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Abstract
This paper starts with an introduction to some elements of physical kinetics rel-
evant to microscopic interactions in gas or plasma systems. The aim is to pro-
vide the necessary background for understanding charged particle beams. Em-
phasis is placed on the important role played by collisions in plasmas. We then
give a detailed, albeit non-exhaustive, review of intrabeam scattering (IBS),
which consists of the study of diffusion effects caused by multiple Coulomb
scattering on charged particle beams, in both the transverse and the longitudi-
nal beam dimensions. Finally, applications to the large hadron collider 7 TeV
stored proton beam and the ’Extra Low Energy Antiproton’ (ELENA) 100 keV
decelerated antiproton beam are used to illustrate the behaviour of the IBS
growth rates, for a high-energy storage ring well above the transition energy
and an ultra-low-energy decelerator ring below the transition energy.
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1 Introduction
Consider a system of N particles described by a ‘density distribution’ in a 6N -dimensional phase space.
In this space, the whole collection of N particles is represented by a single point. Under a stability
condition, the particles occupy a finite volume in phase space. The density function behaves like an
incompressible fluid when observed along the phase space trajectories, provided that all forces driving the
system are conservative (i.e. derived from a potential): this is the crux of the matter. In practice, instead of
using the full 6N -dimensional space, it is more convenient to view the phase trajectories of all particles
in the same six-dimensional phase space, which allows for better visualization of the particle density
distribution. In the process of this reduction, however, difficulties could arise with interactions between
the particles. In the presence of inter-particle collisions driven by non-conservative forces, the phase
space volume containing the N particles does not remain incompressible; some particles may escape
from it and others may enter it. Liouville’s formula, modified by adding a ‘collision term’, becomes the
collision Boltzmann’s equation, which is still an active area of research. The reader may find it helpful to
review the topic of particle collisions in plasmas and ionized gases, which are basically quasi-stationary,
when we consider the case of a charged particle beam in a storage ring.

In what way is intrabeam scattering (IBS) in charged particle beams different from Coulomb
scattering of plasma or gas particles in a ‘closed box’? In storage rings, due to the curvature of the
orbit, IBS can increase the beam density in phase space as a whole (i.e. transverse beam emittances and
momentum spread can grow simultaneously) to above the ring transition energy, because of the coupling
between the radial and longitudinal motions. While revisiting the methods used in IBS, our interest was
drawn to the logical structure at the core of the subject, so we have decided to base our study on the
theoretical framework of A. Piwinsky [1]. His original paper gives a clear presentation of the kinematics
of the classical interaction process involved in multiple Coulomb scattering in charged particle beams,
assuming weak-focusing accelerator or storage rings. His methodical approach makes all his papers
fairly easy to grasp. Equipped with this framework, the essential features of IBS can be understood
quite well. The alternative approach of J. Bjorken and S. Mtingwa [2] is based on the scattering matrix
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formalism from quantum electrodynamics, and the theory is applicable to strong-focusing machines.
Both of these approaches are presented here, to provide a thorough grounding for the study of many
aspects of IBS. However, Monte Carlo simulations of IBS based on a binary collision model [3–5] are
not covered in this paper; nor are IBS models that implement the linear coupling between transverse
betatron oscillations [6, 7].

2 Overview of the kinetics of gases and plasmas
The classical mechanics branch of dynamics is sometimes divided into kinematics and kinetics. Kinemat-
ics is the study of the properties of motion—i.e. the masses or forces which may be involved—without
considering the causes, whereas kinetics aims to explain the change in motion as a result of the forces
and torques applied. Kinetics refers also to the study of gases and plasmas, relating their macroscopic
properties (such as pressure and temperature) to a microscopic model of which the constituents are many
small particles. A plasma is a fully or partially ionized gas, i.e. an ensemble of particles made up of
electrons, ions and neutrals moving under the influence of electromagnetic or gravity forces and particle
interactions such as ionization or Coulomb scattering. Gases and plasmas are mostly non-relativistic.
Unlike plasmas, a plasma beam is a directed stream of charged particles, generally relativistic, in which
the motion depends on applied external fields; in a plasma beam the individual particles make small
angles with the beam axis, and the particle energy spread is small relative to the total energy (typical of
beams in accelerators and storage rings).

2.1 The Liouville (collisionless Boltzmann) equation
2.1.1 The many-particle phase space joint probability density
The dynamic state of a plasma is completely determined once given the instantaneous positions ri(t) and
momenta pi(t) at time t for all particles in the 6N -dimensional phase space {r = ri(t), p = pi(t) : i =
1, . . . , N}, called Γ-space, where N is the number of plasma particles. The state of a plasma is a single
point moving along a 6N -dimensional trajectory {r(t),p(t)} as time evolves; Γ-space is a many-particle
phase space for the whole system of particles, often used in statistical mechanics and kinetic theory [8].
To simplify the notation, we assume that all particles in a plasma are of the same species (e.g. protons,
electrons or ions). In a Cartesian frame we have {ri(t) = xix̂+yiŷ+ziẑ, pi(t) = px,ix̂+py,iŷ+pz,iẑ}
where x̂, ŷ and ẑ are unit vectors along the x-, y- and z-axes. The representative single point M(t) =∏N
i=1{ri(t),pi(t)} of the N particles in Γ-space is called the microstate. Such a detailed model requires

knowledge of 6N functions of time with initial conditions that are known only to a certain degree of
precision and whose complete description cannot be achieved. When N is very large, say N = 6× 1023

for one atom-gram of hydrogen, it makes sense to describe the plasma statistically instead.

To this end, we conceptualize a large number N of independent replicas of the same microstate
of an N -particle system, each virtual replica being described by a different representative point M(t)
in Γ-space (N does not have to equal N ). The abstract set of identical systems is called a statistical
ensemble. Let d 6NN (r,p, t) denote the number of representative points inside a infinitesimal phase
space volume element dΓ = d3Nr d3Np =

∏N
i=1 d3ri d3pi about a point (r,p) at time t, i.e. in the

range {(r, r + dr), (p,p + dp)} about (r,p). Therefore, a normalized phase space probability density
function ρ(r,p, t) can be formally specified by

ρ(r,p, t) = lim
N→∞

d 6NN (r,p, t)

N dΓ
,

∫
dΓ ρ(r,p, t) = 1 , (1)

where dΓ is a 6N -dimensional hypercube of ‘hypersides’ d3Nr and d3Np.

Comment: As ρ−1(r,p, t) has the dimension of a reciprocal ‘action’, [(J s)−1], and because ρ−1

is proportional to dΓ = (dr dp)3N it is evocative to attach a Planck constant h = 2π~ to each pair dr dp
so that dΓ = (dr dp/2π~)3N , where h3N ≈ ∆r∆p is the smallest possible phase space cell size by
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virtue of the Heisenberg uncertainty relation. However, this is ill-suited to the framework of classical
physics!

This means that ρ(r,p, t) dΓ is the probability of finding a non-specific microstate in the volume
dΓ = d3Nr d3Np about (r,p) at time t; that is, ρ(r,p, t) d3Nr d3Np is the probability that particle 1 is
in the volume d3r1 d3p1 about the point (r1,p1), particle 2 is in the volume d3r2 d3p2 about (r2,p2),
and so on, up to particle N located in the volume d3rN d3pN about (rN ,pN ) at time t. Then ρ is the
N -particle joint probability density function for the plasma system. It is assumed that the density of
microstates in Γ-space does not change too fast from one volume element to the next, so that ρ(r,p, t)
can be regarded as a continuous function. For a finite number N , a so-called coarse-grained density
is obtained which disregards the variations of ρ below some small resolution in Γ-space: ρ(r,p, t) =
d 6NN (r,p, t)/N dΓ.

Properly normalized, ρ(r,p, t) can be used to compute macroscopic values for various functions
O(r,p):

〈O〉 =

∫
dΓ ρ(r,p, t)O(r,p) . (2)

A key property of an ensemble is that the microstate trajectories never intersect in Γ-space, because
each trajectory is uniquely specified by 6N initial conditions {r(0),p(0)}. (In case trajectories might
be crossed, a phase space configuration situated at the intersection would have multiple trajectories; but
this is forbidden in classical physics!). Figure 1 shows two snapshots of the state of an ensemble of
d6NN (r,p, t) microstate points in Γ-space at times t and t + dt. It illustrates the evolution over the
time interval dt of these microstates which occupy a tiny volume element dΓ(t) =

∏N
i=1 d3ri d3pi with

borderC(t) around (r,p) at time t. Meanwhile, the volume element dΓ(t) can become distorted in shape
as a consequence of the particle motion and will occupy a new volume element dΓ(t + dt) with border
C(t+ dt) at time t+ dt. Likewise, each microstate represented by a point M(t) =

∏N
i=1{ri(t),pi(t)}

transforms gradually, to first order in time, into another point M ′(t+ dt):

M ′(t+ dt) =

N∏

i=1

{
r′i(t+ dt) = ri(t) + ṙi(t) dt, p′i(t+ dt) = pi(t) + ṗi(t) dt

}
. (3)

Fig. 1: Depiction of the motion during the time interval dt of a volume element dΓ(t) = d3r(t) d3v(t) about
(r(t),v(t)) in Γ-space.

2.1.2 The single-particle phase space probability density
A simpler way to describe a plasma ofN identical particles is to use the phase space for a single particle,
called µ-space, in contrast to the Γ-space for the overall particle ensemble; this is the method typically
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used in plasma physics, with Cartesian coordinates r and velocities v in place of the momenta p, since
plasma motion is often non-relativistic. When a particle moves, its representative point µ(t) traces out
a trajectory in six-dimensional phase space such that at each instant the dynamic state of the N plasma
particles is represented by N points in the phase space [9]. Likewise, a one-particle probability density
function ρ1(r,v, t) can be defined such that d6N(r,v, t) is the number of plasma particles contained
in an infinitesimal phase volume element dµ = d3r d3v (a hypercube of sides d3r and d3v) about one
unspecified representative ‘point particle’ µ(t) = (r,v) = {(x, y, z), (vx, vy, vz)} among N in µ-space:

ρ1(r,v, t) = lim
N→∞

d6N(r,v, t)

N dµ
,

∫
dµρ1(r,v, t) = 1 . (4)

Comment: Here, with ρ1(r,v, t), every ‘phase’ volume element (dr dv)3 could be replaced by dµ =
(dr dv/2π~)3.

Like Eq. (2), the distribution function ρ1(r,v, t) enables one to compute macroscopic values of
functions O(r,v):

〈O〉 =

∫
dµρ1(r,v, t)O(r,v) . (5)

For instance, let us formulate the horizontal beam emittance in terms of the single-particle emittance
given by the Courant–Snyder invariant

εx = γxx
2
β + 2αxxβx

′
β + βxx

′2
β =

x2
β

βx
+βx

(
x′β−

β′x
2βx

xβ

)2

,

xβ = x−Dx
∆p

p0
, x′β = x′−D′x

∆p

p0
, (6)

where 2αx = −β′x, γx = (1 + α2
x)/βx, Dx is the momentum dispersion function and x′ = px/|p|. To

write down the overall horizontal beam emittance, we switch back to the momentum variable (since a
charge particle beam is mostly relativistic), p = mγv with γ = (1−v2/c2)−1/2. Hence, upon averaging
Eq. (6) over N particles we obtain, using the notation 〈 · · · 〉 =

∑N
i=1( · · · )/N ,

εx =

∫
dµρ1(x, p, t)

(
x2
β

βx
+ βx

[
x′β−

β′x
2βx

xβ

]2
)

=

〈
x2
β

βx

〉(
1 +

β′2x
4

)
− β′x〈x′βxβ〉+ βx〈x′2β 〉 . (7)

The equation that governs the evolution of the phase space probability density function under
specified initial conditions is generally known as the Boltzmann equation. Suppose that each particle of
the plasma is subjected to an external force F(t). In the absence of particle interactions, a particle with
coordinates around {r,v} at time t will be found after a time interval dt around the new coordinates
{r′,v′} so that, to first order in t, we obtain

r′(t+ dt) = r(t) + v(t) dt , v′(t+ dt) = v(t) + a(t) dt , (8)

where v = ṙ and a = v̇ = F/m (with a being the acceleration of the particle and m its mass).

All the particles inside the phase space volume element dµ(t) = d3r d3v with border C(t) about
(r,v) at time t will occupy a new volume element d3r′d3v′ with border C ′(t + dt) about (r′,v′) after
the time interval dt. Figure 2 displays the state of d6N(r,v, t) particles of plasma in µ-space at times t
and t + dt. Since we are considering the same particles at t and at t + dt, the following equality holds,
provided there are no inter-particle collisions or dissipative forces leading to non-conservation of phase
space volume:

ρ1(r′,v′, t+ dt) d3r′ d3v′

≡ ρ1(r,v, t) d3r d3v .
(9)
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Fig. 2: Depiction of the motion during the time interval dt of a volume element dµ(t) = d3r(t) d3v(t) about
(r(t),v(t)) in µ-space.

The shape of the volume dµ(t) = d3r d3v may change into dµ(t + dt) = d3r′ d3v′ during the particle
motion over the time interval dt. The new phase volume dµ(t+ dt) and the initial one dµ(t) are related
by the determinant of the 6× 6 Jacobian matrix J of the transformation (8):

d3r′d3v′ = |det J| d3r d3v, (10)

where

J =
∂(r′,v′)
∂(r,v)

=




∂x′/∂x ∂y′/∂x · · · ∂v′z/∂x
∂x′/∂y ∂y′/∂y · · · ∂v′z/∂y

...
...

. . .
...

∂x′/∂vz ∂y′/∂vz · · · ∂v′z/∂vz


 . (11)

We split the external force F into (i) a velocity-independent force F̃ (e.g. an external force constraining
the particles inside a box or an external electric field force eE accelerating charged particles) and (ii) a
velocity-dependent force, customarily the Lorentz force due to an external magnetic field B confining
the particles inside a torus. Thus, leaving F̃ not fully specified at this stage, we get F = F̃ + e(v ×B).
Using Eq. (8) the partial derivatives in the Jacobian matrix can be written in the form

∂x′u=x,y,z

∂xw=x,y,z
= δu,w,

∂v′u=x,y,z

∂xw=x,y,z
=

dt

m

∂F̃u
∂xw

=
dt

m



∂F̃x/∂x ∂F̃y/∂x ∂F̃z/∂x

∂F̃x/∂y ∂F̃y/∂y ∂F̃z/∂y

∂F̃x/∂z ∂F̃y/∂z ∂F̃z/∂z


 ,

(12)
∂x′u=x,y,z

∂vw=x,y,z
= δu,w dt,

∂v′u=x,y,z

∂vw=x,y,z
= δu,w +

e dt

m

∂(v ×B)û=x̂,ŷ,ẑ

∂vw
,

where δu,w is the Kronecker delta with the subscripts u and w alternately representing the coordinates
x, y and z. For clarity, the Lorentz force term in the fourth part of (12) is explicitly written below as a
submatrix of the Jacobian:

∂(v ×B)û=x̂,ŷ,ẑ

∂vw=x,y,z
=

∂

∂vw

∣∣∣∣∣∣

x̂ ŷ ẑ
vx vy vz
Bx By Bz

∣∣∣∣∣∣
û

=
∂

∂vw=x,y,z

[(
vyBz − vzBy

)
x̂ +

(
vzBx − vxBz

)
ŷ

+
(
vxBy − vyBx

)
ẑ

]

û=x̂,ŷ,ẑ
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=




0 −Bz By
Bz 0 −Bx
−By Bx 0


 .

The full Jacobian matrix with its determinant |det J| (up to second order in dt) are shown in Eqs. (13)
and (14) below:

J =




1 0 0
0 1 0
0 0 1

(dt/m) ∂F̃x/∂x (dt/m) ∂F̃y/∂x (dt/m) ∂F̃z/∂x

(dt/m) ∂F̃x/∂y (dt/m) ∂F̃y/∂y (dt/m) ∂F̃z/∂y

(dt/m) ∂F̃x/∂z (dt/m) ∂F̃y/∂z (dt/m) ∂F̃z/∂z
dt 0 0
0 dt 0
0 0 dt

1 −Bz edt/m By edt/m
Bz e dt/m 1 −Bx edt/m
−By e dt/m Bx e dt/m 1



, (13)

|det J| = 1 + dt2(e2/m2)(B2
x + B2

y + B2
z)−

(
∂F̃x/∂x + (∂F̃y/∂y)(∂F̃z/∂z)

)
/m +O(dt3) . (14)

It follows that |det J| = 1 to first order in dt, and so (10) and (9) become

(d3r′ d3v′)(t+ dt) = (d3r d3v)(t),
[
ρ1(r′,v′, t+ dt)− ρ1(r,v, t)

]
d3r d3v = 0 ; (15)

that is, volume elements in µ-space are invariants. This is Liouville’s theorem, which states that the phase
space probability density ρ1(r,v, t) behaves like an incompressible fluid. Using (8), Liouville’s theorem
(the second equation in (15)) can be rewritten as

ρ1(r + v dt, v + a dt, t+ dt) = ρ1(r,v, t). (16)

With these results, the incompressibility condition of Liouville’s theorem can be cast in differential form
by expanding the left-hand side of (16) in a Taylor series for ρ1 with respect to the variables (r,v, t),
yielding to first order in dt,

ρ1(r + v dt, v + a dt, t+ dt)

= ρ1(r,v, t) +

[
∂ρ1(r,v, t)

∂t
+

dr

dt
· ∂ρ1(r,v, t)

∂r
+

dr

dt
· ∂ρ1(r,v, t)

∂v

]
dt

= ρ1(r,v, t) +

[
∂ρ1(r,v, t)

∂t
+ v · ∂ρ1(r,v, t)

∂r
+ a · ∂ρ1(r,v, t)

∂v

]
dt

= ρ1(r,v, t) +

[
∂ρ1(r,v, t)

∂t
+ v · ∇rρ1(r,v, t) + a · ∇vρ1(r,v, t)

]
dt , (17)

where notation similar to ∂
∂u = ∇u (for u = r,v) has been used for the del operators ∇r = x̂ ∂

∂x +

ŷ ∂
∂y + ẑ ∂

∂z and ∇v = x̂ ∂
∂vx

+ ŷ ∂
∂vy

+ ẑ ∂
∂vz

. Substituting the right-hand side of (16) into the left-hand
side of (17) gives the so-called Liouville’s formula

∂ρ1(r,v, t)

∂t
+ v · ∇rρ1(r,v, t) + a · ∇vρ1(r,v, t) = 0 . (18)

Liouville’s formula can also be written in terms of the total derivative dρ1/dt for the evolution of a
volume element as it moves in µ-space (different from ∂ρ1/∂t, which refers to the change in a volume
element at a specific µ-space location):

dρ1(r,v, t)

dt
≡ ∂ρ1(r,v, t)

∂t
+ v · ∇rρ1(r,v, t) + a · ∇vρ1(r,v, t) = 0 . (19)

This means that ρ1(r,v, t) is constant along a system phase space trajectory; Eq. (19) is also called the
collisionless Boltzmann equation.
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2.2 The Boltzmann collision integral
The collisionless Boltzmann equation is an equation of motion for a one-particle probability density
function ρ1(r,v, t), which is especially suitable for describing dilute gas. In the absence of interactions,
the particles are mutually independent and ρ1 obeys the one-particle Liouville’s equation. So far we
have introduced the normalized probability density ρ(r,v, t) in Γ-space, Eq. (1), and the reduced one-
particle probability density ρ1(r,v, t) in µ-space, Eq. (4). Another useful interpretation of the one-
particle probability density is obtained when one multiplies ρ1 by the number of particles N inside a
phase space domain in µ-space; this is the one-particle density distribution in phase space, denoted by
f1 (see [9]):

f1(r,v, t) =
d6N(r,v, t)

d3r d3v
,

∫
d3r d3v f1(r,v, t) = N . (20)

Here d6N(r,v, t) is the number of particles contained within the phase volume dµ(t) = d3r d3v around
(r,v) at time t. Liouville’s equation says that if during the time interval dt, we move along with a
representative particle in the phase volume element d3r d3v (enclosing N particles) and observe the net
number δ6N of particles that enter this volume element, we will find that δ6N ≡ 0 (note the difference
in meaning of ‘d’ and ‘δ’). Thus, we get

δ6N =

[
∂f1(r,v, t)

∂t
+ v · ∇rf1(r,v, t) + a · ∇vf1(r,v, t)

]
d3r d3v dt ≡ 0 (21)

or, in analogy to (19),

df1(r,v, t)

dt
≡ ∂f1(r,v, t)

∂t
+ v · ∇rf1(r,v, t) + a · ∇vf1(r,v, t) = 0

(where, as before, a = F/m is the particle acceleration, with m being the mass of the particle and F an
externally supported force).

The collisionless Boltzmann equation has to be adapted to handle the effects arising from inter-
actions between particles. The Boltzmann collision term discussed below considers only binary elastic
collisions. For short-range interactions, two-particle collisions are defined in terms of the pair correlation
function f2(r,v, r1,v1, t). The two colliding particles become dependent, and their density functions
f1(r,v, t) and f1(r1,v1, t) before collision must be replaced by the two-particle density distribution f2,
which is no longer constant along the phase space trajectories; Eq. (19) needs to be modified by

df2(r,v, r1,v1, t)

dt
=

[
δf2(r,v, r1,v1, t)

δt

]

coll
. (22)

The right-hand side of (22), [δf2(r,v, r1,v1, t)/δt]coll, is called the ‘collision integral’, and designates
symbolically the rate of change of the distribution due to the two-particle collisions, which is still to be
worked out. A heuristic validation of the Boltzmann equation including collisions in gases and plasmas
will be carried out. In the end, this heuristic approach will give the same result as more fundamental
derivations. The binary collisions occur in charged and neutral plasmas and involve atoms or molecules
in a dilute gas. Multiple coulomb interactions in a plasma, although they may be as important as binary
collisions, are ignored here. For binary collisions in the time interval dt, the interaction result is charac-
terized by the net rate at which collisions either decrease or increase the number of particles in a µ-space
volume element d3r d3v (cf. [9, 10]).

Figure 3 shows the numbers of particles d6N1 and d6N2 that, at two instants t and t+dt, are within
a phase space volume element dµ = d3r d3v, possibly distorted by the particle motion. It illustrates
particles entering and leaving the phase volume by virtue of collisions during the interval dt. Some of
the particles that were at first in d3r d3v may be removed from it, and particles originally outside this
volume element may end up inside it.

7

INTRABEAM SCATTERING: ANATOMY OF THE THEORY

297



Fig. 3: Evolution of the number of particles in a volume element d3r(t) d3v(t) over a time interval dt in µ-space

The net loss or gain of particles resulting from collisions in the time interval dt is, by (19) and (22),

δ6N =

[
δf2(r,v, r1,v1, t)

δt

]

coll
d3r d3v dt, δ6N = δ6N+ − δ6N− . (23)

Here, δ6N− is the loss part, due to collisions for which a particle within d3r of r has a velocity before
collision that is within d3v of v; similarly, δ6N+ is the gain part, caused by collisions for which a
particle within d3r of r has a velocity after collision that is within d3v of v.

For δ6N−, the velocities of the particles may be split into two groups: one contains velocities
in the slice d3v about v, and the other includes all other velocities, referred to as v1. The number of
particles removed from the phase volume element d3r d3v in time dt is the total number of collisions
that the particles v have with all the other particles v1 during the time interval dt. To compute δ6N−,
each collision between a pair of particles must satisfy the following: one particle of the first group (called
the v-particle) in the phase volume d3r d3v about (r,v) is scattered out of the velocity slice d3v in the
time dt as a result of a collision with a particle of the second group (a v1-particle), which has a velocity
in d3v1 about v1 and a location in d3r1 about r1 (a priori not necessarily the same as d3v). Then

δ 6N− =

(∫

(r1,v1)
f2(r,v, r1,v1, t) d3r1 d3v1

)
d3r d3v . (24)

Recall that d3r1 must be such that during δt, the v1-particles in d3r1 experience a collision with
the v-particles inside d3r. We set up d3r1 by considering a scattering event in the frame of the single v-
particle, as shown in Fig. 4. The particles inside d3r1 d3v1 about (r1,v1) may be viewed as a v1-particle
flux incident on this v-particle. Figure 4 illustrates the scattering where the v1-particle flux approaches
the v-particle from the right at a velocity of |v1 − v| with an impact parameter between b and b + db,
in a collision plane lying between the angles φ and φ + dφ. Accordingly, all v1-particles in the volume
of the cylinder of length |v1 − v|dt and base area bdbdφ experience a collision with the v-particles in
time dt. So

d3r1 = bdbdφ |v1 − v|dt . (25)

Substituting (25) into (24) transforms the equation into

δ6N− =

(∫

(v1, b, φ)
f2(r,v, r1,v1, t) d3v1 |v1 − v| bdbdφ

)
d3r d3v dt . (26)

For δ6N+, consider all particle-pair collisions that send one particle into the velocity slice d3v
about v in the time interval dt, which is the inverse of the original collision (v,v1) � (v′,v′1). The
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Fig. 4: Sketch of scattering for δ6N− in the v-particle frame, where a v1-particle moves from the right towards
the v particle sitting in the vertical collision plane.

primed variables represent the inverse collision of the unprimed ones in (26). In analogy to (24), δ6N+

can be written as

δ6N+ =

(∫

(r′1,v
′
1)
f2(r′,v′, r′1,v

′
1, t) d3r′1 d3v′1

)
d3r′ d3v′ . (27)

Equivalently, from the conservation of momentum and energy for elastic collisions between identical
particles, i.e.

v + v1 = v′ + v′1, v2 + v2
1 = v′2 + v′1

2
=⇒ |v − v1| = |v′ − v′1| ,

we obtain

δ6N+ =

(∫

(v′1, b, φ)
f2(r′,v′, r′1,v

′
1, t) d3v′1 |v′1 − v′| b dbdφ

)
d3r′ d3v′ dt . (28)

In order to combine Eqs. (26)–(28) and express δ6N as a single integral with variables of inte-
gration v1, b and φ, the integrands of δ6N+ and δ6N− have to be compatible. To verify this, one can
use the phase volume-invariant techniques based on change of variables involving unit Jacobian determi-
nants (see [10] and the above proof of Liouville’s theorem, for example). In particular, the phase volume
d3r d3v d3r1 d3v1 is a collisional invariant:

d3r d3v d3r1 d3v1 = d3r′ d3v′ d3r′1 d3v′1 .

It follows that

δ 6N =

(∫

(v1, b, φ)

[
f2(r′,v′, r′1,v

′
1, t)− f2(r,v, r1,v1, t)

]
d3v1 |v1 − v| bdbdφ

)
d3r d3v dt , (29)

where there is no extra integration over v′1 thanks to the above collisional invariant. Substituting (29)
into (21) and cancelling the products d3r d3v dt, the total time-derivative df1/dt turns into

df1(r,v, t)

dt
≡ ∂f1(r,v, t)

∂t
+ v · ∇rf1(r,v, t) + a · ∇vf1(r,v, t)

=

∫

(v1, b, φ)

[
f2(r′,v′, r′1,v

′
1, t)− f2(r,v, r1,v1, t)

]
d3v1 |v1 − v| bdbdφ ,

(30)
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where the unprimed and primed distributions refer to the states before and after collision, respectively.

Finally, to deduce the Boltzmann equation from Eq. (30) we need a physical approximation en-
abling us to write f2 and f ′2 in terms of f1 and f ′1, so that (30) will reduce to an expression involving
a single integro-differential equation for f1(r,v, t). A conventional derivation of the Boltzmann equa-
tion might be considered too heuristic and does not provide a suitable basis for accurate investigation.
A better formal derivation of (30) could start out from knowledge of the N -particle joint probability
density ρN = ρ in the 6N -dimensional Γ-space (see Eq. (1)), in which the particle velocity v replaces
the momentum p. As the description of a system determined by a full phase density distribution is not
feasible, one could instead consider a subset of particles defining a reduced s-particle density function
fs. A particularly ingenious method for dealing with such a reduced density function fs (though not
pursued here) is the BBGKY hierarchy. In this formalism, f1, f2 and fs are shown without proof as they
will not be used hereafter (notice our way of numbering the N particles {r,v, ri,vi}i=1,...,N−1, rather
than using the usual order {ri,vi}i=1,...,N ):

f1(r,v, t) = N

∫ N−1∏

i=1

d3ri d3vi ρ(r,v, r1,v1, . . . , rN−1,vN−1, t),

f2(r,v, r1,v1, t) = N(N − 1)

∫ N−1∏

i=2

d3ri d3vi ρ(r,v, r1,v1, . . . , rN−1,vN−1, t),

fs(r,v, r1,v1, . . . , rs−1,vs−1, t)

=
N !

(N − s+ 1)!

∫ N−1∏

i=s

d3ri d3vi ρ(r,v, r1,v1, . . . , rN−1,vN−1, t) . (31)

Even so, this way of proceeding is not fully effective in practice. The one-particle density distribution
f1(r,v, t) in this sequence is important as it governs the evolution of the collision Boltzmann equa-
tion, provided that manageable approximate forms are available for the two-particle density distributions
f2(r,v, r,v1, t) and f2(r′,v′, r′,v′1, t). Many attempts have been made to derive the Boltzmann equa-
tion from first principles without resorting to approximations. However, a number of assumptions come
into play in all these derivations, which renders even the more formal analyses (e.g. the BBGKY hierar-
chy) somewhat ad hoc (see [8, 10–14]).

To find approximate closed-form solutions to Eq. (30) in terms of expressions relating f1(r,v, t)
and f2(r,v, r,v1, t), again consider a collision between v- and v1-particles, which emerge with veloc-
ities v′ and v′1 from the collision. Suppose that the v-particle is located at (r,v) in the phase volume
d3r d3v and the v1-particle at (r,v1) in the phase volume d3r1 d3v1. This means that collisions are
local in space and that the two particles are located at the same point; since r and r′ can be any points in
the respective phase volume elements, we must have d3r1 ≡ d3r. Hence

f2(r,v, r1,v1, t) ≡ f2(r,v, r,v1, t) .

The joint two-particle density distribution f2 is therefore homogeneous over the interaction domain
and may be characterized by a circle of radius rint, considered to be infinitesimal relative to the mean free
path of the particles. Evaluating f2 at the same point r in space, regardless of the velocity, supposes that
the density distribution is below some small resolution in µ-space and does not vary on scales of order
rint. When the particles are sufficiently far away from each other (|r| > |rint|), the interaction vanishes.
When the particles enter the interaction domain (|r| ≤ |rint|), they experience a collision. Figures 5 and
6 illustrate the geometry of a particle-pair scattering event involving two particles of velocities v and v1,
viewed from a coordinate system in which the v-particle is at rest.

As the simplest and most drastic approximation that bypasses all the transformations related to
the BBGKY hierarchy, we adopt the ‘molecular chaos assumption’, which postulates the statistical inde-
pendence of colliding particles in the derivation of the Boltzmann collision integral. This means that the
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Fig. 5: Particle-pair elastic scattering: the path r(ϕ) of the v1-particle of mass m relative to the path of the v-
particle of the same mass in a frame where the origin of the v-particle is fixed (equivalent to the centre-of-mass
frame, in which the relative velocity of the v1-particle is v1 − v and that of the v-particle is zero). The position
vectors r1 and r2 mark the entry and exit points of the v1-particle into and out of the interaction region; rint is the
interaction circle radius; θ is the scattering angle, which depends on the impact parameter b; and rm is the position
of the v1-particle when it is at the distance of ‘closest approach’ from the scatterer (the v-particle). The scattering
angle θ is related to ϕm via the rule θ + 2ϕm = π.

particles are assumed to be uncorrelated outside the effective range of their interaction. Therefore, their
trajectories before and after a collision are rectilinear. These constraints justify the above homogeneous
property, r ≡ r1, of f2 over the interaction range. Moreover, taking into account short-range interac-
tions as well, the pair density distribution f2(r,v, r,v1, t) can be approximated by the product of two
single-particle density distribution functions:

f2(r,v, r,v1, t) = f1(r,v, t)f1(r,v1, t) , (32)

and similarly for f2(r,v′, r,v′1, t), where f2 is evaluated at the same point assuming that r′ ≈ r don’t
vary on scales of order rint.

For example, in an inter-atomic potential the collision duration τc is the time over which two
particles are within the effective range rint of their interaction. For particles of a sufficiently dilute
gas (speed v ≈ 102 m s−1) with short-range interactions rint ≈ 10−10 m (typically an atomic size under
standard conditions), the collision time is τc = rint/v ≈ 10−12 s. From Figs. 5 and 6 we can see that
the initial (relative) velocity v1 − v is transformed to the final velocity v′1 − v′ through the relationship
between the impact parameter b and the scattering and azimuth angles (θ, φ). The expression for v′1(b) =
v′1(θ, φ) is obtained by integration of the equations of motion. In elastic collisions, the relative velocity
|v1−v| (or |v1|) just rotates without changing its magnitude to a final direction v′1−v′ (or v′1) indicated
by the angles (θ, φ) ≡ Ω̂(b) (a unit vector). Equivalently, |v′1| = |v1| and v′1 = |v1| Ω̂(b),

Substituting (32) into (30) results in the closed-form Boltzmann equation for f1, involving inte-
grals and partial derivatives of the distribution function:

df1(r,v, t)

dt

=

∫

(v1, b, φ)

[
f1(r,v′, t)f1(r,v′1, t)− f1(r,v, t)f1(r,v1, t)

]
d3v1 |v1 − v| bdbdφ .
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Fig. 6: Particle-pair elastic scattering (different view): particles that hit the small ring (left part of diagram) between
impact parameter values b and b+ db are scattered by an angle between θ and θ+ dθ into a larger ring on a sphere
(right part of diagram), with a scatterer (the v-particle) at rest in the centre of the sphere (i.e. v = v′ = 0). Note
that the impact parameter r is equal to zero for a head-on collision. The incident v1-particle moves from the left
in the direction of the scatterer. As in Fig. 5, the angle θ represents the scattering angle between the v′1-particle
velocity v′1 and the v1-particle velocity v1; φ is the azimuth (rotational) angle of v′1 − v′ about the vertical axis;
and dΩ is the differential solid angle element of the small area in the large ring of the sphere.

Alternatively, upon expanding the total time-derivative df1/dt,

∂f1(r,v, t)

∂t
+ v · ∇rf1(r,v, t) + a · ∇vf1(r,v, t)

=

∫

(v1, b, φ)

[
f1(r,v′, t)f1(r,v′1, t)− f1(r,v, t)f1(r,v1, t)

]
d3v1 |v1 − v| bdbdφ .

(33)

Consider a particle beam of flux (intensity) I (in units of [particle/(s m2)]) incident on a scatterer
located at the origin. The differential scattering cross-section σ(θ, φ) [m2] is defined as the number
of particles scattered per second per unit incident flux, at a solid angle oriented in the direction of the
outgoing flux after the collision, labelled by the solid angle vector Ω̂. Geometrically, σ(θ, φ) can be
understood as saying that the number of particles scattered into the solid angle element dΩ per unit time
is equal to the number of particles crossing an area equal to σ(θ, φ) dΩ in the incident beam, as illustrated
in Fig. 6, where the differential solid angle element of the small area in the large ring of the sphere is
expressed as

Iσ(θ, φ) dΩ = number of particles scattered per second into the solid angle element dΩ

oriented at Ω̂ with differential solid angle

dΩ = r sin θ dφ(r dθ)/r2 = sin θ dθ dφ [rad2] .

This number of particles is the number traversing the annulus element bdbdφ, so

Iσ(θ, φ) dΩ = Ib dbdφ =⇒ σ(θ, φ) =
b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ , (34)

where the modulus sign is needed because b and θ may change in opposite directions but the cross-section
σ(θ, φ) is always positive. The detailed form of σ(θ, φ) depends on the inter-particle potential.

Comment: σ(θ, φ) can depend on the azimuth angle φ, but nearly all potentials are spherically
symmetric so that σ = σ(θ) depends only on θ (or on the impact parameter b). Note that the alternative
notation |dσ/dΩ| is often used instead of σ for the differential cross-section.
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To illustrate the meaning of the differential cross-section with a simple example, consider an elastic
collision involving a light point-like particle hitting a heavy hard sphere of radius r. From Fig. 7 it can be
seen that the scattering angle θ is linked to the impact parameter through b = r sinϕm ≡ r sin[(π−θ)/2],
with b ≤ r. The differential cross-section is then calculated from (34) as

σ(θ, φ) =
r

sin θ
sin

[
π

2
− θ

2

] ∣∣∣∣
d

dθ

(
r sin

[
π

2
− θ

2

])∣∣∣∣

=
r2

2 sin θ
sin

[
π

2
− θ

2

]
cos

[
π

2
− θ

2

]

=
r2

2 sin θ

(
1

2
sin

[
2

(
π

2
− θ

2

)])
=

r2

4 sin θ
sin θ

=⇒ σ(θ, φ) =
r2

4
, θ = π − 2 arcsin

(
b

r

)
. (35)

In this example, the cross-section σ=r2/4 does not depend on the scattering angle θ (nor on the azimuth
angle φ). In particular, θ = π for b = 0 (head-on collision) and θ = 0 for b ≥ r.

Fig. 7: Tiny elastic particle scattering from a rigid sphere. Irrespective of the impact parameter value b ≤ r, the
sphere radius r is equal to the distance of ‘closest approach’ of the scattering sphere, and θ + 2ϕm = π.

As another example, illustrated by Figs. 5 and 6, the differential scattering cross-section σ(θ, φ)
for the Coulomb potential U(r) can be cast into the form (see e.g. [9])

U(r) =
1

4πε0

e2

r
, σ(θ) =

b20
4 sin4(θ/2)

, b0 =
e2

2πε0m |v1 − v|2 . (36)

The equation for the scattering angle in a Coulomb potential can be written as

θ = 2 arctan
(b0
b

)
⇐⇒ tan

(θ
2

)
=
b0
b
. (37)

Notice that b0 is the value of the impact parameter b for a π/2 scattering angle (not true for relativistic
elastic particle collisions). Also, for b = 0 we have θ = π.

Replacing bdbdφ by σ(θ, φ) dΩ in Eq. (33), we obtain the following expression for the Boltzmann
collision integral:

∂f1(r,v, t)

∂t
+ v · ∇rf1(r,v, t) + a · ∇vf1(r,v, t)

=

∫

(v1, θ, φ)

[
f1(r,v′, t)f1(r,v′1, t)− f1(r,v, t)f1(r,v1, t)

]
d3v1 |v1 − v|σ(θ, φ) dΩ .

(38)
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The external force F = ma may also include the Lorentz force F = e(E + v × B) due to externally
applied fields. If the force is derived from a potential, i.e. F = −∇rU(r), then (38) can be written in the
following form, using ∂/∂u ≡ ∇u (u = r,v):

[
∂

∂t
+ v · ∂

∂r
− 1

m

∂U

∂r
· ∂
∂v

]
f1(r,v, t)

=

∫

(v1, θ, φ)

[
f1(r,v′, t)f1(r,v′1, t)− f1(r,v, t)f1(r,v1, t)

]
d3v1 |v1 − v|σ(θ, φ) dΩ .

(39)

The Boltzmann equation is a nonlinear integro-differential equation, which is not easy to solve. The
terms on the left-hand side of (39) describe the motion of a single particle in an external potential, while
the right-hand side consists of the collision terms. The equation can be physically interpreted as meaning
that ‘the probability of finding a particle of velocity v at position r suddenly changes if that particle
experiences a collision with another particle of velocity v1’. The probability of a collision depends on the
differential cross-section σ of the incident particle flux, which is proportional to |v1−v|, and on the joint
probability of finding the two particles at r given their velocities, approximated by f1(r,v)f1(r,v1).

To summarize, the ‘heuristic derivation’ of the one-particle Boltzmann equation has required sev-
eral strong assumptions, namely:

– the two-particle density distribution is homogeneous over the range of interaction;
– molecular chaos, i.e. the velocities of two colliding particles are uncorrelated;
– the range of particle interaction over the mean free path is much smaller than unity;
– the particle trajectories are rectilinear before and after collision.

2.2.1 The Maxwell–Boltzmann distribution
For gas molecules in a closed box, the modelling approach consists of establishing the equation(s) de-
termining the evolution of the particle density function at equilibrium [8, 9, 13]. An equilibrium density
distribution function is defined as a solution f1(r,v) of the Boltzmann equation that has no explicit time
dependence and so satisfies ∂f1(r,v)/∂t = 0. Moreover, one assumes the absence of external forces,
i.e. a = F/m ≡ 0, and a uniform particle distribution in space, i.e. f1(r,v) is homogeneous so that the
density distribution is independent of r and thus∇rf1(v) = 0. By Eq. (39), this equilibrium distribution
function, denoted by f eq

1 (v), satisfies

0 =

∫

(v1, θ, φ)

[
f

eq
1 (v′)f eq

1 (v′1)− f eq
1 (v)f

eq
1 (v1)

]
d3v1 |v1 − v|σ(Ω) dΩ , (40)

where v1 is an arbitrary velocity. It follows that f eq
1 (v), known as the Maxwell–Boltzmann distribution

function, satisfies the condition

f
eq
1 (v′)f eq

1 (v′1)− f eq
1 (v)f

eq
1 (v1) = 0 . (41)

Taking the logarithm of (41) yields

ln f
eq
1 (v′) + ln f

eq
1 (v′1) = ln f

eq
1 (v) + ln f

eq
1 (v1) . (42)

This equation is a summation invariant because the doublets {v,v1} and {v′,v′1} are the potential
‘initial’ and ‘final’ velocities of a particle-pair collision process {v,v1} → {v′,v′1}. Thus, ln f

eq
1 (v)

can be formulated by linearly mixing the invariants ‘mass’ m, ‘momentum’ mv, and ‘kinetic energy’
m|v|2/2 ≡ mv2/2 with the constants a0, a2 and a1 = a1,xx̂ + a1,yŷ + a1,zẑ in the form

ln f
eq
1 (v) = m

(
a0 + a1 · v −

a2v
2

2

)
, (43)
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where the minus sign is introduced for later convenience. This equation can be expressed in a compact
form by completing the square on its right-hand side using the formula

ax2 + bx+ c ≡ a
(
x+

b

2a

)2

+

(
c− b2

4a

)
. (44)

Letting x→ v, x2 → v2, a→ −a0/2, b→ a1, c→ a0, the quadratic equation (43) can be written as

ln f
eq
1 (v) = m

(
−a2v

2

2
+ a1 · v + a0

)

= −ma2

2

(
v − a1

a2

)2

+m

(
a0 +

a2
1

2a2

)
= −ma2

2
(v − v0)2 + lnC , (45)

where the extra constants lnC = m(a0 + a2
1/(2a2)) and v0 = a1/a2 have been introduced to simplify

the expression. Taking the exponential of ln f
eq
1 gives

f
eq
1 (v) = C exp

[
−1

2
ma2(v − v0)2

]
, (46)

which is the Maxwell–Boltzmann equilibrium distribution function. Equation (46) contains five constant
coefficients to be determined, namely C, a2 and the three components of v0 = v0,xx̂ + v0,yŷ + v0,zẑ.
These constants can be deduced from observable physical properties of the system, such as the particle
density n, the average velocity 〈v〉, the temperature T and the average kinetic energy 〈mv2/2〉.

For a uniformly distributed system of N particles enclosed in a box of volume V (i.e. f eq
1 is inde-

pendent of r), the particle density n is constant and is expressed according to the following normalization
conditions:

N =

∫

v
f

eq
1 (v) d3r d3v, n =

N

V
=

∫

v
f

eq
1 (v) d3v. (47)

Performing the change of variables w = v − v0 with w = wxx̂ + wyŷ + wzẑ, we find that

n ≡ C
∫

w
exp

[
−1

2
ma2w

2

]
d3w

= C

+∞∫∫∫

−∞

exp

[
−1

2
ma2(w2

x + w2
y + w2

z)

]
dwx dwy dwz = C

(
2π

ma2

)3/2

, (48)

so that C is determined as a function of the constant a2,

C = n
(ma2

2π

)3/2
. (49)

Using (49) and v = w + v0, the average velocity 〈v〉 is similarly evaluated as

〈v〉 =

∫
v vf

eq
1 (v) d3v∫

v f
eq
1 (v) d3v

=
(ma2

2π

)3/2
∫

v
v exp

[
−1

2
ma2(v − v0)2

]
d3v

=
(ma2

2π

)3/2
∫

w
w exp

[
−1

2
ma2w

2

]
d3w +

C

n
v0

∫

w
exp

[
−1

2
ma2w

2

]
d3w

=
(ma2

2π

)3/2
+∞∫∫∫

−∞

(wxx̂ + wyŷ + wzẑ) exp

[
−1

2
ma2

(
w2
x + w2

y + w2
z

)]
dwx dwy dwz
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+
(ma2

2π

)3/2
v0

+∞∫∫∫

−∞

exp

[
−1

2
ma2

(
w2
x + w2

y + w2
z

)]
dwx dwy dwz (50)

=
(ma2

2π

)3/2
v0

(
2π

ma2

)3/2

= v0 ,

where we have used the fact that the integrand w exp[−(ma2/2)w2] in (50) is an odd function of w so
that this integral is equal to zero. Therefore

v0 = 〈v〉.

This shows that the constant v0 represents the mean particle velocity 〈v〉. Indeed, for a stationary box
containing N gas particles moving at random, there is evidently no particle translational motion as a
whole, so v0 ≡ 0.

Finally, let us calculate the average kinetic energy 〈mv2/2〉 where the ‘overall particle drift’ v0 is
set to zero for convenience (i.e. there is no global particle translational motion). Symmetry considerations
suggest that

〈v2
x〉 = 〈v2

y〉 = 〈v2
x〉 =⇒ 〈v2〉 ≡ 〈v2

x + v2
y + v2

z〉 = 3〈v2
x〉,

so it suffices to compute 〈v2
x〉 to obtain 〈v2〉. Using (49),

〈1

2
mv2

〉
=

∫
v
m
2 v2f

eq
1 (v) d3v∫

v f
eq
1 (v) d3v

=
(ma2

2π

)3/2
∫

v

mv2

2
exp

[
−1

2
ma2v

2

]
d3v

=
1

2

(ma2

2π

)3/2
m

+∞∫∫∫

−∞

(
v2
x + v2

y + v2
z

)
exp

[
−ma2

2

(
v2
x + v2

y + v2
z

)]
dvx dvy dvz

=
1

2

(ma2

2π

)3/2
m

+∞∫∫∫

−∞

3v2
x exp

[
−ma2

2

(
v2
x + v2

y + v2
z

)]
dvx dvy dvz

=
3

2

(ma2

2π

)3/2
m

+∞∫

−∞

v2
x exp

[
−ma2

2
v2
x

]
dvx

×
+∞∫

−∞

exp
[
−ma2

2
v2
y

]
dvy

+∞∫

−∞

exp
[
−ma2

2
v2
z

]
dvz

=
3

2

(ma2

2π

)1/2
m

+∞∫

−∞

v2
x exp

[
−ma2

2
v2
x

]
dvx =

3

2a2
. (51)

To quantify the constant a2, we need to introduce some ‘physics’. We use the thermodynamic definition
of temperature T , ‘experimentally’ related to the particle kinetic energy via

3

2
kT =

〈1

2
mv2

〉
≡ 3

2a2
=⇒ a2 =

1

kT
=⇒ C = n

( m

2πkT

)3/2
, (52)

where k is the Boltzmann constant. Substituting the constants C and a2 into Eq. (46) and reinserting
the overall particle drift constant v0 for completeness, the equilibrium distribution function f eq

1 (v) in the
absence of external forcing becomes

f
eq
1 (v) =

n

(2πkT/m)3/2
exp

[
− m

2kT
(v − v0)2

]
. (53)
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3 Intrabeam scattering
3.1 Particle-pair collisions
Intrabeam scattering (IBS), the scattering of particles within a beam, belongs to the category of processes
not governed by Liouville’s theorem. Other such processes include scattering on residual gas in particle
accelerators and storage rings, which leads to a continuous rise in normalized emittance. A related
phenomenon is the cooling of one beam by another mixed with it and travelling at the same velocity
(e.g. the electron cooling of antiproton beams [15]). A characteristic feature of IBS is the rise time or
damping time of the beam dimensions. In some situations IBS leads to the redistribution of partial beam
emittances, which can cause undesirable beam dilution in phase space or could heat the beam as a whole
(i.e. it may increase the partial beam emittances simultaneously).

Here, we follow the ingenious approach of Ya. S. Derbenev [16] and A. H. Sørensen [17] to
studying the self-blowing and damping of a relativistic stored bunch caused by particle-pair collisions.
In this process, the scattering between particles induces an energy exchange between transverse and
longitudinal motions. Small transverse momenta are transformed into amplified longitudinal fluctuations
due to the relativistic Lorentz factor in the transformation.

Comment: If the longitudinal momenta acquired during a single particle-pair collision exceed the
momentum acceptance of the RF bucket that keeps the beam bunched, or if the particles hit the aperture
when displaced by dispersion, the particles will get lost. This process, referred to as the Touschek effect,
results in a finite lifetime for a bunched beam.

In greater detail, let us consider a ‘simple’ Coulomb collision model involving two particles (la-
belled 1 and 2) with initially equal and opposite momenta, px1,2 = ±|px|x̂. As a result of the π/2
scattering angle, the two momenta completely transfer into longitudinal momenta (along the s-axis) par-
allel to the circulating beam. Equilibrium beam conditions at energies below and above the ring transition
energy are assessed. In the ‘laboratory frame’, the transverse components of the two momenta remain
unchanged from their ‘beam frame’ values.

The two opposite post-collision longitudinal momentum components, written as ∆p′‖1,2 =±∆p′‖,
represent the departures from the beam average momentum p0 = |p0|ŝ = γmv0 (in the beam frame
p̄0 = |p̄0|ŝ = 0). Viewed in the laboratory frame, ∆p′‖1 and ∆p′‖2 are both larger by a Lorentz factor

γ= (1 − v2
0/c

2)−1/2 than their transverse momentum components before the collision. The factor γ is
related to the average beam relativistic energy E=γmc2 and momentum p0 =γmv0, as shown in Fig. 8
(see also [16] and [18]). The following equation expresses the preservation of the sum of the squared
momenta in the beam frame after the collision:

|p̄⊥1 |2 + |p̄⊥2 |2 = |p̄′‖1 |
2 + |p̄′‖2 |

2 .

Observe that the momentum deviations in (8) are defined in the two frames (with |px|= |p̄x|=px) as

Beam frame (p̄0 = |p̄0|ŝ def
= 0): p̄⊥1,2 = p̄x1,2 = ∓|p̄x|x̂ ,

p̄′‖1,2 = p̄′s1,2 = ±|p̄x|ŝ ;

Laboratory frame (p0 = γmv0): ∆p⊥1,2

def
= p⊥1,2 = ps1,2 = ∓|px|x̂ ,

∆p′‖1,2
def
= p′‖1,2 = p′s1,2 = ±γ|px|ŝ .

(54)

The horizontal single-particle emittance relates to the Courant–Snyder invariant (see Eq. (6)),
where αx, βx and γx are the Twiss parameters of the lattice, Dx is the momentum dispersion function
and x′ = |px|/|p0| = px/p0:

εx = γxx
2
β + 2αxxβx

′
β + βxx

′2
β =

1 + α2
x

βx
x2
β − β′xxβx′β + βxx

′2
β , xβ = x−Dx

∆p

p0
. (55)
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Fig. 8: Particle-pair elastic Coulomb scattering between two particles with momenta px,1,2 ≡ p⊥,1,2 before col-
lision when viewed in the laboratory frame (LAB), or p̄⊥,1,2 if viewed in the beam frame (BF). After collision
the particles’ initial momenta become longitudinal, ±p′‖,1,2. A bar on top of a momentum indicates the beam
frame, and a prime denotes momentum after collision. The post-collision momenta ∆p′‖1,2 are just the momentum
deviations from the average velocity p0 of the particle stream.

Now, neglecting the derivatives of the lattice parameters βx andDx yields β′x=D′x=0, and the emittance
reduces to

εx =
1

βx

(
x2
β + β2

xx
′2
β

)
. (56)

Assume that the particle interaction point x ≡ x1,2 stays constant during the collision time and
that the scattering angles x′1,2 = px1,2/|p0| vary instantaneously with the momentum change. Then,
the kinematic picture of the particle collision can be cast in terms of the betatron amplitude xβ and its
derivative x′β as follows:

Before collision: xβ1,2 ≡ x, x′β1,2
=
px1,2

p0
= ±px

p0
.

(57)
After collision: xβ1,2 ≡ x1,2 −Dx

∆p

p0
= x∓Dxγ

px
p0
, x′1,2 = x′β1,2

= 0 .

In the above we have used the relations

∆p′s1,2 = ∆p′‖1,2 = ±γ|p⊥1,2 |x̂ = ±γ|px1,2 |x̂ = ±γ|px|x̂, (58)

Dx

|∆p′s1,2 |
|p0|

= ±γDx
|px|
|p0|

. (59)

Using Eqs. (55)–(59), we can evaluate the change in the sum of emittances of the two colliding
particles:

βx∆(εx1 + εx2) = ∆εx1 + ∆εx2 =
(
εaftcoll
x1

− εbefcoll
x1

)
+
(
εaftcoll
x2

− εbefcoll
x2

)

=

{[(
x1 −Dxγ

px1

p0

)2

+ 0

]
−
[
x2

1 + β2
x

(
px1

p0

)2
]}

+

{[(
x2 −Dxγ

px2

p0

)2

+ 0

]
−
[
x2

2 + β2
x

(
px2

p0

)2
]}
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=

{[(
x−Dxγ

px
p0

)2
]
−
[
x2 + β2

x

(
px
p0

)2
]}

+

{[(
x+Dxγ

px
p0

)2
]
−
[
x2

2 + β2
x

(
−px
p0

)2
]}

=

{
−2xDxγ

px
p0

+

(
px
p0

)2 (
D2
xγ

2 − β2
x

)
}

+

{
2xDxγ

px
p0

+

(
px
p0

)2 (
D2
xγ

2 − β2
x

)
}

= 2

(
px
p0

)2 (
D2
xγ

2 − β2
x

)
, (60)

where x1 = x2 ≡ x and ∆(εx1 + εx2) symbolically represents the sum of the two particles’ emittance
variations before and after the collision. Hence

∆(εx1 + εx2) =
2

βx

(
px
p0

)2 (
D2
xγ

2 − β2
x

)
= 2βxγ

2

(
px
p0

)2(D2
x

β2
x

− 1

γ2

)
. (61)

The following approximations for the betatron and momentum dispersion functions, referred to as the
smooth focusing approximation, can be written in the form

〈βx〉 ≈
R

Qx
, 〈Dx〉 ≈

〈βx〉
Qx

=⇒ D2
x

β2
x

≈ 〈Dx〉2
〈βx〉2

≈ 1

Q2
x

. (62)

Here, R is the mean ring radius and Qx is the horizontal tune. Introducing the momentum compaction
factor αp with associated transition energy γtmc2 and slip factor ηt, plus ring curvature radius ρ, we get
(see e.g. [18, 19])

γt
def
=

1
√
αp
, ηt

def
=

1

γ2
t

− 1

γ2
,

αp =
1

2πR

∮
Dx(s)

ρ(s)
ds =

〈
Dx(s)

ρ(s)

〉
=

1

γ2
t

=⇒
〈
Dx(s)

ρ(s)

〉
≈ 〈Dx〉

R
≈ 1

Q2
x

≈ 1

γ2
t

. (63)

Note that the contribution to the integral in (63) vanishes in the straight section of the lattice where
ρ(s) → ∞. The transition energy is therefore the energy for which the slip factor vanishes. Combining
Eq. (61) with the smooth approximations (62) and (63), the change in the sum of the particle emittances
becomes

∆(εx1 + εx2) = 2βxγ
2

(
px
p0

)2(〈Dx〉2
〈βx〉2

− 1

γ2

)
= 2βxγ

2

(
px
p0

)2( 1

γ2
t

− 1

γ2

)

= 2βxγ
2

(
px
p0

)2

ηt . (64)

In summary:

– Above the transition (γ>γt, ηt>0): the collisions lead to increased oscillation amplitudes, giving
rise to horizontal emittance growth, so that the beam cannot reach an equilibrium.

– Below the transition (γ<γt, ηt<0): the collisions lead to decreased oscillation amplitudes, giving
rise to horizontal emittance reduction, and so a beam equilibrium can exist.
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3.2 The original Piwinski IBS model
3.2.1 Introduction
Intrabeam scattering in weak-focusing or smooth ring lattices can be related to scattering of gas molecules
in a closed box, where the walls behave like quadrupole focusing forces and the RF voltage keeps the
particles together. The scattering of the molecules leads to the Maxwell–Boltzmann distribution (53)
of the three velocity components (vx, vz, vs), where m is the molecule mass, T the temperature, k the
Boltzmann’s constant, n the volume density of the gas and f1 the density distribution

f1(vx, vz, vs) =
1

(2πkT/m)3/2
exp
[
−m(v2

x + v2
z + v2

s)/(2kT )
]
. (65)

The original coordinates v = vxx̂ + vyŷ + vzẑ of Eq. (53) have been transformed to the curvilinear
coordinate system vxx̂ + vzẑ + vsŝ, often used to describe particle motion in synchrotrons, where s is
the arc length along the reference orbit. The difference between IBS and scattering of gas molecules
enclosed in a box is due to the curvature of the ring orbit.

Orbit curvature

– The curvature of the reference orbit produces a dispersion, so that a sudden change of energy will
change the betatron amplitudes and initiate a synchro-betatron oscillation coupling.

– The curvature also gives rise to the negative mass instability; that is, when a particle accelerates
above transition it becomes slower and behaves like a particle with negative mass, and so an equi-
librium of particles above the transition energy cannot exist. Additional comment: In a particle
accelerator the transition energy γ2

tmc
2 is attained once γ2 =γ2

t ≡α−1
p =(dp/p)/(dR/R), where

the last term of this formula is the ratio of the relative momentum change to the relative orbit radius
change.

Above transition

– The IBS effect is to increase the three bunch dimensions; that is, there is a continuous emittance
increase in both the transverse and the longitudinal directions.

– For instance, in the LHC at 7 TeV, although γ=7461� γt≈53.8 (ηt≈3.4×10−4), the undesirable
growth of the bunch emittances caused by IBS is counterbalanced by the synchrotron radiation
damping effect.

Below transition

– An equilibrium particle distribution between the partial transverse and longitudinal emittances can
exist, provided the conditions for the smooth focusing approximation hold, i.e. for weak-focusing
accelerators and storage rings or for sufficiently smooth lattices. If these conditions do not hold,
an equilibrium particle distribution may not exist.

– For example, in the strong-focusing compact ring ELENA, to decelerate at 100 keV and cool the
antiprotons sent by the Antiproton Decelerator to give dense beams, a redistribution of partial
emittances due to IBS is anticipated, even though γ ≈ 1.0� γt ≈ 1.9 (ηt ≈ −0.72).

3.2.2 Core intrabeam scattering model
The mathematics of IBS is rather complicated. Calculation of the growth rates in each degree of freedom
involves integration and averaging procedures that cannot be undertaken entirely analytically and may
need to be finished by computer. At present, various IBS computer codes are available which implement
the different models developed so far. The inputs are the lattice parameters of the accelerator or storage
ring (Twiss parameters, momentum dispersion function and its derivative, etc.) and the beam characteris-
tics (e.g. bunched or coasting beam, number of circulating particles, momentum spread and emittances).
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The main outputs are the rise/damping times (or growth/damping rates) for the horizontal, vertical and
longitudinal emittances and the momentum spread.

Here we follow the approach of A. Piwinski [1,20] to work out in some detail the growth or decay
rates of the beam dimensions due to the IBS effect. The strategy can be outlined in six steps as follows.

Step 1: Transform the momenta of the two colliding particles from the laboratory frame to the beam
frame.

Step 2: Calculate the changes in momenta due to an elastic collision.
Step 3: Transform the momenta back to the laboratory frame.
Step 4: Relate the changes in momenta to changes in transverse and longitudinal emittances.
Step 5: Average over the scattering angle distribution using the classical Rutherford cross-section.
Step 6: Average over the distributions of the particle momenta and positions within a bunch.

Steps 1–3: Momentum kinematics
In line with Piwinski’s approach, the relative momentum changes δp1,2/|p| from the average particle
momentum p after a collision between two particles (labelled 1 and 2) can be obtained from the first
three steps listed above (which is a fairly lengthy task). For brevity, we will omit some details of the
calculations.

First of all, the partial longitudinal, horizontal and vertical particle momenta (ps1,2 , px1,2 , pz1,2)
before the collision can be represented in the (s, x, z) coordinate system of the laboratory (or rest) frame
(LAB) attached to the reference orbit of the storage ring (supposing that ps1,2≈p1,2):

p1,2 = ps1,2 ŝ + px1,2 x̂ + pz1,2 ẑ = ps1,2
(
ŝ + x′1,2x̂ + z′1,2ẑ

)
≈ p1,2

(
ŝ + x′1,2x̂ + z′1,2ẑ

)
, (66)

where x′1,2 = px1,2/ps1,2 and z′1,2 = pz1,2/ps1,2 are the betatron angles and ŝ, x̂ and ẑ are unit vectors
parallel to the s, x and z coordinate axes. Then, an extra coordinate system with axes (u, v, w) oriented
along the unit vectors (û, v̂, ẑ) is defined in the LAB frame for an ensuing Lorentz transformation parallel
to p1 + p2 longitudinally, to p1 × p2 horizontally and to (p1 + p2)× (p1 × p2) vertically:

û =
p1 + p2

|p1 + p2|
, v̂ =

p1 × p2

|p1 × p2|
, ŵ = û× v̂ . (67)

The particle momenta can then be represented in this coordinate system as

p1,2 = ps1,2
(
cosα1,2û + 0 v̂ ± sinα1,2ŵ

)
≈ p1,2

(
cosα1,2û + 0 v̂ ± sinα1,2ŵ

)
, (68)

where α1,2 are the angles between the vectors p1 + p2 and p1,2 (see Fig. 9).

Comment: Momentum-Energy Lorentz Transformation. Let a particle moving at velocity
Vuû

def
= βuc û along the u-axis in the LAB frame (u, v) and at V̄u ˆ̄u

def
= β̄uc ˆ̄u in the CM frame (ū, v̄)

(overbars refer to the CM system). The relative velocity parallel to the u-axis between the two inertial
frames is denoted Vrû

def
= βrc û. The subscript on the β’s and γ’s mean β(Vu), γ(Vu) or β(Vr), γ(Vr)

(the relative frame ‘velocity’ Vrû). The total energy and momentum in the LAB frame are E=mγuc
2

and pu=mγuβuc≡Eβu/c, with γu=
(
1−β2

u

)−1/2. The factor γ̄u stated in term of γu and γr is needful
to compute energy Ē = mγūc

2 and momentum p̄u = mγūβūc. Using the formula for the additions of
velocities β̄u=(βu−βr)/(1−βuβr), we compute γū=γuγr(1−βuβr). So, the Lorentz transformations

from the LAB to the CM frame (and vice versa) on the u- and v-directions Vvv̂
def
= βvc v̂ are (cf. [21]):

{p̄u = γr(pu − βrE/c), Ē/c = γr(E/c− βr pu)}, {pu = (γr p̄u + βrĒ/c), E/c = γr(Ē/c− βr p̄u)}
{p̄v=pv, Ē/c=E/c}, {pv= p̄v, E/c= Ē/c}
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Fig. 9: Relationship between the rest coordinate system (ŝ, x̂, ẑ) (i.e. LAB frame) and the overlaid (û, v̂, ŵ)
coordinate system aligned on the centre-of-mass motion. Geometrically we have p1ŵ,2ŵ

= ±p1,2 sinα1,2ŵ,
p1û,2û

= p1,2 cosα1,2û and p1v̂,2v̂
= 0, since v̂ is perpendicular to the plane containing p1,2. Also, p1 · p2 =

p1p2 cos[α1+α2] and p1 sinα1 =p2 sinα2 (cf. Piwinski [1]).

We now perform the Lorentz transformations along the u-axis parallel to the sum of the two
momenta in Fig. 9, pu

def
= p1+p2, and the sum of the two energies, Eu

def
= E1+E2. The velocity of the

CM frame (ˆ̄u, ˆ̄v, ˆ̄w) relative to the LAB frame (ŝ, x̂, ẑ) is βr, with Lorentz factor γr, and β1,2c and γ1,2

are the velocities and Lorentz factors of p1,2 in the LAB frame. Hence, the momentum-energy Lorentz
transformation parallel to the u-axis gives the momentum in the CM frame, with the help of Eq. (68):

p̄1,2ˆ̄u
= γr

(
|p1,2û | − βr

E1,2

c

)
ˆ̄u = γr

(
|p1,2û | − βr

|p1,2|
β1,2

)
ˆ̄u

= γr

(
|p1,2| cosα1,2 − βr

|p1,2|
β1,2

)
ˆ̄u = p1,2γr

(
cosα1,2 −

βr

β1,2

)
ˆ̄u , (69)

where the subscript ˆ̄u on the left-hand side refers to the component p̄1,2 along the ū-axis. The relative
velocity βr of the CM frame is fixed by the necessity that p̄1+p̄2 = 0 (cf. Piwinski [22] Appendix A1).
Using Eq. (69) and with |p1,2|=mγ1,2β1,2c for the two LAB frame particles one get:

|p̄1ˆ̄u
+ p̄2ˆ̄u

| = mγrc(−βr(γ1 + γ2) + β1γ1 cosα1 + β2γ2 cosα2) ≡ 0, solving for βr gives:

βr =
β1γ1 cosα1 + β2γ2 cosα2

γ1 + γ2
≡ |p1 + p2|c

E1 + E2
, γr =

(
1− β2

r
)−1/2

=

(
1 +
|p1 + p2|2c2

(E1 + E2)2

)−1/2

,

γ2
r =
(
1−β2

r
)−1

=
1

2

(γ1+γ2)2

1+γ1γ2−β1γ1β2γ2 cos[α1+α2]
≈ γ2

1+γ2−β2γ2(1−2α2)
=

γ2

1+β2γ2α2
. (70)

which in turn yields the approximate relative velocity of the CM frame βr =
√
γ2

r −1/γr ≈ β(1−α2/2).
Also E1,2 = mc2γ1,2, p1,2c = mc2β1,2γ1,2, cos[α1+α2]=cos 2α, p1·p2 = p1p2 cos 2α, β2γ2 =γ2−1,
assuming ps1,2≈p1,2, x′1,2≈px1,2/p�1, z′1,2≈pz1,2/p�1, and α1≈α2≈α, see Eq. (75), and since:

p1+p2 =
(
p1 cosα1+p2 cosα2

)
û+
(
p1 sinα1−p2 sinα2

)
ŵ=

(
p1 cosα1+p2 cosα2

)
û (Fig. 9),

|p1| sinα1 = |p2| sinα2, |p1+p2|=mc
(
β1γ1 cosα1+β2γ2 cosα2

)
, E1+E2 =mc2(γ1+γ2).

Completing Eq. (69) with the Lorentz transformation on the w-axis using Eq. (68), the component
on the v̄-axis being null, and adding the Lorentz transformation for the energy, we get the three momenta
and the energy expressed in the CM frame (ˆ̄u, ˆ̄v, ˆ̄w) (Eq. (71) will be set in a more operable form below):

p̄1,2 =p1,2

[
γr

(
cosα1,2−

βr

β1,2

)
ˆ̄u + 0 ˆ̄v ± sinα1,2 ˆ̄w

]
, Ē1,2 =γr (1−βrβ1,2 cosα1,2)=

E1+E2

2γr
. (71)
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By symmetry, the changes in momenta of the two colliding particles have the same absolute values but
opposite signs in the CM frame, their directions are described by the two angles ψ̄ and φ̄ (see Fig. 10).

p̄′1,2 = ±
[(
p̄w̄ sin ψ̄ cos φ̄+ p̄ū cos ψ̄

)
ˆ̄u + p̄ sin ψ̄ sin φ̄ ˆ̄v +

(
p̄w̄ cos ψ̄ − p̄ū sin ψ̄ cos φ̄

)
ˆ̄w
]
. (72)

Let us summarize this ‘gymnastic’ back and forth between the rest and centre-of-mass frames:

Fig. 10: Changes of momenta in a particle-pair collision in the centre-of-mass coordinate system (Ref. [1])

Before collision (Fig. 9)

(a) LAB frame coordinate system (ŝ, x̂, ẑ): the three momenta of the two particles are given in (66),

p1,2 = ps1,2 ŝ + px1,2 x̂ + pz1,2 ẑ ≈ p1,2

(
ŝ + x′1,2x̂ + z′1,2ẑ

)
.

(b) LAB frame (û, v̂, ŵ): the three momenta of the two particles reduce to two momenta, which can
be written using the angles α1,2 between the u-axis and the particle momenta as (68),

p1,2 = p1,2

(
cosα1,2û + 0 v̂ ± sinα1,2ŵ

)
.

(c) CM frame (ˆ̄u, ˆ̄v, ˆ̄w): the two particle momenta in the CM frame calculated by way of a Lorentz
transformation parallel to the u-axis can be cast into the form (71) ,

p̄1,2 = p1,2

[
γr

(
cosα1,2 −

βr

β1,2

)
ˆ̄u + 0 ˆ̄v ± sinα1,2 ˆ̄w

]
.

After collision (Fig. 10)

(a) CM frame (ˆ̄u, ˆ̄v, ˆ̄w): the two particle momenta are rotated by the axial and azimuthal scattering
angles (ψ̄, φ̄); they are stated in (72),

p̄′1,2 = ±
[(
p̄w̄ sin ψ̄ cos φ̄+ p̄ū cos ψ̄

)
ˆ̄u + p̄ sin ψ̄ sin φ̄ ˆ̄v +

(
p̄w̄ cos ψ̄ − p̄ū sin ψ̄ cos φ̄

)
ˆ̄w
]
.

(b) LAB frame (û, v̂, ŵ): the two momenta are transformed back to the laboratory coordinate system
after the collision; they can be expressed as

p′1,2 = p1,2

{
γr

[
± sin ψ̄ cos φ̄ sinα1,2 + cos ψ̄γr

(
cosα1,2 −

βr

β1,2

)]
û

+

[
± sin ψ̄ sin φ̄

p

p1,2
− sin ψ̄ cos φ̄

(
cosα1,2 −

βr

β1,2

)]
v̂ +

[
cos φ̄ sinα1,2

]
ŵ

}
. (73)
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Therefore, for the two particles colliding with each other, the change in the particle momenta δp1,2 in
the laboratory frame (û, v̂, ŵ) is obtained immediately by subtracting (68) from (73). The result is

δp1,2 = p′1,2 − p1,2

= p1,2

{
γr

[
± sin ψ̄ cos φ̄ sinα1,2 + (cos ψ̄ − 1)γr

(
cosα1,2 −

βr

β1,2

)]
û

±
[
sin ψ̄ sin φ̄

p

p1,2

]
v̂ −

[
sin ψ̄ cos φ̄

(
cosα1,2 −

βr

β1,2

)
± (cos φ̄− 1) sinα1,2

]
ŵ

}
. (74)

More approximations are needed to progress further. Let us introduce the three angles ξ, θ and ζ,
used as integration variables for the averaging process over the particle distribution inside the bunch. It is
assumed that, in the LAB frame, the angle between the two colliding particle momenta is small, and that
the derivatives x′1,2, z

′
1,2 of x1,2, z1,2 with respect to the longitudinal axis are equal to the small angles

the particles make with this s-axis, that is ps1,2≈p1,2, x′1,2�1 and z′1,2�1, which implies α1≈α2≈α
as seen above (cf. also Fig. 9).

γξ =
p1 − p2

p
, θ =

px1 − px2

p
≡ x′1 − x′2, ζ =

pz1 − pz2
p

≡ z′1 − z′2 ,

2α = α1 + α2 =
√

(x′1 − x′2)2 + (z′1 − z′2)2 =
√
θ2 + ζ2 .

(75)

Comment: The first expression in (75) can also be written as γξ=[(p1−p)−(p2−p)]/p=∆p1/p−∆p2/p.

Using Eqs. (70) and (75) with the above approximations and expanding the cosine and sine func-
tions in power series to second-order, Eq. (71) simplifies (see [6, 22] for more details) supposing that
γ2α2�1, where p= |p| is the average momentum value of all particles in the bunch. One obtain

p̄1,2 = ±p
2

[
ξ
√

1 + β2γ2α2 ˆ̄u + 0ˆ̄v + 2α ˆ̄w
]

≈ ±p
2

[
ξ ˆ̄u + 0ˆ̄v + 2α ˆ̄w

]
≈ ±p

2

[p1 − p2

γp
ˆ̄u + 0ˆ̄v + 2α ˆ̄w

]
. (76)

Finally, it remains to formulate the change of momenta δp1,2 for the two colliding particles (74) in
the laboratory frame (ŝ, x̂, ẑ) of the storage ring coordinate system. After some manipulations the result
can be written in the form (see Piwinski [1])

δp1,2

|p| =
p′1,2 − p1,2

|p| =
δps1,2
p

ŝ +
δpx1,2

p
x̂ +

δpz1,2
p

ẑ =
1

2

[
2γα cos φ̄ sin ψ̄ + γξ(cos ψ̄ − 1)

]
ŝ

+
1

2

[(
ζ

√
1 +

ξ2

4α2
sin φ̄− ξθ

2α
cos φ̄

)
sin ψ̄ + θ(cos ψ̄ − 1)

]
x̂

+
1

2

[(
θ

√
1 +

ξ2

4α2
sin φ̄− ξζ

2α
cos φ̄

)
sin ψ̄ + ζ(cos ψ̄ − 1)

]
ẑ . (77)

Equation (77) captures the essence of the intrabeam collision process.

Step 4: Emittance change induced by momentum change
The change in the particle momenta after collision leads to a parallel change in the particle invariants,
namely the longitudinal and transverse emittances. These changes can be calculated by supposing that
the transverse particle positions are not altered during the interaction time (assumed to be short enough).
From now on we focus the analysis of bunched beams. The radial particle movement from the reference
closed orbit is the sum of the betatron motion xβ and the momentum deviation contribution from the
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product of the momentum dispersion function Dx,z and the relative momentum deviation ∆p/p. To
simplify the notation, we assume that the reference orbit lies in the plane containing the s- and x-axes;
that is, no orbit curvature takes place in the vertical direction z, so that Dz(s) ≡ 0. Then

x = xβ +Dx
∆p

p
, z = zβ and x′ ≡ px

p
= x′β −D′x

∆p

p
, z′ ≡ pz

p
= z′β . (78)

The invariants of the motion are the single-particle transverse emittances εx,z (identified with the
Courant–Snyder invariant) and the longitudinal invariant H for a bunched beam:

εx = γxx
2
β + 2αxxβx

′
β + βxx

′2
β and H =

(
∆p

p

)2

+
1

Ω2

[
d

dt

(
∆p

p

)]2

, (79)

where αx, βx and γx are the Twiss parameters, with βxγx − α2
x = 1 and 2αx = −β′x, and Ω is the

synchrotron frequency.

The change δεx in the invariant εx after collision is given by

δεx = γx
(
2xβδxβ + δx2

β

)
+ 2αx

(
x′βδxβ + xβδx

′
β + δxβδx

′
β

)
+ βx

(
2x′βδx

′
β + δx′2β

)
. (80)

Replace x with z to get δεz .

It has already been assumed that the ring lattice is vertically free of dispersion, i.e. Dz =D′z = 0.
Suppose also that x1,2 and z1,2 stay constant during the short collision time, so that only x′1,2 and z′1,2
vary with the change in momentum. Now δ(∆p/p) = δp/p, as the average (or reference) momentum
ps = |ps| remains constant if the beam is not accelerated.

Comment: Indeed, δ(∆p/p)= δ[(p−ps)/ps]= δp/ps−δps/ps= δp/ps≈ δp/p as ps is constant.
Defining η = ∆p/p gives δη ≈ δp/p.

So the variations δxβ , δx′β and δz′β can be formulated in terms of the betatron amplitudes as

δxβ = −Dx
δp

p
, δx′β =

δpx
p
−D′x

δp

p
, δz′β =

δpz
p

, (81)

where, for instance, we have used the ‘trick’

δx = δxβ +Dx
∆p

p
= δxβ +Dxδ

[
∆p

p

]
= δxβ +Dx

δp

p
≡ 0 =⇒ δxβ = −Dx

δp

p
.

the changes δεx,z and δH of εx,z and H can be written in the form

δεx
βx

= − 2

βx

[
xβ(γxDx + αxD

′
x) + x′βD̃x

]δp
p

+
D2
x + D̃2

x

β2
x

(
δp

p

)2

+ 2

(
x′β +

αx
βx
xβ

)
δpx
p

+

(
δpx
p

)2

− 2D̃x

βx

δp

p

δpx
p

, (82)

δεz
βz

= 2

(
z′β +

αz
βz
zβ

)
δpz
p

+

(
δpz
p

)2

, δH = 2
∆p

p

δp

p
+

(
δp

p

)2

, (83)

where D̃x = αxDx + βxD
′
x and we have neglected possible time variation of the synchrotron frequency

during the collision.

Comment: Likewise, assuming that dη/dt = 0 at the collision time, we have H ≡ η2 and
δH = (η + δη)2 − η2 = 2ηδη + (δη)2 = 2ηδp/p+ (δp/p)2 as δη ≡ δ(∆p/p) ≈ δp/p.

In the presence of radial dispersion, the momentum change δp of the particle during the collision
leads to a change in the horizontal emittance given by Eq. (82). In what follows, the shorthand η1,2

def
=

∆p1,2/p1,2 or η = ∆p/p will be used.
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Step 5: Averaging over the scattering angles
The variation of the beam phase space volume can be calculated by averaging the change of the particle
invariants over all the collisions in accordance with the particle distribution function. Piwinski defined
the time-derivative d〈εx〉/dt̄ of the average radial emittance 〈εx〉 in the CM frame for all particles by
means of a stepwise integration process.

Stated in detail (see [1, 3]): “To calculate the mean value of the emittance and momentum devia-
tion change for one particle we have to average with respect to the second particle betatron angles and
momentum deviations. Thus, to derive the overall mean value of the emittance and momentum devia-
tion change for all particles we have to average further with respect to all betatron angles, momentum
deviations and positions of the first particle. This means that we have to integrate over all phase space
betatron coordinates, momentum spread values and azimuthal locations of two interacting particles, by
means of a probability density function P (in the rest frame) for the betatron amplitudes and angles, the
momentum deviations and the azimuthal positions of the interacting particles. This is done by integrating
P̄ (in the CM frame) over the particle bunch phase space volume V̄ with respect to the differential phase
space volume element dV̄ :

〈
d

dt̄

〈εx1〉
βx

〉
=

∫

V̄
2cβ̄P̄ dV̄

∫ π

ψ̄min

dψ̄

∫ 2π

0
dφ̄ σ̄(ψ̄)

δεx1

βx
sin ψ̄, (84)

where the outer brackets 〈 · 〉 denote the average value over the lattice parameters of the ring. Here σ̄(ψ)
is the differential Coulomb scattering cross-section for the scattering into a solid angle element dΩ̄(ψ̄, φ̄)
in the CM frame, dt̄ and dt are the proper time intervals in the CM and rest LAB frames, such that
dt = γ dt̄, c is the speed of light, and 2cβ̄ is the relative velocity of two interacting particles (labelled 1
and 2) with velocities v̄1 + v̄2 = 0 in the CM frame. The probability density function P is defined by a
product of 12 variables and can be formulated in the LAB frame as

P12var = Pηs(η1, s1)Pηs(η2, s2)Pxβx′β (xβ1 , x
′
β1

)Pxβx′β (xβ2 , x
′
β2

)Pzz′(z1, z
′
1)Pzz′(z2, z

′
2) ,

and the two-particle infinitesimal phase space volume element is

dV12var = dη1 ds1 dη2 ds2 dxβ1 dx′β1
dxβ2 dx′β2

dz1 dz′1 dz2 dz′2 . (85)

Of these 12 partial joint probability density functions, three are dependent, since during the time of
the interaction the positions of the particles are supposed to remain unchanged on account of the short
collision duration (equivalently, this follows from the assumption that the two colliding particles have
the same position). So, the variables s1,2, xβ1,2 and z1,2 satisfy the following conditions if Dz = 0:

s1 = s2, xβ1 +Dxη1 ≡ xβ2 +Dxη2, z1 = zβ1 ≡ z2 = zβ2 . (86)

Then P12var and dV12var can be reduced to 9 variables

P = Pη(η1)Pη(η2)Ps(s1)Pxβ (xβ1)Px′β (x′β1
)Px′β (x′β2

)Pz(z1)Pz′(z
′
1)Pz′(z

′
2) , (87)

dV = dη1 dη2 ds1 dxβ1 dx′β1
dx′β2

dz1 dz′1 dz′2 . (88)

We now investigate the distribution of the scattering angle ψ̄ resulting from the Coulomb inter-
action of two non-relativistic ions (with β̄ � 1) of charge Z and atomic mass A in the CM frame, for
which we can use the ‘classical’ Rutherford differential cross-section formula:

σ̄(ψ̄)=

(
AmZ2e2

4πε0|p̄2−p̄1|2
)2

1

sin4[ψ̄/2]
=

(
Z2r0mc

2

2T̄

)2
1

sin4[ψ̄/2]
=

(
Z2

A

r0

4β̄2

)2
1

sin4[ψ̄/2]
, (89)
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where T̄ = |p̄2−p̄1|2/2Am=2Amβ̄2c2 is the kinetic energy of the ion, 2Amβ̄c is the relative momentum
of the two colliding ions, with p̄1+p̄2 =0 in the CM frame as the collision is elastic, and

r0 =
e2

4πε0mc2
and ri =

r0Z
2

A
(90)

are the classical proton radius and classical ion radius, respectively.

With the assumptions ps1,2≈p1,2, (p1−p2)/p�1, px1,2/p=x′1,2�1 and pz1,2/p=z′1,2�1 (see
Eq. (75) in which 2α≡

√
θ2+ζ2), Eq. (76) can be rewritten in the following way to show the connection

between the particle velocities in the CM and LAB systems.

p̄1,2 =mγ̄1,2β̄1,2c ≈ ±
p

2

[
ξ ˆ̄u+0ˆ̄v+2α ˆ̄w

]
=±mγβc

2

[
ξ ˆ̄u+0ˆ̄v+2α ˆ̄w

]
= ±mγβc

2

[
ξ ˆ̄u+0ˆ̄v+

√
θ2+ζ2 ˆ̄w

]

=⇒ |p̄1,2|2 ≈ (mγ̄1,2β̄1,2c)
2 ≈ m2γ2β2c

4
(α2+θ2+ζ2) . (91)

Moreover, assuming non-relativistic particle velocities in the CM frame, i.e. β̄�1, γ̄≈1, then with (91)

β̄ ≈ βγ

2

√
ξ2+α2 =

βγ

2

√
ξ2+θ2+ζ2 =

βγ

2

√(
p1−p2

γp

)2

+
(
x′1−x′2

)2
+
(
z′1−z′2

)2
. (92)

The integrations required to calculate Eq. (84) can be done as follows, where the next integral Ix1 ,
needed to evaluate part of the mean time-derivative of 〈εx1〉/βx is computed by replacing δp/p and
δpx/p with their expressions in terms of the parameters α, ξ, θ, φ̄ and ψ̄ (77). Integrating δεx1/βx over
the azimuthal and scattering angle ψ̄ and φ̄ using the Mathematica program gives, upon expanding the
scattering integrals into first order series development in ψ̄min, using the Eqs. (94)–(95) below to approx-
imate ψ̄min/2 ≈ ri/(2β̄

2b̄max), we find that

Ix1 ≡
∫ π

ψ̄min

dψ̄

∫ 2π

0
dφ̄ σ̄(ψ̄)

δεx1

βx
sin ψ̄

= −πr
2
i

8β̄4

{
ξ2 + ζ2 − 2θ2 +

D2
x + D̃2

x

β2
x

γ2
(
ζ2 + θ2 − 2ξ2

)
+

6D̃x

βx
γθξ

}

+
πr2

i

4β̄4

{
4xβ1

βx

(
γxDxγξ + αx(D′xγξ − θ)

)
+ 4x′β1

(
D̃xγξ

βx
− θ
)

+ ξ2 + ζ2

+
D2
x + D̃2

x

β2
x

γ2
(
ζ2 + θ2

)
+

2D̃x

βx
γξθ

}
ln

[
2

ψ̄min

]
. (93)

Notice that the smallest scattering angle ψ̄min is defined by the maximum impact parameter b̄max, as
shown in Eqs. (36) and (37) for a classical Coulomb scattering process,

tan

[
ψ̄min

2

]
≈ ri

2β̄2b̄max
. (94)

Also, the maximum impact parameter b̄max gives a cut-off angle for the scattering angle ψ, it is often
defined as the half the beam diameter or beam height 2σz since Dz = 0.

Comment: From Eq. (36) we write, for A=Z=1 and with Eq. (90), b0 =e2/2πε0m |v̄1−v̄|2 =
e2/2πε0m|2v̄|2 = e2/4πε02mβ̄2c2 = r0/2β̄

2, supposing that v̄1 =−v̄. Hence, by means of Eq. (37),
we get tan[ψ̄min/2] = r0/2β̄

2b̄max.
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To obtain manageable results, we assume that ψ̄min � 1 (i.e. tan[ψ̄min/2]� 1), so that

2β̄2b̄max/ri � 1 . (95)

The two brackets in (93) have comparable small values as the angles ξ, θ and ζ � 1; however the first
bracket is negligible compared to the second one because it is multiplied by the Coulomb logarithm (97)
(with usual values between 10 and 20).

Ix1 ≡
∫ π

ψ̄min

dψ̄

∫ 2π

0
dφ̄ σ̄(ψ̄)

δεx1

βx
sin ψ̄

=
πr2

i

4β̄4

{
4xβ1

βx

(
γxDxγξ + αx(D′xγξ − θ)

)
+ 4x′β1

(
D̃xγξ

βx
− θ
)

+ ξ2 + ζ2

+
D2
x + D̃2

x

β2
x

γ2
(
ζ2 + θ2

)
+

2D̃x

βx
γξθ

}
ln

[
2β̄2b̄max

ri

]
. (96)

The logarithm factor in (96) is the so-called Coulomb logarithm C̄log defined in the CM system
(see e.g. [2, 23]) as

C̄log ≡ ln

[
2β̄2b̄max

ri

]
= ln

[
2

ψ̄min

]
. (97)

Comment: Observe that Clog 6= C̄log because β in the rest frame is not equal to β̄ in the CM frame as
shown in Eq. (92).

Alternative definitions of the Coulomb logarithm are proposed, for example in [18]. However, its
logarithmic dependence means that it changes slowly over a large range of the elements involved in its
definition. In summary:

The other integrals Iz1 and Is1 for the vertical and longitudinal momenta can be worked out in
a similar way, assuming no vertical dispersion (Dz = D′z = 0, with αz 6= 0). Combined, they yield
the transverse and longitudinal scattering integrals (in which δH in Eq. 83 is now rewritten as δH ≈
2ηδps/p+ (δps/p)

2 since δp ≈ δps, where η = ∆p/p)



Is1
Ix1

Iz1


 ≡

∫ π

ψ̄min

dψ̄

∫ 2π

0
dφ̄ sin ψ̄ σ̄(ψ̄)




δH1/γ

2

δεx1/βx
δεz1/βz



 =

πr2
i

4β̄4
ln

[
2β̄2b̄max

ri

]
(98)

×





−4η1

γ
ξ + θ2 + ζ2

4xβ1

βx

(
γxDxγξ + αx(D′xγξ − θ)

)
+4x′β1

(
D̃xγξ
βx
− θ
)

+ξ2+ζ2+D2
x+D̃2

x
β2
x

γ2
(
ζ2 + θ2

)
+

2D̃x

βx
γξθ

−4αzz1

βz
ζ − 4z′1ζ + ξ2 + θ2





.

In the centre of mass system, the derivatives d/ds are reduced by the factor γ due to the Lorentz
contraction along the longitudinal direction s, the transverse beam sizes and the relative momentum
spread remain unchanged, the impact parameter b̄max = bmax since it is perpendicular to the s-axis, the
bunch length becomes σ̄s=γσs

P̄ = P/γ , dt̄ = dt/γ and σ̄x′β = σx′β/γ σ̄′z = σ′z/γ ,

σ̄xβ = σxβ , σ̄z = σz and σ̄x′β = σx′β/γ σ̄′z = σ′z/γ , (99)

28

M. MARTINI

318



σ̄η = ση , σ̄s = γσs.

In accordance with Piwinski [6] - [20] the relative velocity between two colliding particles in the centre
of mass system is 2β̄c. Thus, using the Rutherford differential cross-section σ̄(ψ̄) the likelihood of a
collision per unit time and solid angle element dΩ̄(ψ̄, φ̄), denoted P̄scat is determined by the particle
density distribution in phase space P̄ . We can write

P̄scat = 2β̄c P̄ σ̄(ψ̄) with σ̄(ψ̄)dΩ̄ =

(
ri

4β̄2 sin2[ψ̄/2]

)2

sin ψ̄dψ̄dφ̄ . (100)

The phase space density distribution P̄ is given by P/γ, P being defined in LAB frame; also, the
transformation of the time step dt̄ = dt/γ in LAB frame produces another factor γ. It follows that
Eq. (84) for the change per unit time of the mean values 〈H〉/γ2 and 〈εx,z〉/βx,z , averaged over all
particles, integrating P over the phase space volume element dV introduced in Eqs. (87)–(88) can be
cast into the form, with Eq. (98):

〈
d

dt



〈H1〉/γ2

〈εx1〉/βx
〈εz1〉/βz



〉

=

∫

V

2β̄cP

γ2



Is1
Ix1

Iz1


 dV . (101)

Equation (101) is stated in the LAB frame except for β. It will be fully converted back to the laboratory
system, with β̄ replaced by its approximation βγ

√
ξ2 + θ2 + ζ2/2 (Eq. (92)) after a suitable change of

variables in P .

Step 6: Averaging over the particle momenta and positions
Computation of the mean change of the invariants εx,z and H of all particles due to the multiple particle
collisions requires averaging the above three integrals for the colliding particles over the joint density
distribution P , where the 12 variables are reduced to nine (η, s, ξ, xβ, x′β, θ, z, z

′, ζ), as three of them are
dependent; see Eq. (86). The mapping to the following new variables transformation P into P is

P (η1, η2, s1, xβ1 , x
′
β1
, x′β2

, z1, z
′
1, z
′
2) 7−→ P(η, ξ, s, xβ, x

′
β, θ, z, z

′, ζ) , (102)

where the three angles ξ, θ and ζ have been introduced. Let us make the variable substitution (in confor-
mity with Eq. (75)), taking into account that D′x 6= 0 :

xβ1,2 = xβ ∓
Dxγξ

2
, η1,2 = η ± γξ

2
,

(103)

x′β1,2
= x′β ±

θ −D′xγξ
2

, z′1,2 = z′ ± ζ

2
,

x1,2 = x , z1,2 = z , s1,2= s.

Hence, the phase space volume element dV (88) can be expressed in terms of these new variables via
the 9× 9 Jacobian matrix J of the transformation (103).

J =




∂η1/∂η ∂η2/∂η · · · x′β1
/∂η x′β2

/∂η · · · z′β1
/∂η z′β2

/∂η

∂η1/∂ξ ∂η2/∂ξ · · · x′β1
/∂ξ x′β2

/∂ξ · · · z′β1
/∂ξ z′β2

/∂ξ
...

...
. . .

...
. . .

...
∂η1/∂ζ ∂η2/∂ζ · · · x′β1

/∂ζ x′β2
/∂ζ · · · z′β1

/∂ζ z′β2
/∂ζ


 (104)

=




1 1 · · · 0 0 · · · 0 0
γ/2 −γ/2 · · · −D′xγ/2 D′xγ/2 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · 0 0 · · · 1/2 −1/2



′
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The absolute value of the determinant of J is easily found to be |det J|=γ, the density distribution and the
phase space volume element in the new variables being labelled P (102) and dV . The relation between
the new and the initial phase volume elements is related to the transformation of multiple integrals by

∫

V
P dV =

∫

V
|det J |P dV (105)

with dV = dη dξ ds dxβ dx′β dθ dz dz′ dζ and dV = dη1 dη2 ds1 dxβ1 dx′β1
dx′β2

dz1 dz′1 dz′2 .

Hence, the change per unit time of the three averaged invariants (101) can be rewritten using (105),
taking γ for |det J|

〈
d

dt



〈H〉/γ2

〈εx〉/βx
〈εz〉/βz



〉

=

∫

V

2β̄cP
γ



Is1
Ix1

Iz1


 dV . (106)

Let us consider Ix1 in Eq. (98) and replace the variables xβ1 and x′β1
in the bracket by the relevant new

variables (103) into Eq. (106). We obtain
〈

d

dt

〈εx〉
βx

〉
=
πcr2

i
2

∫

V

dV
β̄3γ
P
(
η, s, ξ, xβ, x

′
β, θ, z, z

′, ζ
)
ln

[
2β̄2b̄max

ri

]

×
{
ξ2+ζ2−2θ2+

D2
x+D̃2

x

β2
x

γ2
(
ζ2 + θ2

)
− 2γxD

2
x

βx
γ2ξ2− 2D′x

βx

(
αxDx+D̃x

)
γ2ξ2+

4D̃x

βx
γ(x′β+θ)ξ

− 4γ

βx
(αxxβ+βxx

′
β)θ+

2Dx

βx
γ(2γxxβ+αxθ)ξ+

4D′x
βx

γαxxβξ+2D′xγθξ
}
. (107)

By construction the probability density law P is clearly symmetrical with respect to the angles ξ, θ and
ζ, so the integrals vanish for the linear terms in ξ, θ and ζ of the integrands. Consequently, keeping only
the factors ξ2, θ2 and ζ2, Eq. (107) reduces to the expression to

〈
d

dt

〈εx〉
βx

〉
=
πcr2

i
2

∫

V

dV
β̄3γ
P
(
η, s, ξ, xβ, x

′
β, θ, z, z

′, ζ
)

ln

[
2β̄2b̄max

ri

]

×
{
ξ2+ζ2−2θ2+

D2
x+D̃2

x

β2
x

γ2
(
ζ2 + θ2

)
− 2γxD

2
x

βx
γ2ξ2− 2D′x

βx
(αxDx+D̃x)γ2ξ2

}
. (108)

Comment: Using Eq. (102), the symmetry of P means that P(η,−ξ, s, xβ, x′β,−θ, z, z′,−ζ) 7−→
P (η2, η1, s1, xβ1 , x

′
β2
, x′β1

, z1, z
′
2, z
′
1) where the order of the variables {η1, η2}, {x′β1

, x′β2
} and {z′1, z′2}

in P permutes without changing the probability law.

Proceeding similarly with Is1 and Iz1 in (98) and by inserting the upgrade terms into Eq. (107)
yields:

〈
d

dt



〈H〉/γ2

〈εx〉/βx
〈εz〉/βz



〉

=
πcr2

i
2

∫

V

dV
β̄3γ
P
(
η, s, ξ, xβ, x

′
β, θ, z, z

′, ζ
)

ln

[
2β̄2b̄max

ri

]

×





θ2 + ζ2 − 2ξ2

ξ2+ζ2−2θ2+
D2
x+D̃2

x

β2
x

γ2
(
ζ2 + θ2

)
− 2γxD

2
x

βx
γ2ξ2− 2D′x

βx
(αxDx+D̃x)γ2ξ2

ξ2 + θ2 − 2ζ2





. (109)

This formula for the mean change of the invariants εx,z and H makes no a priori assumption
about the density distribution P (P) of the particles within the bunch. So in principle the integral can
be calculated for arbitrary distribution functions. However, since ‘Gaussian integration’ is quite easily
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performed, many analytical IBS models are based on the assumption that all the betatron amplitudes and
angles, as well as the momentum deviations and the coordinates of the synchrotron motion (for bunched
beams), follow Gaussian distributions.

Consequently, at this stage we assume that all the variables follow Gaussian probability
laws. We then introduce bi-Gaussian formulations of the betatron amplitude and angle distributions,
Pxβx′β (xβ1,2 , x

′
β1,2

) and Pzz′(z1,2, z
′
1,2), along with the momentum and bunch-length deviation distribu-

tions Pηs(η1,2, s1,2). The density distributions, in which u=x, z stands for both horizontal and vertical
betatron motions, can be expressed as (see [24])

Puβu′β (uβ, u
′
β) =

√
1 + α2

u

2σuβσ
′
uβ

exp
[
−Q
(
uβ, u

′
β

)]
, (110)

Q
(
uβ, u

′
β

)
=

1 + α2
u

2


 u

2
β

σ2
uβ

+
2uβu

′
βαu

σuβσu′β

√
1 + α2

u

+
u′2β
σ2
u′β


 ,

Pηs(η, s) = Pη(η)Ps(s) =
1

2πσησs
exp

[
− η2

2σ2
η

− (s− s0)2

2σ2
s

]
. (111)

In standard Gaussian notation, σxβ and σx′β are the r.m.s. beam size
√
〈x2〉 and angular spread

√
〈x′2〉,

respectively, and similarly for the vertical betatron motion z, for which z= zβ and z′= z′β by Eq. (78).
Likewise ση is the momentum spread

√
〈η2〉, and σs is the r.m.s. bunch length

√
〈s2〉, with ∆s = s− s0

being the synchrotron coordinates, i.e. the position relative to the synchronous particle. The quadratic
formQ=constant is a tilted ellipse with correlation coefficient ρx=αx/

√
1+α2

x. The above probability
distributions P must be well-matched to the Courant–Snyder invariant εx = γxx

2
β + 2αxxβx

′
β + βxx

′2
β .

Using the related betatron amplitude and angle r.m.s. values σxβ and σx′β =σxβ
√
γx/βx, the probability

Pxβx′β can be rewritten as

Pxβx′β (xβ, x
′
β) =

βx
2σ2

xβ

exp

[
− βx

2σ2
xβ

(
γxx

2
β+2αxxβx

′
β+βxx

′2
β

)]
. (112)

or using the emittance εx in place of the variables position and angle xβ, x′β

Pεx(εx)=
βx

2σ2
xβ

exp

[
−βxεx

2σ2
xβ

]
⇐⇒ Pεx(εx)=

1

〈εx〉
exp
[
− εx
〈εx〉

]
. (113)

Here, the emittance describes the phase space area used by the beam; that is, for a phase space area
covering a fraction Fεx of a Gaussian beam with r.m.s. value σxβ , the emittance at Fεx % of particles is

εx=−
2σ2

xβ

βx
ln(1− Fεx) or Fεx(εx)=1−exp

[
−βxεx

2σ2
xβ

]
with 0 < Fεx ≤ 1 . (114)

Fεx(εx) is the cumulative probability function and its derivative is the probability Pεx(εx) = dF/dt
(113). The second moment of Pη(η) and the mean value of Pεx(εx) are:

〈η2〉=
∫ ∞

−∞
η2Pη(η)dη=σ2

η and 〈εx〉=
∫ ∞

0
εxPεx(εx)dεx=

2σ2
xβ

βx
=⇒

〈x2
β〉≡σ2

xβ
=
βx〈εx〉

2
and 〈x′2β 〉≡σ2

x′β
=
γx〈εx〉

2
=⇒

σx′β
σxβ

=

√
γx
βx

=
1

βx
if αx =0. (115)

The last two formulae in (115) are obtained looking at Fig. 11, which shows beam boundaries at±
√

6σxβ
and ±

√
6σx′β . In analogy, the boundaries for 〈εx〉 would be at ±σxβ = ±

√
βx〈εx〉/2 and ±σx′β =

±
√
γx〈εx〉/2, yielding σ2

x′β
=γx〈εx〉/2.
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Figure 11 depicts the area occupied by the distribution in phase space, which parameterizes an
elliptical contour surrounding a given fraction of the beam. Thus, a larger ellipse containing, say, 95% of
the particles in the bunch has envelope boundaries at ±

√
6σxβ =±√βxεx and ±

√
6σx′β =±√γxεx. For

instance, the emittances at Fεx = (39, 87, 95)% of particles in phase space are εx = (1, 4, 6)σ2
xβ
/βx.

The emittance at 39% is the r.m.s. emittance, labelled εxrms .

Fig. 11: Extrema, intercepts and slope of the phase space ellipse enclosing Fxβx′
β

% of particles characterized by
the Twiss parameters. The area bounded by the ellipse is equal to πεx.

Comment: Besides εx, which bounds a fraction Fεx of particles in phase space, an alternative
well known emittance concept is defined as εproj

x (‘projected emittance’), whose beam width contains a
fraction F proj

εx of particles projected onto a betatron amplitude axis. Unlike Fεx for εx, the beam frac-
tion F proj

εx , for instance εproj
x = (1, 4, 6)σ2

xβ
/βx is equal to F proj

εx = (68, 95, 99)%. Actually, emittance
measurements using beam profile monitors, like wire-scanners and gas ionization monitors, measure pro-
jected transverse beam distributions through ‘integration’ over the angles x′, from whence σx and εproj

x

are derived. On the other end, beam destructive type devices, such as scrapers, ongoing decrease of beam
intensity by moving blades into the beam. This process delivers the transverse beam size versus the frac-
tion of remaining intensity and, by differentiation, the betatron beam amplitude distribution. Therefore,
emittance εx are by nature of the process expressed in term of the enclosed fraction of particles.

Summing up for the r.m.s. emittances derived from phase space and projected beam densities one
gets (see also (115))

Fεxrms
=Fεxrms

(
εxrms =σ2

xβ
/βx
)

=1−exp
[
−1

2

]
=0.39 with 〈εxrms〉=

2σ2
xβ

βx
6=εxrms =

σ2
xβ

βx
,

F proj
εxrms

=F proj
εxrms

(
εproj
xrms

=
σ2
xβ

βx

)
=

∫ σxβ

−σxβ
P proj
xβ

(xβ)dxβ=0.68 where P proj
xβ

(xβ)=
1√

2π σxβ
exp
[
−

x2
β

2σ2
xβ

]
,

〈x2
β〉=

∫ ∞

−∞
x2
βP

proj
xβ

(xβ)dxβ=σ2
xβ

=⇒ 〈εproj
xrms
〉=
〈x2
β〉
βx

=
σ2
xβ

βx
≡ εproj

xrms
6=〈εxrms〉 . (116)

Figure 12 shows the reference orbit of a synchrotron accelerator or storage ring system, referred to
as the rest frame. The coordinate system attached to the rotating vector r0(s) is referred to as the centre-
of-mass frame, even though it is not an inertial system moving at constant velocity along a straight line.

To simplify and clarify the formalism, from now on we neglect the derivatives of the dispersion
and transverse betatron functions (the vertical dispersion was earlier assumed to be null) that is:

D′x,z = 0, β′x,z = −2αx,z = 0 =⇒ D̃x,z = αx,zDx,z + βx,zD
′
x,z = 0, γx,z = 1/βx,z . (117)
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Fig. 12: Curvilinear Frenet–Serret coordinate system for particle motion in accelerator and storage rings: r(s) =
r0(s) + x(s)x̂ + z(s)ẑ, with ŝ = dr0

ds /
∣∣dr0

ds

∣∣ and ẑ = ŝ× x̂ .

Using the change of variables (103), in which x′β1,2
reduces to x′β ± θ/2 since D′x = 0,

the Gaussian density distributions (110) and (111) can be rewritten in terms of the nine variables
η, s, ξ, xβ, x

′
β, θ, z, z

′, ζ as (swapping from P to P)

Pxβx′β
(
xβ ∓

Dxγξ

2
, x′β ±

θ

2

)
, Pzz′

(
z, z′ ± ζ

2

)
, Pη

(
η ± γξ

2

)
, P2

s (s) . (118)

Consequently the transformation mapping P into P (Eq. 102) of the density distributions Pxβx′β (xβ, x
′
β),

Pzz′(z, z
′) and Pηs(η, s), Eqs. (110) and (111), which are now separable since αx,z = 0, can thus be

rephrased (remembering that two particles are involved and that (78) apply) as

Pη(η1, η2) = Pη(η1)Pη(η2) 7→ Pη
(
η +

γξ

2

)
Pη
(
η − γξ

2

)
, (119)

Ps(s1, s2) = Ps(s1)Ps(s2) 7→ Ps(s)Ps(s) = P2
s (s), (120)

Pxβ (xβ1 , xβ2) = Pxβ (xβ1)Pxβ (xβ2) 7→ Pxβ
(
xβ −

Dxγξ

2

)
Pxβ

(
xβ +

Dxγξ

2

)
, (121)

Px′β (x′β1
, x′β2

) = Px′β (x′β1
)Px′β (x′β2

) 7→ Px′β
(
x′β +

θ

2

)
Px′β

(
z′β −

θ

2

)
, (122)

Pz(z1, z2) = Pz(z1)Pz(z2) 7→ P2
z (z), (123)

Pz′(z
′
1, z
′
2) = Pz′(z

′
1)Pz′(z

′
2) 7→ Pz′

(
z′ +

ζ

2

)
Pz′
(
z′β −

ζ

2

)
. (124)

The Gaussian integrals over the six variables η, s, xβ, x′β, z, z
′ can be made by means of Mathematica.

Some calculation details of the density distribution integrals are shown for (119) and (120), which are
representative of the other four integrals. Substituting the η-exp part of (111) into (119) and integrating
over the momentum deviation range {−∞,∞} gives,

∫ ∞

−∞
dη Pη

(
η +

γξ

2

)
Pη
(
η − γξ

2

)

=
1

2πσ2
η

∫ ∞

−∞
dη exp

[
− 1

2σ2
η

(
η +

γξ

2

)2
− 1

2σ2
η

(
η − γξ

2

)2
]

=
1

2πσ2
η

∫ ∞

−∞
dη exp

[
− 1

2σ2
η

(
2η2 +

γ2ξ2

2

)]

=
1

2πσ2
η

exp

[
−γ

2ξ2

4σ2
η

] ∫ ∞

−∞
dη exp

[
−η

2

σ2
η

]
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=
1

2πσ2
η

exp

[
−γ

2ξ2

4σ2
η

]√
πση =

1

2
√
πση

exp

[
−γ

2ξ2

4σ2
η

]
. (125)

Likewise, substituting the s-exp part of (111) into (120) and integrating gives
∫ ∞

−∞
dsP2

s (s) =
1

2πσ2
s

∫ ∞

−∞
ds exp

[
−(s−s0)2

2σ2
s

]
exp

[
−(s− s0)2

2σ2
s

]
=

1

2
√
πσs

. (126)

Hence, the particle density distribution P is the product of the six terms obtained after integrating the
six density distributions (right part of Eqs. (119) to (124)) with respect to the variables η, s, xβ, x′β, z, z

′,
times Nb, the number of particles per bunch is

P(ξ, θ, ζ) = Nb

x′β ,z,z
′

∏

u=η,s,xβ

∫ ∞

−∞
duPu

(
u± γλu

2

)
Pu
(
u∓ γλu

2

)

= Nb

exp
[
−γ2ξ2

4

(
1
σ2
η

+ D2
x

σ2
xβ

)
− θ2

4σ2
x′
β

− ζ2

4σ2
z′

]

64π3σxβσx′βσzσz
′σησs

. (127)

where λu stands for either ξ, 0, Dxξ, θ, or ζ. At present P is reduced to the variables ξ, θ, ζ.

To complete the transformation back to the laboratory system, β̄ must be replaced by its LAB
frame approximation βγ

√
ξ2 + θ2 + ζ2/2). Let us define the Piwinski IBS constant AP as

AP =
cr2

i Nb

64π2β3γ4σxβσx′βσzσz
′σησs

=
cr2

i Nb

64π2β3γ4εxεzεs
, wherein (128)

σ2
x=σ2

xβ
+D2

xσ
2
η , σ2

z =σ2
zβ
, σ2

xβ ,zβ
=βx,zεx,z , σ2

x′β ,z
′
β

=
εx,z
βx,z

, σxβ ,zβσx′β ,z
′
β

=εx,z , σησs=εs .

Now, using (92) and (127) the full set of Eq. (109), in which the factors D′x,z and αx,z have to be
removed because or the additional assumption D′x,z = β′x,z = 0, can be easily rearranged as

〈



d

dt

〈H〉
γ2

d

dt

〈εx〉
βx

d

dt

〈εz〉
βz




〉
= 4AP

∫∫∫ ∞

−∞

dξ dθ dζ

(ξ2 + θ2 + ζ2)3/2
exp


−γ

2ξ2

4

(
1

σ2
η

+
D2
x

σ2
xβ

)
− θ2

4σ2
x′β

− ζ2

4σ2
z′β




×





θ2 + ζ2 − 2ξ2

ξ2+ζ2−2θ2+
D2
x

β2
x

γ2
(
ζ2 + θ2 − 2ξ2

)

ξ2 + θ2 − 2ζ2





ln

[
q2

4

(
ξ2 + θ2 + ζ2

)]
. (129)

in which the parameter q is introduced for convenience

q = βγ

√
2bmax

ri
≈ 2βγ

√
σz
ri
, with bmax

def
= 2σz , (half beam or bunch height) . (130)

Comment: The Coulomb logarithm Clog in the rest frame is ‘hidden’ inside Eq. (129) since
ln
[ q2

4

(
ξ2+θ2+ζ2

)]
= Clog+ln

[γ2

4

(
ξ2+θ2+ζ2

)]
, with Clog = ln

[2β2bmax
ri

]
; see (97).
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Discussion on an invariant
In the simplest circumstances, intrabeam scattering of particles in a bunched beam may cause dilution of
the beam in phase space, leading to continuous growth of the momentum spread and/or growth of one or
both transverse emittances. The importance of the transition energy is briefly revisited here in the light
of the invariants.

The behaviour of the beam can be described via a global invariant which can be arranged in a form
close to the sum of the mean value of the change in emittance 〈εx,z〉 and the change in momentum devi-
ation 〈H〉 over the collisions of all particles, as discussed above. Then, multiplying the top momentum
deviation change term d

dt

[
〈H〉/γ2

]
in the left part of Eq. (129) by the factor (1−γ2D2

x/β
2
x) and adding

it to the emittance change middle and bottom terms d
dt

[
〈εx,z〉βx,z

]
gives a result equal to zero:

d

dt

[
〈H〉

(
1

γ2
− D2

x

β2
x

)
+
〈εx〉
βx

+
〈εz〉
βz

]
= 0 . (131)

Unfortunately, the quantity acted on by the derivative operator d/dt is not an invariant, because
the ratio Dx/βx varies along the ring lattice (i.e. it depends on the longitudinal or azimuthal coordinate s
along the lattice). However, the smooth focusing approximation holds for a weak-focusing or smooth lat-
tice. So, from the betatron and dispersion functions, the momentum compaction factor and the transition
energy factor, we have

〈βx,z〉≡
R

Qx,z
, 〈Dx〉≡

R

Q2
x,z

, αp=
〈Dx,z(s)〉
ρ(s)

=
1

γ2
t

≡ 〈Dx,z〉
R

=Q−2
x,z =⇒

〈
Dx,z

βx,z

〉
≡ 1

γ2
t

.

(where 〈 · 〉 denotes an average over the lattice). After straightforward integration with respect to t (with
the integrand now being a constant), we get the invariant

〈H〉
(

1

γ2
− 1

γ2
t

)
+
〈εx〉
βx

+
〈εz〉
βz

= constant , (132)

where ηt = γ−2
t −γ−2 is the slip factor.

Above transition energy (ηt ≥ 0)

– The coefficient of 〈H〉 in (132) is negative and the total oscillation energy can increase as
long as it does not exceed other limitations. Therefore no equilibrium distribution can exist.

Below transition energy (ηt < 0)

– The sum of the three positive invariants, and hence of the three oscillation energies, is
bounded (i.e. the IBS emittance growth is constrained). So the emittances are redistributed
in all three phase planes, holding the whole phase space invariant; the particle density distri-
bution P is stable, and an equilibrium exists (like the situation of gas molecules in a closed
box where the focusing forces are produced by the wall of the box).

Growth rates calculation (neglecting αx,z andD′x,z)
In his original model of 1974 [1], Piwinski derived expressions for the variations in the transverse os-
cillation amplitudes (similarly the square root of the transverse emittances) and momentum spread per
unit time caused by a scattering event, using the smooth focusing approximation in which only the mean
values of the lattice functions are considered; see Eq. (62). In addition, as seen earlier, the variations of
the betatron and dispersion functions are neglected and a zero vertical dispersion function along the ring
lattice is assumed, namely

〈βx〉=
R

Qx
, 〈Dx〉=

R

Q2
x

, β′x,z=−2αx,z=0 D′x,z=0 , D̃x=αxDx+βxD
′
x=0 , Dz=0 , (133)
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where R is the mean radius of the ring and Qx,z are the transverse betatron tunes.

The longitudinal, horizontal and vertical growth times τ−1
η,x,z are given by

1

τη
=

1

ση

dση
dt

=
1

2σ2
η

dσ2
η

dt
=

1

2〈η2〉
d〈η2〉
dt

=
1

2〈H〉
d〈H〉
dt

sol.
=⇒ 〈H〉=〈H0〉 exp

[2t

τη

]
, (134)

1

τx
=

1

σxβ

dσxβ
dt

=
1

2σ2
xβ

dσ2
xβ

dt
=

1

2〈x2
β〉
d〈x2

β〉
dt

=
1

2〈εx〉
d〈εx〉
dt

sol.
=⇒ 〈εx〉=〈εx0〉 exp

[2 t

τη

]
.

where ση is the r.m.s. relative momentum spread, H0 and εx0 are the natural relative momentum spread
squared and equilibrium transverse emittance in the absence of IBS.

At this place, the projected r.m.s. emittance onto the x-axis 〈εproj
xrms〉 = σ2

xβ
/βx

(
equal to εproj

xrms

)
is

chosen rather than the emittance defined by (116), that is 〈εxrms〉 = 2σ2
xβ
/βx

(
not equal to εxrms

)
, idem

for 〈εzrms〉, and using σ2
η = 〈η2〉 for the relative momentum deviation squared. From now on we drop the

flags ‘proj’ and ‘rms’ from the emittance notation.

Comment: The IBS growth times depend of the instantaneous beam emittance and momentum
deviation values. So, it is necessary to use an iterative procedure to compute the growth times and derive
the evolution of the emittances and momentum deviation. The IBS growth rates are defined by (134),
where τη and τx,z are the longitudinal and transverse IBS growth times of the relative momentum spread
squared H and transverse emittances εx0,z0 . Adding ‘synchrotron radiation damping’(SRD) effect with
damping times τηsrd , τxsrd and τzsrd to IBS effect, the quantities H=η2 and εx,z will evolve in accordance
with [30] as:

dH

dt
=− 2

τηsrd

(
H−H0

)
+

2

τη
H

dεx,z
dt

=− 2

τxsrd,zsrd

(
εx,z−εx0,z0

)
+

2

τx,z
εx,z . (135)

Equilibrium emittances εxeq,zeq and Hηeq are reached once dεx,z/dt = 0 and dH/dt = 0. One find

Hηeq =
τη

τη−τηsrd

H0 εxeq,zeq =
τx,z

τx,z−τxsrd,zsrd

εx0,z0 . (136)

As said above, iterative computations are required simultaneously in longitudinal and transverse planes
to get the equilibrium.

Warning! The form and the units of the first column of Eq. (129), (e.g. β−1
x d〈εx〉/dt in [rad2]) do

not fit those of Eq. (134) where 1/τη,x,z is in [s−1], as shown below. Therefore, the following quantities,
introduced for suitability, (the last two are in [rad−2]) will be added to the last column of (138) below for
compatibility

(1− d2) q2

c2
=
γ2

σ2
η

a2q2

c2
=

1

σ2
x′β

b2q2

c2
=

1

σ2
z′β

, (137)

For example, considering τ−1
x and εx, we compute (2〈εx〉)−1d〈εx〉/dt = (2σ2

xβ
)−1d〈εx〉/dt =

(2σ2
x′β
βx)−1d〈εx〉/dt= (a2q2/2 c2)−1d〈εx/βx〉/dt (with αx = 0) using (115)–(137); similarly for τ−1

z,η ,
we find



1

τη

1

τx

1

τz




=




1

2σ2
η

dσ2
η

dt

1

2σ2
xβ

dσ2
xβ

dt

1

2σ2
zβ

dσ2
zβ

dt




=




1

2〈H〉
d〈H〉
dt

1

2〈εx〉
d〈εx〉
dt

1

2〈εz〉
d〈εz〉
dt




=
q2

2 c2




(1−d2)
d

dt

〈H〉
γ2

a2 d

dt

〈εx〉
βx

b2
d

dt

〈εz〉
βz



6=




d

dt

〈H〉
γ2

d

dt

〈εx〉
βx

d

dt

〈εz〉
βz



. (138)
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where for Dz = 0 (see also Eq. (130)),

a =
σh
γσx′β

, b =
σh
γσz′β

, c = qσh =
(
βγ

√
2bmax

ri

)
σh, q = γ exp

[Clog

2

]
d2 = 1− σ2

h

σ2
η

, (139)

1

σ2
h

=

(
1

σ2
η

+
D2
x

σ2
xβ

)
⇐⇒ σh =

σησxβ
σx

or equivalently

a =
βxση
γσx

, b =
βzση
γσx

, c =
σησxβ
σx

exp
[Clog

2

]
d =

Dxση
σx

, (140)

The remaining three integrals over ξ, θ, ζ in Eq. (129) still need to be computed to get the mean
change of the invariants 〈εx,z〉 and 〈H〉= η2 due to the multiple collisions of the bunch particles circu-
lating along the lattice. To this end, a first change of variables (ξ, θ, ζ)→ (u, v, w) is made as a first step
toward the integration over the ‘angles’ ξ, θ and ζ; that is,

(
2u = qξ, 2v = qθ, 2w = qζ

)
=⇒ u2 + v2 + w2 =

q2

4
(ξ2 + θ2 + ζ2) . (141)

The aim of these approximations and changes of variables is to derive an ‘almost closed-form’ and
manageable IBS formula for estimation of the rise times of the mean oscillation amplitudes, which
determine the bunch dimensions caused by the effects of IBS. Hence, in the framework of the Piwinski
model, the growth rates are calculated in accordance with Eq. (129) reformulated using the new set of
variables (u, v, w).

This gives, converting in Eq. (129) the expressions γ2(1/σ2
η+D2

x/σ
2
xβ

) into q2/c2 and γ2D2
x/β

2
x

into d2/a2 using (139) and (140)



1

τη

1

τx

1

τz




=

〈
q2

2 c2




(1−d2)
d

dt

〈H〉
γ2

a2 d

dt

〈εx〉
βx

b2
d

dt

〈εz〉
βz




〉
=

8AP

c2

∫∫∫ ∞

−∞
exp

[
− 1

c2

(
u2+a2v2+b2w2

)]

× ln[u2+v2+w2]
(
u2+v2+w2

)3/2





(1−d2)(−2u2+v2+w2)

a2
(
(u2−2v2+w2) +

(
d
a

)2
(−2u2+v2+w2)

)

b2(u2+v2−2w2)



dudv dw , (142)

Eq. (142) is then further transformed to a triple integral in spherical-like coordinates (u, v, w) →
(
√
r, µ, ν) with

(
u =
√
r sinµ cos ν, v =

√
r sinµ sin ν, w =

√
r cosµ

)
=⇒ u2 + v2 + w2 = r , (143)

which readily gives, using Mathematica


τ−1
η

τ−1
x

τ−1
z


 =

AP

c2

∫ ∞

0
dr

∫ π

0
dµ

∫ 2π

0
dν sin[µ] exp[−rD(µ, ν)] ln[r]

×





(1− d2)
[
cos2[µ]− 1

2
(1 + 3 cos[2ν] sin2[µ])

]
(
a2 + d2

)(
1 + 3 cos[2µ]

)
+ 6
(
a2 − d2

)
cos[2ν] sin2[µ]

−2 b2
(
1 + 3 cos[2µ]

)





, (144)
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where

D(µ, ν) =
1

c2

(
b2 cos2[µ] + sin2[µ]

(
cos2[ν] + a2 sin2[ν]

))
. (145)

Therefore, introducing the following three functions:

g1[µ, ν] = 1−3 sin2[µ] cos2[ν] g2[µ, ν] = 1−3 sin2[µ] sin2[ν] g3[µ, ν] = 1−3 cos2[µ] , (146)

Eq. (144) can be cast in the compact form, in which the outer bracket 〈 · 〉 averages over the lattice
parameters,



τ−1
η

τ−1
x

τ−1
z


 =

〈
q2

2 c2




(1−d2)
a2

b2


 d

dt



〈H〉/γ2

〈εx〉/βx
〈εz〉/βz



〉

=
AP

c2

∫ ∞

0
dr

∫ π

0
dµ

∫ 2π

0
dν

× sin[µ] exp[−rD(µ, ν)] ln[r]





(1− d2) g1[µ, ν]
a2g2[µ, ν] + d2g1[µ, ν]

b2g3[µ, ν]
)



 . (147)

Now, let us define the ’scattering function’ by means of the triple integrals

f(a, b, c) = 2

∫ π

0
dµ

∫ 2π

0
dν sin[µ] (1− 3 cos2[µ])

∫ ∞

0
dρ log[c2ρ] exp

[
−ρD0(µ, ν)

]
(148)

where a new variable ρ=r/c2 is introduced, a, b, c being defined in (139) and

D0(µ, ν) =
(

sin2[µ]
(
a2 cos2[ν] + b2 sin2[ν]

)
+ cos2[µ]

)
. (149)

Notice that D0(µ, ν) 6=D(µ, ν). The function f(a, b, c) cannot be evaluated in closed form over the three
variables, but the single integral over ρ can be solved analytically (e.g. by Mathematica):

∫ ∞

0
dρ log[c2ρ] exp

[
−ρD0(µ, ν)

]
=

2 log c− CEuler − log
[
D0(µ, ν)

]

D0(µ, ν)
, (150)

where CEuler =0.5772 is Euler’s constant. Thus, (148) reduces to the double integral

f(a, b, c) = 2

∫ π

0
dµ

∫ 2π

0
dν sin[µ]

(
1− 3 cos2[µ]

) 2 log c− CEuler − log
[
D0(µ, ν)

]

D0(µ, ν)
, (151)

From (139) we obtain 2 log c=Clog+2 log[γσh]≈Clog assuming that Clog� log[γσh]. This approxima-
tion sounds fine as usually 10 . Clog . 20

(
e.g. 7 Tev LHC: γ=7000,ση≈10−4, Clog≈20, and taking

σh≈ση we get log[c2]≈Clog� log
[
γ2σ2

η

]
= −0.7

)
.

Following Evans and Zotter approach [25], the scattering function (151) is first transformed by a
change of variables (x = cosµ, y = 2 ν), using the periodicity of π and symmetry about π/2 of cos2[ν]
and sin2[ν] (as also µ) which allows to replace the limit π of µ by π/2 and 2π of ν by π/2 and then to
multiply the integral by an additional factor 8. Therefore, since dµdν=−(2 sin[µ])−1dx dy, and with
the new limits of integration (0≤µ≤π/2 → 1≤x≤0) and (0≤ν ≤ π/2 → 0≤y≤π), the scattering
function (151) becomes :

f(a, b, c) = 8

∫ 1

0
dx

∫ π

0
dy
(
1− 3 cos2[µ]

) 2 log c− CEuler − log
[
D0(µ, ν)

]

D0(µ, ν)
. (152)
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Finally, Eq. (152) can be reduced to the single integral representation, see [25] and [28], [3], [24]:

f(a, b, c) = 8π

∫ 1

0

(
2 ln

[
C̃

2

{
1√
P (x)

+
1√
Q(x)

}]
− CEuler

)
1− 3x2

√
P (x)Q(x)

dx, (153)

with P (x) = a2 + (1− a2)x2, Q(x) = b2 + (1− b2)x2, C̃ = log[c2]− CEuler .

The function f(a, b, c) is the ‘new scattering function’ (see [25] for a full, clear and detailed derivation).
Except for a few cases, its calculation requires numerical integration.

After some more work the IBS growth rates for bunched beams can be cast into the compact form
that suits Eq. (147)




1

τη

1

τx

1

τz




= AP




σ2
xβ

σ2
x

f(a, b, c)

f

(
1

a
,
b

a
,
c

a

)
+
D2
xσ

2
η

σ2
xβ

f(a, b, c)

f

(
1

b
,
a

b
,
c

b

)



. (154)

where σ2
xβ
/σ2

x = 1−D2
xσ

2
η/σ

2
x = 1−d2 ≡ σ2

h/σ
2
η according to (139) and (140). Either Eq. (148) or

Eq. (153) can be used for f(a, b, c) but it is faster to evaluate the growth rates with the single integral.
See the appendix A for a proof of the equivalence between the two formulations (147) and (154).

3.3 The Bjorken–Mtingwa IBS model
3.3.1 Beam phase space density and emittance
A Gaussian probability distribution is taken to characterize the density of the beam in the six-dimensional
phase space {r,p}, with r = (x, z, s) and p = (px, pz, ps), where x, z and s stand for the horizontal,
vertical and longitudinal directions. The model is formulated as follows (see [2]), in connection with the
work of Piwinski [1] (see also [26] for a more recent and enlightening discussion of the topic):

P (r,p) =
Nb

Γ
exp
[
−S(r,p)

]
, Γ =

∫
d3r d3p exp

[
−S(r,p)

]
,

(155)

S(r,p) =
1

2

3∑

i,j=1

(
Aijδpiδpj + 2Bijδpiδrj + Cijδriδrj

)
= S(x) + S(z) + S(s) ,

where P (r,p) is the phase space density of the beam containing Nb particles, Γ is the phase space
‘volume’ of the beam and S(r,p) represents the nature of the Gaussian particle beam probability distri-
bution, with δr and δp denoting the position and momentum from the reference values r and p. Upon
working out the coefficients Aij , Bij and Cij , the expression for S(r,p) can be written as

S(r,p) = S(x) + S(z) + S(s),

S(x) =
βx

2σ2
xβ

(
γxx

2
β + 2αxxβx

′
β + βxx

′2
β

)
, S(z) =

βz
2σ2

zβ

(
γzz

2
β + 2αzzβz

′
β + βzz

′2
β

)
, (156)

S(s) =
η2

2σ2
η

+
(s− s0)2

2σ2
s

,

where αx,z, βx,z and γx,z are the Twiss parameters, εx,z are the r.m.s. transverse beam emittances, εs is
the r.m.s. longitudinal beam emittance, ση is the r.m.s beam momentum spread, σs is the r.m.s. beam
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length, and σx,z are the r.m.s. beam width and height. Moreover,

εx =
σ2
xβ

βx
, εz =

σ2
zβ

βz
, εs = σησs , xβ = x−Dxη , (157)

zβ = z −Dzη , x′β = x′ −D′xη , z′β = z′ −D′zη

where
x′ =

∆px
p
, z′ =

∆pz
p
, η =

∆p

p
.

From now on the Heaviside–Lorentz (HL) units ε0 = ~ = c = 1 will be used instead of the SI units kg,
m, s etc. (with a few exceptions). To convert back to SI units, we must restore the missing factors ε0, ~
and c.

Comment: Since ~ def
= h/2π = 1.054 × 10−34 J s, in HL units the value of the Planck constant

is h = 2π. Referring to the footnote associated with Eq. (1), the number of ‘single-particle states’ in the
momentum volume d3p is d3p/h3, which in HL units is d3p/(2π)3.

3.3.2 Two-body scattering
The Bjorken and Mtingwa approach to IBS modelling is based on the S-matrix, which is a time-evolution
operator relating the transition from an initial (quantum) state |i〉 to a final state |f〉 of a physical system
undergoing a scattering process; the matrix elements of S are inner products denoted by 〈f |S|i〉.

Comment: The S-matrix is proportional to the amplitudeM, which represents the physics of the
process [31]: S∝(2π)4δ4(pf − pi)M (which we take for granted at this stage), where pf and pi are the
4-momenta of the outgoing and incoming states. The δ-function enforces the momentum conservation
of the process.

The squared modulus |〈f |S|i〉|2 is interpreted as a transition probability P for a transition from
an initial state to a final one. See the appendix B for more details about this topic. Bjorken’s formalism
provides new insight into the other theories; in particular, the IBS calculations allow for the case of
strong-focusing lattices.

In a two-body scattering process, particles 1 and 2 with 4-momenta pµ1,2 (written in brief as p1,2
def
=

pµ1,2), i.e. with energy–momentum 4-vectors pµ1,2, interact with each other to give the following two 4-

momenta after collision: p′1,2
def
= p′µ1,2; cf. Eq. (160). The vectors p1,2 are the usual 3-momenta (e.g.

p1 + p2 → p′1 + p′2 for 3-momenta and p1 + p2 → p′1 + p′2 for 4-momenta). The transition rate for the
two-particle scattering process, or equivalently the number of scattering events per unit time, is given by
Eq. (2.3) in [2]; see also Eq. (7.42bis) in [32]:

dP
dt

=
1

2

∫
d3r

d3p1

γ1

d3p2

γ2
P (r,p1)P (r,p2)

∣∣M
∣∣2 d3p′1

γ′1

d3p′2
γ′2

δ4(p′1+p′2 − p1−p2)

(2π)2
, (158)

where γ1,2 = E1,2/m, with m being the mass of the two particles (assumed to be the same) and E1,2

their energies (in HL units), andM is the Lorentz-invariant Coulomb scattering amplitude.

The transition rate dP/dt caused by a two-particle scattering process, (158), can be reformulated
by introducing the exponent S(r,p) of the Gaussian beam phase space distribution P (r,p) in (155), to
calculate the rate of change of the emittances εu (with u = x, z, s); this yields (cf. [2, 33])

dεu
dt

=
Nb

2Γ2

∫
d3r

d3p1

γ1

d3p2

γ2
exp
[
−S(r,p1)

]
exp
[
−S(r,p2)

]

×
∣∣M
∣∣2(εu(p′1)−εu(p1)+εu(p′2)−εu(p2)

) d3p′1
γ′1

d3p′2
γ′2

δ4(p′1+p′2 − p1−p2)

(2π)2
.

(159)
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The goal is now to compute the scattering amplitudeM for a Coulomb interaction between two particles.
This will be done by means of the Feynman rules, using the Feynman diagram representation of a simple
scattering process.

Comment: Feynman diagrams are graphical representations of interactions according to a set of
rules that allow us to calculate the matrix elements and amplitudeM of a given interaction. With this
approach, the scattering cross-sections, decay rates, transition probabilities etc. can be calculated via a
function, called the propagator, which represents the transfer of momentum from one particle to another.
Propagators are obtained by following the prescriptions of the Feynman rules.

Computation of M for a simplified process is sketched in the following. Let rµ denote a con-
travariant vector, which, together with the corresponding covariant vector rµ

def
= gµνr

ν , makes the
product gµνrµrν invariant with respect to the Lorentz transform (with g11 = 1, g22 = g33 = g44 =
−1, and gµ6=ν = 0).

Comment: The metric is 4-momentum2 = energy2 − 3-momentum2 (in HL units), where 4-
momenta are written as p and 3-momenta as p (boldface).

Then we can write (briefly reintroducing c = 3× 108 m s−1 in place of its HL value c = 1)

r
def
= rµ ≡ (ct, r) = (ct, x, z, s), p

def
= pµ ≡

(
E

c
, p

)
=

(
E

c
, px, pz, ps

)
,

(160)

p1 · p2
def
= pµ1p2µ≡

E1E2

c
− p1 · p2, p2 def

= pµpµ ≡
E2

c2
− p2 = m2c2,

r· p def
= rµpµ ≡ tE = r · p.

The fourth formula in (160) is the well-known squared 3-momentum |p|2c2 = E2 − m2c4. With the
help of these definitions, the integral of the Dirac delta-functions in (158) expresses the conservation of
the 4-momentum:

∫
· · · δ4(p1 + p′2 − p′1 − p2) dp1 dp2 dp1 dp′1 dp′2 .

Here the intention is to sketch the techniques involved in analysing the interactions of charged par-
ticles. The approach is a kind of makeshift job based on several approximations, such as non-relativistic
elastic scattering in the centre-of-mass frame and the assumption of ‘structureless’ particles. This allows
us to regard proton–proton and electron–electron collisions as being on the same footing. (evidently
protons, with spin 1/2, subject to IBS electromagnetic forces within a circulating beam have nothing to
do with high-energy head-on collisions between protons circulating in opposite directions and experi-
encing chromodynamic quark–quark interactions, with spin 1/2, mediated by the exchange of gluons,
with spin 1.)

Let us consider a Coulomb scattering between two electrons of mass m via the exchange of a
virtual photon driving the electromagnetic force, as described by quantum electrodynamics (QED). To
quantify this scattering process with the minimal amount of formalism, we drastically simplify the com-
putations of the tricky QED mathematics for the ‘real-life’ four-body process e− + e− → e− + e− with
electrons of spin 1/2 and a massless photon of spin 1 (carrying the electromagnetic force). Instead, we
use a ‘toy model’ which does not handle particles with spin (cf. [34]). Thus, spinless and point-like
charged particles with spinless and massless bosons are used to mimic protons and photons.

Figure 13 illustrates the elastic scattering process p1 + p2 → p′1 + p′2 in the centre-of-mass
frame of two particles, say electrons. Unlike a classical Rutherford Coulomb scattering process, for a
QED scattering process, referred to as Møller scattering, the force between two electrons results from
the exchange of virtual photons (i.e. photons that cannot be directly observed) located at two vertices.
Figure 14 depicts a two-electron scattering process described using a Feynman diagram. The two elec-
trons enter from the left of the diagram, exchange a photon and then move away to the right of the
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diagram. The nature of the interaction is described by relativistic quantum electrodynamic theory (see
e.g. [31, 32, 34, 35]).

Fig. 13: Kinematics of two-particle scattering in the
centre-of-mass system, with scattering angle ψ and
4-momentum p1,2 =(E1,2,±p1,2); similarly for p′1,2
after the collision.

Fig. 14: Feynman diagram for electron–electron
scattering in QED; ‘time’ flows from left to right, the
left-hand side of the diagram is the initial state, the
right-hand side is the final state, and the wavy line in
the middle belongs to neither the initial nor the final
state—it shows ‘how the interaction happened’. The
intermediate photon γ is ‘virtual’.

In the framework of the toy model, the electrons are reduced to spin-0 ‘particles’ with massm, the
four external lines in the Feynman diagram are associated with the particle 4-momenta p1, p2 and p′1, p

′
2

before and after the collision. The photon becomes a spin-0 and zero-mass ‘particle’, with one internal
wavy line associated with the internal 4-momentum labelled q.

The amplitudeM for the scattering process is worked out using the Feynman diagram in Fig. 14
together with the Feynman rules. The steps of the Feynman prescriptions for toy models are sketched
without proof.

1. Notation: Label the incoming and outgoing external 4-momenta p1, p2, p
′
1, p
′
2 and the internal

4-momentum q (with p1,2
def
= pµ1,2 and q def

= qµ as above).

2. Vertex factor: The two vertices contribute two factors of −ig, where i=
√
−1. Multiplying these

two factors together yields−g2. Note that the coupling constant g in QED specifies the interaction
strength between electrons and photons and is related to the fine structure constant α through
g=
√

4πα. In SI units α = e2/(4πε0~c) = 1/137, and in HL units α = e2/(4π).
3. Propagator: The single internal wavy line contributes a factor of f(q) = i/(|q|2 −m2

i ) ≡ i/|q|2
because of the spinlessness and zero mass (mi=0) of the internal ‘boson’ (the mimicked photon).
Note that a propagator f(q) is associated with the internal wavy line in the Feynman diagram and
represents the transfer, or propagation, of momentum from one electron e− to the other during the
interaction time, via a virtual photon γ.

4. Energy–momentum conservation: For the two vertices, introduce two Dirac delta-functions
(2π)4δ4(p2 − p′2 − q) and (2π)4δ4(p1 + q − p′1) and multiply them together. The scattering am-
plitude is expressed as the product of the coupling constant g and the propagator f(q), namely
M = gf(q). Note that this prescription enforces the conservation of energy and momentum at
each vertex, because the delta-functions are zero when the sum of the incoming 4-momenta and
that of the outgoing 4-momenta are the same.

5. Integration over internal 4-momenta: Then integrate the delta-functions for the unique internal
4-momentum q over the variables d4q/(2π)4.
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Steps 1–5 give the amplitude approximation for non-relativistic scattering of spinless and point-like
charged ‘particles’ (with mass m) and spinless and massless ‘bosons’ mimicking electrons and photons:

M = −i (2π)4g2

∫
1

|q|2 δ
4
(
p2 − p′2 − q

)
δ4
(
p1 + q − p′1

)
d4q . (161)

Integration of the delta-function is done by inspection. Choosing the second delta-function to integrate,
we substitute q 7→ p′1 − p1 into (161) and obtain

M = −i (2π)4g2

∫
1

|q|2 δ
4
(
p1 + p2 − p′1 − p′2

)
δ4
(
q − [p′1 − p1]

)
d4q

= − i g2

(p′1 − p1)2
(2π)4δ4

(
p1 + p2 − p′1 − p′2

)
(162)

since
∫
δ4(q − [p′1 − p1]) d4q = 1.

Discarding the left-out delta-function (2π)4δ4(p1+p2−p′1−p′2), which just re-enforces the overall
conservation of energy and momentum at the four external lines (i.e. external ‘particles’, the mimicked
electrons), we get the scattering amplitude in terms of the 4-momenta (cf. Eq. (2.3a) in [2]):

M = − i g2

(p′1 − p1)2
=

4πα

(p′1 − p1)2
. (163)

To see the link betweenM and the collisional process, the internal 4-momentum squared, |q|2 ≡ (p′1 −
p1)2, can be expanded further. Consider the 4-momentum (and energy) conservation |p′1,2|2 = |p1,2|2 for
elastic collision in the centre-of-mass frame (Fig. 13). We have E2

1,2 = E′21,2 and |p|21,2 = |p|′21,2 since
p1,2 = (E1,2,p1,2) and p2

1,2 = (E2
1,2 − p2

1,2) ≡ m1,2 = m for particles of the same mass m. Hence

p′1 − p1 = (E′1 − E1) + (p′1 − p1) = p′1 − p1 =⇒ (164)

(p′1 − p1)2 = p′21 + p2
1 − 2p′1 · p1 = p′21 + p2

1 − 2|p′1| |p1| cosψ

= 2|p|2(1− cosψ) = |p|2 sin[ψ/2] ,

in which p
def
= p1 is the incident momentum of particle 1 and ψ is the scattering angle between the two

momenta p1 and p′1 before and after collision. Therefore, in HL units, the amplitudeM takes the form

M =
4πα

|p|2 sin2[ψ/2]
=⇒

∣∣M
∣∣2 =

(
e2

|p|2 sin2[ψ/2]

)2

≡ σ(|p|, ψ) . (165)

The scattering amplitude
∣∣M
∣∣2 is thus identified with the differential cross-section σ(|p|, ψ) of the two-

electron collisional process.

Comment: Compare (165) with the cross-section σ(ψ) of a Coulomb classical (non-quantal)
Rutherford scattering process, Eq. (36).

At this point the calculations are still far from finished, and also they are not easy to perform.
After some difficult manipulations the rate of change of the emittances, dεu/dt of Eq. (159), can be
recast in the form given by Eq. (166) below. See [2] for details of the lengthy calculations used to derive
the Bjorken–Mtingwa Eq. (3.4) and then Eqs. (4.5)–(4.7), which yield growth rate expressions that are
convenient to use.
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3.3.3 Intrabeam scattering growth rates
In deriving Eq. (166), Bjorken and Mtingwa considered a zero vertical dispersion function Dz , so that
φz=0 and Hz=0, reducing Lz (168) to a matrix with all components Lzi,j =0 except for Lz3,3 =βz/εz:

Lz =
βz
εz




0 0 0
0 0 0
0 0 1


 (Eq. (2.37d) of [2]) compared to Lz =

βz
εz




0 0 0

0 γ2Hz
βz

−γφz
0 −γφz 1


 in Eq. (168) .

Moreover, in solving (166) Bjorken and Mtingwa did an approximation by neglecting the ratios βx,z/εx,z
relative to γ2D2

x/(εxεz), (βx/εz)γ
2φ2

x and γ2/ση.

To conclude, for bunched beams, the IBS growth rates τ−1
u in the horizontal, vertical and longitu-

dinal directions (u=x, z, s) are written in the form similar to that obtained by Bjorken and Mtingwa [2],

1

τu
=

1

σu

dσu
dt

=
1√
〈εu〉

d
√
〈εu〉

dt
=

1

2 〈εu〉
d〈εu〉

dt
=

= ABM Clog

〈∫ ∞

0

dλ
√
λ√

det[L+λI]

{
Tr[Lu] Tr

[
1

L+λI

]
− 3 Tr

[
Lu

( 1

Lu+λI

)]}〉
,

(166)

in which we have introduced the growth rates (134), the rough momentum spread squared 〈H〉≈〈η〉2 =
σ2
η , and the Bjorken-Mtingwa scattering constant ABM in analogy with (128):

ABM Clog =4πAP Clog =
cr2

i NbClog

16πβ3γ4εxεzεs
≡ π

2Nb c0 r
2
i Clog

2γΓ
,

Γ=(2π)3(βγ)3εxεzεs,
1

τs
=

1

ση

dση
dt

, (167)

where Γ is the six-dimensional phase volume for bunched beams and εs
def
= ση σs. Moreover, the lon-

gitudinal growth rate τs, has been remodelled in the handy form above, better suited for practical usage
(cf. [30] chapter 13.2 and [37] footnote3). Unlike Eq. (134) and (166) the growth rates in Ref. [37] are
expressed as the time-derivative of the emittances, yielding a factor 2 difference between both versions.
Also, the longitudinal emittance can be written instead as εs=σsσE/β

2 using the relative energy spread
∆E/E since the relationship between the momentum and energy spreads is ∆p/p= (∆E/E)/β2, the
two relative spreads being equal at high energy.

The present formulation (cf. [37]) includes the vertical dispersion Dz and its derivative D′z . The
matrix L = Lx + Lz + Ls is composed of the 3 × 3 matrices defined below in (168), I is the identity
matrix, and the brackets 〈 · 〉 represent averaging over the lattice period.

Lx =
βx
εx




1 −γφx 0

−γφx γ2Hx
βx

0

0 0 0


 , Lz =

βz
εz




0 0 0

0 γ2Hz
βz

−γφz
0 −γφz 1


 , Ls =

γ2

σ2
η




0 0 0
0 1 0
0 0 0


 (168)

with

φx,z =
Dx,zαx,z+D′x,zβx,z

βx,z
, Hx,z =

D2
x,z+β2

x,zφ
2
x,z

βx,z
= γx,zD

2
x,z+2αx,zDx,zD

′
x,z+βx,zD

′2
x,z .

In Eqs. (166)-(168), Nb is the number of particles per bunch, c0 is the speed of light reintroduced
here in SI units, ri is the classical ion radius [m] given in (90); it reduces to the classical proton radius
r0 for unit ion mass and charge A,Z (for leptons of charge Z, A is the lepton-to-electron mass ratio),
γ =

(
E2

0 +p2
)1/2

/E0 and β =
(
1−γ−2

)1/2 are the Lorentz factors, E0 is the particle rest energy [eV],
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and p is the particle momentum [eV/c]. The matrices inside the brackets depend on the optics parameters
αx,z, βx,z, Dx,z and D′x,z , on the r.m.s. unnormalized transverse emittances εx,z [m], and on the r.m.s.
relative momentum spread ση and bunch length σs [m] (or the r.m.s. longitudinal emittances [m] εs
defined above). For matched beams, the longitudinal emittance is defined as εs=πpσησs(βc)

−1 [eVs].
Clog in Eq. (166) is the Coulomb logarithm, with typical values in the range [10, 20].

After expansion of the integrand in the brackets in (166) and some lengthy computations, the
growth rates are recomputed to include the vertical dispersion function and cast in the form (cf. [36,37])

1

τu
=
π2Nb c0 r

2
i Clog

2γΓ
∆u

〈∫ ∞

0

dλ
√
λ (auλ+ bu)

(λ3 + aλ2 + bλ+ c)3/2

〉
(169)

with u=x, z, s and

∆x =
γ2Hx

εx
, ∆z =

βz
εz
, ∆s =

γ2

σ2
η

.

The nine coefficients a, b, c, ax, bx, az , bz , as and bs depend on the optics parameters and on the
approximation used. They are not reproduced here; see [37] for a complete list, including three variants.

Comment: A high energy approximation to Bjorken-Mtingwa theory [2] has been developed by
Bane [27] to give formulae for the IBS growth rates that can be rapid and easy to apply. For instance,
IBS effects in high energy storage rings, operating above transition, can induce emittance growth during
beam coasts. So, numerical simulations of the emittance evolution caused by IBS involves performing
the integrals appearing in the growth rates formulae over numerous storage ring turns, averaging the
growth rates for each turn around the storage ring and then deriving the emittance variation for this turn.
This task may be quite cumbersome and computationally intensive if one has to use plain growth rates
formulae without approximation (see also [28, 30, 33]). Although the Piwinski and Bjorken-Mtingwa
formulae for the growth rates look dissimilar, the Piwinski model (assuming weak-focussing lattices) and
the Bjorken-Mtingwa one (intrinsically ready-made for strong-focussing lattices) are in good agreement
has also shown by Bane, with sure assumptions.

For illustration, Fig. 15 plots the evolution of the Coulomb logarithm for the ELENA 100 keV
low-energy antiproton decelerator ring, computed with Eqs. (170) and (171) below.

Fig. 15: Evolution of the calculated Coulomb logarithm during 1 s on a 100 keV plateau for the nominal ELENA
beam and the first two variants in Table 4.

In [2] the Coulomb logarithm is taken to be the fixed value Clog =20. Here the Coulomb logarithm
is defined by the expression (see [23])

Clog ≡ ln
[
rmax/rmin

]
with rmax = min[σx, λD], rmin = max

[
rC

min, r
QM
min

]
, (170)
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where rmax is the smaller of the mean r.m.s. beam size σxβ and the Debye length λD, and rmin is the
larger of the distance of closest approach rC

min and the quantum diffraction limit from the nuclear radius
rQM

min . These quantities are given by

λD =
7.434

Z

√
2E⊥
ρ

, ρ =
Nb×10−6

√
64π3〈βx〉εx〈βz〉εzσ2

s

, E⊥ =
(γ2 − 1)E0

2

εx
〈βx〉

,

(171)

rC
min =

1.4410×10−9Z2

2E⊥
, rQM

min =
1.97310×10−13Z2

√
8E⊥E0

,

in which ρ is the particle volume density [m−3] and E⊥ is the transverse beam kinetic energy in the
centre-of-mass frame [eV].

4 Examples
4.1 First example: LHC and SLHC at 7 TeV
4.1.1 Nominal LHC, first interaction region upgrade and SLHC
The effects of intrabeam scattering and synchrotron radiation on the expected evolution of the LHC
and SLHC beam emittances during coasts at 7 TeV are examined for the nominal beam and beams with
reduced emittances. The study was carried out in 2010 for the first ‘interaction region’ (IR) upgrade and
for the SLHC. The nominal beam and LHC parameters and those with reduced emittances have been
selected to study the effect of IBS on emittance evolution in a coast [5].

Figure 16 shows the betatron functions along the LHC ring circumference for the LHC ‘IR phase 1
triplet’ beam and for the lattice parameters of Case 2 in Table 1 with β∗=0.3 m, used for all subsequent
IBS calculations (small disparities among the other three β∗ values were negligible). Except at the
interaction points, LHC is a fairly smooth storage ring and so more or less fulfils the smooth focusing
approximation criteria. The vertical dispersion (see Fig. 17) is generated by the vertical crossing angles
at interaction points 1 and 2 and by the detector fields of ALICE and LHCB [37].

Fig. 16: SLHC betatron functions [m] for β∗ =
0.30 m (at interaction points IP1 and IP5).

Fig. 17: Vertical dispersion [m] as a function of po-
sition [m], for the LHC at 7 TeV.

Table 1 displays a list of beam and lattice parameters related to the luminosity characteristics of
the LHC and SLHC. Cases 1 and 2 in the table show the LHC luminosity with a nominal beam intensity
of 1.15×1011 protons, and Cases 3 and 4 show the SLHC luminosity for the ‘highest’ ultimate beam
intensity of 2.36×1011 protons.
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Table 1: LHC nominal beam intensity luminosity and SLHC luminosity with improved variants

LHC and SLHC beam parameters Case 1a Case 2b Case 3c Case 4d

Nb (×1011) 1.15 1.15 1.70 2.36
εnH,V =γε [µm] (normalized) 3.75 2.54 2.65 2.60

β∗ [m] 0.55 0.30 0.25 0.15
σ∗H,V [µm] 16.58 10.11 9.40 7.21

σL [mm] 75.5 75.5 75.5 75.5
σ∆p/p (×10−4) 1.13 1.13 1.13 1.13

εL r.m.s. [eV s] 0.62 0.62 0.62 0.62
Crossing angle θ [µrad] 285 337 355 452
∆Qbb head-one 1 1.09 1.43 1.37
LuminosityL (×10−34) [cm−2 s−1] 2 1.09 4.65 10.29

aInitial IR triplet: nominal beam with LHC at top energy gives the nominal luminosity.
bIR phase 1 triplet: new optics foreseen for interaction region to give lower β∗, reduced emittance and improved luminosity.
cUltimate Nb: with the ultimate beam intensity and the reduced emittance raise ∆Qbb to still improve the luminosity.
d‘Highest’ ultimate Nb: top luminosity can be obtained by reducing β∗ and raising Nb within an emittance again reduced.
eThe head-on beam–beam tune shift ∆Qbb is normalized to the value of the nominal beam.

4.1.2 Intrabeam scattering effects in the LHC and SLHC
Figure 18 shows the initial IBS growth times in the LHC and SLHC computed with the beam parame-
ters in Table 1. The simulations were performed with a dedicated Mathematica notebook based on the
Bjorken–Mtingwa model [2], which handles the vertical dispersion function and its derivative [36].

The Mathematica code accounts for the variation of the optical parameters βH,V , β′H,V , DH,V and
D′H,V over the lattice. Table 2 displays the increase in beam emittance due to IBS for a 7 TeV proton

Fig. 18: Initial IBS growth times in hours for the four cases in Table 1. For the nominal LHC parameters (Case 1):
τL = 58 h, τH = 103 h and τV = −359 years. The vertical growth times are not shown as they are negative,
approximately −100 years, i.e. τ−1

V ≈0.

beam at the end of 10 hours’ storage in the LHC/SLHC.

Figures 19 and 20 plot the emittance evolution over the 10-hour period of coast, assuming a con-
stant beam intensity for the duration of the storage. The synchrotron radiation damping effect is not
accounted for in the simulations. IBS growth times are calculated iteratively in time steps of 5 minutes.

At each iteration i, the emittances are updated as follows:

εLHV(i+ 1)=εLHV(i) exp

[
∆t

τLHV(i)

]
� i= i+1,

1

τLHV(i+1)
=

1

∆t
ln

[
εLHV(i+1)

εLHV(i)

]
. (172)
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Table 2: IBS emittance growth after a 10-hour beam coast, considering only the IBS effect

∆εL/εL ∆εH/εH ∆εV /εV
Case 1 Initial IR triplet: β∗=0.55 m 16% 9% −0.0001%
Case 2 IR phase 1 triplet: β∗=0.30 m 24% 21% −0.001%
Case 3 Ultimate Nb: β∗=0.25 m 32% 27% −0.001%
Case 4 ‘Highest’ ultimate Nb: β∗=0.15 m 44% 37% −0.001%

εL,H,V(i+1)=εL,H,V(i) exp
[ ∆t

τL,H,V(i)

]

 i= i+1

1

τL,H,V(i+1)
=

ln εL,H,V(i+1)−ln εL,H,V(i)

∆t
(173)

Fig. 19: Evolution of the r.m.s. longitudinal emit-
tance due to IBS effect for the 4 cases of Table 1.

Fig. 20: Evolution of the r.m.s. horizontal emittance
due to IBS effect for the 4 cases of Table 1.

4.1.3 Cumulative intrabeam scattering and radiation damping effects in the LHC and SLHC
The synchrotron radiation turns into a visible effect for the LHC/SLHC proton beams at 7 TeV collision
energy. Emittances shrink with damping times τsrdL =12.9 h and τsrdHV =26.0 h in the transverse planes.
Synchrotron radiation damping (SRD) is modelled by replacing τLHV(i) with (τ−1

LHV(i)−τ−1
srdLHV

)−1 in
Eq. (173).

Figures 21–22 show the evolution of the longitudinal and transverse emittances over a 10-hour
beam coast. Synchrotron radiation dominates IBS growth in the longitudinal and vertical planes for all
of Cases 1–4; in the horizontal plane the emittance damps continuously during the coast only in Case 1,
whereas for Cases 2–4 it expands at some point during the coast. Table 3 displays the increase in beam
emittance due to IBS and SRD for a 7 TeV proton beam at the end of 10 hours’ storage in the LHC/SLHC.
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Fig. 21: Evolution of the r.m.s. longitudinal emittance
due to IBS and SRD effects for the 4 cases of Table 1.

Fig. 22: Evolution of the r.m.s. horizontal emittance
due to IBS and SRD effects for the 4 cases of Table 1.

Fig. 23: Evolution of the r.m.s. vertical emittance due to IBS and SRD effects for the 4 cases of Table 1.

Table 3: IBS emittance growth after a 10-hour beam coast, considering both IBS and SRD effects

∆εL/εL ∆εH/εH ∆εV /εV
Case 1 Initial IR triplet: β∗=0.55 m −36% −20% −32%
Case 2 IR phase 1 triplet: β∗=0.30 m −27% −5% −32%
Case 3 Ultimate Nb: β∗=0.25 m −19% 3% −32%
Case 4 ‘Highest’ ultimate Nb: β∗=0.15 m −8% 14% −32%

In summary, the longitudinal and vertical emittances of all the luminosity scenarios are kept within
target specifications for Cases 1–4. Horizontal emittances stay within requirements for Cases 1 and 2;
a small blow-up of approximately 3% is anticipated for Case 3, and a larger blow-up of approximately
14% for Case 4. Globally, for most scenarios, the evolution of emittances during the 10-hour coast is
kept within the range of design values. Observe that, without the counterbalancing damping effect of
the synchrotron radiation, the longitudinal and horizontal emittances would grow continuously during a
coast, while the vertical emittance would stay roughly the same. This is because at 7 TeV the LHC is far
above the transition energy, as γ = 7461� γt ≈ 53.8.
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4.2 Second example: ELENA at 100 keV
4.2.1 Study of nominal beam parameters and variants
ELENA is a compact hexagonal synchrotron of about 30 m circumference, equipped with an electron
cooler. It was designed to allow greater deceleration of the antiprotons (p̄) with 5.31 MeV kinetic energy
sent by the Antiproton Decelerator (AD), to yield dense beams at 100 keV kinetic energy with a beam
population of approximately 2.5×107 cooled p̄. Electron cooling is used to counteract the increase
in emittance and momentum due to the deceleration process. The plan is to increase the intensity of
the antiprotons delivered to the anti-hydrogen-based experiments at the AD by one to two orders of
magnitude [38, 39]. In [38], the joint effects of electron cooling and IBS on the beam equilibrium phase
space dimensions are computed using the code BETACOOL [3].

Fig. 24: The ELENA (Extra Low Energy Antiproton)
ring (8.6 m×10.0 m,≈30 m circumference) is a below-
transition-energy ring with γ=1.00001<γt≈1.9.

Fig. 25: ELENA cycle, with first injection plateau at
100 MeV/c, second cooling plateau at 35 MeV/c and
third cooling plateau at 13.7 MeV/c (100 keV).

The cycle has one injection plateau at 100 MeV/c momentum for the coasting p̄ beam injection
from the AD. Hence, the beam is decelerated down to a first plateau at 35 MeV/c for a cooling period of
about 8 s, followed by deceleration down to a second plateau at 13.7 MeV/c for about 3 s extra cooling
of the p̄ beam. Before the end of the plateau, the beam is bunched and further cooled for approximately
0.3 s to the emittances needed for ELENA experiments, up to the extraction of four bunches consisting of
approximately 6.25× 106 antiprotons to the transfer lines between ELENA and the experimental areas.

Figures 24 and 25 show schematically the ELENA ring and its deceleration cycle.

Figure 26 displays the optics of the ELENA ring lattice with working points QH =2.3 and QV =
1.3 (P. Belochitskii, 2012). We see that, unlike the LHC lattice (Fig. 16), ELENA is not a smooth lattice.

Table 4 shows the initial length, momentum spread, and longitudinal and transverse emittance
values of the nominal bunch and five variants (prior to IBS), used to evaluate how the bunch parameters
behave under IBS effects. This is an important issue, as the bunch length and momentum spread must be
kept close to their nominal values. This study was undertaken in 2012.

Table 4: Initial nominal beam emittances on the 100 keV plateau and five variants. The longitudinal emittance is
defined as εL =πpσBLσ∆p/p(βc)

−1, where c is the speed of light and σBL is the r.m.s. bunch length.

σBL σ∆p/p εrms
L εrms

HV
Nominal 0.325 m 7.5×10−5 2.4×10−4 eV s 1.0µm
Variant 1 0.325 m 2.5×10−5 0.8×10−4 eV s 0.5µm
Variant 2 0.325 m 1.25×10−4 4.0×10−4 eV s 2.5µm
Variant 3 0.325 m 2.5×10−4 8.0×10−4 eV s 1.0µm
Variant 4 0.325 m 3.75×10−4 12.0×10−4 eV s 1.0µm
Variant 5 0.325 m 5.0×10−4 16.0×10−4 eV s 1.0µm
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Fig. 26: ELENA ring betatron functions and dispersion function in [m]

4.2.2 Intrabeam scattering simulations for bunched beams on the 100 keV plateau
The IBS simulations for ELENA were performed with two different Mathematica notebooks for cross-
checking. The first consists of the code used for LHC/SLHC simulations. The code in the second
notebook is based on an algorithm derived by A. Piwinski [6] and implemented by Ch. Carli [7], which
takes the linear coupling into account exactly. The lattice is described in terms of magnets and their
strengths, and the program analyses linear properties such as the betatron-oscillation coupling (solenoid
and skew quadrupole magnets). The process is applied to the generalized emittances specified via the
betatron-oscillation eigenvectors (e.g. as calculated by MADX). Then this information is used to com-
pute IBS growth rates. Simulations using the second code show that the coupling effect has negligible
influence on the IBS growth rates and hence on the vertical dispersion function.

Figures 27–29 plot, for bunched beams, the longitudinal τ−1
L , horizontal τ−1

H and vertical τ−1
V

growth rates ‘without cooling’, as functions of the transverse emittance εrms
HV and the relative momentum

spread σ∆p/p. Each bunch contains 6.25× 106 antiprotons. The plotted growth rates are computed using
an initial r.m.s. bunch length of σBL = 0.325 m. Alternative plots of τ−1

LHV versus εrms
H and εrms

V , with
nominal σ∆p/p =7.5×10−5 and σBL =0.325 m, look similar and so are not shown.

Fig. 27: Longitudinal growth rate τ−1
L (GL) as εH,V

and σ∆p/p are varied, with εH≡εV and σBL =0.325 m.
Fig. 28: Horizontal growth rate τ−1

H (GH) as εH,V and
σ∆p/p are varied, with εH≡εV and σBL =0.325 m.

Figures 30 and 31 plot the transverse and longitudinal growth times τLHV ‘without cooling’ for
bunched beams (where each bunch contains 6.25× 106 antiprotons). The simulation was performed for
the nominal beam and the first two variants given in Table 4.
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Fig. 29: Vertical growth rate τ−1
V (GV) as εH,V and σ∆p/p are varied, with εH≡εV and σBL =0.325 m

Fig. 30: Evolution of the transverse IBS growth times
τHV (on the linear scale) over 1 s (εL =πpσBL(βc)−1).

Fig. 31: Evolution of the longitudinal and vertical IBS
growth times τLV (on the logarithmic scale) over 1 s.

4.2.3 Performance of nominal beam and variants for bunched beams on the 100 keV plateau
Figures 32 and 33 plot the transverse emittance εHV ‘without cooling’ for the nominal beam and the five
variants given in Table 4.

Fig. 32: Evolution of the emittances εHV over 1 s for
the nominal beam and the first two variants in Table 4.

Fig. 33: Evolution of the transverse emittances εHV
over 1 s for variants 3–5 in Table 4.

Figure 34 plots the relative momentum spread σ∆p/p with IBS effects and without cooling for the
nominal beam and the first two variants. Figure 35 plots the bunch length σBL and the momentum spread
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σ∆p/p for variants 3–5. The bunch length is given in [m] and the momentum spread in [permille], with
both units shown on the same vertical scale (e.g. σBL(1)=0.42 m, σ∆p/p(1)=0.65 permille for variant 5).

Finally, Fig. 36 displays the bunch length σBL [m] for the nominal beam and the first two variants.

Fig. 34: Evolution of the momentum spread σ∆p/p
over 1 s for the nominal beam and for variants 1–2.

Fig. 35: Evolution of the bunch length σBL and rela-
tive momentum spread σ∆p/p over 1 s for variants 3–5.

Fig. 36: Evolution of the bunch length σBL over 1 s for the nominal beam and the first two variants

From Figs. 32–36 we can see that an equilibrium between the transverse and longitudinal emit-
tances does not strictly take place, even though ELENA at 100 keV is below the transition energy, with
γ≈1<γt≈1.9. Unlike the LHC collider, ELENA is a compact decelerator ring made of a non-regular
lattice (see Fig. 26) and so does not satisfy the smooth focusing approximation criteria. Table 5 shows
the bunch length, relative momentum spread and emittance increase for the nominal bunch and the five
variants under IBS effects for 1 s at 100 keV without cooling. This allows us to quantify the bunch pa-
rameters with IBS, which is important because bunch length and momentum spread must be kept close
to their nominal values.
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Table 5: IBS beam growth ratios for the nominal beam and five variants; the ratios are of parameters experiencing
the IBS effect for 1 s on the 100 keV plateau without cooling to those same parameters not enduring IBS effects.

σBL(t)/σBL(0) εrms
L (t)/εrms

L (0) εrms
H (t)/εrms

H (0) εrms
V (t)/εrms

V (0)

Nominal 5.7 32.5 1.31 0.94
Variant 1 14.5a 205.1 1.25 1.05
Variant 2 3.3 11.0 1.07 0.93
Variant 3 2.19 4.78 1.65 1.15
Variant 4 1.59 2.54 1.81 1.27
Variant 5 1.30 1.69 1.92 1.38

aVariant 1 is the worst scenario as the bunch length grows by a factor of 14.5 under IBS effects in relation to a bunch without
IBS. Likewise, the nominal beam experiences a 5.7 growth factor due to IBS effects. The best scenario is variant 5, as the bunch
grows by only a small factor of 1.3, compatible to that of the bunch length before IBS starts.

Figure 37 displays the IBS beam parameter growth factor ratios for the nominal beam and the five
variants in Table 5. Compared to the longitudinal emittance, the transverse beam emittances are not as
significantly altered by the IBS effects.

Fig. 37: Longitudinal and transverse emittance growth ratios, εLHV(t)/εLHV(0), and the r.m.s. bunch length growth
ratio σBL(t)/σBL(0) (equal to that of the relative momentum spread σ∆p/p ) plotted for the nominal beam and the
five variants. The growth ratios are shown for IBS simulations over 1 s (large circles represent IBS raw simulation
data, while continuous and dashed lines are interpolated).

To finish, let us summarize our observations for the nominal beam and variants 1 and 5 in Table 5.

– Nominal: The increase in bunch length and relative momentum spread after the beam circulates
for 1 s on the 100 keV plateau is large; the r.m.s. bunch length increases to σBL(1) = 1.85 m
compared with σBL(0) = 0.325 m before IBS begins (also σ∆p/p(1) = 0.04%). This corresponds
to a 95% bunch length increase equal to 7.4 m (≈ 4σBL(0)), instead of the nominal 95% bunch
length of 1.3 m at t= 0 without IBS effects. The longitudinal emittance varies as the product of
the bunch length and the momentum spread since εL =πpσBLσ∆p/p(βc)

−1.
– Variant 1: The bunch length and momentum spread after 1 s are huge. Indeed, the r.m.s. bunch

length increases to σBL(1 s) = 4.7 m, while the 95% bunch length peaks at 18.8 m!
– Variant 5: This is the best scenario, because the bunch length and momentum spread will suffer

only 30% blow-up due to IBS after circulating for 1 s on the 100 keV plateau; their r.m.s. values
are σBL(1) = 0.42 m, compared with 0.325 m before IBS starts (σ∆p/p(1) = 0.065%). Similarly,
the 95% bunch length is 1.7 m.
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Appendix A: Complementary proof of growth rate formula
The Piwinski’s model [1] derives the formulae for the variations of the mean transverse emittances and
momentum spread per time unit due to a scattering event. The derivative of the betatron and dispersion
functions and the vertical dispersion function with respect to the longitudinal beam axis are neglected.
The growth rates are calculated in accordance with the expression (154) for Gaussian probability law,
derived from (147). Here, the aim to show clearly as possible the link between these formulations.

Let us define the functions

fi = 2 ki

∫ π

0
dµ

∫ 2π

0
dν

∫ ∞

0
dr sin[µ] gi[µ, ν] log[r] exp

[
−r D(µ, ν)

]
for i = 1, 2, 3 . (A1)

where k1 =
1

c2
, k2 =

a2

c2
, k3 =

b2

c2
, and

D(µ, ν) =
1

c2

(
b2 cos2[µ] + sin2[µ]

(
cos2[ν] + a2 sin2[ν]

))
.

D(µ, ν) is Eq. (145) and g1[µ, ν], g2[µ, ν], g3[µ, ν] are Eqs. (146). Now, we pass from the spherical to
Cartesian coordinates (

√
r, µ, ν)→ (u, v, w) using (143)

(
u =
√
r sinµ cos ν, v =

√
r sinµ sin ν, w =

√
r cosµ

)
=⇒ u2 + v2 + w2 = r ,

from which we can write the three functions fi as follows, since the functions gi(µ, ν) and D(u, v, w)
transform into

g1 =
1

r
(−2u2+v2+w2) , g2 =

1

r
(u2−2v2+w2) , g3 =

1

r
(u2+v2−2w2) , (A2)

D(u, v, w) =
1

r
(u2−a2 v2+b2w2) ,

2√
r
du dv dw = sin[µ] dr dµ dν



f1

f2

f3


 = 4



k1

k2

k3



∫ ∞

−∞
du

∫ ∞

−∞
dv

∫ ∞

−∞
dw




−2u2 + v2 + w2

u2 − 2v2 + w2

u2 + v2−2w2





× ln[u2 + v2 + w2]
(
u2 + v2 + w2

)3/2 exp

[
− 1

c2

(
u2 + a2v2 + b2w2

)]
, (A3)

Next, a trick is used: In f1 let u = w, v = u,w = v, in f2 let u = u, v = w,w = v, do not change f3

(i.e. u = u, v = v, w = w remain the same). We obtain (cf. [24])


f1

f2

f3


 =

4

c2




1
a2

b2



∫ ∞

−∞
du

∫ ∞

−∞
dv

∫ ∞

−∞
dw

{
u2 + v2 − 2w2

}

× ln[u2 + v2 + w2]
(
u2 + v2 + w2

)3/2





exp

[
− 1

c2

(
a2u2 + b2v2 + w2

)]

exp

[
− 1

c2

(
u2 + b2v2 + a2w2

)]

exp

[
− 1

c2

(
u2 + a2v2 + b2w2

)]





dudv dw , (A4)

Switching back to spherical coordinates leads to, with

u2+v2−2w2

r3/2
=

1− 3 cos2[µ]

r1/2
, reintroducing ρ =

r

c2
=⇒ 2√

r
du dv dw = c2 sin[µ] dρ dµ dν ,
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

f1

f2

f3


 = 2

∫ π

0
dµ

∫ 2π

0
dν

∫ ∞

0
dρ sin[µ]

(
1− 3 cos2[µ]

)
ln[ρc2]

×





exp
[
−ρ
(
sin2[µ]

(
a2 cos2[ν] + b2 sin2[ν]

)
+ cos2[µ]

]

a2 exp
[
−ρ
(
sin2[µ]

(
cos2[ν] + b2 sin2[ν]

)
+ a2 cos2[µ]

]

b2 exp
[
−ρ
(
sin2[µ]

(
cos2[ν] + a2 sin2[ν]

)
+ b2 cos2[µ]

]




≡




f
(
a, b, c

)

f
(1

a
,
b

a
,
c

a

)

f
(1

b
,
a

b
,
c

b

)



. (A5)

in which f
(
a, b, c

)
is the scattering matrix (148) and D0(µ, ν) is (149). The first equation of (A5) can be

written

f1 = 2

∫ π

0
dµ

∫ 2π

0
dν

∫ ∞

0
dρ sin[µ]

(
1− 3 cos2[µ]

)
ln[ρc2] exp [−ρD0(µ, ν)] ≡ f

(
a, b, c

)
,

Referring to Eqs. (147) the IBS growth rates can then given in terms of f1, f2, f3 as



τ−1
η

τ−1
x

τ−1
z




=
AP

c2

∫ ∞

0
dρ

∫ π

0
dµ

∫ 2π

0
dν sin[µ] exp [−ρD(µ, ν)] ln[ρc2]

×





(1− d2) g1[µ, ν]

a2g2[µ, ν] + d2g1[µ, ν]

b2g3[µ, ν]
)




≡ AP




(1− d2) f1

f2 + d2f1

f3



≡ AP




(1− d2) f
(
a, b, c

)

f
(1

a
,
b

a
,
c

a

)
+ d2f

(
a, b, c

)

f
(1

b
,
a

b
,
c

b

)



. (A6)

where f
(
a, b, c

)
= f1, f

(1

a
,
b

a
,
c

a

)
= f2, f

(1

b
,
a

b
,
c

b

)
= f3. Eq. (A6) is thus equal to Eq. (154).

Appendix B: Scattering matrix
Decay rates and cross-sections are experimentally measurable quantities, predicted in quantum physics
through probabilities given by squared inner products of particle quantum states. These inner products
can be written as matrix elements 〈f ; tf | i; ti〉 where |i; ti〉 is the initial state before the scattering of a
physical system and |f ; tf 〉 is the final state after the scattering event (cf. [35, 40–42]). The notation
〈f ; tf | i; ti〉 refers to the so-called Schrödinger picture (SP), where the states |ψ〉S evolve in time while
the operatorsOS are independent of time. In contrast, in the Heisenberg picture (HP), the states |ψ〉H are
fixed and the operators OH(t) vary in time:

SP: i
d|ψ〉S

dt
= H|ψ〉S and OS is time-independent

HP: |ψ〉H = exp(iHt)|ψ〉S and OH(t) = exp(iHt)OS exp(−iHt)

(where HL units, with ε0 = ~ = c = 1, are used). The interaction picture (IP) is a hybrid of SP and HP.
The Hamiltonian H is split up into a part H0 that can be handled exactly and a part Hint to be treated as
a perturbation: H = H0 +Hint. Thus, the time dependence of operatorsOI is driven by H0 and the time
dependence of states |ψ〉I by Hint so that the corresponding IP state vector and operator are defined by

|ψ(t)〉I = exp(iH0t) |ψ(t)〉S and OI(t) = exp(iH0t)OS exp(−iH0t)
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O=Hint=⇒ HI ≡ (Hint)I = exp(iH0t)(Hint)S exp(−iH0t) (IP) .

From this we have the equation of motion for |ψ(t)〉I,

i
d|ψ(t)〉I

dt
= HI |ψ(t)〉I, (B1)

whose solution is given by Dyson’s expansion:

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I =⇒ U(t, t0) = T
{

exp

[
−i

∫ t

t0

HI(t
′) dt′

]}
(B2)

with i =
√
−1, where U(t, t0) is a time-evolution operator satisfying the properties U(t, t) = 1 and

U(t1, t2)U(t2, t3) =U(t1, t3). The function T { · } implies a time-ordering product acting on operators
such that operators evaluated at later times are placed to the left.

Comment: For two operatorsO1,2 the function T is defined by T (O1(t1)O2(t2))=O1(t1)O2(t2)
if t1>t2 and T (O1(t1)O2(t2)) = O2(t2)O1(t1) if t2 > t1.

In the case where the particle momentum eigenstates evolve from t = −∞ to t = +∞, the time-
evolution operator is denoted by S and called the S-matrix (for ‘scattering matrix’). It is defined via its
components Sfi as

〈f |S|i〉 = 〈f ; t =∞| i; t = −∞〉Schrödinger ≡ Sfi . (B3)

The S-matrix can equivalently be defined in terms of the time-evolution operator describing scattering
experiments, as

〈f |S|i〉 = lim
t0→−∞
t→+∞

〈f |U(t, t0)|i〉 ≡ Sfi . (B4)

The idea behind this definition is that as time evolves, the particles approach each other and may
interact briefly before moving away, with each going along its own path so that the states are free of
interactions at t = ±∞. For that reason it is convenient to separate forward scattering by defining
S = I + iT , where I is the identity matrix and T is a transition matrix (called the T -matrix) which
contributes only when particles undergo scattering. The exponential form of Dyson’s expansion, the
formula on the right in (B2), is not very useful as the integral in the exponent cannot in general be
computed exactly. Therefore, provided HI is small compared with H0, it should be expanded in a
power series of the interaction ‘Hamiltonian operator’, and thus terms can be obtained to a suitable order
since (B2) is related to (B4). Since the S-matrix is the limit S = U(t→∞, t0 → −∞), the Dyson’s
expansion power series of (B2) can be written as

S = I − i

∫ ∞

−∞
dt1HI(t1) +

(−i)2

2

∫ ∞

−∞
dt1

∫ t1

−∞
dt2T

{
HI(t2)HI(t1)

}
+ · · · . (B5)

However, this approach is rather tedious. Instead, it is better to use the graphical tool of Feynman
diagrams (together with Feynman rules) discussed in the main text. Briefly, Feynman diagrams are
qualitative and symbolic figures that represent terms in the perturbation expansion of the S-matrix (see
e.g. Fig. 14). Particles in space–time are solid lines with arrows, time runs from left to right, the space
direction is perpendicular to time (antiparticles travel backwards in time), arrows show the charge flux
relative to time, and wavy lines represent ‘virtual particles’ that live for only a short time, i.e. bosons
mediating the interaction which are emitted and absorbed soon after (e.g. photons in QED). ‘Loops’ are
closed patterns of virtual particles (present in high-order diagrams corresponding to high-order terms of
the perturbative Dyson’s expansion power series).
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In the S-matrix, we are interested in the scattering part of a process and not in the part where no
scattering occurs, namely where S reduces to an identity matrix I . Therefore, we just want to calculate
〈f |S − I|i〉, the ‘non-trivial’ part of 〈f |S|i〉. Here we follow [35, 40], where it is emphasized that the
matrix elements Sfi of the S-matrix should reflect 4-momentum conservation, so that S, or S− 1, should
contain a factor (2π)4δ4(pi − pf ). It is then conventional to extract this factor and define the invariant
amplitudeM via

〈f |(iT )|i〉 ≡ 〈f |S − I|i〉 = (2π)4δ4
(∑

pi −
∑

pf

)
iM (B6)

where
∑
pf and

∑
pi are the sums of the final and initial 4-momenta, and i =

√
−1, the complex

number i is introduced to motivate the relation exp[iT ] ≈ I + iT = S. The reason the δ-function
is included in the S-matrix is to ensure observance of conservation of energy and momentum; so it is
useful to factor an overall ‘momentum-conserving δ-function’ to begin with. Detailed proofs of (B6),
which are quite difficult, are given in [43] for non-relativistic scattering and in [44] for the relativistic
case. Equation (B6) differs from the expressions in those two proofs by its 2π factor. For a two-particle
energy–momentum scattering process, this equation reads

〈f1f2|iT |i1i2〉 ≡ 〈f1f2|S−I|i1i2〉 = (2π)4δ4(p1i + p2i − p1f − p2f ) iM, (B7)

also written

〈p1fp2f |iT |p1ip2i〉 ≡ 〈p1fp2f |S−I|p1ip2i〉 = (2π)4δ4(p1i + p2i − p1f − p2f ) iM ,

where we have used the notation |i〉 = |i1〉|i2〉 = |p1i〉|p2i〉 and |f〉 = |f1〉|f2〉 = |p1f 〉|p2f 〉 for the
two-particle state.

Starting from (B6), the transition probability between the initial state |i〉 and the final state |f〉
is given by the square of the S-matrix, |〈f |S−I|i〉|2. As is usual in quantum mechanics and quantum
field theory, the probabilities of events are the squared (moduli of the) ‘quantum amplitudes’, such as
the entries of the S-matrix for calculating the probabilities of decay rates and cross-section processes.
However, to square the matrix elements we have to square the δ-function in (B6). Using the Dirac
δ-function property {δ(x− y)}2 = δ(x− y)δ(0), we obtain

{
δ4
(∑

pi −
∑

pf

)}2
= δ4

(∑
pi −

∑
pf

)
δ4(0) =∞ since δ(0) = lim

ε→0

1

ε
=∞ ,

which is meaningless! Nevertheless, such infinities must be eliminated from all physical quantities.

One proper way to solve this problem is to confine the whole system of particles in a closed box of
volume V and then let the box volume become infinite, while assuming that the interaction is turned on
for only a finite time t. For simplicity the particles are described as ‘free-particle plane waves’ that spread
over infinite volumes and time intervals. Such a finite closed box and finite time interval can be defined
using the following representation of a Dirac δ-function on a 4-position r def

= (t, r) and a 4-momentum
p

def
= (E,p). We find that

δ4(p)=
1

(2π)4

∫
exp[−irp] d3r

=
1

(2π)4

∫

V
exp[−ir · p] d3r

∫ t

0
exp[−it′E] dt′

p = E = 0
=⇒ δ4(0)=

V t

(2π)4
.

Taking the square of (B6) gives, by virtue of the last two formulae,

Pi→f ?
= |〈f |(iT )|i〉|2 ≡ |〈f |S − I|i〉|2 = V t(2π)4δ4

(∑
pi −

∑
pf

)
|M|2 . (B8)

58

M. MARTINI

348



Although the probabilities are expressed in terms of the squared amplitudes, we shall proceed differently
and replace |〈f |(iT )|i〉|2 ≡ |〈f |S − I|i〉|2 in (B8) by the ‘normalized’ probability

Pi→f =
|〈f |(iT )|i〉|2
〈f |f〉〈i|i〉 ≡

|〈f |(S − I)|i〉|2
〈f |f〉〈i|i〉 , (B9)

where the presence of inner products 〈f |f〉 and 〈i|i〉 in the denominator of (B9) stems from the fact that
they may not be normalized to unity.

As a ‘simple’ case we envisage (in a toy model framework of structureless, i.e. point-like and
spineless, particles) the decay of a single initial particle |i〉 = |i1〉, with 4-momentum |p1i〉, into two
distinct final particles |f〉 = |f1〉|f2〉 with 4-momenta |p1i〉|p2i〉 [42]. These inner products can be
shown (without proof) to be

〈i|i〉 ≡ 〈i1|i1〉 = (2E1iV ), 〈f |f〉 ≡ 〈f1f2|f1f2〉 = (2E1fV )(2E2fV ), (B10)

where E1,2f =
√
m2 + p2

1,2f (and E1i) are the particle energies with mass m and V is the volume of the

box containing the particles. Observe that |i1〉 and |f1f2〉 are not normalized to unity. Therefore, upon
substituting (B10) into (B9) the transition probability can be written as

Pi→f =
|〈f1f2|(iT )|i1〉|2
〈f1f2|f1f2〉〈i1|i1〉

= t
(2π)4

2E1i
δ4
(
p1i − p1f − p2f

)
|M|2

2∏

n=1

1

2EnfV
. (B11)

Fig. B.1: Feynman diagram for the decay p1i → p1f +p2f of one initial structureless particle with 4-momentum
p1i =(E1i,p1i) into two final structureless particles with 4-momenta p1f,2f =(E1f,2f ,p1f,2f ) after decay.

The probability of transition per unit time (called the transition rate) between the initial decaying
particle state and the final two-particle state created by decay is obtained by dividing (B11) by t, yielding

dPi→f
dt

=
1

2E1i
(2π)4δ4

(
p1i − p1f − p2f

)
|M|2

2∏

n=1

1

2EnfV
(B12)

or
dPi→f

dt
=

1

2E1i
(2π)4δ4

(
p1i − p1f − p2f

)
|M|2

(
1

2E1fV

)(
1

2E2fV

)

which, said differently, is the probability of transition per unit time to one particular final state |f〉 =
|f1〉|f2〉 out of all possible final states, made up of two particles with momenta p1f and p2f in that state.
In the limit as the box volume V → ∞, the momentum values become continuous, i.e. the |p1〉+ |p2〉
final states form a continuum, and the total decay rate, called Γ, is obtained by integration of Ṗi→f over
the continuum of final states. To determine whether the final momentum of a given particle lies within a
domain d3p in the three-dimensional momentum space, Eq. (B12) must be multiplied by the number of
states in this domain. To do this, the three-dimensional coordinate space is discretized into cells of size
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(2π)3 and one state is put into each cell. Hence, in a large box of volume V , the number of single-particle
states in a momentum space domain d3p is V d3p/(2π)3.

Comment: Note that (2π)3 is the discretized cell size in HL units, where ~ = 1 and h def
= 2π~ =

2π. Expressed in SI units, the cell size is h3,with h = 2π~ = 6.626×10−34 J s and ~ = 1.054×10−34 J s,
h being the Planck constant.

Finally, multiplying all the final state particles in Eq. (B12) by the factor V d3p/(2π)3 and inte-
grating over the two final momenta yields the decay rate Γ (at times the name Ṗi→f is used for Γ):

Γ =
1

2E1i

∫
d3p1f

(2π)32E1f

∫
d3p2f

(2π)32E2f
(2π)4δ4

(
p1i − p1f − p2f

)
|M|2 . (B13)

Notice that all the quantities V (and t) have dropped out at the end of the calculations. The amplitude
M will be calculated by means of the Feynman rules (as outlined in the main text). Similar types of
calculations are undertaken for the study of scattering cross-sections, also referred to as rate per flux.
An effective application of these powerful computational tools to intrabeam scattering is given by the
Bjorken–Mtingwa model. Eq. (B13) agrees with the decay rate formulation [32] (appendix B) and has
similarities to the Bjorken’s transition rate for the scattering process, Eq. (158).

References
[1] A. Piwinski, Intra-beam scattering, Proc. 9th Int. Conference on High Energy Accelerators, Stan-

ford, CA, 1974 (SLAC, Stanford, CA, 1974), p. 405.
[2] J. Bjorken and S. Mtingwa, Part. Accel. 13 (1983) 115.
[3] I. Meshkov et al., BETACOOL Physics Guide, Joint Institute for Nuclear Research, Dubna, Russia

(2008).
[4] P. Zenkevich, A. Bolshakov and O. Boine-Frankenheim, Kinetic effects in multiple intra-beam scat-

tering, ICFA HB204, Bensheim, 2005 [AIP Conf. Proc. 773 (2005) 425].
[5] M. Martini and A. Vivoli, Effect of intrabeam scattering and synchrotron radiation damping when

reducing transverse emittances to augment the LHC luminosity, CERN-sLHC-PROJECT-Report-
0032 (2010).

[6] A. Piwinski, in Proceedings of the CAS–CERN Accelerator School and NIKHEF-H, 16–27 June
1991, Amsterdam, the Netherlands, edited by T. Stuart, CERN–1992–001 (CERN, Geneva,1992).
http://dx.doi.org/10.5170/CERN-1992-001

[7] Ch. Carli, Private communication, CERN (2012).
[8] M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).

http://dx.doi.org/10.1017/CBO9780511815898
[9] J.A. Bittencourt, Fundamentals of Plasma Physics (Springer, New York, 2004).

http://dx.doi.org/10.1007/978-1-4757-4030-1
[10] R.L. Liboff, Kinetic Theory (Springer, New York, 2003).
[11] L. Landau, E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, vol.

10 (Butterworth-Heinemann, Oxford, 1981).
[12] D. Tong, Kinetic Theory, Graduate Course, University of Cambridge, Cambridge, UK (2012).
[13] K. Huang, Statistical Mechanics (Wiley, New York, 1987).
[14] H. Jakobsen, Chemical Reactor Modeling: Multiphase Reactive Flows (Springer, New York, 2014).

http://dx.doi.org/10.1007/978-3-319-05092-8
[15] N.S. Dikansky and D.V. Pestrikov, The Physics of Intense Beams and Storage Rings (AIP Press,

Woodbury, New York, 1994).
[16] Ya.S. Derbenev, Collisional relaxation of intense beams of heavy particles in storage rings, Fermilab

p̄ Note 176 (1981).

60

M. MARTINI

350



[17] A.H. Sørensen, Intrabeam scattering, US-CERN School on Particle Accelerators, Hilton Head Is-
land, South Carolina, USA (1990).

[18] M. Reiser, Theory and Design of Charged Particle Beams (Wiley-VCH, Weinheim, Germany,
2008). http://dx.doi.org/10.1002/9783527622047

[19] H. Wiedemann, Particle Accelerator Physics (Springer, Berlin, 2007).
[20] A. Piwinski, Intra-beam scattering, Joint US-CERN School on Particle Accelerators, Texas, USA

(1986).
[21] J. Freund, Special Relativity for Beginners (World Scientific, Singapore, 2008).

http://dx.doi.org/10.1142/6601
[22] A. Piwinski, The Touschek effect in strong focusing storage rings, DESY-98-179, Hamburg, Ger-

many (1998).
[23] M. Zisman, S. Chattopadhyay and J. Bisognano, ZAP user’s manual, LBL-21270, E.SG-15

(Lawrence Berkeley Laboratory, Berkeley, CA, 1986).
[24] M. Martini, Intrabeam scattering in the ACOL-AA machines, CERN PS/84 9 (1984).
[25] L.R. Evans and B. Zotter, Intrabeam scattering in the SPS, CERN/SPS/80-15-DI (1980).
[26] K. Kubo and K. Oide, Intrabeam scattering in electron storage rings (2001) 124401.

http://dx.doi.org/10.1103/PhysRevSTAB.4.124401
[27] K. Bane, A simplified model of intrabeam scattering, in Proceedings of the eighth European Particle

Accelerator Conference, Paris, France, 2002 (EPS-IGA and CERN, Geneva, 2002), p. 1443.
[28] K. Kubo, S. Mtingwa and A. Wolski, Intrabeam scattering formulas for high energy beams (2005)

081001. http://dx.doi.org/10.1103/PhysRevSTAB.8.081001
[29] A. Wolski, Space charge, intrabeam scattering and Touschek effects, Fourth International Acceler-

ator School for Linear Colliders, Beijing, China, 2009.
[30] A. Wolski, Beam Dynamics in High Energy Particle Accelerators (Imperial College Press, London,

2014).
[31] D. McMahon, Quantum Field Theory Demystified (McGraw-Hill, New York, 2008).
[32] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
[33] S. Mtingwa, A New High Energy Approximation of Intrabeam Scattering for Flat Electron and

Positron Beams, African Physical Review (2008) 2:0001.
[34] D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, Weinheim, Germany, 2010).
[35] I.J.R. Aitchison and A.J.G. Hey, Gauge Theories in Particle Physics. Vol. 1: From Relativistic

Quantum Mechanics to QED (CRC Press, Boca Raton, FL, 2013).
[36] F. Zimmermann, Refined models of intrabeam scattering, Proc. HB2006, Tsukuba, Japan (2006),

p. 265.
[37] F. Antoniou and F. Zimmermann, Revision of intrabeam scattering with non-ultrarelativistic cor-

rections and vertical dispersion for MAD-X, CERN-ATS-2012-066 (2012).
[38] J. Resta-López, J.R. Hunt and C.P. Welsch, Intrabeam scattering effects in ELENA, IPAC2015

Conf., Richmond, Virginia, USA (2015).
[39] V. Chohan (Ed.), Extra low energy antiproton (ELENA) ring and its transfer lines, CERN-2014-002

(2014). http://dx.doi.org/10.5170/CERN-2014-002
[40] M.D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, Lon-

don, 2014).
[41] A. Lahiri and P.B. Pal, A First Book of Quantum Field Theory (Alpha Science, Oxford, 2005).
[42] D. Tong, Quantum Field Theory, Lecture notes, University of Cambridge, Cambridge, UK (2007).
[43] S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, New York, 2013).
[44] S. Weinberg, Quantum Theory of Fields. Vol. 1 (Cambridge University Press, London, 2005).

61

INTRABEAM SCATTERING: ANATOMY OF THE THEORY

351


