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1 Gauss’s law
Collective instabilities in accelerators mostly come from an intense charged particle beam electro-
magnetically interacting with its vacuum chamber environment. As the beam interacts with its environ-
ment, it generates an electromagnetic field called the wakefield, and the wakefield acts back on the beam,
disturbing its motion; if the perturbation is strong enough, the beam becomes unstable.

To discuss the wakefield, we must start with its ultimate origin, Gauss’s law, which states that
each charged particle always has a definite amount of electric field lines attached to it. We can distort
these field lines but we can never cut them loose from the charge under any circumstances. Furthermore,
the amount of field lines attached to each charge can never be changed, neither increased nor decreased.

Gauss’s law is amazing. Mathematically, it reads

∇ · ~E = 4πρ .

Physically it reads: electric field lines are absolutely attached to the charges.

The integral form of Gauss’s law is
∮

S

~E · d~S = 4πQ ,

where Q is the total charge inside the volume enclosed by the surface S. It is amazing that this law
holds no matter how the charges are moving – non-relativistically, relativistically, or under acceleration,
or whether they are embedded in any type of material. It also does not matter how close the charges
might be immediately next to the surface S. The field integral will make a sudden change when a charge
crosses the surface even infinitesimally.

2 A moving charge
If the charge is stationary and if it is in a free space, its field lines are as shown in Fig. 1(a). For a moving
charge, we see Fig. 1(b). When v approaches c, we have Fig. 1(c), when all the electric fields stay in an
infinitely thin sheet as result of the theory of relativity. For most accelerators, case (c) is closest to the
case under consideration.

When the charge is moving, it also generates a magnetic field. This magnetic field also contracts
to a thin pancake when v = c. The direction of the electric field is radial; the direction of the magnetic
field is azimuthal (right-hand rule):

Er =
2q

r
δ(z − ct) ,
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Fig. 1: Electric field lines of a charge: (a) stationary; (b) moving relativistically; (c) when v = c

Fig. 2: Ultrarelativistic beam going down perfectly conducting smooth vacuum pipe

Bθ =
2q

r
δ(z − ct) .

One observes that
Bθ = Er when v = c .

However, when v = 0, there is no magnetic field. When v increases, Bθ increases, but is still weaker
than Er. Only when v = c do we have Bθ = Er. The fact that Bθ = Er when v = c has important
consequences, as explained next.

3 The vacuum chamber
We now add the vacuum chamber. Consider a very smooth vacuum chamber beam pipe. (How smooth
does the chamber have to be? A 1 mm discontinuity on the pipe is considered a potential problem. In
some circumstances, a 1 µm roughness on the wall surface can have a significant effect.) Consider the
smooth pipe wall to be perfectly conducting.

The ultrarelativistic beam going down the axis of the pipe, together with its electromagnetic field
and the smooth vacuum chamber, is as shown in Fig. 2.

The electromagnetic fields are perfectly and cleanly terminated on the pipe wall. No fields pene-
trate into the wall because it is a perfect conductor. The image charge on the wall is exactly equal and
opposite to that of the beam, and it also moves with v = c (except that this is phase velocity, not group
velocity). The entire field pattern moves with the beam. There is no wakefield.

Is this beam stable? Consider a particular particle in the beam, the ‘test particle’ e in Fig. 2. This
test particle will see an electric force e ~E due to the electric field carried by the beam. This force is
easily seen to push e towards the vacuum chamber wall because the test charge e has the same sign as
the charges of the beam.

But there is also a magnetic force. The magnetic field is in the azimuthal direction (right-hand
rule). The magnetic force is (e/c)~v× ~B. It is easily seen that this magnetic force is pointing towards the
pipe axis.
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Fig. 3: Discontinuities generate wakefields

We mentioned that when v = c, we have Er = Bθ. In the ultrarelativistic limit, therefore, the
electric and the magnetic forces exactly cancel. The particles in the ultrarelativistic beam see the electric
force and magnetic force, but they do not see a net force. The collective electromagnetic fields carried
by the beam do not influence particle motion. There are no collective instabilities.

This cancellation between the electric and magnetic forces due to the beam’s self fields is very
fortunate and very important. Without this cancellation, no modern accelerators would have worked.

We conclude that there are three possible ways for a collective instability to occur:

1. the beam is not relativistic enough;
2. the vacuum chamber is too resistive;
3. the vacuum chamber is not smooth enough.

If none of these apply, the beam is stable as just illustrated. If any one of these conditions occurs,
the exact cancellation of the electric and magnetic forces is disrupted, and the beam can encounter an
instability.

We construct accelerators to be as close to the cancellation condition as possible. The electric and
magnetic forces generally cancel to high accuracy by design. However, the cancellation is never perfect.
Vacuum chambers made of copper or aluminium are not perfectly conducting. There will be many small
necessary discontinuities along the vacuum chamber pipe; beam position monitors, vacuum pumping
ports, etc. There are also big discontinuities known as RF cavities. As to the condition of v = c, it is
never satisfied completely. So the cancellation of electric and magnetic forces is not perfect. And that
residual non-cancellation leads to collective instabilities.

4 Wakefields due to discontinuities
When a beam traverses a discontinuity, an electromagnetic wakefield is generated. An intense beam
will generate a strong wakefield (Fig. 3). When the wakefield becomes too strong, the beam becomes
unstable.

A wakefield is generated because the beam’s image charges now have to move around a corner
when encountering a discontinuity. Wakefields are the radiation fields of the image charges when their
apparent trajectories are bent. (These are apparent trajectories. Image charges do not physically move
along the wall surface.)

Once we accept that wakefields are a result of radiation, then just as with any other radiation, it
is natural to ask about the frequency content of these wakefields. The answer is that it depends on the
details of the beam and the detailed geometry of the discontinuity. In general, it covers a wide range, with
wavelengths varying from micrometres to metres. To describe the frequency content of the wakefields,
we introduce a quantity called impedance. Impedance is essentially the Fourier transform of wakefield.
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Fig. 4: Definition of metal: ρ = 0, ~J = σ ~E; definition of insulator: ~J = ~0, ρ = ε∇ · ~E

5 Wakefield due to a resistive wall
To discuss the resistive wall wakefield, let us first review the structure of electromagnetism by consulting
Fig. 4. We note a clear symmetry between the electric family and the magnetic family in this chart.
This symmetry, however, only holds in vacuum. It is lost when we consider a metal or an insulator.
Metals break the symmetry by making a preference to the magnetic family ( ~B, ~J), while insulators
make a preference in favour of the electric family ( ~E, ρ). No charges are allowed inside a metal while
currents are allowed to penetrate. Inside a metal, therefore, there is more magnetic field than electric field.
Conversely, currents are not allowed inside an insulator, and there is more electric field than magnetic
field.

In the case of a wall of resistive metal, the wakefield is generated by the following physical process.

1. When the beam’s image charges flow on the vacuum chamber wall, the electric field carried by
the point charge will be terminated immediately by the image charges on the wall surface, while
the magnetic field carried by the point charge is mostly cancelled by the image current on the wall
surface, but this cancellation is not exact because the current has penetrated the wall by a skin
depth.

2. As the image current slowly resurfaces after the point charge has passed by, this resurfacing image
current drives new magnetic fields. These new magnetic fields occur after the point charge has left.

3. The resurfacing current and magnetic field will execute some transient behaviour, and quickly
oscillate a few times. After the initial transient, the resurfacing current and magnetic field decays
away but at a very slow rate.

4. The resurfacing changing magnetic field now drives an electric field (Maxwell’s equation). This
yields some electric field inside the resistive wall after all, but this electric field is very weak.

For the case of a resistive wall pipe with circular cross-section, and an ultrarelativistic point charge
q going down its axis, Fig. 5 shows the electric component of the wakefield inside the vacuum chamber.
Note that there is also a matching magnetic field pattern, and that both the electric and magnetic field
patterns follow the leading point charge as a frozen pattern, indicating a phase velocity of c, but it is
important to know that the wakefield energy flows not purely in the forward direction with the speed of
light. Underneath this apparent frozen energy flow is an important flow of energy from the point charge
q towards to wall surface to be deposited as wall heating.

The quantity χ that enters the horizontal axis is a small dimensionless parameter defined by

χ =
c

4πσb
,

with b the vacuum pipe radius and σ the conductivity of the pipe material. For example, if b = 5 cm and
the wall is made of aluminium, χ = 1.5×10−9. Note that we have used cgs units, in which conductivity
can be converted by applying 1 Ω−1m−1 = 0.9× 1010s−1.
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Fig. 5: Electric component of the wakefield inside the vacuum chamber for a resistive wall pipe with circular
cross-section. The field line density is increased by a factor of 40 to the left of the dotted line.

As shown in Fig. 5, there is no wakefield ahead of the point charge, as causality would dictate.
The wakefield pattern following the point charge is measured along distance z in units of b(2χ)1/3. Since
χ� 1, the resistive wall wakefield decays very quickly following the passage of the point charge.

However, after the quick initial decay, at long distances, the remaining resistive wall wake starts to
decay very slowly. This means that the resistive wall wakefield has a long tail. An intense beam bunch,
for example, can leave a wakefield that lasts long enough to affect its motion when the bunch returns
after making one complete circuit around a circular accelerator.

As will be shown later, the fact that the resistive wall generates both short- and long-range wake-
fields is reflected by the fact that its corresponding impedance has an exceptionally wide spectrum,
ranging from very short to very long wavelengths.

6 What happens to particle motion when there are wakefields?
Consider a beam with distribution ψ in phase space (~q, ~p). The dynamics of the evolution of ψ are
described by the Vlasov equation (see later),

∂ψ

∂t
+

~p

m
· ∂ψ
∂~q

+ ~f · ∂ψ
∂~p

= 0 ,

where

~f = e

(
~E +

~v

c
× ~B

)
,

~E = ~Eext + ~Ewake ,

~B = ~Bext + ~Bwake .

The wakefields are determined by Maxwell’s equations, where the source terms ρ and ~j are deter-
mined by the beam distribution ψ,

ρ =

∫
d3p ψ , ~j =

∫
d3p ~vψ .
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Fig. 6: We only need to calculate the wakefields generated by a rigid cosmθ ring beam

We therefore have the situation when the beam distribution is described by the Vlasov equation
whose force terms are given by the electromagnetic fields, while the electromagnetic fields are described
by Maxwell’s equations, whose source terms are given by the beam distribution. It is clear that a full
treatment of the beam–wakefield system involves solving a coupled ‘Vlasov–Maxwell equation’.

Beam–structure interaction is a difficult problem in general. It often requires numerical solution
using particle-in-cell codes with demanding boundary conditions. Applying particle-in-cell codes is
reasonable for small devices such as electron guns and klystrons, but becomes impractical for large
accelerators.

So, can we simplify the problem for our purpose while maintaining sufficiently accurate results?
Yes, we can. For high-energy accelerators, this complication can be avoided by using two simplifying
approximations. These simplifications lead to the concepts of ‘wake function’ and ‘impedance’.

1. Rigid-beam approximation:
The first simplification is the rigid-beam approximation. At high energies, beam motion is affected
little during the passage of a structure. This means that one can calculate the wakefields assuming
the beam shape is rigid and its motion is ultrarelativistic with v = c. In fact, we only need to
calculate the wakefields generated by a ‘rigid cosmθ ring beam’ (Fig. 6). The wakefield of a
general beam can be obtained by superposition.

2. Impulse approximation:
The second simplification is the impulse approximation. We don’t need to know ~E or ~B separately;
we only need to know ~f . For high energies, we don’t even need the instantaneous ~f . We only need
the integrated impulse:

∆~p =

∫ ∞

−∞
dt ~f .

Figure 7 shows the configuration of a ring beam and a test charge that follows it. The ring beam
generates a wakefield. The test charge receives a wake-induced impulse in the impulse approxi-
mation.

As we will see, these two approximations drastically simplify the problem at hand, thus allowing
us to treat large accelerators with complicated boundary conditions without invoking particle-in-cell
codes.

7 The Panofsky–Wenzel theorem
The instantaneous wakefields are complicated; fortunately, ∆~p is much simpler and, at high energies, it
is ∆~p that we need. The Panofsky–Wenzel theorem applies to ∆~p. It is the basis of all beam instabil-
ity analyses in high energy accelerators. In comparison, the particle-in-cell codes aim to calculate the
instantaneous wakefields in all their gory details, so are inefficient for our purpose.
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Fig. 7: A ring beam and a test charge that follows it

Maxwell’s equations read

∇ · ~E = 4πρ ,

∇× ~B − 1

c

∂ ~E

∂t
= 4πβρẑ ,

∇ · ~B = 0 ,

∇× ~E +
1

c

∂ ~B

∂t
= 0 ,

where we have made the important rigid-beam approximations, ~j = ρ~v and ~v = βcẑ.

The Lorentz force as seen by the rigid test charge e is given by

~f = e( ~E + βẑ × ~B) .

Both the beam and the test charge move with ~v = βcẑ. The impulse is

∆~p(x, y,D) =

∫ ∞

−∞
dt ~f(x, y,D + βct, t) .

Several important conditions can be found using Maxwell’s equations. One of these is the
Panofsky–Wenzel theorem. Without giving the derivation, it reads

∇×∆~p = ~0 .

One can decompose the Panofsky–Wenzel theorem into a component parallel to ẑ and a component
perpendicular to ẑ, to obtain

∇ · (ẑ ×∆~p) = 0 , (1)
∂

∂D
∆~p⊥ = ∇⊥∆pz . (2)

Equation (1) says something about the transverse components of ∆~p. Equation (2) says that the trans-
verse gradient of the longitudinal wake impulse is equal to the longitudinal gradient of the transverse
wake impulse.

Another important condition valid when β = 1 is

∇⊥ ·∆~p⊥ = 0 . (3)

It is clear that the Panofsky–Wenzel theorem imposes strong constraints on the impulse received by a test
charge from a relativistic beam.
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8 Cylindrically symmetric pipe
In cylindrical coordinates, Eq. (1) gives

∇ · [ẑ × (∆prr̂ + ∆pθθ̂)] = 0

=⇒ ∂

∂r
(r∆pθ) =

∂

∂θ
∆pr .

Equation (2) gives

∂

∂D
(∆prr̂ + ∆pθθ̂) =

(
r̂
∂

∂r
+
θ̂

r

∂

∂θ

)
∆pz

=⇒
{

∂
∂D∆pr = ∂

∂r∆pz
∂
∂D∆pθ = 1

r
∂
∂θ∆pz .

Equation (3) gives

1

r

∂

∂r
(r∆pr) +

1

r

∂

∂θ
∆pθ = 0

=⇒ ∂

∂r
(r∆pr) = − ∂

∂θ
∆pθ (β = 1) .

These results are surprisingly simple and general. They do not contain any beam source terms. The
exact shape or distribution of the beam does not matter. Neither do these results depend on the boundary
conditions. The boundary can be perfectly conducting or resistive metal, or it can be a dielectric. It does
not have to be a sharply defined surface; it can, for example, be a gradually fading plasma surface. The
only inputs needed are Maxwell’s equations and the rigid-beam and impulse approximations.

We are now ready to consider a cosmθ ring beam with ~v = cẑ as we set out to solve Eqs. (1)–(3).
The solution can be expressed in terms of a function Wm(D), such that

c∆~p⊥ = −eImWm(D)mrm−1(r̂ cosmθ − θ̂ sinmθ) ,

c∆pz = −eImW ′m(D)rm cosmθ , (4)

where Im is the mth multipole moment of the ring beam,Wm(D) is the transverse wake function and
W ′m(D) is the longitudinal wake function. The longitudinal wake function is simply the derivative of the
transverse wake function.

Equation (4) contains explicit dependences on r and θ. The fact that we can go so far without
any specific details is surprising and shows the power of this line of analysis. The dependence on D is
through Wm(D), which can be obtained only if boundary conditions are invoked.

When the beam pipe is cylindrically symmetrical, each m-multipole component of the beam ex-
cites a wake pattern according to Eq. (4). Different m components do not mix.

9 Decomposing wakefields into modes
Armed with the Panofsky–Wenzel theorem, to analyse the instability problem, we proceed as follows.
We first consider the beam to be a δ-function in z. If the beam has a finite length, the result can be
obtained by superposition.

We next decompose the transverse distribution into ‘modes’ and consider a single transverse mode
m. A general transverse distribution can be obtained by superposition with a summation over m.

So the problem is now reduced to finding the impulse integrated by a test charge that is trailing
behind a beam slice with a transverse mth moment Im moving along the pipe axis. In this configuration,
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Fig. 8: A test charge trailing behind a beam slice with a transverse mth moment Im moving along the pipe axis

Table 1: mth multipole wakefields

Distribution
moments of Longitudinal Transverse

m beam wake impulse wake impulse
0 q −eq W ′0(z) 0

1

{
q〈x〉
q〈y〉

−eq〈x〉xW ′1(z)

−eq〈y〉yW ′1(z)

−eq〈x〉W1(z)x̂

−eq〈y〉W1(z)ŷ

2

{
q〈x2−y2〉
q〈2xy〉

−eq〈x2−y2〉(x2−y2)W ′2(z)

−eq〈2xy〉2xy W ′2(z)

−2eq〈x2−y2〉W2(z)(xx̂−yŷ)

−2eq〈2xy〉W2(z)(yx̂+ xŷ)

3





q〈x3−3xy2〉

q〈3x2y−y3〉

−eq〈x3−3xy2〉
×(x3−3xy2)W ′3(z)

−eq〈3x2y−y3〉
×(3x2y−y3)W ′3(z)

−3eq〈x3−3xy2〉W3(z)

×[(x2−y2)x̂−2xyŷ]

−3eq〈3x2y−y3〉W3(z)

×[2xyx̂+ (x2−y2)ŷ]

as shown in Fig. 8, Im is the driving beam, e is the test charge, z is the longitudinal distance by which e
is trailing behind Im, and (r, θ) is the transverse displacement of the test charge relative to the pipe axis.

For a cylindrical pipe, themth multipole wakefield is driven when and only when the driving beam
has an mth moment (Table 1).

In most applications, we care mostly about the m = 0 monopole mode when discussing longi-
tudinal collective instabilities and about the m = 1 dipole mode when discussing transverse collective
instabilities. Therefore, we mostly ask for W0(z) and W1(z). The reason W0(z) is not relevant for
transverse instabilities is that the transverse impulse vanishes when m = 0 for cylindrically symmetrical
pipes.

The wakefield impulses have simple patterns—instantaneous wakefields do not share this simp-
licity. The m = 0 and m = 1 patterns are illustrated in Fig. 9.

10 Impedances
We mentioned that the wakefield wavelengths cover a wide range, from ∼1 µm to ∼1 m. What char-
acterize the frequency content of the wakefields are the impedances, the Fourier transforms of the wake
functions,

Z‖m(ω) =

∞∫

−∞

dz

c
e−iωz/c W ′m(z) , (5)
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Fig. 9: m = 0 and m = 1 wakefield impulse patterns

Z⊥m(ω) = i

∞∫

−∞

dz

c
e−iωz/c Wm(z) .

Since we have already discussed the wake functions, we consider Eq. (5) the definition of impedances.

Instead of wake functions, an accelerator designer therefore could ask about the impedance of the
accelerator. The impedance is the quantity most directly related to the maximum beam current allowed
by the accelerator. Inverting the Fourier transforms, we have

W ′m(z) =
1

2π

∞∫

−∞

dω eiωz/c Z‖m(ω) ,

Wm(z) =
−i

2π

∞∫

−∞

dω eiωz/c Z⊥m(ω) .

The Panofsky–Wenzel theorem, which relates the longitudinal wake function to the derivative
of the transverse wake function, also gives a relationship between the longitudinal and transverse
impedances for a given m;

Z‖m(ω) =
ω

c
Z⊥m(ω) .

11 Some analytical examples of impedances and wake functions
We mentioned earlier that there are three ways that wakefields are generated:

1. the beam is not relativistic;
2. the vacuum chamber is resistive;
3. the vacuum chamber is not smooth.

Three cases, each representing one of these three ways, that permit analytical expressions are given
below.

11.1 Direct space charge
This wakefield and impedance come about when the beam is not sufficiently relativistic. Figure 10 shows
the space charge wakefields in the x–y plane driven by an annular, infinitely thin, cosmθ ring beam.

With a beam of radius a in a perfectly conducting round pipe of radius b and length L, we have
the results of Table 2, where Z0 =

√
µ0/ε0 ≈ 377 Ω. (Z0 is the impedance of the vacuum. Yes, the

vacuum has an impedance. An oscillating electromagnetic source will readily radiate into the vacuum,
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Fig. 10: Space charge wakefields in the x–y plane driven by an annular, infinitely thin, cosmθ beam

Table 2: Results for direct space charge with a perfectly conducting vacuum chamber pipe

Impedances Wake functions

Z
‖
0 = i

Z0Lω

4πcγ2

(
1 + 2 ln

b

a

)
W ′0 =

Z0cL

4πγ2

(
1 + 2 ln

b

a

)
δ′(z)

Z⊥m6=0 = i
Z0L

2πγ2m

(
1

a2m
− 1

b2m

)
Wm6=0 =

Z0cL

2πγ2m

(
1

a2m
− 1

b2m

)
δ(z)

Table 3: Results for resistive wall

Impedances Wake functions

Z
‖
m = ω

cZ
⊥
m Wm = −

(
c

πbm+1(1 + δm0)

)(√
Z0

πσc

)(
L

|z|1/2
)

Z
‖
m =

(
1−sgn(ω)i

1+δ0m

)(
L

πσcδskinb2m+1

)
W ′m = −

(
c

2πbm+1(1+δm0)

)(√
Z0
πσc

)(
L
|z|3/2

)

thus losing energy. In fact, the vacuum impedance is very large. A well designed accelerator will have
an impedance only a fraction of the vacuum impedance. Accelerators are very poor radiators compared
with the vacuum, and this is done purposedly.)

Owing to the factor 1/γ2, space charge effects are most significant for low-to-medium energy
proton or heavy-ion accelerators.

The space charge impedance is purely imaginary, and is ∝ iω, as if it is a pure inductance. How-
ever, its sign is as if it is a capacitance. By convention, we call it ‘capacitive’.

11.2 Resistive wall
Another case solvable analytically is for a round resistive pipe with radius b, conductivity σc, and length
L. Defining the skin depth

δskin =

√
2c

|ω|Z0σc
,

(For example, δskin [mm] = 0.066√
f [MHz]

for copper.) one finds the results of Table 3.
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Fig. 11: Homework: find the impedances of these vacuum chamber geometries

The impedance is proportional to (1− i), i.e., it is half resistive and half inductive.

The |z|−1/2 dependence of Wm(z) indicates that the resistive wall wakefield (particularly, its
transverse component) decays slowly and typically lasts long after the beam passage, sometimes long
enough for the beam to see its own wakefield at its next revolution. The initial quick transient wakefields
have been dropped in these expressions.

11.3 Slowly varying wall boundaries
The third way to generate impedances is by discontinuities. Consider a case when the vacuum chamber
(perfectly conducting) wall varies along the accelerator slowly; a perturbation technique can be applied.
Specify the wall variation by h(z) (cylindrically symmetric bump). At low frequencies, k = ω/c <
1/(bump length or depth). The impedance is purely inductive—opposite in sign to the space charge
impedance,

Z
‖
0 = −2ikZ0

b

∫ ∞

0
κ|h̃(κ)|2dκ ,

where
h̃(k) =

1

2π

∫ ∞

−∞
h(z)e−ikzdz .

When the boundary varies rapidly, this formula breaks down. Numerical calculation then has to be
applied.

Homework
Find the impedances of the vacuum chamber geometries in Fig. 11.

12 Beam energy spread in a linac
Consider a beam bunch travelling down an accelerator along the axis of the vacuum chamber pipe. The
m = 0 wakefield excited by the beam produces a longitudinal force on particles in the beam. The main
effect of this longitudinal force is a retarding voltage, causing energy changes of individual particles. As
a result, there is a net energy loss of the beam to the wakefields. Furthermore, since not all particles in the
bunch lose the same amount of energy, the wakefield also causes the beam to acquire an energy spread.

12.1 One-particle model
Consider first a one-particle model in which the beam bunch is a macroparticle of charge Ne. Travelling
down the linac, it experiences the self-generated retarding longitudinal field and loses energy

∆E = −1

2
Ne2W ′0(0−) ,

where the factor 1
2 is due to the fundamental theorem of beam loading.
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Take the SLAC linac for example: W ′0(0−) = 7 cm−1×(L0/L), whereL0 is the total linac length,
3 km and L is the length of an RF structure cell, 3.5 cm. We find ∆E = 2.2 GeV for N = 5 × 1010.
(To convert cgs units to other units, one may apply e2

mc2
= r0, the classical radius of the particle under

consideration.)

12.2 Two-particle model
This estimate can be improved by a two-particle model. The beam bunch is represented by two macro-
particles, one leading and another trailing at a distance |z|. The parasitic loss per particle in the leading
macroparticle due to its self-field is 1.1 GeV. The trailing macroparticle loses, in addition to the 1.1 GeV
due to the self-field,

∆E = −1

2
Ne2W ′0(z) ,

due to the wakefield left behind by the leading macroparticle.

Take z = −σz = −1 mm, N = 5× 1010, and W ′0(−1 mm) = 4.5 cm−1 × (L0/L), each particle
in the trailing macroparticle loses an additional 1.4 GeV. The net loss of a trailing particle is 2.5 GeV.

The one-particle model estimates a parasitic loss per particle of 2.2 GeV. The two-particle model
estimates an average loss of (1.1 + 2.5)/2 = 1.8 GeV. The two-particle model has introduced an energy
split of 1.4 GeV, or a 2.8% energy spread if the beam energy at the end of the linac is 50 GeV.

12.3 An issue with linear colliders
For linear colliders, this energy spread makes it difficult to focus the beam to a small spot at the collision
point in a final focus system, and is to be avoided. Most of this spread can be removed by properly
phasing the accelerating RF voltage relative to the beam.

One concern for a high-intensity linear collider can be described as follows. The energy spread at
the end of the linac scales is

∆E

E
≈

1
2Ne

2W ′0
GL0

≈
1
2Ne

2

Gb2
,

where G is the acceleration gradient, and W ′0 ≈ L0/b
2 is the longitudinal wake function, where b is the

vacuum chamber radius characterizing the size of the accelerating cavities.

On the other hand, the efficiency of energy extraction by the beam from the field energy U stored
in the accelerating cavities

U ≈ 1

8π

(
G

e

)2

πb2L0

is given by

extraction efficiency ≈ NE

U
≈ 8Ne2

Gb2
,

which is found to be equal to 16 times the energy spread.

In other words, to improve the energy spread of the beam at the end of the linac necessitates sac-
rificing the energy extraction efficiency. One way to ameliorate this problem is to compensate (∆E/E)
by phasing the RF voltage. Another way is to send a train of M bunches per filling of the RF cavities.
This will increase the energy extraction efficiency by a factor ofM , although at the cost of having to deal
with multibunch interactions due to the long-range wakefields.
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12.4 General bunch distribution
We now depart from the simplified models and consider a bunch with a general longitudinal distribution
ρ(z). The energy change for a test charge e at longitudinal position z can be written as eV (z), where

V (z) = −
∞∫

z

dz′ρ(z′)W ′0(z − z′)

or, equivalently,

V (z) = − 1

2π

∞∫

−∞

dωeiωz/cZ
‖
0 (ω)ρ̃(ω) .

A negative value of V (z) means that the test charge loses energy from the wakefield. An additional
integration of V (z) over the bunch then gives the total parasitic loss,

∆E =

∞∫

−∞

ρ(z)V (z)dz .

For a bunch with Gaussian longitudinal distribution and uniform disc transverse distribution, for
example, the energy spread due to space charge effects is

V (z)

L
=

√
2

π

q

γ2σ2
z

(
ln
b

a
+

1

2

)
f

(
z

σz

)
,

f(u) = ue−u
2/2 .

Generally, particles in the front of the bunch (z > 0) lose energy due to wakefields, while particles
in the back of the bunch (z < 0) may gain or lose energy, depending on the length of the bunch. This
is not true for the special case of the space charge effect, for which particles in the front of the bunch
gain energy, and particles in the back of the bunch lose energy. For the space charge effect, the energy
gained by the bunch head is necessarily given up by the bunch tail so that the net energy of the bunch is
unchanged.

Consider a numerical example of a 50 MeV proton transport line. If we take q = 1010e, σz =
3 cm, a = 2 cm, and b = 5 cm, we obtain a longitudinal space charge force of ±6 V/m for particles
located at z = ±σz . The net energy change of these particles after travelling 100 m of this transport line
is eV/β = ±2 keV. The space charge induced beam energy spread is therefore ±4× 10−5.

For a resistive wall, we have

V (z)

L
=

q

4bσ
3/2
z

√
c

2πσ
f

(
z

σz

)
,

f(u) = −|u|3/2e−u
2/4
[
(I−1/4 − I3/4) sgn(u)− I1/4 + I−3/4

]
,

with the Bessel functions I±1/4 and I±3/4 evaluated at u2/4. Continuing this numerical example, as-
suming an aluminium pipe, a particle located at 0.5σz ahead of the bunch centre loses an energy of
0.1 eV after travelling 100 m, and a particle located at 1.8σz behind the bunch centre gains 0.04 eV.

13 Beam break-up in a linac
In the previous section, the beam was centred in a cylindrically symmetric pipe. There were no transverse
wake forces (m = 0). If the beam is executing a betatron oscillation, an m = 1 dipole wakefield is
excited by the bunch head, which causes transverse deflection of the bunch tail. For a high-intensity
beam, this leads to a transverse break-up of the beam. The first observation of beam break-up was made
on the SLAC linac.
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Fig. 12: Propagation of beam along linac

13.1 Two-particle model
To proceed with a simplified macroparticle model, we first note that a one-particle model is not useful
because a point charge does not exert a transverse wake force on itself. In the two-particle model, the
leading macroparticle, unperturbed by its own transverse wakefield, executes a free betatron oscillation

y1(s) = ŷ cos kβs .

The trailing macroparticle, at a distance |z|, sees a deflecting wakefield left behind by its leading partner,

y′′2 + k2
βy2 = −Ne

2W1(z)

2EL
y1

= −Nr0W1(z)

2γL
ŷ cos kβs ,

where W1(z) is the transverse wake function per cavity period L. We have ignored acceleration of the
beam energy. For the SLAC linac, kβ ≈ 0.06 m−1 and kβL ≈ 0.002.

The solution is

y2(s) = ŷ
[
cos kβs−

Nr0W1(z)

4kβγL
s sin kβs

]
.

The first term describes the free oscillation and the second term is the resonant response to the driving
wake force. The amplitude of the second term grows linearly with s. The mechanism of the beam break-
up is that particles in the tail of the beam are driven exactly on resonance by the oscillating wake left by
the head of the beam.

At the end of the linac, the oscillation amplitude of the bunch tail relative to the bunch head is
characterized by the dimensionless growth parameter

Υ = −Nr0W1(z)L0

4kβγL
,

where L0 is the total linac length.

For a beam bunch with realistic distribution, the bunch is distorted into a banana shape. The
motion of the bunch head is cos kβs, while the deviation of the bunch tail relative to the bunch head is
s sin kβs. When the bunch head is at a maximum displacement, the tail lines up with the bunch head, but
when the bunch head displacement is zero, the tail swing is maximum (Fig. 12). As the beam propagates
down the linac, the swing amplitude of the flapping tail increases with s until the tail breaks up and
particles are lost. Note that the sign of the tail swing shown is not arbitrary, because Υ > 0.

Figure 13 shows four transverse beam profiles observed at the end of the SLAC linac with N =
2× 1010. The leftmost profile is for a carefully steered beam. When the beam was injected off centre by
0.2, 0.5, and 1 mm, the beam profiles were as shown in the corresponding right-hand panels. The beam
sizes σx and σy were ∼120 µm.
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Fig. 13: Four transverse beam profiles observed at the end of the SLAC linac with N = 2 × 1010. From left to
right: beam centred, beam offset by 0.2, 0.5, and 1 mm, respectively. (Courtesy John Seeman)

13.2 With acceleration
So far we have ignored beam acceleration, which has an important stabilizing effect because, as its energy
increases, the beam becomes more rigid and less vulnerable to the wakefields. Furthermore, the driving
beam’s displacement also decreases with adiabadic damping. Repeating a similar analysis but taking
acceleration into account yields the growth parameter

Υ = −Nr0W1(z)L0

4kβγfL
ln
γf
γi
,

which is basically simply replacing the factor L0/γ with its integral counterpart
∫ L0

0 ds/γ(s). Owing
to acceleration, the tail amplitude thus grows logarithmically rather than linearly with s, and the growth
parameter is much reduced. If the beam is accelerated in the SLAC linac from 1 to 50 GeV, the factor Υ
becomes 14, instead of 180 if the beam coasts at 1 GeV.

The beam break-up instability described so far is quite severe, even with acceleration. To control
it, the beam has to be tightly focused, rapidly accelerated, and carefully injected, and its trajectory must
be carefully steered down the linac. Interestingly, the contribution from trajectory mis-steering can, in
principle, be largely compensated for by an intentional mis-injection.

13.3 BNS damping
It turns out, however, that there is another interesting and effective method to ameliorate the situation.
This method, known as BNS damping, after Balakin, Novokhatsky, and Smirnov, is described next.

Consider first the case without acceleration, where the leading macroparticle executes a free beta-
tron oscillation. The idea of BNS damping requires the introduction of a slightly stronger betatron
focusing of the bunch tail than the bunch head. The equation of motion of the tail particles can be written
as

y′′2 + (kβ + ∆kβ)2y2 = −Nr0W1(z)

2γL
ŷ cos kβs .

The solution, assuming |∆kβ/kβ| � 1, is

y2(s) = ŷ cos(kβ + ∆kβ)s+
Nr0W1(z)

4kβ∆kβγL
ŷ
[
cos(kβs+ ∆kβs)− cos kβs

]
.

Compared with the result without ∆kβ , one observes that, by introducing a slightly different
focusing strength for the bunch tail, the beam break-up mechanism of the bunch head resonantly driving
the bunch tail is removed. A further inspection shows that there exists a magical condition for the bunch
tail to follow the bunch head exactly for all s, namely

Nr0W1(z)

4kβ∆kβγL
= −1 ,
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or, equivalently,
∆kβ
kβ

= −Nr0W1(z)

4k2
βγL

=
Υ

kβL0
, (6)

where Υ is as defined before, and kβL0 is the total betatron phase advance of the linac. For short bunches,
Υ and ∆kβ are positive; the betatron focusing required to fulfil the BNS condition is therefore stronger
at the bunch tail than at the bunch head.

Under the BNS condition, y2(s) = y1(s) = ŷ cos kβs, and the beam no longer breaks up. (The
mechanism of BNS damping is not to be confused with that of Landau damping, to be discussed later.
They have little in common other than the fact that both involve a frequency spread in the bunch popu-
lation.) Physically, this happens because the additional external focusing force introduced for the bunch
tail has compensated for the defocusing dipole deflection force due to the wakefield left behind by the
bunch head. Note that the BNS focusing has to be adjusted according to the beam intensity.

There are different ways to provide the BNS focusing. One is to introduce a radio-frequency
quadrupole whose strength changes as the bunch passes by, so that the head and tail of the bunch see
different quadrupole strengths. Another is to choose the location of the bunch relative to the acceleration
RF voltage in such a way that the bunch tail acquires a lower energy than the bunch head. The energy
spread across the bunch then causes a spread in betatron focusing according to

∆kβ
kβ

= ξ
∆E

E
,

where ξ is the chromaticity determined by the linac design. For a FoDo lattice design, for example,

ξ = − 2

µ
tan

µ

2
,

where µ is the betatron phase advance per FoDo cell. By properly choosing the phase of the RF volt-
age relative to the beam bunch, the betatron focusing required by the BNS condition can be obtained,
provided the required ∆kβ/kβ is not excessive.

For an accelerated beam, the BNS condition is still given by Eq. (6), except that the parameter Υ
is now that given by the case with acceleration. Take the SLAC linac, for example, and assume µ = 90◦;
then the energy deviation of the bunch tail from the bunch head required by the BNS condition is about
−5.5%. BNS damping has been routinely employed to control the beam break-up instability in the SLAC
linac operations.

14 Parasitic heating

When a beam bunch of charge q and line density λ(t) traverses an impedance Z‖0 (ω), it loses energy to
the impedance. This parasitic energy loss (or higher-order mode heating) is

∆E = −κ‖q2 ,

where κ‖ is the loss factor, in units of V/pC,

κ‖ =
1

π

∫ ∞

0
dω ReZ‖0 (ω) |λ̃(ω)|2 . (7)

For a Gaussian bunch, λ(t) = e−t
2/2σ2

/(
√

2πσ) , λ̃(ω) = e−ω
2σ2/2 .

Only the real part of the impedance contributes to the parasitic loss. The space charge or the
slowly varying wall impedances do not cause net energy loss to the beam. However, this does not mean
that individual particles do not change their energies. It only means that there is energy transfer among
different parts of the bunch, while the total energy of the whole bunch remains unchanged.
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For a resistive wall,

κ‖(σ)

L
=

Γ(3
4)c

4π2bσ
3/2
z

(
Z0

2σc

)1/2

, Γ

(
3

4

)
= 1.225 .

where b is the pipe radius (assumed cylindrically symmetrical). It shows explicitly that parasitic loss is
more pronounced for short bunches.

Parasitic loss gives rise to heating of the vacuum chamber wall where there are impedances. In
high-intensity electron storage rings, the beam position monitors or bellows can heat up. This is espe-
cially serious for short bunches.

Most of the parasitic loss occurs as the beam traverses a discontinuity structure. Part of the wake-
field gets trapped if the structure is cavity-like and if the wakefield frequency is below the cut-off fre-
quency of the pipe. The trapped field energy is eventually deposited as heat on the cavity walls. The
rest of the wakefield, with frequency higher than the cut-off frequency, propagates up and down the pipe
and eventually dissipates on lossy material elsewhere in the vacuum chamber. For a cavity structure, κ‖

is given by a sum over cavity modes below the cut-off frequency, plus a contribution above the cut-off
frequency. Each cavity mode below the cut-off frequency contributes a resonator impedance, with

κ‖ ≈





ωrRs

2Qr
e−ω

2
rσ

2
high-Q resonator ,

ωrRs

2Qr
low-Q resonator, short bunch ωrσ � 1 ,

Rs

4
√
πQ2

rω
2
rσ

3
low-Q resonator, long bunch ωrσ � 1 .

Above the cut-off frequency, the impedance per cavity can be represented by the diffraction model,

Z
‖
0 (ω) = [1 + sgn(ω)i]

Z0

2π3/2

1

b

√
cg

|ω| ,

where g is the gap size of the cavity. This impedance has both real and imaginary parts.

For a single bunch in a circular accelerator, the integral in Eq. (7) is replaced by an infinite sum,

κ‖(σ) =
ω0

2π

∞∑

p=−∞
Z
‖
0 (pω0) |λ̃(pω0)|2 .

For short bunches in large accelerators (ω0 � 1/σ), the sum can be replaced by an integral, and the
difference between single passes and multiple passes disappears.

The parasitic loss by the beam goes into wakefields. Typically, only a small fraction of the particle
energy becomes wakefields; most of the energy stored in the wakefields ends up as heat on the vacuum
chamber walls. However, under unfavourable conditions, a small portion of the wakefield energy can be
transferred systematically back to beam motion, causing beam instabilities. Parasitic loss, therefore, is
the ultimate culprit for the various collective instabilities.

15 The Vlasov equation
The Vlasov equation describes the collective behaviour of a multiparticle system under the influence of
electromagnetic forces. To construct the Vlasov equation, one starts with the single-particle equations of
motion (assume 1D):

q̇ = f(q, p, t)

ṗ = g(q, p, t) .
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Fig. 14: Derivation of the Vlasov equation

The state of a particle at a given time t is represented by a point in the phase space (q, p). The motion of
a particle is described by the motion of its representative point in phase space.

In a conservative deterministic system, the particle trajectory in phase space is completely deter-
mined by the initial conditions (q0, p0) at time t = t0. Two particles having the same initial conditions
must have exactly the same trajectory in phase space. It follows that the only way for two trajectories to
meet at a given time is for them to coincide at all times. In other words, trajectories either completely
coincide or never intersect.

Consider a distribution of particles occupying an area in the phase space. Because they cannot
intersect with particles on the boundary of the distribution as the distribution evolves in time, particles
inside cannot leak out of and particles outside cannot enter the distribution.

If the system is conservative,

f =
∂H

∂p
and g = −∂H

∂q
,

where H is the Hamiltonian. It follows that

∂f

∂q
+
∂g

∂p
= 0 .

As will be seen later, this condition leads to an area preservation property: as the particle distribution
evolves in the phase space, its shape may be distorted but its area remains constant. In fact, in a non-
conservative system, ∂f∂q + ∂g

∂p has the physical meaning of the rate of area shrinkage.

Consider a distribution of a group of particles in phase space at time t. A rectangular ∆q∆p box
is drawn (Fig. 14(a)):

A(q, p) ,

B(q + ∆q, p) ,

C(q + ∆q, p+ ∆p) ,

D(q, p+ ∆p) .

At a later time, t+dt, the box moves and deforms into a parallelogramA′B′C ′D′ (Fig. 14(b)) with
the same area as ABCD. All particles inside the box move with the box. Let the number of particles
enclosed by the box be

ψ(q, p, t) ∆q∆p ,

where ψ is the phase space distribution density normalized by

∞∫

−∞

dq

∞∫

−∞

dpψ(q, p, t) = N .
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The vertices of the parallelogram are

A′[q + f(q, p, t)dt, p+ g(q, p, t)dt] ,

B′[q + ∆q + f(q + ∆q, p, t)dt, p+ g(q + ∆q, p, t)dt] ,

C ′[q + ∆q + f(q + ∆q, p+ ∆p, t)dt, p+ ∆p+ g(q + ∆q, p+ ∆p, t)dt] ,

D′[q + f(q, p+ ∆p, t)dt, p+ ∆p+ g(q, p+ ∆p, t)dt] .

The condition that no particles leak into or out of the box gives

ψ(q, p, t) area(ABCD) = ψ(q + fdt, p+ gdt, t+ dt) area(A′B′C ′D′) .

For a Hamiltonian system, the area of the box is conserved:

area(A′B′C ′D′) = |
−−→
A′B′ ×

−−−→
A′D′|

= ∆q∆p

[
1 +

(
∂f

∂q
+
∂g

∂p

)
dt

]

= ∆q∆p = area(ABCD) .

We then have

ψ(q, p, t) = ψ(q + fdt, p+ gdt, t+ dt)

= ψ +
∂ψ

∂q
fdt+

∂ψ

∂p
gdt+

∂ψ

∂t
dt ,

or, after cancelling out ψ on both sides, we obtain the Vlasov equation

∂ψ

∂t
+ f

∂ψ

∂q
+ g

∂ψ

∂p
= 0 .

The Vlasov equation can also be put in a much more vague form:

dψ

dt
= 0, or ψ = constant in time.

Sometimes loosely referred to as the Liouville theorem, this form states that the local particle density
does not change if (an important if) the observer moves with the flow of boxes, but it does not tell how
the boxes flow. The Vlasov form, in contrast, does not have this ambiguity, since it explicitly contains
the single-particle information f and g.

Strictly speaking, f and g are given by external forces. Collisions among discrete particles in the
system, for example, are excluded. However, if a particle interacts more strongly with the collective
fields of the other particles than with its nearest neighbours, the Vlasov equation still applies if one treats
the collective fields on the same footing as the external fields. In fact, this forms the basis of treating the
collective instabilities using the Vlasov technique.

One special case where the Vlasov equation can be solved exactly is when the system is described
by a Hamiltonian H(q, p) that does not have an explicit time dependence. A stationary solution is found
to be

ψ(q, p) = any function of H(q, p) .

In this system, individual particles stream along constant-H contours in phase space in such a way that
the overall distribution is stationary.

In the derivation of the Vlasov equation, we have assumed that there are no diffusion or external
damping effects. This is usually a good approximation for proton beams. For electron beams, synchro-
tron radiation contributes to both damping and diffusion, and one needs to apply the Fokker–Planck
equation, a generalization of the Vlasov equation. However, when the instability occurs faster than the
damping or diffusion times, the Vlasov treatment also at least approximately applies to electrons.
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16 Potential-well distortion
As a first application of the Vlasov technique, we study the effect of a longitudinal wakefield on a
distortion of the equilibrium shape of a beam bunch. The mechanism is a static one; no part of the beam
bunch is executing collective oscillation. The extent of distortion depends on the beam intensity; higher
beam intensities cause larger distortions.

Consider a bunched beam that travels along the axis of the vacuum chamber pipe in a circular
accelerator. We assume that the beam does not have any transverse dimension, i.e., the beam is an
infinitesimally thin thread. Such a beam does not generate transverse wakefields; only the m = 0 wake
is excited.

Consider a particle in the beam executing longitudinal synchrotron oscillation. The phase space
coordinates q and p are

q = z and p = −ηc
ωs
δ ,

where η is the slippage factor defined by the accelerator lattice and ωs is the synchrotron oscillation
frequency.

The single-particle equations of motion are

z′ = −ηδ and δ′ = K(z) .

We leave K(z) open for now, except that we do know it cannot depend on δ, because the system is
conservative.

The Vlasov equation reads

∂ψ

∂s
− ηδ∂ψ

∂z
+K(z)

∂ψ

∂δ
= 0 ,

where we will set ∂ψ/∂s = 0, since we are looking for a stationary distribution. The general stationary
solution is

ψ(z, δ) = any function of the Hamiltonian H ,

H =
η2c2

ωs

[
δ2

2
+

1

η

∫ z

0
K(z′)dz′

]
.

The second integral term in H is the potential-well term. A simple harmonic system would have a
parabolic potential well.

If the potential well is provided by an external RF voltage VRF(z), we have

K(z) =
eVRF(z)

CE
=

ω2
s

c2ηV ′RF(0)
VRF(z) .

A practical case is given by VRF = V̂ sin(ωRFz/c). The deviation of VRF(z) from a linear dependence
on z is a cause of potential-well distortion. The general stationary distribution is given by any function
of the Hamiltonian

H =
η2c2

2ωs
δ2 +

ωsc
2

ω2
RF

[
1− cos

(ωRFz

c

)]
.

This Hamiltonian also describes the form of the RF bucket. A stationary distribution must conform
to the contours of constant Hamiltonian inside the bucket. For small oscillation amplitudes, we have
K = ω2

s z/ηc
2, the case of simple harmonic motion.

One noteworthy special case of the stationary beam distribution is that given by exp(−constant×
H). This distribution is always Gaussian in δ. If the bunch length is much shorter than the RF wave-
length, (z � c/ωRF) the familiar quadratic form of the Hamiltonian is re-established, and the distribution
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is also Gaussian in z. As the bunch length increases, the bunch shape deviates from Gaussian; the poten-
tial well is distorted by the RF bucket, although the distribution remains Gaussian in δ.

There is another reason for the Hamiltonian to deviate from the quadratic form, and thus to cause
potential-well distortion; namely, the wakefields. Consider a bunch that is short compared with the RF
wavelength. Let the wake function be W ′0(z) integrated over the accelerator circumference, and assume
that the wake has dissipated before the beam completes one revolution,

K(z) =
ω2

s

ηc2
z − r0

γC

∞∫

z

dz′ ρ(z′)W ′0(z − z′) .

The corresponding Hamiltonian is

H =
η2c2

2ωs
δ2 +

ωs

2
z2 − ηc2r0

ωsγC

z∫

0

dz′′
∞∫

z′′

dz′ ρ(z′)W ′0(z′′ − z′) .

The stationary solution to the Vlasov equation must be a function of H . The complication here is
that the complicated z-dependence of H now involves the beam density ρ, which in turn is determined
by the stationary distribution itself. Clearly some self-consistency requirement is to be imposed.

Continuing the Gaussian example, the stationary distribution maintains its Gaussian distribution
in δ,

ψ(z, δ) =
1√

2πσδ
exp

(
− δ2

2σ2
δ

)
ρ(z) .

The Gaussian form and the value of σδ are arbitrary if the collective behaviour is governed by the Vlasov
equation, as in the case of a proton beam. However, if the beam behaviour is governed, as for an electron
beam, by the Fokker–Planck equation, then this Gaussian distribution with a specific value for σδ will be
the unique solution of the stationary beam distribution.

This distribution matches the stationary solution

ψ(z, δ) ∝ exp

(
− ωs

η2c2σ2
δ

H

)
.

Self-consistency then imposes a transcendental equation for ρ(z), called the Haissinski equation,

ρ(z) = ρ(0) exp


−1

2

(
ωsz

ηcσδ

)2

+
r0

ησ2
δγC

z∫

0

dz′′
∞∫

z′′

dz′ ρ(z′)W ′0(z′′ − z′)


 .

In the limit of zero beam intensity, the solution reduces to the bi-Gaussian form, where σz =
ηcσδ/ωs. For high beam intensities, ρ(z) deforms from a Gaussian. The Haissinski equation is solved
numerically for ρ(z) onceW ′0(z) is known and σδ is specified. Figure 15 shows the result for the electron
damping ring for the SLAC Linear Collider. The bunch shape is Gaussian at low beam intensities, and
distorts as the beam intensity is increased. The calculations agree with the measurements.

Note that the distribution leans forward (z > 0) as the beam intensity increases. This effect
comes from the parasitic loss of the beam bunch, and is a consequence of the real (resistive) part of the
impedance. Since the SLAC damping ring is operated above transition, the bunch moves forward so that
the parasitic energy loss can be compensated by the RF voltage.

Note also that the bunch length increases as the beam intensity increases. The bunch shape dis-
tortion comes mainly from the imaginary part of the impedance. That the bunch lengthens is a con-
sequence of the fact that the imaginary part of the impedance is mostly inductive.
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Fig. 15: Potential-well distortion for the electron damping ring for the SLAC Linear Collider. The bunch shape is
Gaussian at low beam intensities and distorts as the beam intensity is increased. The horizontal axis is x = −z/σz0,
where σz0 is the unperturbed rms bunch length. The vertical scale gives y = 4πeρ(z)/V ′

RF(0)σz0. (Courtesy Karl
Bane, 1992.)

Fig. 16: Kenneth Robinson (1925–1979)

17 Robinson instability
The Robinson instability (named for Kenneth Robinson, Fig. 16) is one of the most basic instability
mechanisms. It is a longitudinal instability that occurs in circular accelerators. The main contributor to
this instability is the longitudinal impedance due to the RF accelerating cavities. These cavities are tuned
to have a resonant frequency ωR for its fundamental accelerating mode. This mode is what the klystrons
feed into but, at the same time, it is also a big source of impedance. Since we must have this RF mode to
accelerate the beam, we must accept its large impedance and live with it.

The real part of this impedance narrowly peaks at ωR, the width ∆ω/ωR ≈ ±1/Q. Typically,
Q ∼ 104 (or 109 for superconducting cavities).

By design, ωR is very close to an integer multiple of the revolution frequency ω0. This necessarily
means that the wakefield excited by the beam in the cavities contains a major frequency component near
ωR ≈ hω0, and the impedance Z‖0 (ω) has sharp peaks at±hω0, where h is an integer called the harmonic
number.

As we will soon show, the exact value of ωR relative to hω0 is of critical importance for the
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stability of the beam. Above transition, the beam will be unstable if ωR is slightly above hω0 and stable
if slightly below. Below transition, it is the other way around.

Consider a one-particle model. The beam is just a big point chargeNe, without internal structures,
and consider its longitudinal motion under the influence of its own longitudinal wakefield. Let zn be the
longitudinal displacement of the beam at the accelerating RF cavity in the nth revolution. The rate of
change of zn is related to the relative energy error δn of the beam in the same nth revolution by

d

dn
zn = −ηCδn .

The storage ring is above transition if η > 0 and below transition if η < 0.

The energy error also changes with time. In the absence of wakefields, its equation of motion is

d

dn
δn =

(2πνs)
2

ηC
zn ,

where νs is the unperturbed synchrotron tune. If we combine these two equations, we get a simple
harmonic oscillation for both zn and δn, i.e., the normal synchrotron oscillation.

But for an intense beam, we have to add the wakefield term,

d

dn
δn =

(2πνs)
2

ηC
zn +

eV (zn)

E

=
(2πνs)

2

ηC
zn −

Nr0

γ

n∑

k=−∞
W ′0(kC − nC + zn − zk) ,

whereW ′0 is the longitudinal wake function accumulated over one turn of the accelerator. The summation
over k is over the wakefields left behind by the beam from all revolutions prior to the nth. The equation
of motion now becomes

d2zn
dn2

+ (2πνs)
2zn =

Nr0ηC

γ

n∑

k=−∞
W ′0(kC − nC + zn − zk) .

If the beam bunch has an oscillation amplitude much shorter than the wavelength of the funda-
mental cavity mode, one can expand the wake function,

W ′0(kC − nC + zn − zk) ≈W ′0(kC − nC) + (zn − zk)W ′′0 (kC − nC) .

The first term is a static term independent of the motion of the beam. It describes the parasitic loss effect
discussed earlier and can be taken care of by a constant shift in zn. We will drop this term altogether
because here we are interested only in the dynamical effects. The second term does involve the dynamics
of the beam. The quantity zn − zk is the difference of the z terms and – although we will not make
such an approximation – resembles a time derivative dz/dn, which in turn suggests an instability, since
a dz/dn term in a d2z/dn2 equation indicates a possible exponential growth (or damping) of z.

We now need to solve this equation for zn as a function of n. To do so, let

zn ∝ e−inΩT0 ,

where Ω is the mode frequency of the beam oscillation and is a key quantity yet to be determined.

Substituting into the equation of motion, we find an algebraic equation for Ω,

Ω2 − ω2
s = −Nr0ηc

γT0

∞∑

k=−∞
(1− e−ikΩT0)W ′′0 (kC) ,
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where ωs = νsω0 is the unperturbed synchrotron oscillation frequency. Now the wake function can be
expressed in terms of the impedance by a Fourier transform,

Ω2 − ω2
s = −i

Nr0η

γT 2
0

∞∑

p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + Ω)Z

‖
0 (pω0 + Ω)

]
.

Given the impedance, this equation can in principle be solved for Ω. Note that Ω appears on
both sides of the equation. Here, however, we take a perturbative approach and assume that Ω does not
deviate much from ωs for modest beam intensities. We thus replace Ω with ωs on the right-hand side of
the equation. Quantity Ω is then easily solved.

In general, Ω is complex. The real part of Ω is the perturbed synchrotron oscillation frequency of
the collective beam motion, and the imaginary part gives the growth rate (or damping rate if negative) of
the motion. We then obtain a mode frequency shift,

∆Ω = Re(Ω− ωs)

=
Nr0η

2γT 2
0ωs

∞∑

p=−∞

[
pω0ImZ

‖
0 (pω0)− (pω0 + ωs)ImZ

‖
0 (pω0 + ωs) ,

and an instability growth rate,

τ−1 = Im(Ω− ωs) =
Nr0η

2γT 2
0ωs

∞∑

p=−∞
(pω0 + ωs)ReZ

‖
0 (pω0 + ωsl) .

The imaginary part of the impedance contributes to the collective frequency shift. The real part con-
tributes to the instability growth rate. Note that when we measure the synchrotron frequency in an actual
operation, what shows up in the beam spectrum is not ωs, but Ω.

So far, our result holds for arbitrary impedance. We now consider the resonator impedance for the
fundamental cavity mode. The only significant contributions to the growth rate come from two terms in
the summation, namely p = ±h, assuming that ωR/Q� ω0,

τ−1 ≈ Nr0ηhω0

2γT 2
0ωs

[
ReZ

‖
0 (hω0 + ωs)− ReZ

‖
0 (hω0 − ωs)

]
.

Beam stability requires τ−1 ≤ 0. That is, the real part of the impedance must be less at frequency
hω0+ωs than at frequency hω0−ωs if η > 0, and the other way around if η < 0. This condition gives the
Robinson stability criterion that, above transition, the resonant frequency ωR of the fundamental cavity
mode should be slightly detuned downwards from an exact integral multiple of ω0. Below transition, it
should be the other way around, as sketched in Fig. 17.

Physically, the Robinson instability comes from the fact that the revolution frequency of an off-
momentum beam is not given by ω0 but by ω0(1− ηδ). To illustrate the physical origin, consider a beam
executing synchrotron oscillation above transition. Owing to the energy error of the beam, the impedance
samples the beam signal at a frequency slightly below hω0 if δ > 0, and slightly above hω0 if δ < 0.
To damp this synchrotron oscillation, we need to let the beam lose energy when δ > 0 and gain energy
when δ < 0. This can be achieved by having an impedance that decreases with increasing frequency in
the neighbourhood of hω0. The Robinson stability criterion then follows.

When τ−1 > 0, the beam is unstable because any accidental small synchrotron oscillation would
grow exponentially. When τ−1 < 0, the Robinson mechanism leads to exponential damping of any
synchrotron oscillations of the beam. Robinson damping (or antidamping) can be rather strong. When
the Robinson criterion is met, the synchrotron oscillation of the beam is ‘Robinson damped’ and this
damping will help stabilize the beam against similar instabilities due to other impedance sources.
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Fig. 17: Resonance frequency above and below transition

Table 4: Comparison of Robinson and strong head–tail instabilities

Robinson instability Strong head–tail instability
Dimension Longitudinal Transverse
Mode m = 0 m = 1
Wakefield Long-range Short-range
Impedance Sharply peaked Broad-band
Model One-particle Two-particle
Threshold behaviour No Yes

18 Strong head–tail instability
We next introduce the strong head–tail instability, to be discussed using a two-macroparticle model.
It was first observed and analysed at PEP. When the intensity exceeds a threshold, the beam becomes
unstable. Below the threshold, the beam motion is perturbed but remains stable. Table 4 compares
Robinson and strong head–tail instabilities.

The physical mechanism of the strong head–tail instability is closely related to beam break-up in
linacs. Consider an idealized beam with two macroparticles, each with charge Ne/2 and each executing
synchrotron oscillation. We assume that their synchrotron oscillations have equal amplitude but opposite
phases. During time 0 < s/c < Ts/2, where Ts = 2π/ωs is the synchrotron oscillation period, particle
1 leads particle 2; the equations of motion are

y′′1 +
(ωβ
c

)2
y1 = 0 ,

y′′2 +
(ωβ
c

)2
y2 =

Nr0W0

2γC
y1 , (8)

where ωβ is the unperturbed betatron oscillation frequency, whether horizontal or vertical. Dur-
ing Ts/2 < s/c < Ts, we have the same equations with indices 1 and 2 switched. Then during
Ts < s/c < 3Ts/2, Eq. (8) applies again, etc.

In writing down Eq. (8), we have assumed for simplicity that the wake function (integrated over
the accelerator circumference), W1(z), is a constant, and yet it vanishes before the beam completes one
revolution,

W1(z) =

{
−W0, if 0 > z > −(bunch length) ,
0, otherwise .

(9)

The property of wake functions requires that W0 > 0. This short-range wake function corresponds to a
broad-band impedance.

The solution for y1 in Eq. (8) is simply a free betatron oscillation,

ỹ1(s) = ỹ1(0)e−iωβs/c ,
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where
ỹ1 = y1 + i

c

ωβ
y′1 .

Substituting ỹ1(s) into the equation for y2 yields

ỹ2(s) = ỹ2(0)e−iωβs/c + i
Nr0W0c

4γCωβ

[
c

ωβ
ỹ∗1(0) sin

ωβs

c
+ ỹ1(0)se−iωβs/c

]
. (10)

The first two terms describe free betatron oscillation. The third term, proportional to s, is a resonantly
driven response. This analysis is similar to the beam break-up instability.

Equation (10) can be simplified if ωβ � ωs. The second term can then be dropped. The solution
during the period 0 < s/c < Ts/2 can be written in a matrix form,

[
ỹ1

ỹ2

]

s=cTs/2

= e−iωβTs/2

[
1 0
iΥ 1

] [
ỹ1

ỹ2

]

s=0

,

with a positive, dimensionless parameter,

Υ =
πNr0W0c

2

4γCωβωs
.

The time evolution during Ts/2 < s/c < Ts can be obtained by exchanging indices 1 and 2. The
total transformation for one full synchrotron period is

[
ỹ1

ỹ2

]

cTs

= e−iωβTs

[
1 iΥ
0 1

] [
1 0

iΥ 1

] [
ỹ1

ỹ2

]

0

= e−iωβTs

[
1−Υ2 iΥ

iΥ 1

] [
ỹ1

ỹ2

]

0

.

As time evolves, the phasors ỹ1 and ỹ2 are repeatedly transformed by the 2×2 matrix of this map.
The stability of the system is determined by the eigenvalues of this matrix. The two eigenvalues (a +
mode and a − mode) are

λ± = e±iφ , sin
φ

2
=

Υ

2
, (11)

with eigenvectors

V± =

[
±e±iφ/2

1

]
.

Stability requires φ = real, or
Υ ≤ 2 .

For weak beams, Υ� 1, we have φ ≈ Υ. Near the instability, φ approaches π as Υ approaches 2.

After a moment of reflection, we see that the instability when Υ > 2 causes a rather severe
disruption of the beam, as seen by the fact that, during half a synchrotron period, the motion of the
trailing particle has grown by an amount more than twice the amplitude of the free-oscillating leading
particle. For Υ ≤ 2, the growths made during the half synchrotron periods when the particle is trailing do
not accumulate and the beam is stable. As the beam intensity increases so that Υ > 2, the growths of the
particles then do accumulate and bootstrap into an instability. This threshold behaviour is very different
from the linac case, in which the beam head is always stable and the beam tail is always unstable. One
can imagine that, by periodically exchanging the roles of leading and trailing particles, the two-particle
beam is made more stable. The more frequently the roles are exchanged, the more stable is the beam, as
evidenced by Υ ∝ 1/ωs. Synchrotron oscillation is thus an effective stabilizing mechanism in circular
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Fig. 18: Solid curves are the spectrum of the + mode; dashed curves are that of the − mode. Instability occurs at
the point where the mode frequencies merge.

accelerators. Strong betatron focusing and a high beam energy also help stabilize the beam, as indicated
by Υ ∝ 1/(γωβ).

In an accelerator, the beam signal comes from the beam position monitors that detect the centre
of charge y1 + y2 of the beam, and it would be useful to examine its frequency spectrum. To do that,
consider a two-particle beam in a pure eigenstate V± at time s/c = 0. In the stable region, the subsequent
motion of the beam centre of charge is

(ỹ1 + ỹ2)(s) = exp

[
−i

(
ωβ ∓

φωs

2π

)
s

c

] ∞∑

`=−∞
C`e
−i`ωss/c ,

C` = 2iΥ
1± (−1)`

(2π`∓ φ)2
(1∓ e±iφ/2) .

The ± modes as observed by a beam position monitor therefore contain the following frequencies:

+ mode: ωβ + `ωs −
φ

2π
ωs , ` = even ,

−mode: ωβ + `ωs +
φ

2π
ωs , ` = odd .

Note that each mode contains a multiplicity of frequencies when observed continuously in time.

For weak beams, the two macroparticles oscillate in phase in the + mode and out of phase in the
−mode. As Υ increases, the mode frequencies shift and the particle motions become more complicated;
each mode contains a combination of in-phase and out-of-phase motions. At the stability limit Υ = 2,
the frequencies of the two modes merge into each other and become imaginary, which means instability
(Fig. 18).

To detect internal beam motion in addition to the centre of charge motion, one uses a streak camera.
One such observation, made on the large electron–positron collider at CERN, is shown in Fig. 19. It
shows the turn-by-turn pictures of a beam executing a transverse head–tail oscillation. The bunch is seen
from the side and one observes a vertical head–tail oscillation (` = 1). The horizontal scale is 500 ps for
the total image. The vertical scale is uncalibrated. Figure 19 shows the same bunch each turn from top
to bottom.

The strong head–tail instability is one of the cleanest instabilities that can be observes in elec-
tron storage rings. One can measure the threshold beam intensity when the beam becomes unstable
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Fig. 19: Beam executing a transverse head–tail oscillation (Courtesy Albert Hofmann and Edouard Rossa, 1992)

transversely and associate the observation with Υ = 2. Another approach is to measure the ‘betatron
frequency’ (what is measured is the frequency of the ` = 0 spectral line) as the beam intensity is varied.
From our two-particle analysis, the initial slope of this frequency shift is

(
dωβ
dN

)

N=0

= −ωs

2π

(
dφ

dN

)

N=0

= −r0W0c
2

8γCωβ
.

By measuring the instability threshold or the initial slope of the betatron frequency, information on the
short-range wakefield or broad-band impedance can be obtained.

At the instability threshold, the measured betatron frequency has shifted by ωs/2, according to
the two-particle model. The measured value of (dωβ/dN)N=0 can be used to predict the instability
threshold Nth by

Nth = −ωs

π

1

(dωβ/dN)N=0

.

The eventual instability threshold can thus be estimated by measuring ωβ at low beam intensities.

The two-particle model also predicts that the ` = 0 frequency always shifts down as the beam
intensity is increased. Physically, this is because, for short bunches, the sign of the wake force is such that
the bunch tail is always deflected further away from the vacuum chamber axis if the beam is transversely
displaced. With the head and the tail moving together in the ` = 0 mode, the wake force acts as a
defocusing effect and the mode frequency shifts down.

The centre of charge signal of the beam as a function of time after the beam receives an initial
transverse kick can be analysed for a two-particle model. Figure 20 shows a result compared with
experimental observation at PEP. The agreement indicates that the highly idealized two-particle model
describes this instability mechanism remarkably well. The signal exhibits damping because of radiation
damping.

19 Landau damping
Many collective instability mechanisms act on a high-intensity beam in an accelerator, demanding a wide
range of sometimes conflicting stability conditions. Yet the beam as a whole seems basically stable, as
evidenced by the existence of a wide variety of working accelerators. One reason for this fortunate out-
come is Landau damping, which provides a natural stabilizing mechanism against collective instabilities,
if particles in the beam have a small spread in their natural (synchrotron or betatron) frequencies.

The spread in ωβ has several sources. A dependence of ωβ on the energy of the particle, together
with an energy spread in the beam, leads to a spread in ωβ . Non-linearities in the focusing system cause
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Fig. 20: Beam position monitor signal as a function of time after the beam is kicked. Left: PEP data with (a)
N/Nth = 0.86, (b) N/Nth = 0.93, and (c) N/Nth = 0.988. Right: two-particle model with (a) Υ/2 = 0.77,
(b) Υ/2 = 0.96, and (c) Υ/2 = 0.99.

a dependence of ωβ on the particle’s betatron amplitude. A spread in betatron amplitudes then leads to a
spread in ωβ .

The source of spread in ωs depends on whether the beam is bunched or unbunched. For bunched
beams, a spread can result from non-linearity in the RF focusing voltage. For unbunched beams, the
dependence of the revolution frequency on the particle energy plays a similar role.

Consider a simple harmonic oscillator with natural frequency ω driven by a sinusoidal force of
frequency Ω,

ẍ+ ω2x = A cos Ωt ,

with initial conditions x(0) = 0 and ẋ(0) = 0. The solution is

x(t > 0) = − A

Ω2 − ω2
(cos Ωt− cosωt) . (12)

The cos Ωt term gives the main term responding to the driving force; the cosωt term comes from match-
ing the initial conditions.

The explicit inclusion of the initial conditions plays an important role. Otherwise, one could have
carelessly written the solution

x(t) = − A

Ω2 − ω2
cos Ωt, or x(t) = − A

Ω2 − ω2
e−iΩt . (13)

Equation (13) contains a singularity at Ω = ω, while Eq. (12) is well behaved there. This singularity
is the source of subtleties and at this point is to be avoided. As we will see later, by applying some
mathematical tricks, it is possible to bypass the explicit inclusion of the initial conditions and go straight
to Eq. (13) but at this point we will stay with Eq. (12).

Consider now an ensemble of oscillators (each oscillator represents a single particle in the beam)
which have a spectrum ρ(ω) satisfying

∫∞
−∞ dωρ(ω) = 1. Now subject this ensemble of particles to the

driving force A cos Ωt with all particles starting with initial conditions x(0) = 0 and ẋ(0) = 0. The
ensemble average response is

〈x〉(t > 0) = −
∫ ∞

−∞
dωρ(ω)

A

Ω2 − ω2
(cos Ωt− cosωt) .

For simplicity, let us consider a narrow beam spectrum around a frequency ωx and a driving
frequency near the spectrum, i.e., Ω ≈ ωx. The beam response is then

〈x〉(t) = − A

2ωx

∫ ∞

−∞
dωρ(ω)

1

Ω− ω (cos Ωt− cosωt) .
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Fig. 21: The functions sin(ut)/u, (1 − cosut)/u are shown in (a), (b) for two values t = 3 and 10. The dashed
curves in (b) are for the function 1/u. The sole function of (1−cosu) in (b) is to suppress the singularity at u = 0.

Changing variable from ω to u = ω − Ω leads to

〈x〉(t) =
A

2ωx

∫ ∞

−∞
du
ρ(u+ Ω)

u
[cos Ωt− cos(Ωt+ ut)]

=
A

2ωx

[
cos Ωt

∫ ∞

−∞
duρ(u+ Ω)

1− cosut

u
+ sin Ωt

∫ ∞

−∞
duρ(u+ Ω)

sinut

u

]
.

All integrals are well behaved at u = 0.

The beam response contains a cos Ωt term and a sin Ωt term, but their coefficients are time depend-
ent. The next step is to show that those coefficients approach well behaved limits. To do so, one first
observes

lim t→∞
sinut

u
= πδ(u) ,

lim t→∞
1− cosut

u
= P.V.

(
1

u

)
.

The proof is illustrated in Fig. 21.

If we are not interested in the transient effects immediately following the onset of the driving force,
we obtain

〈x〉(t) =
A

2ωx

[
cos Ωt P.V.

∫
dω

ρ(ω)

ω − Ω
+ πρ(Ω) sin Ωt

]
.

This expression explicitly contains a cos Ωt term and a mysterious sin Ωt term.

The sign of the cos Ωt term relative to the driving force depends on the sign of
P.V.
∫

dωρ(ω)/(ω − Ω). A system is referred to as ‘capacitive’ or ‘inductive’ based on whether its sign
is positive or negative.

The sin Ωt term has a definite sign relative to the driving force because ρ(Ω) is always positive. In
particular, d〈x〉/dt is always in phase with the force, indicating that work is being done on the system.
The system always reacts to the force ‘resistively’.

To proceed, write the beam response in complex notation,

driving force = Ae−iΩt ,
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Fig. 22: The functions f(u) (solid curves) and g(u) (dashed curves) for various spectral distributions

〈x〉 =
A

2ωx∆ω
e−iΩt [f(u) + ig(u)] ,

where u = (ωx − Ω)/∆ω with ∆ω the width of the spectral spread, and

f(u) = ∆ω P.V.

∫
dω

ρ(ω)

ω − Ω
,

g(u) = π∆ω ρ(ωx − u∆ω) .

The dimensionless complex quantity f + ig is the beam transfer function (Fig. 22).

For the δ-function spectrum, there is no frequency spread, Landau damping is lost,

f(u) =
1

u
, and g(u) = πδ(u) .

For the Lorentz spectrum,

f(u) =
u

1 + u2
, and g(u) =

1

1 + u2
.

We now introduce a mathematical trick. It turns out that one can ‘derive’ the same result by
venturing with Eq. (13). In complex notation, Eq. (13) gives

〈x〉 =
A

2ωx
e−iΩt

∫
dω

ρ(ω)

ω − Ω
.
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Fig. 23: Contour of integration

Our detailed examinations provides a well defined way to deal with the otherwise undefined integral, i.e.,
∫

dω
ρ(ω)

ω − Ω
→ P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω) , (14)

or, more symbolically,
1

ω − Ω
→ P.V.

(
1

ω − Ω

)
+ iπδ(ω − Ω) .

Again, it is necessary to include an out-of-phase term—with a definite sign—as evidenced by the imagin-
ary term iπρ(Ω), even though the expression on the left-hand side seems to be for a real quantity.

The right-hand side of Eq. (14), in fact, is equal to the left-hand side, provided one takes the
integration to be executed in the complex ω-plane and the contour of integration, C, is as illustrated in
Fig. 23(a). The connection (Eq. (14)) now reads

∫
dω

ρ(ω)

ω − Ω
→

∫

C
dω

ρ(ω)

ω − Ω
.

The straight line portion of C gives the principal value term in 〈x〉 and the semicircular portion gives the
pole contribution iπρ(Ω).

Equivalently, one could consider the integration along the real axis of the ω-plane, but move the
pole at ω = Ω up by an infinitesimal amount,

∫
dω

ρ(ω)

ω − Ω
→

∫ ∞

−∞
dω

ρ(ω)

ω − Ω− iε
,

or
1

ω − Ω
→ 1

ω − Ω− iε
,

or simply
Ω → Ω + iε . (15)

It is now a matter of taste whether to regard our main conclusion (Eq. (14)) as a result of a simple
derivation starting with Eq. (13) and then make a profound connection (Eq. (15)), or to regard it as a
result of a detailed calculation that takes initial conditions into account.

20 One-particle model for bunched beams – transverse
The results obtained in the previous section applied to circular accelerators lead to Landau damping of
collective instabilities. To demonstrate this for a bunched beam, consider a one-particle model, except
that now theN individual particles have a spread in their natural frequencies. The fact that they form one
macroparticle even though they have different frequencies is a result of the bunch executing a collective
motion.
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The driving force on the individual particles comes from the centre of charge displacement of the
beam as a whole, 〈y〉, through the wakefield. For a single particle whose betatron frequency is ω,

y′′(s) +
(ω
c

)2
y(s) = −Nr0

γC

∞∑

k=1

〈y〉(s− kC) W1(−kC) ,

Consider the situation when y-motion of the macroparticle is just at the edge of exponential
growth, owing to a collective instability. We have

〈y〉(s) = Be−iΩs/c , (16)

where Ω carries an imaginary part iε, where ε is infinitesimally positive.

It is not very interesting to search for damped, stable solutions. Finding stable solutions does not
assure beam stability, but finding one unstable solution reveals the beam to be unstable.

We now have
y′′(s) +

(ω
c

)2
y(s) = −BNr0

γC
We−iΩs/c ,

where

W =

∞∑

k=1

W1(−kC)eiωβkT0 ,

or, in terms of impedance,

W = − i

T0

∞∑

p=−∞
Z⊥1 (pω0 + ωβ) .

We have assumed that the mode frequency shift is small so that Ω ≈ ωβ , where ωβ is the centre of the
beam frequency spectrum.

The beam is driven by a sinusoidal driving force. Our analysis of Landau damping gives the beam
response,

〈y〉 = −BNr0Wc

2ωβγT0
e−iΩs/c

[
P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω)

]
.

But we had already assumed that the collective beam motion is given by Eq. (16). This means
that the mode frequency Ω is not arbitrary. For the beam motion to be non-trivial, Ω must satisfy a
self-consistency condition, the dispersion relation,

1 = −Nr0Wc

2ωβγT0

[
P.V.

∫
dω

ρ(ω)

ω − Ω
+ iπρ(Ω)

]
,

or
− Nr0Wc

2ωβγT0∆ω
=

1

f(u) + ig(u)
.

If the beam does not have a natural frequency spread, we have f(u) = 1/u, g(u) = 0. The
complex mode frequency shift is found to be

(Ω− ωβ)no Landau damping =
Nr0cW
2ωβγT0

.

We shall designate this quantity as ξ1; it contains essentially the beam intensity, multiplied by the
impedance, divided by the focusing strength and the magnetic rigidity.

For a beam with natural frequency spread, the dispersion relation is

− ξ1

∆ω
=

1

f(u) + ig(u)
. (17)
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The left-hand side of Eq. (17) contains information about the beam intensity and the impedance.
The right-hand side contains information about the beam frequency spectrum. For a given impedance, the
left-hand side is obtained by calculating the complex mode frequency shift ξ1 in the absence of Landau
damping. Without Landau damping, the stability condition is simply Im ξ1 < 0.

Once its left-hand side is obtained, Eq. (17) can, in principle, be used to determine Ω in the
presence of Landau damping when the beam is at the edge of instability. However, the exact value of Ω
is not useful. The useful question to ask is under what conditions the beam becomes unstable, regardless
of the exact value of Ω. Equation (17) can be used in a reversed manner to address this question. To
do so, consider the real parameter u = (ωβ − Ω)/∆ω and observe the locus traced out in the complex
D1-plane as u is scanned from∞ to −∞, where

D1 =
1

f(u) + ig(u)
.

This locus defines a stability boundary diagram (Fig. 24). The left-hand side of Eq. (17), a complex
quantity, is then plotted in the complex D1-plane as a single point. If this point lies on the locus, it
means the solution of Ω for Eq. (17) is real, and this ξ1 value is such that the beam is just at the edge of
instability. If it lies on the inside of the locus (the side that contains the origin of theD1-plane), the beam
is stable. If it lies on the outside of the locus, the beam is unstable.

The dispersion relation is particularly simple for the Lorentz spectrum (Fig. 24(b)),

Ω = ωβ + ξ1 − i∆ω .

The stability condition ImΩ < 0 therefore becomes

Imξ1 < ∆ω .

The fact that the stable region is always enlarged by the frequency spread demonstrates the Landau
damping mechanism. Its origin can be traced back to the fact that g(u) is always positive, which in turn
comes from the fact that the beam continues to absorb energy from the driving force without having to
let 〈y〉 grow.

For a given spectral shape, the tolerable ξ1 ∝ ∆ω; the larger the frequency spread, the stronger the
Landau damping. For a given ∆ω, the effectiveness of Landau damping is different for different spectral
shapes. The Lorentz spectrum, having a long distribution tail, is most forgiving, while the δ-function
spectrum is not effective.

For practical accelerator operations, there may be information on the value of the half-width-at-
half-height ∆ω 1

2
, but not enough detailed information on the shape of the frequency spectrum. For those

applications, we introduce a simplified stability criterion,

|ξ1| =
Nr0c

2ωβγT
2
0

∣∣∣
∞∑

p=−∞
Z⊥1 (pω0 + ωβ)

∣∣∣ < 1√
3

∆ω 1
2
, (18)

where the factor 1/
√

3 is chosen so that it coincides with the semicircular portion of the boundary for
the elliptical spectrum. The stability diagram of this simplified model is shown in Fig. 24(h).

Equation (18) says that if the mode frequency shift or growth rate, calculated without Landau
damping, is larger than the frequency spread of the beam, Landau damping will not rescue the beam
from instability.
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Fig. 24: The stability boundary diagrams for various spectra. Shaded regions are unstable. The coordinates
labelled refer to (ReD1, ImD1; u). The value of u can be used to obtain Ω. (a) δ-function spectrum, no Landau
damping. (h) is the simplified criterion (Eq. (18)).

21 One-particle model for bunched beams – longitudinal
A similar analysis can also be performed for the longitudinal Robinson instability using a one-particle
model,

z′′(s) +
(ωs

c

)2
z(s) =

Nr0η

γC

∞∑

k=1

[〈z〉(s)− 〈z〉(s− kC)]W ′′0 (−kC)

=
Nr0η

γC
Be−iΩs/cW ,

where we have introduced
〈z〉(s) = Be−iΩs/c

and

W =
∞∑

k=1

(
1− eiωskT0

)
W ′′0 (−kC)
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=
i

C

∞∑

p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + ωs)Z

‖
0 (pω0 + ωs)

]
.

Self-consistency then gives rise to a dispersion relation

Nr0ηWc2

2ωsγC∆ω
=

1

f(u) + ig(u)
,

similar to the transverse case except that the frequency spectrum now refers to synchrotron frequency,
and the complex mode frequency shift in the absence of Landau damping is

ξ1 = −Nr0ηWc2

2ωsγC
.

The simplified stability criterion reads

|ξ1| =
Nr0ηc

2

2ωsγC2

∣∣∣
∞∑

p=−∞

[
pω0Z

‖
0 (pω0)− (pω0 + ωs)Z

‖
0 (pω0 + ωs)

] ∣∣∣ < 1√
3

∆ω 1
2
.

The conclusion that the longitudinal Landau damping behaves analogously to the transverse case,
however, is valid only for bunched beams for which ωs 6= 0. The analyses depend on the assumption
that the mode frequency shift |Ω| is small compared with the unperturbed natural frequency ωβ, ωs.
For unbunched beams, ωs = 0, the longitudinal analysis gives results very different from its transverse
counterpart.
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