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Abstract
In these lecture notes the frequentist methods used in the Higgs search, discov-
ery and measurement are reviewed. The idea is that the reader will be able to
understand what lies beneath the surface of the results and the plots shown in
the experiments publications. Though the results shown are mainly from AT-
LAS and CMS, the methods and the lessons can be propagated to other fields
such as Astro-Particles and fixed target experiments.
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1 Introduction
These lecture notes are based on statistics lectures I gave in the European CERN school for High Energy
Physics, 2015. They contain material published mainly in the following two papers: "Asymptotic for-
mulae for likelihood-based tests of new physics" by Cowan, Cranmer, Gross and Vitells [1] and "Trial
factors or the look elsewhere effect in high energy physics" by Gross and Vitells [2]. The frequentist
approach used in the Higgs search, discovery and measurement are reviewed. Examples from real data
analysis are given to clarify the methods.

2 The Search for the Higgs Boson
From Wikipedia: On 4 July 2012, the discovery of a new particle with a mass between 125 and 127
GeV/c2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has
been shown to behave, interact, and decay in many of the ways predicted by the Standard Model.

High Energy Physicists (HEP) rely on a hypothesis: The Standard Model. This model relies on the
existence of the 2012 discovery of the Higgs Boson. The minimal content of the Standard Model includes
the Higgs Boson, the Quarks, the Leptons and the force mediating Bosons including the photons, gluons,
W and Z. However, the Standard Model suffers from some problems, e.g. the hierarchy and naturality
problems that are solved by various extensions of the Model and include other particles that are yet to be
discovered. The challenge of HEP is to generate tons of data and to develop powerful analyses to tell if
the data indeed contains evidence for new particles. Once the new particle, such as the 2012 scalar, has
been discovered, the next step would have been to measure its mass, and confirm that it has the expected
properties of the Higgs Boson (Spin, CP). Perhaps it is not the expected Standard Model Higgs Boson,
but a member of a family of Scalar Bosons, the rest, yet to be discovered.

The statistical challenge is obvious: to tell in the most powerful way, and to the best of our current
scientific knowledge, if, in our data, there is new physics, beyond what is already known. In that sense,
what is already known is the background to what we search, which is treated as the signal. The complex-
ity of the apparatus and the physics (both signal and background) suffer from large systematic errors that
should be taken care of in a correct statistical way.

Though the Higgs Boson has been already discovered, in these lecture notes, for pedagogic rea-
sons, it is assumed, that, the so-called Standard Model, contains no Higgs Boson, serve as the background
to the signal, which is the Higgs Boson. The Higgs Boson cannot exist without the Standard Model, so
there are two nested hypotheses tested against each other. The Standard Model (denoted by b for back-
ground) and the Standard Model containing a Higgs Boson with a mass mH , i.e. the signal+background,
denoted by s(mH) + b.
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3 Essential Terminology
3.1 A Tale of Two Hypotheses
From Wikipedia: A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For
a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists
generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with
the available scientific theories.

The expected signal and background are determined by the corresponding cross sections, lumi-
nosity delivered by the accelerator and the detectors response (efficiency and geometrical acceptance).
s(mH) is given by

s(mH) = L · �SM (mH) · ✏ · A. (1)

Where L is the luminosity delivered by the accelerator, �SM (mH) is the Standard Model (SM) produc-
tion cross section of the Higgs Boson, and ✏ and A are the efficiency and geometrical acceptance of the
detector. For simplicity, let’s assume a counting experiment and let n be the number of observed events,
then

n = µs(mH) + b. (2)

b is the expected background, and µ is the signal strength given by

µ =
�obs

�SM
. (3)

There are therefore two hypotheses. One is the background only (b), and the other is the µs(mH) + b
hypothesis, i.e., a Higgs Boson with a strength µ on top of the background. For a Standard Model Higgs
Boson, we expect to measure µ = 1.0. The background only hypothesis is denoted by H0 while Hµ is
the Higgs Boson hypothesis with H1 being the SM Higgs Boson hypothesis.

3.2 Testing an Hypothesis
From Wikipedia: A statistical hypothesis test is a method of statistical inference. Commonly, two statisti-
cal data sets are compared, or a data set obtained by sampling is compared against a synthetic data set
from an idealized model. A hypothesis is proposed for the statistical relationship between the two data
sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship
between two data sets. The comparison is deemed statistically significant if the relationship between
the data sets would be an unlikely realization of the null hypothesis according to a threshold probabil-
ityï£¡the significance level. Hypothesis tests are used in determining what outcomes of a study would
lead to a rejection of the null hypothesis for a pre-specified level of significance.

The first step in any hypothesis testing is to identify and state the relevant null, Hnull and al-
ternative Halt hypotheses.The next step is to define a test statistic, q, under the null hypothesis (the
tested hypothesis). We then compute from the observations the observed value qobs of the test statistic
q. Finally, decide (based on qobs ) to either fail to reject the null hypothesis or reject it in favour of an
alternative hypothesis.

3.3 Discovery and Exclusion in a Nut Shell
To establish a discovery we define the null hypothesis as the background only hypothesis, Hnull = H0,
and test it. We either fail to reject it or manage to reject it in favour of the alternative hypothesis,
Halt = Hµ. Rejection of the null H0 hypothesis at the level of 5� (see 3.5) is considered a discovery.
Defining the null hypothesis as Hnull = Hµ enables the exclusion of the signal. For example, if we define
the null hypothesis as the Standard Model Higgs with a mass mH , Hnull = H1, testing and rejecting
this hypothesis at the 95% Confidnece Level (see 3.5) is considered an exclusion of the Standard Model
Higgs with a mass mH .
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3.4 A Test Statistic
As defined in Wikipedia: A hypothesis test is typically specified in terms of a test statistic, considered
as a numerical summary of a data-set that reduces the data to one value that can be used to perform
the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within
observed data, behaviours that would distinguish the null from the alternative hypothesis, where such
an alternative is prescribed, or that would characterise the null hypothesis if there is no explicitly stated
alternative hypothesis, which often occurs when performing a measurement.

One example for using a test statistic is the discovery of the Higgs, when the data of Billions
of Collisions is summarised in one number which determines if LHC rejected the background only
hypothesis in favour of the Higgs Boson with a mass mH or not.

There are many ways to define a test statistic based on the nature of the required test. Test statistics
for discovery or exclusion are commonly based on Likelihood ratios.

Note that the likelihood is a function of the data, i.e.

L(H0) = Prob(x|H0) (4)

where x is the data.
Before classifying the test statistics in a formal way, let us take a simplified approach. The two

most common test statistics in High Energy Physics are the Neyman-Pearson (NP) and Profile Likelihood
(PL). The NP test statistic given by

qNP = �2ln
L(H0)

L(H1)
. (5)

L(H0) and L(H1) are the likelihoods of the null (b) and alternative (s(mH) + b) hypotheses. Note that
inverting the roles of the null and alternative hypotheses, simply swap the sign of the NP test statistic. The
PL test statistic depends on the tested hypothesis and for a simple counting experiment (see Equation 2),
when testing the b-only hypothesis, H0, the test statistic is given by

q0 = �2ln
L(b)

L(µ̂s(mH) + b)
. (6)

µ̂ is the Maximul Likelihood Estimators (MLE) of µ. In this simplified example b is assumed to be
known. The probability distribution function (PDF) of both test statistics under the null f(qNP |b),f(q0|b)
and the alternative f(qNP |s(mH) + b),f(q0|s(mH) + b) hypotheses are shown in Figure 1.

3.5 What is the p-value
As defined in Wikipedia: An important property of a test statistic is that its sampling distribution under
the null hypothesis must be calculable, either exactly or approximately, which allows p-values to be
calculated.

The observed p � value is a measure of the incompatibility of the data with the tested hypothesis.
It is the probability, under assumption of the null hypothesis Hnull, of finding data of equal or greater
incompatibility with the predictions of Hnull. This is clearly illustrated in Figure 1 for the PL test statistic
by the light blue area (right plot). Here H0 is the tested null hypothesis (b only) and the p � value is
given by

p =

Z 1

q0,obs

f(q0|b)dq0. (7)

One can regard the hypothesis as excluded if its p-value is observed below a specified threshold
(usually denoted by ↵).

Now, depending on the nature of the statistical test, one considers a one-sided or two-sided p-
value. When performing a measurement, any deviation above or below the mean is drawing our attention
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Fig. 1: The pdf of the Neyman-Pearson qNP (left) and PL (Profile-Likelihood), q0 (right) test statistics, under the
null (b) and alternative (s(mH) + b) hypotheses.

and might serve an indication of some anomaly or new physics. Here we consider a two sided p-value.
However, when trying to reject an hypothesis while performing searches, one usually considers only
one-sided tail probabilities. When the null hypothesis is the b-only hypothesis, downward fluctuations of
the background, are not considered as an evidence against the background. Likewise, when deriving a
limit, upward fluctuations of the hypothesised signal are not considered as an evidence against the signal.
In both cases only one-sided tail probabilities are considered.

In particle physics, when performing searches, one usually converts the p-value into an equivalent
significance, Z defined such that a Gaussian distributed variable, which is found Z standard deviations
above its mean, has an upper-tail probability equal to p (Figure 2). That is,

Z = ��1(1 � p) , (8)

where ��1 is the quantile (inverse of the cumulative distribution) of the standard Gaussian. For a signal

Fig. 2: The relationship between a p-value and a significance of Z sigma.

process such as the Higgs boson, the particle physics community has a tendency to regard rejection of
the background hypothesis with a significance of at least Z = 5, as an appropriate level to constitute
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a discovery. This corresponds to p = 2.87 ⇥ 10�7. For purposes of excluding a signal hypothesis, a
threshold p-value of 0.05 (i.e., 95% confidence level) is often used, which corresponds to Z = 1.64.
This should not be confused with a 1.96� fluctuation of a Gaussian variable that gives 0.05 for the
two-sided tail area.

Note that, for a sufficiently large data sample, one would obtain a p-value of 0.5 for data in perfect
agreement with the expected background. With the definition of Z given above, this gives Z = 0.

3.6 Expected Significance and the Asimov Data Set
As defined in Wikipedia: The use of a single representative individual to stand in for the entire population
can help in evaluating the sensitivity of a statistical method. Franchise, a science fiction short story by
Isaac Asimov, was cited as the inspiration of the term "Asimov data set", where an ensemble of simulated
experiments can be replaced by a single representative one.

It is often useful to quantify the sensitivity of an experiment by reporting the expected significance
one would obtain with a given measurement under the assumption of various hypotheses. For example,
the sensitivity to discovery of a given signal process H1 could be characterized by the expectation value,
under the assumption of H1, of the value of Z obtained from a test of H0. This would not be the same as
the Z obtained using Eq. (8) with the expectation of the p-value, however, because the relation between
Z and p is nonlinear. The median Z and p will, however, satisfy Eq. (8) because this is a monotonic
relation. Therefore we take the term ‘expected significance’ to refer to the median.

In the Standard Model there is only one Higgs Boson with well defined couplings. To find the
discovery sensitivity of an experiment, one needs to generate one ensemble of experiments containing
the Higgs Boson at the tested mass. However, if one goes beyond the Standard Model, e.g., supersym-
metric models, one faces a multi-dimensional parameter space where the Higgs Boson’s couplings, and
hence its production cross section and decay properties (both related to the signal strength) vary as a
function of the parameters. For each point in parameter space one needs to estimate the experiment’s
discovery sensitivity. One faces the need to generate an enormous number of ensembles of experiments
and evaluate the median sensitivity for each ensemble.

In [1] it was shown that one can replace each ensemble of the alternate-hypothesis experiments
with one data set that represents the typical experiment. This “Asimov” data set delivers the desired
median sensitivity. Hence, one is exempted from the need to perform an ensemble of experiments for
each set of parameters.

The Asimov data set is constructed such that when one uses it to evaluate the estimators for all
parameters, one obtains the true parameter values.

As intuitively used for years till proven at [1], the Asimov data set can trivially be constructed
from the true parameters values. For example, in a counting experiment (see Eq. 2) the Asimov data
set corresponding to the H1 hypothesis is nA = s + b. and the one correspond to the H0 hypothesis is
nA = b. As strange as it reads, the Asimov data set is not necessarily an integer.

3.7 Nuisance Parameters.
From Wikipedia: In statistics, a nuisance parameter is any parameter which is not of immediate interest
but which must be accounted for in the analysis of those parameters which are of interest.

A widely used procedure to establish discovery (or exclusion) in particle physics is based on a
frequentist significance test using a likelihood ratio as a test statistic. In addition to parameters of interest
such as the rate (cross section) of the signal process, the signal and background models will contain in
general nuisance parameters whose values are not taken as known a priori but rather must be fitted from
the data.

It is assumed that the parametric model is sufficiently flexible so that for some value of the param-
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eters it can be regarded as true. The additional flexibility introduced to parametrise systematic effects
results, as it should, in a loss in sensitivity. To the degree that the model is not able to reflect the truth
accurately, an additional systematic uncertainty will be present that is not quantified by the statistical
method presented here.

Here, nuisance parameters are denoted by ✓.The likelihood is then a function of the parameter of
interest, say, µ. Then L = L(µ, ✓). When testing Hµ, the Profile Likelihood test statistic in the presence
of nuisance parameters, become

qµ = �2ln
L(µ, ˆ̂✓µ)

L(µ̂, ✓̂)
. (9)

µ is the parameter of interest, ✓ represent the nuisance parameters (including b). A hat stands for the
MLE (Maximum Likelihood Estimator) while a double hat is the constrained MLE, i.e. the MLE of ✓,
fixing µ. It is common to say that ✓ is profiled.

3.8 Confidence Interval, Confidence Level and Coverage.
From Wikipedia: A confidence interval (CI) is a type of interval estimate of a population parameter. It
is an observed interval (i.e., it is calculated from the observations), in principle different from sample
to sample, that frequently includes the value of an unobservable parameter of interest if the experiment
is repeated. How frequently the observed interval contains the (true) parameter is determined by the
confidence level... Whereas two-sided confidence limits form a confidence interval, their one-sided coun-
terparts are referred to as lower or upper confidence bounds.

Say, the result of a measurement is given by µ = 1.1 ± 0.3. This means that the Confidence Inter-
val, CI, is µ = [0.8, 1.4] at the 68% Confidence Level (CL). I.e., in an ensemble of repeated experiments,
each producing a CI, 68% of the Confidence Intervals contain the unknown true value of the parameter
of interest µ.

There are many ways to derive a CI at a given CL. If, the method produces a CI that contains the
true value of the parameter of interest (p.o.i) more than the CL (e.g. in our example, more than 68%), the
method is said to over-cover, and is considered conservative. If, however, the CI contains the true value
of the p.o.i. less than the claimed Confidence Level, the method is considered to under-cover, which
means, one cannot trust the CL, and the true CL might be lower than the claimed one.

3.9 Upper Limits and Confidence Levels.
If one deduces that the CI of µ contains µ = 0, i.e. µ = [0, µup] at the 95% CL, then one says that
µ < µup at the 95% CL. This means that in an ensemble of experiments, 95% of the intervals contain
the true value of µ including µ = 0.

If µ < 1 at the 95% CL, and µ is given by Eq. 3, i.e.

µ =
�obs(mH)

�SM (mH)
< 1 (10)

one concludes that �obs(mH) < �SM (mH), i.e. a SM Higgs with a mass mH is excluded at the 95%
CL.

3.10 The Neyman Pearson Lemma.
Wikipedia: In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson,
states that when performing a hypothesis test between two simple hypotheses Hnull and Halt, the likelihood-
ratio test which rejects Hnull in favour of Halt is the most powerful test at (a given ) significance level...

When we reject the null hypothesis Hnull based on a very small p-value, we also take a risk. We
might be wrong (this is referred to as a type I error, see section 3.11). The null hypothesis can still be true
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and the p-value is a measure for this risk. The p-value can therefore be interpreted as the false-positive
rate and it satisfies

p  Prob(reject Hnull|Hnull = TRUE) (11)

However, if while rejecting the null hypothesis, the probability for the alternative hypothesis to be true
is small.... the test statistic is probably not doing its job, i.e. it is not powerful. The power of a test is
therefore related to the probability that Halt = TRUE while rejecting Hnull, i.e.

POWER = Prob(rejectHnull|Halt = TRUE). (12)

Neyman and Pearson showed [3], that (in the absence of nuisance parameters) the most powerful test
statistic is the likelihood ratio defined in Eq. 5.

3.11 Type I & Type II Errors, the Modified Frequentist p-value, or, the CLs Technique.
Wikipedia: CLs (from Confidence Levels) is a statistical method for setting upper limits (also called
exclusion limits) on model parameters, a particular form of interval estimation used for parameters that
can take only non-negative values...... .....it differs from standard confidence intervals in that the stated
confidence level of the interval is not equal to its coverage probability. The reason for this deviation is
that standard upper limits based on a most powerful test necessarily produce empty intervals with some
fixed probability when the parameter value is zero, and this property is considered undesirable by most
physicists and statisticians.

For the sake of clarity let us define now type I and type II errors. Type I error is the probability to
reject the null hypothesis, when the null hypothesis is true. This is referred to as "False Positive". It is
usually denoted by ↵, i.e. ↵ = Prob(rejectHnull|Hnull = TRUE). Type II error, referred to as "False
Negative", is when we accept the null hypothesis, when the alternative hypothesis is true. It is usually
denoted by �. � = Prob(AcceptHnull|Hnull = FALSE) = Prob(AcceptHnull|Halt = TRUE).
Quoting Birnbaum [4]: A concept of statistical evidence is not plausible unless it finds strong evidence
for Halt against Hnull, with small probability ↵ when Hnull is true, and with much larger probability
(1 � �) ) when Halt is true. 1 � � = Prob(rejectHnull|Halt = TRUE) is defined as the power of the
statistical test. Since rejecting Hnull is accepting Halt by definition, we find

POWER = 1 � � = Prob(acceptHalt|Halt = TRUE) = 1 � Prob(rejectHalt|Halt = TRUE).
(13)

Let Hnull = Hs+b, i.e. the s + b hypothesis, then, given an observation, Hs+b is rejected if the p-
value= ps+b  ↵. At the threshold we find

ps+b = Prob(reject Hs+b|Hs+b = TRUE). (14)

with a power ( Equation 13 ) of
Power = 1 � pb. (15)

A situation occurs when the power is very small and the experiment has no sensitivity to reject with high
power the s+b hypothesis, because it almost rejects the b-only hypothesis as well, as seen in Figure 3. A
way out, was suggested by the CLs technique [5] which is based on Birnbaum [4]. Birnbaum suggested
in 1962 that the the {p � value}/{power} should be used as a measure of the strength of statistical
evidence provided by significance tests, rather than the p � value alone. This translates into using a
modified p � value

p0
s+b =

ps+b

1 � pb
(16)

Equation 16 can also be interpreted as a normalised p-value, where ps+b is normalised to the acceptance
probability of Hb. Obviously if, while rejecting Hs+b one does not accept Hb , one does not have a
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Fig. 3: An illustration showing the reasoning of the CLs method. In this situation a signal+background hypothesis
might be rejected though the experiment has no sensitivity to observe that particular signal.

sensitivity to exclude the s + b hypothesis.

p0
s+b =

Prob(reject Hs+b|Hs+b = TRUE)

Prob(accept Hb|Hb = TRUE)
(17)

The CLs method lacks a frequentist coverage. However, it lacks it in places where the experiment
is insensitive to the expected signal! And this is not necessarily a disadvantage from the physicists point
of view! Here is what happens: One uses the Neyman-Pearson likelihood ratio as a test statistics. When
the expected signal is very low the two pdf are almost overlapping (see Figure 3). The background might
fluctuate down resulting in a very small ps+b. As a result we are tempted to exclude the signal hypothesis.
However, it is not the signal hypothesis s, that is excluded, but the signal+background hypothesis s + b.
It is the small expected signal s << s + b that is leading to a false exclusion. To protect against such an
inference one uses the modified p � value (Eq. 16) as a criterion for taking a decision of rejecting the
signal hypothesis.

As a result, for heavy Higgses with low cross section, where the experiment lacks sensitivity,
the false exclusion rate is too low and the method over-covers. This is conservative because it avoids
excluding when there is no sensitivity. When the signal cross section is high (light mH ), the coverage is
close to full.

3.12 Feldman-Cousins: Ensuring Coverage by Neyman Construction.
Wikipedia: Neyman construction is a frequentist method to construct an interval at a confidence level
CL%, that if we repeat the experiment many times the interval will contain the true value a fraction
CL% of the time, this way, one guarantees full coverage by construction.

As said, the Neyman construction is a method of parameter estimation that ensures coverage. One
scans over all the possible true values of some parameter s and defines an acceptance interval for each
s, based on the known pdf, f(sm|s), of the measured sm given a possible true s (there is only ONE
unknown true s though). The (e.g.) 68% acceptance interval [sl, sh](s) is defined via the integration
[sl, sh](s) = {sm|

R sh

sl
f(sm|s)dsm = 68%} (Figure 4). Even in the simplest case where f is a Gaussian,
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there is an ambiguity in the choice of the integration boundaries, which will lead to two-sided intervals,
or one-sided integral bounded from below or above. To sort out the integration limits one needs to specify
an ordering rule (i.e. which measurements should be considered within the integration boundaries and
which should stay out). The construction of the acceptance intervals for all s forms a belt from which
one can easily get the corresponding (e.g.) 68% confidence interval [sd, su](so), given one measurement
so via inversion (Figure 4).

s

s

msl sh
sd

su

so

Fig. 4: An illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the mea-
sured parameter space sm for a given possible true s, [sl, sh](s). Given an observation so one can construct the
confidence interval [sd, su] via inversion, as indicated in the Figure.

3.12.1 The Feldman-Cousins Method
The full Neyman construction was introduced to HEP by Feldman and Cousins [6]. The test statistic is
the likelihood ratio q(s) = L(s+b)

L(ŝ+b) where ŝ is the MLE of s (in L(ŝ + b) ) under the constraint that s
is physically allowed (i.e. positive). To construct a 68% acceptance interval in the number of observed
events, [n1, n2], one is using q as an ordering rule, i.e.

Pn2
n1

p(n|s, b) � 68% where only terms with
decreasing order of q(n) are included in the sum, till the sum exceeds the 68% confidence (see Fig. 4).
When no events are observed, one is using this constructed Neyman belt to derive a confidence interval,
which, depending on the observation, might be a one-sided or a two-sided interval. This method is
therefore called the unified method, because it avoids a flip-flop of the inference (i.e. one decides to flip
from a limit to an interval if the result is significant enough...).
One can clearly see in Fig. 4 that depending on the observation, so, one gets either a one sided bound, or
a two sided interval.
A noted difficulty with this approach is that an experiment with higher expected background which ob-
serves no events might set a better upper limit than an experiment with lower or no expected background.
This would never occur with the CLs method.
Another difficulty is that this approach does not incorporate a treatment of nuisance parameters. How-
ever, it can either be plugged in "by hand", using the hybrid Cousins and Highland method [7] or in the
LHC way, i.e. using the Profile Likelihood [1] as described above.
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4 Classification of Test Statistics.
Depending on the nature of the test, one can classify the various test statistics, all based on Likelihood
ratios, where the nuisance parameters are profiled (e.g. Eq. 9). The classification is based on [1] and is
shown in Table 1.

Table 1: Classification of Test Statistics

Test
Stat.

Purpose Expression LR

q0 discovery of positive
signal

q0 =

(�2 ln �(0) µ̂ � 0

0 µ̂ < 0
�(0) = L(0,

ˆ̂
~✓)

L(µ̂,~̂✓)

tµ 2-sided measure-
ment

tµ = �2ln�(µ) �(µ) = L(µ,
ˆ̂
~✓)

L(µ̂,~̂✓)

t̃µ avoid negative signal
(Feldman-Cousins)

t̃µ = �2ln�̃(µ) �̃(µ) =

8>>><
>>>:

L(µ,
ˆ̂
~✓(µ))

L(µ̂,~̂✓)
µ̂ � 0

L(µ,
ˆ̂
~✓(µ))

L(0,
ˆ̂
~✓(0))

µ̂ < 0

qµ exclusion qµ =

(
�2 ln �(µ) µ̂  µ

0 µ̂ > µ

q̃µ exclusion of positive
signal

q̃µ =

8>>>><
>>>>:

�2 ln L(µ,
ˆ̂
~✓(µ))

L(0, ˆ̂✓(0))
µ̂ < 0 ,

�2 ln L(µ,
ˆ̂
~✓(µ))

L(µ̂,~̂✓)
0  µ̂  µ

0 µ̂ > µ

5 Asymptotic Formulae
Wikipedia: In mathematics and statistics, an asymptotic distribution is a distribution that is in a sense
the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymp-
totic distribution is in providing approximations to the cumulative distribution functions of statistical
estimators.

The frequentist approach of statistics requires the knowledge of the probability distribution func-
tions (PDFs) of the test statistic under the null and alternative hypotheses. These PDFs are used to find
both the significance for a specific data set and the expected significance. However, obtaining these
PDFs, can involve Monte Carlo generations that are computationally expensive. Ref [1] developed the
asymptotic formulae based on results due to Wilks [8] and Wald [9] by which one can obtain both the
significance for given data as well as the full sampling distribution of the significance under the hypothe-
sis of different signal models, all without recourse to Monte Carlo. In this way one can find, for example,
the median significance and also a measure of how much one would expect this to vary as a result of
statistical fluctuations in the data. Obtaining the same things with Monte Carlo is sometimes impossible.
One LHC collision might take o(10mins) to generate, and one needs over 107 events to calculate a 5�
tail of a PDF. Moreover, the test statistics involve heavy duty fits which also take time. Combining AT-
LAS and CMS results in over 4000 Nuisance Parameters. Repeated fits of that many parameters result
often in failure fits. Some we are not even aware of. It could be that the PDF generated by toys is subject
to unknown failure of fits and is not reliable for p � value calculations. In most cases, the number of
events involved is satisfying the condition for the asymptotic approximation to work.
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All of the asymptotic approximations of the PDFs of the test statistics shown in Table 1 have been
calculated under the null and alternative hypotheses [1]. There is no point in reproducing them all here.
Three common uses are for exclusion, discovery and measurement.

5.1 Exclusion
For exclusion one can either use qµ or q̃µ (Table 1) as a test statistic. In numerical examples we have found
that the difference between the two tests is negligible, but use of qµ leads to important simplifications.
Furthermore, in the context of the asymptotic approximation, the two statistics are equivalent. That is,
assuming the approximations below, qµ can be expressed as a monotonic function of q̃µ and thus they
lead to the same results. We will therefore recommend the use of qµ for the derivation of exclusion.
Using the asymptoric formulae of [1] we find that f(qµ|µ) distributes as a half-chi-square:

f(qµ|µ) =
1

2
�(qµ) +

1

2

1p
2⇡

1
p

qµ
e�qµ/2 . (18)

It is therefore recommended to verify that f(qµ|µ) ⇠ �2
1. This is usually the case, in particular when

combining channels.
The cumulative distribution is

F (qµ|µ) = �
⇣p

qµ

⌘
. (19)

5.1.1 The p � value

The p-value of the hypothesized µ is

pµ = 1 � F (qµ|µ) = 1 � �
⇣p

qµ

⌘
(20)

and therefore the corresponding significance is

Zµ = ��1(1 � pµ) =
p

qµ . (21)

If the p-value is found below a specified threshold ↵ (often one takes ↵ = 0.05), then the value of µ
is said to be excluded at a confidence level (CL) of 1 � ↵. The upper limit on µ is the largest µ with
pµ  ↵. Here this can be obtained simply by setting pµ = ↵ and solving for µ. One finds

µup = µ̂ + ���1(1 � ↵) . (22)

For example, ↵ = 0.05 gives ��1(1 � ↵) = 1.64. Any point µ0 satisfying µ0  µup is excluded at the
100(1 � ↵)% Confidence Level. (for ↵ = 0.05 the 95% Confidence Interval does not contain µ = µ0).
Also as noted above, � depends in general on the hypothesized µ. Thus in practice one may find the
upper limit numerically as the value of µ for which pµ = ↵.

5.1.2 Expected Limit and Error Bands
To find the expected limit, one should plug in the Asimov data which represents the alternative hypoth-
esis, which in this case is the expected background (with no fluctuations). The signal strength is set to
zero (in a simple counting experiment n = b). One then gets qµ,A and the corresponding µmed

up is given
by solving qµmed

up ,A = 1.642 (for ↵ = 0.05). The error bands are given by

µup+N = �(��1(1 � ↵) + N) (23)
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with

�2 =
µ2

qµ,A
(24)

µ can be taken as µmed
up in the calculation of �.

5.2 Expected Limit and Error Bands a-la “(CLs)"
To avoid setting limits when the experiment is not sensitive to the signal, one might use the modified
p-value defined above, ”p0

s+b”

p0
s+b =

ps+b

1 � pb
(25)

We find

p0
µ =

1 � �(
p

qµ)

�(
p

qµ,A � p
qµ)

(26)

The median and expected error bands will therefore be

µup+N = �(��1(1 � ↵�(N)) + N) (27)

with

�2 =
µ2

qµ,A
(28)

To get the 95% expected upper limit, set ↵ = 0.05. µ can be taken as µmed
up in the calculation of �..

Note that for N = 0 we find the median limit

µmed
up = ���1(1 � 0.5↵) (29)

The expected µ and the expectation for error band N is shown in Figure 5. one can clearly see the
shrinkage of the error band, µup+N� � µup+(N�1)�, when N ! �1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

N

µ
u

p

µ
up + Nσ

 = σ Φ−1( 1 − α Φ(N) ) +Nσ

Fig. 5: µup+N� as a function of N (in units of �). Red is based on ps+b blue is based on p0
s+b (CLs).

12

E. GROSS

176



 [GeV]Hm
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L 
Li

m
it 

on
 

-110

1

10 Obs. 
Exp. 

σ1 ±
σ2 ±

-1Ldt = 5.8-5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.6-4.8 fb∫ = 7 TeV:  s
ATLAS Preliminary 2011 + 2012 Data

CLs Limits

Fig. 6: The observed (full line) and expected (dashed line) 95% CL combined upper limits on the SM Higgs boson
signal strength (µup) in the full mass range mH considered in this analysis. The dashed curves show the median
expected limit in the absence of a signal and the green and yellow bands indicate the corresponding 68% and 95%
intervals.

5.3 Example from the Higgs Boson Search
Figure 6 taken from [10] shows µup as a function of mH at one of the stages of the Higgs search. The
mass range where µup(mH)  1 is where a SM Higgs Boson with a mass mH is excluded. Obviously
one cannot exclude the Higgs around mH = 125 GeV, where a real signal is being built up with luminos-
ity µup > 1. The median expected is given by the dashed line (following Equation 29 with ↵ = 0.05).
The error bands are derived using Equation 27, with N = ±1 (Green) and N = ±2 (yellow).

Figure 7 taken from the same reference, shows p0
s+b (labeled in the Figure as CLs), as a function

of mH . Mass regions where p0
s+b  0.05 are excluded at, at least, the 95% CL.

 [GeV]Hm
100 200 300 400 500 600

CL
s

-810
-710
-610
-510
-410
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-210
-110
1

10
210
310
410

Obs. 
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95%
99%

-1Ldt = 5.8-5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.6-4.8 fb∫ = 7 TeV:  s
ATLAS Preliminary 2011 + 2012 Data

Fig. 7: The value of the combined CLs (p0
s+b), testing the Standard Model Higgs boson hypothesis, as a function

of mH in the full mass range of this analysis. The expected CLs is shown in the dashed curves. The regions with
CLs < 0.05 are excluded at least at 95% CL. The 95% and 99% CL values are indicated as dashed horizontal
lines.

13

PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICS

177



5.4 Measurement
Let the statistic be tµ = �2 ln �(µ) (Table 1) as the basis of the statistical test of a hypothesized value
of µ. This could be a test of µ = 0 for purposes of establishing existence of a signal process, or non-
zero values of µ for purposes of obtaining a confidence interval. In the asymptotic regime the pdf of tµ
distributes like a �2 with one degree of freedom, under the Hµ hypothesis.

f(tµ|µ) =
1p
2⇡

1p
tµ

e�tµ/2 . (30)

To measure µ, one scans the test statistics, finds µ̂ and �up, �lo by substituting tµ = 1. The 68%
Confidence Interval of µ is then estimated to be [µ̂ � �lo, µ̂ + �up]. If one wants to estimate with how
many standard deviations a specific value of µ, e.g. µ = 0. is unlikely, one calculates

p
t0.

To get the expcted µ one repeats the above procedure, calculating tµ with the Asimov data set, for which
µ̂ = µ.
A formulation of the asymptotic properties of tµ is given in [1].

5.5 Discovery
To establish a discovery one tries to reject the background only hypothesis. We use the qo test statistics
(Table 1). Since we do not want downward fluctuations of the background to serve as an evidence against
the background we define the test statistics such that q0 = 0 if µ̂ < 0. The test statistic is therefore given
by (Table 1):

q0 =

8<
:

�2 ln L(0)
L(µ̂) µ̂ � 0,

0 µ̂ < 0 ,
(31)

Under the background only hypothesis, H0, q0 is asymptotically distributed as half a chi squared with
one degree of freedom, i.e.

f(q0|0) =
1

2
�(q0) +

1

2

1p
2⇡

1
p

q0
e�q0/2 . (32)

The significance of the observation is given by

Z0 = ��1(1 � p0) =
p

q0 . (33)

The p0 value can easily be calculated using

p0 = 1 � F (q0|0) , (34)

where

F (q0|0) = �
⇣p

q0

⌘
. (35)

A significance of 3� is considered as an observation, while a significance exceeding 5� is regarded as
a discovery. The reason for using such a large number to establish a discovery is because of the Look
Elsewhere Effect, discussed in section 7.

5.6 Discovery Example
In Figure 10 we show the p � value as a function of the mass, taken from the ATLAS discovery confer-
ence note [10]. Both, the p� value and its corresponding significance are indicated. One clearly sees an
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upward fluctuation of the background (downward fluctuation in p � value) around a mass of 125 GeV.
The fluctuation is at the level of 5�. For other masses the p � value fluctuates around 0.5, meaning a
significance of 0�. The expected p � value is given by the dashed line. One can clearly see that only
around mH = 125 GeV, the expected and the observed p�value are similar, indicating a signal strength
µ ⇠ 1, as can clearly be seen in Figure 11.

5.6.1 Significance in a nut-shell.
Many people use a thumbnail formula Z = sp

b
to estimated the significance of an apparent signal. s

represents here n � b, where b is the expected background, and n is the number of observed events.
Using the profile likelihood formalism we can get a much more accurate estimation for the appar-

ent observed significance [1].
If we regard b as known, the data consist only of n and thus the likelihood function is

L(µ) =
(µs + b)n

n!
e�(µs+b) , (36)

The test statistic for discovery q0 can be written

q0 =

8<
:

�2 ln L(0)
L(µ̂) µ̂ � 0,

0 µ̂ < 0 ,
(37)

where µ̂ = n � b. For sufficiently large b we can use the asymptotic formula [1] to obtain

Z0 =
p

q0 =

8<
:

q
2

�
n ln n

b + b � n
�

µ̂ � 0,

0 µ̂ < 0.
(38)

To approximate the median significance assuming the nominal signal hypothesis (µ = 1) we
replace n by the Asimov value s + b to obtain

med[Z0|1] =
p

q0,A =
p

2 ((s + b) ln(1 + s/b) � s) . (39)

Expanding the logarithm in s/b one finds

med[Z0|1] =
sp
b

(1 + O(s/b)) . (40)

Although Z0 ⇡ s/
p

b has been widely used for cases where s + b is large, one sees here that this final
approximation is strictly valid only for s ⌧ b. We therefore recommend to use Eq. 39 to estimate a
significance in a nut shell. It is much more accurate.

6 Testing an hypothesis with boundaries.
In [6] Feldman and Cousins derive the test statistics with the physical condition, namely, the true value
of µ must be positive, i.e. µ > 0. In [1] the t̃µ test statistic is introduced (see Table 1) in order to avoid
a negative non-physical signal. As a result, depends on the observation, a two sided (measurement) or
one sided (limit) Confidence Interval is obtained. This is the equivalence of the Feldman-Cousins test
statistic with the advantage of taking care of the nuisance parameters. The original Feldman-Cousins
test statistic is not considering systematics. In [1] the asymptotic formula of t̃µ is derived. In a later
paper [11] the same authors improve the test statistic by taking into account two sided boundaries. This
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is the case, for example when one wants to measure or set limits on the measurement of a Branching
Ratio, which must be 0 < BR < 1 by definition. The revised t̃µ is defined by

t̃µ =

8>>>>><
>>>>>:

�2 ln L(µ, ˆ̂✓(µ))

L(µ�, ˆ̂✓(µ�))
µ̂  µ�

�2 ln L(µ, ˆ̂✓(µ))

L(µ̂,✓̂)
µ� < µ̂ < µ+

�2 ln L(µ, ˆ̂✓(µ))

L(µ+, ˆ̂✓(µ+))
µ̂ � µ+ ,

(41)

ˆ̂✓ represent the nuisance parameters, ˆ̂✓(µ) is the conditional maximum likelihood estimate of ✓ given µ.
µ� and µ+ are the physical boundaries. The Feldman-Cousins test statistic is retrieved for µ� = 0 and
no upper boundary, µ+. The asymptotic formulas are derived in [11].

6.1 Pull
The pull of a nuisance parameter ✓, with an expectation ✓0 is defined as:

pull(✓) =
✓̂ � ✓0

�✓
(42)

the pull quantifies how far from its expected value we had to "pull" the parameter while finding the MLE.
A healthy situation is when the pull average is zero with a standard deviation close to 1, if this is not
the case, further investigation is required. The expected value of a nuisance parameter and its assumed
standard deviation will be based on an auxiliary measurement or MC studies.

6.2 Impact
the impact of a nuisance parameter is defined as:

impact(✓) = �µ± = ˆ̂µ✓0±�✓
� µ̂ (43)

where ˆ̂µ✓0±� is the MLE of µ when we profile every parameter except ✓, and set the value of ✓ to its
expectation value plus or minus one standard deviation. The impact gives a measure of how much our
parameter of interest varies as we change the nuisance parameter. Obviously not all nuisance parameters
are equally important, so a nuisance parameter with low impact may be possibly discarded (or "pruned")
to simplify the fit procedure.

6.3 Example of pull and impact
To illustrate the use of impact and pull, consider a simple counting experiment which measures n events,
with n = µ · s · A · ✏ + b, where s is the number of signal events, µ is the p.o.i and A (acceptance) ✏
(efficiency) and b (background) are nuisance parameters with gaussian distributions.
The likelihood is given by:

L(µ, A, ✏, b) =
(µsA✏ + b)n

n!
exp (�(µsA✏ + b)) exp

✓
�(b � bobs)2

�b

◆
exp

✓
�(A � Aobs)2

�A

◆
exp

✓
�(✏ � ✏obs)2

�✏

◆
(44)

For each nuisance parameter, there is an "observed" value which could come from some auxiliary mea-
surement. In this simplified case all nuisance parameters are measured by their MLEs, i.e. (✓̂ = ✓obs).
We assume the "true" value of the parameters are known to be ✓0.
The pulls are calculated straightforward from equation 42. The impact is calculated with the test statistic

tµ(✏) = �2lnL(ˆ̂µ, ˆ̂A,✏,ˆ̂b)

L(µ̂,Â,✏̂,b̂)
(for the nuisance parameter ✏), with double hat indicating that the fit is con-

strained to ✏, as was described above. Table 2 shows the values of the parameters used in the toy
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calculation. The measured value for n, was picked from a poisson distribution with expectation value
of nexp = µ · s · A · ✏ + b (the true, Asimov, values) and ✏obs Aobs and bobs were picked from gaussian
distributions.

Figure 8 shows a typical overlay plot of pull and impact (right plot for Asimov and left plot for some
toy data set). Note the different x-axis (top for the impact, bottom for the pull). Figure 9 shows in more
detail the calculation of the impact - it shows the scan of tµ(✏), ˆ̂µ(✏) and the procedure leading from
✏̂ ± �✏ points to the Impact range (right plot for Asimov and left plot for some toy data set).

Parameter Asimov Measured
s 90 -
n 131.5 132
µ 1 1.4
✏ 0.5 0.465
�✏ 0.05 -
A 0.7 0.487
�A 0.2 -
b 100 103.21
�b 10 -

Table 2: Parameters for toy experiment

-2 -1 0 1 2Δμ±

ϵ

A

b

-2 -1 0 1 2
θ
^
- θ0

σθo

-2 -1 0 1 2Δμ±

ϵ

A

b

-2 -1 0 1 2
θ
^
- θ0

σθo

Fig. 8: Impact and pull for the three nuisance parameters (right plot for Asimov and left plot for some toy data set).
The yellow rectangles show the impact range (upper x-axis) and the coloured dots show the pull (lower x-axis)
with one � error bars

7 The Look Elsewhere Effect (LEE).
Wikipedia: The look-elsewhere effect is a phenomenon in the statistical analysis of scientific experiments,
particularly in complex particle physics experiments, where an apparently statistically significant obser-
vation may have actually arisen by chance because of the size of the parameter space to be searched.Once
the possibility of look-elsewhere error in an analysis is acknowledged, it can be compensated for by care-
ful application of standard mathematical techniques [2].

7.1 The LEE with one parameter (m) undefined under the null hypothesis.
When searching for a new resonance somewhere in a possible mass range, the significance of observing
a local excess of events must take into account the probability of observing such an excess anywhere in
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Fig. 9: Calculation of the impact of the nuisance parameter ✏ (right plot for Asimov and left plot for some toy data
set). The upper plot shows the MLE of µ when profiling all parameters except ✏ (the blue curve) and the red X’s
show the point where ˆ̂µ(✏) intersects with the ✏̂ ± �✏ points (the dashed vertical lines), which marks the end points

of the impact. The bottom plot shows the scan of the test statistic tµ(✏) = �2lnL(ˆ̂µ, ˆ̂A,✏,ˆ̂b)

L(µ̂,Â,✏̂,b̂)
and shows that the ✏̂±�✏

points correspond to min(tµ(✏)) ± 1

the range. This is the so called “look elsewhere effect”. The effect can be quantified in terms of a trial
factor, which is the ratio between the probability of observing the excess at some fixed mass point (local
p � value), to the probability of observing it anywhere in the range (global p � value). The question we
try to answer with a p � value is What is the probability of observing an excess anywhere in the search
range". For years it was a common knowledge that in order to convert the local probability into a global
probability one has to apply a trial factor which is simply the number of possible independent search
regions, i.e. trial # =

pfloat

pfix
= search range

mass resolution . In [2] it was shown that an important factor was missing
from this rule of thumb estimation. The trial number is linearly dependent on the local significance. This
can be intuitively understood by the possibility of havung a look elsewhere effect within the independent
search range, where the number of possibilities peak can arrange itself is proportional to the significance.
The trial number is therefore asymptotically (for small p � values, i.e. large significance) given by

trial# ⇡ 1 +

r
⇡

2
NZfix (45)

where N is the number of independent search regions.
The trial factor is thus asymptotically linear with both the effective number of independent regions,

and with the fixed-mass significance.
The number of independent search region is not a trivial quantity. The resolution might not be well

defined and is usually depending on the mass. We applied the formula obtained by Davies [12] for an
hypothesis testing when a nuisance parameter (the mass) is known only under the alternative hypothesis.
The mass is not defined under the null (background only) hypothesis.

Let q0(m, ✓) be the discovery test statistics (following Equation 31). m is undefined under the null
hypothesis (µ = 0). Nevertheless, there is a dependence of q0 on the mass through the denominator.

q0(m) =

8<
:

�2 ln L(0)
L(µ̂,m) µ̂ � 0,

0 µ̂ < 0 ,
(46)
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Given some data set, we scan q0(m) and find the maximal one (smallest p � value over all possible
masses). We define it as

q̂0 ⌘ maxm[q0(m)] = q0(m̂) (47)

Since for any given m, q0(m̂ � q0(m), the global p � value, pglobal � plocal. Hence, the trial number
is always greater or equal to one, Trial# � 1. We find that for high local significance (at the tail of the
pdf distributions), the following relation exists between the global and local p � value:

P (q0(m̂) > u) ⇡ 1

2
P (�2

1 > u) + NP (�2
2 > u) (48)

where in the tail u ! 1. N is the number of independent search regions. To obtain this we find the
average number of upcrossings at a level u = Z2, nu, i.e. E[nu] = N e�u/2.

Since we are interested to know the global significance for high level , normally u = Z2 > 16, the
number of upcrossings is very small and one needs to generate expensive toys to estimate E[nu]. One
then renormalize the upcrossings level. Let us pick a low level u0 where the number of upcrossings is
relatively large and the statistical error on the estimation is therefore small (normally one picks u0 = 0
or u0 = 0.52). We find E(nu0) = N e�u0/2 and therefore

E(nu) = E(nu0)e
u0�u

2 (49)

Finally we find that the answer to the question: What is the probability to have a fluctuation with a
significance bigger than Z =

p
u all over a given mass range? is given by

Pglobal(u) ⇡ plocal(u) + E(nu0)e
u0�u

2 (50)

where u0 is some low reference level, where the estimation of the number of upcrossings E(nu0) is easy
and fast.

To illustrate it let us look at a real example from the Higgs Boson search and discovery. In the
following Figures we show the p0 (Figure 10) and the signal strength µ (Figure 11) as a function of the
Higgs mass. The plots are taken from the ATLAS discovery conference note [10]. Z = 0 corresponds
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Fig. 10: The local probability p0 for a background-only experiment to be more signal-like than the observation in
the full mass range of this analysis as a function of mH . The dashed curves show the median expected local p0

under the hypothesis of a Standard Model Higgs boson production signal at that mass. The horizontal dashed lines
indicate the p-values corresponding to significances of 1� to 6�.

to either p0 = 0.5 or µ̂ = 0. Se we have to count the number of up-crossings at 0�. We should have
performed a few Momte Carlo experiments and count the average number of up-crossings at u = 0. But
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Fig. 11: The combined best-fit signal strength µ̂ as a function of the Higgs boson mass hypothesis in the full mass
range of this analysis

this seems to be not practical when we combine all the channels. Instead we could simply take the data
itself and count nu0 = 9±3. This accuracy is sufficient for the estimation of the trial number. Following
Equation 50, substituting u0 = 0 and u = 52 = 25, we find

pglobal = O(10�7) + 9 ⇥ e�25/2 = 3.3 ⇥ 10�5 (51)

The trial number is about trial# ⇡ 10�5

10�7 ⇡ 100 and it reduces the significance from 5� to 4�.

7.2 The LEE with two parameters (m,�) undefined under the null hypothesis.
In cases where there are two parameters undefined under the null hypothesis, such as mass (m) and width
(�) the Look Elsewhere Effect is broader. Ref [13] solved the case for a multi-dimensional search.

Suppose we would like to estimate the global significance of some observed excess. When allow-
ing both the mass and the width float, we observe that the highest significance of Z� occurs for some
specific mass and width. This observation corresponds to a local background fluctuation with a p-value
of plocal. However, any fluctuation at any mass and width in the 2D search plane of m and � would have
drawn our attention. The increased probability to observe a fluctuation of Z� or more anywhere in the
mass-width plane A = (m, �) (LEE) is given by the global p-value, pglobal. The local p-value is based
on scanning the q0(m, �) test statistic, q0(m, �) given by

q0(m, �) = �2 log
L(0, m, �, ˆ̂✓)

L(µ̂, m̂, �̂, ✓̂)
. (52)

The distribution of the maximum local significance u = Z2 = maxm,� q0(m, �) was studied in [13].
The global p-value is given by

pglobal ⇡ E[�(Au)] = plocal + e�u/2(N1 +
p

uN2) (53)

where N1 and N2 are coefficients that are estimated by calculating the average Euler characteristic of
the plane A. To solve for N1 and N2, it is convenient to set two reference levels u0 and u1, find the
Euler characteristics for each level, and solve the consequent system of two linear equations. In a 2D
manifold with closed islands, some with holes, each disconnected full island takes the value +1. Each
hole contributes �1. In that sense a full round shape has the Euler characteristic of +1. If you dig a hole
in it, its Euler characteristics becomes +1 � 1 = 0 (Figure 12).

An example can be taken from the search for di-photon in ATLAS [14]. In Figure 13 one sees
the 2D (mX , �X/mX ) plane. The manifold Au is obtained by slicing this plane at a level u = Z2. The
Euler characteristic is the number of "disconnected" islands in that slice.
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Fig. 12: Illustration of the Euler characteristic of some 2-dimensional manifold.
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