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Abstract
Numerical methods are a fundamental field of research and application in ac-
celerator physics and beam dynamics. They are widely used to study inten-
sity effects and limitations in accelerators and become more important still in
regimes where simple analytical models break down and experiments cannot
be easily conducted. In this course we will introduce some basic concepts of
numerical methods used to study collective effects in circular accelerators. The
course covers macroparticle models, the implementation of the beam dynamics
and applications relevant to intensity effects and limitations. This includes ba-
sic tracking in the transverse and longitudinal planes, modelling of impedance
effects and finally two-stream effects such as electron clouds.
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1 Introduction and concepts
Numerical methods are a fundamental field of research and application in accelerator physics and beam
dynamics. They are a very powerful tool to overcome limitations from simplifications inherent to most
analytical approaches or the complications connected to many experimental studies.

The advantage of numerical modelling over analytical solutions is that it can usually be done with
far fewer approximations in order to study problems which include many of the complications present in
the physical reality. For these, usually analytical models are so complicated that they cannot be solved by
analytical means or they fail to correctly model the physical reality in the first place. In comparison with
experiments, numerical modelling allows full flexibility in parameters and set-up since basically anything
that can be modelled can also be studied even beyond practical or technical limitations. Moreover, the
level of diagnostics can be arbitrarily accurate, since nearly any observable can be exposed.

The main drawback of numerical models is that they have to be executed on computers and,
depending on the complexity of the problem, they need to run for a long time in order for them to
produce meaningful results. Therefore, the goal of a good numerical model is to capture as much of
the physical reality that is necessary to understand the problem under investigation. At the same time
the algorithms should be sufficiently easy and fast to provide solutions within a reasonable amount of
time. If implemented correctly, numerical models are able to capture the majority of physical effects
and allow for a vast range of diagnostics and data analysis to understand the underlying mechanisms that
pose intensity limitations.

There are several different ways of numerically modelling beam dynamics and intensity effects.
These range from time-domain or frequency-domain Vlasov solvers (MOSES [1] and DELPHI [2]), cir-
culant matrix models (BimBim [3]) or beam envelope tracking algorithms (HOMDYN [4]), for example.
In these lectures, we will investigate and focus on macroparticle models. Examples of modern imple-
mentations of macroparticle models are ECLOUD [5] or HEADTAIL [6], which was among the first to
treat two-stream effects in a strong–strong manner. As we will see, macroparticle models are the most
natural way of mapping the model of a physical particle beam onto a computer system. They gener-
ally provide an easy and straightforward platform for implementing almost any known physical effect
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in beam dynamics without having to move to a great level of abstraction. In that sense, they are ideally
suited to tackle most of the problems encountered in beam dynamics and collective effects and also to
introduce some of the basic concepts of numerical methods.

1.1 Macroparticle models and computer systems
Macroparticle models, obviously, make use of macroparticles. A macroparticle is a numerical repre-
sentation of an ensemble of physical particles clustered together within a representative region in space.
This is sketched in Fig. 1. Typical systems of physical particles such as a particle beam in the Large
Hadron Collider (LHC) at CERN, for example, consist of more than 1 × 1014 particles. These cannot
be practically represented on modern computer systems due to memory limitations. To overcome this
limitation, physical particles are grouped together into a single macroparticle in such a way that one is
left with roughly of the order of 1 × 107 macroparticles. This is the dimensionality of systems that can
be easily solved on conventional computer systems. In clustering physical particles into a discrete set of
macroparticles, one of course has to take care about noise issues. Many effects are now less averaged
out and therefore enhanced (consider a single macroparticle representing a cluster of 1 × 106 physical
particles receiving a kick by some element or device—all particles now receive the same kick and move
in exactly the same manner, where in reality there would be some finite spread in the motion of each
individual physical particle). To make sure the results are still physically relevant and not dominated
by numerical noise, one has to perform convergence studies. For this, a numerical parameter is varied,
in our example the total number of macroparticles, which essentially is a measure of the granularity of
our system, and the results are checked. Obviously, the results should not depend on the choice of the
numerical parameter. In this case we say that the result is converged and we accept it as output from a
numerical simulation. The results may still be wrong but the error should not originate from numerical
noise issues but rather from a systematically wrong modelling of the physical reality.

Fig. 1: Macroparticles (green) representing clusters of neighbouring physical particles (yellow)

Macroparticle models naturally map an accelerator–beam system onto modern computer systems.
If we look at the main components of an accelerator–beam system we identify the physical particle
beam and the accelerator with its elements and devices. If we think of some of the most fundamental
components of computer hardware we can identify the main memory (RAM) and the CPU.

To fully describe the dynamics of a charged particle system, such as our physical particle beam,
we need to know the generalized coordinates and the canonically conjugate momenta (i.e., the six phase-
space variables) of each individual particle along with its charge and mass. In addition, we need to know
the action of the different machine elements and devices on the particles, i.e., we need to know how
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they modify the coordinates and momenta upon interaction of the particles with the machine elements.
Numerically, the physical particles are represented by macroparticles and the machine elements are de-
scribed by functions that update the coordinates and momenta of the macroparticles in a specific manner.
Mapping this to the computer hardware, we recognize that the macroparticle system, which basically
consists of a set of coordinates and momenta along with charges and masses for each macroparticle, can
be represented by some allocated memory block in the main memory which contains and stores these
numbers. The machine elements can be represented by functions that pass instructions to the CPU to
update the numbers stored in this allocated memory block, thus generating an evolution of the coordi-
nates and momenta of the macroparticle system and, hence, finally, describing beam dynamics. This
correspondence is conceptually illustrated in Fig. 2.

Fig. 2: The mapping of an accelerator–beam system onto the fundamental components of modern computer system
hardware (display of the topological map of the system as obtained from lstopo).
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1.2 Coordinate system and initialization
In a synchrotron the reference orbit curvature ρ and the reference momentum p0 are related according to
the synchronous condition via the dipole magnetic field B as

Bρ =
p0
e
, (1)

where e is the unit charge. In these lectures, we will choose generalized coordinates and canonically
conjugate momenta to describe the dynamics of a charged particle system as illustrated in Fig. 3. These
are, in the transverse plane, the horizontal and vertical positions x and y in metres with respect to the
reference orbit of the machine and the respective angles x′ and y′. In the longitudinal plane it is the
position z in metres with respect to a position equivalent to the zero crossing of the RF fields (i.e.,
synchronous to an external RF clock) and the relative momentum offset δ with respect to the reference
momentum. We name the phase space Γ; then this results in a set of six phase-space variables for every
particle: ((

x
x′

)

i

,

(
y
y′

)

i

,

(
z
δ

)

i

)
∈ Γ, i ∈ [1, . . . , particle number] . (2)

Fig. 3: The coordinate system used in these lectures

The first step in running a macroparticle simulation is to initialize a macroparticle system. For
this we allocate a memory block in the main memory which is sufficiently large to accommodate all the
relevant quantities of the macroparticle system, i.e., generalized coordinates and canonically conjugate
momenta, charges and masses. Table 1 shows an example memory layout of a macroparticle system in
the main memory where each of the six phase-space variables is allocated as an array of length equal to
the macroparticle number which contains the corresponding values for every macroparticle. Then we fill
this memory block randomly with numbers. Of course we do not do this entirely randomly. Typically,
our macroparticle system will represent a particle bunch in a machine. As such, it should mimic the
macroscopic statistical properties of the particle bunch such as the particle distribution function or the
bunch size. A macroparticle system is therefore generated in a three-stage approach—first, we generate
a distribution according to the particle distribution function, then we scale the distribution to match the
bunch size and finally we distort the distribution without changing its r.m.s. size to match the local
machine optics.

The particle bunch’s intrinsic size is basically fully characterized by its emittance in the three
planes, horizontal, vertical and longitudinal. The transverse and longitudinal emittances are defined as

εu = γβ

√
σ2u σ

2
u′ − (σu σu′)

2 , u = x, y , (3)

εz = 4π
p0
e

√
σ2z σ

2
δ − (σzσδ)

2 , (4)

respectively, with
σ2b =

〈
(b− 〈b〉)2

〉
. (5)
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Table 1: Example memory layout of a macroparticle system in the main memory. Each of the six phase-space
variables is allocated as an array of length equal to the macroparticle number N .

Count 0 1 2 . . . N

x . . . . . . . . . . . . . . .
x′ . . . . . . . . . . . . . . .
y . . . . . . . . . . . . . . .
y′ . . . . . . . . . . . . . . .
z . . . . . . . . . . . . . . .
δ . . . . . . . . . . . . . . .

As a simple example we generate a Gaussian distribution in the horizontal plane with a given
emittance. For this we simply need to create a Gaussian distribution using a Gaussian distribution random
number generator, available in most standard libraries, in (x, x′) with parameters 1

σx =

√
εx
γβ
, (6)

σx′ =

√
εx
γβ
, (7)

such that εx = γβσxσx′ . The resulting distribution is plotted in Fig. 4.

Fig. 4: Bi-Gaussian distribution in (x, x′) with a normalized emittance of 2 µm

The distribution can now be matched to the local machine optics described by the optics functions
(αx, βx) by scaling and correlating the coordinates and momenta according to

xmatched =
√
βx x , (8)

1The careful reader will realize an apparent mismatch in the dimensions in Eq. (8). In reality, this transformation emerges
from the application of a matching section and there is another factor

√
1 [m] involved, which solves the dimension mismatch.
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x′matched =
1√
βx

x′ − αx√
βx

x . (9)

We will not go into further details of creating non-linearly matched distributions such as for an RF bucket
here.

Once all numbers have been generated, we are left with a numerical representation of the particle
bunch as a macroparticle system. This manifests in the main memory as six individual arrays each with
the length equal to the number of macroparticles in the macroparticle system. We will assume the charge
and mass of all macroparticles to be identical such that they can each be described by two single floating
point numbers. The particle bunch is now fully described by (6 × macroparticle number + 2) floating
point numbers.

So far, we are able to generate a numerical representation of a particle bunch as a macroparticle
system residing in the main memory in six arrays and two floating point numbers. No dynamics has been
included yet. For this, we need to provide functions that modify the entries in each array in accordance
with the machine elements that these functions are supposed to represent. This will be discussed in the
following sections.

2 Modelling beam dynamics in absence of collective effects
The goal in the previous section was to abstract a physical particle system such that it can be numerically
modelled. We implemented this by moving to a macroparticle system and representing it in the main
memory as a set of arrays and numbers. Now we need to propagate this macroparticle system through
the machine. For this, we need to identify machine elements and assign to them actions that they are
to apply to the macroparticle system. This will be implemented as functions that update the entries of
each of the respective arrays in accordance with the machine element that this function is supposed to
represent.

As a first step we need to formalize this action so that we understand the beam dynamics and can
come up with an algorithm that can be implemented on a computer. We can work in the framework of
classical mechanics where we know that the entire dynamics of a particle system is fully contained in a
single function, the Hamiltonian H , which is a function of the generalized coordinates and canonically
conjugate momenta [(x, x′), (y, y′), (z, δ)] and an independent variable s along which the evolution is
generated: ((

x
x′

)
,

(
y
y′

)
,

(
z
δ

))
∈ Γ, H(x, x′, y, y′, z, δ; s) ∈ f : Γ→ R. (10)

This takes place according to the Hamilton equations of motion

dx

ds
=
∂H

∂x′
,

dx′

ds
= −∂H

∂x
,

dy

ds
=
∂H

∂y′
,

dy′

ds
= −∂H

∂y
,

dz

ds
=
∂H

∂δ
,

dδ

ds
= −∂H

∂z
.

(11)

We will now treat two simple Hamiltonians that generate betatron and synchrotron motion, which
will allow us to propagate our macroparticle system along a circular accelerator in the absence of collec-
tive effects.

2.1 Transverse tracking
The basic elements in a circular accelerator that control the transverse motion are the dipoles to keep
the beam on a circular orbit and the quadrupoles that provide focusing for off-orbit particles. The orbit
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defined by the dipoles is given by the synchronous condition in Eq. (1). The focusing of the quadrupoles
is described by the Hamiltonian

H(x, x′) =
1

2
x′2 +

1

2
K(s)x2 , K(s) = K(s+ C) . (12)

The corresponding equation of motion is Hill’s equation given as

x′′ +K(s)x2 = 0 . (13)

Equation (13) has the complication that it contains an s-dependent coefficientK(s). Fortunately, this co-
efficient comes with the periodicity condition given in Eq. (12), which makes Eq. (13) actually solvable.
An excellent treatment of this problem together with non-linear terms can be found in Ref. [7]. Here, we
will focus on solving the linear problem.

The solution of any linear second order differential equation of the form (13) is uniquely deter-
mined by the initial values of x and its derivative x′:

x(s) = a x(s0) + b x′(s0),

x′(s) = c x(s0) + d x′(s0).
(14)

In matrix notation, this can be written as
(
x
x′

)∣∣∣∣
s

=

(
a b
c d

) (
x
x′

)∣∣∣∣
s0

= M(s|s0)
(
x
x′

)∣∣∣∣
s0

. (15)

The matrix formulation is useful because it separates the properties of the general solution from those due
to a specific initial condition. The matrix depends only on K(s) and the length of the interval (s − s0).
In addition, the matrix for any interval made up of subintervals is just the product of the matrices for the
subintervals, that is,

M(s2|s0) = M(s2|s1)M(s1|s0). (16)

Using the transfer matrix method together with the conditions of periodicity, stability and boundedness,
one discovers that the eigenvalues of M are given as

λ = exp (±iµ) . (17)

The matrix M satisfies (by construction, as it ultimately emerged from the Hamiltonian in Eq. (12))

MTJM = J, (18)

where J is the symplectic structure matrix

J =

(
0 1
−1 0

)
. (19)

Hence, the matrix M may be written in a form which exhibits the eigenvalues explicitly:

M = I cos(µ) + JA sin(µ), (20)

where I is the identity matrix and A is a symmetric parameterized matrix

A =

(
γ α
α β

)
. (21)
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The parameters (α, β, γ) are the Courant–Snyder parameters [8] and correspond to the optics functions.
They are s-dependent in general and play a major role in determining the details of the motion. In
particular, β determines the maximum local amplitude of transverse oscillations.

In applying Floquet’s theorem, we insert a solution

x(s) = w(s) exp (iψ(s)) ≡
√

2Jxβx(s) cos(ψx(s) + ψx,0), (22)

which again exhibits the eigenvalues of M explicitly, into (13) and find that the transfer matrix that
propagates the coordinates and momenta (x, x′) from one point s0 with local optics function (α0, β0, γ0)
to another point s1 with local optics function (α1, β1, γ1) in the ring is written as

M(s1|s0) =

( √
β1 0

− α1√
β1

1√
β1

)(
cos(∆µ0→1) sin(∆µ0→1)
− sin(∆µ0→1) cos(∆µ0→1)

)( 1√
β0

0
α0√
β0

√
β0

)
. (23)

Coming back to our original problem of numerically implementing linear transverse (betatron)
motion, we can now see that this reduces basically to implementing a simple matrix multiplication func-
tion. The betatron motion is fully characterized by the machine optics functions. These need to be
provided as an external input, either explicitly as a table obtained from an optics calculation (e.g. MAD-
X) or, which is often done for simplification, using the smooth approximation where

α = 0, β =
R

Q
= constant . (24)

Here, R is the ring radius and Q is the tune defined as the number of betatron oscillations per ring
revolution:

Q =
1

2π

∮
µ(s) ds =

1

2π

∮
ds

β(s)
. (25)

Once the optics functions are known, we can split the ring into segments and build the set of transfer
matrices M(sj |si) that propagate macroparticles through subsequent segments (si, sj) along the ring, as
indicated for the two points s0 and s1 in Fig. 5. The numerical propagation of the macroparticle system
through the machine is then performed by executing

(
xk
x′k

)∣∣∣∣
si+1

= Mx(si+1|si)
(
xk
x′k

)∣∣∣∣
si

,

(
yk
y′k

)∣∣∣∣
si+1

= My(si+1|si)
(
yk
y′k

)∣∣∣∣
si

,

i ∈ [0, . . . , segment number− 1] ,

k ∈ [0, . . . ,macroparticle number− 1] ,

(26)

repetitively for every segment and for every macroparticle in both the horizontal and the vertical planes.

In implementing linear, periodic and uncoupled betatron motion we simply need to generate and
store the transfer matrices for every segment in the horizontal and the vertical planes, which amounts to
a total of (4 × segment number × 2) constant floating point numbers. The betatron propagation of the
macroparticle system is computationally cheap and fast.

2.2 Longitudinal tracking
Longitudinal motion is a little more involved than the linear betatron motion described in the previous
subsection. Longitudinal motion in circular accelerators, or synchrotron motion, has some peculiari-
ties such as the presence of transition or the intrinsic non-linearities important particularly for hadron
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Fig. 5: A segment from a point s0 to another point s1 along the ring for which the betatron motion is described by
the transfer matrix in Eq. (23).

machines where bunch lengths are comparable to the RF period of the accelerating cavities. A good
introduction into the longitudinal dynamics can be found in Ref. [9].

Transition is a phenomenon that occurs in circular accelerators as a result of two competing ef-
fects. At low energies the relation between energy and momentum is nearly linear such that particles
with slightly higher energy travel faster and hence for these particles the revolution period decreases,
as one would naively expect. For high energies another effect becomes important, which results from
the momentum compaction present in any circular machine with dispersion. What happens is that par-
ticles at high energies no longer gain in speed. However, due to dispersion along the machine they take
longer paths and hence for these particles the revolution period increases. This effect is governed by the
momentum compaction factor of the machine

αc =
1

C

∮
D(s)

ρ
ds , (27)

where C is the machine circumference, D(s) the dispersion function and ρ the orbit curvature. The
energy at which this behaviour switches, from lower to higher revolution periods with an increase in
energy, is called the transition energy, defined by

γtransition =
1√
αc

. (28)

At transition itself all synchrotron motion is frozen.

Since a particle bunch in a circular machine naturally has a spread in energy it consequently also
has a spread in revolution period. If simply left to drift, the particle bunch will eventually de-bunch along
the machine. What is needed to keep particles bunched is some mechanism of focusing similar to the
one that is provided in the transverse plane by the quadrupoles. This is accomplished in the longitudinal
plane by the RF cavities. At each revolution, particles experience a kick from the integrated fields in
the RF cavities. Depending on the delay of particles arriving at the RF cavities, they will gain more or
less energy from the RF cavities. In that way the RF cavities keep the revolution periods close and thus
provide focusing around what is called the synchronous phase ϕs.

Finally, the RF cavities also provide the necessary energy for acceleration. When ramping up the
magnetic dipole fields, the revolution period of the entire particle bunch changes resulting in a shift of the
synchronous phase. This leads to a net energy gain of the entire particle bunch and thus to acceleration.

The synchrotron motion together with all the resulting effects mentioned above are described by
the Hamiltonian

H = −1

2
ηβc δ2 +

e

p0C
VRF(z) , (29)
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and VRF usually takes the form

VRF =
∑

i

ViR

hi

(
hiz

R
+ ϕi

)
+

∆E

e
z . (30)

Here, η is the slippage factor

η =
1

γ2tr
− 1

γ2
, (31)

which we will discuss further below, β = v/c is the velocity in units of the speed of light, p0 is the
reference momentum (1) and C is the ring circumference. Also, V is the integrated voltage along the
RF cavities (this includes the transit-time factor), h = ωRF/ω0 the harmonic number, which is the RF
frequency in units of the revolution frequency, and ∆E the mean energy gain per turn.

If we assume a single harmonic RF system, from Eqs. (29) and (30) together with Eq. (11) the
longitudinal equations of motion are derived as

dz

ds
= −ηβc δ, (32)

dδ

ds
=

eV

p0C

(
sin

(
hz

R

)
− ∆E

eV

)
. (33)

Equation (32) contains the slippage factor from Eq. (31) and exhibits the phenomenon of transition.
Particles below the transition energy (η < 0) with positive momentum offset have a positive velocity,
whereas above the transition energy (η > 0) a positive momentum offset leads to a negative velocity with
respect to the direction of flight.

For small phases close to the synchronous phase, we may linearize the kick in Eq. (33) around the
synchronous phase ϕs such that we obtain the linearized longitudinal equations of motion 2

z′′ +
eV ηh

p0βcCR
cos(ϕs)

︸ ︷︷ ︸
(
ωs
βc

)2

z = 0 . (34)

From Eq. (34), we identify the synchrotron tune as

Qs =
ωs

ω0
=

√
eV ηh

2πE0β2
cos(ϕs) . (35)

Defining

αs = 0 , βz =
|η|R
Qs

= constant , (36)

we can apply the same concept as for the linear betatron motion in the transverse plane, obtaining the
one-turn transfer matrix

M =

(√
βz 0
0 1√

βz

)(
cos(2πQs) sin(2πQs)
− sin(2πQs) cos(2πQs)

)( 1√
βz

0

0
√
βz

)
, (37)

and propagating the longitudinal phase-space variables (z, δ) of the macroparticle system by applying a
simple matrix multiplication as in Eq. (26).

For modelling the general non-linear longitudinal motion we need to solve the system of equations
(32) and (33) via a numerical integration algorithm. There are several numerical integration schemes

2Note that via this linearization, z is now the distance from the synchronous phase.
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available (e.g., Runge–Kutta methods). In order to respect the Hamiltonian nature of the problem, it is
important that we choose a symplectic integrator. We will not go into the details of symplectic integrators
here but rather refer the reader to Refs. [10, 11]. An example of a reasonably simple and fast symplectic
integrator of second order in the time step is the velocity-Verlet algorithm

zk,i+1/2 = zk,i −
ηC

2
δk,i,

δk,i+1 = δk,i +
eVRF

mγβ2c2
sin

(
2πh

C
zk,i+1/2

)
,

zk,i+1 = zk,i+1/2 −
ηC

2
δk,i+1,

i ∈ [0, . . . , turn number− 1],

k ∈ [0, . . . ,macroparticle number− 1].

(38)

The integration of the longitudinal equations of motion (32) and (33) for modelling the synchrotron
motion is then applied once per turn for the full revolution as depicted in Fig. 6.

Fig. 6: The integration for the synchrotron motion according to Eqs. (38) is applied once per turn for the full ring

Once this algorithm has been implemented as a function, the numerical propagation of the macropar-
ticle system through the machine is then performed by an iterative turn-by-turn application of Eqs. (38)
for every macroparticle.

Figure 7 shows a simulation of a macroparticle bunch which is propagated through a ring applying
both betatron and synchrotron motion. The horizontal (top) and longitudinal (bottom) phase spaces are
shown. The non-linearity of the synchrotron motion leads to different tunes for different macroparticles
depending on their longitudinal action. As a result, a filamentation of the longitudinal phase space takes
place, which can be observed as the originally aligned colours spiral around the synchronous phase.

2.3 Modelling chromaticity and detuning with amplitude
We are now able to advance a macroparticle system through the machine by transverse and longitudinal
tracking of the individual single macroparticles. The transverse tracking implemented so far models the
linear betatron motion. For collective effects certain aspects of the non-linear transverse motion also
have an important impact. These can appear in the form of chromaticity or detuning with amplitude, for
example.

Chromaticity leads to a shift of the coherent beam spectrum and modifies the way the beam in-
teracts with the machine impedance. This significantly impacts the behaviour of head–tail modes and
instabilities as well as the transverse mode coupling instability (TMCI) (see Ref. [12]). Chromatic-
ity results from different focusing of off-momentum particles. Thus, the quadrupole magnets, needed
to provide the betatron focusing, introduce a natural chromaticity in the machine. Sextupole magnets

11

NUMERICAL METHODS I AND II

257



Fig. 7: A macroparticle bunch tracked through a ring applying betatron and synchrotron motion. The figure
shows the horizontal (top left) and longitudinal (bottom left) phase spaces after several turns. Filamentation of
the longitudinal phase space is clearly observable as the originally aligned colours spiral around the synchronous
phase. The horizontal and longitudinal bunch sizes remain constant, as can be seen in the plots on the right,
indicating that the bunch was well matched upon initialization to the machine optics.

placed in dispersive regions can then be used to control the chromaticity. Chromaticity is defined as

Q′ =
d(∆Q)

dδ
, (39)

and can be easily calculated by writing down the (non-linear) Hamiltonian in action–angle variables as
done in Ref. [7], for example. It may be written as

Q′x = − 1

4π

∮
βx(s) (K1(s)−K2(s)D(s)) ds,

Q′y = +
1

4π

∮
βy(s) (K1(s)−K2(s)D(s)) ds.

(40)

Here, Ki = Bi/(Bρ) are the effective (normalized) magnetic field strengths of the quadrupole (i = 1)
and sextupole (i = 2) magnets, respectively.

Detuning with amplitude leads to a transverse tune spread within the beam, which can result in the
suppression of instabilities via Landau damping. This is achieved for example with octupole magnets
which provide a different focusing depending on the transverse offset of particles from the centre of the
octupoles (which are usually placed on the reference orbit). Detuning with amplitude is described by the
anharmonicities of the machine, which are defined as

(
∆Qx
∆Qy

)
=

(
αxx αxy
αyx αyy

)(
Jx
Jy

)
, (41)
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or consequently

αxx =
d∆Qx
dJx

, αxy =
d∆Qx
dJy

,

αyy =
d∆Qy
dJy

, αyx =
d∆Qy
dJx

. (42)

As for chromaticity, the anharmonicities can be easily calculated by writing down the (non-linear) Hamil-
tonian, now also containing octupole fields, in action–angle variables. They may be written as

αxx = +
3

8π

∮
K3(s)βx(s)2 ds,

αxy = − 3

4π

∮
K3(s)βx(s)βy(s) ds = αyx,

αyy = +
3

8π

∮
K3(s)βy(s)

2 ds.

(43)

Here, K3 = B3/(Bρ) is the effective (normalized) octupole field strength.

Chromaticity and detuning with amplitude can be implemented rather easily if we recollect that
for a certain particle with momentum offset δ and transverse actions Jx and Jy, the detuning resulting
from chromaticity and anharmonicities of the machine integrated over one turn is calculated as

∆Qx = Q′xδ + αxxJx + αxyJy ,

∆Qy = Q′yδ + αyxJx + αyyJy .
(44)

Hence, for a given segment (i, j) along the ring, the proportional detuning becomes

∆Qx,i→j =
(
Q′xδ + αxxJx + αxyJy

) ∆µx,i→j
2πQx

,

∆Qy,i→j =
(
Q′yδ + αyxJx + αyyJy

) ∆µy,i→j
2πQy

.
(45)

We can pick up the transfer matrix in Eq. (23), which, when we include detuning effects from chro-
maticity and detuning with amplitude, becomes a separate transfer matrix for every individual single
macroparticle:

Mk(s1|s0) =

( √
β1 0

− α1√
β1

1√
β1

)(
cos(∆µk,0→1) sin(∆µk,0→1)
− sin(∆µk,0→1) cos(∆µk,0→1)

)( 1√
β0

0
α0√
β0

√
β0

)
,

∆µk,0→1 = ∆µk,0→1(δk, Jk) =
(
Q′δk + αJk

) ∆µi→j
Q

,

k ∈ [0, . . . ,macroparticle number− 1].

(46)

Chromaticity and detuning with amplitude already lead to some macroscopic effects which are
not yet collective effects (the potential does not depend on the particle distribution) but are nevertheless
distinct for multiparticle systems. Examples are the decoherence from chromaticity or emittance blow-
up due to filamentation from detuning with amplitude. These effects can be easily simulated with the
tools we have implemented so far. An example of a simulation of decoherence and emittance blow-up in
the presence of anharmonicities is shown in Fig. 8. It can be clearly seen how macroparticles with larger
transverse actions have a smaller tune and thus start lagging behind in transverse phase space. This results
in the characteristic spiralling of the macroparticle distribution in phase space, which translates into the
observed decoherence and emittance blow-up. From the signal of the mean position in Fig. 8, we can
compute the coherent spectrum, which is plotted in Fig. 9. The spectrum clearly features a finite spread
around the tune, which in this case was at 20.13. Because we are running a macroparticle simulation we
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have full access to all six phase-space variables of every macroparticle at any time. Equipped with the
data for each individual macroparticle we are now even able to produce the incoherent spectrum. For
this we perform a fast Fourier transform (FFT) analysis for each macroparticle to obtain their individual
tunes in the horizontal and the vertical planes. We plot the obtained points in tune space (Qx, Qy) for
every macroparticle to obtain the tune footprint of the macroparticle system. This is shown in Fig. 10.
The tune footprint is an essential piece of information for the characterization of Landau damping, which
will not be treated in further detail here. The interested reader is referred to Refs. [13–15].

Fig. 8: Filamentation in the transverse phase space as a result of anharmonicities when the bunch enters with an
initial offset (left). The mean position decoheres accompanied by an emittance blow-up, as can be seen in the plot
on the right.

Fig. 9: The coherent spectrum obtained from the signal of the mean position. The spectrum features a finite spread
around the tune (20.13).
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Fig. 10: The incoherent (fractional tune) spectrum obtained from the signal of each macroparticle. The nominal
tune in this case was at (20.13, 20.18). The darker points correspond to macroparticles with larger actions. The
triangular shape of the tune footprint is characteristic for the detuning generated by octupoles, which were used for
this simulation.

3 Modelling beam dynamics in the presence of wake fields
We have learned how to initialize a macroparticle system in accordance with the macroscopic statistical
properties of a physical particle bunch and how to track this macroparticle system both transversely
and longitudinally through a circular machine in absence of collective effects. So far, all propagation
of the macroparticle system took place independently, i.e., macroparticles were tracked individually and
independently from other macroparticles. Adding collective effects, tracking can no longer be performed
in this manner. Collective effects add dependences to the macroparticle system such that macroparticles
have to be tracked taking into account all other macroparticles present in the macroparticle system.

Physically, collective effects originate from machine elements and devices that store electromag-
netic fields which have been excited by particles travelling through these elements or devices. The net
electromagnetic field excited will depend on the exact distribution of the particles travelling through an
element or device. Examples of these types of collective effects are the resistive wall effect coming from
the resistivity of the walls of a vacuum chamber or trapped modes excited in a cavity-like structure. In all
cases, particles passing through these objects leave back electromagnetic fields which then affect trailing
particles. To model these effects one employs the concept of wake fields (or impedances).

Wake fields are the electromagnetic fields left behind a source particle travelling through an object
and felt by a trailing or target particle. A such, they are functions of the distance between the source
and the target particle. The concept of wake fields is illustrated in Fig. 11. Formally, a wake field is the
electromagnetic response function of an object. This can be computed independently for any individ-
ual object either by analytical means for simple objects or by numerical means for more sophisticated
structures. The wake function is an intrinsic property of any such object.
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Fig. 11: The concept of wake fields. Wake fields are the integrated force from the electromagnetic fields left by a
source particle (blue) and felt by a trailing or target particle (orange).

In the formalism to follow, we will restrict ourselves to the horizontal plane, but it is equally valid
for both the horizontal and the vertical planes. Both planes must be included of course when one wishes
to add coupling effects. The wake function w is defined via the integrated force along the effective length
of a given object: ∫ L/2

−L/2
F (z, s) ds = qqtw(z). (47)

Here, q and qt are the charges of the source and target particles, respectively. The wake function in
general is a function of the transverse positions of both the source and the target particles as well as of
the distance between the two, so that

w(z)→ w(x, xs, z − zs). (48)

Here, x and z denote the positions of the target particle. With the linearity of Maxwell’s equations in the
fields, the superposition principle holds and the integrated force generated not by a single particle but by
a particle distribution travelling through an object is given as the convolution

∫ L/2

−L/2
F (x, z, s) ds = qqt

∫
ρ(xs, zs)w(x, xs, z − zs) dxs dzs

≡ −∇V (x, z).

(49)

We are now ready to write down the Hamiltonian for the simple betatron motion together with
wake fields:

H =
1

2
x′2 +

1

2
K(s)x2 +

∑

k

e2

mγβ2c2C

∫∫
ρ(xs, zs)w(x, xs, z − zs − kC) dxs dzs +Hs(z, δ)

(50a)

= . . .+
∑

k

e2

mγβ2c2C

∫∫
ρ(xs, zs)

∑

mn

xnxms Wmn(z − zs − kC) dxs dzs +Hs(z, δ) (50b)

= . . .+
∑

k

e2

mγβ2c2C

∑

mn

xn
∫
λm(zs)Wmn(z − zs − kC) dzs +Hs(z, δ), (50c)

where
λm(zs) =

∫
ρ(xs, zs)x

m
s dxs (51)
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is the transverse moment of order m of the source distribution at zs. We included multiturn wakes in the
Hamiltonian above, where k is the turn number and C the ring circumference. Since the wake function
is a function of the longitudinal coordinates we of course needed to include the longitudinal dynamics
via the Hamiltonian Hs(z, δ) to obtain a complete and self-consistent picture. In Eq. (50b), we made a
Taylor expansion around the reference orbit and obtained the wake function of order mn. Here, m gives
the order of the transverse moment of the source distribution and n gives the order of the resulting kick
from the wake applied to the target particles. For most objects in practice, the wake functions that play a
role are

W01 : constant wake,

W11 : dipole (driving) wake,

W02 : quadrupole (detuning) wake.

(52)

For these wakes, and omitting multiturn effects, the Hamiltonian simplifies to

H =
1

2
x′2 (53a)

+A

(∫
[ρ(zs)]W01(z − zs) dzs +

∫
[ρ(zs) 〈xs〉 (zs)]W11(z − zs) dzs

)
x (53b)

+

(
1

2
K(s) +A

∫
[ρ(zs)]W02(z − zs)

)
x2 +Hs(z, δ), (53c)

where we setA = e2/(mγβ2c2C) and 〈xs〉 (zs) is the mean horizontal position of the source distribution
located at zs. From this set of equations we can readily identify the effect of the different types of wakes
on the beam dynamics. The term (53b) is linear in x and thus describes dipolar kicks changing the
particle orbit. We can see that a constant wake produces a change of orbit depending on the source
charge, whereas a dipolar wake creates an orbit distortion that depends on the mean source orbit offset.
This feature of the dipolar wake is actually what enables it to drive beam instabilities, which is why it
is sometimes also called the driving wake. The term (53c) produces a change in tune depending on the
source charge. For this reason quadrupolar wakes are sometimes also called detuning wakes. We will
discuss the different wakes and their impact on beam dynamics further below in parallel with simulations.
But first we will move to the numerical implementation of wake field effects.

Going back to the definition of the wake fields in Eq. (49), we see that for a macroparticle system,
which is essentially a collection of discrete individual macroparticles, the wake field kick, i.e., the change
in momentum, from a constant, dipole or quadrupole wake field for an individual macroparticle is easily
calculated via the sum over all macroparticles:

∆x′k =





− e2

mγβ2c2

∑

j

W01(zk − zj),

− e2

mγβ2c2

∑

j

W11(zk − zj)xj ,

− e2

mγβ2c2

∑

j

W02(zk − zj)xk,

j, k ∈ [0, . . . ,macroparticle number – 1].

(54)

If we denote by N the macroparticle number, this results in N2 operations and in particular in N2 wake
function evaluations, which can be computationally very expensive.

The computation can be made much faster by a simple numerical trick, which is similar to the
concept of macroparticle models itself. As long as the wake function is sufficiently smooth and does not
vary strongly within a given interval [zi, zk], we can further discretize a macroparticle system into a set
of longitudinal slices. We assume the wake function to be constant within a given slice. In this case, it
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is sufficient to evaluate the wake function only once for all macroparticles within this slice. Instead of
having to do a macroparticle-to-macroparticle evaluation we now only need to perform a slice-to-slice
evaluation of the wake function. Equations (54) thus become

∆x′k[i] =





− e2

mγβ2c2

∑

j

N [j]W01(z[i]− z[j]),

− e2

mγβ2c2

∑

j

N [j]W11(z[i]− z[j]) 〈x〉[j],

− e2

mγβ2c2

∑

j

N [j]W02(z[i]− z[j])xk[i],

i, j ∈ [0, . . . , slice number – 1],

k ∈ [0, . . . ,macroparticle number – 1].

(55)

Here, ∆x′k[i] is the change in momentum for a macroparticle in slice i, N [j] is the number of macropar-
ticles in slice j, z[i] is the centre longitudinal position of slice i, 〈x〉[j] is the mean horizontal offset of
slice j and xk[i] is the horizontal position of a macroparticle in slice i.

If we denote by n the slice number, the number of evaluations now reduces to n2. If we consider
that typically we have of the order of several thousand macroparticles per slice, this means that the num-
ber of evaluations is reduced by six orders of magnitude compared to the macroparticle-to-macroparticle
evaluation. Furthermore, if the discretization of the macroparticle system is done longitudinally uni-
formly such that all slices have the same width, the number of slice-to-slice distances, and therefore the
necessary wake field evaluations, reduces to 2 × n − 1. The wake function can be pre-calculated for
all those distances and the values can be stored in an array. In this case the numerical algorithm to be
performed for applying wake field kicks to a macroparticle system would look as illustrated in Fig. 12.

Figure 12 assumes a macroparticle bunch encountering a constant horizontal wake function WCx

(i.e., aW01-type wake function in Eq. (55)). Axis A) shows the macroparticle bunch and axis B) the wake
function as it will be seen by the individual slices. Axis C) plots the number of macroparticles in each
slice and axis D) finally depicts the wake field kicks that will be applied to each slice. The longitudinal
slices are rendered on all axes as the coloured bars, where each coloured bar corresponds to a slice. The
colours in axes C) and D) match in the sense that each coloured slice on axis C) will receive the wake
kick from the corresponding coloured slice on axis D).

The formula at the bottom of Fig. 12 demonstrates how a function that models wake field kicks
would have to be implemented. The number of macroparticles per slice N for the n slices and the wake
function WCx for each of the 2 × n − 1 slice-to-slice distances from [−L,+L] are pre-computed and
stored in two arrays. The wake field kicks are then computed according to this formula (or, similarly, to
Eq. (55)) for all macroparticles in a slice by updating all the angles of those macroparticles.

We will now go through some examples of numerically modelled wake field effects.

3.1 Constant wake fields
Constant wake fields are generated by structures with left–right or top–bottom symmetry. They create
a closed orbit distortion similar to the potential well distortion that exists in the longitudinal plane. The
Hamiltonian which includes constant wake fields WCx is given as

H =
1

2
x′2i +

1

2
K(s)x2i −

e2

mγβ2c2C

n−1∑

j=0

N(zj)WCx(zi − zj)xi +Hs(z, δ). (56)

Here, xi is a macroparticle in slice i, N(zj) is the number of macroparticles in slice j, zj is the centre
longitudinal position of slice j and n is the number of slices. The wake field term in the Hamiltonian is
linear in xi. Thus, it generates an orbit shift (like dipoles would).
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Fig. 12: Sketch of the algorithm to compute and apply wake field kicks. The coloured bars correspond to, and
identify via their colour, the individual longitudinal slices. A) shows the macroparticle bunch. Axis B) shows the
wake function (marker value) as it will be seen by the colour-corresponding slices. Axis C) plots the number of
macroparticles in each slice and axis D) finally depicts the wake field kicks (marker value) that will be applied to
each colour-corresponding slice. The arrows highlight which wake field kick will be applied to which slice. The
wake field kick itself is evaluated for each slice according to the formula rendered below the plot.

From the Hamiltonian in Eq. (56), we can evaluate, apart from the betatron motion, which we
already solved in Section 3, the corresponding additional kick from the wake fields as

∆x′i = − e2

mγβ2c2

Slice-dependent orbit shift
(if line density does not change)︷ ︸︸ ︷
n−1∑

j=0

N(zj)WCx(zi − zj)
︸ ︷︷ ︸

Dipolar term→ orbit kick

. (57)

We can see from Eqs. (56) or (57) that a constant wake field generates a slice-dependent orbit shift. This
results in a closed orbit distortion.

Equipped with the possibility of initializing and tracking macroparticle systems and having now
also included wake field kicks, we can run a simulation that includes constant wake field effects. Fig-
ure 13 shows an example of such a simulation. A macroparticle bunch is initialized on the design orbit.
The constant wake field shifts the orbit along the bunch. As a result, the bunch oscillates around the
distorted orbit. Depending on the line density of the bunch and the shape of the constant wake field, this
distortion may look different. In the example above, the distortion is pronounced towards the tail of the
bunch. The bunch takes on a banana-like shape and the tail of the bunch flaps around the distorted orbit.
For more information on the effects of constant wakes, the reader is referred to Ref. [16].
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Fig. 13: Macroparticle simulation of the effects of a constant wake field. The initialization of the macroparticle
bunch is outlined by the yellow rectangle. The distorted orbit is sketched by the dashed line. As a consequence of
the constant wake field the tail of the macroparticle bunch will oscillate around the distorted orbit. The plot on the
right shows the resulting oscillation in the mean bunch position and emittance. The motion remains bounded and
the beam is stable.

3.2 Dipole wake fields
Dipole wake fields are the type of wake fields that generate instabilities. The kind of instability depends
on the machine configuration. We will discuss three different forms of instabilities with simulations
below. The Hamiltonian which includes dipole wake fields WDx is given as

H =
1

2
x′2i +

1

2
K(s)x2i −

e2

mγβ2c2C

n−1∑

j=0

N(zj) 〈xj〉WDx(zi − zj)xi +Hs(z, δ). (58)

Here, xi is a macroparticle in slice i, N(zj) is the number of macroparticles in slice j, zj is the centre
longitudinal position of slice j and n is the number of slices. The wake field term in the Hamiltonian is
linear in xi. Thus, it generates an orbit shift (like dipoles would). However, in contrast to the constant
wake field case we see that the Hamiltonian now contains an additional dependency on 〈xj〉. Thus,
different slices within the bunch get coupled. One can already imagine that this coupling of slices can
lead to peculiar effects.

From the Hamiltonian in Eq. (58), we can evaluate, again apart from the betatron motion, the
corresponding additional kick from the wake fields as

∆x′i = − e2

mγβ2c2

Slice-dependent orbit shift︷ ︸︸ ︷
n−1∑

j=0

N(zj) 〈xj〉WDx(zi − zj)
︸ ︷︷ ︸

Dipolar term→ orbit kick

. (59)

We can see from Eqs. (58) or (59) that a dipole wake field generates a slice-dependent orbit shift. This
shift in orbit is now not only dependent on the charge of a given slice but it is dependent on the weighted
mean horizontal offset of the slice. Thus, the dynamics of the individual slices enters back into the
equation. One can imagine that there are stationary solutions to the system described by the Hamiltonian
in Eq. (58) and characterized by the kick in Eq. (59). Indeed, such solutions can be found analytically
for simple cases by employing the Vlasov equation in a perturbation approach, as done in Ref. [12].

3.2.1 Beam break-up instability
Having learned how to implement dipolar wake fields, we can study the beam dynamics numerically. As
the first case, we will investigate the behaviour of a bunch subject to a dipolar wake field in the absence of
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synchrotron motion. In this configuration, the head of the bunch will generate dipolar wake fields, which
will shift the orbit of the following slices in the bunch. This will trigger a mean dipole motion of these
slices, which consequently will generate stronger dipolar wake fields for the slices in the bunch still to
follow. This process builds up turn by turn causing the tail of the bunch to oscillate increasingly violently
and rendering the bunch unstable. This type of instability is the beam break-up instability and can occur
in linear accelerators or in circular accelerators at transition where the synchrotron motion is frozen. The
beam is inherently unstable and will grow exponentially if no additional means of stabilization is put
in place. Figure 14 shows a simulation of a macroparticle bunch subject to a dipolar wake field. The
synchrotron motion was turned off. The build-up of the oscillation towards the tail of the bunch is clearly
visible. This is accompanied by a fast exponential growth of the motion and the emittance of the bunch.

Fig. 14: Macroparticle simulation of the effects of a dipolar wake field. The synchrotron motion was turned off.
The build-up of the oscillation towards the tail of the bunch is clearly visible in the left-hand plot. The exponential
growth of the mean position and emittance of the bunch is shown in the right-hand plot.

3.2.2 Transverse mode coupling instability
We repeat the simulation from above investigating the behaviour of a bunch subject to a dipolar wake
field; however, now we include synchrotron motion. We keep the chromaticity at zero. In this config-
uration, the head of the bunch will still generate dipolar wake fields, which will shift the orbit of the
following slices in the bunch, triggering a mean dipole motion of these slices. Due to the synchrotron
motion, eventually, the head and tail slices will exchange their positions. This will prevent the motion
of the tail slices from building up coherently. In fact, in absence of chromaticity, gradually, this motion
that builds up within a certain fraction of a synchrotron period gets washed out again at a later stage.
Synchrotron motion acts as a stabilizing mechanism and the larger the synchrotron tune the more effec-
tive this washing-out of the coherent dipole motion is. This is true as long as the beam intensity remains
below the TMCI threshold. At this point, the beam intensity is so high that the dipole motion builds up
coherently before it can be cleared away via the synchrotron motion. A particularly violent instability
emerges from this, which in many aspects is similar to the beam break-up instability discussed above.
Figure 15 shows an example of a simulation of a TMCI. The macroparticle bunch is heavily distorted
and the motion and the emittance of the bunch grow exponentially.

We can run several simulations at different intensities to gain more insight into this mechanism.
For each simulation, at a given intensity, we do a spectral analysis of the coherent motion. We obtain
spectra similar to the ones shown in Fig. 16. Below the TMCI threshold we can distinguish several
spikes in the spectrum which correspond to different azimuthal and radial modes which arise from the
interaction of the macroparticle bunch with the dipolar wake fields in combination with the synchrotron
motion. These are in fact the stationary solutions, which were already mentioned earlier and discussed
in more detail in Ref. [12]. What can be observed is that, as the intensity increases, certain modes tend
to approach each other. This is indicated in the left-hand plot in Fig. 16. At a certain intensity these
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Fig. 15: Macroparticle simulation of the effects of a dipolar wake field. The synchrotron motion in turned on.
The bunch intensity is above the TMCI threshold. The macroparticle bunch is heavily distorted. The exponential
growth of the mean position and emittance of the bunch is shown in the right-hand plot.

modes merge or couple, as shown in the right-hand plot in Fig. 16. This is exactly the TMCI threshold
at which the beam becomes violently unstable. The TMCI is a threshold effect. The beam is entirely
stable below the intensity threshold and becomes inherently unstable above this threshold. Therefore,
the TMCI threshold is often a hard limit for most machines.

Fig. 16: Bunch spectra obtained from the mean position for a simulation below (left) and above (right) the intensity
threshold for TMCI. Several spikes are distinguishable below the threshold. Two of the spikes (modes A and B)
approach each other as the intensity increases until they finally merge as shown in the right-hand plot. At this point
the bunch becomes violently unstable.

One of the strategies employed to raise the TMCI threshold is to increase the synchrotron tune.
This was implemented recently in the CERN Super Proton Synchrotron (SPS) [17]. In changing the
machine optics, the transition energy could be lowered such that the injection energy of the beam actually
ended up farther away from the transition energy. This leads to an increase in the synchrotron tune.
Figure 17 shows two plots in the way they are typically presented to visualize TMCI. The plots feature the
bunch spectra (mode number on the y axis vs. marker colour and size) laid out against the bunch intensity.
The mode number is given as the betatron tune shift in units of the synchrotron tunem = (Qx−Qx0)/Qs.
The left-hand plot in Fig. 17 displays the coherent tune shifts with intensity and highlights a mode
coupling of modes –2 and –3 taking place at an intensity of 1.5 × 1011 ppb. Increasing the synchrotron
tune leads to a larger separation of the individual mode lines causing them to couple only at a later stage
at 4× 1011 ppb, as illustrated in the right-hand plot in Fig. 17.
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Fig. 17: TMCI spectra in the SPS for the two different optics (Q26 & Q20). The bunch spectra are plotted against
the intensity. The spectral power is indicated by the markers and scales with the marker size and colour according
to the legend. Mode coupling occurs between modes –2 and –3 at an intensity of 1.5× 1−11 ppb in the left-hand
plot for which Qs = 0.0059 and at an intensity of 4× 1011 ppb in the right-hand plot for which Qs = 0.017.

3.2.3 Head–tail instability
Finally, we study the case of a bunch subject to a dipolar wake field including synchrotron motion and
now also including chromaticity. In this configuration, the head of the bunch will generate dipolar wake
fields shifting the orbit of the following slices in the bunch while the synchrotron motion will periodically
exchange head and tail slices within the bunch. As long as we are below the TMCI threshold, the bunch
would be stable due to the synchrotron motion clearing away the dipole motion before it can build up
coherently. This is true at zero chromaticity. Chromaticity, however, correlates the transverse motion of
slices with their longitudinal position and thus incorporates a form of temporal interrelationship between
the transverse and the longitudinal motions. This introduces a synchronicity mechanism which can
lead to the synchrotron motion no longer clearing away the coherent dipole motion, but, instead, may
cause it to actually seed a new form of coherent dipole motion. Finite chromaticity in combination with
synchrotron motion (of course, otherwise chromaticity has no effect) and dipolar wake fields, in this
case, generate head–tail instabilities. These are usually much less violent, i.e., they feature slower rise
times, than the TMCI discussed in the previous section. On the other hand, head–tail instabilities are
not a threshold effect. At finite chromaticity a bunch is inherently unstable, which would lead to an
exponential growth of the head–tail mode if no additional means of stabilization is put in place. Head–
tail modes are, again, stationary solutions of the accelerator–beam system. The imaginary part of their
complex tune shift is given essentially by the overlap of the mode spectrum with the impedance. At zero
chromaticity this overlap vanishes. At finite chromaticity certain modes are damped while others grow.
Head–tail modes feature distinct patterns when observed in a pickup.

Figure 18 shows simulations of a head–tail instability for two sets of chromaticities compared to
measurements in the LHC. The modes clearly exhibit their time-stationary nature. The different head–
tail modes can be characterized by the number of nodes seen along the waveform. This number in fact
corresponds to the radial mode number when performing the analytical analysis.

In summary, dipole wake fields generate instabilities that can be effectively investigated by nu-
merical methods using macroparticle models. We looked at three different types of instabilities, which
can be classified as shown in Table 2.
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Fig. 18: Macroparticle simulation of a head–tail instability compared with measurements in the LHC. The left-
hand plot shows a (radial) mode 2 instability occurring at a chromaticity of Q′ = 10. The right-hand plot shows a
(radial) mode 3 instability occurring at a chromaticity of Q′ = 15.

Table 2: Classification of different types of instabilities generated by dipolar wake fields along with their condi-
tions.

Synchrotron motion Chromaticity Threshold effect Rise time
Beam break-up No Irrelevant No Fast
TMCI Yes No Yes Fast
Head–tail instability Yes Yes No Slow

3.3 Quadrupole wake fields
Quadrupole wake fields are the highest order wake fields in the target coordinates that are commonly
still considered. They do not usually generate instabilities. The Hamiltonian which includes quadrupole
wake fields WQx is given as

H =
1

2
x′2i +

1

2
K(s)x2i −

e2

mγβ2c2C

n−1∑

j=0

N(zj)WQx(zi − zj)x2i +Hs(z, δ). (60)

Here, xi is a macroparticle in slice i, N(zj) is the number of macroparticles in slice j, zj is the centre
longitudinal position of slice j and n is the number of slices. The wake field term in the Hamiltonian is
quadratic in x. Thus, it generates a tune shift (like quadrupoles would).
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From the Hamiltonian in Eq. (60), we can evaluate, again apart from the betatron motion, the
corresponding additional kick from the wake fields as

∆x′i = − e2

mγβ2c2

Slice-dependent tune shift
(if line density does not change)︷ ︸︸ ︷
n−1∑

j=0

N(zj)WQx(zi − zj)
︸ ︷︷ ︸

Quadrupolar term→ tune kick

xi. (61)

We can see from Eqs. (60) or (61) that a quadrupole wake field generates a slice-dependent tune shift.
This results in an additional coherent tune shift, which in combination with dipole wake fields may
expedite or hinder mode coupling. In addition it introduces a tune spread within the bunch combined
with all the consequences such as potential resonance crossing or in principle even Landau damping.

Having learned how to implement quadrupolar wake fields, we can study the beam dynamics
numerically. We find that a bunch subject to a quadrupolar wake field remains stable. We can perform a
spectral analysis of each individual macroparticle to obtain the tune footprint of the macroparticle system.
The resulting footprint is shown in Fig. 19. It is clearly visible how the footprint is grouped according
to the slices of the bunch. Each coloured marker is actually a group of macroparticles within a given
slice. The slice-dependent tune shift reflects the convolution with the quadrupolar wake field according
to Eq. (61).

Fig. 19: Tune footprint of a macroparticle bunch subject to a quadrupolar wake field

This concludes our investigation of the numerical modelling of wake fields. This was the first
truly collective effect we implemented which had to be treated taking the full macroparticle system self-
consistently into account. We introduced wake fields as the electromagnetic response function of an
object and learned that the net wake field kick is obtained via the convolution of the wake function with
the macroparticle distribution. We studied constant, dipole and quadrupole wake fields with simulations
and learned about the different types of instabilities. In the final part of the lectures we will examine
another type of collective effect. This will consist of a second macroparticle system to interact with our
macroparticle bunch. Being a dynamical system itself, this macroparticle system cannot be modelled via
an electromagnetic response function as done for a rigid object via the wake fields. This will make the
problem quite a bit more involved.
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4 Modelling beam dynamics together with electron clouds
In the previous sections we learned how to initialize a macroparticle system representing a physical par-
ticle beam and how to track this macroparticle system through a circular machine transversely and lon-
gitudinally given the machine optics and RF configuration. Finally, we learned how to include and treat
collective effects via wake fields to interact self-consistently with this macroparticle system. A feature
of wake fields—being the electromagnetic response function of an object—is that they are a stationary
property of the object that generates them. Unless the object changes its geometry or electromagnetic
properties the wake function will not change. It can be computed once for an object and can then be used
turn after turn. Figure 20 summarizes the numerical treatment of beam dynamics under the influence of
collective effects via macroparticle models developed so far.

Fig. 20: Figurative summary of beam dynamics components treated so far. These include macroparticle system
initialization, single-macroparticle tracking in the transverse and the longitudinal planes and collective interaction
among macroparticles via wake fields.

In this section we will investigate another form of collective effects introduced not by a static
object but by either the charged particle beam itself or also by another charged particle system. This
can be a second beam which brings about the beam–beam interaction. This is a phenomenon that needs
to be studied around the collision point of particle colliders. Instead of another beam it can also be a
different form of charged particle distribution even with different particle species and energies such as
for example electron clouds. We will use the example of the electron cloud throughout the rest of this
section to illustrate the numerical concepts and methods used to treat these types of collective effects.

Electron clouds are a phenomenon that develops in accelerators of high-intensity positively charged
beams. Primary electrons get released through residual gas ionization or synchrotron radiation. These
electrons are accelerated in the electromagnetic fields generated by the positively charged circulating
beam. At some point they will hit the vacuum chamber walls and depending on their energy and impact
angle as well as on the surface properties—characterized by the secondary electron yield (SEY)—they
will release a certain amount of secondary electrons. These will again be accelerated by the circulating
beam and will also hit the vacuum chamber walls releasing yet more secondary electrons. Depending
on the configuration of the circulating beam (intensity, bunch spacing etc) this can lead to an avalanche
effect in generating an increasing amount of electrons, which we call multipacting. This generation of
electrons will saturate when the electron density has reached a value such that the resulting space-charge

26

K. LI

272



force repels secondary electrons sufficiently to suppress any further multipacting. At the end of this
electron cloud build-up process one is left with stationary distributions of electrons at different locations
around the ring. We call these stationary distributions electron clouds. Of course, one can imagine that
these electron clouds are able to generate fields that can substantially perturb the motion of the circulating
beam.

Electron clouds contain their own dynamics and macroscopic properties. In contrast to the static
objects treated via wake fields in the previous section, electron clouds dynamically change their macro-
scopic properties. As such, if one were to calculate the electromagnetic response function of electron
clouds, this would continuously change. In addition, the electromagnetic fields generated by electron
clouds are highly non-linear, so the linear treatment using dipole and quadrupole wake fields would no
longer be appropriate and higher order wake fields would have to be included. Most of the advantages
gained from the wake field concept would no longer apply for electron clouds. Other strategies are re-
quired for an efficient numerical treatment of the interaction of charged particle beams with electron
clouds.

4.1 Electron clouds as additional macroparticle systems
To numerically treat the electron cloud effects, the electron cloud has to be modelled as a macroparticle
system in itself. This makes beam dynamics simulations with electron clouds much more involved, as
one now needs to treat not only the macroparticle system resembling the physical particle beam but also
one or several macroparticle systems resembling the electron clouds.

The same reasoning that was applied earlier for a physical particle beam also applies for the elec-
tron clouds. We can handle the electron clouds numerically by clustering the physical electrons into a
discrete set of macroparticles while at the same time taking care about noise issues. We need to know the
generalized coordinates and the canonically conjugate momenta of each individual macroparticle along
with its charge and mass. For reasons that will be discussed further below, the electron cloud macropar-
ticle system can be treated purely transversely. As such, it will be fully characterized by the generalized
coordinates, given as the horizontal and vertical positions (x, y) in metres with respect to the centre of
the vacuum chamber (usually) and the canonically conjugate momenta, given as the corresponding hori-
zontal and vertical velocities (ẋ, ẏ). Initialization will usually take place as import of a distribution from
an electron cloud build-up simulation. The electron cloud build-up simulations are treated in detail in
Refs. [18, 19] and will not be further discussed here. If a distribution from an electron cloud build-up
simulation is not available, one often chooses to start from a distribution that uniformly fills the vacuum
chamber (or a part of it) with a given electron density.

As done earlier for the charged particle beam, the electron cloud macroparticle system can be rep-
resented by some allocated memory block in the main memory which is sufficiently large to accommo-
date all the relevant quantities of the macroparticle system, i.e., generalized coordinates and canonically
conjugate momenta, charges and masses. Table 3 shows an example memory layout of an electron cloud
macroparticle system in the main memory where each of the four phase-space variables is allocated as
an array of length equal to the macroparticle number which contains the corresponding values for every
macroparticle.

Table 3: Example memory layout of an electron cloud macroparticle system in the main memory. Each of the four
phase-space variables is allocated as an array of length equal to the macroparticle number N .

Count 0 1 2 . . . N

x . . . . . . . . . . . . . . .
ẋ . . . . . . . . . . . . . . .
y . . . . . . . . . . . . . . .
ẏ . . . . . . . . . . . . . . .
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The action of the electron cloud on a charged particle beam will apply via the electromagnetic
fields generated by the electron cloud and impacting the charged particle beam. On the other hand, the
charged particle beam acts back onto the electron cloud as it also generates electromagnetic fields which
in turn will cause electrons to be accelerated towards the positively charged particle beam. It follows that
we will now have to handle the dynamics of the two macroparticle systems self-consistently.

During the beam passage, the electrons are accelerated, which causes the electron cloud to reform
and, therefore, changes its macroscopic distribution. The electromagnetic fields generated by the elec-
tron cloud are thus strongly modified and consequently highly dynamic already during a single bunch
passage. The resulting electromagnetic fields in the vicinity of the passing beam will perturb the beam
motion and eventually lead to a distortion of the particle distribution within the beam. Then, again, the
electromagnetic fields generated by the passing beam are changed, which in turn affects the electron dy-
namics and electron cloud reformation (and thus also the electromagnetic fields generated by the electron
cloud) during the beam passage.

In frozen models, the distortion of the particle distribution within the beam is not taken into ac-
count and the electromagnetic fields are computed only for one beam passage. The electromagnetic fields
generated by the electron cloud during this beam passage are stored as a field map and are then re-applied
to the beam at every passage. Fully self-consistent models, on the other hand, do a full re-computation
of the electromagnetic fields taking into account the current distributions of both the electron cloud and
the charged particle beam at every iteration. It is clear that this becomes a strongly coupled system of
many subsystems where each of the subsystems already contains highly complex dynamics of their own.

The motions of the electrons and the charged particles in the beam take place at very different
time-scales due to their very different energy scales (the electrons are nearly at rest while the beam is
moving at relativistic speeds). The electron motion takes place within fractions of the bunch length
whereas the charged particle motion takes place within fractions of a revolution period. We will discuss
the modelling and implementation of the electron cloud and charged particle beam interaction in the next
sections.

4.2 Numerical treatment and computation of fields
The modelling of the accelerator–beam system now needs to include electron clouds as part of the accel-
erator, with these, at the same time, being independent macroparticle systems with their own dynamics.
Figure 21 shows a sketch of a model machine layout. At each interaction the electromagnetic fields need
to be computed for both the electron cloud and the charged particle beam. These fields then need to be
applied to the two macroparticle systems and the macroparticles need to be propagated. The computation
of the electromagnetic fields for the, in principle, arbitrary macroparticle distributions is, in general, a
non-trivial task. Fortunately, we can employ a few basic assumptions which will simplify this exercise.

The electron cloud is assumed to be distributed over a considerable length L along the vacuum
chamber much larger than its transverse dimensions b such that is has a low aspect ratio A = b/L � 1.
In this case we can assume the electric fields of the electron cloud to be purely transverse. Since the
electrons are also nearly at rest just before the beam passage we have for the electron velocity v � c
and the magnetic fields of the electron cloud can be practically neglected. The charged particle beam
is assumed to be close to relativistic. For these types of beams we know that the electric field in the
laboratory frame is strongly enhanced in the direction perpendicular to the direction of flight, i.e. it is
also almost purely transverse. As mentioned already we can now see that the electromagnetic interaction
between the electron cloud and the charged particle beam can be treated purely transversely and as an
electrostatic problem.

Hence, what we need to do is to numerically solve the 2D Poisson equation at every encounter.
Using the electric fields obtained from the solution, we then need to kick and propagate both the electrons
and the charged particles in the beam. Since the electron motion happens very fast—on the time-scale of
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Fig. 21: Machine layout for a machine containing electron clouds. The electron clouds are placed at several
locations along the ring. At each location, an electron cloud with charged particle beam interaction takes place.

fractions of a bunch length—the electrons receive a kick and then have to be propagated within this time
frame, while the charged particles in the beam receive just the kick and are propagated through the ring
via the betatron motion. For this reason, a macroparticle bunch is discretized into a set of longitudinal
slices, as was done for the wake field interactions. The slice width will determine the maximum time
frame in which the electrons will be linearly propagated. This situation is depicted in Fig. 22.

Fig. 22: Discretization of the incoming charged particle beam into a set of longitudinal slices. The interaction
takes place slice-by-slice and the electrons are propagated on the time-scale of a single slice.

The motion of the charged particle beam on the other hand takes place on a much larger time-
scale. Hence, the impact of the electron cloud is treated as an integrated effective force and the total kick
is applied after the passage of a slice through the electron cloud. As such, since the kicks from each
segment of the electron cloud will just linearly add up, the electron cloud can be longitudinally projected
and treated for each slice in a 2D plane.

The overview of the numerical treatment of beam dynamics under the influence of electron clouds
is now slightly adapted in comparison with Fig. 20 and is pictured in Fig. 23.

For each slice at each iteration the following steps are performed. First, one needs to compute
the electric fields of the respective slice and of the projected electron cloud by numerically solving the
Poisson equation

∆φe−(x, y) = −ρe−(x, y)

ε0
,

∆φp+(x, y) = −ρp+(x, y)

ε0
,

(62)

where φe− and φp+ and ρe− and ρp+ are the potentials and densities of the electrons and the charged
particles of the beam, respectively. There are several means of numerically solving the 2D Poisson
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Fig. 23: Figurative summary of beam dynamics with electron clouds. The single- macroparticle tracking in the
transverse and the longitudinal planes is included as earlier. In addition, several electron clouds are placed along
the ring. The momenta of the electrons and the charged particles in the beam are updated according to the self-
generated electric fields and any potential external magnetic field.

equation. One of the rather widely used methods for solving electron cloud problems is the particle-in-
cell (PIC) algorithm—this will be discussed in more detail in the Appendices.

Having obtained the electric field of the electron cloud, we apply the corresponding kick to all
macroparticles in the slices as already indicated in Fig. 23,

∆x′k[i] =
e2

mγβ2c2
Ex(xk, yk)[i]L,

∆y′k[i] =
e2

mγβ2c2
Ey(xk, yk)[i]L,

i ∈ [0, . . . , slice number – 1],

k ∈ [0, . . . ,macroparticle number – 1].

(63)

Here, L is the length of the electron cloud and Ex and Ey the generated horizontal and vertical electric
fields during the passage of slice i.

In the final step we need to update the velocities and positions of the electrons in the electron
cloud. This is a multiscale problem and requires careful treatment. As already seen in Fig. 23, we will
need to solve the system of equations

~̇x = ~v,

~̇v =
e

m

(
~Ep+ +

~v × ~Bext.

c

)
,

(64)

where now, to be general, we set ~x, ~v, ~E, ~B to be vectors. Looking at Eq. (64), we realize that the
equations of motion contain a magnetic field term.
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The majority of segments of a circular accelerator actually consist of regions encompassed by
magnetic fields. If these regions are occupied by electron clouds, which is usually the case, then there
will be a significant impact of these external magnetic fields on the electron dynamics, which needs to
be taken into account. To numerically solve the set of equations in (64), these are discretized in time to

xk+1 − xk
∆t

= vk+1,

vk+1 − vk
∆t

=
e

m

(
Ek +

(vk+1 + vk)×Bk

2c

)
.

(65)

From Eq. (65), the multiscale nature of the problem now becomes evident (slow guiding drift from
electric fields with fast cyclotron motion from magnetic fields). For a correct treatment of the electron
motion, the cyclotron motion needs to be well resolved. The cyclotron period can be as short as fractions
of a slice length such that a single time step has to be split into even smaller subintervals. The special,
apparently implicit form of the velocity equation in Eq. (65), using the average velocity at a time k+1/2,
ensures that the algorithm conserves the phase-space volume, i.e. it is volume-preserving 3. This is
important as electrons can perform several cyclotron oscillations during one slice passage and the motion
is required to remain stable. Because it is implicit, the numerical solution of Eq. (65) is rather expensive.
Fortunately, there is another slightly adapted algorithm that is very well suited to treat these kinds of
problems. This is the Boris algorithm which is borrowed from plasma physics where it is the de facto
standard for particle pushing (see Refs. [20, 21]). While Eq. (65) appears to be implicit, it can actually
be made manifest explicit by writing

v− = vk +
e

m
Ek

∆t

2
, (66a)

v+ − v−

∆t
=

e

2mc

((
v+ + v−

)
×Bk

)
, (66b)

vk+1 = v+ +
e

m
Ek

∆t

2
. (66c)

Equations (66a) and (66c) eliminate the electric field. Then Eq. (66b) can in fact be solved by basic
geometric means. In assuming this form, the algorithm—although it is not strictly symplectic—becomes
explicit (efficiency), time centred (local accuracy) and the energy error is globally bound (preservation
of phase-space volume).

With this final step in updating the velocities and positions of the electrons, we have completed
the cycle for one slice and can now take on the following slice. By propagating the electrons in this
way, in a slice-by-slice manner, during the beam passage, electrons will be attracted towards the passing
beam. We call this process the pinch of the electron cloud, as electrons are pinched towards the beam. A
schematic of this slice-by-slice interaction during a beam passage is shown in Fig. 24.

Depending on the configuration of the external magnetic fields the electrons will form different
structures in electron density and exhibit different locations where the electrons will be concentrated
into hot spots. Fig. 25 shows electron cloud pinches for a field-free region compared to a dipole and a
quadrupole magnetic field region. The simulation uses an LHC-type vacuum chamber. Regions of high
electron density are light coloured. The different patterns in electron cloud density are clearly visible.
In the field-free region the electrons are free to propagate towards the passing beam. In regions with
magnetic fields the electrons are trapped to circulate around and follow the magnetic field lines. In
dipoles, this leads to the formation of the characteristic stripes of high electron density. In quadrupoles,
the magnetic field can even form a magnetic bottle causing electrons to be reflected and preventing
further impact into the vacuum chamber but forcing them around the beam. Figure 25 also highlights the
multipacting that takes place on the inner surface of the vacuum chamber.

3In fact, Eq. (65) resembles a leap-frog scheme, which is one of the most simple symplectic integrators. It is not strictly a
leap-frog scheme, though, because in a leap-frog scheme the accelerating force cannot depend on velocity.
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Fig. 24: The slice-by-slice interaction of an electron cloud with a passing bunch. Each plane pictures a snapshot
of the current projected electron density distribution on the grid which is used for the field computation.

4.3 Combining build-up and instability simulations
Fully self-consistent electron cloud simulations require both build-up and instability simulation. Build-
up simulations accurately model the electron dynamics and usually use a coarser model for the passing
beam, making a weak–strong approximation, i.e., the beam is rigid and remains unaffected by the elec-
tron clouds. As we have just learned, in reality, this is not true and after several revolutions the beam may
have significantly changed its original profile, which in turn changes the originally simulated build-up
process and hence the stationary electron cloud distributions that evolve from this. The instability simu-
lation, on the other hand, in addition to the electron dynamics also takes the detailed beam dynamics into
account. Therefore, the correct approach would be to combine the two simulations in a way as outlined
in Fig. 26.

The problem is that the two simulations cover entirely different time-scales. The electron cloud
build-up is usually completed within a single turn but requires multiple bunches for the multipacting to
take place. The electron cloud instability, although it is relatively fast, can require several thousands
of turns to grow. During this time, for a self-consistent description, multiple electron clouds together
with multiple bunches would need to be stored and propagated at every time step. This cannot be easily
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(a) Field-free region

(b) Dipole magnet

(c) Quadrupole magnet

Fig. 25: Electron cloud pinch during the passage of a charged particle beam within different magnetic field con-
figurations. Sketched is the electron density evolution within an LHC-type beam screen. High-density regions are
coloured light. The multipacting which takes place upon impact on the boundaries is well recognizable.

done in an efficient way and would require highly optimized code with parallel capabilities. Efforts
are ongoing to overcome this limitation. To date, most of the instability simulations are carried out by
assuming a given stationary electron cloud distribution at every bunch passage.

4.4 Application of electron cloud instability simulations
Electron clouds pose serious intensity limitations especially for circular machines with high brightness
and closely spaced bunches. They deposit a considerable amount of heat onto the beam screens, which
becomes a big issue especially for superconducting machines like the LHC. They reduce the dynamic
aperture, which leads to beam quality degradation and poor lifetime. Finally, electron clouds also gen-
erate coherent instabilities. Whereas the heat loads can be evaluated by means of build-up simulations,
the incoherent losses and coherent instabilities require instability simulations. These are mostly used
to determine threshold values on the electron cloud density before beams go unstable due to electron
clouds. Figure 27 shows an example of a typical electron cloud instability simulation. Electron clouds
are initialized at different densities. For each density a separate simulation is run to evaluate the inter-
action of the electron cloud with the circulating beam. The emittance evolution of the circulating beam
is observed for each case and the density threshold is set to the lowest value for which an exponential
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Fig. 26: Scheme for a simulation strategy combining build-up (e.g. PyECLOUD) and instability (e.g. PyHEAD-
TAIL) simulations. Of course this requires a good and modular code design.

growth of the emittance is observed for the first time. As the density is increased further the emittance
grows more rapidly. For high densities the emittance tends to saturate. This is understood to be a com-
bination of several effects linked to the strong growth in the beam size. In combination with the strong
non-linearities of the electron cloud fields, the large beam accumulates a large tune spread causing it to
strongly decohere and also at some point to be Landau damped, which is understood to be one of the
reasons why the beam stabilizes. On the other hand, the large beam reduces the strength of the electron
cloud pinch, which also renders the beam more stable. This can be seen for the orange curve in Fig. 27.
Figure 28 shows the corresponding BPM signal that would be observed. There is a strong intrabunch mo-
tion that looks similar to what would be expected from a TMCI. After more turns this initially coherent
signal decoheres, as can be seen more clearly in the 3D representation of the BPM signal in Fig. 28.

The instability threshold density can be compared to the multipacting threshold density expected
for a given SEY. From this the beam stability can be inferred as well as its dependence on different
SEYs. This technique was used for example to identify the most critical vacuum chambers in the SPS
and prioritize them accordingly for potential amorphous carbon coating which can significantly lower
the SEY of the inner surface of the vacuum chamber.

Another application which combines the build-up with the instability simulations is the investi-
gation of single-bunch instabilities for multibunch batches in the LHC. This was studied in detail in
Ref. [22]. From build-up simulations strong electron clouds are expected for the injection of batches
with multiple bunches at a bunch spacing of 25 ns. Observations with the pickups from the transverse
damper feature strong transverse instabilities towards the end of the batches. This is usually a clear
indication for electron cloud activity, which is increased towards the end of a batch. To reproduce and
confirm this effect with simulations, a build-up simulation is run for the injection of a single batch. The
electron distribution is recorded just before each bunch’s passage. This distribution is then imported into
an instability simulation which is then performed for each of the corresponding bunches, respectively.
Figure 29 shows the computed electron cloud line density as obtained by the build-up simulation. The
red dots indicate the line density of the snapshots of the distribution loaded into the instability simulation.
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Fig. 27: Electron cloud instability simulation to determine the density threshold. The curves show the trans-
verse emittance evolution for different electron cloud densities. The threshold is the lowest density for which an
exponential growth of the emittance is observed over the given number of turns (here at ρe ≈ 8.5× 1011 m−3).

Fig. 28: The charge-weighted transverse offset as would be measured in a BPM pickup is shown for the case of
ρe ≈ 14×1011m−3. A strong coherent motion can be seen towards the tail of the bunch similar to what is observed
for a TMCI. The motion decoheres, combined with an emittance blow-up after approximately 128 turns.

Figure 30 shows the comparison of the measurements and the simulations of the observed electron cloud
instability. The instability occurs for exactly the same bunches in the measurement as in the simulations
and the overall behaviour of the beam is well captured. This helped a lot in the understanding of both the
the electron cloud build-up and instabilities in the LHC.

Appendix A: Brief introduction to the particle-in-cell algorithm
This section introduces briefly some of the basic concepts of the PIC algorithm. Essentially, it follows
the same philosophy that we already encountered when introducing macroparticle models themselves.
The physical particle systems were significantly reduced in the number of degrees of freedom by moving
to macroparticle systems. This was done by clustering physical particles within a representative region
in space into single macroparticles to obtain a numerical representation of the original physical particle
system as a macroparticle system. The PIC algorithm now, instead of physical systems of discrete parti-
cles, targets physical systems of continuous fields. In the framework of the algorithm, the physical space
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Fig. 29: Snapshots of the electron distributions are taken from a build-up simulation (blue) just before each bunch
passage. The snapshots are then imported into an instability simulation (red) for each of the 48 corresponding
bunches, respectively.

Fig. 30: Transverse oscillations measured with the pickups of the transverse feedback for 73 turns just before the
beam dump (left). Bunch-by-bunch oscillations in the vertical plane as obtained from an instability simulation
(right). In both cases the second half of the batch is rendered unstable by the electron cloud.

on which the fields are defined is now discretized into a set of regularly or irregularly distributed space
points which is imbued with a topology by assigning to each space point the connectivity information to
other space points. The set of space points together with the connectivity information forms a mesh. The
space points are then called mesh nodes and the areas surrounded by connected sets of mesh nodes form
mesh cells. Figure A.1 shows some examples of different discretizations of space with different types of
meshes. The choice of the mesh type depends strongly on the problem to be analysed.

Computationally often even macroparticle systems are too big to efficiently handle the particle-
to-particle interactions induced, for example, by electrostatic fields. One way to deal with this, then,
is to perform a further step of discretization according to the PIC algorithm. In this particular case, of
course, a computational gain is only made if the resulting number of space points is less than the number
of macroparticles. It is then interesting to think about the gain that one can expect from computing the
electrostatic forces particle-to-particle in comparison with computing them via a mesh. The electrostatic
fields at the macroparticle positions xk can be computed in a rather straightforward manner by summing
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(a) Uniform (b) Rectangular (c) Structured (d) Unstructured

Fig. A.1: Different basic types of mesh commonly used to computationally represent domains in space (taken from
Ref. [24]).

all forces from all other macroparticle positions xl,

∆xk =
∑

l 6=k

e2

2πε0

1

|xk − xl|
,

k ∈ [0, . . . ,macroparticle number].

(A1)

This sum needs to be evaluated for every macroparticle, which makes the algorithm scale as

1

2

(
N2

macroparticle −Nmacroparticle
)
.

Here, Nmacroparticle is the macroparticle number, which can be of the order of a few millions. Introducing
mesh nodes and computing the forces on the mesh nodes instead reduces the number of operations
according to the number of mesh nodes Nmesh nodes proportionally. If we assume a macroparticle system
of 1 × 106 macroparticles and compare this to a mesh of dimensions 128 × 128 then the number of
operations reduces from∼ 500×109 to∼ 0.1×109 when moving from a particle-to-particle (p2p)- to a
mesh node-to-mesh node (m2m)-based computation. Of course, for the latter there will be some overhead
from the scattering and gathering of the macroparticles to the mesh nodes and vice versa. However, even
this large reduction factor is often not enough to achieve satisfactory results, especially as the dimensions
of the mesh increase. In addition, sometimes regions in space need to be computed that do not contain
any macroparticles but still provide an important contribution to the electromagnetic fields. Here, the
goal is not to reduce the number of mesh nodes compared to the number of macroparticles but rather to
obtain a well-resolved discrete sampling of the regions of interest. And, finally, introducing boundary
conditions makes the situation a lot more complicated. To satisfy the boundary conditions for arbitrarily
shaped boundaries, in principle, an infinite number of image charges would need to be placed iteratively.
For these reasons, other more efficient methods are used instead for solving the field equations.

The PIC algorithm basically consists of three main steps.

– Macroparticles are scattered to the grid. This is done by depositing charges via an interpolation
algorithm from the macroparticle positions to the locations of the mesh nodes.

– A potential is computed by solving the field equations on the mesh. There are many different ways
for solving partial differential equations (PDEs) on a mesh and we will mention just a few below.
Once the potential is known, the differential on the mesh yields the force fields.

– The force fields are then gathered from the mesh node locations back to the macroparticle posi-
tions. This must be done via the same interpolation that was used to scatter macroparticles to the
mesh, otherwise the conservation of momentum will be violated.

We will discuss these steps briefly below using the example of solving the 2D Poisson equation
on a rectangular mesh with dimensions Nx×Ny within a bounded domain Ω and some given (Dirichlet)
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(a) Macroparticles (b) Charge density

(c) Electrostatic potential (d) Magnitude of the electric field

Fig. A.2: The different stages of the PIC algorithm, here for computation of the magnitude of the electrostatic
fields from a given charge distribution in open space.

boundary conditions on ∂Ω

∆ϕ = − ρ

ε0
in Ω,

ϕ = b on ∂Ω.
(A2)

An excellent reference that explains all parts of the algorithm in detail is Ref. [23]. As an example, we
may consider Fig. A.2, which shows the results of the different stages of the space-charge calculation for
a rather arbitrary given charge distribution.

A.5 Macroparticle and field interpolation
To solve the Poisson equation on the mesh one first needs to know the charge density on the mesh. For
this, the macroparticle charges are distributed (scattered) to the mesh nodes. There are several ways
of doing this. One way is to assign the full macroparticle charge to the nearest mesh node. This is the
nearest grid point (NGP) scheme, which is computationally very efficient but lacks resolution and suffers
from high noise. A more refined variant is to assign weighted fractions of the macroparticle charge to all
the surrounding mesh nodes within a given cell. This results in a linear interpolation of the macroparticle
charge density to the mesh and is the cloud-in-cell (CIC) scheme. It offers a good compromise between
computational effort and resolution and is often employed in many standard PIC codes. Higher order
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interpolation schemes can be systematically constructed depending on the constraints (i.e. long-range
constraint, smoothness constraint or momentum conservation constraint) imposed on them. Generally,
these interpolation schemes are characterized by a shape function S and the charge weighting is then
generally given as (see Ref. [23], Section 5-3-4)

Wi(x) =

∫ xi+h/2

xi−h/2
S(x− x′) dx′ =

∫
Π

(
x′

h

)
S(x− x′) dx′, (A3)

with h the mesh spacing and Π the ‘top-hat’ function

Π(x) =





0, |x| > 1
2 ,

1
2 , |x| = 1

2 ,

1, |x| < 1
2 .

We will look at an example for a 2D CIC scheme charge assignment on a regular rectangular mesh with
constant mesh spacing hx and hy. The shape function for this scheme is given as

S(x) =
1

H
Π
( x
H

)
.

The charge of each macroparticle is distributed to the four neighbouring nodes of the mesh according
to the CIC scheme to obtain a discrete representation of the charge distribution. In particular, for a
macroparticle at the location (x, y) carrying charge q, the indices of the neighbouring grid nodes can be
easily computed by means of a floor division (see Fig. A.3)

i = floor
[
x− x0
hx

]
, j = floor

[
y − y0
hy

]
, (A4)

where x0, y0 is the bottom left corner of the grid. Then the fractional normalized distances are given as
(see Fig. A.3)

fx =
x− x0
hx

− i, fy =
y − y0
hy

− j, (A5)

and the charge density matrix is updated as

ρ̃i,j = ρi,j +
q

hx hy
(1− fx)(1− fy),

ρ̃i+1,j = ρi+1,j +
q

hx hy
fx(1− fy),

ρ̃i,j+1 = ρi,j+1 +
q

hx hy
(1− fx)fy,

ρ̃i+1,j+1 = ρi+1,j+1 +
q

hx hy
fx fy.

(A6)

Once the fields have been obtained on the mesh, the inverse operation is performed in the same
manner as the fields are gathered back to the macroparticle positions:

E(x, y) = Ei,j (1− fx)(1− fy) + Ei+1,j fx(1− fy) + Ei,j+1 (1− fx)fy + Ei+1,j+1 fxfy. (A7)

A.6 Field computation
Poisson solvers on discretized grids exist in many variants.

Finite-difference methods are used on structured grids where the continuous domain in space is
replaced by a discrete set of points on a grid on which the electric and magnetic fields are computed.
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Fig. A.3: Nodes and distances involved in the macroparticle scatter and field gather stages of the space charge field
calculation.

Derivatives are then approximated with differences between neighbouring grid point values. Thus, the
differential Poisson equation is turned into an algebraic equation. We assume again a 2D rectangular
grid, not necessarily uniform, that discretizes a domain Ω in the x and in the y directions into Nx and Ny

subintervals, respectively, as

[hx,0, hx,1, . . . , hx,Nx ] ,
[
hy,0, hy,1, . . . , hy,Ny

]
. (A8)

Furthermore, we introduce what is known in the finite integration technique (FIT), which has been intro-
duced by Weiland (see Ref. [25]), as the mesh spacing (edges) on the dual grid

ĥx,i =





hx,i−1 + hx,i
2

, 0 < i < Nx,

hx,i
2
, i = 0, Nx

(A9)

and equally for the y direction. The discretization of the second-order derivative with second-order finite
differences in the general case gives

∂2ϕ(xi, yj)

∂x2
≈ ϕ(xi−1, yi)

ĥx,ihx,i−1
+

2ϕ(xi, yi)

hx,i−1hx,i
+
ϕ(xi+1, yi)

ĥx,ihx,i
. (A10)

Consequently, it follows that the discretization of the Poisson equation with second-order finite differ-
ences on the above-described non-equidistant grid leads to the following system of equations:

ĥj

(
1

hi−1
ϕi−1,j −

(
1

hi−1
+

1

hi

)
ϕi,j +

1

hi
ϕi+1,j

)

+ ĥi

(
1

hj−1
ϕi,j−1 −

(
1

hj−1
+

1

hj

)
ϕi,j +

1

hj
ϕi,j+1

)

=− ĥiĥj
ρi,j
ε0
,

(A11)

where we now set ϕ(xi, yj) = ϕi,j and hx,i = hi. The same system of equations is obtained with the
application of the FIT. More details along with a generalization to higher dimensions and the treatment
of boundaries—also refined, using the Shortley–Weller star—can be found in Ref. [26].
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The grid spacings define the coefficients of the potential. These can be assembled in a matrix such
that Eq. (A11) can be written in matrix form as

A~ϕ = − 1

ε0
~ρ. (A12)

Here, A is the discrete Laplace operator, which is an NxNy ×NxNy (usually sparse) matrix, and ~ϕ and
~ρ are vectors with entries ordered along the grid nodes according to the lexicographical rule

{v1,1, v2,1, . . . , vNx,1, v1,2, v2,2, . . . , vNx,2, . . . , v1,Ny , v2,Ny , . . . , vNx,Ny}, v = ϕ, ρ.

By solving this system of linear equations it is possible to obtain the electrostatic potential at the nodes
of the grid. The electric fields at the internal nodes of the grid can then be computed easily using the
central difference formula

(Ex)i,j = −
(

1

2hi
ϕi+1,j +

(
1

2hi−1
− 1

2hi

)
ϕi −

1

2hi−1
ϕi−1,j

)
,

(Ey)i,j = −
(

1

2hj
ϕi,j+1 +

(
1

2hj−1
− 1

2hj

)
ϕj −

1

2hj−1
ϕi,j−1

)
.

(A13)

For boundary nodes, a forward difference formula is adopted.

There are many different types of solvers available to solve Eq. (A11) and the optimal solver to be
employed depends mostly on the structure of the Laplace matrix A. If the matrix is very sparse and if the
geometry and the grid do not change in time, a LU decomposition (where ’LU’ stands for ’lower upper’,
and also called LU factorization, see e.g., Ref. [27]), which is a direct solver, can be very efficient. This
decomposition needs to be done only once for the Laplace matrix A and the potential can be found from
there on for any charge density by forward and backward substitution.

Iterative solvers can become interesting for very large scale problems. They use less memory and
are often well suited for parallelization. Iterative solvers start with an initial guess solution and con-
tinue iterations until a stopping criterion is satisfied (typically that the error or residual is less than a
given tolerance). They then return the final guess solution. For the fast iterative solution of the system
there are many alternative algorithms depending on the properties of the Laplace matrix A (primarily
symmetry and definiteness). The most straightforward iterative methods are the relaxation-type meth-
ods. Typical examples are the Jacobi, Gauss–Seidel and SOR (successive over relaxation) algorithms.
These classical iteration methods, also known as stationary methods, however, lack speed in comparison
with the more modern non-stationary methods such as the Krylov-subspace methods like CG (conju-
gate gradient), BiCG (bi-conjugate gradient) and its derivatives, the minimal residual algorithms like the
GMRES (generalized minimal residual) or hybrid methods like the BiCGSTAB (bi-conjugate gradient
stabilized) [28].

Another often employed and very efficient way of solving the Poisson equation for open bound-
aries, in particular, employs Green’s functions in combination with the fast Fourier transform (FFT)
algorithm. This method becomes interesting for situations where boundaries are far away from any
source charge distributions up to the limit where open boundaries can be assumed. The 2D electrostatic
potential of a point charge in open space is simply given by the Green’s function of the 2D Laplacian

G(x− x0, y − y0) =
1

2π

(
(x− x0)2 + (y − y0)2

)1/2
. (A14)

Then the electrostatic potential can be computed at any point (i, j) on the grid by means of the sum

ϕij =
e

ε0

∑

m,n6=i,j
ρi,j G(xi − xm, yj − yn),

i, j,m, n ∈ [0, . . . , grid point number− 1].

(A15)
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Equation (A15), which runs over all grid points, is computationally often already significantly cheaper
compared to Eq. (A1), which, instead, runs over all macroparticles (both are of order O(N2), where N
is the grid point number or the macroparticle number, respectively). Nevertheless, also the number of
grid points can be high and the computation of the potential can be made yet more efficient by using
another algorithm. This makes use of the convolution theorem, which states that a convolution in the
time domain reduces to a product in the frequency domain, where Eq. (A15), instead, reads

ϕ̂ij =
e2

2πε0
ρ̂i,j · Ĝi,j ,

i, j ∈ [0, . . . , grid point number− 1].

(A16)

Equation (A16) scales linearly with the number of grid points (i.e. O(N)). A Fourier transform still
needs to be performed on the charge density ρ and the Green’s function G as well as an inverse Fourier
transform to obtain the potential ϕ in the time domain. This produces some overhead, which, finally,
when employing the FFT, leads to a scaling of the algorithm as O(N logN).

The algorithm produces the correct potential for open boundaries by exploiting certain properties
of the FFT algorithm. To implement the algorithm correctly, therefore, the computational domain needs
to be extended to double its original size along each dimension, i.e. in 2D the area is fourfold. The charge
density is left as it is in its original quadrant and set to zero in all other quadrants. The Green’s function
is mirrored from one quadrant to another—this is required due to the particular way the FFT algorithm
works. The multiplication is then done in the frequency domain and the inverse FFT is made to obtain
the potential on the extended grid. The potential in the original quadrant is the potential generated by the
given charge distribution in an open space whereas the potential in all other quadrants is unphysical, but
also not of interest and can, hence, be discarded. This algorithm was first proposed by Hockney [23] and
has since then been used for many problems in accelerator physics, e.g. [29].

As a final remark, we mention that using the Green’s function for a point charge in open space can
be problematic for grids featuring large aspect ratios. The Green’s function for a point charge in this case
does not well combine with the charge interpolation to the grid points using the commonly employed
CIC method. While the Green’s function takes the perspective of point-centred charges, the CIC method
assumes uniformly distributed charges over one grid cell. Combining the two perspectives will lead to a
poor representation of the forces within the grid cells. Especially, along the dimension sampled at lower
frequency, the short-range nature of the point-charge Green’s function will cause the resulting forces to
decay rapidly, when the averaged force within one grid cell would actually not do so. For this reason,
a more robust way of computing the forces is to use the integrated Green’s function, which essentially
is the point-charge Green’s function integrated over one grid cell [29]. In 2D the integrated Green’s
function reads

G(x, y) = − 1

4π

(
−3xy + xy log(x2 + y2) + x2 arctan

(y
x

)
+ y2 arctan

(
x

y

))
. (A17)

Other means of solving the Poisson equation (or more complex PDEs) include finite-element meth-
ods which are used preferably on unstructured grids for complicated geometries where the continuous
domain is divided into a discrete mesh of elements. The Poisson equation is treated as an eigenvalue
problem and initially a trial solution is calculated using basis functions that are localized in each ele-
ment. The final solution is then obtained by optimization until the required accuracy is reached. We
will not discuss this method further here. There is a lot of literature available for the interested reader to
embark further into these types of numerical methods.
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