate momentum as

⇡µ(x) =
@L

@(@0Aµ)
= Fµ0 . (1.236)

However, from (1.236) it is clear that there is a problem with the time component of ⇡µ(x) coming from
the fact that Fµ⌫ is antisymmetric. We have that

⇡0(x) = 0 , (1.237)

meaning that it will not be possible to impose a quantization condition on A0(x). We can get around this
by adding a term to the Lagrangian as

L = �1

4
Fµ⌫F

µ⌫ � c(@µA
µ)2 , (1.238)

where c is a arbitrary real constant. Now the equations of motion are

@2Aµ + (c� 1)@µ(@⌫A
⌫) = 0 . (1.239)

We can see that there are two ways of obtaining (1.235): either by using the Lorentz condition or by
choosing c = 1. But now the second choice also allows us to define a non-zero conjugate momentum of
A0(x) since now

⇡µ(x) = Fµ0 � cgµ0(@⌫A
⌫) , (1.240)

which results in

⇡0(x) = �c(@⌫A⌫) . (1.241)

So choosing c = 1 allows us to carry out the canonical quantization procedure. This is called the
Feynman gauge. But, as we will see below, the upshot is that now we will have non-physical degrees of
freedom.

To proceed with the quantization, we start by expanding the field Aµ(x) in momentum space. The most
general solution to (1.235) can be written as

49



GUSTAVO BURDMAN

Aµ(x) =

Z
d3k

(2⇡)3
p
2Ek

3X

�=0

n
a(�)k ✏(�)µ e�ik·x + a†(�)k ✏⇤(�)µ e+ik·x

o
, (1.242)

where we have used the fact that Aµ(x) must be a real field, and the ✏(�)µ for � = 0, 1, 2, 3 form a basis
for a general expansion of any four-vector, the so-called polarization vectors. If we could use the Lorentz
condition (1.234) we could eliminate one of the polarizations through

kµ✏(�)µ = 0 , (1.243)

In particular, using gauge invariance we can always eliminate the polarization with time components.
This is desirable for the quantization procedure given that in its presence there appear negative norm
states. To see this let us guess the form of h0|TAµ(x)A⌫(y)|0i , which should be the gauge boson
propagator. Since each component of Aµ(x) obeys the massless Klein-Gordon equation all we lack to
write it is to guess its tensor form: it should be an isotropic second rank tensor. Let us try gµ⌫ . We then
write

h0|TAµ(x)A⌫(y)|0i =
Z

d4q

(2⇡)4
�igµ⌫
q2 + i✏

e�iq·(x�y) . (1.244)

To understand the sign choice we notice that doing the contour integral in q0 we obtain

h0|TAµ(x)A⌫(y)|0i =
Z

d3q

(2⇡)3
�gµ⌫
2Eq

e�iq·(x�y) . (1.245)

If we now take x ! y (but with the limit x0 ! y0 from the positive side) and take µ = ⌫, then the
quantity in (1.245) becomes the norm of the state

Aµ(x)|0i . (1.246)

We want states associated with the physical polarizations of real photons, which must be spatial in nature,
e.g. Ai(x) for i = 1, 2, to have positive norm. This forces us to choose the minus sign in front of gµ⌫ in
(1.244). But at the same time this means that the sate

A0(x)|0i , (1.247)

must have negative norm. This sounds troublesome. However, as we mentioned above, this polarization
does not correspond to a physical degree of freedom. Both the temporal as well as the longitudinal
components of Aµ(x) are not physical. They do not correspond to an asymptotic state (a real photon)
satisfying qµqµ = 0, with qµ being the photon momentum. One way to see this intuitively is to consider
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a process where two conserved currents, jµA(x) and j⌫B(x) interact exchanging a gauge boson (photon).
Each of these currents is conserved and made up by the some fermion charged under the gauge symmetry,
i.e jµA(x) =  ̄A(x)�µ A(x), etc. Then the amplitude can be schematically written as

A ⇠
Z

d4x jµA(x)
�igµ⌫
q2 + i✏

j⌫B(x)

=

Z
d4x

⇢
j1Aj

1

B + j2Aj
2

B

q2 + i✏
+

j3Aj
3

B � j0Aj
0

B

q2 + i✏

�
. (1.248)

If we choose the longitudinal direction to be the ẑ = 3̂ direction, the the photon momentum is

qµ = (q0, 0, 0, |q|) . (1.249)

Current conservation then implies, for both A and B currents,

@µj
µ(x) = 0! qµj

µ = q0j
0 � |q|j3 = 0 , (1.250)

which means that if the photon is nearly real, i.e. if q2 ' 0 and q0 ' |q|, then j3 ' j0 and the longitudinal
and temporal terms of the currents cancel in the second term of (1.248). So we see that, for a real photon
only the transverse polarizations contribute. However, the unphysical polarizations cannot be neglected
when considering virtual photons. It is straightforward to see this by replacing j3A and j3B in (1.248) by
using (1.250). Then, the amplitude can be seen to be

A ⇠
Z

d4x

⇢
j1Aj

1

B + j2Aj
2

B

q2 + i✏
+

j0Aj
0

B

|q|2

�
, (1.251)

which shows a transverse contribution and a second contributions that corresponds to the instantaneous
Coulomb potential, entirely given by the unphysical components.

Thus, the photon propagator defined in (1.244) is consistent with current conservation and there-
fore gauge invariance. However, it corresponds to a particular gauge choice, called the Feynman gauge.
A more formal and general derivation of the gauge boson propagator can be performed in the functional
integral approach. But making use of a trick due to Fadeev and Popov, it is possible to obtain the gauge
boson propagator as

DFµ⌫(x� y) =

Z
d4q

(2⇡)4
D̂Fµ⌫(q) e

�iq·(x�y) , (1.252)

with the momentum space propagator given by

D̂Fµ⌫(q) = �
i

q2


gµ⌫ � (1� ⇠) qµq⌫

q2

�
. (1.253)

This is the gauge boson propagator in the so-called R⇠ gauge, for arbitrary values of ⇠. Choosing ⇠ we fix
the gauge. For instance, with the ⇠ = 1 corresponds to the Feynman gauge, and we obtain the propagator
of (1.244). But in many cases other choices may be more convenient. The choice ⇠ = 0 is called the
Landau gauge.
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1.3 Non-abelian gauge theories

1.3.1 Lie algebras and non-abelian symmetries

Non-abelian gauge theories are based on non-abelian continuous groups. These are defined by the fact
that they include elements that can be continuously deformed into the identity. For them then we have
that

g 2 G/ (1.254)

the we can write

g(↵) = 1 + i↵ata + O(↵2) , (1.255)

where the ↵a’s are infinitesimally small real parameters, summation over the index a is understood and
the ta are called the generators of the group G. The definition (1.255) implies

g(0) = 1 . (1.256)

If g(↵) is unitary then the ta must be a set of linearly independent hermitian operators. Groups defined
by these properties are called Lie groups.

In order to obtain the defining property of Lie groups (its algebra) we start by defining the group’s
multiplication. The multiplication of two elements of the group results in another element of G:

g(↵) g(�) = g(⇠) , (1.257)

where the real parameters of the product element satisfy

⇠a = f(↵a,�a) , (1.258)

with f a continuously differentiable function of the ↵a’s and the �a’s. We can conclude various things
about f . For instance,

f(↵a, 0) = ↵a , (1.259)

and similarly for ↵ = 0. On the other hand, if in (1.257) we have that

g(�) = g�1(↵) , (1.260)
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then it must be that

f(↵,�) = 0 . (1.261)

Armed with this knowledge we are going to compute the following quadruple multiplication:

g(↵) g(�) g�1(↵) g�1(�) = g(⇠) . (1.262)

We will first focus on the left hand side of (1.262). This is given by

(1 + i↵ata + · · · ) (1 + i�btb + · · · ) (1� i↵ctc + · · · ) (1� i�dtd + · · · ) , (1.263)

from which we can see that the terms linear in ↵ and � cancel. Multiplying the first order parameters and
keeping only up to second order products we have

1� ↵a�btatb + ↵a↵ctatc + ↵a�dtatd + �d↵ctbtc + �b�dtbtd � ↵c�dtctd + · · · , (1.264)

where the dots include the second order terms in the expansions of the g’s and they will also contain
second order products of ↵’s and �’s which are not explicitly written in (1.264). In fact, it is easy to see
that the third and sixth terms in (1.264) actually are cancelled by them. Then the left hand side of (1.262)
up to leading order in the infinitesimal paramenters ↵ and � is given by

1 + �b↵c [tb, tc] + · · · , (1.265)

where [tb, tc] = tbtc � tctb is the commutator of the generators.

Now let us consider the right hand side of (1.262). We know that

⇠ = f(↵,�) . (1.266)

Then the most general expansion of ⇠ in terms of ↵ and � is given by

⇠e = Ae +Bef↵f + B̃ef�f + Cefg↵f�g + C̃efg↵f↵g + Ĉefg�f�g + · · · , (1.267)

where Ae, Bef , B̃ef , Cefg, C̃efg and Ĉefg are arbitrary real coefficients, and the dots correspond to
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terms with more than two infinitesimal parameters. However, since using (1.256), (1.260) and (1.261)
we know that the function in (1.266) satisfies

f(↵, 0) = f(0,�) = 0 , (1.268)

we immediately conclude that

Ae = Bef = B̃ef = C̃efg = Ĉefg = 0 . (1.269)

Then we conclude that

⇠e = Cefg ↵f�g + · · · , (1.270)

and therefore

g(⇠) = 1 + i⇠ete + · · ·

(1.271)

= 1 + iCefg ↵f �g te + · · · . (1.272)

We can now equate this with our result for the left hand side (1.265). We then conclude that the commu-
tator of the generators must satisfy

[tb, tc] = i Cbce te . (1.273)

The expression above is the defining property of the group G and is called the algebra of the group. The
set of constants Cbce are called structure constants and vary from one group to another.

Finally, the structure constants in (1.273) satisfy an identity that is derived from the following cyclic
property of commutators:

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 . (1.274)

Using (1.273) and the equation above we arrive at

CadeCbcd + CbdeCcad + CcdeCabd = 0 , (1.275)

which is the Jacobi identity for the structure constants.
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1.3.2 Classification of Lie algebras

For the applications we are manly interested in here, we focus on unitary transformations on a finite
number of fields. These can be represented by a finite number of hermitian operators. When the number
of of generators is finite we say that the group is compact. If one of the generators commutes with all
others, then it generates a U(1) subgroup. If the algebra does not contain such a U(1) factor is called
semi-simple. Furthermore, if it does not contain at least two sets of generators whose members commute
with the ones from the other set, then the algebra is called simple. The most general Lie algebra can be
expressed as a direct sum of simple algebras plus U(1) abelian factors.

The restriction that the algebra be compact and simple results in the three so called classical groups, plus
five exceptional groups. Here we will not talk about the exceptional groups (G2, F4, E6, E7 and E8)
although some of them have found applications, for instance in attempts to build model of the unification
of all fundamental interactions. In fact we will mostly concentrate on SU(N), which is relevant in many
applications such as, for instance, the description of gauge theories in the standard model of particle
physics. The other classical groups, SO(N) and Sp(N) have been also used in many applications.

SU(N): Unitary transformations of N -dimensional vectors.

If u and v are N -dimensional vectors, a linear transformation on them defined by

u! U u , v ! U v , (1.276)

is a unitary transformation if it preserves the product

u† v . (1.277)

This is satisfied if

U † = U�1 . (1.278)

These transformations defined in this way also include the multiplication by an overall phase:

u! ei↵ u . (1.279)

But the transformation above corresponds to an example of a U(1) factor. If we want our algebra to be
simple, we should remove it. We do this by requiring that

detU = 1 . (1.280)

This requirement removes the phase transformation in (1.279) since we have
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U = eiH , (1.281)

where H must be hermitian due to (1.278). The unit determinant constraint (1.280) means that

Tr [H] = 0 , (1.282)

excluding the U(1) transformation in (1.279). Without this exclusion we would have U(N) = SU(N)⇥
U(1). The generators of SU(N) are represented by N2 � 1 N ⇥N traceless matrices. Of these, N � 1

are diagonal, which define the rank of the group. As mentioned earlier, SU(N) gauged groups figure
prominently in the standard model of particle physics, where the interactions are described by the gauge
group SU(3)⇥ SU(2)⇥ U(1), where the first factor refers to strong interactions and the last two to the
electroweak ones.

SO(N): Orthogonal transformations on N -dimensional vectors.

It is defined as the unitary transformations that preserve the scalar product of any two N dimensional
vectors

u · v = ua �ab vb . (1.283)

This is just the group of rotations in N dimensions, but we need to exclude the reflection so that (1.280)
is satisfied. Otherwise we would have O(N), which is not a simple group. The number of generators is

N(N � 1)

2
, (1.284)

which is the number of independent angles in N dimensions.

SO(N) gauge theories have been used in extensions of the standard model, such as for example SO(10)

grand unification models. The are also often used as spontaneously broken global symmetries in models
where the Higgs boson is composite.

Sp(N): Symplectic transformations on N -dimensional vectors.

These transformations preserve the anti-symmetric product of N dimensional vectors

u · v = ua ✏ab vb , (1.285)

with
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✏ =

 
0 1

�1 0

!
. (1.286)

The groups has

N(N + 1)

2
, (1.287)

generators, that means that it is represented by this number of N ⇥N unitary matrices.

1.3.3 Representations

A representation is a realization of the multiplication of group elements by using matrices. That is

a b = c ! M(a)M(b) = M(c) , (1.288)

where M(a), M(b) and M(c) are matrices. A representation is said to be reducible if it can be written
in diagonal block form, that is as

M(a) =

0

B@
M1(a) 0 0

0 M2(a) 0

0 0 M3(a)

1

CA . (1.289)

A reducible representation is the direct sum of irreducible representations (irreps).

The dimension of representation r, d(r), is the dimension of the vector space in which the matrices M(a)

act. Irreps can be used to have matrices representing the generators of the group, ta. We denote these
matrices as tar . To fix their normalization we define the trace of the product as

Tr[tar t
b

r ] ⌘ Dab , (1.290)

which satisfies Dab > 0 if the tar are hermitian. We can always choose a basis for the matrices tar such
that

Dab / �ab , (1.291)

meaning that

Tr[tar t
b

r ] = C(r) �ab , (1.292)

with C(r) a constant that depends on the particular representation r.
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Expressing the generators by the tar , we may write the algebra of the Lie group as

[tar , t
b
r] = i fabc tcr , (1.293)

where the fabc are the structure constants (which we called Cabc before). Making use of (1.292) and
(1.293) we can write the structure constants as

fabc =
�i
C(r)

Tr[[tar , t
b

r ] t
c

r ] . (1.294)

Expanding the commutator and the trace it is straightforward to show that (1.294) implies that fabc is
totally anti-symmetric under the exchange of the group indices a, b and c.

Complex conjugate representation

For each irrep r we can define a complex conjugate representation r̄. For instance, if we have a field �
undergoing an infinitesimal transformation we write

�! (1 + i↵a tar)� . (1.295)

Then, the complex conjugate of the field transforms as

�⇤ ! (1� i↵a (tar)
⇤)�⇤ . (1.296)

Then, the generators of the complex conjugate representation are defined as

tar̄ = �(tar)⇤ = �(ta)T , (1.297)

where the last equality is a consequence of tar being hermitian. There are cases when the complex
conjugate representation r̄ is equivalent with r. This is the case if a unitary transformation U exists such
that

tar̄ = U tar U
† . (1.298)

Then we say that the representation r is real.

Adjoint representation

The generators of the adjoint representation G are defined by the structure constants fabc by

⇣
tbG

⌘

ac
⌘ i fabc . (1.299)
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It is straightforward to verify that they satisfy the algebra, that is that

[tbG, t
c
G]ae = if bcd

⇣
tdG

⌘

ae
, (1.300)

which is in fact the Jacobi identity (1.275). Since the structure constants fabc are real, we can see that
the generators of the adjoint representation satisfy

taG = �(taG)⇤ , (1.301)

which means that he adjoint representation is real. The dimension of the adjoint representations, d(G) is
given by the number of generators of the group, e.g. N2 � 1 for SU(N), etc.

Casimir Operator

The operator defined by

T 2 ⌘ ta ta , (1.302)

is called the Casimir operator and it has the property that it commutes with all the generators of the
group. That is,

[T 2, ta] = 0 . (1.303)

The most well known example is the operator for the total angular momentum squared, J2, which com-
mutes with all the components of ~J . In a given irrep r the Casimir is given by a constant:

tar t
a
r = C2(r) 1/ , (1.304)

where 1 is the identity in d(r)⇥d(r) dimensions. Here we defined C2(r), the quadratic Casimir operator
of the representation r. For the particular case of the adjoint representation, we have

(tc)ad (tc)bd = facd f bcd = C2(G) �ab . (1.305)

For a given representation r it is possible to relate the Casimir C2(r) with C(r). To see this we start from
(1.292). We have that if we multiply it by �ab on each side we arrive at

�abTr[tar t
b

r ] = C(r) �ab �ab (1.306)
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The product of the two deltas in the right hand side above gives the number of generators, which we can
write as d(G), the dimension of the adjoint representation G. But inserting the factor of �ab on the right
hand side of (1.306) inside the trace, we obtain the trace of (1.304). Noticing that Tr[1] = d(r) we arrive
at the useful relation

d(r)C2(r) = d(G)C(r) . (1.307)

We are now ready to tackle gauge symmetries based on non-abelian groups.

1.3.4 Gauge invariance and geometry

We consider here the generalization of the concept of gauge invariance when the gauge group G is non-
abelian. Below, we will see what this means by presenting the basics of non-abelian group theory. We
will also study the physical consequences of non-abelian gauge invariance. But before we do all that, we
will take another look at abeliang gauge theory, i.e. when G = U(1), by thinking about gauge invariance
in a geometric way.

We consider the action of a U(1) local symmetry transformation on a fermion field  (x). It is given by

 (x)!  0(x) = ei↵(x)  (x) . (1.308)

As we well know, terms in the Lagrangian that do no contain derivatives are trivially invariant under
(1.308). For instance, the fermion mass term transforms as

m ̄ ! m ̄0 0 = m ̄ . (1.309)

However, terms containing derivatives are not invariant. Let us study in detail how the problem arises.
We write the derivative by using a direction in spacetime defined by a four-vector nµ, such that

nµ@µ (x) = lim
✏!0

1

✏
[ (x+ ✏n)�  (x)] , (1.310)

where the argument of the first term on the left hand side must be understood as

xµ + ✏nµ = xµ +�xµ . (1.311)

But the fields  (x + ✏n) and  (x) have different gauge transformations as clearly seen from (1.308).
The fact that they are evaluated in different spacetime points means that the gauge parameters of their
transformations are different, i.e. ↵(x+✏n) and ↵(x). This translates in @µ (x) not having a well defined
gauge transformation.

The situation is similar to what happens in general relativity when we want to compare two objects with
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non-trivial transformation properties, e.g. vectors or spinors, at two different positions in spacetime. For
instance, if the objects being compared are two vectors, then part of the variation comes from the fact
that the curvature will change the orientation of a vector as we move it from one point to another. But
we are interested in the intrinsic variation due to some dynamical effect. For this purpose we define a
parallel transport. Our case is no different.

We define the scalar function

U(y, x) , (1.312)

depending on two spacetime points x and y in such as way that it transforms under the U(1) gauge
symmetry as

U(y, x)! ei↵(y) U(y, x) e�i↵(x) . (1.313)

We call U(y, x) a comparator. This clearly means that U(y, y) = 1. Also, it means that

U(y, x) (x)! ei↵(y) U(y, x) (x) . (1.314)

Thus, the product of the comparator times the field in x, transforms as an object located in y. We can use
this to define a new derivative as

nµDµ ⌘ lim
✏!0

1

✏
[ (x+ ✏n)� U(x+ ✏n, x) (x)] , (1.315)

so that the two terms being subtracted transform in the same way under the gauge symmetry. This is the
case given that under a U(1) gauge transformation

 (x+ ✏n) ! ei↵(x+✏n)  (x+ ✏n)

(1.316)

U(x+ ✏n, x) (x) ! ei↵(x+✏n) U(x+ ✏n, x) (x) .

Based on the definition of the covariant derivative in (1.315) we can recover the familiar form of Dµ (x).
For this purpose, we first expand the comparator at leading order in ✏ as

U(x+ ✏n, x) = 1� i✏nµAµ(x) + O(✏2) , (1.317)

where the linear term in the expansion must depend also on the direction nµ, but then this Lorentz index
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must be contracted with a four-vector that generally depends on x, which we call Aµ(x). Implicit in
the form of the expansion we used in (1.317) is the assumption that the comparator can be written as a
phase, since the normalization can always be absorbed in redefinitions of the fields, here  (x). Replacing
(1.317) in (1.315) we have

nµDµ  (x) = lim
✏!0

1

✏
[ (x+ ✏n)�  (x) + i✏nµAµ(x)]

(1.318)

= lim
✏!0

1

✏
[ (x+ ✏n)�  (x)] + inµAµ(x) ,

where we neglected terms of higher order in ✏ since they do not contribute when taking the limit ✏! 0.
The first term above is just the normal derivative as defined in (1.310), so we obtain

Dµ (x) = @µ (x) + iAµ(x) (x) , (1.319)

which is of course the usual definition of the covariant derivative. The vector field Aµ(x) will also
transform under the gauge symmetry. To extract its transformation law, we need to look at the expansion
of the transformation of the comparator U(y, x) which defines Aµ(x). This is,

U(x+ ✏n, x) ! ei↵(x+✏n) U(x+ ✏n, x) e�i↵(x)

1� i✏nµAµ(x) + · · · ! (1 + i↵(x+ ✏n) + · · · ) (1� i✏nµAµ(x) + · · · ) (1� i↵(x) + · · · )

! 1 + i(↵(x+ ✏n)� ↵(x))� i✏nµAµ(x) + · · · , (1.320)

where the dots indicate both higher orders in ✏ and in the ↵’s. We point out that we are not using an
infinitesimal ↵(x), but that the higher orders terms in ↵ actually identically cancel. Dividing both sides
of (1.320) by ✏ and taking the limit for ✏! 0 we obtain

Aµ(x)! Aµ(x)� @µ↵(x) , (1.321)

as expected. Combining (1.321) and (1.319) one can easily verify that the covariant derivative transforms
as

Dµ (x)! ei↵(x)Dµ (x) , (1.322)
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which guarantees that all terms in the Lagrangian are now gauge invariant if the covariant derivative
replaces the normal derivative. That is, the first term in

L =  ̄i�µDµ �m ̄ , (1.323)

is U(1) gauge invariant since the covariant derivative of  (x) transforms as the field  (x).

A final question is the definition of a kinetic term for the connection field Aµ(x). Here, we will make
use of a method that, although appears too complicated for the abelian case, it will be very useful when
applied to non-abelian gauge theories later. What we are after is a term that depends quadratically on
derivatives of Aµ(x). What we will start with is the following differential operator applied to the fermion
field:

[Dµ, D⌫ ] (x) . (1.324)

This is the commutator of the covariant derivatives applied  (x). Using (1.322) is easy to verify that
(1.324) transforms like the field, that is

[Dµ, D⌫ ] (x)! ei↵(x) [Dµ, D⌫ ] (x) . (1.325)

This can be interpreted as a transformation rule for the commutator:

[Dµ, D⌫ ]! ei↵(x) [Dµ, D⌫ ] e
�i↵(x) . (1.326)

On the other hand, we can explicitly compute the commutator by using (1.319). This is

[Dµ, D⌫ ] (x) = [@µ + iAµ, @⌫ + iA⌫ ] (x)

= i (@µA⌫ � @⌫Aµ)  (x) , (1.327)

which reveals that the commutator of the covariant derivatives is itself not a differential operator.

We then define

[Dµ, D⌫ ] ⌘ i Fµ⌫ , (1.328)

which is clearly gauge invariant, since the commutator transformation rule (1.326) implies
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Fµ⌫ ! ei↵(x) Fµ⌫ e
�i↵(x) = Fµ⌫ . (1.329)

This can be alternatively seen from (1.325) in combination with the field transformation (1.308), since
the commutator is not a differential operator. Then, two powers of Fµ⌫ would give us what we want for
a gauge field kinetic term.

This concludes our rederivation of the U(1) gauge invariant Lagrangian

L =  ̄(i�µDµ �m) � 1

4
Fµ⌫F

µ⌫ + · · · , (1.330)

where the factor of�1/4 is necessary to recover the electromagnetic strength tensor in the classical limit,
and the dots denote possible gauge invariant higher dimensional (non-renormalizable) terms.

1.3.5 Non-abelian gauge groups

We will now follow the same geometric procedure we applied for a U(1) gauge theory for the case
of non-abelian groups. We first consider the case of G = SU(2) and later generalize our results for
arbitrary non-abelian groups. SU(2) is isomorphic with SO(3) the group of rotations in 3 dimensions,
so it should be familiar from the study of angular momentum in quantum mechanics. The elements of
SU(2) are unitary matrices which we write as

g(x) = ei↵
a
(x)ta , (1.331)

where ta are the generators (three of them from 22 � 1), which are given in terms of the Pauli matrices
by

ta =
�a

2
, (1.332)

with

�1 =

 
0 1

1 0

!
, �2 =

 
0 �i
i 0

!
, �3 =

 
1 0

0 �1

!
. (1.333)

As we see from (1.331), there are 3 coefficient functions of x, ↵1(x), ↵2(x) and ↵3(x), so that the
exponent is the most general x dependent expansion of the generators. Let us consider, just as in the
previous section for the U(1) case, the transformation of a fermion field under a SU(2) gauge group.
This is given by

 (x)!  0(x) = ei↵
a
(x)ta  (x) = g(x) (x) . (1.334)
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If a fermion field does transform as in (1.334) this implies that it has an SU(2) internal index. Depending
on the representation under which they transform they will be different multiplets. The fundamental
representation correspond to using (1.332) and implies that the fermion field is an SU(2) doublet

 (x) =

0

B@
 1(x)

 2(x)

1

CA , (1.335)

which means there are two fermions. The local transformation (1.334) mixes these two components.

We are now in a position to define the covariant derivative. Just as before, we define the comparator
U(y, x) with the gauge transformation property

U(y, x)! g(y)U(y, x) g†(x) . (1.336)

and just as for the U(1) case before, the covariant derivative has the geometric definition

nµDµ (x) = lim
✏!0

1

✏
[ (x+ ✏n)� U(x+ ✏n, x) (x)] . (1.337)

Noticing that

U(y, y) = 1 , (1.338)

the identity in 2⇥ 2 matrices, we can expand U(y, x) around this considering infinitesimal gauge trans-
formations ↵a(x) ⇠ O(✏). The most general expansion to leading order is

U(x+ ✏n, x) = 1+ ig✏nµAa
µ(x) t

a + O(✏2) , (1.339)

where we included a factor g, the coupling, and the Lorentz index in nµ is contracted by the fields
Aa

µ(x), where the index a contracts with the one in the generator. This reflects the fact that the most
general expansion is a linear combination of the 3 Pauli matrices, meaning that now we will have 3
gauge fields, A1

µ(x), A2
µ(x) and A3

µ(x). Then, we have

nµDµ (x) = lim
✏!0

1

✏
[ (x+ ✏n)� U(x+ ✏n, x) (x)]

(1.340)

= nµ@µ (x)� ignµAa
µ(x) t

a (x) ,

which results in the covariant derivative
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Dµ (x) =
�
@µ � ig Aa

µ(x) t
a
�
 (x) . (1.341)

For the case at hand, i.e. G = SU(2) the generators in (1.341) are one half of the Pauli matrices. This
is the covariant derivative acting on a fermion  that transforms under the SU(2) gauge group as in
(1.334). As we will see below, this determines the interactions of fermions with the SU(2) gauge bosons
Aa

µ(x).

The next step is to obtain the gauge transformations for the gauge fields. Once again, to do this we
consider the infinitesimal gauge transformation of the comparator. Using (1.336) this is given by

U(x+ ✏n, x) ! g(x+ ✏n)U(x+ ✏n, x) g†(x)

(1.342)

1+ ig ✏nµAa
µ(x) t

a ! g(x+ ✏n)
�
1+ ig✏nµAa

µ(x) t
a
�
g†(x) ,

where in the second line we use the expansion in (1.339). We notice that

g(x+ ✏n) g(x) =

✓
1+ ✏nµ @

@xµ
+ O(✏2)

◆
g(x)

�
g†(x)

(1.343)

= 1+ ✏nµ@µ(g(x)) g
† .

Replacing the equation above in (1.342), we have that

Aa
µ(x) t

a ! g(x)
�
Aa

µ(x) t
a
�
g†(x)� i

g
(@µg(x)) g

†(x) . (1.344)

If we now define the gauge field matrix

Aµ(x) ⌘ Aa
µ(x) t

a , (1.345)

we can rewrite (1.344) as

Aµ(a)! g(x)

✓
Aµ(x) +

i

g
@µ

◆
g†(x) , (1.346)

where we have used the fact that g†g = gg† = 1 in order to make the replacement
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@µ(g(x)) g
†(x) = �g(x)@µg†(x) . (1.347)

The gauge transformation of the matrix gauge field (1.346) is actually valid for any non-abelian gauge
group, not just SU(2), as long as g(x) is a group element expressed in terms of the generators ta as
in (1.331). We can also recover the abelian gauge field transformation (1.321) if we replace ta by
the identity and ↵a(x) is just ↵(x). However this is deceiving since there are new contributions that
appear exclusively in the non-abelian case. To see this in the gauge field transformation, we consider an
infinitesimal gauge transformation with

g(x) = 1+ i↵a(x) ta + · · · (1.348)

where the dots denote terms higher in powers of ↵a(x). Replacing (1.348) in (1.346) we arrive at

Aa
µ(x) t

a ! Aa
µ(x) t

a +
1

g
@µ↵

a(x) ta + i
h
↵a(x) ta, Ab

µ(x) t
b
i
+ · · · . (1.349)

The first two terms in (1.349) are analogous to what we find in the abelian case. But the third term is
only present in non abelian gauge groups since it is proportional to the commutator of two generators.
We will see below that this non commutativity has important physical consequences.

With the definition of the covariant derivative in (1.341) and the gauge field transformation (1.346) we
can prove that the fermion kinetic term given by

 ̄�µDµ , (1.350)

is invariant under the gauge transformations (1.334). This means that under these gauge transformations

Dµ (x)! g(x)Dµ (x) , (1.351)

must be satisfied. This can be explicitly verified just by substitution.

The final step, just as in the abelian case considered earlier, is to obtain the kinetic term for the gauge
fields. Following the steps taken there, we need to compute

[Dµ, D⌫ ] (x) . (1.352)

Using the matrix notation (1.345) and replacing the explicit form of the covariant derivative (1.341) in
(1.352) we obtain

[Dµ, D⌫ ] (x) = �ig (@µAµ � @⌫Aµ) (x)� g2 [Aµ, A⌫ ] (x) . (1.353)
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Once again, just as for the abelian case, we see that the commutator in (1.352) is not a differential
operator. But unlike for the abelian case, there is a new term proportional to the commutator

[Aµ, A⌫ ] = Aa
µA

b
⌫ [t

a, tb] . (1.354)

Defining the gauge field strength (matrix) by

[Dµ, D⌫ ] (x) ⌘ �ig Fµ⌫  (x) , (1.355)

we have that

Fµ⌫ = @µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ] , (1.356)

which can be expressed in gauge field components using (1.345) to give

Fµ⌫ =
�
@µA

a
⌫ � @⌫Aa

µ

�
ta � ig Aa

µA
b
⌫ [t

a, tb] . (1.357)

Defining the gauge field strength F a
µ⌫ by

Fµ⌫ ⌘ F a
µ⌫ t

a , (1.358)

and writing the commutator out in terms of the structure constants we arrive at

F a
µ⌫ = @µA

a
⌫ � @⌫Aa

µ + gfabcAb
µA

c
⌫ , (1.359)

which is the non-abelian gauge field strength in all generality. For instance for and SU(2) gauge theory
we have

F a
µ⌫ = @µA

a
⌫ � @⌫Aa

µ + g✏abcAb
µA

c
⌫ , (1.360)

since the structure constants are given by the epsilon tensor ✏abc.

Now, given (1.351), we know that the commutator acting on the fermion field transforms as

[Dµ, D⌫ ] (x)! g(x) [Dµ, D⌫ ] (x), (1.361)

which results in the gauge transformation for the commutator
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[Dµ, D⌫ ]! g(x) [Dµ, D⌫ ] g
†(x) . (1.362)

Then, using (1.355), we obtain the gauge transformation for the matrix Fµ⌫ :

Fµ⌫ ! g(x)Fµ⌫ g
†(x) . (1.363)

We can use this information to guess the form of the gauge invariant kinetic term. From (1.363), we see
that Fµ⌫ is not gauge invariant, unlike what happens in the abelian case. Then, although

Fµ⌫F
µ⌫ ! g(x)Fµ⌫F

µ⌫ g†(x) , (1.364)

is not gauge invariant, its trace actually is. Then, we have

Tr[Fµ⌫F
µ⌫ ] = F a

µ⌫ F
bµ⌫ Tr[tatb]

(1.365)

= F a
µ⌫ F

bµ⌫ �
ab

2
,

so the form of the kinetic term that corresponds to the abelian normalization is

�1

2
Tr[Fµ⌫ F

µ⌫ ] = �1

4
Fa

µ⌫ F
aµ⌫ . (1.366)

Although at first the form of the gauge kinetic term above looks just like a simple sum of the kinetic
terms of the individual gauge bosons (for a = 1, . . . , N2 � 1), this is deceiving. When plugging in the
explicit form of F a

µ⌫ from (1.359) we see that (1.366) not only leads to terms quadratic in the derivatives
of each of the fields, but also to interactions among the gauge fields: there will be a triple interaction and
a quartic one. This is a crucial feature of non-abelian gauge theories: the gauge bosons interact with each
other, whereas this is not the case for the gauge bosons of the abelian U(1), e.g. the photons. This will
have very important consequences, from the behavior of scattering amplitudes to the renormalization
group flow.

1.3.6 Feynman rules in non-abelian gauge theories

Here we press on with non-abelian gauge theories by deriving their Feynman rules. However, before we
can safely apply them to compute scattering amplitudes in perturbation theory and, specially before we
can study the renormalization of these gauge theories, we will see at the end of this lecture that there is
something missing. In order to solve this problem, we will have to be careful in quantizing non-abelian
gauge theories, as we will do in the next lecture.
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We start by considering a generic a theory of a fermion that transforms as

 (x)! g(x) (x) = ei↵
a
(x)ta  (x) , (1.367)

under a generic non-abelian gauge symmetry. The Lagrangian of the theory is then

L =  ̄ (i 6D �m) � 1

4
F a
µ⌫F

aµ⌫ , (1.368)

where the covariant is given by

Dµ (x) = (@µ � ig Aa
µ(x) t

a) (x) , (1.369)

and the ta are the generators of the gauge group G written in the appropriate representation. The non-
abelian field strength is

F a
µ⌫ = @µA

a
⌫ � @⌫Aa

µ + gfabcAb
µA

c
⌫ . (1.370)

As we saw earlier, this means that there will be interactions terms in the gauge field “kinetic term”, the
last one in (1.368). Thus, for the purpose of deriving all the Feynman rules it is convenient to split the
Lagrangian in (1.368) into a truly free Lagrangian and interacting terms. We define

L = L0 + Lint. (1.371)

where the free Lagrangian is now

L0 ⌘  ̄(i 6@ �m) � 1

4

�
@µA

a
⌫ � @⌫Aa

µ

�
(@µAa⌫ � @⌫Aaµ) . (1.372)

On the other hand, the interaction part of the Lagrangian defined in (1.371) can be itself separated into
three terms given by

Lint. = Lf
int. + L3G

int. + L4G
int. , (1.373)

denoting the interactions of gauge bosons with fermions,

Lf
int. = gAa

µ ̄�
µta , (1.374)

the triple gauge boson interaction
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L3G
int. = �gfabc@µAa⌫Ab

µA
c
⌫ , (1.375)

and the quartic one

L4G
int. = �

1

4
g2fabcfadeAb

µA
c
⌫A

dµAe⌫ , (1.376)

respectively. It is now straightforward to derive the Feynman rules from (1.374), (1.375) and (1.376).

We start with the fermion interaction. The Feynman rule is very similar to that of QED, but with the
addition of the gauge group generator. This is shown in the figure below:

= i g�µ ta

Next, we consider the triple gauge boson interaction in (1.375). Here we have to be more careful with
the momentum flow since it involves a derivative on one of the gauge fields. To obtain the Feynman rule
from iL3G

int. we need to contract it with all possible combinations of the state

|k, ✏(k); p, ✏(p); q, ✏(q)i . (1.377)

There are 3! such contractions. For instance, if we contract the gauge boson of momentum k with @µAa⌫ ,
the one with momentum p with Ab

µ and the one with momentum q with Ac
⌫ , we obtain the following

contribution to the Feynman rule

�igfabc(�ik⌫)gµ⇢ . (1.378)

This corresponds to the last term in the Feynman rule shown in the figure below. All possible 6
contractions result in the Feynman rule shown there.
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k

p q

= g fabc [gµ⌫(k � p)⇢ + g⌫⇢(p� q)µ + g⇢µ(q � k)⌫ ]

Finally, we derive the Feynman rule for the quartic interaction from (1.376). coming from the product of
the last term in Ga

µ⌫ with the similar term in Gaµ⌫ . This is given by

= �ig2
h
fabef cde (gµ⇢g⌫� � gµ�g⌫⇢)

+ facef bde (gµ⌫g⇢� � gµ�g⌫⇢)

+ fadef bce (gµ⌫g⇢� � gµ⇢g⌫�)
i

Notice that, although this last Feynman rule starts at order g2, it cannot be considered of a higher order
in perturbation theory than the other two. What matter is the computation of the amplitude o a given
process to the desired order in g. For instance, if we wish to compute the leading order contributions to
the scattering of two gauge bosons going to two gauge bosons, we see that the second Feynman rule can
be used to form contributions with two vertices and one gauge boson propagator. These are of order g2.
On the other hand, the last Feynman rule is a contribution to the amplitude in and on itself. So all the
leading order contributions to this process are of the same order, g2.

2 The electroweak Standard Model

The standard model (SM) of particle physics is first and foremost a gauge theory. It is described by the
product of three groups, SU(2) ⇥ SU(2) ⇥ U(1). Two of them non-abelian and one abelian. Most
commonly this is written as

SU(3)c ⇥ SU(2)L ⇥ U(1)Y , (2.379)

where the subscript c in the first factor stands for “color”, the L in the second stands for “left” and the Y
in the third factor refers to hypercharge. The group SU(3)c describes the interactions of quarks with the
gauge fields called gluons. These are the degrees of freedom and interactions relevant at energies above
the O(1) GeV scale, where the theory of the strong interactions is quantum chromodynamics (QCD).
This theory and its applications in various topics in particle physics are the subject of the lectures by
Giulia Zanderighi [3]. Here, we concentrate on the other two factors in (2.379),

SU(2)L ⇥ U(1)Y , (2.380)
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which we call the electroweak standard model (EWSM). This will be the subject of the rest of these
lectures.

The EWSM is built from experimental observations, coupled to our understanding of gauge theo-
ries. All SM fermions transform under the gauge theory in (2.380). In the next section we briefly review
how is it that we know this.

2.1 Building the electroweak Standard Model

Let us review the main evidences leading to the gauge structure of the electroweak theory.

– Weak Interactions (Charged): Weak decays, such as � decays n ! p e�⌫̄e or µ� ! ⌫µ ⌫̄e e�

among many others, are mediated by charged currents. Let us look at the case of muon decay. It
is very well described by a four fermion interaction, i.e. with a non renormalizable coupling GF ,
the Fermi constant. In fact, all other weak interactions can be described in this way with the same
Fermi constant ( to a very good approximation, more later). The relevant Fermi Lagrangian is

LFermi = �4
GFp
2

�
µ̄L�µ⌫L

� �
ēL�

µ⌫e
�
, (2.381)

where we already included the fact that the charged weak interactions only involve left handed
fermions. That is, the phenomenologically built Fermi Lagrangian above tells us that the weak
decay of a muon is described by the product of two charged vector currents coupling only left
handed fermions. The fact that only left handed fermions participate in the charged weak inter-
actions is an experimentally established fact, observed in all charged weak interactions. This is
done by a variety of experimental techniques. For instance, in the case of muon decay, the an-
gular distribution of the outgoing electron is very different if this is left or right handed. Precise
measurements (performed over decades of increasingly accurate experiments) have concluded that
the outgoing electron is left handed only. The different couplings involving left and right handed
fermions require parity violation. Moreover, the charged weak interactions require maximal parity
violation: only one handedness participate. Now, if we assume that the non renormalizable four
fermion interaction is the result of integrating out a gauge boson with a renormalizable interaction,
this would point to the need of 2 charged gauge bosons.This is schematically shown in Fig. 15.
Assuming that mµ ⌧MW , we integrate out the massive vector gauge boson to obtain

GFp
2
=

g2

8M2

W

, (2.382)

where g is the renormalizable coupling of the gauge bosons to fermions in diagram (b). The
charged vector gauge bosons, W± were discovered in the 1980s and studied with great detail ever
since.

– Weak Neutral Currents: In addition to the charged currents described by (2.381), we have known
since experimental evidence first appeared in the 1970s, that there are also weak neutral currents.
These were first observed by neutrino scattering off nucleons. Normally, the charged currents
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−
e

e−− −

e−

−
e

W
−

(a) (b)

Fig. 15: Diagram (a) is the Feyman diagrams associated with the four fermion Fermi Lagrangian (2.381).
Diagram (b) shows the corresponding exchange of a massive charged gauge boson, W±

µ .

would result in ⌫eN ! e�N 0, with N and N 0 protons and neutrons. This is just a crossed
diagram of � decay. But the reaction ⌫N ! ⌫N was also observed. Many other reactions
involving neutral currents have been observed since then. They also violate parity. However, they
do not do so maximally. This means that the neutral currents, or the vector gauge boson that we
need to integrate out to obtain them at low energies, couple differently to left and right handed
fermions but, unlike the charged currents, the do couple to right handed fermions. The neutral
vector gauge boson, Z0, was also discovered in the 1980s and its properties studied with great
precision.

– Electromagnetism: Of course, we know that the electromagnetic interactions are described by a
quantum field theory, QED, mediated by a neutral massless vector gauge boson, the photon. One
important feature to remember is that the photon coupling in QED is parity invariant. No parity
violation is present in QED.

The elements described above suggest that we need: 4 gauge bosons for a unified description of
the weak and electromagnetic interactions. Three of them appear to be massive: the W± and the Z0.
One, the photon, must remain massless. The SM gauge group is then G = SU(2)⇥U(1) which matches
the number of gauge bosons. However, we know that two of these only couple to left handed fermions.
whereas the massive neutral one couples differently to left and right handed fermions. Finally, the photon
must remain massless and its couplings parity invariant. The choice of gauge group is then

G = SU(2)L ⇥ U(1)Y , (2.383)

where the three gauge bosons couple to left handed fermions only, and the U(1)Y is not identified with
the U(1)EM, the abelian gauge symmetry responsible for electromagnetism. As we will see below, two
of the SU(2)L gauge bosons will result in the W±

µ . On the other hand to obtain the Z0.

2.2 The electroweak gauge theory

The EWSM is a chiral gauge theory. As we discussed in the previous section, this means that in general
the gauge fields do not couple equally to left and righ handed fermion chiralities. The fact that the gauge
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group is SU(2)L ⇥ U(1)Y tells us the transformation properties of left and right handed fermions under
a given gauge transformation. For instance, the left handed fermion fields transform as

 L(x)! ei↵
a
(x)�

a

2 ei�(x)Y L  L(x) , (2.384)

where �a (a = 1, 2, 3) are the Pauli matrices, which are twice the generators of SU(2), and Y L is
the hypercharge of the fermion  L. Here, ↵a(x) is the arbitrary gauge parameter corresponding to
an SU(2)L transformation (one per generator �a/2), whereas �(x) is the arbitrary gauge parameter
corresponding to the U(1)Y gauge transformation, both acting on the left handed fermion. On the other
hand, a right handed fermion would transform as

 R(x)!, ei�(x)Y R  R(x) , (2.385)

where Y R is the right handed fermion hypercharge. As we discussed in the previous lecture, for each
generator in a gauge group there is a gauge parameter function. The EWSM gauge group has four
generators so the gauge transformations introduce the four functions of spacetime ↵1(x), ↵2(x), ↵3(x)

and �(x). This means that we need to introduce four gauge bosons for the theory to be invariant under
local SU(2)L ⇥ U(1)Y transformations. Then, the covariant derivative acting on left handed fermion
fields is given by

Dµ L(x) =
�
@µ � igAa

µt
a � ig0Y LBµ

�
 L(x) , (2.386)

where Aa
µ(x) are the three SU(2)L gauge bosons, B(x) is the U(1)Y hypercharge gauge boson, and g

and g0 are the corresponding (dimensionless) gauge couplings. On the other hand, since right handed
fermions do not feel the SU(2)L interaction, their covariant derivative is given by

Dµ R(x) =
�
@µ � ig0Y RBµ

�
 R(x) , (2.387)

with Y R its hypercharge.

Next, we have to see how to accommodate all the SM fermions in representations of SU(2)L ⇥
U(1)Y . Starting with left handed fermions, since they transform under SU(2)L they must carry a non-
abelian gauge group index. We can see this from the expression for the covariant derivative in (2.386):
the covariant derivative here must be a 2 ⇥ 2 matrix since one of the terms is an SU(2) generator. The
other two terms must be thought of as implicitly multiplied by the identity matrix. i.e. writing explicitly
the SU(2)L indices, we have

(Dµ)ij j(x) , (2.388)

where j = 1, 2. Thus, left handed fermions are doublets of SU(2)L. In the SM there are two types of
left handed doublets: lepton and quark doublets. For instance, for the first generation these are

L =

 
⌫eL

e�L

!
, Q =

 
uL

dL

!
, (2.389)

and similarly for the second and third generations. Notice that the SU(2)L covariant derivative in (refl-
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hcd1) is applied to the doublets L(x) and Q(x) as a whole. This means that the hypercharges quantum
numbers YL and YQ apply to the doublets, not just the individual components. For instance, in DµL(x),
the hypercharge matrix acting on L(x) is

 
YL 0

0 YL

!
. (2.390)

Moving on to the right handed fermions, since they are singlets under SU(2)L (they only transform
under U(1)Y ), they just have their own hypercharge assignment. For instance, e�R has hypercharge Ye�R

,
uR has YuR , etc.

Now that we know how to accommodate fermions in representations of the EW gauge group
SU(2)L ⇥ U(1)Y we can address a problem of the electroweak gauge theory: masses. We know that
fermions have masses. If we write the mass term of a generic fermion of mass m this is

m ̄ = m ̄L R + h.c. , (2.391)

where h.c. stands for “hermitian conjugate. But if we subject the mass term to an SU(2)L ⇥ U(1)Y

gauge transformations in (2.384) and (2.385)

 ̄L R !  ̄L e�i↵a
(x)ta e�i�(x)Y L ei�(x)Y R R 6=  ̄L R , (2.392)

we see that it is not invariant. The  ̄L transformation is not balanced since  R does not transforms
under SU(2)L, and also Y L 6= Y R . So we conclude that fermion masses are forbidden by EW gauge
invariance.

Nest, we can consider the electroweak gauge boson sector. The kinetic terms for the SU(2)L and
U(1)Y gauge boson fields are

LGB = �1

4
F a
µ⌫F

aµ⌫ � 1

4
Bµ⌫B

µ⌫ , (2.393)

where F a
µ⌫ and Bµ⌫ are the SU(2)L and U(1)Y field strengths respectively. Absent in this gauge boson

Lagrangian are gauge boson mass term just as

M2

BBµB
µ or M2

AaAa
µA

aµ , (2.394)

are not invariant under the gauge transformations

Bµ(x)! Bµ(x) +
1

g0
@µ�(x) , (2.395)

and
Aa

µ(x) t
a ! g(x)

�
Aa

µ(x) t
a
�
g†(x)� i

g
(@µg(x)) g

†(x) , (2.396)

where in the last expression
g(x) = ei↵

a
(x)ta . (2.397)
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Thus, we arrive at the conclusion that neither fermions nor gauge bosons can have masses in the EWSM
due to gauge invariance. But we know that all fermions and some of the EW gauge bosons are massive!
The solution of this problem requires that we introduce a new concept: the spontaneous breaking of a
gauge symmetry.

2.3 The origin of mass in the electroweak Standard Model

To solve the problem of mass in the EWSM we need to implement the Anderson-Brout-Englert-Higgs
(ABEH) mechanism. This is what is at play when a gauge theory like the EWSM is spontaneously
broken. Then masses are generated out of gauge invariant operators, unlike the mass terms for fermion
and gauge bosons in the previous section, which constitute an explicit breaking of the gauge symmetry.
In order to apply the ABEH mechanism to the case of the EWSM we need to consider in turn: 1) The
Spontaneous Breaking of a global symmetry and Goldstone’s theorem and 2) The Spontaneous Breaking
of a gauge or local symmetry, the case of the SM. We will go through these two in turn.

2.3.1 Spontaneous breaking of a global symmetry

Noether’s theorem tells us that for each continuous symmetry in the Lagrangian L(�, @µ�) there is a
conserved current Jµ, i.e.5

@µJ
µ = 0 . (2.398)

We can restate this by saying that the charge associated with this symmetry

Q =

Z
d3xJ0 , (2.399)

is conserved. This is easily checked by computing

dQ

dt
=

Z
d3x @0J

0 =

Z
d3x ~5 · J =

Z

S1

ds · J = 0 , (2.400)

where in the last step we assume there are no sources at infinity.

Now, in the presence of a continuous symmetry, quantum states transform under the symmetry as

| i ! ei↵Q | i , (2.401)

where ↵ is a real constant, i.e. a continuous parameter. In particular, if the ground state is invariant under
the symmetry this means that

|0i ! ei↵Q|0i = |0i , (2.402)
5Here we go back to relativistic notation and Minkowski space.
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with the last equality implying

Q|0i = 0 . (2.403)

In other words, if the ground state is invariant under a continuous symmetry the associated charge Q

annihilates it. This is the normal realization of a symmetry.

But if

Q|0i 6= 0 , (2.404)

then this means that

|0i ! ei↵Q|0i ⌘ |↵i 6= |0i , (2.405)

where we defined the states |↵i by the continuous parameter of the transformation connecting it to the
ground state. In general, this is the situation when a symmetry is broken. But it is possible to have
(2.404) and still have a conserved charge. In other words to have

dQ

dt
= 0 . (2.406)

Having both (2.404) and (2.406) satisfied at the same time corresponds to what we call spontaneous
symmetry breaking (SSB): the charge is still conserved, but the ground state is not invariant under a
symmetry transformation.

✓
Q|0i 6= 0,

dQ

dt
= 0

◆
) SSB . (2.407)

For instance, this is what happens in a ferromagnet below a critical temperature. The free energy

F = E � TS , (2.408)

can be minimized, at high temperature, by increasing the entropy S. So at high T disorder rules. How-
ever, below a critical temperature, the free energy would be minimized by minimizing E, which is
achieved by aligning the interacting spins, resulting in a macroscopic magnetization. This is an ordered
phase. But since the magnetization picks a direction in space it corresponds to the spontaneous breaking
the symmetry of the system, i.e. O(3).

Since the charge is conserved we have that [H,Q] = 0. Then, given a Hamiltonian H acting on a state
|↵i connected to the ground state, we can write
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H|↵i = Hei↵Q|0i = ei↵QH|0i = E0e
i↵Q|0i

= E0|↵i . (2.409)

So we conclude that (2.407) results in a continuous family of degenerate states |↵i with the same energy
of the ground state, E0. Going from the ground state |0i to the |↵i states costs no energy. These are
the gapless states characteristic of SSB. They are the Nambu-Goldstone modes. In a relativistic quantum
field theory they correspond to massless particles, as we will see in the following example.

Spontaneous Breaking of a Global U(1) Symmetry

We will consider a complex scalar field, the simplest systems to illustrate the spontaneous breaking
of a global symmetry and the appearance of massless particles. This is the relativistic version of the
superfluid. The Lagrangian is

L =
1

2
@µ�

⇤@µ�� 1

2
µ2�⇤�� �

4
(�⇤�)2 . (2.410)

As we well know, L is invariant under the U(1) symmetry transformations

�(x)! ei↵�(x) , �⇤(x)! e�i↵�⇤(x) , (2.411)

where ↵ is a real constant. Here the U(1) symmetry is equivalent (isomorphic) to a rotation in the
complex plane defined by

�(x) = �1(x) + i�2(x) , �⇤(x) = �1(x)� i�2(x) , (2.412)

where �1,2(x) are real scalar fields. Then we see that U(1) ' O(2). For instance, had we started with a
purely real field �(x) = �1(x), i.e. �2(x) = 0, the U(1) transformations (2.411) would result in

�(x) = �1(x)! cos↵�1(x) + i sin↵�1(x) , (2.413)

as illustrated in Fig. 16 below.

We now consider the (classical) potential

V =
1

2
µ2�⇤�+

�

4
(�⇤�)2 . (2.414)

For µ2 > 0 V has a minimum at (�⇤�)0 = 0. On the other hand, if µ2 < 0 there is a non trivial minimum
for � > 0 resulting from the competition of the first and second terms in (2.414). Redefining
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1

Fig. 16: The U(1) rotation �! ei↵� for an initially real field.

µ2 ⌘ �m2 , (2.415)

with m2 > 0, the minimum of the potential now is

(�⇤�)
0
=

m2

�
⌘ v2 . (2.416)

Here v2 is the expectation value of the �⇤� operator in the ground state, i.e.

h0|�⇤�|0i = v2 . (2.417)

The potential looks just as the one for the superfluid case in the previous lecture, shown in Fig. 8.1. The
projection onto the (�1,�2) plane is shown in Fig. 17 below.

The radius is fixed through

(�⇤�)0 = v2 = �21 + �22 , (2.418)

but the phase is undetermined. We need to fix it in order to choose a ground state to expand around. Any
choice should be equivalent

h�1i = v h�2i = 0

h�1i =
vp
2

h�2i =
vp
2

...
...
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2

1

v

Fig. 17: The red circle represents the locus points of the minimum of the potential (2.414) for µ2 < 0.
The radius is v, a real number. The phase is not determined by the minimization.

h�1i = 0 h�2i = v .

This particular choice is what constitutes spontaneous symmetry breaking. We need to fix the phase
✓ = ✓0 arbitrarily in order to expand around this ground state. For instance, let us choose the first line
above, i.e. h�1i = v, and h�2i = 0. This allows us to expand the field �(x) around this ground state as

�(x) = v + ⌘(x) + i⇠(x) , (2.419)

where ⌘(x) and ⇠(x) are real scalar fields statisfying

h0|⌘(x)|0i = 0, h0|⇠(x)|0i = 0 . (2.420)

This obviously corresponds to �1(x) = v+i⌘(x) and �2(x) = ⇠(x). We can now rewrite the Lagrangian
(2.410) in terms of ⌘(x) and ⇠(x). This is

L =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
m2 (v + ⌘ � i⇠) (v + ⌘ + i⇠)

��
4
[(v + ⌘ � i⇠) (v + ⌘ + i⇠)]2 , (2.421)

where we used (2.415). Using (2.416) and focusing on the terms quadratic in the fields, we obtain

L =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ �m2⌘2 + interactions . (2.422)

So we see that when we expand around the ground state defined by (2.419) we end up with a theory of a
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real scalar field with mass (⌘) and a massless state ⇠. That is

m⌘ =
p
2m, m⇠ = 0 . (2.423)

This result is a reflection of Goldstone’s theorem: a spontaneously broken continuous symmetry, here
a U(1), results in massless states. Notice that the result would be exactly the same had we chosen any
other angle in Fig. 17 instead of ✓ = 0. One simple way to check this is to use a different parametrization
of �(x). We write

�(x) ⌘ [v + h(x)] ei⇡(x) , (2.424)

where h(x) and ⇡(x) are real scalar fields, also satisfying

h0|h(x)|0i = 0, h0|⇡(x)|0i = 0 . (2.425)

Then from (2.424) it is pretty obvious that ⇡(x) does not enter in the potential, and therefore will not
have a mass term. It is very simple to obtain the Lagrangian (2.410) in terms of h(x) and ⇡(x) using
(2.424). This is

L =
1

2
@µh@

µh+
1

2
@µ⇡@

µ⇡ �m2h2 + interactions , (2.426)

which is exactly the same theory as the one in (2.422), i.e. a massive state with mh =
p
2m and a

massless particle, here the ⇡(x).

To understand more intuitively the appearance of the massless state it is helpful to look at the
possible excitations of the potential, as illustrated in Fig. 18.

Fig. 18: The scalar potential. There are two types of independent excitations about the minimum: the
radial excitation implies a cost of energy since results in a larger value of V (�) than the minimum. The
excitation along the circle cost no energy and so it corresponds to a massless state.
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We can see that in order to obtain the particle states we must expand about the minimum of the potential.
But there are two independent (orthogonal) directions we can choose. If the expand in the radial direction,
no matter how small the fluctuation it will cost energy. This fluctuation corresponds to the massive field
h(x). On the other hand, if we expand about the minimum along the circle, this has no energy cost
since all the points in the circle have the same energy as the minimum we picked arbitrarily. This is the
massless fluctuation ⇡(x), the Nambu-Godstone bosons.

We will later see a derivation of Goldsone’s theorem that is more geared towards quantum field
theory. We will see that there will be a NGB for each broken symmetry generator, i.e. for each sponta-
neously broken symmetry.

2.3.2 Spontaneous breaking of a gauge symmetry

We have seen that the spontaneous breaking of a continuous symmetry results in the presence of massless
states in the spectrum, the Nambu–Goldstone Bosons (NGB). We have seen this in particular for a U(1)

global symmetry where the potential was such that the ground state was not U(1) invariant. In that case,
the NGB corresponded to the degeneracy of the ground state, i.e. it was the fluctuation going around the
degenerate minimum and as such it corresponded to a massless state. We will see later that this picture
generalizes for non-abelian global continuous symmetries so that the number of NGBs corresponds to
the number of degenerate directions in group space, i.e. the number of broken generators.

Before we go into non-abelian symmetries, we will consider the situation when the U(1) symmetry
studied earlier is gauged. That is, is a local U(1) symmetry such as for example in QED. As we will soon
see, the consequences for the spectrum when the spontaneously broken symmetry is gauged are drastic.
We start with the Lagrangian of a scalar field charged under a gauged U(1) symmetry just as QED. This
is given by

L =
1

2
(Dµ�)

⇤Dµ�� V (�⇤�)� 1

4
Fµ⌫F

µ⌫ , (2.427)

where the covariant derivative is defined by

Dµ� = (@µ + ieAµ)� , (2.428)

and the scalar and gauge field transformations under the U(1) gauge symmetry are

�(x) ! ei↵(x)�(x)

(2.429)

Aµ(x) ! Aµ(x)�
1

e
@µ↵(x) .

Finally, the gauge field Aµ(x) has a kinetic term given by the square of the gauge invariant field strength
as usual
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Fµ⌫ = @µA⌫ � @⌫Aµ . (2.430)

With (2.428), (2.429) and (2.430) the Lagrangian in (2.427) is clearly gauge invariant.

In order to implement spontaneous breaking we choose the potential as

V (�⇤�) =
1

2
µ2�⇤�+

�

4
(�⇤�)2 , (2.431)

which is the same form we used for the breaking fo the global U(1) and corresponds to the only renor-
malizable terms allowed by the symmetry in four spacetime dimensions. What follows next pertaining
the minimum of the potential is identical to what we saw for the global symmetry case. If µ2 > 0 the
minimum of V in (2.431) is � = 0. However if µ2 < 0 then we rewrite the potential as

V (�⇤�) = �1

2
m2�⇤�+

�

4
(�⇤�)2 , (2.432)

where we have defined the positive constant m2 = �µ2. As before, in this case the minimum is now
given by the solution of

�1

2
m2 +

�

2
(�⇤�)0 = 0 , (2.433)

which results in

(�⇤�)0 = h0|�⇤�|0i = m2

�
⌘ v2 . (2.434)

Choosing the value of the field to be real at the minimum, we use the expansion

�(x) = v + ⌘(x) + i⇠(x) , (2.435)

such that the physical real fields satisfy

h0|⌘(x)|0i = h0|⇠(x)|0i = 0 . (2.436)

Just as we expect, writing the potential in terms of ⌘(x) and ⇠(x)

V (�⇤�) = V ((v2 + ⌘(x)2) + ⇠(x)2) , (2.437)

allows us to identify the spectrum which is given by
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m⌘ =
p
2m =

p
2�v

(2.438)

m⇠ = 0 .

Thus, we identify ⇠(x) with the massless NGB. The difference with respect to the SSB of a global U(1)

comes in when we look at what happens in the scalar kinetic term. This is

1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
e2 v2AµA

µ

(2.439)

+ e v Aµ @
µ⇠ + · · · ,

where we have explicitly written the terms quadratic in the fields, and the dots denote interactions terms
that are cubic or quadratic in them. Besides the kinetic terms for ⌘(x) and ⇠(x) we notice two terms.
The first one is an apparent gauge boson mass term. It implies that the gauge boson has acquired a mass
given by

mA = e v . (2.440)

However, this does not mean that the gauge symmetry is not been respected. In fact, all we have done
with respect to the (2.427 ) is to expand the theory around the ground state in terms of fields that have
zero expectation values there. In other words, we just performed a change of variables. However, the
fact the we are expanding the theory around a minimum that does not respect the symmetry is resulting
in a mass for the gauge boson. This means that the gauge symmetry has been spontaneously broken. But
since we have not added any terms that violated explicitly the U(1) gauge symmetry, the symmetry has
not been explicitly broken and therefore currents and charges must still be conserved.

The second notable aspect in (2.439) is the term mixing the gauge boson with the ⇠(x) field, the would-
be NGB. Having a term like this, i.e. non-diagonal two-point function, implies that we have to include
a Feynman diagram as the one in Fig. 19. Although in principle there is no problem with having a non-
diagonal Feynman rule such as this as long as we always remember to include it, it is interesting to see
how to diagonalize it and what are the consequences of doing that. The idea is to choose a gauge for
Aµ(x) such that we can cancel this term once we go to the new gauge. The theory has to be physically
equivalent to the one with (2.439). Choosing a specific gauge corresponds to choosing a scalar function
↵(x) in the gauge transformations (2.429). In particular, if we choose
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=  i e v (−i q  ) = m   q    
A

Fig. 19: Feynman rule for the non-diagonal contribution to the two-point function in (2.439).

↵(x) = �1

v
⇠(x) , (2.441)

we then have the gauge transformation

Aµ(x)! A0
µ(x) = Aµ(x) +

1

ev
⇠(x) . (2.442)

Replacing Aµ(x) in terms of A0
µ(x) and ⇠(x) in (2.439) we have

1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
e2 v2

✓
A0

µ �
1

ev
@µ⇠

◆✓
A0µ � 1

ev
@µ⇠

◆

(2.443)

+ e v

✓
A0

µ �
1

ev
@µ⇠

◆
@µ⇠ + · · · , ,

Carefully collecting all the terms in (2.443) we arrive at the surprisingly simple expression for the scalar
kinetic term:

1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
e2 v2A0

µA
0µ + · · · . (2.444)

We see that the gauge boson mass term is still the same as before. However, the ⇠(x) field, the massless
field that we thought would be the NGB is now gone. Its kinetic term is gone and, as we will see later, no
term with ⇠(x) remains in the Lagrangian after this gauge transformation. So the would-be NGB is not!
When a degree of freedom disappears from the theory just by performing a gauge transformation, we say
that this is not a physical degree of freedom. This particular gauge without the NGB ⇠(x) is called the
unitary gauge, since it exposes the actual degrees of freedom of the theory: a real scalar field ⌘(x) with
mass m⌘ =

p
2m and a gauge boson with mass mA = ev. In fact if we count degrees of freedom before

and after we expanded around the non-trivial ground state, we see that before we had two real scalar
fields, and two degrees of freedom corresponding to the two helicities of a massless gauge boson, for a
total of four degrees of freedom. But after we expanded around the ground state, we have one real scalar
field, plus three polarizations for the now massive gauge boson, again a total of four degrees of freedom.
It is in this sense that sometimes we say that when a gauge symmetry is spontaneously broken, the NGB
is “eaten” by the gauge boson to become its longitudinal polarization. This statement can be made more
precise through the equivalence theorem, which says that in processes at energies much larger than v (so
that it does not matter that the expectation value of the field is not zero in the ground state) computing
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any observable by using the theory with a massive gauge boson should yield the same result as using the
theory with a massless gauge boson and a massless NGB, up to corrections that go like v2/E2, where
E is the characteristic energy scale of the process in question. We will come back to the equivalence
theorem later on when we consider the spontaneous breaking of non-abelian gauge symmetries.

There is another, perhaps more direct, way to see that the NGB can be gauged away, i.e. it disappears
from the theory by performing a gauge transformation. For this purpose, it is advantageous to parame-
terize the scalar field not in terms of real and imaginary parts, but of modulus and phase. We write

�(x) = ei⇡(x)/f (v + �(x)) , (2.445)

where we see that this automatically satisfies (2.434). We have two real scalar fields, just as before. One
is the modulus field �(x) and the other one is the phase field ⇡(x). The scale f is defined so that the
argument of the exponent is dimensionless. To fix f we demand that the ⇡(x) field has a canonically
normalized kinetic term, i.e. we impose it be

1

2
@µ⇡@

µ⇡ . (2.446)

This fixes

f = v , (2.447)

so that we have

�(x) = ei⇡(x)/v (v + �(x)) , (2.448)

instead of (2.435). From the form above, it is immediately clear that ⇡(x) will not appear in the potential.
In fact, this is given by

V (�⇤�) = �m2

2
[v + �(x)]2 +

�

4
[v + �(x)]4 . (2.449)

From this form above we see that �(x) is the massive real scalar field with

m� =
p
2� v , (2.450)

just as before. This also means that ⇡(x) cannot get a mass, i.e.

m⇡ = 0 , (2.451)
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= +

q

Fig. 20: New contributions to the gauge boson two-point function at tree level in the presence of spon-
taneous symmetry breaking. The first diagram is the gauge boson mass term insertion. The second one
corresponds to the massless NGB contribution.

and therefore is the NGB. In fact, it will only appear in the Lagrangian in derivative form since it is the
only way it will come down from the exponentials before these annihilate in the kinetic scalar term.

From the parameterization (2.448) it is also obvious how to remove ⇡(x) by means of a gauge transfor-
mation. Clearly, choosing the gauge transformation

�(x)! �0(x) = e�i⇡(x)/v �(x) , (2.452)

results in

�0(x) = [v + �(x)] . (2.453)

Of course, the gauge transformation (2.452) is the same we introduced earlier in (2.441) only substituting
⇡(x) for ⇠(x), and it therefore results in the same transformation for the gauge fields as in (2.442).
Therefore, our conclusions are exactly the same as the ones we derived by using (2.435) as the field
expansion: there is a massive gauge boson field with mass mA = e v and a massive reals scalar with
mass given by (2.450).

We finally comment on the meaning of spontaneously breaking a gauge symmetry. Specifically, we want
to address the point that although the gauge boson has acquired a mass, the gauge symmetry is still
present. To show this, let us go back to the gauge where we have both the gauge boson and the NGB. We
want to compute the gauge boson two-point function at tree level. In particular we want to consider the
effect of spontaneous symmetry breaking. We will need to use the Feynman rule illustrated in Fig. 19.
The calculation is illustrated in Fig. 20. In addition to the tree-level gauge boson propagator, there are
two new terms contributing: the gauge boson mass insertion and the massless NGB pole. They are

i�⇧µ⌫ = im2

Agµ⌫ +mAqµ
i

q2
mA(�q⌫)

(2.454)

= im2

A

✓
gµ⌫ �

qµq⌫
q2

◆
.

In the first line in (2.454) we used the gauge boson–NGB mixing Feynman rule of Fig. 19. The result is
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that the new additions to the two-point function result to be actually transverse. That is, we have that

qµ�⇧µ⌫ = 0 , (2.455)

so that the two-point function remains transverse, therefore respecting the Ward identities. Since the
Ward identities are equivalent to current conservation, we conclude that the gauge symmetry is still
preserved, even in the presence of the gauge boson mass term. We can see that this required the presence
of the NGB pole. Just having the gauge boson mass term would have resulted in a non-transverse
contribution to the two-point function, and an explicit violation of the gauge symmetry. So having a
gauge boson mass is compatible with gauge invariance as long as it is the result of spontaneous symmetry
breaking.

2.3.3 Spontaneous breaking of non-abelian global symmetries

Before we can finally go into the application of the ABEH mechanism to the EWSM, we need to gener-
alize the spontaneous breaking to the cases of non-abelian symmetries, both global and gauged. We start
with the simpler case of the global symmetry and we will restate Goldstone’s theorem in a more gen-
eral way so as to include different symmetry breaking patterns, which will result in a different number
of Nambu–Goldstone Bosons (NGBs). Then we will consider the spontaneous breaking of non-abelian
gauge symmetries, i.e. the most general version of the ABEH mechanism.

We start with the Lagrangian for a scalar field �,

L = @µ�
†@µ�� µ2

2
�†�� �

4

⇣
�†�

⌘
2

. (2.456)

The Lagrangian above is invariant under the transformation

�(x)! ei↵
a ta �(x) , (2.457)

where the ta are the generators of the non-abelian group G, and the arbitrary parameters ↵a are constants.
Here the scalar field �(x) must carry a group index in order for (2.457) to make sense. We say the
symmetry is spontaneously broken if we have

µ2 = �m2 < 0 , (2.458)

then the potential has a non trivial minimum at

⇣
�†�

⌘

0

= h�†�i = m2

�
⌘ v2 . (2.459)

However, we need to ask how is the symmetry spontaneously broken. In other words, Spontaneous
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Symmetry Breaking (SSB) means that the value of the field at the minimum, let us call it the vacuum
expectation value (VEV) of the field h�i , is not invariant under the symmetry transformation (2.457).
That is,

h�i ! ei↵
ata h�i =

⇣
1 + i↵ata + · · ·

⌘
h�i , (2.460)

can be either equal to h�i or not. This tells us that if

tah�i = 0 , (2.461)

the ground state is invariant under the action of the symmetry (unbroken symmetry directions ), whereas
if

tah�i 6= 0 , (2.462)

the ground state is not invariant (broken symmetry directions). We see that some of the generators will
annihilate the ground state h�i, such as in (2.461), whereas others will not. In the first case, these
directions in group space will correspond to preserved or unbroken symmetries. Therefore, there should
not be massless NGBs associated with them. On the other hand, if the situation is such as in (2.462),
then the ground state is not invariant under the symmetry transformations defined by these generators.
These directions in group space defined broken directions or generators and there should be a massless
NGB associated with each of them. Thus, as we will see in more detail below, the number of NGB will
correspond to the total number of generators of G, minus the number of unbroken generators, i.e. the
number of broken generators.

Example: SU(2)

As a first example, let us consider the case where the symmetry transformations are those associated with
the group G = SU(2). The three generators of SU(2) are

ta =
�a

2
, (2.463)

with �a the three Pauli matrices. This means that the scalar fields appearing in the Lagrangian (2.456)
are doublets of SU(2), i.e. we can represent them by a column vector

�(x) =

0

B@
�1(x)

�2(x)

1

CA , (2.464)
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and that the symmetry transformation can be written as6

�i(x) =
⇣
�ij + i↵ataij + · · ·

⌘
�j(x) , (2.465)

where i, j = 1, 2 are the group indices for the scalar field in the fundamental representation. We now
need to choose the vacuum h�i. This is typically informed by either the physical system we want to
describe or by the result we want to get. Let us choose

h�i =
 

0

v

!
. (2.466)

Clearly this satisfies (2.459). This choice corresponds to having

hRe[�1]i = 0 hIm[�1]i = 0

hRe[�2]i = v hIm[�2]i = 0 , (2.467)

in (2.464). We can now test what generators annihilate the vacuum (2.466) and which ones do not. We
have

t1 h�i = 1

2

 
0 1

1 0

!  
0

v

!
=

1

2

 
v

0

!
6=
 

0

0

!
. (2.468)

Similarly, we have

t2 h�i = 1

2

 
0 �i
i 0

!  
0

v

!
=

1

2

 
�iv
0

!
6=
 

0

0

!
, (2.469)

and

t3 h�i = 1

2

 
1 0

0 �1

!  
0

v

!
=

1

2

 
0

�v

!
6=
 

0

0

!
. (2.470)

So we conclude that with the choice of vacuum (2.466), all SU2) generators are broken. This means
that all the continuous symmetry transformations generated by (2.457) change the chosen vacuum h�i.
Thus, Goldstone’s theorem predicts there must be three massless NGBs. In order to explicitly see who
are these NGBs, we write the Lagrangian (2.456) in terms of the real scalar degrees of freedom as in

6We put the group indices in the fields upstairs for future notation simplicity. There is no actual meaning to them being “up” or
“down” indices, but the summation convention still holds.
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�(x) =

0

B@
Re[�1(x)] + i Im[�1(x)]

v +Re[�2(x)] + i Im[�2(x)]

1

CA , (2.471)

which amounts to expanding about the vacuum (2.466) as long as (2.467) is satisfied. Substituting in
(2.456) we will find that there are three massless states, namely, Re[�1(x)] , Im[�1(x)] and Im[�2(x)],
and that there is a massive state corresponding to Re[�2(x)] with a mass given by m. this looks very
similar to what we obtain in the abelian case, of course. Also analogously to the abelian case, we could
have parameterized �(x) as in

�(x) = ei⇡
a
(x)ta/f

 
0

v + c�(x)

!
, (2.472)

where �(x) and ⇡a(x), with a = 1, 2, 3 are real scalar fields, and the scale f and the constant c are to be
determined so as to obtain canonically normalized kinetic terms for them in L. In fact, choosing

f =
vp
2
, c =

1p
2
, (2.473)

we arrive at

L =
1

2
@µ�@µ� +

1

2
@µ⇡a@µ⇡

a � m2

2

⇣
v +

�(x)p
2

⌘
2

+
�

4

⇣
v +

�(x)p
2

⌘
4

, (2.474)

from which we see that the three ⇡a(x) fields are massless and are therefore the NGBs. Furthermore,
using m2 = �v2, we can extract

m� = m = � v (2.475)

The choice of vacuum h�i resulting in this spectrum could have been different. For instance, we could
have chosen

h�i =
 

v

0

!
. (2.476)

But it is easy to see that this choice is equivalent to (2.466), and that it would result in an identical real
scalar spectrum. Similarly, the apparently different vacuum

h�i = 1p
2

 
v

v

!
, (2.477)
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results in the same spectrum. All these vacuum choices spontaneously break SU(2) completely, i.e.
there are not symmetry transformations that respect these vacua. Below we will see an example of
partial spontaneous symmetry breaking.

2.3.3.1 Goldstone theorem revisited

We now can reformulate Goldstone theorem for the case of the spontaneous breaking of the global non-
abelian symmetry. We go back to considering the infinitesimal transformation (2.465), but we rewrite it
as

�i ! �i +�i(�) , (2.478)

where we defined

�i(�) ⌘ i↵a (ta)ij�
j . (2.479)

If the potential has a non trivial minimum at �i(x) = �i
0
, then it is satisfied that

@V (�i)

@�i

���
�0

= 0 . (2.480)

We can then expand the potential around the minimum as

V (�i) = V (�i0) +
1

2

⇣
�i � �i0

� ⇣
�j � �j

0

⌘ @2V

@�i@�j

���
�0

+ · · · , (2.481)

where the first derivative term is omitted in light of (2.480). The second derivative term in (2.481) Above
defines a matrix with units of square masses:

M2

ij ⌘
@2V

@�i@�j

���
�0
� 0 . (2.482)

where the last inequality results from the fact that �0 is a minimum. M2

ij is the mass squared matrix. We
are now in the position to state Goldstone’s theorem in this context.

Theorem:
“For each symmetry of the Lagrangian that is not a symmetry of the vacuum �0, there is a zero eigenvalue
of M2

ij .”

Proof:
The infinitesimal symmetry transformation in (2.478) leaves the Lagrangian invariant. In particular, it
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also leaves the potential invariant, i.e.

V (�i) = V
⇣
�i +�i(�)

⌘
. (2.483)

Expanding the right hand side of (2.483) and keeping only terms leading in �i(�), we can write

V (�i) = V (�i) +�i(�)
@V (�i)

@�i
, (2.484)

which, to be satisfied requires that

�i(�)
@V (�)

@�i
= 0 . (2.485)

To make this result useful, we take a derivative on both sides and specified for �i = �i
0
, i.e. we evaluate

all the expression at the minimum of the potential. We obtain

@�i(�)

@�j

���
�0

@V (�)

@�i

���
�0

+�i(�0)
@2V (�)

@�j@�i

���
�0

= 0 . (2.486)

But by virtue of (2.480), the first term above vanishes, leaving us with

�i(�0)
@2V (�)

@�j@�i

���
�0

= 0 . (2.487)

There are two ways to satisfy (2.487):

1. �i(�0) = 0.
But this means that, under a symmetry transformation, the vacuum is invariant, since according to
(2.478) this results in

�i0 ! �i0 . (2.488)

2. �i(�o) 6= 0.
This requires that the second derivative factor in (2.487) must vanish, i.e.

M2

ij = 0 . (2.489)

We then conclude that for each symmetry transformation that does not leave the vacuum invariant
there must be a zero eigenvalue of the mass squared matrix M2

ij . QED.
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2.3.4 Spontaneous breaking of non-abelian gauge symmetries

We will now consider the case when the spontaneously broken non abelian symmetry is gauged. As we
saw for the case of abelian gauge symmetry, the spontaneous breaking of the symmetry will be realized in
the sense of the ABEH mechanism, i.e. the NGBs would not be in the physical spectrum, and the gauge
bosons associated with the broken generators will acquire mass. We will derive these results carefully
in what follows.

We consider a Lagrangian invariant under the gauge transformations

�(x)! ei↵
a
(x) ta �(x) , (2.490)

where ta are the generators of the group G, and the gauge fields transform as they should. If we consider
infinitesimal gauge transformations and write out the field �(x) in its groups components, we have

�i(x)!
�
�ij + i↵a(x) (ta)ij

�
�j(x) (2.491)

In general, we consider representations where the �i(x) fields in (2.491) are complex. But for the purpose
of our next derivation, it would be advantageous to consider their real components. So if the original
representation had dimension n, we now have 2n components in the real fields �i(x). If this is the case,
then the generators in (2.491) must be imaginary, since the ↵a(x) are real parameter functions. This
means we can write them as

taij = i T a
ij , (2.492)

where the T a
ij are real. Also, since the ta are hermitian, we have

�
taij
�†

= taij , (2.493)

we see that

T a
ij = �T a

ji , (2.494)

so the T a are antisymmetric. In general, the Lagrangian of the gauge invariant theory for a scalar field in
terms of the real scalar degrees of freedom would be7

L =
1

2

⇣
Dµ�i

⌘⇣
Dµ�i

⌘
� V

�
�i
�
, (2.495)

7Here we concentrate on the scalar sector of L since it is here that SSB of the gauge symmetry arises. We can imagine adding
fermion terms to L coupling them both to the gauge bosons through the covariant derivative, as well as Yukawa couplings
between the fermions and the scalars. Of course, all these terms must also respect gauge invariance.
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where the repeated i indices are summed. We can write the covariant derivatives above as

Dµ�(x) =
�
@µ � igAa

µ(x)t
a
�
�(x) =

�
@µ + gAa

µ(x)T
a
�
�(x) , (2.496)

where we omitted the group indices for the fields and the generators. We are interested in the situation
when the potential in (2.495) induces spontaneous symmetry breaking. To see how this affects the gauge
boson spectrum we must examine in detail the scalar kinetic term:

1

2

�
Dµ�i

� �
Dµ�i

�
=

1

2
@µ�i @

µ�i +
1

2
g2Aa

µA
bµ
�
T a�

�
i

�
T b�

�
i

(2.497)

+ gAa
µ

�
T a�

�
i
@µ�i ,

where we used the notation

�
T a�

�
i
= T a

ij�j , (2.498)

and as usual repeated group indices i, j are summed. If the potential V (�i) has a non trivial minimum
then, the vacuum expectation value (VEV) of the fields �i at the minimum is

h0|�i|0i = h�ii ⌘
�
�0
�
i
, (2.499)

which says that we are singling out directions in field space which may have non trivial VEVs. Then the
terms in L quadratic in the gauge boson fields, i.e. the gauge boson mass terms, can be readily read off
(2.497):

Lm =
1

2
M2

abA
a
µA

bµ , (2.500)

where the gauge boson mass matrix is defined by

M2

ab ⌘ g2
�
T a�0

�
i

�
T b�0

�
i
. (2.501)

Since the T a’s are real, the non zero eigenvalues of M2

abv are definite positive. We can clearly see now
that if

T a�0 = 0, (2.502)
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= + +

(a) (b) (c)

Fig. 21: Contributions to the gauge boson two point function in the presence of spontaneous gauge
symmetry breaking. Diagram (a) includes the tree level as well as loop diagrams, all of which are
transverse contributions. Diagram (b) is the contribution from the gauge boson mass term. Diagram (c)
depicts the contribution from the massless NGBs.

then the associated gauge boson Aa
µ remains massless. That is, the unbroken generators, which as we

saw in the previous lecture, do not have NGBs associated with them, do not result in a mass term for the
corresponding gauge boson. On the other hand, if

T a�0 6= 0 , (2.503)

then we see that this results in a gauge boson mass term. The generators satisfying (2.503) are of course
the broken generators which result in massless NGBs. However, just as we saw for the abelian case,
these NGBs can be removed from the spectrum by a gauge transformation. To see how this works we
consider the last term in (2.497), the mixing term. This is

Lmix. = gAa
µ

�
T a�0

�
i
@µ�i . (2.504)

Thus, we see that if the associated generator is broken, i.e. (2.503) is satisfied, then there is mixing of the
corresponding gauge boson with the massless �i fields, the NGBs. It is clear that, just as in the abelian
case, we can eliminate this term by a suitable gauge transformation on Aa

µ. This would still leave the
mass term unchanged, but would completely eliminate the NGBs mixing in (2.504) from the spectrum.
But even if we leave the NGBs in the spectrum, and we still have to deal with the mixing term (2.504),
we can still see that the gauge boson two point function remains transverse, a sign that gauge invariance
is still respected despite the appearance of a gauge boson mass. This is depicted in Fig. 21.

In order to obtain diagram (c) we need to derive the Feynman rule resulting from the mixing term Lmix

(2.504). In momentum space this becomes

q
a

= g
�
T a�0

�
i
qµ ,

where the NGB momentum is flowing out of the vertex (its sign changes if it is flowing into the vertex).
The contributions to diagram (a) are transverse as they come from either the leading order propagator or
the loop corrections to it, both already shown to be transverse. Then the two point function for the gauge
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boson in the presence of spontaneous symmetry breaking is

⇧µ⌫ = ⇧(a)
µ⌫ + iM2

ab gµ⌫ + g
�
T a�0

�
i
qµ

i�ab
q2

g
�
T b�0

�
i
(�q⌫

�

= ⇧(a)
µ⌫ + iM2

ab

�
gµ⌫ �

qµ a⌫
q2

�
, (2.505)

where to obtain the second line we used (2.501). Then, just as we saw for the abelian case, we see that
the gauge boson two point function is transverse even in the presence of gauge boson masses.

Example: SU(2)

In this first example we gauge the SU(2) of the first example in the previous lecture. The Lagrangian

L =
�
Dµ�

�†
Dµ�� V (�†�)� 1

4
F a
µ⌫F

aµ⌫ , (2.506)

with the covariant derivative on the scalar field is8

Dµ�(x) =
�
@µ � igAa

µ(x)t
a
�
�(x) , (2.507)

where the SU(2) generators are given in terms of the Pauli matrices as

ta =
�a

2
, (2.508)

with a = 1, 2, 3. Since they transform according to

�(x)j ! ei↵
a
(x)tajk �k(x) , (2.509)

with j, k = 1, 2, then that are doublets of SU(2). Since each of the �j(x) are complex scalar fields, we
have four real scalar degrees of freedom. We will consider the vacuum

h�i =
 

0
vp
2

!
, (2.510)

such that, as required by imposing a non trivial minimum, we have

h�†�i = v2

2
, (2.511)

8We have gone back to complex scalar fields for the remaining of the lecture.
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where the factor of 2 above is chosen for convenience. We are particularly interested in the gauge boson
mass terms. These can be readily obtained by substituting the vacuum value of the field in the kinetic
term. This is

Lm =
�
Dµh�i

�†
Dµh�i ,

=
g2

2
Aa

µA
bµ
�
0 v

�
tatb

 
0

v

!
, (2.512)

where we used (2.510) in the second line. But for the case of SU(2) we can use the fact that

�
�a,�b

 
= 2�ab , (2.513)

which translates into

�
ta, tb

 
=

1

2
�ab , . (2.514)

Then, if we write

Aa
µA

bµ ta tb =
1

2
Aa

µA
bµ ta tb +

1

2
Ab

µA
aµ tb ta

=
1

2
Aa

µA
bµ
�
ta, tb

 
=

1

4
Aa

µA
aµ , (2.515)

where in the last equality we used (2.514). Then we obtain

Lm =
1

8
g2 v2Aa

µA
aµ , (2.516)

which results in a gauge boson mass of

MA =
g v

2
. (2.517)

Notice that all three gauge bosons obtain this same mass. It is interesting to compare this result with
what we obtained in the previous lecture for the spontaneous breaking of a global SU(2) symmetry
using the same vacuum as in (2.510). In that case, we saw that all generators were broken, i.e. there are
three massless NGBs in the spectrum and the SU(2) is completely (spontaneously) broken in the sense
that none of its generators leaves the vacuum invariant. In the case here, where the SU(2) symmetry is
gauged, we see that all three gauge bosons get masses. This is in fact the same phenomenon: none of the
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gauge symmetry leaves the SU(2) vacuum (2.510) invariant. However, the end result is three massive
gauge bosons, not three massless NGBs. We argued in our general considerations above that, just as for
the abelian case before, the NGBs can be removed by a gauge transformation. Let us see how this can
be implemented. We consider the following parameterization of the SU(2) doublet scalar field:

�(x) = ei⇡
a
(x)ta/v

0

B@
0

v+�(x)p
2

1

CA , (2.518)

where �(x) and ⇡a(x) with a = 1, 2, 3 are real scalar fields satisfying

h�(x)i = 0 = h⇡a(x)i , (2.519)

so that this choice of parameterization is consistent with the vacuum (2.510). Clearly, the potential will
not depend on the ⇡a(x) fields

V (�†�) = �m2

2
�†�+

�

2

�
�†�

�
2
, (2.520)

The minimization results in9

h�†�i = m2

2�
, (2.521)

which results in

v2 =
m2

�
. (2.522)

Replacing this in the potential (2.520) we obtain

m� =
p
2� v . (2.523)

And of course, the implicit result of having

m⇡1 = m⇡2 = m⇡3 = 0 . (2.524)

But how do we get rid of the massless NGBs? If we define the following gauge transformation

9Notice the different factor in the denominator of the second term. This is due to the factor of
p
2 in the definition of the

vacuum.
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U(x) ⌘ e�i⇡a
(x)ta/v (2.525)

under which the fields transform as

�(x) ! �0(x) = U(x)�(x) =

0

B@
0

v+�(x)p
2

1

CA ,

(2.526)

Aµ ! A0
µ = U(x)Aµ U

�1(x)� i

g

�
@µU(x)

�
U�1(x) ,

where we used the notation Aµ = Aa
µt

a. It is clear from the first transformation above, that �0(x) does
not depend on the ⇡a(x) fields. Thus, the gauge transformation (2.526) has removed them from the
spectrum completely. However, the number of degrees of freedom is the same in both gauges. We had
three transverse gauge bosons (i.e. 6 degrees of freedom) and four real scalar fields. In this new gauge
we have three massive gauge bosons (i.e. 9 degrees of freedom) plus one real scalar, �(x). The total
number of degrees of freedom is always the same. The gauge were the NGBs disappear of the spectrum
is called the unitary gauge.

2.3.5 The ABEH mechanism in the electroweak Standard Model

In order to apply what we learned in the previous section to the EWSM, we have to introduce a scalar
field in to it. We must define the representation of SU(2)L ⇥ U(1)Y for this new field. We consider a
scalar field � in the fundamental representation of SU(2)L and with assignment of hypercharge U(1)Y ,

Y� = 1/2 . (2.527)

That the scalar is in the fundamental representation of SU(2)L means that it is a scalar doublet, dubbed
the Higgs doublet. It can be written as

� =

 
�+

�0

!
, (2.528)

where �+ and �0 are complex scalar fields, resulting in four real scalar degrees of freedom10. Under a
SU(2)L ⇥ U(1)Y gauge transformation, the Higgs doublet transforms as

�(x)! ei↵
a
(x)ta ei�(x)Y� ,�(x) , (2.529)

10At this point, the labels “+” and “0” are just arbitrary, since we have not even defined electric charges But these labels will
be consistent in the future, after we have done this.
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where ta are the SU(2)L generators (i.e. Pauli matrices divided by 2), ↵a(x) are the three SU(2)L

gauge parameters, �(x) is the U(1)Y gauge parameter, and it is understood that the U(1)Y factor of the
gauge transformation contains a factor of the identity I2⇥2 after the hypercharge Y�. Thus, the covariant
derivative on � is given by

Dµ�(x) =
⇣
@µ � igAa

µ(x)t
a � ig0Bµ(x)Y�I2⇥2

⌘
�(x) . (2.530)

Here, Aa
µ(x) is the SU(2)L gauge boson, Bµ(x) the U(1)Y gauge boson, and g and g0 are their corre-

sponding couplings. The Lagrangian of the scalar and gauge sectors of the SM is then

L =
�
Dµ�

�†
Dµ�� V (�†�)� 1

4
F a
µ⌫F

aµ⌫ � 1

4
Bµ⌫B

µ⌫ , (2.531)

where F a
µ⌫ is the usual SU(2) field strength built out of the gauge fields Aa

µ(x) and Bµ⌫ is the U(1)Y

field strength given by the abelian expression

Bµ⌫ = @µB⌫(x)� @⌫Bµ(x) . (2.532)

As usual, we consider the potential

V (�†�) = �m2
�
�†�

�
+ �

�
�†�

�
2
, (2.533)

which is minimized for

h�†�i = m2

2�
⌘ v2

2
. (2.534)

In order to fulfil this, we choose the vacuum

h�i =
 

0
vp
2

!
. (2.535)

Just as in the previous examples of SSB of non-abelian gauge symmetries, the next question is what is the
symmetry breaking pattern, i.e. what gauge bosons get what masses, if any. In particular, we want one
of the four gauge bosons in G to remain massless after imposing the vacuum h�i in (2.535). This means
that there must be a generator or, in this case, a linear combination of generators of G that annihilates
h�i, leaving the vacuum invariant under a G transformation. This combination of generators must be
associated with the massless photon in U(1)EM, the remnant gauge group after the spontaneous breaking.
One trick to identify this combination of generators is to consider the gauge transformation defined by
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↵1(x) = ↵2(x) = 0

↵3(x) = �(x) . (2.536)

The exponent in the gauge transformation has the form

i↵3(x)t3 + i�(x)Y�I2⇥2 = i
�(x)

2

h 1 0

0 �1

!
+

 
1 0

0 1

!i

=
i�(x)

2

 
1 0

0 0

!
. (2.537)

Then we see that this combination

�
t3 + Y�

�
h�i = 0 , (2.538)

indeed annihilates the vacuum, leaving it invariant. Thus, we suspect that this linear combination of
SU(2)L ⇥ U(1)Y generators must be associated with the massless photon. We will come back to this
point later.
We now go to extract the gauge boson mass terms from the scalar kinetic term in (2.531). This is

Lm =
�
Dµh�i

�†
Dµh�i

=
1

2
(0 v)

�
gAa

µt
a + g0Y�Bµ

��
gAbµtb + g0Y�B

µ
�
 

0

v

!
. (2.539)

For the product of the two SU(2) factors we will use the trick in (2.515). Then, the only terms we need
to be careful about are the mixed ones: one SU(2) times one U(1)Y contribution. There are two of them,
and each has the form

1

2
(0 v) g g0

�3

2
Y�

 
0

v

!
= �1

2

v2

4
g g0A3

µB
µ , (2.540)

where in the second equality we used Y� = 1/2. We then have

Lm =
1

2

v2

4

n
g2A1

µA
1µ + g2A2

µA
2µ + g2A3

µA
3µ + g02BµB

µ � 2gg0A3

µB
µ
o
. (2.541)
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From this expression we can clearly ee that A1
µ and A2

µ acquire masses just as we saw in the pure SU(2)

example. It will be later convenient to define the linear combinations

W±
µ ⌘

A1
µ ⌥ iA2

µp
2

, (2.542)

which allows us to write the first two terms in (2.541) as

LW
m =

g2 v2

4
W+

µ W�µ . (2.543)

These two states have masses

MW =
g v

2
. (2.544)

On the other hand, the fact that A3
µ and Bµ have a mixing term prevents us from reading off masses.

We need to rotate these states to go to a bases without mixing, a diagonal basis. In order to clarify what
needs to be done, we can write the last three terms in (2.541 in matrix form

Lneutral

m =
1

2

v2

4
(A3

µ Bµ)

 
g2 �g g0

�g g0 g02

!  
A3µ

Bµ

!
, (2.545)

where the task is to find the eigenvalues and eigenstates of the matrix above. It is clear that one of the
eigenvalues is zero, since the determinant vanishes. Then the squared masses of the physical neutral
gauge bosons are

M2

� = 0

(2.546)

M2

Z =
v2

4
(g2 + g02)

The eigenstates in terms of A3
µ and Bµ, the original SU(2)L and U(1)Y gauge bosons respectively, are

Aµ ⌘
1p

g2 + g02

�
g0A3

µ + gBµ
�

(2.547)

Zµ ⌘
1p

g2 + g02

�
gA3

µ � g0Bµ
�

. (2.548)
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Alternatively, we could have obtained the same result by defining an orthogonal rotation matrix to diag-
onalize the interactions above. That is, rotating the states by

 
Zµ

Aµ

!
=

 
cos ✓W � sin ✓W

sin ✓W cos ✓W

!  
A3

µ

Bµ

!
, (2.549)

results in diagonal neutral interactions if we have

cos ✓W ⌘
gp

g2 + g02
, sin ✓W ⌘

g0p
g2 + g02

, (2.550)

where ✓W is called the Weinberg angle. It is useful to invert (2.549) to obtain

A3

µ = sin ✓WAµ + cos ✓WZµ (2.551)

Bµ = cos ✓WAµ � sin ✓WZµ . (2.552)

Using these expressions for A3
µ and Bµ we can replace them in the covariant derivative acting on the

scalar doublet �. Their contribution fo Dµ is

�igA3

µt
3 � ig0Y�Bµ = �iAµ

�
g sin ✓W t3 + g0 cos ✓WY�

�
� i
�
g cos ✓W t3 � g0 sin ✓WY�

�
Zµ

(2.553)

= �ig sin ✓W
⇣
t3 + Y�

⌘
Aµ � i

g

cos ✓W

⇣
t3 � (t3 + Y�) sin

2 ✓W
⌘
Zµ ,

where it is always understood that the hypercharge Y� is always multiplied by the identity, and in the last
identity we used the fact that

g0 cos ✓W = g sin ✓W , (2.554)

and trigonometric identities. We can conclude that is Aµ is to be identified with the photon field, then its
coupling must be e times the charged of the particle it is coupling to (e.g. �1 for an electron. Thus we
must impose that

e = g sin ✓W , (2.555)

and that the charge operator, acting here on the field � coupled to Aµ is defined as
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Q = t3 + Y� . (2.556)

Then we can read the photon coupling to the doublet scalar field � from

�i eAµQ�(x) = �i eAµQ

 
�+

�0

!
. (2.557)

Substituting Y� = 1/2 we have

Q

 
�+

�0

!
=

 
1 0

0 0

!  
�+

�0

!
=

 
�+

0

!
, (2.558)

which tells us that the top complex field in the scalar doublet has charge equal to 1 (in units of e, the
proton charge), whereas the bottom component has zero charge, justifying our choice of labels. On the
other hand, we see that fixing Q to be the electromagnetic charge operator, completely fixes the couplings
of Zµ to the scalar �. This is now, from (2.553),

�i g

cos ✓W
Zµ

⇣
t3 �Q sin2 ✓W

⌘
� . (2.559)

We will see below that the choice of fixing the Aµ couplings to be those of electromagnetism, fixes
completely the Zµ couplings to all fermions, giving a wealth of predictions.

2.3.6 Gauge couplings of fermions

The SM is a chiral gauge theory, i.e. its gauge couplings differ for different chiralities. To extract the left
handed fermion gauge couplings, we look at the covariant derivative

Dµ L =
�
@µ � igAa

µt
a � ig0Y LBµ

�
 L , (2.560)

where Y L is the left handed fermion hypercharge. On the other hand, since right handed fermions do
not feel the SU(2)L interaction, their covariant derivative is given by

Dµ R =
�
@µ � ig0Y RBµ

�
 R , (2.561)

with Y R its hypercharge. Using the covariant derivatives above, we can extract the neutral and charged
couplings. We start with the neutral couplings, which in terms of the gauge boson mass eigenstates are
the couplings to the photon and the Z.

Neutral Couplings: From (2.560), the neutral gauge couplings of a left handed fermions are
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�
�igt3A3

µ � ig0Y LBµ
�
 L = ig sin ✓W

�
t3 + Y L

�
Aµ  L

� i

�
g2t3 � ig02Y L

�
p
g2 + g02

Zµ  L , (2.562)

where on the right hand side we made use of (2.551) and (2.552). Now, we know that the photon coupling
should be

�ieQ L , (2.563)

with Q L the fermion electric charge operator. Thus, we must identify

Q L = t3 + Y L , (2.564)

as the fermion charge. We can use our knowledge of the fermion charges to fix their hypercharges. As
an example, let us consider the left handed lepton doublet. For the lightest family, this is written in the
notation

L =

 
⌫eL

e�L

!
. (2.565)

The action of t3 on L is

t3 L =

 
1/2 0

0 �1/2

!  
⌫eL

e�L

!

=

 
(1/2) ⌫eL
(�1/2) e�L

!
⌘
 

t3⌫eL ⌫eL
t3eL e�L

!
, (2.566)

where in the last equality we defined t3⌫eL = 1/2 and t3eL as the eigenvalues of the operator t3 associated
to the electron neutrino and the electron. Then, we have

QL L =

 
1/2 + YL 0

�1/2 + YL 0

!  
⌫eL

e�L

!
=

 
(1/2 + YL) ⌫eL
(�1/2 + YL) eL

!
. (2.567)

But we know that the eigenvalue of the charge operator applied to the neutrino must be zero, as well as
that the eigenvalue of the electron must be�1. Thus, we obtain the hypercharge of the left handed lepton
doublet
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YL = �1

2
, (2.568)

which is fixed to give us the correct electric charges for the members of the doublet L. We can do the
same with the right handed fermions. These, however do not have t3 in the covariant derivative (see
(2.561) ). Then, for e�R, the right handed electron, we have that t3eR = 0, which means that, since

Qe�R
= �1 , (2.569)

then the right handed electron’s hypercharge is equal to it:

Ye�R
= �1 . (2.570)

Similarly, the right handed electron neutrino has zero electric charge, which results in

Y⌫R = 0 . (2.571)

Now that we fixed all the lepton hypercharges by imposing that they have the QED couplings to the
photon, we can extract their couplings to the Z as predictions of the electroweak SM. From (2.562) we
have

�i
�
g cos ✓W t3 � g0 sin ✓W Y 

�
Zµ  = �i g

cos ✓W

�
cos2 ✓W t3 � sin2 ✓W Y 

�
Zµ  

= �i g

cos ✓W

�
t3 � sin2 ✓W Q 

�
Zµ  , (2.572)

where the initial expressions makes use of cos ✓W and sin ✓W in terms of g and g0, in the first equality we
used that tan ✓W = g0/g and, in the final equality, we used that in general Q = t2 + Y , independently
of the fermion chirality, as long as we generalize (2.564) for right handed fermions using t3 R

= 0. For
instance, from (2.572) we can read off the lepton couplings of the Z boson. These are,

⌫eL : �i g

cos ✓W

⇣1
2

⌘

e�L : �i g

cos ✓W

⇣
�1

2
+ sin2 ✓W

⌘

(2.573)

e�R : �i g

cos ✓W

⇣
sin2 ✓W

⌘
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⌫eR : 0 .

From the couplings above, we see that every lepton has a different predicted coupling to the Z. These
are, of course, three level predictions. Measurements of these Z couplings have been performed with
subpercent precision for a long time, and the SM predictions for the fermion gauge couplings have passed
the tests every time. Another, interesting point, is that right handed neutrinos have no gauge couplings
in the SM: no Z coupling, certainly no electric charge and no QCD couplings. Thus, from the point of
view of the SM, the right handed neutrino need not exist.

Charged Couplings:

We complete here the derivation of the gauge couplings of leptons by extracting their charged cou-
plings.These come from the SU(2)L gauge couplings, as we see from

�ig
�
A1

µt
1 +A2

µt
2
�
= �i gp

2

 
0 W+

µ

W�
µ 0

!
, (2.574)

which then involve only left handed fermions. Then, from the gauge part of the left handed doublet
kinetic term

LL = L̄i 6DL , (2.575)

we obtain their charged couplings

Lch.
L = (⌫̄eL ēL) �

µ gp
2

 
0 W+

µ

W�
µ 0

!  
⌫eL
eL

!

(2.576)

=
gp
2

n
⌫̄eL�

µeLW+

µ + ēL�
µ⌫eL W�

µ

o
,

where we can see that, as required by hermicity, the second term is the hermitian conjugate of the first.
The Fermi Lagrangian can be obtained from Lch.

L by integrating out the W± gauge bosons.

We now briefly comment on the electroweak gauge couplings of quarks. Just as for leptons, we concen-
trate on the first family. The left handed quark doublet is

qL =

 
uL

dL

!
, (2.577)

We know that, independently of helicity, the charges of the up and down quarks are Qu = +2/3 and
Qd = �1/3. Then we have
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QqL =
⇣
t3 + YqL

⌘
=

 
+2/3 0

0 �1/3

!
, (2.578)

which results in

YqL =
1

6
. (2.579)

The hypercharge assignments for the right handed quarks are again trivial and given by the quark electric
charges. We have

YuR = +
2

3
, YdR = �1

3
. (2.580)

With these hypercharge assignments we can now write the quark couplings to the Z. Using (2.572) we
obtain

uL : �i g

cos ✓W

⇣1
2
� sin2 ✓W

2

3

⌘

dL : �i g

cos ✓W

⇣
�1

2
+ sin2 ✓W

1

3

⌘

uR : �i g

cos ✓W

⇣
� sin2 ✓W

2

3

⌘

dR : �i g

cos ✓W

⇣
sin2 ✓W

1

3

⌘
. (2.581)

Once again, we see that each type of quark has a different coupling to the Z. All of these predictions
have been tested with great precision, confirming the SM even beyond leading order.

The charged gauged couplings of left handed quarks are trivial to obtain: they are dictated by SU(2)L

gauge symmetry and therefore there must be the same as those of the left handed leptons in (2.576). So
we have

Lch.
q =

gp
2

n
ūL�

µdLW+

µ + d̄L�
µuLW�

µ

o
. (2.582)

2.3.7 Fermion masses

We have seen that SSB leads to masses for same of the gauge bosons, preserving gauge invariance. We
now direct our attention to fermion masses. In principle these terms

Lfm = m  ̄L R + h.c. , (2.583)
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are forbidden by SU(2)L⇥ U(1)Y gauge invariance since thy are not invariant under

 L ! ei↵
a
(x)ta ei�(x)Y L  L

 R ! ei�(x)Y R  R .

But the operator

 ̄L� R , (2.584)

is clearly invariant under the SU(2)L gauge transformations, and it would be U(1)Y invariant if

�Y L + Y� + Y R = 0 . (2.585)

Since Y� = 1/2, this form of the operator will work for the down type quarks and charged leptons. For
instance, since YL = �1/2 and YeR = �1, the operator

�Lme = �e L̄� eR + h.c., (2.586)

is gauge invariant since the hypercharges satisfy (2.585). In (2.586) we defined the dimensionless cou-
pling �e which will result in a Yukawa coupling of electrons to the Higgs boson. To see this, we write
�(x) in the unitary gauge, so that

�Lme = �e (⌫̄eL ēL)

0

B@
0

v+h(x)p
2

1

CA eR + h.c.

= �e
vp
2
ēLeR + �e

1p
2
h(x) ēLeR + h.c. , (2.587)

where the first term is the electron mass term resulting in

me = �e
vp
2
, (2.588)

and the second term is the Yukawa interaction of the electron and the Higgs boson h(x). We can rewrite
(2.587) as

111



GUSTAVO BURDMAN

�Lme = me ēLeR +
me

v
h(x) ēLeR + h.c. , (2.589)

from which we can see that the electron couples to the Higgs boson with a strength equal to its mass in
units of the Higgs VEV v. Similarly, for quarks we have that the operator

�Lmd = �e q̄L� dR + h.c., (2.590)

is gauge invariant since YqL = 1/6 and YdR = �1/3 satisfy (2.585). Them we obtain

�Lmd = md d̄LdR +
md

v
h(x) d̄LdR + h.c. , (2.591)

and where the down quark mass was defined as

md = �d
vp
2
. (2.592)

As we can see, it will be always the case that fermions couple to the Higgs boson with the strength m /v.
Thus, the heavier the fermion, the stronger its coupling to the Higgs.

Finally, in order to have gauge invariant operators with up type right handed quarks we need to use the
operator

�Lmu = �u q̄L�̃uR + h.c. , (2.593)

where we defined

�̃(x) = i�2�(x)⇤ =

0

B@

v+h(x)p
2

0

1

CA , (2.594)

where in the last equality we are using the unitary gauge. It is straightforward11 to prove that �̃(x) is an
SU(2)L doublet with Y

�̃
= �1/2, which is what we need so as to make the operator in (2.593) invariant

under U(1)Y . Then we have

�Lmu = mu ūLuR +
mu

v
h(x) ūLuR + h.c. , (2.595)

with

11Only need to use that �2�2
= 1, and that �2

(�a
)
⇤�2

= ��a.
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mu = �u
vp
2
. (2.596)

The fermion Yukawa couplings are parameters of the SM. In fact, since there are three families of quarks
their Yuakawa couplings are in general a non diagonal three by three matrix. This fact has important
experimental consequences. On the other hand, we could imagine having something similar if we intro-
duce a right handed neutrino. This however, might be beyond the SM, since this state does not have any
SM gauge quantum numbers. Overall, the SM is determined by the parameters v, g, g0 and sin ✓W in the
electroweak gauge sector, plus all the Yukawa couplings in the fermion sector leading to all the observed
fermion masses and mixings.

2.3.8 Fermion mixing

In the previous section, we considered the fermion masses arising from Yukawa couplings assuming only
one generation of fermions. But instead of (2.586), (2.590) and (2.593), the most general interactions of
fermions with the Higgs doublet can be written as

�LHF = �iju q̄L,i�̃uR,j + �ijd q̄L,i�dR,j + �ij`
¯̀
L,i�`R,j , (2.597)

where (i, j) = 1, 2, 3 are generation indices, we denote the quark and lepton three generation doublets as
qL,i and `L,i respectively, and similarly with the right handed fermions uR,i, dR,i and `R,i. The Yukawa
couplings now are 3 ⇥ 3 matrices in flavor space: �iju , �ijd and �ije . These matrices are generally non
diagonal and complex. Therefore, so are the mass matrices

M ij
u = �iju

vp
2
, M ij

d = �ijd
vp
2
, M ij

` = �ij`
vp
2
. (2.598)

These matrices need to be diagonalized by unitary transformation on the fermion fields. For instance, for
the up quark mass matrix we want

Mdiag.
u =

0

B@
mu 0 0

0 mc 0

0 0 mt

1

CA , . . . , (2.599)

where the eigenvalues above are the physical (real) masses of the up type quarks, and similarly for Mdiag.
d

and Mdiag.
` .

We now concentrate on the quark sector. A similar procedure can be followed in the lepton sec-
tor [4]. The quark mass terms before diagonalization are

�Lmass = ūiLM ij
u ujR + d̄iLM ij

d djR + h.c. , (2.600)

To obtain diagonal mass matrices, we define four unitary transformations acting separately on left and
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right handed up and down type quarks. These are

uL ! Su
L uL uR ! Su

R uR

dL ! Sd
L dL dR ! Sd

R dR . (2.601)

We choose these quark field unitary transformations such that they satisfy

Mdiag.
u = (Su

L)
†Mu S

u
R and Mdiag.

d = (Sd
L)

†Md S
d
R . (2.602)

At the same time that the quark field rotations above not diagonalize the mass matrices, it also does so
with the Yukawa couplings of the Higgs bosons to fermions, which are diagonal and in fact given by

mf

v
. (2.603)

However, we should rotate the quark fields appearing in the vector currents, both neutral and charged.

Let us first consider the neutral currents. Since vector currents do not change chirality, we always have

ūL�
µuL or ūR�

µuR , (2.604)

or alternatively,
d̄L�

µdL or d̄R�
µdR . (2.605)

But these currents are clearly invariant under the unitary transformations in (2.601), since they involve
the product of a unitary transformation and its hermitian adjoint, i.e. its inverse. We then conclude that
in the SM there are no flavor changing neutral currents (FCNC) at leading order in perturbation
theory.12

We now consider the quark charged currents . Their contribution to the Lagrangian is given by

Lch. =
gp
2
ūiL�

µdiLW+

µ + h.c. , (2.606)

where the repeated flavor index is summed over, and the fields above are those before the diagonalization
of the mass matrices. But once we applied the different field transfomations on uiL and diL defined in
(2.601), the charged current becomes

Lch ! gp
2
((Su

L)
†Sd

L)ij ū
i
L�

µdjLW+

µ + h.c.

=
gp
2
(VCKM)ij ū

i
L�

µdjLW+

µ + h.c. , (2.607)

where we defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix as

VCKM ⌘ (Su
L)

† Sd
L . (2.608)

The CKM matrix is non-diagonal which results in generation-changing charged currents. As an example,

12FCNC can be generated in the SM at one loop order. We will see this briefly below, but in much more detail in [5] .
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Fig. 22: Charged current vertices with an up quark. In addition to the generation-conserving vertex with
a down quark, the CKM matrix allows the generation-changing vertices with the strange and bottom
quarks.

Fig. 22 shows the possible charge current vertices involving an up quark. Not only can it go to a first
generation anti-down quark, but also –thanks to the CKM matrix being non-diagonal – it can go to an
anti-strange or an anti-bottom quarks. As indicated in (2.607), each of these vertices is accompanied by
a factor of the corresponding CKM matrix element: in this case Vud, Vus and Vub. The conjugate vertices
involving a W� and a ū quark, are multiplied by the complex conjugate of the CKM matrix elements
mentioned above. Of course, similar vertices can be obtained for the other up-type quarks, c and t.

These charged current vertices and the CKM matrix are at the heart of a wealth of phenomena that
we typically call quark “flavor physics”. Not only are behind the typical (unsuppressed, leading order)
decays of heavier quarks, but also enter crucially in the loop generated FCNC in the SM, such b ! s�,
as well as b! s`+`�, K0 � K̄0, D0 � D̄0 and B0 � B̄0 mixing among others.

Of all the possible phases in VCKM all but one can be removed by fields redefinitions. This leads to the
phenomenon of CP violation, which was first observed in kaon decays in 1964, and was further observed
in B meson decays, leading to a precise mapping of the CKM matrix elements and phase structure. A
detailed presentation of these topics can be found in [5]. A similar application to leptons is in the lectures
of Ref. [4].

3 Testing the electroweak Standard Model

Now that we know how all the particles in the electroweak SM couple to each other, we can turn to testing
the SM. In this lecture we review the past, present and future tests of the various sectors of the SM that
consolidated our understanding of particle physics in the last decades. We divide this in three distinct
parts: testing the couplings of fermions to gauge bosons, the gauge boson self-couplings and finally the
Higgs couplings to all particles in the SM. However, due to the high precision the experimental tests have
achieved, we need to match this with theoretical precision. This requires that, in many cases we need to
go beyond leading order calculations in order to make predictions in the EWSM that can be meaningfully
tested by these experiments. This forces us to introduce one more aspect of the quantum field theory tool
box: renormalization. We start with a brief summary of renormalization and its applications to some of
the electroweak observables of interest. Then we move to the tests of the electroweak SM.

3.1 Renormalization

Virtual processes in quantum field theory will modify the parameters of a theory, i.e the parameters in the
Lagrangian. In perturbation theory these contributions are ordered by an expansion parameter, typically
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a coupling constant, in order to have a controlled approximation. For instance, in a theory with a real
scalar with the Lagrangian given by

L =
1

2
@µ�@

µ�� 1

2
m2 �2 � �

4!
�4 , (3.609)

the two-point function to order � admits the one-particle irreducible diagrams (1PI) shown in Fig. 23.

Fig. 23: 1PI diagrams contributing to the two-point function in the theory with Lagrangian (3.609), to
order �.

The first diagram is the free propagator. The second one gives a contribution to the two-point function
that must be integrated over the undetermined four-momentum k, and is

(�i�)
2

Z
d4k

(2⇡)4
i

k2 �m2 + i✏
, (3.610)

where the factor of two is due to the symmetry of the diagram. The need for the integration is a con-
sequence of the momentum conservation at the vertex and is consistent with the quantum mechanical
character of the computation: all possible values of the four-momentum k contribute to the amplitude,
such as we saw in the first lecture when deriving the Feynman rules. The contribution form (3.610) will
result in a shift of the two-point function. It will change the position of the pole of the propagator through
a shift �m2 in the parameter m2 in (3.609), and will change the residue at the pole. The latter will be
absorbed by a redefinition of the field �(x) itself.

In addition to shifting the parameters of the theory entering in the two-point function, the one-loop
diagram in Fig. 23 diverges for large values of the momentum. This is a consequence of the fact that
the momentum integration is not limited. This is an example of an ultra-violet (UV) or high momentum
divergence.13 We can also think of the UV divergence as a consequence of taking a distance to zero.
It is interesting to look closely at the UV limit of the integral in (3.610). To this effect, we define the
Euclidean four-momentum by k0 ! ik4 =) k2 = k2

0
� k2 = �k2

4
� k2 ⌘ �k2E , such that now the

integral in (3.610) can be written in terms of the 4D Euclidean momentum kE as

(�i�)
2

Z
d4kE
(2⇡)4

1

k2E +m2
=

(�i�)
2

Z
dkE k3E d⌦E

(2⇡)4
1

k2E +m2
, (3.611)

where the 4D solid angle is ⌦E = 2⇡2.14 Finally, the remaining Euclidean momentum integral can be
13There also infra-red (IR) divergences, or low momentum divergences. We will focus here solely on UV divergences.
14You may need to think a bit about this. We will derive a general expression later on.
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cutoff at some value ⇤ giving

(�i�)
16⇡2

Z
⇤

0

dkE k3E
k2E +m2

' �i �

32⇡2
⇤2 + . . . , (3.612)

where the dots denote terms diverging with less than two powers of ⇤, or terms that are finite after the
limit ⇤ ! 1 is taken. In this example, we say that this quantity is quadratically sensitive to the UV
cutoff ⇤.

Similarly, the 1PI contributions to the four-point function up to order �2 include loop diagrams that result
in a quantum correction of the sort given by

�i�)2
2

Z
d4k

(2⇡)4
i

k2 �m2

i

(p� k)2 �m2
,

=
i�2

16⇡2

Z
⇤

0

dkEk3E�
k2E +m2

�
(p� kE)2 +m2)

,

' i�2

16⇡2
ln⇤2 + . . . , (3.613)

which is logarithmically sensitive to the UC cutoff ⇤. The UV sensitivity is smaller since there is one
extra propagator with respect to (3.610). This will result in shifts to the coupling �. UV divergences like
these are always present in relativistic quantum field theory. They come from the fact that undetermined
momenta can be as large as possible, or the distance between any two positions in spacetime can be made
as small as possible. Although their presence requires care, it is still possible to define the changes in
the theory due to the quantum corrections in loop diagrams. The process of regularizing divergences is
part of the renormalization procedure. Renormalization redefines all the parameters of a theory in the
presence of interactions. That is, as in our example, redefinitions of m, � and the field �(x) itself. In what
follows, we describe a well defined method for absorbing the UV sensitivity in loops into counterterms.

3.1.1 Renormalization by counterterms

Starting from the Lagrangian for a real scalar field with quartic self-interactions

L =
1

2
@µ�0@

µ�0 �
1

2
m2

0�
2

0 �
�0
4!
�40 , (3.614)

with unrenormalized parameters m2

0
, �0 and the unrenormalized field �0, we defined the renormalized

parameters m2,� and �. First, we start by the field, just as we did in the previous lecture.

� = Z�1/2
� �0 . (3.615)

Then, we rewrite (3.614) replacing the renormalized field � for �0 to obtain
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L =
1

2
Z�@µ�@

µ�� 1

2
m2

0Z��
2 � �0

4!
Z2

��
4 , (3.616)

We now define

�Z� ⌘ Z� � 1

�m2 ⌘ m2

0Z� �m2

�� ⌘ �0Z
2

� � � , (3.617)

which we can rewrite in a more convenient way as

Z� = 1 + �Z�

m2

0Z� = m2 + �m2

�0Z
2

� = �+ �� . (3.618)

Replacing (3.618) in (3.616) we obtain

L =
1

2
@µ�@

µ�� 1

2
m2�2 � �

4!
�4

+
1

2
�Z� @µ�@

µ�� 1

2
�m2�2 � ��

4!
�4 , (3.619)

where we see that the first line is the renormalized Lagrangian whereas the second line is what we will
call the counterterms. These new terms will result in new Feynman rules for the theory and will cancel
divergencies in the renormalized theory. We have seen (see lecture 19) that for this theory the degree of
divergence of diagrams is given by

D = 4�
X

f

Ef (sf + 1) (3.620)

where Ef is the number of external lines of the field type f in the diagram and here sf = 0 for a scalar
field. This meant that there are divergences in the two-point function (Ef = 2 ) D = 2) and in the
four-point function (Ef = 4 ) D = 0). The divergences in the two-point function affect the terms
in L quadratic in the fields and there will be cancelled by the counterterms �Z� and �m2, whereas the
ones in the four-point function impact the quartic term and are canceled by ��. The cancellation takes
place at a given order in the perturbative expansion in the coupling constant �. In order to define the
physical parameters we need to impose renormalization conditions. To compute a given process up to
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some order in perturbation theory we need to use the Feynman rules that include the counterterms. These
new contributions will ensure that the cancelation takes place in every process.

3.1.1.1 Counterterm Feynman rules

The Feynman rules of the theory in terms of renormalized parameters are shown below, and derived from
the first line in (3.619). In addition to the tree-level Feynman rule, we now need to derive new rules from
the second line. This results in

i
�
�Z�p

2 � �m2
�
, (3.621)

�i�� , (3.622)

where the dots indicate the insertion of the counterterm. To understand the form of the counterterm for
the two-point function we should imagine inserting it as one more 1PI contribution to �i⌃(p2) in the
summed propagator, as we did in lecture 20. With the form (3.621) the propagator now would be

i

p2 �m2 � ⌃`(p2) + �Z� p2 � �m2
, (3.623)

where �i⌃`(p2) is the sum of the actual loop contributions to the two-point function. Notice that since
the mass squared in the propagator is already the renormalized mass, the divergences in �i⌃`(p2) will
now be canceled exclusively by the counterterms �Z� and �m2. To implement the program of renormal-
ization by counterterms, we compute any desired amplitude up to the desired order in �, including all the
counterterms. Divergent integrals must be regulated, i.e. expressed in terms of an appropriate regulator
that respects the symmetries of the theory. In the next lectures we will specify regularization procedures.
But the regulator is typically either an euclidean momentum cut off ⇤, or some other parameter that ex-
poses the divergences in some limit. The answer of the calculation initially depends on the couterterms
�Z�, �m2 and ��. These are fixed by imposing renormalization conditions that result in the cancellation
of divergences. The resulting expression is then independent of the regulator. This procedure removes
all divergences in a renormalizable theory.

3.1.1.2 Fixing �Z� and �m2

These counterterms are fixed by the renormalization of the two-point function. The 1PI diagrams that
need to be summed in order to obtain the propagator (3.623) now include the counterterm contribution,
as shown in Fig. 24, where we show the 1PI up to O(�). In addition to the one-loop diagram we now
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have to consider the couterterm contribution to the two-point function as in (3.621) . The sum of the two

Fig. 24: The 1PI diagrams contributing to the two-point function to O(�). The last diagram corresponds
to the counterterm in (3.621).

diagrams is

�i⌃(p2) = (�i�)
2

Z
d4k

(2⇡)4
i

k2 �m2 + i✏
+ i
�
�Z�p

2 � �m2
�
. (3.624)

We will impose the renormalization conditions on the propagators

�F (p) =
i

p2 �m2 � ⌃(p2)
, (3.625)

we now we use the renormalized mass parameter m2 from the Lagrangian in (3.619) and ⌃(p2) has the
expansion

⌃(p2) = ⌃(m2) + (p2 �m2)⌃0(m2) + ⌃̃(p2) , (3.626)

where the first two terms are divergent, but the last is not. Now, the renormalization conditions are
a little different than before because here we are adding the contributions of the loop plus those of
the counterterms and ger the renormalized propagator. This means that the renormalization condition
now should leave m2 as the pole and the residue should be unity times i, since the field is already
renormalized. This translates into the conditions

⌃(m2) = 0, ⌃0(m2) = 0, (3.627)

with the first condition ensuring that m2 is the pole of the propagator, whereas the second one leads to
the desired residue of i. We can see from (3.624) that, since the loop integral does not contain any p2

dependence, the second renormalization condition in (3.627) leads to �Z� = 0. However, this is only the
case at this order in �. In fact, going to O(�2) there will be such dependence in the integral, leading to
the more accurate statement

�Z� = 0 + O(�2) . (3.628)

Finally, we may use the first condition in (3.627) in (3.624) to obtain the mass squared counterterm
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�m2 = ��
2

Z
d4k

(2⇡)4)

i

k2 �m2 + i✏
. (3.629)

To actually compute �m2 we will need to regulate the integral above. We will do this in detail in the next
two lectures. In any case, the answer will not depend on the details of the regularization procedure.

3.1.1.3 Fixing �� through the four-point function

The renormalization of the four-point function leads to the fixing of the coupling counterterm ��. In this
case the first loop corrections will introduce a momentum dependence absent at leading order. Let us
consider a scattering process in the �4 theory up to one loop. The relevant diagrams are shown in Fig. 25.
The amplitude for scattering two scalars of momenta p1 and p2 into two scalars of momenta p3 and p4 is

Fig. 25: The diagrams contributing to the four-point amplitude. The leading order, i.e. O(�) diagram is
followed by the three possible O(�2) 1PI diagrams. The last diagram is the counterterm ��.

iA(p1, p2 ! p3, p4) = �i�+ �(s) + �(t) + �(u)� i�� , (3.630)

where the Mandelstam variables are s = (p1 + p2)2, t = (p3 � p1)2 and u = (p4 � p1)2. Since the
loop diagrams introduce kinematic dependence, we need once again to choose a point in order to impose
the renormalization condition on the four-point function. This time we choose the zero-momentum
condition, i.e.

s0 = 4m2, t0 = 0, u0 = 0 , (3.631)

which corresponds to p1 = p2 = (m,0). We then impose the renormalization condition

iA(s0, t0, u0) = �i� , (3.632)

which results in
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�� = �i
�
�(4m2) + 2�(0)

�
. (3.633)

We can then rewrite the amplitude as

iA(s, t, u) = �i�+ �̃(s) + �̃(t) + �̃(u) , (3.634)

where the �̃’s are finite and satisfy �̃(s0) = �̃(t0) = �̃(u0) = 0. The amplitude in (3.634) is expressed
in terms of the renormalized coupling � and it has a well defined kinematic dependence acquired at order
�2 through the finite parts of the loop diagrams.

We see in this example the full extent of the renormalization procedure. The renormalization condition is
used in order to remove the UV sensitivity of the parameter �. But this is done at one specific, arbitrarily
chosen, kinematic point defined by (3.631). Once this is done, the amplitude and its dependance on
s, t and u are obtained. This is a physical result: the amplitude up to one loop in perturbation theory
contains the physical kinematic dependance induced by the quantum corrections. The renormalization
condition fixes the value of the amplitude at (3.631) and removes the UV sensitivity in the process. The
same is true of the other parameters of the theory. Thus, despite the appearance of divergences, the
renormalization procedure yields physically meaningful predictions in perturbation theory coming from
the quantum corrections.

3.2 Electroweak precision constraints and fermion couplings to gauge bosons

We start by considering the low energy charged and neutral current effective Lagrangians. The weak
charged current Fermi effective Lagrangian in (2.381) can be generalized as as

Lch. = �
GFp
2
f̄�µ (1� �5) f f̄ 0�µ (1� �5) f 0 . (3.635)

On the other hand, the weak neutral current results from integrating out the Z0 and is given by

Lnt. = �⇢0
GFp
2
f̄�µ

⇣
g(f)v,0 � g(f)a,0�5

⌘
f f̄ 0�µ

⇣
g(f

0
)

v,0 � g(f
0
)

a,0 �5
⌘
f 0 , (3.636)

where the 0 subscript denotes the unrenormalized or tree-level quantities, and the vector and axial-vector
couplings are obtained from the left and right handed couplings to the Z0 in Section 2.3.6 and are given
by

g(f)v,0 = t3f � 2Qfs
2

W,0 g(f)a,0 = t3f , (3.637)

where t3f is the eignevalue of the third component of isospin for the fermion f . e.g. t3⌫ = +1/2 ,
t3e� = �1/2, etc. Notice that we defined the tree-level Weinberg angle above, in anticipation of the
renormalization processs. Finally, in (3.636) we defined the tree-level ⇢ parameter as

⇢0 ⌘
1

c2W,0

M2

W

M2

Z

, (3.638)
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which measures the relative strengths of the weak neutral to the charged effective Lagrangians (3.636)
and (3.635). In the SM, the tree-level value is ⇢SM

0
= 1. However, this is not necessarily the case in

extensions beyond the SM, and it certainly is not the case in the SM beyond tree-level. In particular, since
the measurements of electroweak observables has achieved such a large precision, it become necessary
to go beyond tree level in order to compare experimental values with the SM predictions.

As a first step, let us write the renormalized vector and axial-vector couplings as

g(f)v,0 ! g(f)v =
p
⇢f
⇣
t3f � 2f s

2

W Q(f)
⌘

, g(f)a,0 ! g(f)a =
p
⇢f t

3

f , (3.639)

where we defined the non-universal factors ⇢f in such a way that they absorb the renormalized universal
overall factor of ⇢0 ! ⇢ but also allows for non-universal vertex corrections specific to f . Also defined
in (3.639) above is the factor f , which is unity at tree level, but when considering quantum corrections it
changes the relationship between the two terms in g(f)v . As we will see below, it is possible to re-interpret
f as a renormalization of the effective weak angle. The corrections defined by (3.639) affecting the
Z ! ff̄ couplings are some of the leading electroweak corrections. Others are the running of the QED
coupling ↵(µ), as well as the Fermi constant GF . They all are integral part of the precision electroweak
constraints.

There have been a large number of tests of the electroweak interactions at relatively low energies over
the years. These include deep inelastic neutrino scattering, atomic parity violation in cesium, as well as
polarized Möller scattering. Although these measurements were able to probe neutral currents with some
precision, the most precise tests have come from the neutral current interactions at the Z0 pole, both at
LEP at CERN and at the SLD at SLAC. This is due to the very large statistics achieved at theZ0 pole,
where the e + e� ! Z0 ! ff̄ cross section is more than three orders of magnitude larger than that of
photon exchange.

In order to analyse the experiments at the Z pole it has become customary to use the so-called effective
description of the renormalized vector and axial-vector couplings in (3.639). This is defined by

ḡ(f)v =
p
⇢f
⇣
t3f � 2 s̄2f Q

(f)
⌘

, ḡ(f)a =
p
⇢f t

3

f , (3.640)

where the bars on top refers to the use of the effective renormalization scheme, which uses µ = MZ .
In this scheme, the effective renormalized weak mixing angle depends on the fermion flavor f and its
defined as

s̄2f ⌘ fs2W , (3.641)

which can be extracted by measuring ḡv/ḡa. This is done by measuring asymmetries at the Z pole. In
particular it is convenient to define the fermion f asymmetry parameter

Af ⌘ 2
ḡ(f)v ḡ(f)a

ḡ(f)2v + ḡ(f)2a

= 2
ḡ(f)v /ḡ(f)a

1 +
⇣
ḡ(f)v /ḡ(f)a

⌘
2
, (3.642)

which can be extracted from the angular data. We start by defining the forward and backward cross
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sections

�F = 2⇡

Z
1

0

d cos ✓
d�

d⌦
, �B = 2⇡

Z
0

�1

d cos ✓
d�

d⌦
. (3.643)

Also useful in the context of e+e� ! ff̄ at the Z0 pole are the cross sections �L and �R denoting the
case of a left-handed and right-handed electron beam, respectively. Then, defining the asymmetries at
the Z0 pole we can have:

AFB ⌘
�F � �B
�F + �B

, (3.644)

which is the forward-backward asymmetry;

ALR ⌘
�L � �R
�L + �R

, (3.645)

which defines the left-right asymmetry. For instance, in the presence of electron polarization Pe we have
that

A(f)
FB =

3

4
Af

Ae + Pe

1 + AePe
, (3.646)

and
ALR = Ae Pe . (3.647)

But before we go into the details of the electroweak precision data and the derived constraints on
the SM, we must discuss the various possible definitions of the weak mixing angle. This variety appears
when going beyond tree level and reflects the various possible renormalization conditions imposed. We
have already introduced the effective mixing angle, s̄2f in (3.641). It can be directly determined by

experimentally measuring the vector to axial ratio ḡv/ḡa in asymmetries, such as A(f)
FB in (3.646) and

(3.642). Alternatively, we can define the modified minimal substruction scheme (MS) weak mixing
angle, ŝ2W , a renormalization scale dependent quantity, as

ŝ2W (q2) ⌘ e2(q2)

g2(q2)
, (3.648)

and that can be implemented by using dimensional regularization for the renormalization of the couplings
above. Finally, we can also define the on-shell weak mixing angle as

s2W ⌘ 1� M2

W

M2

Z

, (3.649)

which is given in terms of the physical masses of the W and the Z and is therefore directly determined
experimentally from the measurements of MW and MZ . All these definitions of the weak mixing angle
agree at tree-level. It is possible to relate the different weak mixing angles at a given order in perturbation
theory. For instance, we have

s̄2` = ̂` ŝ
2

W (M2

Z) ' ŝ2W (M2

Z) + 0.00032 , (3.650)

where the MS) weak mixing angle is evaluated at the Z pole, q2 = M2

Z . The great experimental precision
obtained at the Z pole both at LEP 1 and at SLD requires great precision in the loop corrections. Here,
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s̄2` must be computed at full two-loop precision, as well as partial higher orders. Extracting the ratios of
vector to axial vector couplings from asymmetry measurements, and the sum of their squares from the
decay widths, i.e.

�(Z ! ff̄) = ⌘f
Nc

6⇡

GFM3

Zp
2

�
ḡ2v + ḡ2a

�
, (3.651)

where Nc = 3 and ⌘f = �QCD if f is a quark, or both are unity otherwise, and

�QCD = 1 +
↵s(M2

Z)

⇡
+ 1.41

✓
↵s(M2

Z)

⇡

◆2

+ · · · ' 1.04, (3.652)

it is possible to measure the effective couplings for all SM fermions. For instance , in Fig. 26 we see
the results of the measurements at LEP and SLC at the Z pole for the lepton couplings. In the figure,
we see the combination of the three measurements assuming lepton universality in the black contour.
Also shown, is the SM best value show in the black cross and according to the definition of the effective
couplings in (3.640). Notice the agreement with the Z pole data requires the higher order calculations

Fig. 26: 1�(39.35C.L.) contours for the Z pole observables ḡfv and ḡfa , for f = e, µ, ⌧ obtained at LEP
and at SLC, compared to the SM expectation as a function of ŝ2Z , with the best value (ŝ2Z = 0.23122)
indicated. Also, in black, is the 90% C.L. allowed region when assuming lepton universality. From [6].

named earlier. Many more tests of the gauge couplings to fermions have been performed since, most
notably at hadron colliders such as the Tevatron and the LHC. From the figure, we can see that the
agreement in the effective coupling is at the sub-percent level. So we can conclude that the electroweak
gauge couplings to fermions in the SM are tested with a great level of precision.

To show the extent of this success, we close this section showing the SM fit for electroweak
observables at the Z pole, Fig. 27. The electroweak sector has three fundamental parameters, i.e. g, g0 and
v. However, it is advantageous to use a combination of these that is measured with the greatest precision.
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Fig. 27: Fit of electroweak observables at the Z Pole. From [6].

These are: MZ , GF and ↵. In addition, it is necessary to incorporate the dependence of observables
of the Higgs mass mh, the quark masses and mixings, and the strong coupling ↵s, all entering through
radiative corrections. In general we have the parameter set given by

{p} ⌘ {↵,MZ , GF ,↵s,�,mh,mt, · · · } , . (3.653)

As we already discussed, simple tree level relations that only involve ↵, GF and MZ , such as the W

mass
MW = cos ✓W MZ , (3.654)

or the Weinberg angle

sin 2✓W =

 
2
p
2⇡↵

GFM2

Z

!
1/2

, (3.655)

will now be affected by loop corrections. These, in effect, will make all the floating parameters depend
of all others. That is, we can write for some observable Oi

Otheory

i ({p}) = Otree�level

i ({↵, GF ,MZ}) + �Oi({p}) , (3.656)

where the �Oi are the loop corrections. Measuring a large number of electroweak observables with large
enough precision to be sensitive to the loop corrections we can extract information on all parameters.

The strategy is to have some parameters that are kept fixed and others are let float in the fit. We consider
as fixed parameters: ↵(MZ), measured at low energies and then evolved to MZ ; GF , as measured
from the muon lifetime; and the fermion masses (originally with the exception of mt). The rest of the
parameter set is let to float in the fit. Thus, for each observable in Table in (27), there is an experimental
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measurement and, next to it, the SM prediction resulting from the fit including all the parameter set in
(3.656). Finally, the “pulls” are computed using

pull =
Oth. �Oexp.

�th.
, (3.657)

where �th. are the errors in Oth.. We see that the agreement of the SM fit with experiment is very good
with a high level of precision.

The electroweak data is so precise that allows for a determination of MZ , mh, mt and ↵s(MZ). Although
the Higgs boson mass enters only logarithmically in electroweak loop corrections, it is possible to obtain

mh = 90+17

�16
GeV , (3.658)

once the kinematic constraints from the LHC are removed. All this information can be seen in Fig. 28
below.

Fig. 28: Fit result and one-standard-deviation (39.35% for the closed contours and 68% for the others)
uncertainties in mh as a function of mt for various inputs, and the 90% CL region allowed by all data.
↵s(MZ) = 0.1187 is assumed except for the fits including the Z lineshape. From [6].

Finally, precision electroweak data like these can be used to constrain new physics beyond the SM. The
model independent approach to constrain new physics in precision data is to make use of the effective
field theory framework. The Lagrangian of the SM contains only renormalizable (i.e. dimension 4)
operators. But higher dimensional operators (HDO) coming from physics BSM at higher energy can
modify the physics at the electroweak scale. The systematic expansion of the electroweak SM as an
effective field theory (EFT) in terms of HDOs can be schematically written as [20, 21]

LSMEFT = LSM +
X

i

ci
⇤2

Od=6

i +
X

j

cj
⇤4

Od=8

j + · · · , (3.659)
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where the Od=n
j are the dimension n operators, ⇤ is the UV scale where the physics integrated out

resides and gives rise to the HDOs, and the coefficients cj are in principle unknown and depend on the
UV physics. This so called SMEFT is a road map for using high precision data to constrain new physics
BSM coming from higher energy scales. This will be an important part of the program of the HL-LHC
and even beyond in a scenario where the energy frontier remains at around 14 TeV. Already it is possible
to put bounds on the coefficient of the dimension 6 operators [22], although much more data will be
necessary for a tighter set of constraints [24]. One of the reasons is that, even if we restrict ourselves to
dimension 6 operators, there are 59 of them [23]. Is even possible that for some observables dimension
8 operators, of which there are thousands) might be necessary. All of these is beyond the scope of these
lectures. But we can give a glimpse of this procedure by selecting a couple of dimension 6 operators,
which are quite well known and very well constrained by electroweak precision data. These are

OS = H†�iHAi
µ⌫B

µ⌫ OT = |H†DµH|2 , (3.660)

where the �i are the Pauli matrices, Ai
µ⌫ are the SU(2)L gauge field strength and Bµ⌫ is the U(1)Y gauge

field strength. Once the Higgs field H is replaced by its VEV, the operator OS induces kinetic mixing
between A3

µ and Bµ, absent in the SM15. On the other hand, the operator OT induces a shift on the Z0

mass, but none on the W± mass. This is then a new physics contribution to the ⇢ parameter defined in
(3.638) as a tree level relation. The SM contributions to ⇢ have been both computed and measured with
great precision, so the coefficient of this operator is greatly constrained by electroweak data. These type
of corrections are called oblique, since they really are only corrections to the gauge two point functions,
ignoring the corrections to vertices. The rationale behind considering these type of corrections alone
in a fit is that maybe the new physics states (e.g. heavy fermions or scalars) have electroweak quantum
numbers so they would induce loop corrections to the electroweak gauge boson two point functions as
picture in Fig. 29. The corrections arising from these two dimension six operators give rise to universal

Fig. 29: Oblique corrections to the electroweak gauge boson two point functions. They can be one loop
contributions from new fermions or scalars carrying electroweak quantum numbers and contribute to the
coefficient of the operators OS and OT , among others.

electroweak corrections, in the sense that they will appear in all electroweak amplitudes independently of
the identity of the external fermions. So the data constraining them could be coming from muon decay,
Z pole observables such as the Z ! ff̄ widths to hadrons or leptons, asymmetries, etc.

Another important aspect of these quantities, i.e. cS and cT , is that they are finite, since there are no
counterterms to absorbe divergences coming from loops that would have this form. So, even if individual
loop diagrams contributing to either cS and cT could be divergent, the sum of all of them must give a

15The mass mixing between A3
µ and Bµ, which leads to the need to diagonalize the neutral gauge boson mass matrix, is of a

different character.
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finite answer. So these are indeed measurable effects of quantum corrections to the EWSM. Originally
[25] these two parameters where defined as S and T , as given by

S ⌘ 4sW cW v2

↵
cS , T ⌘ � v2

2↵
cT , (3.661)

where the Weinberg angle and ↵ are to be evaluated at the weak scale, and v ' 246 GeV. For instance,
adding these dimension six operators to the SM Lagrangian LSM, we can add their contributions to the
predictions for Oth.

i in (3.656) through the corrections in �Oth.
i , where the operators Oi are the dimension

four SM operators affected by the shifts induced by the dimension 6 operators OS,T . For instance the W
mass is shifted as [6]

M2

W = M2

W,SM
1

1�GFM2

W,SM S/2
p
2⇡

, (3.662)

whereas the Z mass is given by

M2

Z = MZ,SM
1� ↵(MZ)T

1�GFM2

Z,SM S/2
p
2⇡

, (3.663)

and similarly for all observables in the fit. For any neutral current amplitude Ai, we would have

Ai = Ai,SM
1

1� ↵(MZ)T
, (3.664)

where the Ai,SM are the corresponding SM amplitudes. Then, adding S and T as floating parameters in
the fit, one obtains [6]

S = 0.02 ± 0.10 , T = 0.07 ± 0.12 . (3.665)

We see from the results above that S and T , and therefore the coefficients cS and cT corresponding to
the dimension 6 oblique operators defined in (3.660), are consistent with zero. This constitutes a very
important constraint to possible extensions of the SM, which typically generate non zero values of these
parameters. Since the SM predictions in the expressions above are computed to two loop accuracy, any
increased precision in electroweak precision observables tightens the bounds on new physics.

Many extensions of the SM have been severely constrained by electroweak precision observables such
as S and T . These continue to be one the most important bounds on extensions of the SM. In order
to test a BSM model against these measurements, one needs to consider the quantum corrections to the
electroweak gauge bosons as depicted in Fig. 29. The most general form of the gauge boson two point
function is

⇧µ⌫
V V 0(q

2) = ⇧V V 0(q2)gµ⌫ + ⌃V V 0(q2)qµq⌫ , (3.666)

where qµ is the momentum going through the gauge boson line. The second term in (3.666) can be safely
neglected since either the gauge boson is coupled to a conserved current or its effects are suppressed if
the external particles have small masses. Since we can assume that the scale of new physics giving rise
to these corrections to the SM come from some energy scale ⇤ such that ⇤2 � q2, then we can expand
the ⇧V V 0(q2) functions around q2 = 0 and keep only the first terms as in

⇧V V 0(q2) ' ⇧V V 0(0) + q2⇧0
V V 0(0) + · · · , (3.667)
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where ⇧0
V V 0 denotes the derivative with respect to q2. So, in principle, we have 8 quantities we need:

(⇧�� ,⇧�Z ,⇧ZZ ,⇧WW ,⇧0
�� , . . . ). However, from the renormalization conditions on the electric charge

(e.g. from QED) we know that

⇧��(0) = 0 , ⇧�Z(0) = 0 . (3.668)

Then we are down to 6 quantities. But another 3 can be absorbed in to the renormalization of ↵, GF and
MZ as shifts defined by

�↵

↵
= �⇧0

��(0),
�GF

GF
= ⇧WW (0) ,

�M2

Z

M2

Z

= �⇧0
ZZ(0) , (3.669)

The remaining 3 parameters then must be accounting for the loop corrections coming from new physics.
These are [25] the Peskin-Takeuchi parameters S, T and U . While in this formalism S and T can be
matched to the coefficients of dimension 6 operators, in this case OS and OT , On the other hand, the
third one, U , would correspond to a dimension 8 operator in the SMEFT, and this is the reason why in
BSM models it typically gives no important contributions. The S and T parameters can be defined in
terms of the gauge boson two point functions as [6, 25]

↵T ⌘ ⇧WW (0)

M2

W

� ⇧ZZ(0)

M2

Z

, (3.670)

and
↵

4ŝ2W ĉ2W
S ⌘ ⇧ZZ(M2

Z)�⇧ZZ(0)

M2

Z

� ĉ2W � ŝ2W
ĉW ŝW

⇧Z�(M2

Z)

M2

Z

� ⇧��(M2

Z)

M2

Z

, (3.671)

Given a BSM theory, if it contains fermions and/or scalars charged under the electroweak gauge group,
it is possible to compute the loop contributions to S and T directly, resulting on tight constraints on the
masses and couplings of the new particles.

Finally, to make clear contact with the dimension 6 operators defined earlier, we can express the gauge
boson two point functions in the basis before electroweak symmetry breaking, i.e. in terms of the SU(2)L

and U(1)Y gauge bosons. Then, we define the ⇧11,⇧22,⇧33,⇧Y Y and ⇧3Y vacuum polarization func-
tions of q2 in terms of which we can write

T =
4⇡

ŝ2W ĉ2W

⇧11 +⇧22 �⇧33

M2

Z

, (3.672)

and

S = �16⇡⇧3Y (M2

Z)�⇧3Y (0)

M2

Z

= �16⇡⇧
0
3Y (0)

M2

Z

. (3.673)

Writing T and S in this way it is easier to understand their physical significance. The T parameter
measures the breaking of the isospin symmetry present in the EWSM 16, which is the difference between
the (identical) (11, 22) components and the 33 component. So, for instance, if there is a new heavy
SU(2)L doublet (U D)T , then the T parameter measures the different contribution from the charged

16This so called custodial symmetry is a remnant of the electroweak symmetry breaking and is an accidental global symmetry
in the EWSM.
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loop containing both U and D to the neutral loops containing either U or D. This contribution goes like
(M2

U �M2

D) is this is a chiral doublet and like ln(MU/MD) if is a vector-like one. Also new scalars
in various representations can contribute to T . On the other hand, the S parameter clearly measures
the amount of kinetic mixing (as opposed to mass mixing) between the A3

µ and the Bµ gauge bosons,
as evidenced by the presence of the q2 derivative of ⇧3Y . For instance, early on the S parameter was
used used to exclude heavy chiral fermions. More recently, the contributions of resonances in composite
Higgs models, gives rise to an important contribution to S putting pressure on the mass scale of these
models vector resonance masses.

3.3 Gauge boson self couplings

In addition to testing the gauge boson couplings to fermions as seen in the previous section, a crucial test
of the electroweak theory is its non-abelian character. Recalling the form of the electroweak pure gauge
boson sector:

LGB = �1

4
F a
µ⌫F

aµ⌫ � 1

4
Bµ⌫B

µ⌫ , (3.674)

where
F a
µ⌫ = @µA

a
⌫ � @⌫Aa

µ + g✏abcAb
µA

c
⌫ , (3.675)

is the SU(2)L gauge field strength and

Bµ⌫ = @µB⌫ � @⌫B⌫ , (3.676)

is the U(1)Y one, we can then derive the self-couplings of the electroweak gauge bosons. We can
immediately see that the SU(2)L term in (3.674) will result in triple as well as quartic gauge boson
couplings. This is a direct consequence of the non-abelian nature of the SU(2)L electroweak sector.
In order to test this experimentally however, we need to rewrite (3.674) in terms of the mass eigenstate
gauge bosons. So we again make the transformation from the (Aa, B) basis to the (W±, Z0, �) basis.
We will concentrate on triple gauge boson couplings (TGC). A general form of their interactions can be
schematically written as

LWWV = i gWWV

h⇣
W †

µ⌫W
µ �Wµ⌫W

µ
⌘
V ⌫ +W †

µW⌫ V
µ⌫
i
, (3.677)

with V = �, Z0, and we defined the tensors

Wµ⌫ = @µW⌫ � @⌫Wµ , and Vµ⌫ = @µV⌫ � @⌫Vµ . (3.678)

In the SM, we have
gWW� = �e and gWWZ = �e cot ✓W . (3.679)

The first experimental tests of these TGC were performed at LEP II in the early 1990s through W+W�

pair production. The corresponding diagrams are shown in Fig. 30. In Fig. 31 below, we see the early
data testing the electroweak TGCs. Already with these data it was clear that the triple gauge boson
couplings must be included in the calculations in order to have agreement with the experiment. Even if
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Fig. 30: Tree-level diagrams for W pair production . The second type of diagrams are described by
(3.677)

one argues that the �W+W� TGC does not really test the non-abelian nature of the electroweak gauge
sector since it is just the coupling of a charged particle to the photon as expected in QED, the presence
of the Z0W+W� contribution to W pair production is necessary to bring agreement with data. Current
data are much more constraining. In order to compare with more modern data, we first define an effective

Fig. 31: Early LEP II data on W pair production: testing the non-abelian nature of the electroweak sector.
For the data to agree with the SM prediction, all diagrams in Fig. 30 must be considered, including the
Z0W+W�.

Lagrangian for the TGCs that allows for anomalous deviations from the SM, although still maintaining
parity and charge conjugation invariance. This is conventionally written as

LWWV = igWWV


gV1

⇣
W †

µ⌫W
µ �Wµ⌫W

µ
⌘
V ⌫ + V W

†
µW⌫V

µ⌫ + i
�V
M2

W

W †
⇢µW

µ
⌫ V

⌫⇢

�
,

(3.680)
where gWWV is still given by (3.679) and, in the SM we have

gV1 = 1 V = 1 �V = 0 . (3.681)
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The introduction of the last term in (3.680) corresponds to a higher dimensional operator, as seen by the
appearance of an energy squared in the denominator, here chosen to be M2

W . If we further impose gauge
invariance, the couplings defined in (3.680) are constrained to satisfy

�� = �Z , Z = gZ1 � (� � 1) tan2 ✓W . (3.682)

Various experiments have constraints these TGC over the years. In order to compare with them, it is
customary to define quantities that are zero in the SM:

�gZ1 ⌘ gZ1 � 1, �Z ⌘ Z � 1, �� ⌘ � � 1 , (3.683)

in addition to �� and �Z . We can see that all TGC measurements are consistent with the SM within
NS67CH02-Hamel-de-Monchenault ARI 18 September 2017 10:8

Table 1 Observed 95%-CL limits on WWγ and WWZ anomalous trilinear gauge boson couplings

Channel 95%-CL interval Experiment
√

s ( TeV)
Luminosity

(fb−1) Reference
"κγ LEP combined [−0.099, +0.066] LEP 0.2 0.7 115

D0 combined [−0.16, +0.25] D0 1.96 8.6 132
W γ [−0.41, +0.46] ATLAS 7 4.6 63
W γ [−0.38, +0.29] CMS 7 5.0 64
WW [−0.21, +0.22] CMS 7 4.9 71
WW+WZ [−0.21, +0.22] ATLAS 7 4.6 93
WW+WZ [−0.11, +0.14] CMS 7 5.0 94
WW [−0.12, +0.17] ATLAS 8 20.3 72
WW [−0.13, +0.095] CMS 8 19.4 73

λγ LEP combined [−0.059, +0.017] LEP 0.2 0.7 115
D0 combined [−0.036, +0.044] D0 1.96 8.6 132
W γ [−0.065, +0.061] ATLAS 7 4.6 63
W γ [−0.050, +0.037] CMS 7 5.0 64
WW [−0.048, +0.048] CMS 7 4.9 71
WW+WZ [−0.039, +0.040] ATLAS 7 4.6 93
WW+WZ [−0.038, +0.030] CMS 7 5.0 94
WW [−0.019, +0.019] ATLAS 8 20.3 72
WW [−0.024, +0.024] CMS 8 19.4 73

"g Z
1 LEP combined [−0.054, +0.021] LEP 0.2 0.7 115

D0 combined [−0.034, +0.084] D0 1.96 8.6 132
WW [−0.039, +0.052] ATLAS 7 4.6 70
WW [−0.095, +0.095] CMS 7 4.9 71
WW+WZ [−0.055, +0.071] ATLAS 7 4.6 93
WW [−0.016, +0.027] ATLAS 8 20.3 72
WW [−0.047, +0.022] CMS 8 19.4 73
WZ [−0.19, +0.29] ATLAS 8 20.3 78
WZ [−0.28, +0.40] CMS 8 19.6 79

"κZ WZ [−0.19, +0.30] ATLAS 8 20.3 78
WZ [−0.29, +0.30] CMS 8 19.6 79

λZ WZ [−0.016, +0.016] ATLAS 8 20.3 78
WZ [−0.024, +0.021] CMS 8 19.6 79

analyses, ATLAS (67) and CMS (66) set 95%-CL limits at the level of 1.5×10−3 on |hγ
3 | and |hZ

3 |,
and at the level of 4 × 10−6 on |hγ

4 | and |hZ
4 |. These limits are already an order of magnitude more

stringent than those obtained at the Tevatron, thanks to the extended range in photon energy at
the LHC, and one can expect another increase in sensitivity with the 13-TeV data. Likewise, the
sensitivity for neutral aTGCs at the ZZZ vertex has been improved with the recent νν̄Z analyses
at 8 TeV. ATLAS (85) and CMS (90) have reported 95%-CL limits on the | f γ ,Z

4 | and | f γ ,Z
5 |

parameters that are at the level of or better than 4 × 10−3. These results are an improvement on
the first LHC-combined limits on aTGCs in ZZ production based on 7-TeV data (112).

The VBS analyses are used to set first limits on a number of aQGC parameters, which corre-
spond to different dimension-eight operators of the EFT. One of these operators, which involves
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Fig. 32: Measurements of TGC at various experiments. From [7].

experimental errors.

3.4 Higgs boson couplings

The Lagrangian for the EWSM is schematically given by

LEW = (Dµ�)
†Dµ�� V (�†�) + LHF + LGB + LGF , (3.684)

where LGF contains the interactions of fermions with gauge bosons, LGB contains just the gauge bosons
including their TGC and quartic self-interactions and LHF contains the fermion Yukawa couplings to the
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Higgs bosons which will be discussed below. Working in the unitary gauge with

�(x) =

 
0

v+h(x)p
2

!
, (3.685)

we can read off the couplings to gauge bosons from the first term in (3.684). For instance, for the Higgs
couplings to W ’s, these can be written as

LhWW =
h
ghWW h+

ghhWW

2!
h2
i
W+µW�

µ , (3.686)

where we defined

ghWW =
2M2

W

v
, ghhWW =

2M2

W

v2
. (3.687)

Analogously, we can obtain the couplings of the Higgs boson to the Z:

LhZZ =


ghZZ
2!

h+
ghhWW

(2!)2
h2
�
ZµZµ , (3.688)

with

ghZZ =
2M2

Z

v
, ghhZZ =

2M2

Z

v2
. (3.689)

The way the couplings are defined above allows us to write them in (3.686) and (3.688) with the explicit
factors of 2! counting the number of identical particles in the vertex.

The triple vertices ghVV, with V = (W±, Z), have been tested at the LHC with considerable precision.
Defining the coupling strengths normalized to the SM values

V =
gexp.
hVV

gSM
hVV

. (3.690)

We can see some recent results for W and Z in Fig. 33. The best measurements of W and Z come
from pp ! h ! V V ⇤, as well as indirectly from the loop W± contribution to pp ! h ! ��. We can
see that the agreement with the SM predictions is quite remarkable, already somewhat better than 10%

in the couplings. At the moment, the LHC is not directly sensitive to the quartic couplings ghhVV, which
will require detailed understanding of double Higgs production.

We move now to tests of the Higgs boson couplings to fermions. We go back to the discussion of
Section 2.3.8, and rewrite (2.597), i.e. the third term in (3.684):

�LHF = �iju q̄L,i�̃uR,j + �ijd q̄L,i�dR,j + �ij`
¯̀
L,i�`R,j , (3.691)

where we remind ourselves that qL,i is the quark SU(2)L doublet of generation i, uR,I and dR,i are
the corresponding right handed up and down type quarks of generation i, and we denoted the SU(2)L

lepton doublet by `L,i, and the right handed lepton (SU(2)L singlet) by `R,i. The dimensionless Yukawa
matrices �u, �d and �` are parameters of the EWSM, and are generically complex and non diagonal in the
basis where the gauge interactions of fermions are diagonal, the gauge basis. As we saw in Section 2.3.8,
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CMS

Observed
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Fig. 33: Measurements of the Higgs boson couplings. From CMS (left) and ATLAS (right). In the
latter, the left column assumes no invisible (Bi = 0) or undetected (Bu = 0) events, whereas in the right
column these are allowed to float in the fit.

the mass matrices that result from taking just the VEV of � in (3.691)

M ij
u , M ij

d , M ij
` , (3.692)

are diagonalized by bi-unitary transformations on the quark and lepton fields. As a result, when writing
the theory in terms of the fermion mass eigenstates, the Higgs couplings to fermions will be automatically
diagonal and given by

�f =
mf

v
, (3.693)

where we see that the Yukawa coupling to a given fermion is generation diagonal (as it should be so
as to not result in tree level FCNCs! ) and is proportional to the fermion mass. Once again, we may
define f as the fermion Yukawa coupling normalized by the SM prediction (3.693). Although the
top quark has the strongest coupling to the Higgs, its measurement can only achieved indirectly due to
the fact that h ! t̄t is kinematically forbidden. The indirect measurement is performed thorough the
measurement of the Higgs production cross section, �(pp! h) which is dominated by the gluon fusion
channel. This, in turn is dominated by the top quark loop, as is shown in Fig. 34. We see in Fig. 33
that t is in agreement with the SM value of 1 within the error bars. The next fermion with the largest
coupling is the b quark, which in fact dominates the Higgs boson decays, with the largest branching
ratio. We, see that b also agrees with the SM prediction. Despite the b̄b mode being directly observable,
the error in its determination of b is similar to that of t since the b quark modes suffers from large
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Fig. 34: Quark loop contributing to gg ! h. It is largely dominated by the top quark in the loop.

backgrounds. Regarding couplings to leptons, the LHC has achieved measurements of h ! ⌧+⌧� with
similar error bars. More recently, h ! µ+µ� has been observed but the errors in the determination of
µ are considerably larger. All of this information about the Higgs couplings to SM particles can be seen
summarized in Fig. 35, where the couplings as measured by the CMS collaboration are plotted versus
the fermion masses. We see that the agreement with the predictions of the EWSM is excellent within the
experimental errors.

Finally, we consider the Higgs boson self couplings. These come from the Higgs potential:

V (�†�) = �m2�†�+ �
⇣
�†�

⌘
2

. (3.694)

Using the unitary gauged form for � in (3.685), as well as expressing the Higgs VEV as

v =

r
m2

�
, (3.695)

allows us to write the Higgs self interaction as

Lh = �1

2
m2

hh
2 � gh3

3!
h3 � gh4

4!
h4 , (3.696)

where we defined the triple and quartic Higgs self couplings as

gh3 = 3
m2

h

v
, gh4 = 3

m2

h

v2
, (3.697)

In order to experimentally access these couplings we need double Higgs production data. Before we go
into some details of double Higgs production, let us make clear why this is such a fundamental test of
the EWSM and, in particular of the whole picture of electroweak symmetry breaking. To see this, let us
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Fig. 35: Couplings of the Higgs boson to SM particles vs. the particle mass, as measured by the CMS
collaboration.

recall that the Higgs mass is given by
mh =

p
2�v. (3.698)

Thus, using mh ' 125 GeV and v ' 246 GeV (from various electroweak precision measurements) we
arrive at the SM prediction for the Higgs quartic coupling in the potential (3.694)

� ' 0.13 . (3.699)

This is a value extracted from the Higgs mass measurements, plus our knowledge of the electroweak
scale from electroweak data (e.g. muon decay, MW measurements, etc.). Thus, a fundamental test of the
shape of the Higgs potential, is the direct measurement of the quartic coupling �. If we rewrite the triple
and quartic Higgs self couplings in (3.697) using the SM prediction (3.698) we obtain

gh3 = 6�v, gh4 = 6� . (3.700)

It is possible to measure gh3 in double Higgs production, so as to experimentally test the SM prediction
in (3.700). The main contribution to double Higgs production come from gg ! hh as illustrated in
Fig. 36. The two contributing diagrams interfere destructively. The box diagram, which does not depend
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Fig. 36: One loop diagrams contributing to gg ! hh. Only the diagram on the right is sensitive to the
triple Higgs self coupling gh3 .

on gh3 , dominates for the SM value of the coupling. If we define

� ⌘
�exp.

�SM
, (3.701)

the SM computations show that for values of � sufficiently larger than unity (about � > 2.5) or
negative there could be an enhancement in the double Higgs production cross section [8]. The current
status of searches for Higgs pair production and bounds on the Higgs triple self coupling are shown in
Fig. 37. Shown are the bounds on � as a function of t. It is clear that this are preliminary studies
since the allowed values of � when fixing all other couplings to the SM values, including t , span a
huge interval, roughly �5  �  10. More meaningful constraints on � will be available with the
HL-LHC. For instance, simulations for the ATLAS experiment in the HL-LHC with 3ab�1 accumulated
luminosity point to a measurement of the SM value of � (i.e. � = 1 of about 3.2� from a combination
of channels [11]. Although this will be quite an improvement over the current situation, it is clear that
a precision in � comparable to the one attained in the other couplings will require to go beyond the
HL-LHC. We will comment on the importance of this measurement in the next section.
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Fig. 37: Bounds on the Higgs self coupling, normalized to the SM prediction, vs the top Yukawa coupling
t. ATLAS result (left panel) from [9]. CMS result (right panel) from [10].
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4 Conclusions and outlook

As we have seen in the previous sections, the EWSM is a quantum field theory, a spontaneously broken
gauge theory that describes all available data so far used to test it. The SU(2)L ⇥ U(1)Y gauge theory,
spontaneously broken to U(1)EM, When we add the unbroken SU(3)c interaction (QCD), it describes
with great experimental success all the interactions of all elementary particles known today. The preci-
sion achieved in this description varies. It is great for the interactions of fermions to gauge bosons and
the gauge boson self interactions. The interactions of the Higgs boson with gauge bosons and fermions
are being tested with increasing precision. However, the Higgs self interactions are yet to be experimen-
tally observed. This is of great importance since it would constitute a direct test of the form of the Higgs
potential (more on this below). The HL-LHC will begin to make this observation possible. But it will be
very short of a precise test of the Higgs sector of the EWSM. This one of the main reasons why the high
energy physics community must consider options for future accelerators [12].

4.1 The electroweak Standard Model: Open questions

Despite all of its successes, there are many open questions that are not answered by the SM of particle
physics. Some of these exist independently of the theory, others are actually raised by it. We first briefly
mention some of the first type.

Dark matter: It appears that more than 80% of the matter in the universe does not behave as the matter
described by the SM. All we know so far about it is that it gravitates.In fact, cosmological data are rather
precise about the abundance of dark matter necessary to fit them. The SM cannot accommodate anything
of the sort [13]. Extensions of the SM have can be proposed that would accommodate the correct dark
matter abundance. Experimental bounds coming from direct and indirect detection

The baryon–anti-baryon asymmetry: The asymmetry between the number of baryons and anti-baryons
in the universe can be measure in terms of the number density of photons. This is

⌘ =
nB � nB̄

n�
. (4.702)

Observations result in ⌘ ' 10�10 [14]. Although this appears to be a small number, the problem for the
SM is to explain why is not zero. The existence of ⌘ 6= 0 is incompatible with the SM. The SM respects
both baryon and lepton numbers in the form of accidental global U(1)B and U(1)` symmetries in the
Lagrangian. These global symmetries are however anomalous due to the existence of non trivial gauge
field configurations associated with the non-abelian nature of the SM. Then, in principle, these anomalies
could produce baryon violating processes. However, these processes are exponentially suppressed since
their rate is essentially that of a tunnelling process and at zero temperature this is roughly suppressed as
e�1/↵, with ↵ the QED coupling. The only hope to overcome this enormous suppression is to consider
it at large enough temperatures such that they are unsuppressed due to thermal effects (going over the
potential barrier). This is the situation expected to occur, in the cosmological history of the universe,
around the temperature of the electroweak phase transition, TEW ' 150 GeV, the critical temperature for
the vacuum to go from its symmetric value of h�i = 0 to the broken phase value of h�i = v/

p
2. Thus, it

looks like there is hope that one can explain ⌘ 6= 0 in the SM. Unfortunately, it has been known for some
time that in order to generate the baryon asymmetry ⌘ three conditions, called Sakharov’s conditions,
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must be met: 1) Baryon number violation; 2) C and CP violation; and 3) Out of equilibrium dynamics.
Although, as we just discussed, baryon number violation via the anomaly is present in the SM, the need
of out of equilibrium dynamics requires the electroweak phase transition to be first order. This is not
satisfied in the SM with the measured Higgs boson mass since it is too large and results in a smooth
crossover (not even a second order phase transition). In addition, the second condition is only partially
fulfilled in the SM, since the amount of CP violation is many orders of magnitude too small to be enough
to produce the observed value of ⌘. So it appears that, just as in the case for dark matter, an extension
beyond the SM is needed to explain the baryon asymmetry.

Dark energy: For about 25 years, we have known that the expansion of the universe is accelerating.
The source of this is an energy density in the energy momentum tensor that does not behave like matter
or radiation. It can be a constant (i.e. the cosmological constant), and the data is up to now consistent
with this interpretation, or it can be a more complex effect, perhaps associated with a cosmic fluid. The
cosmological standard model assumes that this dark energy (dark for lack of a better name) is indeed
just the cosmological constant, ⇤CC. Assuming this plus the correct abundance of cold dark matter, in
addition to all the SM interactions for baryons, all the cosmological data can be fit rather well with what is
called the ⇤CDM model [15]. On the other hand, although the SM of particle physics can accommodate
dark energy just by adding a cosmological constant in it, its value ⇤CC ' (10�3eV )4, appears to be
orders of magnitude smaller to what QFT would generically estimate. We will discuss this further below
when we talk about other problems created by the SM. But the origin of this particular energy scale of
dark energy is a mystery that cannot be ignored, since it represents about 70% of the energy budget of
the universe.

In addition to the points above, there are several questions that are actually raised by the SM itself.

The hierarchy of fermion masses. The EWSM allows for fermion masses in a way that is consistent
with the gauge theory SU(2)L ⇥ U(1)Y by introducing Yukawa couplings of the Higgs doublet and
fermions which result in masses after electroweak symmetry breaking. But the resulting fermion Yukawa
couplings are all over the place. For instance, the top Yukawa coupling is �t ' O(1) whereas the up
quark has a Yukawa coupling of O(10�5). These two fermions have exactly the same SM quantum
numbers. They only differ by this aspect. The same can be said about the electron Yukawa, �e ' 10�6,
but the tau Yukawa is �⌧ ' 10�2. This is of course all consistent with the SM, but whay are there three
generations of fermions? And why do they have so greatly differing Yukawa couplings ?

The strong CP problem. The simplest way to state the problem is the fact that the gauge symmetry in
QCD allows for a term like

Ga
µ⌫G̃

aµ⌫ , (4.703)

where Ga
µ⌫ is the SU(3)c gluon field strength, and

G̃aµ⌫ =
1

2
✏µ⌫↵�Ga

↵� , (4.704)

is called the dual field strength. The presence of this operator in QCD would lead to CP violation in the
strong interactions. The story is a bit more nuanced and in fact this operator is related to the anomalies
mentioned earlier. In particular the chiral anomalies in QCD require the presence of this operator, despite
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the fact that in principle it can be written as a total derivative. The reason this total derivative cannot be
ignored once this term is integrated in all of spacetime, as so often we do in QFT, is that it can be shown
that in non-abelian gauge theories Z

d4xGa
µ⌫G̃

aµ⌫ 6= 0 . (4.705)

As a matter of fact, the integral is proportional to an integer characterizing the vacuum of the theory. The
true vacuum of QCD then is a superposition of these vacua. As a result, this operator can and should be
included in the QCD action. Its coefficient is related to the arbitrary phase associated to the true vacuum
superposition, referred to as ✓. Thus,

LQCD = L✓=0

QCD + ✓
↵s

4⇡2
Ga

µ⌫G̃
aµ⌫ , (4.706)

where ↵s is the QCD coupling strength. A final complication is the fact that chiral quark rotations are in
fact equivalent to a shift in ✓. So the final coefficient is given by

✓phys. = ✓ � arg (det [M ]) , (4.707)

where M is the original, non diagonal mass matrix. Thus, unless there is at least one massless quark,
in which chase is always possible to choose the arbitrary chiral rotation parameter (↵L or ↵R), then the
value of the ✓ coefficient in (4.706) is physical. This implies that CP violation in the strong interactions
should be observed, a way to extract ✓phys.. The leading effect is to generate an electric dipole of the
neutron. Since this has not been observed we can put a bound:

✓phys.  10�11 . (4.708)

This is the strong CP problem: why is this dimensionless parameter of the SM bound to be so small?
Once again, all possible answers require extending the SM [16].

The origin of neutrino masses. As we have seen in Section 2.3.6, the EWSM does not include a
right handed neutrino. On the other hand, we have plenty of experimental evidence for the existence of
neutrino masses [17], however small. In principle, one could add a right handed neutrino to the SM just
so as to be able to write down a gauge invariant operator as in (2.586), which would look like

�⌫e ¯̀L�̃⌫R . (4.709)

This would result in a neutrino mass, with a rather tiny Yukawa coupling. But we already have a problem
with the Yukawa couplings of the other fermions. So this in and on itself is not a new problem. The
problem with (4.709 is that we added a new field, ⌫R with no SM quantum numbers just in order to
generate a neutrino mass. Then, building a Dirac neutrino mass as in (4.709) requires extending the
SM. Another possibility to accommodate neutrino masses without the need to add a new field to the SM
spectrum is to write an operator containing only left handed neutrinos. This is

c

⇤

⇣
¯̀
L�̃
⌘
2

. (4.710)
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where c is an order one constant and ⇤ is an energy scale needed to make this term dimension four since
the operator itself is dimension five. Then the price we pay in order to write a neutrino mass term just
with the SM fields is to need a higher dimensional (non renormalizable) operator, suppressed by the UV
scale ⇤. The neutrino mass resulting from such operator (sometimes referred to as Weinberg’s operator)
is

m⌫ =
cp
2

v2

⇤
. (4.711)

This is a Majorana neutrino mass. There various extensions of the SM that would result in this effect
once the new particles are integrated out. The most common models are seesaw models [18]. But the
main message is that in order to obtain the operator in (4.711), we need to go beyond the SM, even if
we insist in only using SM fields. It is not yet know what the nature of the neutrino mass is: Dirac
or Majorana. This question can be settled in the future, for instance, in neutrinoless double beta day
experiments [19]. But what is already clear is that neutrino masses require an extension of the SM.

The origin of the electroweak energy scale: If we write down the entire SM Lagrangian as the EW
Lagrangian of (3.684) plus the QCD Lagrangian

LSM = LEW + LQCD , (4.712)

we would notice that among the dozens of terms there is only one energy scale in the entire LSM. This
corresponds to the coefficient of the quadratic term in the Higgs potential in (3.694), the mass scale
that appears here as �m2, gives rise to the VEV of the Higgs field �(x) and all the masses of the SM
particles, including the Higgs boson mass

mh =
p
2m =

p
2�v . (4.713)

Using the measured value of the Higgs mass we have m ' 89 GeV. Where does this energy scale come
from? In the SM it is put by hand in V (�†�). It is true that the EWSM has a large number of unexplained
parameter, mostly in the form of Yukawa couplings. But all of these are dimensionless. The one and
only energy scale in the SM is yet another unexplained quantity, but one rather central in defining all the
masses of all the elementary particles. This is not to say that there are no other energy scales in the low
energy theory. For instance, in the QCD sector at low energy confinement and chiral symmetry breaking
lead to a spectrum of hadrons. This happens at an energy scale ⇤hadronic ' O(1) GeV, a scale that defines
the hadron spectrum. However, this scale can be understood as dynamically generated by the underlying
QCD interactions of quarks and gluons: the QCD gauge coupling becomes stronger at lower energies,
so that eventually it will be strong enough for spontaneous chiral symmetry breaking and confinement
at a scale called ⇤QCD ' few hundred MeV. Thus, the hadronic scale is generated by a process called
dimensional transmutation, by which a dimensionless coupling generates an energy scale when it gets
very strong due to its running. Fermion masses are not new scales, since they are all proportional to the
electroweak scale, multiplied by a dimensionless Yukawa coupling (perhaps with the exception of the
neutrino mass, but outside of the SM). In the SM, the electroweak scale is the only scale put a priori (by
hand) in the theory. It is determined experimentally.

In fact, the only other energy scales in the fundamental theory describing particle physics and cosmology
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are the Planck scale,
MP = 1.2 1019 GeV , (4.714)

and the cosmological constant/dark energy density given by which is

⇤CC ' (10�3 eV)4. (4.715)

Are these three scales in (4.713), (4.714 and (4.715) the only ones introduced ad hoc in all of the standard
models of particle physics and cosmology, really independent, or they are related to each other? Since
MP is a scale associated with the extreme UV of the quantum field theory, the scale at which quantum
gravity effects become important, it appears that this might be a more fundamental energy scale. Can
the other two, i.e. the electroweak scale and ⇤CC, be derived from it? If this was the case, would there be
any experimentally accessible consequences, particularly just above the electroweak scale? So the mere
origin of the Higgs mass scale is not understood and it might lead to interesting phenomena if we explore
Higgs physics further.

The Hierarchy Problem: In addition to the question of the origin of the electroweak scale v ' 246 GeV,
the Higgs sector of the EWSM posses a more formal question: the apparent lack of radiative stability of
this scale. Another way to state this problem, is to say that a sector involving a fundamental scalar field,
such as the Higgs sector, is greatly sensitive to UV physics. To see what is meant by this let us consider
the one loop corrections to the Higgs boson mass in the SM. These include loops of all SM fermions, as
well as the massive gauge bosons W±, Z0 as well as the Higgs boson itself. (See Fig. 38.)

Fig. 38: One loop diagrams contributing to the quantum corrections to the Higgs mass. Show as exam-
ples are the top and the Higgs boson contributions.

The corrections to m2

h resulting from these one loop diagrams can be generically written as

�m2

h =
c

16⇡2
⇤2 + · · · , (4.716)

where ⇤ is a momentum scale signifying the highest momentum where the EWSM is valid, and c is a
constant that can be computed and depends on the SM particles going around the loop. For instance, for
a top quark, gauge bosons and the Higgs boson, respectively in the loop, we have

ctop = �2Ncy
2

t , cgauge = g2 , ch = �2 , (4.717)

where Nc = 3 is the number of colors, yt is the top quark Yukawa coupling to the Higgs, g is a generic
electroweak gauge couplings and � is the Higgs self-coupling. . The dots in (4.716) denote either terms
that depend logarithmically on the cutoff ⇤, i.e. proportional to ln⇤, or terms that are finite in the ⇤!1
limit. For a given value of ⇤, it is clear that the top quark loop will dominate. For instance, if the cutoff
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is ⇤ = 10 TeV, we have that the top loop contributes to �m2

h with about (2 TeV)2, the gauge boson
loops with (700 GeV)2, and the Higgs boson loop wiht about (100 GeV)2). Then, the renormalization
condition that we need to impose on the physical Higgs boson mass is roughly:

m2

h,phys. = m2

0 � (256� 31� 0.7) (125 GeV)2 , (4.718)

where m0 is the unrenormalized Higgs mass. We see that the top quark loop already requires a fine tuning
of the renormalization condition of more than 1 part in 100. The tuning only gets worse (quadratically)
as we increase the cutoff ⇤. To avoid this tuning, the cutoff should be as close to the electroweak scale
as possible. This is the hierarchy problem.

But is this really a problem? After all, in QFT we are allowed to take the cutoff all the way to infinity,
i.e. ⇤!1, since once the renormalization procedure is completed, no physical quantity should depend
on it. Then, QFT does not have a hierarchy problem, even in theories where there is an elementary
scalar field and its mass squared parameter is quadratically sensitive to UV scales. In fact, once the
renormalization condition (4.718) is imposed, the Higgs mass evolves logarithmically with the energy
scale

dm2

h

d lnµ2
= �SMmh

m2

h , (4.719)

with the Higgs mass beta function to one loop given by

�SMmh
=

1

16⇡2
�
12�+ 12y2t � (9g2 + 3g02) + · · ·

�
. (4.720)

This logarithmic dependence of course is just the statement of the fact that, after renormalization, the
evolution of physical parameters with the scale µ corresponds to the re-scaling of energies/distances,
which is logarithmic. This logarithmic evolution of m2

h seems to belie the problem of having quadratic
sensitivity to UV scales. So, no hierarchy problem then ?

It turns out that the problem resurfaces if we have heavy states, with masses well above the TeV scale,
coupled to the Higgs. Let us consider as an example, a vector like fermion coupled to the Higgs as in

L � yN L̄HN +MNNN , (4.721)

where the vector-like mass MN can be arbitrarily large and we coupled this singlet (or “right handed
neutrino”) to H through the lepton doublet L. Independently of what this state does to neutrino masses,
one thing we can see is that it results in a threshold correction to the RGE evolution of m2

h(µ) in (4.719).
This is given by

dm2

h

d lnµ2
|threshold =

Y 2

N

16⇡2
M2

N . (4.722)

The above correction represents a large jump in the logarithmic evolution of the Higgs mass, so that for
µ = ⇤UV > MN now we have a much larger value of mh that we would have otherwise obtained by the
SM RGE evolution. This quadratic (in MN ) jump is one more reflection of the quadratic sensitivity of
m2

h to the UV scales. So when integrating out heavy scales, it would require a large tuning in order to
obtain the observed Higgs mass in the IR, very much like what happened in (4.718).
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One could think to solve the problem either by 1) forbidding any heavy particle to couple to the Higgs in
the UV, or 2) by imposing the renormalization condition on m2

h only once we run the RGEs all the way
up to the UV, and therefore know of all the possible threshold corrections. However, either of these two
ways involves knowledge of the UV, which is not supposed to be necessary to define the theory in the IR
! So the UV sensitivity of the Higgs sector is real and we have to live with it. At this point, we should
remind ourselves that the Higgs is the only particle in the SM for which this problem arises. Fermion
masses are protected by chiral symmetry, resulting in only a mild logarithmic dependence on the cutoff
⇤. Gauge boson masses are IR phenomena arising from (soft) spontaneous symmetry breaking. They
are not UV sensitive. The Higgs boson is unique in its role of introducing an ad hoc energy scale in the
SM, as well as having this scale (or its mass, which is the same) very UV sensitive.

The central question is then not whether the hierarchy problem exists or not, but what does it imply for
the scale of new physics. We used to believe that it implied the existence of new physics at roughly the
1 TeV scale. The experimental absence of evidence for new physics so far has turn this question into a
more puzzling and interesting, nor less.

4.2 The EWSM and the future

We have seen that the EWSM is an extremely successful description of the electroweak interactions. It
is a spontaneously broken gauge theory, SU(2)⇥ U(1)Y ! U(1)EM which has been tested extensively
over several decades. The couplings of gauge bosons to fermions are the best tested ones, as detailed
in Section 3.2. Similarly, the gauge boson self-couplings are the subject of increasing precision at the
LHC. On the other hand, the Higgs sector, introduced in order to trigger the spontaneous breaking of
the electroweak gauge theory, is the less tested. Although we have measured several of the Higgs boson
couplings to other SM particles, such as gauge bosons and the heavier fermions, it remains the least
precisely tested. In particular the Higgs potential, introduced in an ad hoc to break the gauge symmetry
in the desired way, and introducing the only dimensionfull quantity in the theory, has not been tested. In
fact, as seen in Section 3.4, the only parameter in the Higgs potential in (3.694) that we have had access
to so far is m2. We extract this from the measurement of the Higgs boson mass by making use of the
relation (3.698) between mh, v and �, the Higgs quartic coupling in (3.694), i.e. mh =

p
2� v, which

results in � ' 0.13 and
m ' 89 GeV . (4.723)

But these values are obtained by making use of the minimization procedure assuming the form of the
potential in (3.694). It corresponds to the only two terms that are renormalizable and gauge invariant.
But we do not know if there are additional terms either involving other fields or coming from higher
dimensional operators. For this purpose we need to measure the triple Higgs couple gh3 with some
precision in double Higgs production. This alone would take a lot of data in the HL-LHC and it is not
clear that would be enough to settle the issue. To “map” the Higgs potential with precision it might be
necessary to go to a new experimental facility such as a Higgs factory.

Still on the issue of the Higgs sector, there is the question of its origin. As we mentioned earlier, this
sector of the EWSM appears for the specific purpose of breaking the gauge symmetry spontaneously
in the way it is observed experimentally. Although the discovery of the Higgs boson has confirmed the
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Higgs mechanism beyond any doubt, it is not clear where the Higgs sector comes from. In other physical
systems where a scalar degree of freedom is introduced to spontaneously break a symmetry, it has turned
out that the scalar or scalars are collective excitations and not elementary fields. For instance, we can
describe superconductivity [26] by the Higgs mechanism, but the Higgs is a fermion composite. In QCD
at low energies, the spontaneous breaking of chiral symmetry can be modeled as occurring through the so
called � model, where the only remnant light degrees of freedom are the pNGB (e.g. the pions) whereas
the � particle, which would be playing the role of the Higgs, is known to be heavy and strongly coupled.
Technicolor models [27] from the 1970s and 1980s played with this analogy by postulating that the
Higgs boson would be heavy and strongly coupled, as well as a composite of fermion/anti-fermion pairs.
Clearly this is not the case in the EWSM, since the Higgs seems to be weakly coupled � ' 0.13, which
means is light. But what if instead of being the � the Higgs boson is a pNGB just as the pions? This would
explain why is lighter than the new physics scale and why is weakly coupled. This idea goes by the name
of Composite Higgs Models (CHM) [28, 29]: the Higgs is a pNGB of the spontaneously broken global
symmetry (just as chiral symmetry in QCD). But what are the observable consequences of the Higgs
boson compositeness? First, in most CHM there are resonances, both bosonic spin 1 and fermionic,
that should be present at a scale considerably above the electroweak scale, perhaps several TeV. So, as
it appears that the LHC has had not enough energy to produce them, we should look for the effects of
the new physics in deviations in the Higgs behavior, particularly its couplings. Deviations in the Higgs
couplings with respect to the SM predictions are almost certain in these models [29,30], even momentum
dependent ones [31]. Thus, very precise measurements in various different channels will be necessary to
fully test this hypothesis at the HL-LHC and perhaps beyond.

Beyond the better understanding of the Higgs sector of the SM, we are left with a number of fundamental
questions that the SM does not answer. Both theoretical and experimental exploration of these will be
a central part of particle physics in the next decades. The search for particle dark matter will continue
in direct [32] and indirect [33] detection experiments, as well as at the LHC. New kinds of experiments
are being proposed to look for dark sectors in many different mass ranges from the ones looked at so far.
Neutrino experiments such as DUNE [34] and HYPER-K [35] will explore the neutrino question with
great detail.

The interaction of particle physics with astrophysics and cosmology will continue through some of these
questions. Will the CMB [36] data exclude any new relativistic degrees of freedom through a very
precise measurement of Ne↵., the effective number of neutrinos? Will the precise determination of the
dark energy equation of state or the age of the universe, point in the direction of new physics in the
cosmic history? Many new gravitational wave detectors will be built. In particular, LISA [37] will be
sensitive to gravitational wave signals from the electroweak phase transition. But in the EWSM, the
Higgs potential is unable to produce such signal. Observation of it would point to new physics in the
Higgs potential (3.694).

The EWSM is a great success of quantum field theory and experimental ingenuity. But it leaves and/or
creates enough open questions that the future experimental and theoretical programs based on it are very
broad and increasingly exciting.
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