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Abstract
Linear colliders are promising candidates for future high-energy lepton collid-
ers. Two options are studied in global collaborations, the International Linear
Collider (ILC) and the Compact Linear Collider (CLIC). Beam–beam effects
are an important driver of linear collider design choices and they affect the
performance of physics experiments. The lecture introduces the main physics
relevant for the beam collision and the impact on the parameter choice.
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1 Linear colliders
To date only one linear collider has been operated for physics, the Stanford linear collider (SLC) (no
definitive reference is available for the SLC, but one can use the report [1] and the references therein
as a starting point). It has been operated at the Z-resonance. Two future linear collider projects are
under consideration, the International Linear Collider (ILC [2–6]) and the Compact Linear Collider
(CLIC [7,8]). The ILC aims at a centre-of-mass energy of 500 GeV, potentially starting at 250 GeV. The
CLIC is foreseen to be implemented in three stages ranging from a centre-of-mass energy of 380 GeV
up to 3 TeV.

In circular electron–positron colliders synchrotron radiation becomes a severe issue as the beam
energy increases, since the radiation power increases with the fourth power of the energy. This can be
avoided in linear colliders. A generic example of a linear collider is shown in Fig. 1. The beams are
produced in an electron and a positron source, respectively. They are slightly accelerated and transported
to a damping ring. Here their emittance is reduced to very small values, especially in the vertical plane.
Then the beams are transported through the ring to main linac system (RTML). During the transport they
are slightly more accelerated and compressed longitudinally. In the main linac they are accelerated to
full energy. In the beam delivery system (BDS) the beams are then focused to very small sizes at the
collision point. Then they are disposed of in beam dumps.

The main challenges of a linear collider are first to achieve the beam energy in the main linac. This
requires very high gradients for the acceleration. The second challenge is to achieve the high luminosity
in a single pass. This requires very dense beams at the collision point. Both ILC and CLIC will deliver
short pulses of bunches that collide with longer intervals between pulses.

The ILC is based on the use of superconducting cavities to accelerate the beams. These allow the
use of long beam pulses. To provide the accelerating field, the cavity needs to be filled with energy. This
energy is lost very slowly in the walls of the cavity and hence one can afford a long pulse. In contrast,
the CLIC is based on high-gradient normal-conducting accelerating structures. These require very short
pulses, since the energy in the accelerating structures is lost rapidly in the copper walls. To achieve
sufficient efficiency it is therefore necessary to use very short pulses and to increase the beam current
in the pulse as much as possible. This requires short distances between the bunches. The advantage of
the normal-conducting accelerating structures is that they allow us to use higher accelerating fields than
superconducting cavities (a factor of about three between CLIC and ILC). To achieve multi-TeV energies
at practical machine length and cost thus requires the use of normal-conducting technology. The main
beam parameters for linear colliders are given in Table 1.
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Fig. 1: Generic layout of a linear collider. The beams are illustrated at the top. They are produced with relatively
large emittances, which are then reduced in the damping rings. From there to the interaction point the emittances
increase somewhat before the beams are focused at the interaction point.

Table 1: The main parameters of SLC, ILC and CLIC. More parameter sets exist for ILC and CLIC at different
energies. The CLIC set at 3 TeV includes the higher order optics and radiation effects in the beam delivery system.

Parameter Symbol [unit] SLC ILC CLIC CLIC
Centre-of-mass energy Ecm [GeV] 92 500 380 3000
Geometric luminosity Lgeom [1034 cm−2 s−1] 0.00015 0.75 0.8 4.3
Total luminosity L [1034 cm−2 s−1] 0.0003 1.8 1.5 6
Luminosity in peak L0.01 [1034 cm−2 s−1] 0.0003 1 0.9 2
Gradient G [MV m−1] 20 31.5 72 100
Particles per bunch N [109] 37 20 5.2 3.72
Bunch length σz [µm] 1000 300 70 44
Collision beam size σx,y [nm nm−1] 1700/600 474/5.9 149/2.9 40/1
Emittance εx,y [µm nm−1] 3/3000 10/35 0.95/30 0.66/20
Beta function βx,y [mm mm−1] 100/10 11/0.48 8.2/0.1 6/0.07
Bunches per pulse nb 1 1312 352 312
Distance between bunches ∆z [ns] — 554 0.5 0.5
Repetition rate fr [Hz] 120 5 50 50
Horizontal disruption Dx 0.6 0.3 0.24 0.2
Vertical disruption Dy 1.7 24.3 12.5 7.6
Photons per beam particle nγ — 1.9 1.5 2.1
Average photon energy 〈Eγ/E0〉 [%] — 2.4 4.5 13
Coherent pairs Ncoh [108] — — — 6.8
Their energy Ecoh [108 TeV] — — — 2.1
Incoherent pairs Nincoh [103] — 196 58 300
Their energy Eincoh [TeV] — 484 187 2.3× 104
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2 Luminosity and parameter drivers
The luminosity target for linear colliders is around 1034 cm−2 s−1 following the requests of the experi-
ments. In Table 1, one can note that ILC and CLIC use flat beams to achieve this ambitious luminosity
target and that the vertical beam size is only of the order of a nanometre. In the following we will discuss
the reason for this.

The luminosity L in a linear collider is given by the following formula:

L = HD
N2

4πσxσy
nbfr. (1)

Here, N is the number of particles per bunch, σx,y are the horizontal and vertical beam sizes at the
collision point, nb is the number of bunches per train, fr is the rate of trains per second and HD is
a factor that contains the impact of beam–beam forces and other relevant effects. The factor HD is
typically in the order of 1.5–2. It is useful to rewrite the formula in the following form:

L ∝ HD
N

σxσy
Nnbfr. (2)

The term Nnbfr represents the beam current. Its upper limit arises from the power consumption of the
collider and the efficiency to turn this power into beam power. It is therefore important to maximize the
luminosity per beam current, i.e. the factor N/(σxσy). However, a lower limit to the beam size arises
from the beam–beam effects.

At collision, the beams are so dense that they generate very strong electromagnetic fields. In an
electron–positron collider they focus each other; Fig. 2 illustrates this. In circular colliders this deflection
is quite small and can be understood as a thin-lens kick. In a linear collider the beams are so dense that
the particles move strongly during the collision. This so-called pinch effect reduces the effective beam
size and leads to an increase in luminosity. It has been experimentally verified in the SLC [1], where
under some conditions the luminosity was more than doubled. But this motion also leads to the emission
of radiation, the so-called beamstrahlung, which alters the energy of the colliding beam particles. As
a consequence the luminosity is not only provided at full beam energy but also at lower energies: a
luminosity spectrum forms; see Fig. 2. This places some constraint on the beam parameters.

One can rewrite the luminosity formula further:

L ∝ HD
N

σx
Nnbfr

1

σy
. (3)

In the following we will see that the term N/σx is related to the beamstrahlung emitted. Its upper limit
is defined by the requirements of the physics experiments. The term 1/σy finally is limited by the ability
to achieve and preserve a small beam emittance and to squeeze the beam to a very small size.

3 Basic beam–beam effects
In the following we discuss the fundamentals of the pinch effect and the beamstrahlung. We will discuss
head-on collisions even if the beams collide at an angle. The angle can however be neglected because in
the proposed designs it is compensated by crab crossing.

3.1 Pinch effect
3.1.1 Disruption
The focusing effect of the colliding electron and positron bunches can be described by the so-called
disruption parameter. First, let us assume that the effect is so weak that the particles receive a transverse
kick during the passage of the oncoming bunch but that they do not change their positions. If a particle
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Fig. 2: Left: an electron is deflected by the fields of the oncoming bunch and emits a beamstrahlung photon. Right:
the luminosity spectrum in CLIC at 3 TeV. The part of the luminosity above 99% of the nominal centre-of-mass
energy is called L0.01. Values are given as integrated luminosity per energy band and bunch crossing (bx).
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Fig. 3: The deflection of particles due to the fields of the oncoming bunch

is close to the centre of the beam, the deflection will depend linearly on the offset, while it will grow less
than linearly and even become smaller at larger offset. See Fig. 3 for an example of a very flat beam.
One can easily calculate the deflection of a particle in the linear regime:

dx

dz

∣∣∣∣
final

=
2Nre

γσx(σx + σy)
x,

dy

dz

∣∣∣∣
final

=
2Nre

γσy(σx + σy)
y.

Here, re ≈ 2.8 fm is the classical electron radius and γ is the relativistic factor of the particles. In each
plane, the core of the beam is thus focused into one point with a distance fx,y after the collision point.
We define the disruption parameters Dx,y = σz/fx,y. Hence,

Dx =
2Nreσz

γσx(σx + σy)
. Dy =

2Nreσz
γσy(σx + σy)

.

For Dx,y � 1, the particles will not move significantly during the collision, so our model is correct. For
Dx,y, the motion during the collision will be large, so we need to take it into account. In linear colliders
one typically finds that the horizontal disruption is small and the vertical disruption is large; see Table 1.

3.1.2 Simulation codes
For large disruption analytical models are difficult to develop and computer codes are used to simulate
the effect. The two most widely used codes are GUINEA-PIG [10] and CAIN [9]. These codes represent
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Fig. 4: The angular distribution of the particles of the spent beam

the beam by a number of macroparticles. Since the fields of the particles are transverse one can divide the
two beams into slices. At any time, only the two slices of the beams which are at the same z-position can
interact with each other. A particle is affected only by the fields of the other beam. After this interaction
they are moved forward to interact with the next slice. The interaction within a slice can be treated as
a two-dimensional problem of line charges, which can be solved using particles-in-cell or clouds-in-
cell methods. The slices are divided transversely into cells by a grid. In the first step the charges are
distributed over this grid. In the second step the fields at the grid points are computed. Using clouds, i.e.
extended particles, instead of point-like particles helps to suppress high-frequency components that are
an artefact of the finite resolution of the grid. In the third step the forces on each particle are calculated
and the particles are moved forward. The grid is also used to calculate the luminosity. The particles of
the two beams that are in the same cell collide with each other.

The codes also include the beamstrahlung effect, which is described in more detail below, and
the generation of the different electron–positron background processes. GUINEA-PIG also includes the
generation of hadronic background and the generation of muons; both processes will not be discussed
here.

3.1.3 Typical results
Table 1 shows the luminosities for ILC and CLIC. The geometric value is calculated using the simplified
formula

Lgeometric =
N2

4πσxσy
nbfr. (4)

The total luminosity is based on a full simulation of all beam–beam effects. The ratio of the two values
is HD and one can easily see that it is within the range of 1.5–2 as mentioned above.

The angular distribution of the spent beam is shown in Fig. 4 for the case of CLIC. In the detector
design one has to take care to avoid that any of the beam particles can be lost inside the detector. However,
the maximum angle of the particles is quite small; typically it is less than 1 mrad.

3.2 Beamstrahlung
When a particle is forced on a curved trajectory by the other beam, it will emit radiation in a similar
fashion as in a bending magnet. This radiation is called beamstrahlung. For typical parameters each
particle emits one to a few photons each of which carries some percentage of the particle’s energy. It is
therefore important to be aware of the stochastic nature of the beamstrahlung. Due to beamstrahlung the
particles lose energy during the collision and can therefore collide with less than the initial energy. This
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leads to the formation of a luminosity spectrum. This obviously impacts the performance of the physics
experiments. How important the effect is depends on the physics analysis that is being carried out.

The beamstrahlung can be described by its critical energy ~ωc, which can be calculated as

~ωc =
3

2

~γ3c

ρ
. (5)

Here, ρ is the bending radius of the particle trajectory. Conventionally one uses the so-called beam-
strahlung parameter Υ, which is defined as

Υ =
2

3

~ωc

E
. (6)

The beamstrahlung spectrum is described by the Sokolov–Ternov spectrum

d ẇ

dω
=

α√
3πγ2

[∫ ∞

x
K5/3(x′)dx′ +

~ω
E

~ω
E − ~ω

K2/3(x)

]
. (7)

Here, x = ω
ωc

E
E−~ω and K5/3 and K2/3 are the modified Bessel functions. In the limit Υ� 1 the power

of the photon radiation of a particle is proportional to Υ2:

P =
e2

6πε0

c

ρ2
γ4 =

2

3

rec

λ2
c

mc2Υ2 (8)

with λc = ~/(mc). The radiation spectrum of particles at different values of Υ is shown in Fig. 5. The
average beamstrahlung parameter can be estimated as

〈Υ〉 =
5

6

Nre

ασz(σx + σy)
. (9)

Here, α is the fine structure constant. Conventionally one often omits the brackets. The maximum
beamstrahlung parameter is about

Υmax ≈
12

5
Υ. (10)

For Υ � 1, the spectrum corresponds to synchrotron radiation and one speaks of the classical
regime. For Υ � 1, the radiation is partially suppressed since the critical energy is above the beam
energy. This is the so-called quantum regime. Only CLIC at 3 TeV will operate in this regime.

As one can see in Table 1, all projects have a value of nγ in the range of 1.5–2. The typical angular
distribution of the photons is small, similar to the one of the beam particles after collision; see Fig. 6 for
an example. Hence, the beamstrahlung does not generate direct background in the detector.

4 Choice of beam parameters
In this section, the choice of beam parameters at the collision point is described based on the beam–
beam physics introduced above. We will focus on the case of classical beamstrahlung. For simplicity it
is assumed that the bunch charge and length as well as the transverse emittances are already determined,
e.g. by the main linac and other systems of the collider. This leaves the choice of beta functions and the
longitudinal position of the waist. In reality the choice of parameters is more complex.

4.1 Choice of flat beams
In the classical regime, the number of photons emitted per beam particle nγ depends on the bunch charge
and transverse dimensions:

nγ ∝ Υ
σz
γ
∝ N

σx + σy
. (11)
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Fig. 6: The angular distribution of the spent beam including beamstrahlung

Similarly, the average energy Eγ of each photon is proportional to

Eγ ∝ Υ
1

γ
∝ N

(σx + σy)σz
. (12)

Typically, the emission of a single photon reduces the energy of the particle enough to not produce
luminosity in the interesting energy range. Hence, the relevant parameter is the number of photons
emitted rather than their energy.

For a given N , in order to reduce the beamstrahlung one thus aims to increase the sum of the
transverse beam sizes σx+σy. At the same time the luminosity is proportional to 1/(σxσy), so one aims
to minimize the product of the two beam sizes. Both goals can be simultaneously achieved by using a flat
beam σx � σy; the horizontal beam size is chosen to be larger than the vertical, since the damping rings
naturally deliver a horizontal emittance that is larger than the vertical. For σx � σy, we can approximate
σx ≈ σx+σy. Hence, the termN/σx in Eq. (3) is proportional to the number of beamstrahlung photons.

4.2 Luminosity spectrum and choice of horizontal beam size
A lower limit of horizontal beam size and beta function arises from the beamstrahlung to limit the degra-
dation of the luminosity spectrum. It is important to note that the luminosity spectrum is also affected
by another process. If particles collide, they can emit a photon just before the collision as a part of the
physics process; this is called initial state radiation. This emission is a radiative correction to the physics
process. In contrast to beamstrahlung, it therefore happens only to colliding particles that undergo some
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Fig. 7: Left: the total luminosity L and the luminosity above 99% of the nominal energy L0.01 as a function of
the horizontal beta function. The beta function is normalized to the chosen value βx,0. The curve labelled ‘geom’
neglects the beam–beam forces; in this case no beamstrahlung is emitted and the two luminosities are identical.
Right: the luminosity spectrum in CLIC at 380 GeV. For comparison the spectra are also given taking into account
only initial state radiation (isr) and only beamstrahlung.

physics process. However, it will degrade the luminosity spectrum in a similar fashion to beamstrahlung;
the typical centre-of-mass energy spectrum of the colliding electrons and positrons is shown on the right-
hand side of Fig. 7. Usually the experiments require that the degradation of the luminosity spectrum due
to beamstrahlung is similar to the degradation due to initial state radiation. As a measure, one uses the
ratio of the luminosity L0.01, i.e. the part above 99% of the nominal centre-of-mass energy, and the total
luminosity. In case of CLIC at 380 GeV a ratio of 60% has been targeted.

The total and peak luminosities are shown in Fig. 7 for CLIC and ILC as a function of the horizon-
tal beta function. One can observe that the total luminosity increases strongly for smaller beta functions.
It increases even faster than the geometric luminosity. This is a result of the fact that a smaller horizontal
beam size increases the disruption and therefore leads to an increase in the pinch enhancement factor
HD. However, the peak luminosity only increases slightly for smaller beam sizes. Hence, the ratio of
peak to total luminosity decreases rapidly for small beta functions, which yields a lower limit. It should
be noted that additional lower limits for the horizontal beta function exist, e.g. from the ability to design
the beam delivery system. With the chosen value, CLIC indeed reaches a ratio of 60%, as one can see on
the right-hand side of Fig. 7.

In case of CLIC at 3 TeV, the requirement on the spectrum quality is somewhat relaxed (30%),
since the tail of the luminosity spectrum also contributes to the creation of interesting physics events. An
important example is the double-Higgs production, which allows us to measure the Higgs self-coupling.
Basically the whole luminosity spectrum contributes to this production process at high energies, which
increases the importance of the total luminosity with respect to the peak luminosity.

4.3 Choice of vertical beta function
The beam size at the collision point decreases as the beta function decreases proportionally to

√
βy.

However, the beam size just around the collision point increases faster as the beta function decreases. At
any point s around the collision point s = 0, the beam size is proportional to

σy(s) ∝
√
β(0) +

s2

β(0)
. (13)

This hourglass effect limits the luminosity that one can gain by reducing the beta function; it is illustrated
in Fig. 8. In the figure the luminosity is also shown as a function of the vertical beta function for the case
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without beam–beam forces. As can be seen, the optimum beta function is about a quarter of the bunch
length and the optimum is quite flat.

The dependence of the luminosity on the beta function is strongly modified by the beam–beam
forces; see Fig. 8. For larger beta functions the pinch effect is more efficient in increasing the luminosity,
moving the optimum choice to roughly βy ≈ σz . Obviously, the value depends on the strength of the
beam–beam forces. For both projects a vertical beta function somewhat larger than the optimum has
been chosen, βy = 1.6 σz in ILC and βy = 1.4 σz in CLIC. These choices lead to a very minor loss of
luminosity. The larger beta function helps to ease the design of the beam delivery system.

4.4 Waist shift
If the beam–beam forces are weak the maximum luminosity is obtained if the waists of the two beams
are placed at the collision point. A distance Wy of the waists to the collision point leads to a reduced
luminosity. Figure 9 shows the relative luminosity as a function of the waist position for ILC and CLIC
if beam–beam forces are neglected. The dependence on Wy/σz differs slightly, since the ratio βy/σz
differs. If the beam–beam forces are taken into account the situation changes significantly. The maximum
luminosity is obtained if the waists are positioned before the collision point, Wy > 0. For the optimum
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Wy ≈ σz , the luminosity is increased by 10% instead of the expected reduction of 10%.

In principle a full optimization of the vertical beta function and waist position can be performed.
Figure 10 shows the results for ILC. The highest luminosity would be achieved using βy ≈ 0.24 mm. It
is interesting to note that using βy ≈ 0.48 mm yields more luminosity than βy ≈ 0.12 mm if the waists
are at the collision point. But if the waist position is adjusted for maximum luminosity, the smaller beta
function obtains more luminosity.

4.5 Note on crossing angle
The beams in a linear collider cross with an angle in the horizontal plane, θc = 14 mrad in ILC and
θc = 20 mrad in CLIC. This angle would reduce the luminosity to

L = HD
N2

4πσxσy
nbfr

1√
1 +

(
σz
σx

tan θc
c

)2
. (14)

The reduction is about an order of magnitude. Therefore, crab cavities are used to rotate the bunches such
that they collide head-on, even if their trajectories cross at an angle. One can thus ignore the crossing
angle and assume that the collisions are head-on.

5 Imperfect collisions
The strong beam–beam forces change the dependence of the luminosity on the beam–beam offset. They
can also lead to strong luminosity loss due to correlations in the longitudinal and transverse profiles.

5.1 Beam–beam offsets
If the beams are separated in the collision point, the luminosity is reduced. For rigid beams and neglecting
the hourglass effect, the luminosity ratio can be described as a function of the offset ∆y as

L
L0

= exp

(
−∆y2

4σ2
y

)
. (15)

The beam–beam forces strongly modify this behaviour. Figure 11 shows the luminosity ratio as a func-
tion of offset for different disruption parameters. For weak disruption the luminosity decreases more
slowly with offset than for rigid beams. For larger disruption very small offsets can lead to a large loss
of luminosity. This is due to the fact that the collision becomes unstable, the kink instability, which is
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a typical two-stream instability. For large offsets, the beam–beam forces maintain more luminosity than
for rigid beams. This is because the beams attract each other.

In order to avoid luminosity reduction a control of the beam–beam offset is required at the level
of a fraction of a nanometre. The motion of the ground and vibrations of technical components make
this a challenging task. Two main methods are used to address this challenge. First, in case of CLIC, the
beam-guiding magnets are stabilized with active feedback systems that sense the motion of the magnet
and correct it using movers. Second, in both ILC and CLIC, the beam–beam offset is measured and
corrected with a beam-based feedback system. In case of ILC this feedback system can correct from one
bunch to the next within the pulse; in CLIC it has a latency of a few bunch crossings and mainly acts
from one pulse to the next. This feedback can easily detect an offset even of a fraction of a nanometre,
since the resulting deflection of the beams is in the order of tens of µrad. A few metres downstream of
the collision point such an angle has translated into an offset that can be easily measured with a beam
position monitor.

5.2 The banana effect
Up to now we considered that the beam particles are independently distributed in the different dimen-
sions and that there are no correlations. In practice one has to take correlations into account, i.e. to model
the beam including the effects before the interaction point. This is particularly important if the vertical
disruption is larger than about 15.
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A good example of the importance of the integration of different subsystems is the so-called ba-
nana effect [11]. This effect has initially been studied for an older linear collider design, TESLA, but
is also important for ILC. In early studies the emittance growth in the main linac was studied inde-
pendently from the beam–beam simulations. However, wakefield effects in the main linac introduced
correlated offsets (i.e. the mean vertical particle position depends on the longitudinal position within the
bunch y(z)), see c) on the left-hand side of Fig. 12. The projected emittance has then been used as input
for the beam–beam simulations as in b). Instead simulations with full correlation should have been used
as in c).

Systematic studies showed that the luminosity drops much faster with increasing beam emittance
if the correlations are used in simulations than anticipated from the projected emittances [13]. This is
shown on the right-hand side of Fig. 12. The horizontal scale indicates the emittance at the interaction
point. The emittance consists of an uncorrelated part of 20 nm and an additional contribution from the
wakefields in the main linac. The luminosity is shown on the vertical axis. The approximation assumes
that the luminosity scales with 1/σy and that the correlations are not relevant. The curve L1 shows the
luminosity if both beams are centred in position and angle. Evidently the luminosity is very strongly
affected by the emittance growth due to the wakefields. This is because the collision is unstable as a
result of the high disruption.

The luminosity can be recovered if a full luminosity optimization is performed at the interaction
point by varying the beam–beam offset (Loff ) and by varying offset and angle (Lang). This procedure
however requires that the luminosity is measured online. Hence, it takes much more time than a simple
beam position monitor-based feedback. In ILC it is foreseen to perform such an optimization during each
bunch train. For a smaller disruption, as in CLIC, the banana effect is negligible. Hence, a luminosity
optimization scan during the train is not required.

6 Beam–beam background and its impact on the detector design
The beam–beam effects lead to the generation of background for the physics experiments. This includes
the production of electrons, positrons, muons and hadrons. In this lecture we will only discuss the
production of electron–positron pairs, which have an important impact on the detector design.

6.1 Coherent pair creation
If the fields of the beams are very strong they can rip up the beamstrahlung photons, forming an electron–
positron pair. This is called coherent pair creation, since it is caused by the beamstrahlung photons
interacting with the coherent field of the beams, not by interacting with individual photons [14]. For
Υ� 1, almost no coherent pair creation exists. For larger values it becomes substantial. Both GUINEA-
PIG and CAIN allow us to simulate the effect.

For the lower energy linear colliders coherent pair creation does not play an important role. For
CLIC at 3 TeV the creation of pairs from beamstrahlung is significant. About 6.8 × 108 pairs are
produced per bunch crossing. The total charge of the pairs is hence about 20% of the beam charge.
The spectrum of the pairs is shown in Fig. 13; the average particle energy is about 300 GeV. The pair
particles are produced at very small angles. However, a produced electron can move in the direction of
the electron beam or in the direction of the positron beam. In the first case it is focused by the oncoming
positron beam and in the second case it is defocused by the oncoming electron beam. It can then be
deflected to larger angles. The equivalent is true for the produced positrons. It is therefore important
that the detector provides a large enough acceptance in the outgoing beamline to avoid excessive losses
from coherent pairs. In Fig. 14, the total powers above a certain angle are shown for the spent beam, the
beamstrahlung photons and the coherent pairs. As can be seen, an exit aperture of about 10 mrad is well
sufficient to avoid losses of more than 1 W in the detector. It should be noted that 1 W corresponds to a
total energy of 400 TeV per bunch crossing or roughly the energy of 300 beam particles.
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Fig. 13: Left: the Feynman diagram for the coherent pair creation. Right: the energy spectrum of the coherent
pairs in CLIC at 3 TeV.
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Fig. 14: Left: the particle from coherent pair creation can be focused or defocused by the beams. Right: the total
power in the spent beam above a given angle in the case of CLIC at 3 TeV.

It should be noted that not only the real photons from beamstrahlung can be turned into pairs. If the
field is strong enough, even the virtual photons that are co-moving with the beam particles can be turned
into pairs. This is called the trident cascade process, because a single electron or positron generates an
additional pair in the external field. For Υ � 1, the trident cascade becomes a large source of pairs.
This is particularly problematic because the beam particles can lose a large part of their energy in this
process, degrading the luminosity spectrum. In the present linear collider designs the trident cascade
process does not play an important role. At higher energies or with shorter bunches it would become
substantial. GUINEA-PIG++ allows us to simulate the trident cascade process.

6.2 Incoherent pair creation
Colliding photons can turn into an electron–positron pair. In linear colliders two main sources of these
photons exist. One is the above-mentioned beamstrahlung. The other are virtual photons that accom-
pany each electron and positron. As a consequence three production mechanisms of pairs exist: the
Breit–Wheeler process (two real photons form a pair), the Bethe–Heitler process (one real and one vir-
tual photon form a pair) and the Landau–Lifshitz process (two virtual photons form a pair). The most
fundamental Feynman graphs are shown in Fig. 15. It is interesting to note that the actual calculation
of the pair production is complicated by the so-called beam-size effect. That is, that the size of the
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Fig. 15: Left: the Feynman diagrams for the incoherent pair creation. Right: the energy spectrum of the incoherent
pairs for an older CLIC design at 500 GeV.

Fig. 16: Left: the angle and transverse momentum of incoherent particles after the beam collision. Right: the
number of hits in the vertex detector as a function of the detector radius and for different detector main solenoid
fields.

beam modifies the cross-section. In addition the strong fields of the beams also modify the cross-section.
Conventional programs that simulate pair production do not take these effects into account. However,
GUINEA-PIG and CAIN can model these effects. Typically the number of pairs is O(105) per bunch
crossing; see Table 1. An example spectrum can be seen in Fig. 15.

Some of the incoherent pair particles are produced at larger angles, but most are produced at small
angles. The pairs are deflected in the same fashion as the coherent pairs. However, the deflection is more
important because the energy of the incoherent pairs is typically smaller. Pair particles can therefore be
deflected to relatively large angles. The maximum deflection is given by the particle energy. An example
of the final transverse momentum and angle of the pair particles is shown in Fig. 16. One can see the few
particles that have been produced at large angles. The sharp edge in the plot corresponds to the maximum
deflection that a pair particle of a given energy can obtain from the beams.

The most important effect of the incoherent pairs is that the particles can hit the vertex detector
that is as close to the beam as reasonably possible (typically a couple of centimetres). This detector
identifies the origin of particles in the detector. It can determine whether a track originates directly from
the colliding beams or if it starts at some distance from the beams because it is produced by a decay
product of a particle.
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A significant number of background electrons and positrons hitting this detector will compromise
its performance. The impact of these particles on the detector is suppressed by two measures. First,
the detector solenoid field forces particles on a helical trajectory. The radius of the helix is given by
the transverse momentum and hence particles with small p⊥ will not hit the detector. Second, particles
at small angles will also not hit the detector. The number of hits in a vertex detector of fixed angular
coverage is shown in Fig. 16 for different detector solenoid fields. As the radius of the vertex detector
increases, the number of hits decreases and they are distributed over a larger area. The relatively steep
edge corresponds to the maximum deflection of the pairs by the beams. One typically chooses a radius
sufficiently larger than the edge to guarantee good detector performance. Here, the detector design is a
direct consequence of the beam–beam effect and the corresponding background.

7 Conclusion
Beam–beam effects are important drivers for linear collider designs. The beamstrahlung is one of the
main limitations for the luminosity and affects the capabilities of the experiments. Background from the
beam–beam interaction also impacts the detector design, in particular the choice of beam-pipe radius. It
also affects the low-angle detector design.
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