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Abstract
Relativistic heavy ion collisions provide a possibility to investigate a funda-
mental quantum field theory (QCD) in a regime away from the conventional
vacuum, namely at non-zero temperature and density. I will discuss why this is
important, give a brief overview over what is known already and also mention
currently still open questions.
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1 Motivation and introduction
Why should one be interested in heavy ion collisions? There are several reasons. An experimentalist
may argue: Heavy ion collisions at high energy provide a possibility to experimentally address questions
like: What happens with Quantum Chromodynamics (QCD) at large density or temperature? Is there,
for example, a phase transition at the Hagedorn temperature?

From a more theoretical point of view one may say: Quantum field theory is so important for the
description of the phenomena in our world that it should be studied and understood not only in the regime
of a few particles or excitations around the conventional vacuum but also at non-vanishing temperature
and density. This is also important for many questions in cosmology and in condensed matter theory.
Heavy ion collisions allow to study one of the fundamental building blocks of the standard model (namely
QCD) at non-zero temperature and density. This is particularly interesting due to the asymptotic freedom
property of QCD. For very large momenta or at very small distances, the theory is theoretically very well
understood. Once the Lagrangian of QCD is fixed in terms of the fundamental parameters (the strong
coupling constant ↵s and the quark masses) everything else is in principle determined, as well, including
the thermal equilibrium properties and even the non-equilibrium dynamics. It is a formidable challenge
to understand this in detail and to solve the corresponding equations in practice.

From a cosmologists perspective one may argue that the quark gluon plasma is interesting because
it has filled the universe from about 10�12 to 10�6 seconds after the big bang. Heavy ion collisions allow
to learn something about this state of matter from laboratory experiments.

Finally, heavy ion physics is a very active field of research. A large experimental program is
ongoing at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland, with experimental research
being performed by the collaborations ALICE, ATLAS, CMS and LHCb. Another large program is
ongoing at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in
Brookhaven, USA, with experimental collaborations Phenix and STAR. Future experiments are planned
at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, and at the Nuclotron-
based Ion Collider Facility (NICA) at JINR, Dubna, Russia.

We end this introductory section with a brief overview on the different regimes following a heavy
ion collision event. The initial state directly after the collision is determined in principle by the wave
function of the colliding nuclei. However, the latter is unfortunately not understood from first prin-
ciples yet. (The problem is of considerable complexity already for protons.) Directly after the col-
lision there must be a regime of strong dynamics driving an approximate thermalization (or at least
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pre-thermalization sometimes also called “hydrodynamization” such that the energy-momentum tensor
approaches the form of relativistic fluid dynamics). The concrete dynamics is not yet known in all details
but it is very plausible that strong color fields play an important role as well as possibly different plasma
instabilities.

Afterwards there is a phase with (approximate) local thermal and chemical equilibrium that can be
described by relativistic fluid dynamics. The strong microscopic dynamics that leads to short equilibra-
tion times is now responsible for rather small dissipative transport coefficients (such as shear viscosity
and corresponding relaxation times, see discussions below). The main characteristic of the fluid dynamic
phase is a rapid expansion both in longitudinal and transverse direction and an associated dilution and
cool down of the fluid.

Together with the dilution comes a change in the relevant microscopic degrees of freedom. While
these are gluons and quarks at high temperatures, mesons and baryons dominate the low temperature
and density phase. As long as the densities are still rather large, there are many inelastic (and elas-
tic) collisions such that chemical and kinetic equilibrium are maintained. When the density drops, the
rate of inelastic collisions decreases and at some point becomes too small to maintain chemical equilib-
rium. This process is called chemical freeze-out. After this point the total particle yields do not change
substantially any more (except by some resonance decays that are ongoing). One can still use an (ap-
proximate) fluid dynamic description in the phase that follows, but now with a chemical potential for
each (separately) conserved particle number.

Finally, when the densities drop even further, also elastic collisions become more and more rare
such that also kinetic equilibrium is no longer maintained. After this point also the momenta of particles
do not change substantially any more (again with the exception of resonance decays) and they are “free
streaming” towards the detector. This process is described as kinetic freeze-out. More details about both
chemical and kinetic freeze-out will be discussed below.

There are some very good reviews and monographs on heavy ion physics which are much more
detailed than I can possibly be in these introductory lectures, for example refs. [1–6]. A very helpful
source of information are also the collected proceedings of the “Quark Matter” conferences.

For these lecture notes I will mainly employ relativistic natural units with c = ~ = kB = 1.

2 Basic quantum chromodynamics
We now continue with a very basic reminder about the microscopic properties of QCD as a quantum field
theory. The Lagrangian is

L = �1

2
tr Fµ⌫F

µ⌫ �
X

f

 ̄f

�
i�µDµ � mf

�
 f (1)

with matrix valued field strength tensor Fµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ,A⌫ ] and covariant derivative
Dµ = @µ � igAµ. In the high energy regime, where perturbation theory is valid, the particle content of
the theory are N2

c �1 = 8 real massless vector bosons, the gluons, and Nc ⇥Nf massive Dirac fermions,
the quarks. From the quark masses (Up 2.3 MeV, Down 4.8 MeV, Strange 95 MeV, Charm 1275 MeV,
Bottom 4180 MeV and Top 173 GeV) one can see that for typical temperatures in the regime of a few
100 MeV mainly the Up, Down and Strange quarks play a role as thermalized particles while Charm and
Bottom can be considered as heavy. Top quarks can be counted as very heavy.

An important feature of QCD is asymptotic freedom. The coupling constant ↵s = g2/(4⇡) has
a renormalization group running such that the effective interaction strength is small for processes with
large momentum transfer or at high energy scales. On the other side, the effective interaction strength
becomes large for soft processes or at small energy scales. An illustration of this is given by Fig. 1.

From this one concludes generically that at high-temperatures QCD should have the properties of
a weakly coupled field theory while it becomes effectively strongly coupled at small temperatures. This
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reasonably stable world average value of ↵s(M2
Z), as well as a clear signature and proof of

the energy dependence of ↵s, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of ↵s(Q2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
↵s is determined now extend up to more than 1 TeV}.
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Figure 9.3: Summary of measurements of ↵s as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of ↵s is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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scale was taken to be the average of the transverse momenta of the two leading jets [379],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.
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Fig. 1: Summary of measurements of ↵s as a function of the energy scale Q as compiled by the Particle Data
Group in 2015. Figure taken from ref. [7].

is so for a description in terms of the elementary degrees of freedom (quarks and gluons). In terms of
the composite degrees of freedom that dominate at low temperatures (mesons and baryons) the situation
is different and in particular the low temperature regime permits a description which resembles in many
aspects a weakly coupled theory.

This brings us to the next important property of QCD: confinement. For low temperatures, quarks
and gluons are confined to hadrons. In contrast, the large temperature behavior is dominated by decon-
fined quarks and gluons. Lattice QCD calculations have shown that the intermediate regime does not
show a sharp (first or second order) phase transition but rather a continuous crossover.

3 Particle production in heavy ion collisions
When heavy ions are colliding at large center of mass energy, many particles are being produced. Con-
sider for example the first heavy ion run at the LHC. The total collision energy for the Pb-Pb system
is

p
s = 2 ⇥ 574 TeV. The fully ionized nuclei 208Pb consist of 82+126=208 nucleons. This implies a

collision energy per nucleon of
p

sNN = 574
208 TeV = 2.76 TeV.

Lower energy experiments performed at the Alternating Gradient Synchrotron (AGS) operating at
BNL since the mid 1980’s reached typical values

p
sNN ⇡ 2 – 5 GeV. For the fixed target experiments at

the Super Proton Synchrotron (SPS) at CERN since 1994 the energies are in the range
p

sNN < 17 GeV.
Finally the Relativistic Heavy Ion Collider (RHIC) in operation at BNL since 2000 reaches energiesp

sNN  200 GeV.
The number of charged particles found in the detector varies with the longitudinal angle with

respect to the beam axis. Usually this angle is parametrized by the pseudo-rapidity ⌘ = �ln(tan(✓/2)).
Depending on the coverage of the detector one can access dNch/d⌘ in the range of a few units around
mid-rapidity ⌘ = 0. Integration of this function (or an interpolation thereof) gives total number of
charged particles Nch. A typical number is Nch = 5060 ± 250 at upper RHIC energies. One should
keep in mind that not all particles are charged and one can estimate the total number of hadrons as
1.6 ⇥ 5060 ⇡ 8000 hadrons in total. The number of produced particles grows with the collision energy
and at the LHC one can estimate Nch = 25000 corresponding to about 40000 hadrons in total.

Using modern detector technology one can also identify the produced particles and determine the
yields or multiplicities for each species separately. Some results are shown in Fig. 2 together with fits
based on the so-called statistical or thermal model. The thermal model describes the particle yields in
terms of a non-interacting hadron resonance gas in thermal and chemical equilibrium. Essentially all
hadrons and resonances listed by the particle data group are included. Fit parameters are the tempera-
ture T , volume V and chemical potentials for the conserved baryon number µb and similar for isospin,
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Fig. 2: Comparison of hadron yields as measured at RHIC (left panel) and by ALICE at the LHC (right panel) and
fits using the thermal hadronization model. The first figure is taken from ref. [8], the second from ref. [9].

strangeness and charm.
The thermal model works so surprisingly well that a number of questions arise. First of all, why

does it actually work so well? Why should all the particle yields be determined by one and the same tem-
perature? One should keep in mind that hadronization is governed by non-perturbative QCD processes
that are not completely understood yet. One interpretation is in terms of a sudden chemical freeze-out.
The picture is based on a close-to-equilibrium expansion and cool-down of the fluid. Number changing
processes are fast when the densities are high and keep up the chemical equilibrium. At lower tempera-
tures these processes become too slow to keep up with the expansion and particle numbers get frozen in.
The freeze-out process itself is not describable in a close-to-equilibrium picture but if it happens quickly
enough, it is nevertheless possible that the particle yields are frozen in to their thermal values on the
“surface of last inelastic scattering”. In order to explain the fact that a single temperature accounts for
all particle yields, rates of inelastic collisions have to drop rather quickly. It has been argued that this is
the case very close to the chiral crossover [10] and indeed, the chemical freeze-out temperatures as de-
termined from the thermal model fits and the crossover temperatures as calculated by lattice QCD seem
to be in reasonable agreement for the high energy experiments where the net baryon chemical potential
is small. On the other side, this picture seems to be too simple for the experiments at lower energies
corresponding to higher baryon number chemical potentials at freeze-out [11]. In Fig. 3 an overview
over the chemical freeze-out points in the plane of temperature and baryon chemical potential is given
for experiments at various energies together with lattice QCD results about the chiral crossover line.

4 Thermodynamics and fluid dynamics
We now turn to the thermodynamic and fluid dynamic description of the QCD matter that is produced
by relativistic heavy ion collisions. As a warm-up let us recapitulate the Stefan-Boltzmann law for the
pressure of a gas of NB species of real, massless bosonic degrees of freedom and NF real, massless
fermionic degrees of freedom

p(T ) =
⇡2

90

✓
NB +

7

8
NF

◆
T 4. (2)

For QCD at high temperatures one has N2
c �1 gluons in two helicity states where Nc = 3 is the number of

colors, i. e. NB = 2⇥(N2
c �1) = 16. In addition, in the temperature regime of relevance, there are Nf =

4
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Figure 3.1 Results from a lattice calculation of QCD thermodynamics with phys-
ical quark masses (N f = 3, with appropriate light and strange masses). Upper
panel: temperature dependence of the pressure in units of T 4. Lower panel: the
trace anomaly (ε − 3P) in units of T 4. Data are for lattices with the same tem-
poral extent, meaning the same temperature, but with varying numbers of points
in the Euclidean time direction Nτ . The continuum limit corresponds to taking
Nτ → ∞. Figures taken from Ref. [179].

practical challenges of doing lattice-regularized calculations with light quarks that
we have mentioned above.

The current understanding of QCD thermodynamics at the physical point [179]
is summarized in Fig. 3.1. In the upper panel, the pressure of QCD matter (in ther-
mal equilibrium, with zero baryon chemical potential) is plotted as a function of its
temperature. In order to provide a physically meaningful reference, it is customary
to compare this quantity to the Stefan–Boltzmann result

Downloaded from Cambridge Books Online by IP 137.138.93.140 on Tue Sep 01 10:33:58 BST 2015.
http://dx.doi.org/10.1017/CBO9781139136747.003

Cambridge Books Online © Cambridge University Press, 2015

Fig. 4: The “thermodynamic equation of state” or pressure p(T ) (divided by T 4) as a function of temperature T

as calculated from Lattice QCD. Figure taken from ref. [14].

3 quark flavors that are effectively massless with Nc = 3 colors and 2 helicity states. Moreover, quarks
are complex fermions corresponding to 2 real degrees of freedom. That gives NF = 4 ⇥ Nc ⇥ Nf = 30.

Corrections to the pressure in eq. (2) arise from the non-vanishing quark masses as well as from
interactions. For small temperatures there are fewer effective degrees of freedom. For example, for
M⇡ < T < M⇢ one has approximately NB = 3 massless pions and no massless fermions, NF = 0.
More general, at low temperature, p(T ) can be calculated approximately from a hadron resonance gas.
For the transition region between large and small temperatures one needs a non-perturbative calculation
of p(T ) as it is given by lattice QCD. Fig. 4 shows the result of a lattice QCD simulation at vanishing
chemical potentials, which is the regime most relevant for heavy ion collisions at high energies. By
the formula of thermodynamics, other quantities such as energy density ✏(T ), entropy density s(T ) and
so on can be calculated from the pressure p(T ) in terms of the appropriate derivatives and Legendre
transforms.

Let us now come to fluid dynamics. Quite generally, if one considers large enough time and length
scales and if the interaction effects that drive local thermalization are strong enough, quantum fields form
a fluid. A fluid dynamic description is always an approximation which does not describe all particles or
degrees of freedom individually, but it is an approximate description that works rather well for many
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aspects of heavy ion physics. Fluid dynamics is a rather general framework that allows to describe many
different physical phenomena within a common setup and with similar equations. This ranges from
conventional liquids such as water to superfluid helium, strongly interacting cold atomic gases, the quark
gluon plasma or the cosmological fluid.

However, fluid dynamics it is not a closed theory. It needs input from calculations at a more
microscopic level (or corresponding measurements) in terms of some macroscopic material properties.
These are first of all the thermodynamic equation of state, i. e. information such as the function p(T )
from which one can derive also other thermodynamic quantities. In addition one needs information
about transport properties such as the shear viscosity ⌘(T ), the bulk viscosity ⇣(T ), heat conductivity
(T ) and at least if one is interested in finer details, one also needs corresponding relaxation times
⌧shear(T ), ⌧bulk(T ) and other related quantities.

As a theoretical framework, fluid dynamics is organized as an expansion in derivatives. The lowest
order is ideal fluid dynamics which we discuss first. The starting point is the energy-momentum tensor
of a fluid in global thermal equilibrium,

Tµ⌫ = ✏uµu⌫ + p (gµ⌫ + uµu⌫) (3)

with (inverse) metric gµ⌫ and fluid velocity uµ. In Minkowski space and in cartesian coordinates, the
metric is a diagonal matrix with entries -1,+1,+1,+1 in our conventions. The fluid velocity is uµ =
(1, 0, 0, 0) in the reference frame where the fluid is at rest but deviates from this in other frames. It is
normalized by gµ⌫u

µu⌫ = �1. The pressure p is related to the energy density ✏ by a thermodynamic
equation of state, p = p(✏).

Now let us go from global thermal equilibrium to local equilibrium. The ideal fluid approximation
assumes that Tµ⌫ is of the form in (3) but now with space and time dependent energy density ✏ = ✏(x) and
fluid velocity uµ = uµ(x). From the conservation law rµTµ⌫ = 0 one can obtain evolution equations
for ✏(x) and uµ(x) in ideal fluid dynamics,

uµ@µ✏ + (✏ + p)rµuµ = 0,

(✏ + p)uµrµu⌫ + (g⌫µ + u⌫uµ) @µp = 0.
(4)

In these equations, no dissipative effects and in particular no viscosities have been taken into account.
This is remedied at the next level of the derivative expansion.

One can decompose a general symmetric energy-momentum tensor as

Tµ⌫ = ✏uµu⌫ + (p + ⇡bulk)�
µ⌫ + ⇡µ⌫ (5)

where the shear stress ⇡µ⌫ is symmetric, transverse to the fluid velocity, uµ⇡µ⌫ = 0, and traceless,
⇡µ

µ = 0. The bulk viscous pressure ⇡bulk and shear stress ⇡µ⌫ parametrize deviations from ideal fluid
dynamics. To first order in derivatives of the fluid velocity one has

⇡bulk = � ⇣rµuµ + . . . ,

⇡µ⌫ = � 2⌘
⇣

1
2�µ↵�⌫� + 1

2�µ��⌫↵ � 1
3�µ⌫�↵�

⌘
r↵u� + . . . ,

(6)

with bulk viscosity ⇣ = ⇣(✏) and shear viscosity ⌘ = ⌘(✏). At second order also the relaxation times
⌧shear(✏) and ⌧bulk(✏) enter, as well as other terms.

Let us now discuss in a little more detail the equations of relativistic viscous fluid dynamics. The
evolution equation for energy density becomes for the viscous theory

uµ@µ✏ + (✏ + p + ⇡bulk)rµuµ + ⇡µ⌫rµu⌫ = 0. (7)

The non-relativistic limit ~v2 ⌧ c2 gives for the first order approximation

@t✏ + ~v · ~r✏ + (✏ + p)~r · ~v = ⇣
⇣

~r · ~v
⌘2

+ 2 ⌘ �ij�ij , (8)
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with �ij = 1
2@ivj + 1

2@jvi � 1
3�ij(~r · ~v). The left hand side of this equation describes the change in the

fluid’s internal energy ✏ by thermodynamic work due to expansion or contraction of the fluid. The right
hand side describes the dissipation of the fluid’s macroscopic kinetic energy to thermal energy. Using the
thermodynamic relations ✏ + p = sT and d✏ = Tds where s is the entropy density, leads to an equation
for entropy production

@ts + ~r · (s~v ) =
⇣

T

⇣
~r · ~v

⌘2
+

2⌘

T
�ij�ij . (9)

A local form of the second law of thermodynamics says that the entropy can never decrease. Accordingly,
the right hand side of eq. (9) must be positive semi-definite. This implies in particular ⇣ � 0 and ⌘ � 0.

The evolution equation for the fluid velocity becomes for the viscous theory

(✏ + p + ⇡bulk) uµrµu⌫ + �⌫µ @µ(p + ⇡bulk) + �⌫
↵rµ⇡µ↵ = 0. (10)

The non-relativistic limit of this equation gives for the first order approximation the non-relativistic
Navier-Stokes equation (⇢ is the mass density which is well defined for a non-relativistic fluid)

⇢
h
@tvj + ~v · ~rvj

i
+ @jp = @j

�
⇣ ~r · ~v

�
+ @m

�
2 ⌘ �jm

�
. (11)

In this equation, the second term on the left hand side describes acceleration by pressure gradients. The
terms on right hand side describe damping by viscosity. More general than the first order approximation,
the equations for ✏ and uµ which follow from the conservation law rµTµ⌫ = 0, get closed by relations
for ⇡bulk and ⇡µ⌫ , the so called constitutive relations.

Let us now discuss the transport properties that enter fluid dynamics. For a fluid without any
conserved charges besides energy and momentum, such as the quark gluon plasma at negligible net
baryon number density, the most relevant transport properties are shear and bulk viscosity. The physical
mechanism underlying viscosity is the microscopic transport of momentum. Typically, the momentum is
transported out of a local fluid cell by diffusive processes which involve particles, radiation or more gen-
eral quasi-particles. The strength of shear viscosity can be quantified in terms of the ratio ⌘/s. In order
for this ration to become large, momentum must be transported efficiently over distances s�1/3 by well
defined quasiparticles. On the other side, theories with small ⌘/s have no well defined quasiparticles.

In general, transport properties like shear viscosity, bulk viscosity, heat conductivity, relaxation
times, etc. are difficult to determine from quantum field theory. Lattice QCD calculations in Euclidean
space cannot determine them directly and the analytic continuation from Euclidean to Minkowski space
is numerically very difficult. Concrete expressions can be obtained for very weakly interacting theories
from perturbation theory (or from a mapping to kinetic theory) or for strongly interacting theories with
gravity dual via the AdS/CFT correspondence. For theories that are neither very weakly nor very strongly
interacting, the determination of transport properties is essentially an open problem.

An example, where the viscosities are known, is a dilute simple non-relativistic gas with elastic
two-to-two collisions. Here one can obtain from kinetic theory

⌘ = ⌧f n T, (12)

with particle density n, temperature T , and mean free time

⌧f =
1

�tot v̄ n
. (13)

In the last equation, �tot is the total elastic cross section and v̄ the mean square velocity of the particles
with respect to the fluid velocity. Using T = 1

3mv̄2 gives

⌘ =
m v̄

3 �tot
. (14)
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Interestingly, the shear viscosity becomes large for small cross-section! The bulk viscosity vanishes for
the simple non-relativistic gas, ⇣ = 0.

For QCD, the transport properties can be determined at very high temperature where QCD be-
comes weakly coupled, g ⌧ 1. The shear viscosity at leading logarithmic accuracy is [15]

⌘(T ) = k(Nf )
T 3

g4 ln(1/g)
. (15)

The bulk viscosity is related to this via the velocity of sound cs [16]

⇣(T ) ⇡ 15⌘(T )
⇣

1
3 � c2

s(T )
⌘2

. (16)

For very high temperature c2
s ! 1/3 and ⇣ ! 0.

One can also determine the transport properties for a class of strongly interacting field theories
which have a gravitational dual in the sense of the AdS/CFT correspondence. It was found that for
conformal theories with gravitational dual one has ⌘(T ) = s(T )/(4⇡) [17]. This was later conjectured
to be a universal lower bound for any fluid [18],

⌘

s
� ~

4⇡kB
. (17)

(We have restored units ~ and kB to make the quantum nature of this conjectured bound apparent.)
Meanwhile, theoretical counterexamples have been found but experimentally, no system seems to violate
the bound so far.

For some theories with deviations from conformal symmetry it was found that the bulk viscosity is
related to the shear viscosity by ⇣(T ) = 2⌘(T )

⇣
1
3 � c2

s(T )
⌘

[19] but this does not seem to be a universal
relation.

Ultimately, one would like to gain a theoretical understanding of the shear and bulk viscosity (and
related relaxation times) of QCD for the whole range of temperatures. It is possible to write down formal
expressions (so called Kubo relations) which express the transport coefficients in terms of correlation
functions that can in principle be determined in terms of functional integral expressions. However,
it is in practice rather difficult to solve the corresponding equations. Nevertheless, some theoretical
attempts in this direction are currently ongoing, using for example the analytic continuation of lattice
QCD results [20, 21] or functional renormalization group calculations [22, 23].

5 Fluid dynamics of the fireball for more and more realistic initial conditions
In this section we will discuss the actual solution of relativistic viscous fluid dynamics for the fireball
created by two colliding heavy ions. It is obvious that these solutions depend on the initial conditions as
they are specified at some early time where the fluid dynamic description is initialized. It would be great
to know these initial conditions in detail, for example from first principle calculations in QCD. This is
however a very difficult problem by itself. So for the time being, the detailed initial conditions are not
known but some of their properties are.

Generically, solutions of partial differential equations as the ones of fluid dynamics are easier
to find when the initial conditions are more symmetric. We will therefore start our discussion with
particularly symmetric and therefore simple situations although they are not fully realistic. We will then
increase the complexity step by step and thereby become more and more realistic.

We start by considering the fluid velocity in the longitudinal direction z, i. e. in the direction
parallel to the beam axis. What should be the fluid velocity in that direction as a function of time
and space coordinates? It was first argued by Bjorken that a good guess should be vz = z/t where
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the longitudinal position z and the time t are defined such that the actual collision took place at the
coordinate origin, i. e. at z = t = 0. Note that due to the high energy, the ions are strongly Lorentz
contracted in the longitudinal direction such that to good approximation one can speak of a collision at a
single instance in time and longitudinal space direction, indeed. In a coordinate system consisting of the
longitudinal proper time ⌧ =

p
t2 � z2, the transverse coordinates x, y, and rapidity ⌘ = arctanh(z/t),

the fluid velocity is of the form uµ = (u⌧ , ux, uy, 0), i. e. the fluid velocity in the rapidity direction
vanishes. If scalar functions like energy density depend on t and z only in terms of the proper time,
✏ = ✏(⌧, x, y) an invariance under boosts in the longitudinal direction ⌘ ! ⌘ + �⌘ arises (so called
Bjorken boost invariance). The remaining initial value problem to be solved is then effectively only 2+1
dimensional. This is a substantial simplification. Bjorken boost symmetry is an idealization but it is
reasonably accurate close to mid-rapidity ⌘ ⇡ 0.

Based on the above considerations one can construct a toy model that can almost be solved ana-
lytically. Consider initial conditions at ⌧ = ⌧0 of the form ✏ = ✏(⌧0), uµ = (1, 0, 0, 0). This describes
an initial energy density that is extended over the whole transverse plane. Although this is of course
not realistic for the whole fireball it constitutes a simplified model for inner region at early times after a
central collision. In addition to Bjorken boost invariance ⌘ ! ⌘ +�⌘, the initial conditions are now also
symmetric with respect to translations and rotations in the transverse plane. Together, these symmetries
imply that uµ = (1, 0, 0, 0) for all times ⌧ and that ✏ = ✏(⌧) is independent of x, y and ⌘. It remains to
solve a single, 0+1 dimensional differential equation to determine ✏(⌧). In the first order formalism of
viscous relativistic fluid dynamics, this equation reads

@⌧ ✏ + (✏ + p)
1

⌧
�

�
4
3⌘ + ⇣

� 1

⌧2 = 0. (18)

The solution depends on the thermodynamic equation of state p(✏) and the viscosities ⌘(✏) and ⇣(✏).
For example, assuming p ⇠ ✏ ⇠ T 4 leads to

@⌧T +
T

3⌧

✓
1 � 4⌘/3 + ⇣

sT ⌧

◆
= 0. (19)

The solution for ⌘/s = const and ⇣ = 0 is

T (⌧) = T (⌧0)
⇣⌧0

⌧

⌘1/3

1 +

2

3⌧0T (⌧0)

⌘

s

✓
1 �

⇣⌧0

⌧

⌘2/3
◆�

. (20)

For an ideal fluid where ⌘/s = 0, or more general at late times, the temperature simply decays like
T ⇠ ⌧�1/3. This is due to the dilution of the fluid by the longitudinal expansion. For ⌘/s > 0 and at
early times there is in addition a small heating effect due to shear viscosity. Fig. 5 illustrates the solution
in eq. (20) for different values of ⌘/s.

Let us now increase the level of complexity by one step and study an initial energy density with
somewhat more realistic dependence on the transverse coordinates. For an azimuthally symmetric, cen-

tral collision event, the energy density is of the form ✏ = ✏(⌧, r) where r =
q

x2 + y2. Connected with
the initial energy distribution is a pressure gradient in radial direction which leads after a short time to
a positive fluid velocity in radial direction, ur > 0, the so-called radial flow. To determine ✏(⌧, r) or
T (⌧, r) and the fluid velocity ur(⌧, r) one needs so solve a system of 1+1 dimensional, coupled differen-
tial equations, which is still rather easy to do numerically. A solution for T (⌧, r) obtained for a realistic
initial temperature profile, as well as equation of state and viscosities, is shown in Fig. 6. The effects of
the longitudinal as well as radial expansion are clearly visible.

Before we continue our endeavor of solving viscous relativistic fluid dynamics for more and more
realistic initial conditions, let us pause for a moment and consider the process of kinetic freeze-out.
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Fig. 5: Bjorken flow solution for temperature T as a function of proper time ⌧ for different values of the ratio of
shear viscosity to entropy density ⌘/s. Figure taken from ref. [24].

5 10 15 20 25 30
Radius !fm"0.1

0.2

0.3

0.4

0.5

T !GeV"

Fig. 6: Temperature profile T (⌧, r) as a function of radius r for different times ⌧ . The equation of state, shear
viscosity and initial values are chosen as described in ref. [25].

Although we can in principle follow the dynamics of the expansion and the associated dilution and cool-
down of the fluid as described by fluid dynamics down to very small temperatures, there is in reality
a point where the fluid dynamic description breaks down. Indeed, after the transition from quarks and
gluons to hadronic degrees of freedom and when the temperature and densities drop further, collisions
become less and less frequent. At some point, hadrons stop interacting and occupation numbers in
momentum space do not change any more. This is the process of kinetic freeze-out.

Just before the freeze-out one might assume local close-to-equilibrium occupation numbers of
hadrons in each fluid element

dNi

d3pd3x
= fi(p

µ; T (x), uµ(x), ⇡µ⌫(x), ⇡bulk(x)). (21)

The occupation numbers for each particle species as a function of the thermodynamic variables, the fluid
velocity and the dissipative shear stress and bulk viscous pressure can in principle be determined from
microscopic calculations. For example, neglecting the effect of ⇡µ⌫ and ⇡bulk and assuming an ideal gas
with Boltzmann statistics gives

fi = ci e
uµ(x)p

µ

T (x) ! ci e
�

E~p�~v(x)·~p
T (x) (~v2 ⌧ c2). (22)

In the last expression we have taken the non-relativistic limit for illustration. The factor ci accounts for
the degeneracy due to spin. Summing up the contribution of all fluid cells in terms of an integral over the
three-dimensional freeze-out hyper-surface (or hyper-surface of last scattering) ⌃f yields particle spectra
in momentum space as they can actually be measured in the particle detector [26],

E
dNi

d3p
= � 1

(2⇡)3
pµ

Z
⌃f

d⌃µ fi. (23)
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The freeze-out surface is in principle determined by the dynamics of expansion and the scattering pro-
cesses. In practice it is often assumed for simplicity that is corresponds to a surface of constant temper-
ature Tfo in the region around 100 MeV.

The particle spectra E dNi

d
3
p

are usually written in terms of the momentum rapidity y = arctanh(pz/E),
the transverse momentum pT and the momentum azimuthal angle � as dNi/(dyd� pT dpT ). They inherit
some symmetry properties from the fluid dynamic fields. For example, when the fluid dynamic fields
are independent of position-space rapidity ⌘, the spectrum is independent of momentum space rapid-
ity y. Similarly, the spectrum originating from an azimuthally symmetric solution of fluid dynamics is
independent of the momentum-space azimuthal angle �.

In order to reliably calculate the particle spectrum dNi/(dyd� pT dpT ) one has to solve the rel-
ativistic fluid dynamic equations. There is, however, also a shortcut that is often used to study some
aspects of the resulting particle spectrum, the so-called blast-wave models. For these, the particle spectra
are not determined from realistic solutions of fluid dynamics but rather for a simplified ansatz and a sim-
ple parametrization of the kinetic freeze-out surface. For example, one might assume for simplicity that
freeze-out takes place at constant time ⌧f and in a transverse area with radius r < rmax. If one also as-
sumes constant temperature T and radial flow velocity vr, as well as the Boltzmann occupation numbers
as in equation (22), one can solve the integrals in eq. (23) and one obtains the analytic expression

dNi

dyd2pT

=
ci

4⇡2 ⌧fr2
max

q
p2

T + m2
i K1

0
@

q
p2

T + m2
i

T
q

1 � v2
r

1
A I0

0
@ pT vr

T
q

1 � v2
r

1
A , (24)

where K1(·) and I0(·) are Bessel functions. Many variants of such simple blast-wave models have been
studied. They capture some qualitative features of full fluid dynamics solutions. Generically, particle
spectra following from integrals over thermal occupation numbers are close to exponential shape. The
radial flow velocity, so-called radial flow, leads to a “blue shift” of the particle spectrum. Another generic
observation is that particle spectra become steeper for smaller particle mass mi.

An experimental result for the spectrum of charged particle as a function of pT is shown in Fig.
7. For the 0-5% most central collisions and small pT , the spectrum has an almost exponential form
indeed, with the slope determined by freeze-out temperature and radial flow velocity. In contrast, for
peripheral collisions, the spectrum measured in heavy ion collisions is of a form similar to the proton-
proton reference.

Let us now come to non-central collisions. The overlap region of two nuclei, illustrated in Fig.
8, is approximately “almond shaped”. Correspondingly, the initial energy density at the point where a
fluid dynamic description becomes valid, has this shape, as well. The pressure gradients are larger in the
reaction plane which leads after some time of fluid dynamic evolution to a larger fluid velocity in this
direction. The freeze-out formula in eq. (23) implies then that more particles fly in this direction after
freeze-out than in the transverse direction orthogonal to this. This asymmetry is quantified in terms of
the elliptic flow coefficient v2.

Quite general, an azimuthal particle distribution can be expanded like

dN

d�
=

N

2⇡

"
1 + 2

X
m

vm cos (m (��  m))

#
(25)

where the coefficients vm are called harmonic flow coefficients and the  m are corresponding angles
(obviously the  m are defined modulo 2⇡/m). If the particle asymmetry originates solely from the
orientation of the reaction plane, the angles should all be the same,  m =  R (up to terms ⇡/m which
determine the sign of vm). Moreover, the symmetry with respect to � ! � + ⇡ of the configuration in
Fig. 8 would imply v1 = v3 = v5 = . . . = 0.
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2.1 General characteristics of heavy ion collisions 9
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Figure 2.3 Charged particle spectrum as function of pT in Pb+Pb collisions at
LHC energy for nearly head-on (the 5% of collisions with the lowest impact
parameter) and grazing collisions, compared to the corresponding spectrum in
p+p collisions with an appropriately scaled normalization. Figure taken from
Ref. [7].

have momenta in the soft sector; hard particles are rare in comparison. The separa-
tion between the hard and the soft sectors, which is by no means sharp, lies in the
range of a few (say 3–6) GeV.

There are several lines of evidence that indicate that the soft particles in a heavy
ion collision, which are the bulk of all the hadrons in the final state, have rescattered
many times and come into local thermal equilibrium. The most direct approach
comes via the analysis of the exponentially falling spectra of identified hadrons.
Fitting a slope to these exponential spectra and then extracting an “effective tem-
perature” for each species of hadron yields different “effective temperatures” for
each species. This species dependence arises because the matter produced in a
heavy ion collision expands radially in the directions transverse to the beam axis;
perhaps explodes radially is a better phrase. This means that we should expect
the pT spectra to be a thermal distribution boosted by some radial velocity. If
all hadrons are boosted by the same velocity, the heavier the hadron the more its

Downloaded from Cambridge Books Online by IP 137.138.93.140 on Mon Jul 13 14:09:28 BST 2015.
http://dx.doi.org/10.1017/CBO9781139136747.002

Fig. 7: Charged particle spectrum as a function of the transverse momentum in central (0 - 5%) and peripheral (70
- 80%) heavy ion collisions as measured by the ALICE collaboration. Figure taken from ref. [27].

Fig. 8: Illustration of a non-central heavy ion collision. The dashed lines mark the density of the two colliding
nuclei in the transverse plane, the red line marks the overlap region. The arrows illustrate the elliptic flow which
results from the initial pressure gradients. Figure taken from ref. [2].

At this point, some remarks on experimental techniques are in order. The impact parameter of a
heavy ion collisions is of course random. It can neither be adjusted nor be measured precisely. There is,
however, a statistical method to say something about impact parameters. The underlying principle is that
very central collisions produce more charged particles, in contrast to more peripheral collisions. One can
order the full set of events recorded during some measurement campaign according to the multiplicity and
divide them into classes - so called centrality classes. An histogram-type diagram with the corresponding
centrality classes is shown in Fig. 9. Using further elements of modeling - for example based on the so-
called Glauber model - one can associate impact parameters, or ranges of impact parameters, to these
centrality classes with the highest multiplicity class corresponding to the smallest impact parameters.
The harmonic flow coefficients vm can also be measured as a function of transverse momentum pT . An
example for elliptic flow is shown in Fig. 10 for different centrality classes in a comparison between
early results from the LHC and similar measurements at RHIC.

A very interesting observables is also a two-particle correlation function defined by a ratio of the
expectation value of particle distributions at two angles �1 and �2 by two separate expectation values of
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Fig. 9: Centrality classes as determined via the multiplicity in the Time Projection Chamber (TPC) by the ALICE
collaboration. Figure taken from ref. [28].
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Figure 2.8 Transverse momentum dependence of the elliptic flow v2(pT ) for
different centrality bins. Measurements made by the ALICE Collaboration at
the LHC (colored points) are compared with parametrized data from the STAR
Collaboration at RHIC (gray shaded bands). We see v2 increasing as one goes
from nearly head-on collisions to semi-peripheral collisions. Figure taken from
Ref. [5].

simulations of the type we shall discuss below. We shall therefore only discuss the
dynamical understanding of how the ϵn are related to the vn for the moments with
n ≥ 2. We shall first consider an event-averaged almond-shaped nuclear overlap
zone (left-hand side of Fig. 2.7), before we turn to a discussion of the novel oppor-
tunities arising from a study of event-by-event fluctuations (like those illustrated
on the right-hand side of Fig. 2.7).

A Discussion for event-averaged spatial asymmetries

In Fig. 2.8, we show data for the transverse momentum dependence of the elliptic
flow v2(pT ) measured for different centrality classes in Au+Au collisions at RHIC
and in Pb+Pb collisions at the LHC. It is striking that the v2(pT ) measured at√

s = 2.76 TeV by ALICE in three different impact parameter bins agrees within
error bars at all values of pT with that measured at

√
s = 200 GeV by the STAR

collaboration at RHIC out to beyond 4 GeV in pT . On a qualitative level, this
indicates that the quark-gluon plasma produced at the LHC is comparably strongly
coupled, with comparably small η/s, to that produced and studied at RHIC.

Heavy ion collisions at both RHIC and the LHC feature large azimuthal asym-
metries. To appreciate the size of the measured elliptic flow signal, we read from
(2.6) that the ratio of d N/d3p in whatever azimuthal direction it is largest to
d N/d3p ninety degrees in azimuth away is (1 + 2v2)/(1 − 2v2), which is a factor
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Fig. 10: Elliptic flow v2 as a function of transverse momentum for different centrality classes as measured by the
ALICE collaboration at the LHC (symbols) and by the STAR collaboration at RHIC (shaded regions). Figure taken
from ref. [28].

this type,

C(�1, �2) =
h dN

d�1

dN
d�2

ievents

h dN
d�1

ieventsh dN
d�2

ievents
= 1 + 2

X
m

v2
m cos(m (�1 � �2)). (26)

A priori, this depends on the two angles �1 and �2 but due to the statistical azimuthal rotation symmetry
it is a function of the difference �1 � �2, only. Experimentally, the correlation function is typically
measured with a rapidity gap �⌘ imposed between the two particles whose correlation in azimuthal
angle is studied. The last equation in (26) is the prediction for this correlation function in a fluid dynamic
model. It shows that one can obtain the squares of the harmonic flow coefficients v2

m by performing
a Fourier decomposition of the correlation function C(�1 � �2). Now, surprisingly, if one does the
corresponding analysis for a set of events with very high multiplicity corresponding to the centrality
class with the lowest impact parameters as shown in Fig. 11, one finds that the flow coefficients v2, v3,
v4, v5 and v6 are actually all non-zero! At the same time, the full correlation function is actually very
nicely represented by the superposition of these harmonic modes.

This result is surprising for two reasons. First, the symmetry with respect to � ! � + ⇡ discussed
below eq. (25) would imply that the odd flow coefficients v3, v5 etc. should vanish. Moreover, for very
central collisions, the elliptic flow coefficient v2 as well as higher order even coefficients v4, v6 etc.
should actually vanish, as well, if they simply measure the effect of a non-vanishing impact parameter.
The fact that this is not the case shows that additional effects not discussed so far must play a role here.
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Fig. 11: Two-particle azimuthal correlation for the 0-1% centrality class as measured by the ALICE collaboration.
The solid red line shows the sum of the contributions from anisotropic flow coefficients v2, v3, v4 and v5 (dashed
lines). Figure taken from ref. [30].
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Fig. 12: Transverse energy density from a Monte-Carlo Glauber model. See text for further explanations. Figure
taken from ref. [31].

In fact, what we have not discussed so far, are event-by-event fluctuations in the initial energy
density distribution. We have based our arguments, for example for v3 = v5 = 0, on smooth and
symmetric energy densities corresponding to expectation values. For a single event, the energy densities
can deviate from this simple picture, however. This is actually predicted by realistic models of the
initial state. Consider for example the Glauber model. The nuclei are here modeled as a combination
of nucleons which have a statistical distribution in the form of a Woods-Saxon profile. A heavy ion
collision is modeled by a superposition of individual collisions between nucleons. We will not discuss
the details of this model here but illustrate the resulting energy density in Fig. 12. On the left hand
side, the transverse positions of the nucleons in the two nuclei are marked by the red and black rings.
The size corresponds to the nuclear cross section. Those nucleons that overlap with nucleons from the
other nucleus are marked in addition by blue and green rings. The right hand side of fig. 12 shows the
energy density that results if one associates a certain Gaussian-shaped contribution to each individual
nucleon-nucleon collision.

Because of the fluctuations in the initial energy density, sizable flow coefficients vm can be gener-
ated by the fluid dynamic expansion, even for central collisions. Beyond the energy density, also the other
fluid dynamic fields such as fluid velocity, shear stress, bulk viscous pressure or baryon number density
may actually have fluctuating initial configurations. It is currently an interesting direction of research to
understand this better, both from analyzing experimental data and from theoretical investigations.

At this point, a few remarks on theoretical simulations of heavy ion collisions based on relativistic
fluid dynamics might be in order. Specialized numerical codes have been developed for this purpose
and typically they solve a variant of second order relativistic fluid dynamics for given initial conditions
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u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 1 (color online). Gluon multiplicity distribution in the
IP-Glasma model.
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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Fig. 13: Root-mean-square anisotropic flow coefficients hv2
ni1/2 as a function of transverse momentum (left panel)

and centrality (right panel) as calculated by numerical fluid dynamic simulations [32], compared to experimental
data by the ATLAS [29] and ALICE collaborations [30]. Figures taken from ref. [32].

and also include a description of the kinetic freeze-out and in some cases a subsequent phase of hadron
resonance decays and further scatterings described by kinetic theory. The codes use the thermodynamic
equation of state as calculated from lattice QCD and initial conditions which fluctuate from event-to-
event and are calculated from the Monte-Carlo Glauber or related models. The transport properties such
as ⌘/s are usually varied with the goal of determining the experimentally favored value. A result of such a
comparison is shown exemplarily in Fig. 13. Typical values for ⌘/s that are favored by such comparisons
between theory and experiment are in the range of a few times 1/(4⇡) ⇡ 0.08. This suggests that the
fluid dynamics in the relevant phase might be dominated by strongly coupled degrees of freedom. More
realistically, ⌘/s should not be constant but vary with temperature T and it will be one of the challenges
for the coming years to see how one can constrain this dependence from the experimental data.

6 Initial state fluctuations and their fluid dynamic propagation
Because fluctuations in fluid dynamic fields have played such an interesting role in heavy ion phe-
nomenology in the recent years, and will probably continue to do so in the coming years, we will discuss
them here in a little more detail.

Interesting are in particular initial fluid perturbations which are event-by-event fluctuations around
a background or average of fluid fields at the (proper) time ⌧0 where the fluid dynamic description is ini-
tialized. Examples for fluid dynamic fields are the energy density ✏, the fluid velocity uµ, the shear stress
⇡µ⌫ or the bulk viscous pressure ⇡bulk. Although they can usually be neglected, there are questions for
which also other variables like the baryon number density nB , the electric charge density, electromag-
netic fields or others have to be taken into account. Fluctuations in fluid fields are particularly interesting
because they are governed by universal evolution equations and because they can be used to constrain the
thermodynamic and transport properties of a QCD fluid. Moreover, they contain interesting information
from early times and can be taken as a measure for deviations from complete thermal equilibrium.

In some respects, the situations is similar as for the cosmic microwave background and the large
scale structure which are studied in cosmology. Also there, the fluctuation spectrum contains very in-
teresting information from early times and from the history of the dynamical expansion. Much can be
learned because many numbers can be measured and compared to theory. This in turn has lead cosmol-
ogists to a detailed understanding of the evolution history and the properties of our universe. A similar
development may eventually trigger something like a precision era in heavy ion physics.

What would one have to do to understand initial fluid fluctuations in detail? Here is a program:
First, one would have to characterize initial state fluctuations in a suitable and ideally complete way.
Second, these fluctuations or perturbations need to be propagated through the fluid dynamic regime.
Third, one has to determine their influence on particle spectra and harmonic flow coefficients. Finally,
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one should take also perturbations from non-hydro sources, as for example jets, into account.
One possibility to implement the above program is in terms of numerical simulations, or more

specific, event-by-event viscous relativistic hydrodynamic simulations (see e.g. ref. [33] for a recent
overview). However, one can also make progress by (semi) analytic methods which are closer to the
theoretical methods used to in cosmology. This shows the parallels between the big bang and the little
bangs in the laboratory in more detail.

The theoretical approach called “Mode-by-mode fluid dynamics” or “Fluid dynamic perturbation
theory for heavy ions” works in analogy to the Cosmological perturbation theory [25]. For that, one
first solves the fluid equations of motion for a smooth background corresponding essentially to an av-
eraged initial condition and afterwards order-by-order in perturbations around that configuration. The
convergence properties of this expansion have been investigated and seem favorable [34]. The back-
ground solution can be taken symmetric with respect to azimuthal rotations and Bjorken boosts in the
longitudinal direction while the perturbations can break these (statistical) symmetries.

For mode-by-mode fluid dynamics, a characterization of initial conditions in terms of a Bessel-
Fourier expansion is particularly favorable. To that end one writes a transverse density distribution, say
for the enthalpy density w = ✏ + p in the following form [25, 35, 36],

w(r, �) = wBG(r) + wBG(r)
X
m,l

w(m)
l eim� Jm

⇣
z(m)
l ⇢(r)

⌘
. (27)

The function wBG(r) parametrizes the azimuthally symmetric background configuration. The argument
of the Bessel functions Jm is given by the numbers z(m)

l which correspond to the l’th zero crossing of the
function Jm(z), and the function ⇢(r) which maps the relevant range of transverse radii r to the interval
[0,1]. A particularly useful choice is discussed in ref. [36].

The expansion coefficients w(m)
l are dimensionless and have a discrete azimuthal wavenumber m

as well as a radial wavenumber l. Higher values of m and l correspond to finer spatial resolution. The
coefficients w(m)

l can also be related to the so-called eccentricities, another popular way to characterize
initial transverse density distributions. While the expansion in (27) can be used for scalar quantities
such as enthalpy density, a similar expansion can be used for vectors (such as the fluid velocity) and
tensors (such as the shear stress). Observe that when all the coefficients w(m)

l vanish, one is left with the
background configuration, only. The configuration in (27) is independent or rapidity ⌘ but it is straight
forward to extend the scheme in that direction.

Quite generically, one can now solve the fluid equations of motion by the following perturbative
scheme. One writes the hydrodynamic fields h = (w, uµ, ⇡µ⌫ , ⇡Bulk, . . .) at initial time ⌧0 as h =
h0 + ✏ h1 with the background configuration h0 and the fluctuation part ✏ h1. We have introduced here
a formal expansion parameter ✏. At later times ⌧ > ⌧0 one can write the fluid fields as h = h0 +
✏ h1 + ✏2h2 + ✏3h3 + . . .. Solving for the time evolution in this scheme implies to determine h0 as
the solution of full, non-linear fluid equations but in a partcularly symmetric situation with azimuthal
rotation and Bjorken boost invariance. The linear term h1 is a solution of the linearized fluid equations
where the linearization is done around the background configuration h0. This solution can be determined
mode-by-mode, i. e. for each mode with one azimuthal wavenumber m and radial wavenumber l in the
expansion (27). The quadratic term h2 can be obtained from an iterative solution involving quadratic
interactions between modes and so on.

In order to find the linear solution h1, it is advantageous to use again a Fourier expansion in the
azimuthal direction and with respect to rapidity. In that way, one can effectively reduce the numerical
problem from a 3+1 dimensional partial differential equation to a 1+1 dimensional one. The latter is
rather easy to solve numerically. This reduction of the complexity helps also to find the quadratic and
higher order terms.

The perturbative scheme can also be used at freeze-out. For that purpose one propagates both
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the background and the perturbations until the freeze-out surface has been reached. In the perturbative
scheme, the latter is determined by the background solution alone and can correspond for example to
constant background temperature. (In general, there is no precise understanding of where the freeze-out
surface is positioned exactly.) The freeze-out surface is then as symmetric as the background config-
uration. Also the particle spectrum due to the background inherits these symmetries. However, the
corrections due to the perturbations are not symmetric. In contrast, at linear order, they inherit the trans-
formation behavior of the initial modes. At quadratic and higher orders this is a little more involved but
straight forward to determine directly or by simple group theoretic methods.

One can expand the resulting particle spectrum for a single event to linear order in initial state
perturbations like [37]

ln

 
dN single event

pT dpT d�dy

!
= ln S0(pT )| {z }

from background

+
X
m,l

w(m)
l eim�✓(m)

l (pT )

| {z }
from fluctuations

+ . . . . (28)

Note that each mode comes with an angle, w(m)
l = |w(m)

l | e�im 
(m)
l and the contribution of each mode

has different pT -dependence, ✓(m)
l (pT ). At quadratic order, the expression in (28) is supplemented by a

term or the form X
m1,m2,l1,l2

w(m1)
l1

w(m2)
l2

ei(m1+m2)� (m1,m2)
l1,l2

(pT ). (29)

The non-linearities parametrized by the function (m1,m2)
l1,l2

(pT ) arise both from the non-linear terms in
the fluid dynamic evolution and from non-linear terms at freeze-out.

One can also determine the harmonic flow coefficients defined in eq. (25) within this scheme. For
a single event one has

V ⇤
m = vme�i m m

=
X

l

S(m)l w
(m)
l +

X
m1,m2,

l1,l2

S(m1,m2)l1,l2 w(m1)
l1

w(m2)
l2

�m,m1+m2
+ . . .

The function S(m)l is here the linear dynamic response function and S(m1,m2)l1,l2 may be called a
quadratic dynamic response function and so on. The symmetries of the problem imply a conservation
of azimuthal wavenumber. The response functions can be determined and they depend on the thermo-
dynamic and transport properties of the fluid formed by the quark gluon plasma, in particular viscosity.
One of the challenges for the coming years will be to understand these dependencies in detail and to use
the experimental knowledge about the response functions in order to constrain the thermodynamic and
transport properties of QCD from experimental data.

7 Jet quenching
We will now leave the fluid dynamic considerations aside and concentrate for the remaining time on
processes at higher energies. More specific, consider again the transverse momentum distribution of
charged particles in Fig. 7. At small transverse momenta and for central collisions, the particle spectra
are determined by the decay products of a thermalized medium. This is reflected in a close-to-exponential
shape, which shows up as a straight line on the logarithmic scale of Fig. 7. In contract, the physics of high
energetic particles and partons is different: they are not thermalized but can nevertheless be influenced by
the medium. More specific, they can loose energy and momentum to the medium when they fly through
it.

To understand this in a little more detail, let us first recapitulate some elements of the description
of high energetic processes in conventional hadron collisions (for example proton - proton or proton -
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antiproton collisions). An important theoretical concept is the one of factorization. According to this
principle, processes at high energy are governed by a convolution of

– Process-independent parton distribution functions which parametrize the probability to find par-
tons with given momentum in the incident hadron.

– Process-dependent hard scattering cross sections which determine the probability that initial par-
tons scatter to final state partons with given momenta.

– Process-independent parton fragmentation functions which describe the probability that final state
partons fragments into a jet with certain hadron content.

A very detailed theoretical and experimental understanding of high energetic processes in hadron
collisions using perturbative QCD has been gained over the years with the help of the factorization
principle. This constitutes a solid foundation to measure changes occurring in heavy ion collisions. A
very short summary of these changes is as follows. Nuclear parton distribution functions differ from
proton parton distribution functions but may be measured by proton-nucleus collisions, electron-nucleus
collisions etc. Hard scattering cross sections are not modified by the medium if the momentum transfer
is high enough. The key modification in a heavy ion context compared to hadron collisions is: After
production, high energetic partons must propagate through the hot and dense medium produced in heavy
ion collisions. By interactions with the (soft) gluons and quarks in the medium, high energetic partons
loose part of their energy and momentum. Because parton production rates are steeply falling with
energy, energy loss leads to a reduction of the number of partons with large energy. This can be clearly
seen in Fig. 7.

The energy loss of highly energetic partons in a heavy ion collision can also be seen on the level
of reconstructed jets. One prominent observable in this context is the so-called dijet asymmetry which is
defined as

AJ =
pT,1 � pT,2

pT,1 + pT,2
(30)

where pT,1 and pT,2 are the transverse momenta of a leading and a sub-leading jet, respectively. Event
distributions of this observable are shown in Fig. 14 for different centrality classes, as measured by the
CMS collaboration. Also shown there are results of simulations based on the Monte-Carlo code PYTHIA,
which does not take any jet energy loss into account. For peripheral collisions, the distribution is also
compared to proton-proton collisions. As one can see clearly, the measured asymmetries in heavy ion
collisions have the tendency to be larger than in the simulations for central collisions, which illustrates
that a significant fraction of transverse momentum gets transported outside the jet cone by interactions
with the medium.

We do not have the space here to discuss the theory of jet energy loss in detail. Very briefly, the
main parton energy loss mechanism in QCD is medium induced gluon radiation [39, 40]. This is in
some aspects analogous to bremsstrahlung in QED. While in vacuum QCD, there are essentially only
small angle (colinear) splittings of gluons and quarks, in the context of a heavy ion collisions, additional
kicks from scattering with the medium lead to larger angles. In a statistical description, this leads to a
broadening of the transverse momentum k? (orthogonal to the main parton momentum) by a diffusion
or random walk type process,

d

dt

D
k2

?
E

= q̂. (31)

Here, q̂ is the so-called jet quenching parameter. Based on this principle, a detailed theoretical description
can be formulated. In addition to transverse momentum broadening, interactions with the medium also
induce color decoherence. Jet energy loss models have been implemented also in Monte-Carlo codes,
for example JEWEL [41, 42].

In addition to calorimetric jet observables, a traditional measure of energy loss is the so called
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180 CMS Collaboration / Physics Letters B 712 (2012) 176–197

Fig. 3. Dijet asymmetry ratio, A J , for leading jets of pT,1 > 120 GeV/c and subleading jets of pT,2 > 30 GeV/c with a selection of !φ1,2 > 2π/3 between the two jets. Results
are shown for six bins of collision centrality, corresponding to selections of 70–100% to 0–10% of the total inelastic cross section. Results from data are shown as points, while
the histogram shows the results for pythia dijets embedded into hydjet PbPb simulated events. Data from pp collisions at 2.76 TeV are shown as open points in comparison
to PbPb results of 70–100% centrality. The error bars represent the statistical uncertainties.

Fig. 4. Dijet asymmetry ratio, A J , in bins of leading jet transverse momentum from 120 < pT,1 < 150 GeV/c to pT,1 > 300 GeV/c for subleading jets of pT,2 > 30 GeV/c
and !φ1,2 > 2π/3 between leading and subleading jets. Results for 0–20% central PbPb events are shown as points, while the histogram shows the results for pythia dijets
embedded into hydjet PbPb simulated events. The error bars represent the statistical uncertainties.

which should be taken into account in the interpretation of the av-
erage value. However, in the bins with leading jet pT > 180 GeV/c,
more than 95% of the leading jets are correlated with a subleading
jet, indicating that the bias due to dijet selection is very small.

3.3. The dependence of dijet momentum imbalance on the pT of the
leading jet

The dependence of the energy loss on the leading jet mo-
mentum can be studied using the jet transverse momentum ratio
pT,2/pT,1. The mean value of this ratio is presented as a func-

tion of pT,1 in Fig. 6 for three bins of collision centrality, 50–100%,
20–50%, and 0–20%. The pythia+hydjet simulations are shown as
squares and the PbPb data are shown as points. Statistical and
systematic uncertainties are plotted as error bars and brackets, re-
spectively. The main contributions to the systematic uncertainty in
pT,2/pT,1 are the uncertainties in the pT-dependent residual en-
ergy scale and the effects of the underlying event on the jet energy
resolution. Earlier studies of jet-track correlations [9] have shown
that the energy composition of the quenched jets was not signifi-
cantly different, which puts a constraint on the energy scale uncer-
tainty. The uncertainty on the energy scale is derived from three

Fig. 14: Dijet asymmetry ratio AJ for leading jets of pT,1 > 120 GeV and sub-leading jets of pT,2 > 30 GeV, with
a selection of ��1,2 > 2⇡/3 between the two jets, for different centrality classes. Experimental results (points) are
compared to simulations (histograms) based on PYTHIA and HYDJET (without any parton energy loss). Figure
taken from ref. [38].

nuclear modification factor,

Rh
AA(pT , ⌘, centrality) =

dN
AA!h
medium

dpT d⌘D
NAA

coll

E
dN

pp!h
vacuum

dpT d⌘

. (32)

This ratio of production cross sections for a particle h in heavy ion (AA) collisions and the scaled proton-
proton (pp) reference can be defined for many different processes. It depends in general on transverse
momentum pT , rapidity ⌘ and centrality but some of these variables are sometimes integrated over.
Nuclear modification factors have been measured for many different particles h. Note that this variable
depends also sensitively on the proton-proton reference. This can sometimes be a problem, in particular
when no measurements exist for a given collision energy and one therefore has to rely on interpolations.
In a similar way to RAA, one defines also the modification factor RpA for proton - ion collisions or RCP

as a ratio between cross sections for central and peripheral collisions.
A compilation of various nuclear modification factors by the CMS collaboration is shown in Fig.

15. One observes that unidentified charged particles and b-quarks are quenched, while photons, W- and
Z-bosons are not quenched, i.e. they have RAA = 1 within the experimental uncertainties. This is of
course expected because these particles are color-neutral.

8 Quarkonia in hot matter
For the last part of these introductory lectures we will be concerned with quarkonia, which are bound
states of heavy quark - antiquark pairs in the context of heavy ion collisions. This is a traditional field of
study in the context of the quark gluon plasma for the following reasons.

Some interesting and important questions concerning the quark gluon plasma are: How can one
test deconfinement of quarks and gluons at large temperature? Or related: What prevents the formation
of a meson in a quark-gluon plasma? The attractive force between a quark and an antiquark is actually
screened within a plasma at non-vanishing temperature when the two are separated by more than the
typical distance between free color charges in the medium. This effect can be seen nicely in lattice QCD

19

A VERY BRIEF INTRODUCTION TO HEAVY ION PHYSICS

159



46 A heavy ion phenomenology primer

mT [GeV]
0 20 40 60 80 100

R
A

A

0

0.5

1

1.5

2
CMS

sNN = 2.76 TeVPbPb

L dt = 7 – 150 µb–1∫0 – 10%,

TAA uncertainty

Z0

W  pµ
T > 25 GeV/c

Isolated photon

Charged particles

b-quarks (0 – 20%)
(via secondary J/ψ)

|η|<2.4

|η|<1.0

|η|<1.44
|ηµ|<2.1

|y|<2.0

Figure 2.14 The nuclear modification factor RAA in the range up to transverse

momenta mT =
√

m2 + p2
T of 100 GeV for the 10% most central Pb+Pb col-

lisions at the LHC. Data are shown for charged hadrons, b-quarks identified via
secondary J/ψ-decays, as well as for photons and the electroweak gauge bosons
W and Z . The latter do not interact strongly with the medium and can hence
emerge from heavy ion collisions unsuppressed and without energy loss. Data
were compiled by the CMS collaboration from Refs. [265, 271, 267, 270, 272].

in the most central collisions.The suppression increases mildly with transverse
momentum and persists up to the highest pT experimentally measured so far,
see Fig. 2.14. Figures 2.13 and 2.14 illustrate a direct manifestation of jet
quenching: for RAA = 0.2, 80% of the energetic hadrons that would be seen in
the absence of a medium are gone.

(2) Jet quenching is not observed in Rd Au and RpPb

In deuteron–gold collisions at RHIC, Rd Au is consistent with or greater than 1
for all centralities and all transverse momenta. Jet quenching is not observed.
Very first data for RpPb at the LHC support this conclusion [12]. In fact, the
centrality dependence measured at RHIC is opposite to that seen in gold–
gold collisions, with Rd Au reaching maximal values of around 1.5 for pT =
3–5 GeV/c in the most central collisions [23, 15]. The high pT hadrons are
measured at or near mid-rapidity, meaning that they are well separated from
the fragments of the struck gold nucleus. And, d-Au collisions produce at best
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Fig. 15: Nuclear modification factor RAA for different particles as a function of the transverse mass mT =q
m2 + p2

T as measured and compiled by the CMS collaboration. Figure taken from ref. [43].

simulations.
One can ask more quantitatively: How close do quark and anti-quark have to be in order for

their interaction not to be screened? And how does this depend on temperature? It was suggested to
investigate these questions for bound states of heavy quark-antiquark pairs (quarkonia) by Matsui and
Satz in 1986 [44].

A few examples of charmonium states (cc̄ bound states) are the J/ (1S) with a mass of 3.09 GeV,
the  (2S) with a mass of 3.69 GeV, the �c1(1P) with mass 3.51 GeV or the �c2(1P) with a mass of 3.56
GeV. Some bottomonium states (bb̄ bound states) are the ⌥(1S) with mass 9.46 GeV and its excited
states, the ⌥(2S) with a mass of 10.02 GeV and the ⌥(3S) with a mass of 10.36 GeV.

The traditional picture of what should happen to these bound states at non-vanishing temperature
is the one of sequential suppression. Qualitatively, when the temperature is increased, larger mesons
or bound states are hindered from binding first while smaller bound states can survive up to higher
temperature. (The typical distance between free color charges becomes smaller at higher temperature.)
An heuristic Schrödinger equation approach using screened static quark potentials [45] suggests for
example that the J/ (1S) dissociates at Td ⇡ 2.1 Tc. The  (2S) is larger and dissociates at Td ⇡ 1.1 Tc.
The bottomonium state ⌥(1S) dissociates at Td ⇡ 4 Tc while ⌥(2S) is larger and dissociates already
at Td ⇡ 1.6 Tc and ⌥(3S) is even larger and dissociates at Td ⇡ 1.2 Tc. While this picture gives
some guidance, the use of static potentials to describe bound states in a QCD medium is somewhat
questionable.

While there is little doubt that the qualitative picture sketched above is qualitatively correct, there
are also some confounding effects that must be taken into account to properly understand quarkonia in
the context of heavy ion collisions. Some of them are:

– Cold nuclear matter effects (which are already present for pA collisions) must be understood.
– The collective dynamics of heavy ion collisions plays a role, i. e. the expansion, fluid dynamic

flow etc.
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Figure 2.16 The invariant mass distribution of dimuons in Pb+Pb (above) and
p+p (below) collisions measured by the CMS collaboration. In comparison to the
benchmark measurement in p+p, the higherϒ resonances are strongly suppressed.
Figures taken from Ref. [269].

higher excited states melt completely at CERN SPS and RHIC energies provides a
natural interpretation for the fact that the suppression of the J/ψ yield and its cen-
trality dependence in nucleus–nucleus collisions at the CERN SPS and RHIC are
comparable. However, since these earlier studies did not have experimental access
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higher excited states melt completely at CERN SPS and RHIC energies provides a
natural interpretation for the fact that the suppression of the J/ψ yield and its cen-
trality dependence in nucleus–nucleus collisions at the CERN SPS and RHIC are
comparable. However, since these earlier studies did not have experimental access
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Fig. 16: Invariant mass spectrum of di-muons in heavy ion (left panel) and proton-proton (right panel) collisions.
See text for further discussion. Figures taken from ref. [46].

– Quarkonia are in general not at rest with respect to the medium.
– The formation of quarkonium bound states is purely understood but should also takes some time.

What is the influence of the medium for that process?
– Quarkonia can also be formed by recombination of open heavy quarks at hadronization / chemical

freeze-out.

At present there is no clear picture about the quantitative importance and the interplay of all these effects,
yet. However, experimental and theoretical efforts to improve the understanding of quarkonia in the
context of heavy ion collisions are ongoing.

As a particularly clear example for the suppression effects that can arise due to a hot medium,
consider the number of µ+ µ� pairs as a function of their center of mass energy as measured by CMS.
Fig. 16 shows this for Pb-Pb collisions in the left panel and for comparison the corresponding curve for
proton-proton collisions in the right panel. One can see directly that the excited states of ⌥ are clearly
suppressed in heavy ion collisions compared to pp collisions at the equivalent collision energy. It is a
more difficult question, however, whether this already proves sequential suppression according to the
Matsui & Satz picture.

9 Conclusions
To conclude these introductory lectures one may say that we are on the way of understanding the proper-
ties of QCD at high temperature and density with the help of relativistic heavy ion collision experiments.

Many experimental results for particles at small transverse momentum can be understood in terms
of relativistic fluid dynamics. As it turns out, heavy ion collisions at RHIC and LHC energies produce a
rather strongly coupled liquid with a small ratio of shear viscosity to entropy density ⌘/s. New data with
improved statistics will provide more insights and better constraints in the coming years.

High momentum partons loose energy when traversing the dense QCD medium. A more detailed
understanding of this effect is currently gained from reconstructed jets and more detailed data on nuclear
modification factors.

Modifications of heavy quark bound state spectra in heavy ion collisions have been observed both
for charm and bottom quarks. A more detailed quantitative understanding of this physics is work in
progress.

Finally, other topics such as initial state physics, photons & di-leptons, the results from the low
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energy run at RHIC and many more had to be skipped here for a lack of time but that does not make
them less interesting in any way.
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