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Abstract

These three lectures provide an introduction to the main concepts of statis-
tical data analysis useful for precision measurements and searches for new
signals in High Energy Physics. The frequentist and Bayesian approaches to
probability theory are introduced and, for both approaches, inference methods
are presented. Hypothesis tests will be discussed, then significance and upper
limit evaluation will be presented with an overview of the modern and most
advanced techniques adopted for data analysis at the Large Hadron Collider.
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1 Introduction

The main goal of an experimental particle physicist is to make precision measurements and possibly
discover new natural phenomena. The starting ingredients to this task are particle collisions that are
recorded in form of data delivered by detectors. Data provide measurements of the position of particle
trajectories or energy releases in the detector, time of particles arrival, etc. Usually, a large number of
collision events are collected by an experiment and each of such events may containing large amounts
of data. Collision event data are all different from each other due to the intrinsic randomness of physics
process. In Quantum Mechanics the probability (density) is proportional to the square of the process am-
plitude (P o |.A|?). Detectors also introduces some degree of randomness in the data due to fluctuation
of the response, like resolution effects, efficiency, etc. Theory provides prediction of the distributions of
measured quantities in data. Those predictions depend on theory parameters, such as particles masses,
particle couplings, cross section of observed processes, etc.

Given our data sample, we want to either measure the parameters that appear in the theory (e.g.:
determine the top-quark mass to be: my = 173.44 4+ 0.49 GeV [1]) or answer questions about the
nature of data. For instance, as outcome of the search for the Higgs boson at the Large Hadron Collider,
the presence of the boson predicted by Peter Higgs and Frangois Englert was confirmed providing a
quantitative measurement of how strong this evidence was. Modern experiments search for Dark Matter
and they found no convincing evidence so far. Such searches can provide a range of parameters for
theory models that predict Dark-Matter particle candidates that are allowed or excluded by the present
experimental observation.

In order to achieve the methods that allow to perform the aforementioned measurements or
searches for new signals, first of all a short introduction to probability theory will be given, in order
to master the tools that describe the intrinsic randomness of our data. Then, methods will be introduced
that allow to use probability theory on our data samples in order to address quantitatively our physics
questions.

2 Probability theory

Probability can be defined in different ways, and the applicability of each definition depends on the
kind of claim whose probability we are considering. One subjective approach expresses the degree of
belief/credibility of a claim, which may vary from subject to subject. For repeatable experiments whose
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outcome is uncertain, probability may be a measure of how frequently the claim is true. Repeatable
experiments are a subset of the cases where the subjective approach may be applied.

Examples of probability that can be determined by means of repeatable experiments are the fol-
lowings:

— What is the probability to extract an ace in a deck of cards?
We can shuffle the deck and extract again the card.

— What is the probability to win a lottery?
Though a specific lottery extraction can’t be repeated, we can imagine to repeat the extraction
process using the same device and extraction procedure.

— What is the probability that a pion is incorrectly identified as a muon in detector capable of particle
identification?
Most of the experiments have ways to obtain control samples where it’s known that only pions are
present (e.g.: test beams, or specific decay channels, etc.). One can count how many pions in a
control sample are misidentified as muon.

— What is the probability that a fluctuation in the background can produce a peak in the vy spectrum
with a magnitude at least equal to what has been observed by ATLAS (Fig. 1, Ref. [2])?
At least in principle, the experiment can be repeated with the same running conditions. Anyway,
this question is different with respect to another possible question: what is the probability that the
peak is due to a background fluctuation instead of a new signal? This second question refers to a
non-repeatable case.
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Fig. 1: Invariant mass distribution of diphoton events selected by ATLAS. Figure from Ref. [2], where details
about the analysis are described.

Examples of claims related to non-repeatable situations, instead, are the following:

— What is the probability that tomorrow it will rain in Geneva?
The event is related to a specific date in the future. This specific event cannot be repeated.

— What is the probability that your favorite team will win next championship?
Though every year there is a championship, a specific one can’t be repeated.

— What is the probability that dinosaurs went extinct because of an asteroid?

214



PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICISTS

This question is related to an event occurred in the past, but we don’t know exactly what happened
at that time.

— What is the probability that Dark Matter is made of particles heavier than 1 TeV?
This question is related to an unknown property of our Universe.

— What is the probability that climate changes are mainly due to human intervention?
This question is related to a present event whose cause is unknown.

The first examples in the above list are related to events in the future, where it’s rather natural to think in
term of degree of belief about some prediction: we can wait and see if the prediction was true or not. But
similar claims can also be related to past events, or, more in general, to cases where we just don’t know
whether the claims is true or not.

2.1 Classical probability

The simplest way to introduce probability is to consider the symmetry properties of a random device.
Example could be a tossed coin (outcome may be head or tail) or a rolled dice (outcome may be a
number from 1 to 6 for a cubic dice, but dices also exist with different shapes). According to the original
definition due to Laplace [3], we can be “equally undecided” about an event outcome due to symmetry
properties, and we can assign an equal probability to each of the outcomes. If we define an event from a
statement about the possible outcome of one random extraction (e.g.: a dice roll gives an odd number),
the probability P of that event (i.e.: that the statement is true) can be defined as:

_ Number of favorable cases

1

Total number of cases M
Probabilities related to composite cases can be computed using combinatorial analysis by reducing the
composite event of interest into elementary equiprobable events. The set of all possible elementary events
is called sample space (see also Sec. 2.4). For instance, in Fig. 2, the probability to obtain a given sum of
two dices is reported. The computation can be done by simply counting the number of elementary cases.
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Fig. 2: Probability distribution of the sum of two dices computed by counting all possible elementary outcomes.

For instance 2 can be obtained only as 1 + 1, while 3 can be obtainedas 1 +2or2+1,4as1+3,2+42
or3+ 1, etc.

Textual statements about an event can be translated using set algebra considering that and/or/not
correspond to intersection/union/complement in set algebra. For instance, the event “sum of two dices is
even and greater than four” corresponds to the intersection of two sets:

{(dl,dg) : mod(d1 + d2,2) = O} N {(dl,dg) cdp +do > 4} . 2)
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2.1.1 ‘“Events” in statistics and in physics

It’s worth at this point to remarking the different meaning that the word event usually assumes in statistics
and in physics. In statistics an event is a subset of the sample space. E.g.: “the sum of two dices is
> 5”. In particle physics usually an event is the result of a collision, as recorded by our experiment.
In several concrete cases, an event in statistics may correspond to many possible collision events. E.g.:
“pr(v) > 40 GeV” may be an event in statistics, but it may correspond to many events from a data
sample that have at least one photon with transverse momentum greater than 40 GeV.

2.2 Frequentist probability

The definition of frequentis probability relates probability to the fraction of times an event occurrs, in the
limit of very large number (N — 00) of repeated trials:

P— lim Number of favorable cases 3)
= NSa N = Number of trials

This definition is exactly realizable only with an infinite number of trials, which conceptually may be
unpleasant. Anyway, physicists may consider this definition pragmatically acceptable as approximately
realizable in a large, but not infinite, number of cases. The definition in Eq. (3) is clearly only applicable
to repeatable experiments.

2.3 Subjective (Bayesian) probability

Subjective probability expresses one’s degree of belief that a claim is true. A probability equal to 1 ex-
presses certainty that the claim is true, O expresses certainty that the claim is false. Intermediate values
form O to 1 quantify how strong the degree of belief that the claims is true is. This definition is appli-
cable to all unknown events/claims, not only repeatable experiments, as it is the case for the frequentist
approach. Each individual may have a different opinion/prejudice about one claim, so this definition
is necessarily subjective. Anyway, quantitative rules exist about how subjective probability should be
modified after learning about some observation/evidence. Those rules descend from the Bayes theorem
(see Sec. 2.10), and this gives the name of Bayesian probability to subjective probability. Starting from
a prior probability, following some observation, the probability can be modified into a posterior proba-
bility. The more information an individual receives, the more Bayesian probability is insensitive on prior
probability, with the exception of pathological cases of prior probability. An example of such a case is a
prior certainty that a claim is true (dogma) that is then falsified by the observation.

2.4 Komogorov axiomatic approach

An axiomatic definition of probability is due to Kolmogorov [4], which can be applied both to frequentist
and Bayesian probabilities. The axioms assume that {2 is a sample space, F' is an event space made of
subsets of Q (F' C 2, and P is a probability measure that obeys the following three conditions:

1. P(E)>0, VEEF

2. P(Q) =1 (normalization condition)
n n
3. V(El,-” ,En) EF”:EZ‘UE]‘ =0, P (U El> = ZP(EZ)
i=1 i=1
The last condition states that the probability of the union of a set of disjoint events is equal to the sum of
their individual probabilities.

2.5 Probability distributions

Given a discrete random variable n, a probability can be assigned to each individual possible value of n:

P(n) = P({n}). )

216



PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICISTS

Figure 3 shows an example of discrete probability distribution. In case of a continuous variable, the
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Fig. 3: Example of probability distribution of a discrete random variable n.

probability assigned to an individual value may be zero (e.g.: P({z}) = 0), and a probability density
function (PDF) better quantifies the probability content of an interval with finite measure:

dP(z)
8 ). ©

and: 2
Pleras) = [ fla)do. ©)

Figure 4 shows an example of such a continuous distribution. Discrete and continuous distributions can

o
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Fig. 4: Example of probability distribution of a continuous random variable z.

be combined using Dirac’s delta functions. For instance, the following PDF:

dP(z) 1
de 2

5(2) + 3 /(@) @

corresponds to a 50% probability to have x = 0 (P({0}) = 0.5) and 50% probability to have a value
x # 0 distributed according to f(x).

The cumulative distribution of a PDF f is defined as:

F(z) = / " f(@)da. ®)
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2.6 PDFs in more dimensions

In more dimensions, corresponding to n random variables, a PDF can be defined as:

d"P(xy,--- )
dzq---dz,

:f(xlv."vmn)' (9)

The probability associated to an event which corresponds to a subset £ C IR is obtained by integrating
the PDF over the set F, naturally extending Eq. (6):

P(E)—/Ef(xl,m ,an)d" . (10)

2.7 Mean, variance and covariance

For a PDF that models a random variable z, it’s useful to define a number of quantities:

— The mean or expected value of x is defined as:

E[x]z(x)z/:rf(m)dx. (11)

More in general, the mean or expected value of g(z) is:

Ely(@)] = (9(o)) = | gla) f(z) da. (12)
— The variance of x is defined as:
Var[z] = ((x — (z))?) = (2?) — ()*. (13)

The term (%) is called root mean square, or r.m.s..
— The standard deviation of x is the square root of the variance:

oz = /Var[z] = \/((z — (x))?). (14)

Given two random variables x and y, the following quantities may be defined:

— The covariance of x and v is:

Covlz,y] = ((z — (@) (y = W))) - (15)
— The correlation coefficient is:
py = VY] (16)
00y

Two variables with null covariance are said to be uncorrelated.
2.8 Commonly used distributions

Below a few examples of probability distributions are reported that are frequently used in physics and
more in general in statistical applications.
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Fig. 5: Example of Gaussian distribution with ¢ = 0 and o = 1. The shaded interval [z — o, p + o] correspond to
a probability of approximately 0.683.

Table 1: Probabilities for a Gaussian PDF corresponding to an interval [y — no, yu + no].

n Prob.
1 0.683
2 0.954
3 0.997

4 1-65x%x1075
5 1-57x10"7

2.8.1 Gaussian distribution
A Gaussian or normal distribution is given by:
(i p0.0) = —
g(x;p,0) = —=
7 U\/ﬂ
where 1 and o are parameters equal to the average value and standard deviation of x, respectively. If
¢ = 0 and o = 1, a Gaussian distribution is also called standard normal distribution. An example
of Gaussian PDF is shown in Fig. 5. Probability values corresponding to intervals [x — no, u + no
for a Gaussian distribution are frequently used as reference, and are reported in Tab. 1. Many random
variables in real experiments follow, at least approximately, a Gaussian distribution. This is mainly due
to the central limit theorem that allows to approximate the sum of multiple random variables, regardless

of their individual distributions, with a Gaussian distribution. Gaussian PDFs are frequently used to
model detector resolution.

o~ (@—p)?/20? 7 (17)

2.8.2 Poissonian distribution

A Poissonian distribution for an integer non-negative random variable n is:
V’I’L

P(n;v) = me_l’, (18)

where v is a parameter equal to the average value of n. The variance of n is also equal to v.

Poissonian distributions model the number of occurrences of random event uniformly distributed
in a measurement range whose rate is known. Examples are the number of rain drops falling in a given
area and in a given time interval or the number of cosmic rays crossing a detector in a given time interval.
Poissonian distributions may be approximated with a Gaussian distribution having ¢ = v and ¢ =
/v for sufficiently large values of v. Examples of Poissonian distributions are shown in Fig. 6 with
superimposed Gaussian distributions as comparison.
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40 50

Fig. 6: Example of Poisson distributions with different values of v. The continuous superimposed curves are
Gaussian distributions with y = v and o = \/v.

2.8.3 Binomial distribution

A binomial distribution gives the probability to achieve n successful outcomes on a total of IV indepen-
dent trials whose individual probability of success is p. The binomial probability is given by:

N!

Pn:N.p) = i -p)V P (19)
The average value of n for a binomial variable is:
(n) =Np (20)
and the variance is:
Varln|=Np(l—p). (21)

A typical example of binomial process in physics is the case of a detector with efficiency p, where 7 is
the number of detected particles over a total number of particles N that crossed the detector.

2.9 Conditional probability
The probability of an event A, given the event B is defined as:

P(ANB)

P(AIB) = ~ L

(22)
and represents the probability that an event known to belong to set B also belongs to set A. It’s worth
noting that, given the sample space €2 with P(2) = 1:

P(ANQ)

P(AIR) = ~ 5™

(23)
consistently with Eq. (22).

An event A is said to be independent on the event B if the probability of A given B is equal to the
probability of A:
P(A|B) = P(A). (24)
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If an event A is independent on the event B, then P(ANB) = P(A)P(B). Using Eq. (22), it’s immediate
to demonstrate that if A is independent on B, then B is independent on A.

The application of the concept of conditional probability to PDFs in more dimensions allows to
introduce the concept of independent variables. Consider a two-variable PDF f(z,y) (but the result can
be easily generalized to more than two variables), two marginal distributions can be defined as:

flo) = [sea. 23)
fy(z) = / flz,y)dz. (26)
If we consider the sets:
A = {2x<a <z+ oz}, (27
B = {y:y<y <y+dy}, (28)

where dx and dy are very small, if A and B are independent, we have:
P(AnB)=P(A)P(B), (29)
which implies:
flx,y) = fz(x)fy(x) (30)

From Eq. (30), it’s possible to define that z and y are independent variables if and only if their PDF can
be factorized into the product of one-dimensional PDFs. Note that if two variables are uncorrelated they
are not necessarily independent.

2.10 Bayes theorem

Considering two events A and B, using Eq. (22) twice, we can write:

pus) = CHE, G
Pl = RO (32)

from which the following equation derives:
P(A|B)P(B) = P(B|A)P(A). (33)

Eq. (33) can be written in the following form, that takes the name of Bayes theorem:

P(BJA)P(A)

PAIB) = =55

(34)

In Eq. (34), P(A) has the role of prior probability and P(A|B) has the role of posterior probability.
Bayes theorem, that has its validity in any probability approach, including the frequentist one, can also
be used to assign a posterior probability to a claim H that is necessarily not a random event, given a
corresponding prior probability P(H ) and the observation of an event £ whose probability, if H is true,
is given by P(E|H):

P(E|H)P(H)

P(E)

Eq. (35) is the basis of Bayesian approach to probability. It defines in a rational way a role to modify
one’s prior belief in a claim H given the observation of E.

P(H|E) = (35)
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The following problem is an example of application of Bayes theorem in a frequentist environ-
ment. Imagine you have a particle identification detector that identifies muons with high efficiency, say
e = 95%. A small fraction of pions, say & = 5%, are incorrectly identified as muons (fakes). Given a
particle in a data sample that is identified as a muon, what is the probability that it is really a muon? The
answer to this question can’t be given unless we know more information about the composition of the
sample, i.e.: what is the fraction of muons and pions in the data sample.

Using Bayes theorem, we can write:

P(+|p)P(p)

P(ul+) = P

(36)
where ‘+’ denotes a positive muon identification, P(u|+) = ¢ is the probability to positively identify
a muon, P(yu) is the fraction of muons in our sample (purity) and P(+) is the probability to positively
identify a particle randomly chosen from our sample.

It’s possible to decompose P(+) as:
P(+) = P(+|p) P(p) + P(+|m)P(r), (37)

where P(+|m) = ¢ is the probability to positively identify a pion and P(7) = 1 — P(u) is the fraction
of pions in our samples, that we suppose is only made of muons and pions. Eq. (37) is a particular case
of the law of total probability which allows to decompose the probability of an event Fj as:

n

P(Ey) = P(Eo|Ai)P(4)), (38)

i=1
where the sets A; are all pairwise disjoint and constitute a partition of the sample space.

Using the decomposition from Eq. (37) in Eq. (36), one gets:

eP(u)

Pul) = poasopm

(39)

If we assume that our sample contains a fraction P(u) = 4% of muons and P(7) = 96% of pions,

we have: 0.95 - 0.04
P — i ~0.44. 40
() = 595 70,04 0.0 0.96 (40

In this case, even if the selection efficiency is very high, given the low sample purity, a particle positively
identified as a muon has a probability less than 50% to be really a muon.

2.11 The likelihood function

The outcome of on experiment can be modeled as a set of random variables x1, - - - , x,, whose distribu-
tion takes into account both intrinsic physics randomness (theory) and detector effects (like resolution,
efficiency, etc.). Theory and detector effects can be described according to some parameters 61, - - - , Oy,
whose values are, in most of the cases, unknown. The overall PDF, evaluated for our observations
1, , Xy, s called likelihood function:

L=f(z,- an b1, 0m). (41)

In case our sample consists of N independent measurements, typically each corresponding to a collision
event, the likelihood function can be written as:

N
L=]]r@l, - ahibr, 0m). (42)
=1
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The likelihood function provides a useful implementation of Bayes rule (Eq. (35)) in the case of a
measurement constituted by the observation of continuous random variables z1, - - - , z,,. The posterior
PDF of the unknown parameters 61, - - - , 6,, can be determined as:

L(Il,"' 7wn§9, 76m)7‘—(917'” 76m)

P(6y,--- .0 e = , 43
( 1 m‘l’l l’n) fL(.’I:l, 7:1:.”;07.‘. 79m 71_(917.'. ,Hm)dem ( )
where (61, - ,60,,) is the subjective prior probability and the denominator is a normalization factor
obtained with a decomposition similar to Eq. (37). Equation (43) can be interpreted as follows: the
observation of x1, - - - , x,, modifies the prior knowledge of the unknown parameters 601, - - - , 0,,.

If (61, ,0,,) is sufficiently smooth and L is sharply peaked around the true values of the
parameters 61, - - - , 0,,,, the resulting posterior will not be strongly dependent on the prior’s choice.

Bayes theorem in the form of Eq. (43) can be applied sequentially for repeated independent obser-
vations. In fact, if we start with a prior Py(6), we can determine a posterior:

— —

Pi(0) x Py(6) - Ly(71:6), (44)

—

where L (2£7;6) is the likelihood function corresponding to the observation ;. Subsequently, we can
use P; as new prior for a second observation 7o, and we can determine a new posterior:

Py(0) < Py(6) - La(2; 0) (45)

and so on:

P3(0) o Py(0) - La(s; 0). (46)
For independent observations 1, 2, Z2, the combined likelihood function can be written as the product
of individual likelihood functions (Eq. (30)):

— — — —

P3(0) o< Py(0) - L1(£1;0) - Lo(Zo;0) - L3(73;0), 47)

consistently with Eq. (46). This allows to use consistently the repeated application of Bayes rule as
sequential improvement of knowledge from subsequent observations.

3 Inference

In Sec. 2 we presented how probability theory can model the fluctuation in data due to intrinsic random-
ness of observable data samples. Taking into account the distribution of data as a function of the values
of unknown parameters, we can exploit the observed data in order to determine information about the
parameters, in particular to measure their value (central value) within some uncertainty. This process is
called inference.

3.1 Bayesian inference

One example of inference is the use of Bayes theorem to determine the posterior PDF of an unknown
parameter 6 given an observation x:
L(z;0)7(0)

Pdle) = [L(z:0)7(6)d6’ (“8)

where 7(6) is the prior PDF. The posterior P(f|x) contains all the information we can obtain from x
about #. One example of possible outcome for P(f|z) is shown in Fig. 7 with two possible choices of
uncertainty interval (left and right plots). The most probable value, 0, also called mode, shown as dashed
line in both plots, can be taken as central value for the parameter 6. It’s worth noting that if 7(6) is
assumed to be a constant, 0 corresponds to the maximum of the likelihood function (maximum likelihood

223



L. Lista

estimate, see Sec. 3.5). Different choices of 68.3% probability interval, or uncertainty interval, can be
taken. A central interval [01, 6], represented in the left plot in Fig. 7 as shaded area, is obtained in order
to have equal areas under the two extreme tails:

01
/ Py = 5, (49)
+oo
/ P@lz)d) = <, (50)
02 2

where « = 1 — 68.3%. Another example of a possible coice of 68.3% interval is shown in the right plot,
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Fig. 7: Example of a posterior PDF of the parameter # with two possible choices of a 68.3% probability interval
shown as shaded area: a central interval (left plot) and a symmetric interval (right plot). The dotted vertical line
shows the most probable value (mode).

where a symmetric interval is taken, corresponding to:

0+06
/ Pllz)dd = 1—-a. (51)
0—6

(52)

Two extreme choices of fully asymmetric probability intervals are shown in Fig. 8, leading to an
upper (left) or lower (right) limit to the parameter 6. For upper or lower limits, usually a 90% or 95%
probability interval is chosen instead of the usual 68.3% used for central or symmetric intervals. The
intervals in Fig. 8 are chosen such that:

gup
/ P@lz)dd = 1—a (eftplop), (53)
oo
/ Pf|z)dd = 1—a (rightplot), (54)
glo

(55)

where in this case o = 0.1.

3.1.1 Example of Bayesian inference: Poissonian counting

In a counting experiment, i.e.: the only information relevant to measure the yield of our signal is the
number of events n that pass a given selection, a Poissonian can be used to model the distribution of n
with an expected number of events s:
ste™?®
P(n;s) = . (56)

n!
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Fig. 8: Extreme choices of 90% probability interval leading to an upper limit (left) and a lower limit (up) to the
parameter 6.

If a particular value of n is measured, the posterior PDF of s is (Eq. (48)):

s"e?
“a(s)
P(sn) = — Sme'_s/ , (57)
/ 7(s’) ds’
0 n!

where 7(s) is the assumed prior for s. If we take 7(s) to be uniform, performing the integration gives a
denominator equal to one, hence:

(58)

Note that though Egs. (56) and (58) lead to the same expression, the former is a probability for the
discrete random variable 7, the latter is a posterior PDF of the unknown parameter s. From Eq. (56), the
mode $ is equal to n, but (s) = n + 1, due to the asymmetric distribution of s, and Var[s] = n + 1,
while the variance of n for a Poissonian distribution is /s (Sec. 2.8.2).
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Fig. 9: Posterior PDF of a Poissonian parameter s for observed number of events n = 5 (left) and for n = 0
(right). In the left plot, a central 68.3% probability interval is chosen, while for the right plot a fully asymmetric
90% probability interval, leading to an upper limit, is chosen.

Figure 9 shows two cases of posterior PDF of s, for the cases n = 5 (left) and for n = 0 (right). In
the case n = 5, a central value § = 5 can be taken as most probable value. In that plot, a central interval
was chosen (Eq. (49, 50)). For the case n = 0, the most probable value of s is § = 0. A fully asymmetric
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interval corresponding to a probability 1 — « leads to an upper limit:

_gup

=, 59)

which then leads to:
s < s"=2303 for «a=0.1(90% probability), (60)
s < s"=2996 for « = 0.05(95% probability) . 61)

3.2 Error propagation with Bayesian inference

Error propagation is needed when applying a parameter transformation, say n = H(f). A central value
and uncertainty interval need to be determined for the transformed parameter . With Bayesian inference,
a posterior PDF of 6, f(0) is available, and the error propagation can be done transforming the posterior
PDF of @ into a PDF of 7, f’(n): the central value and uncertainty interval for 7) can be computed from
f'. In general, the PDF of the transformed variable 7, given the PDF of 0, is given by:

) = / 5(n — H(6))£(6) do. 62)

Transformations for cases with more than one variable proceed in a similar way. If we have two param-
eters 67 and 6, and a transformed variable n = H (61, 605), then the PDF of 7, similarly to Eq. (62), is
given by:

f/(n) = /5(77—H(91,92))f(91,92) d91 d92 (63)

In case of a transformation from two parameters 6; and 05 in two other parameters 7; and 72: 71 =
Hy(61,02), n2 = Ha(01,02), we have:

f'(m,m2) = /5(771 — H1(01,02))0(n2 — H2(61,62)) f(61,62) db, dbs . (64)

3.3 Choice of the prior

One of the most questionable issue related to Bayesian inference is the subjectiveness of the result, being
dependent on the choice of a prior. In particular, there is no unique choice of a prior that models one’s
ignorance about an unknown parameter. A choice of a uniform prior, such as it was done in Sec. 3.1.1,
is also questionable: if the prior PDF is uniform in a chosen variable, it won’t necessarily be uniform
when applying a coordinate transformation to that variable. A typical example is the measurement of a
particle’s lifetime, which is the inverse of the particle’s width. Given any choice of a regular prior for a
parameter, there is always a transformation that makes the PDF uniform.

Harold Jeffreys provided a method [5] to chose a form of the prior that is invariant under param-
eter transformation. The choice uses the so-called Fishers information matrix, which, given a set of
parameters 6 = (61, -+ ,0,,), is defined as:

Iij(g)_<8lnL(f;9)8lnL(f;9)>. ©5)

00; 09,

Jeffrey’s prior is then given by, up to a normalization factor:

7(0) o \/det Z(6) . (66)

It’s possible to demonstrate that Eq. (66) is invariant under a parameter transformation 77 = H (0).
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3.4 Frequentist inference

Assigning a probability level to an unknown parameter makes no sense in the frequentist approach since
unknown parameters are not random variables. A frequentist inference procedure should determine a
central value and an uncertainty interval that depend on the observed measurements without introducing
any subjective element. Such central value and interval extremes are random variables themselves. The
function that returns the central value given an observed measurement is called estimator. The parameter
value provided by an estimator is also called best fit value. Different estimator choices are possible,
the most frequently adopted is the maximum likelihood estimator because of its statistical properties
discussed in Sec. 3.7.

Repeating the experiment will result each time in a different data sample and, for each data sample,
the estimator returns a different central value f. An uncertainty interval [é 6,0+ 0] can be associated to
the estimator value 6. In some cases, as for the Bayesian inference, an asymmetric interval choice is also
possible with frequentist inference: [9 — 67,0+ d7]. Some of the intervals obtained with this method
contain the fixed and unknown true value of 6, corresponding to a fraction equal to 68.3% of the repeated
experiments, in the limit of very large number of experiments. This property is called coverage.

The simplest example of frequentist inference assumes a Gaussian PDF (Eq. (17)) with a known
o and an unknown p. A single experiment provides a measurement z, and we can estimate p as i = x.
The distribution of [ is the original Gaussian because /i is just equal to x. A fraction of 68.3% of the
experiments (in the limit of large number of repetitions) will provide an estimate 1 within: yp — o < i <

 + o. This means that we can quote:
1)

3.5 Maximum likelihood estimates

The maximum likelihood method takes as best-fit values of the unknown parameter the values that max-
imize the likelihood function (defined Sec. 2.11). The maximization of the likelihood function can be
performed analytically only in the simplest cases, while a numerical treatment is needed in most of the
realistic cases. MINUIT [6] is historically the most widely used minimization software engine in High
Energy Physics.

3.5.1 Extended likelihood function

Given a sample of N measurements of the variables # = (x1,- - - , x,), the likelihood function expresses
the probability density evaluated for our sample as a function of the unknown parameters 61, - - - , O,
N
L(flyafN):Hf(lea7:13:1701»707%) (68)
i=1

The size N of the sample is in many cases also a random variable. In those cases, the extended likelihood
function can be defined as:

N
L(fb"' 7fN) - P(Nvelv 70m)Hf(xlla 71'%;917"' 70m)7 (69)
i=1
where P(N; 6y, - ,0,,) is the distribution of IV, and in practice is always a Poissonian whose expected
rate parameter is a function of the unknown parameters 61, - - - , 0,,:
By, G) Ve O )

P(N;01,--,6p) (70)

N!

In many cases, either with a standard or an extended likelihood function, it may be convenient
touse —In L or —21In L in the numerical treatment rather than L, because the product of the various
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terms is transformed into the sum of the logarithms of those terms, which may have advantages in the
computation.

For a Poissonian process that is given by the sum of a signal plus a background process, the
extended likelihood function may be written as:

. - s+ b)Ne(s+) X - o
L(Z;s,b,0) = % 11 (fsPs(wi; 0) + beb($i§9)) ; (71)
’ i=1

where s and b are the signal and background expected yields, respectively, fs and f; are the fraction of
signal and background events, namely:

S

fs = P (72)
b

fo = P (73)

and P, and P, are the PDF of the variable x for signal and background, respectively. Replacing fs and
fp into Eq. (71) gives:

e_(S‘H’) N . .
TN H <5Ps(xi; 0) + bPy(z4; 9)) ) (74)

i=1

L(%;s,b,0) =

It may be more convenient to use the negative logarithm of Eq. (74), that should be minimize in order to
determine the best-fit values of s, b and 0:

N
—1In L(Z; s, b, 5) =s+b— Z In (SPS(JZZ'; 5) + bPy(;; 5)) +1InN!. (75)
i=1

The last term In V! is a constant with respect to the fit parameters, and can be omitted in the minimization.
In many cases, instead of using s as parameter of interest, the signal strength p is introduced, defined by
the following equation:

s = usg, (76)

where s is the theory prediction for the signal yield s. ;4 = 1 corresponds to the nominal value of the
theory prediction for the signal yield.

Events/(0.01)

QT T T[T T EgET T[T T T [T T T [TTT

Fig. 10: Example of an unbinned maximum likelihood fit. Data are fit using a Gaussian distribution for the signal
and an exponential distribution for the background. This figure is taken from Ref. [7].
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An example of unbinned maximum likelihood fit is given in Fig. 10, where the data are fit with a
model inspired to Eq. (74), with P, and P, taken as a Gaussian and an exponential distribution, respec-
tively. The observed variable has been called m in that case because the spectrum resembles an invariant
mass peak, and the position of the peak at 3.1 GeV reminds a J /1) particle. The two PDFs can be written
as:

1 _m=p?

P(m) = e (77)

Py(m) = Xe . (78)

The parameters p, o and A are fit together with the signal and background yields s and b. While s is
our parameter of interest, because we will eventually determine a production cross section or branch-
ing fraction from its measurement, the other additional parameters, that are not directly related to our
final measurement, are said nuisance parameters. In general, nuisance parameters are needed to model
background yield, detector resolution and efficiency, various parameters modeling the signal and back-
ground shapes, etc. Nuisance parameters are also important to model systematic uncertainties, as will be
discussed more in details in the following sections.

3.6 Estimate of Gaussian parameters

If we have n independent measurements ¥ = (x1,--- ,x,) all modeled (exactly or approximatively)
with the same Gaussian PDF, we can write the negative of twice the logarithm of the likelihood function

as follows:
n N2

—21nL(f;,u):Z%+n(ln2w+2mo). (79)
i=1

The first term, Y ;" ; (Z’;Q“ )2, is an example of y? variable (see Sec. 3.13).

An analytical minimization of —2In L with respect to u, assuming o2 is known, gives the arith-
metic mean as maximum likelihood estimate of u:

[j, = — €Ty . (80)

3 N a2
o —nZ(xz [)°. (81)

The estimate in Eq. (81) can be demonstrated to have an unpleasant feature, called bias, that will be
discussed in Sec. 3.7.2.

3.7 Estimator properties

This section illustrates the main properties of estimators. Maximum likelihood estimators are most fre-
quently chosen because they have good performances for what concerns those properties.

3.7.1 Consistency

For large number of measurements, the estimator 6 should converge, in probability, to the true value of
6, 6**u¢, Maximum likelihood estimators are consistent.
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3.7.2 Bias
The bias of a parameter is the average value of its deviation from the true value:

bld] = (8- 0™) = (9) — g™ (82)
An unbiased estimator has b[f] = 0. Maximum likelihood estimators may have a bias, but the bias

decreases with large number of measurements (if the model used in the fit is correct).

In the case of the estimate of a Gaussian’s o2, the maximum likelihood estimate (Eq. (81)) under-
estimates the true variance. The bias can be corrected for by applying a multiplicative factor:

- n - 1 " .
UQunbias. = 0?2 = Z(xz - M)Q . (83)

n—1 n—14%
1=1

3.7.3 Efficiency

The variance of any consistent estimator is subject to a lower bound due to Cramér [8] and Rao [9]:

M 2
Var[] > <<<;; ggg; 92>> = Ver[f]. (84)

For an unbiased estimator, the numerator in Eq. (84) is equal to one. The denominator in Eq. (84) is the
Fisher information (Eq. (65)).

The efficiency of an estimator 6 is the ratio of the Cramér—Rao bound and the estimator’s variance:

~ Verld]
€(6) = Var[d]

(85)

The efficiency for maximum likelihood estimators tends to one for large number of measurements. In
other words, maximum likelihood estimates have, asymptotically, the smallest variance of all possible
consistent estimators.

3.8 Neyman’s confidence intervals

A procedure to determine frequentist confidence intervals is due to Neyman [10]. It proceeds as follows:

— Scan the allowed range of the unknown parameter of interest 6.

— Given a value 6 of 6, compute the interval [x1(6y), 22(6p)] that contains 2 with a probability 1 —«
(confidence level, or CL) equal to 68.3% (or 90%, 95%). For this procedure, a choice of interval
(ordering rule) is needed, as discussed in Sec. 3.1.

— For the observed value of z, invert the confidence belt: find the corresponding interval

[01(2), ()]

By construction, a fraction of the experiments equal to 1 — o will measure z such that the corresponding
confidence interval [01(x), 02(x)] contains (covers) the true value of 6. It should be noted that the random
variables are 01 (z) and 62(x), not 6. An example of application of the Neyman’s belt construction and
inversion is shown in Fig. 11.

The simplest application of Neyman'’s belt construction can be done with a Gaussian distribution
with known parameter ¢ = 1, as shown in Fig. 12. The belt inversion is trivial and gives the expected
result: a central value /i = = and a confidence interval |11, 2] = [ — o, 2+ o]. The result can be quoted
as u = x £ o, similarly to what was determined with Eq. (67).
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™ x,(0), 6,(x)

x,(0), 6,(r)

parameter 0

xl(:GO) ngeo)

Possible experimental values x

Fig. 11: Example Neyman’s belt construction and inversion. This figure is taken from Ref. [11].
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Fig. 12: Example of Neyman’s belt construction for a Gaussian distribution with 0 = 1, 1 — a = 0.683.
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3.9 Binomial intervals

The Neyman’s belt construction may only guarantee approximate coverage in case of a discrete variable
n. This because the interval for a discrete variable is a set of integer values, {nmin, - , Pmax}, and
cannot be “tuned” like in a continuous case. The choice of the discrete interval should be such to provide
at least the desired coverage (i.e.: it may overcover). For a binomial distribution, the problem consists
of finding the interval such that:

Mmax N' N
Z mp”(l—p) ">1-a. (86)
N=MNmin

Clopper and Pearson [12] solved the belt inversion problem for central intervals. For an observed n = k,
one has to find the lowest p'® and highest p"P such that:
P(n>k|N,p°) = -, (87)

(88)

(Ve Y e

P(n < k[N,p™) =

An example of Neyman belt constructed using the Clopper—Pearson method is shown in Fig. 13. For

p
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Fig. 13: Neyman belt construction for binomial intervals, N = 10, 1 — oo = 0.683.

instance for n = N, Eq. (87) becomes:

«

P(n > N|N,p°) = P(n = N|N,p®°) = (p*°)V = 5 (89)
hence, for the specific case N = 10:
plo = 1{’/% =0.83(1 — « =0.683), 0.74 (1 — o = 0.90) . (90)

In fact, in Fig. 13, the bottom line of the belt reaches the value p = 0.83 for n = 10. A frequently used
approximation, inspired by Eq. (21) is:

—p)

N oD

R n
pzﬁa Op =
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Eq. (91) gives 05 = O for n = 0 or N = n, which is clearly an underestimate of the uncertainty on p.
For this reason, Clopper—Pearson intervals should be preferred to the approximate formula in Eq. (91).

Clopper—Pearson intervals are often defined as “exact” in literature, though exact coverage is often
impossible to achieve for discrete variables. Figure 14 shows the coverage of Clopper—Pearson intervals
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Fig. 14: Coverage of Clopper—Pearson intervals for N = 10 (left) and for N = 100 (right).

as a function of p for N = 10 and N = 100 for 1 — o = 0.683. A “ripple” structure is present which,
for large NV, tends to gets closer to the nominal 68.3% coverage.

3.10 Approximate error evaluation for maximum likelihood estimates

A parabolic approximation of —2In L around the minimum is equivalent to a Gaussian approximation,
which may be sufficiently accurate in many but not all cases. For a Gaussian model, —2In L is given by:

2 L(FHp0) =Y M + const. . (92)
g
=1

An approximate estimate of the covariance matrix is obtained from the 2°¢ order partial derivatives with
respect to the fit parameters at the minimum:

-1 _ 82111[/

Vij = 00,00; ®3)

0,=0,Vk

Another approximation alternative to the parabolic one from Eq. (93) is the evaluation of the
excursion range of —21In L around the minimum, as visualized in Fig. 15. The uncertainty interval can
be determined as the range around the minimum of —2In L for which —21In L increases by +1 (or
+n? for a no interval). Errors can be asymmetric with this approach if the curve is asymmetric. For a
Gaussian case the result is identical to the 2% order derivative matrix (Eq. (93)).

3.11 Two-dimensional uncertainty contours

In more dimensions, i.e.: for the simultaneous determination of more unknown parameters from a fit,
it’s still possible to determine multi-dimensional contours corresponding to 1o or 20 probability level.
It should be noted that the scan of —21In L in the multidimensional space, looking for an excursion of
+1 with respect to the value at the minimum, may give probability levels smaller than the corresponding
values in one dimension. For a Gaussian case in one dimension, the probability associated to an interval
[—no, +no] is given, integrating Eq. (17), by:

Pip(no) = \/E/n efé dz = erf <\7§> . 94)
0
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Fig. 15: Scan of —21n L in order to determine asymmetric 1o errors. This figure is taken from Ref. [7].

For a two-dimensional Gaussian distribution, i.e.: the product of two independent Gaussian PDF, the
probability associated to the contour with elliptic shape for which —21In L increases by +(no)? with

respect to its minimum is:
2 2

n 5 n
Pop(no) —/ e Trdr=1—e"7. (95)
0
Table. 2 reports numerical values for Eq. (94) and Eq. (95) for various no levels. In two dimensions, for

Table 2: Probabilities for 1D interval and 2D contours with different no levels..

no Pip Pp

lo 0.6827 0.3934

20 0.9545 0.8647

30 0.9973 0.9889
1.5150 0.6827
2.4860 0.9545
3.4390 0.9973

instance, in order to recover a 1o probability level in one dimension (68.3%), a contour corresponding
to an excursion of —2In L from its minimum of +1.5152 should be considered, and for a 20" probability
level in one dimension (95.5%), the excursion should be +2.4862. Usualy two-dimensional intervals
corresponding to one or two sigma are reported, whose one-dimensional projection correspond to 68%
or 95% probability content, respectively.

3.12 Error propagation

In case of frequentist estimates, error propagation can’t be performed with a simple procedure as for the
Bayesian case, where the full posterior PDF is available (Sec. 3.2).

Imagine we estimate from a fit the parameter set 6 = (01, ,0,) = 6 and we know their
covariance matrix ©;;, for instance using Eq. (93). We want to determine a new set of parameters that

are functions of 6: 77 = (n1,-++ ,nm) = 7(0). The best approach would be to rewrite the original
likelihood function as a function of 77 instead of 6, and perform the minimization and error estimate

again for 77. In particular, the central value for ﬁ’ will be equal to the transformed of the central value g,
but no obvious transformation rule exists for the uncertainty intervals.

Reparametrizing the likelihood function is not always feasible. One typical case is when central
values and uncertainties for 6 are given in a publication, but the full likelihood function is not available.
For small uncertainties, a linear approximation may be sufficient to obtain the covariance matrix H;; for
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77. A Taylor expansion around the central value ) gives, using the error matrix ©;;, at first order:
Z on;i 877]
00, 801

The application of Eq. (96) gives well-known error propagation formulae reported below as examples,
valid in case of null (or negligible) correlation:

(96)

9:67

Outy = Op—y = \/02 + 02, o7
Oy  9z/y oz \? Oy 2
o Oely_ [(%2) <> , (98)
vy  xfy r Yy
Op2 = 220, 99)
Tu (100)

Olnz = ﬁ

3.13 Likelihood function for binned samples

Sometimes data are available in form of a binned histogram. This may be convenient when a large num-
ber of entries is available, and computing an unbinned likelihood function (Eq. (42)) would be too much
computationally expansive. In most of the cases, each bin content is independent on any other bin and
all obey Poissonian distributions, assuming that bins contain event-counting information. The likelihood
function can be written as product of Poissonisn PDFs corresponding to each bin whose number of en-
tries is given by n; . The expected number of entries in each bin depends on some unknown parameters:

pi = pi(61, -, 0 ). The function to be minimized, in order to fit 61, - - - , 8y, is the following:
. Mbins
—2In L(75;0) = —2In ] Poiss(ri; mi(6r,- -+ ,0m)) (101)
i=1
Mbins e_ﬂi(elv'“ 79m),u”b(017 e em)nl
= —2) In - (102)
i=1
Mbins
= 2 (B, 0m) —niln (01, -+, 0) + Innyl) . (103)
i=1

The expected number of entries in each bin, p;, is often approximated by a continuous function ()
evaluated at the center of the bin x = x;. Alternatively, p; can be given by the superposition of other
histograms (templates), e.g.: the sum of histograms obtained from different simulated processes. The
overall yields of the considered processes may be left as free parameters in the fit in order to constrain
the normalization of simulated processes from data, rather than relying on simulation prediction, which
may affected by systematic uncertainties.

The distribution of the number of entries in each bin can be approximated, for sufficiently large
number of entries, by a Gaussian with standard deviation equal to \/n;. Maximizing L is equivalent to
minimize:

Mbins 2
2 (ni_;u(xi;ela'” 797”))
= 104
X ;:1 s (104)

Equation (104) defines the so-called Neyman’s x? variable. Sometimes, the denominator n; is replaced
by pi = p(xi;01,- -+ ,0,) (Pearson’s x?) in order to avoid cases with n; equal to zero or very small.

Analytic solutions exist in a limited number of simple cases, e.g.: if p is a linear function. In
most of the realistic cases, the y? minimization is performed numerically, as for most of the unbinned
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maximum likelihood fits. Binned fits are, in many cases, more convenient with respect to unbinned fits
because the number of input variables decreases from the total number of entries to the number of bins.
This leads usually to simpler and faster numerical implementations, in particular when unbinned fits
become unpractical in cases of very large number of entries. Anyway, for limited number of entries, a
fraction of the information is lost when moving from an unbinned to a binned sample and a possible loss
of precision may occur.

The maximum value of the likelihood function obtained from an umbinned maximum likelihood
fit doesn’t in general provide information about the quality (goodness) of the fit. Instead, the minimum
value of the x? in a fit with a Gaussian underlying model is distributed according to a known PDF given
by:

oy 2 s
P(x ’”)*r(n/2)x e 7, (105)
where n is the number of degrees of freedom, equal to the number of bins minus the number of fit
parameters. The cumulative distribution (Eq. (8)) of P(XQ; n) follows a uniform distribution between
from O to 1, and it is an example of p-value (See Sec. 4). If the true PDF model deviates from the
assumed distribution, the distribution of the p-value will be more peaked around zero instead of being
uniformly distributed.

It’s important to note that p-values are not the “probability of the fit hypothesis”, because that
would be a Bayesian probability, with a completely different meaning, and should be evaluated in a
different way.

In case of a Poissonian distribution of the number of bin entries that may deviate from the Gaus-
sian approximation, because of small number of entries, a better alternative to the Gaussian-inspired
Neyman’s or Pearson’s x? has been proposed by Baker and Cousins [13] using the following likelihood
ratio as alternative to Eq. (103):

9 nz,uz ’“uz ;!
= —2ln =—2In B A — 106
& = o [ (106

. —nN (3
n;! e Min,

ng
2; {Mi(gly“' s O0m) —ni +n;In <Nz(91779m)>] . (107)

Equation (107) gives the same minimum value as the Poisson likelihood function, since a constant term
has been added to the log-likelihood function in Eq. (103), but in addition it provides goodness-of-fit
information, since it asymptotically obeys a x? distribution with n — m degrees of freedom. This is due
to Wilks’ theorem, discussed in Sec. 5.6.

3.14 Combination of measurements

The simplest combination of two measurements can be performed when no correlation is present between
them:

m = mj*or, (108)
m = mgxoy. (109)

The following x? can be built, assuming a Gaussian PDF model for the two measurements, similarly to
Eq. (79):
2 _ (m—m1)*  (m—my)?

= . 110
X P + p (110)

The minimization of the 2 in Eq. (110) leads to the following equation:
m—my) (m —ma)

L
=2 2 111
om U% + U% ’ (1)

0=
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which is solved by:

e
m =1 =172 (112)
7T
Eq. (112) can also be written in form of weighted average:
TAn:LU177’L1-|-wQ’I”I”L27 (113)
w1 + w2
where the weights w; are equal to o, 2 The uncertainty on m is given by:
1
Zt3
1 2

In case m; and my are correlated measurements, the y? changes from Eq. (110) to the following,
including a non-null correlation coefficient p:

2 -1 .
2= (m—m m—mg)( 1 p01202> (m ml). (115)

pPO102 05 m—msa
In this case, the minimization of the x? defined by Eq. (115) gives:

i mi1(03 — po102) + ma(of — po1o2)

, 116
O’% — 2poi09 + 03 (116)
with uncertainty given by:

2 _ ofo3(1 - p)®

" 02 —2poyoy + 03

o (117)
This solution is also called best linear unbiased estimator (BLUE) [14] and can be generalized to more
measurements. An example of application of the BLUE method is the world combination of the top-
quark mass measurements at LHC and Tevatron [15].

It can be shown that, in case the uncertainties o1 and o2 are estimates that may depend on the
assumed central value, a bias may arise, which can be mitigated by evaluating the uncertainties o7 and
o9 at the central value obtained with the combination, then applying the BLUE combination, iteratively,
until the procedure converges [16, 17].

Imagine we can write the two measurements as:

m = mj o] foc, (118)
m = mgEohEoco, (119)

where 0’% = poyos. This is the case where the two measurements are affected by a statistical uncertainty,
which is uncorrelated between the two measurements, and a fully correlated systematic uncertainty. In
those case, Eq. (116) becomes:

mi m2

. o2 o2
o2 ol?

i.e.: it assumes again the form of a weighted average with weights w; = o/~2

lated uncertainty contributions. The uncertainty on 1 is given by:

computed on the uncorre-

1
2=t g2 (121)

7+ ==
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which is the sum in quadrature of the uncertainty of the weighted average (Eq. (114)) and the common
uncertainty o¢ [18].

In a more general case, we may have n measurements myq,--- ,m, with a n X n covariance
matrix C;;. The expected values for mq,--- ,m, are My, --- , M, and may depend on some unknown
parameters § = (61, - - - ,0,,). For this case, the x? to be minimized is:

2= > (mi = Mi(0)) G5t (my — M;(6)) (122)
ij=1
Cy - Cu N my — M, (6)

= (m1—M1(ﬁ) mn_Mn()) . (123)

—

Cnl Cnn mn—Mn()

An example of application of such a combination of measurement is given by fit of the Standard
Model parameters using the electroweak precision measurements at colliders [19,20].

4 Hypothesis tests

Hypothesis testing addresses the question whether some observed data sample is more compatible with
one theory model or another alternative one.

The terminology used in statistics may sometimes be not very natural for physics applications, but
it has become popular among physicists as well as long as more statistical methods are becoming part of
common practice. In a test, usually two hypotheses are considered:

— Hy, the null hypothesis.
Example 1: “a sample contains only background”.
Example 2: “a particle is a pion”.

— Hjy, the alternative hypothesis.
Example 1: “a sample contains background + signal”.
Example 2: “a particle is a muon”.

A test statistic is a variable computed from our data sample that discriminates between the two hypothe-
ses Hy and H;. Usually it is a ‘summary’ of the information available in the data sample.

In physics it’s common to perform an event selection based on a discriminating variable x. For
instance, we can take as signal sample all events whose value of x is above a threshold, z > zcys.
x is an example of test statistic used to discriminate between the two hypotheses, H; = ‘“signal” and
Hy = “background”.

The following quantities are useful to give quantitative information about a test:

— «, the significance level: probability to reject Hy if Hy is assumed to be true (type I error, or false
negative). In physics « is equal to one minus the selection efficiency.

— B, the misidentification probability, i.e.: probability to reject H; if H; is assumed to be true (type
II error, or false negative). 1 — (3 is also called power of the test.

— a p-value is the probability, assuming Hj to be true, of getting a value of the test statistic as result
of our test at least as extreme as the observed test statistic.

In case of multiple discriminating variables, a selection of a signal against a background may be
implemented in different ways. E.g.: applying a selection on each individual variable, or on a com-
bination of those variables, or selecting an area of the multivariate space which is enriched in signal
events.
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4.1 The Neyman-Pearson lemma

The Neyman—Pearson lemma [21] ensures that, for a fixed significance level («) or equivalently a signal
efficiency (1 — «), the selection that gives the lowest possible misidentification probability (5) is based
on a likelihood ratio: L(z|Hy)
Ty
Az) = L(z|Hy) > ko s (124)
where L(x|Hy) and L(z|H) are the values of the likelihood functions for the two considered hypothe-
ses. kg, is a constant whose value depends on the fixed significance level o.

The likelihood function can’t always be determined exactly. In cases where it’s not possible to de-
termine the exact likelihood function, other discriminators can be used as test statistics. Neural Networks,
Boosted Decision Trees and other machine-learning algorithms are examples of discriminators that may
closely approximate the performances of the exact likelihood ratio, approaching the Neyman—Pearson
optimal performances [22].

In general, algorithms that provide a test statistic for samples with multiple variables are referred
to as multivariate discriminators. Simple mathematical algorithms exist, as well as complex implementa-
tions based on extensive CPU computations. In general, the algorithms are ‘trained’ using input samples
whose nature is known (training samples), i.e.: where either Hy or H; is know to be true. This is typ-
ically done using data samples simulated with computer algorithms (Monte Carlo) or, when possible,
with control samples obtained from data. Among the most common problems that arise with training
of multivariate algorithms, the size of training samples is necessarily finite, hence the true distributions
for the considered hypotheses can’t be determined exactly form the training sample distribution. More-
over, the distribution assumed in the simulation of the input samples may not reproduce exactly the true
distribution of real data, for instance because of systematic errors that affect our simulation.

4.2 Projective likelihood ratio

In case of independent variables, the likelihood functions appearing in the numerator and denominator
of Eq. (124) can be factorized as product of one-dimensional PDF (Eq. (30)). Even in the cases when
variables are not independent, this can be taken as an approximate evaluation of the Neyman—Pearson
likelihood ratio, so we can write:

L@y, anHr) Iy filw|Hy)
L(xy, -+ yan|Ho) — [z fi(zilHo)

The approximation may be improved if a proper rotation is first applied to the input variables in order to
eliminate their correlation. This approach is called principal component analysis.

Az) =

(125)

4.3 Fisher discriminant

Fisher [23] introduced a discriminator based on a linear combination of input variables that maximizes
the distance of the means of the two classes while minimizing the variance, projected along a direction

wi T.<

o — >~ w' - (mg —my)
J = = . 126
(w) o3+ 0 wl(3)+ X))w (126)

The selection is achieved by requiring J(w) > Jeut, Which determines an hyperplane perpendicular to
w. Examples of two different projections for a two-dimensional case is shown in Fig. 16. The problem
of maximising J(w) over all possible directions w can be solved analytically using linear algebra.

4.4 Artificial Neural Network

Artificial Neural Networks (ANN) are computer implementations of simplified models of how neuron
cells work. The schematic structure of an ANN is shown in Fig. 17. Each node in the network receives
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Fig. 16: Examples of Fisher projections. Two samples are distributed according to the red and blue distributions in
two dimensions and two possible projection direction w are shown as dotted line, the green arrows are perpendic-
ular to them (top plots). The corresponding one-dimensional projections along the chosen direction show different
overlap between the red and blue distribution (bottom plots), depending on the choice of the projection.

inputs from either the input variables (input layer) or from the previous layer, and provides an output
either of the entire network (output layer) or which is used as input to the next layer. Within a node,
inputs are combined linearly with proper weights that are different for each of the nodes. Each output is
then transformed using a sigmoid function ¢:

P
y" @ = | S wie; | (127)
j=1
where  is typically:
1
= 128
p(v) e (128)

so that the output values are bound between 0 and 1.
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Fig. 17: Structure of an Artificial Neural Network.

In order to find the optimal set of network weights wg-l), a minimization is performed on the loss

function defined as the following sum over a training sample of size IV:

N

L(w) =Y (g™ —y(#))?, (129)

=1

Y™ being usually equal to 1 for signal (H) and O for background (Hy). Iteratively, weights are modified
(back propagation) for each training event (or each group of training events) using the stochastic gradient
descent technique:
OL(w)
" g
Wi 5

The parameter 7 controls the learning rate of the network. Variations of the training implementation
exist.

(130)

Wij — Wij

Though it can be proven [24] that, under some regularity conditions, neural networks with a single
hidden layer can approximate any analytical function with a sufficiently high number of neurons, in
practice this limit is hard to achieve. Networks with several hidden layers can better manage complex
variables combinations, e.g.: exploiting invariant mass distributions features using only four-vectors as
input [25]. Those complex implementation that were almost intractable in the past can now be better
approached thanks to the availability of improved training algorithms and more easily available CPU
power.

4.5 Boosted Decision Trees

A decision tree is a sequence of simple cuts that are sequentially applied on events in a data sample. Each
cut splits the sample into nodes that may be further split by the application of subsequent cuts. Nodes
where signal or background is largely dominant are classified as leafs. Alternatively, the splitting may
stop if too few events per node remain, or if the total number of nodes too high. Each branch on the
tree represents one sequence of cuts. Cuts can be optimized in order to achieve the best split level. One
possible implementation is to maximize for each node the gain of Gini index after a splitting:

G=P(1-P), (131)
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where P is the purity of the node (i.e.: the fraction of signal events). G is equal to zero for nodes
containing only signal or background events. Alternative metrics can be used (e.g.: the cross entropy,
equal to: —(PIn P + (1 — P)In(1 — P)) ) in place of the Gini index.

An optimized single decision tree does not usually provide optimal performances or stability,
hence multiple decision trees are usually combined. Each tree is added iteratively after weights are
applied to test events. Boosting is achieved by iteratively reweighting the events in the training sample
according to the classifier output in the previous iteration. The boosted decision tree (BDT) algorithm
usually proceeds as follows:

Events are reweighted using the previous iteration’s classifier result.

A new tree is build and optimized using the reweighted events as training sample.

A score is given to each tree.

The final BDT classifier result is a weighted average over all trees:

N trees

y(E) = Y wC(1). (132)

k=1

One of the most popular algorithm is the adaptive boosting [26]: misclassified events only are reweighted
according to the fraction of classification error of the previous tree:

1— f Nmisclassiﬁed
 f = . (133)
f f Ntot
The weights applied to each tree are also related to the misclassification fraction:
Ntrees )
. 1— f0 (i) (=
y() = ; ln< 7 )C (). (134)

This algorithm enhances the weight of events misclassified on the previous iteration in order to improve
the performance on those events. Further variations and more algorithms are available.

4.6 Overtraining

Algorithms may learn too much from the training sample, exploiting features that are only due to random
fluctuations. It may be important to check for overtraining comparing the discriminator’s distributions
for the training sample and for an independent test sample: compatible distributions will be an indication
that no overtraining occurred.

5 Discoveries and upper limits

The process towards a discovery, from the point of view of data analysis, proceeds starting with a test of
our data sample against two hypotheses concerning the theoretical underlying model:

— Hy: the data are described by a model that contains background only;
— Hj: the data are described by a model that contains a new signal plus background.

The discrimination between the two hypotheses can be based on a test statistic A whose distribution is
known under the two considered hypotheses. We may assume that A tends to have (conventionally) large
values if H is true and small values if Hy is true. This convention is consistent with using as test statistic
the likelihood ratio A = L(x|H1)/L(x|Hp), as in the Neyman—Pearson lemma (Eq. (124)). Under the
frequentist approach, it’s possible to compute a p-value equal to the probability that ) is greater or equal
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to than the value \°P® observed in data. Such p-value is usually converted into an equivalent probability
computed as the area under the rightmost tail of a standard normal distribution:

+0o0 1 2/2
= ——e T de=1—-9(2), (135)
=], vm 7
where @ is the cumulative (Eq. (8)) of a standard normal distribution. Z in Eq. (135) is called significance
level. In literature conventionally a signal with a significance of at least 3 (30 level) is claimed as
evidence. It corresponds to a p-value of 1.35 x 1073 or less. If the significance exceeds 5 (50 level), i.e.:
the p-value is below 2.9 x 1077, one is allowed to claim the observation of the new signal. It’s worth
noting that the probability that background produces a large test statistic is not equal to the probability

of the null hypothesis (background only), which has only a Bayesian sense.

Finding a large significance level, anyway, is only part of the discovery process in the context of
the scientific method. Below a sentence is reported from a recent statement of the American Statistical
Association:

The p-value was never intended to be a substitute for scientific reasoning. Well-reasoned
statistical arguments contain much more than the value of a single number and whether that
number exceeds an arbitrary threshold. The ASA statement is intended to steer research into
a ‘post p < 0.05 era’ [27].

This was also remarked by the physicists community, for instance by Cowan et al.:

It should be emphasized that in an actual scientific context, rejecting the background-only
hypothesis in a statistical sense is only part of discovering a new phenomenon. One’s degree
of belief that a new process is present will depend in general on other factors as well, such
as the plausibility of the new signal hypothesis and the degree to which it can describe the
data [28].

5.1 Upper limits

Upper limits measure the amount of excluded region in the theory’s parameter space resulting from our
negative results of a search for a new signal. Upper limits are obtained by building a fully asymmetric
Neyman confidence belt (Sec. 3.8) based on the considered test statistic (Fig. 8). The belt can be inverted
in order to find the allowed fully asymmetric interval for the signal yield s. The upper limit s"P is the
upper extreme of the asymmetric confidence interval [0, s"P]. In case the considered test statistic is a
discrete variable (e.g.: the number of selected events n in a counting experiments), the coverage may not
be exact, as already discussed in Sec 3.9.

The procedure described above to determine upper limits, anyway, may incur the so-called flip-
flopping issue [29]: given an observed result of our test statistic, when should we quote a central value
or upper limit? A choice that is sometimes popular in scientific literature is to quote a (90% or 95%
CL) upper limit if the significance is below 3¢ or to quote a central value if the significance is at least
30. The choice to “flip” from an upper limit to a central value can be demonstrated to produce an
incorrect coverage. This can be visually seen in Fig. 18, where a Gaussian belt at 90% CL is constructed,
similarly to Fig. 12 (where instead a 68.3% CL was used). In Fig. 18, for x < 3, anyway, the belt is
modified because those values correspond to a significance below the 3o level, where an upper limit (a
fully asymmetric confidence interval) was chosen. As shown with the red arrows in the figures, there are
intervals in z that, in this way, have a coverage reduced to 85% instead of the required 90%.

5.2 Feldman—Cousins intervals

A solution to the flip-flopping problem was developed by Feldman and Cousins [29]. They proposed to
select confidence interval based on a likelihood-ratio criterion. Given a value § = 6 of the parameter of
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Fig. 18: Illustration of flip-flopping with a Gaussian confidence belt. This figure is taken from Ref. [7].

interest, the Feldman—Cousins confidence interval is defined as:

L(x;00)
R, = [ ka y 136
g {x Lz:0) } (50

where @ is the best-fit value for § and the constant k. should be set in order to ensure the desired
confidence level 1 — a.

An example of the confidence belt computed with the Feldman—Cousins approach is shown in
Fig. 19 for the Gaussian case illustrated in Fig. 18. With the Feldman—Cousins approach, the confidence

A
u

sym metric errors

asymmetric errors

upper limits

.

X

Fig. 19: Feldman—Cousins belt for a Gaussian case. This figure is taken from Ref. [7].

interval smoothly changes from a fully asymmetric one, which leads to an upper limit, for low values of
x, to an asymmetric interval for higher values of z interval, then finally a symmetric interval (to a very
good approximation) is obtained for large values of x, recovering the usual result as in Fig. 18.

Even for the simplest Gaussian case, the computation of Feldman—Cousins intervals requires nu-
merical treatment and for complex cases their computation may be very CPU intensive.
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5.3 Upper limits for event counting experiments

The simplest search for a new signal consists of counting the number of events passing a specified
selection. The number of selected events n is distributed according to a Poissonian distribution where
the expected value, in case of presence of signal plus background (H7) is s + b, and for background
only (Hp) is b. Assume we count n events, we then want to compare the two hypotheses H; and Hy.
As simplest case, we can assume that b is known with negligible uncertainty. If not, uncertainty on its
estimate must be taken into account.

The likelihood function for this case can be written as:

L(n;s) = Me*@“’) . (137)
n:

Hj corresponds to the case s = 0.

Using the Bayesian approach, an upper limit s"P on s can be determined by requiring that the
posterior probability corresponding to the interval [0, s"P] is equal to the confidence level 1 — «:

Sup /Sup L(n;a)w(s)ds
l—a= / P(sln)ds = 20— . (138)
0 / L(n;a)m(s)ds
0

The choice of a uniform prior, 7(s) = 1, simplifies the computation and Eq. (138) reduces to [30]:

o m!
qoerm=0 T (139)

n bm

m!
m=0

Upper limits obtained with Eq. (139) are shown in Fig. 20. In the case b = 0, the results obtained in

n=10

|

2 p=0
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=

Fig. 20: Bayesian upper limits at 90% (left) and 95% (right) CL for the expected signal yield s for a counting
experiment with different level of expected background b. This figure is taken from Ref. [7].

Eq. (60) and (61) are again recovered.
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Frequentist upper limits for a counting experiment can be easily computed in case of negligible
background (b = 0). If zero events are observed (n = 0), the likelihood function simplifies to:
L(n = 0;s) = Poiss(0;s) = e . (140)
The inversion of the fully asymmetric Neyman belt reduces to:
Pn<0;s)=Pn=0;s"")=a = s =—-lna, (141)
which lead to results that are numerically identical to the Bayesian computation:

s < s"%=2303 for a=0.1(90%CL), (142)
s < s =2996 for a=0.05(95%CL). (143)

In spite of the numerical coincidence, the interpretation of frequentist and Bayesian upper limits remain
very different.

Upper limits from Eq. (142) and (143) anyway suffer from the flip-flopping problem and the
coverage is spoiled when deciding to switch from an upper limit to a central value depending on the
observed significance level. Feldman—Cousins intervals cure the flip-flopping issue and ensure the correct
coverage (or may overcover for discrete variables). Upper limits at 90% computed with the Feldman—
Cousins approach for a counting experiment are reported in Fig. 21. The “ripple” structure is due to
the discrete nature of Poissonian counting. It’s evident from the figure that, even for n = 0, the upper

8 n=10

2~n=0

C Ul iRl =y
11l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ 1l L

00 2 4 6 8 10 12 14 16 18 20

b

Fig. 21: Feldman—Cousins upper limits at 90% CL for a counting experiment. This figure is taken from Ref. [7].

limit decrease as b increases (apart from ripple effects). This means that if two experiment are designed
for an expected background of —say— 0.1 and 0.01, the “worse” experiment (i.e.: the one which expects
0.1 events) achieves the best upper limit in case no event is observed (n = 0), which is the most likely
outcome if no signal is present. This feature was noted in the 2001 edition of the PDG [31]

The intervals constructed according to the unified procedure [ Feldman—Cousins] for a Pois-
son variable n consisting of signal and background have the property that for n = 0
observed events, the upper limit decreases for increasing expected background. This is
counter-intuitive, since it is known that if n = 0 for the experiment in question, then no back-
ground was observed, and therefore one may argue that the expected background should not
be relevant. The extent to which one should regard this feature as a drawback is a subject of
some controversy.

246



PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICISTS

This counter-intuitive feature of frequentist upper limits is one of the reasons that led to the use in High-
Energy Physics of a modified approach, whose main feature is that is also prevents rejecting cases where
the experiment has little sensitivity due to statistical fluctuation, as will be described in next Section.

5.4 The modified frequentist approach

A modified frequentist approach [32] was proposed for the first time for the combination of the results of
searches for the Higgs boson by the four LEP experiments, ALEPH, DELPHI, L.3 and OPAL [33]. Given
a test statistic A(x) that depends on some observation z, its distribution should be determined under the
two hypotheses H; (signal plus background) and Hy (background only). The following p-values can be
used, where we assume that the test statistic A tends to have small values for H; and larger values for
H 0-

pery = P\(x|Hp) > 2\, (144)
py = P(Ma|Hp) < X°%%). (145)

Ps+b and pp, can be interpreted as follows:

— ps+b 18 the probability to obtain a result which is less compatible with the signal than the observed
result, assuming the signal hypothesis;

— pp is the probability to obtain a result less compatible with the background-only hypothesis than
the observed one, assuming background only.

Instead of requiring, as for a frequentist upper limit, ps, < «, the modified approach introduces a new
quantity, CLj, defined as:

CL, = 25t (146)
1—pp

and the upper limit is set by requiring CL; < «. For this reason, the modified frequentist approach is
also called “CLg method” .

In practice, in most of the realistic cases, p; and ps are computed from simulated pseudoexper-
iments (toy Monte Carlo) by approximating the probabilities defined in Eq. (144, 145) with the fraction
of the total number of pseudoexperiments satisfying their respective condition:

Ps+b N(/\s—i-b > )\obs)

CLs = = . 147

Ti-p NOwz A e

Since 1 —p;, < 1, then CLs > ps44, hence upper limits computed with the CL; method are always
conservative.

In case the distributions of the test statistic A (or equivalently —2 In \) for the two hypotheses Hy
and H; are well separated (Fig. 22, left), if H; is true, than p, will have a very high chance to be very
small, hence 1 — p, ~ 1 and CLg ~ pss. In this case CL; and the purely frequentist upper limits co-
incide. If the two distributions instead largely overlap (Fig. 22, right), indicating that the experiment has
poor sensitivity on the signal, in case py is large, because of a statistical fluctuation, then 1 — p; becomes
small. This prevents CL; to become too small, i.e.: it prevents to reject cases where the experiment has
little sensitivity.

If we apply the CL,; method to the previous counting experiment, using the observed number of
events n°PS as test statistic, then CLs can be written, considering that n tends to be large in case of H,
for this case, as:

P(n < n°™|s 4 b)

CL = 5 <o) (148)
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Fig. 22: Illustration of the application of the CLs method in cases of well separated distributions of the test statistic
—21In A for the s + b and b hypotheses (left) and in case of largely overlapping distributions (right).

Explicitating the Poisson distribution, the computation gives the same result as for the Bayesian case
with a uniform prior (Eq. (139)). In many cases, the CL; upper limits give results that are very close,
numerically, to Bayesian computations performed assuming a uniform prior. Of course, this does not
allow to interpret CL upper limits as Bayesian upper limits. Concerning the interpretation of CLs, it’s
worth reporting from Ref [32] the following statements:

A specific modification of a purely classical statistical analysis is used to avoid excluding or
discovering signals which the search is in fact not sensitive to.

The use of CL; is a conscious decision not to insist on the frequentist concept of full cover-
age (to guarantee that the confidence interval doesn’t include the true value of the parameter
in a fixed fraction of experiments).

Confidence intervals obtained in this manner do not have the same interpretation as tradi-
tional frequentist confidence intervals nor as Bayesian credible intervals.

5.5 Treatment of nuisance parameters

Nuisance parameters have been introduced in Sec. 3.5.1. Usually, signal extraction procedures (either
parameter fits or upper limits determinations) determine, together with parameters of interest, also nui-
sance parameters that model effects not strictly related to our final measurement, like background yield
and shape, detector resolution, etc. Nuisance parameters are also used to model sources of systematic
uncertainties. Often, the true value of a nuisance parameter is not known, but we may have some esti-
mate from sources that are external to our problem. In those cases, we can refer to nominal values of the
nuisance parameter and their uncertainty. Nominal values of nuisance parameters are random variables
distributed according to some PDF that depend on their true value.

A Gaussian distribution is the simplest assumption for nominal values of nuisance parameters.
Anyway, this may give negative values corresponding to the leftmost tail, which are not suitable for non-
negative quantities like cross sections. For instance, we may have an estimate of some background yield
b given by:

b= BopLint (149)

where Ly is the estimate of the integrated luminosity (assumed to be known with negligible uncertainty),
oy is the background cross section evaluated from theory, and 3 is a nuisance parameter, whose nominal
value is equal to one, representing the uncertainty on the cross-section evaluation. If the uncertainty on 3
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is large, one may have a negative value of 3 with non-negligible probability, hence an unphysical negative
value of the background yield b. A safer assumption in such cases is to take a log normal distribution for
the uncertain non-negative quantities:

b=e’opLint , (150)

where [ is again distributed according to a normal distribution with nominal value equal to zero, in this
case.

Under the Bayesian approach, nuisance parameters don’t require a special treatment. If we have a
parameter of interest ;4 and a nuisance parameter 6, a Bayesian posterior will be obtained as (Eq. (48)):

L(; p, 0)m (1, 6)

P(u,0|%) = . 151
(1,617) JL(Z W, 0w (w, 0") dp! 46 (151)
P(u|%) can be obtained as marginal PDF of y by integrating P(u, 0|%) over 0:
) ) J LG 1,6)m (1, 6) d6
P = [ P(u,0|%),d0 = . 152
i) = [ Pluojm).a0 = LIRS (152)

In the frequentist approach, one possibility is to introduce in the likelihood function a model for
a data sample that can constrain the nuisance parameter. Ideally, we may have a control sample ,
complementary to the main data sample &, that only depends on the nuisance parameter, and we can
write a global likelihood function as:

L(Z, 7, 1,0) = Lo (%5 1, 0) Ly(7;0) . (153)

Using control regions to constrain nuisance parameters is usually a good method to reduce systematic
uncertainties. Anyway, it may not always be feasible and in many cases we may just have information
abut the nominal value 8"°™ of # and its distribution obtained from a complementary measurement:

L(Z, 45 1, 0) = La(T; 1, 0) Lg(0™™; 0) . (154)

Ly may be a Gaussian or log normal distribution in the easiest cases.

In order to achieve a likelihood function that does not depend on nuisance parameters, for many
measurements at LEP or Tevatron a method proposed by Cousins and Highland was adopted [34] which
consists of integrating the likelihood function over the nuisance parameters, similarly to what is done
in the Bayesian approach (Eq. (152)). For this reason, this method was also called hybrid. Anyway
the Cousins—Highland does not guarantee to provide exact coverage, and was often used as pragmatic
solution in the frequentist context.

5.6 Profile likelihood

Most of the recent searches at LHC use the so-called profile likelihood approach for the treatment of
nuisance parameters [28]. The approach is based on the test statistic built as the following likelihood
ratio:

'7’ (155)

where in the denominator both i and 6 are fit simultaneously as [ and 0, respectively, and in the nu-

merator 4 is fixed, and é(u) is the best fit of 0 for the fixed value of p. The motivation for the choice
of Eq. (155) as the test statistic comes from Wilks’ theorem that allows to approximate asymptotically
—2In A\(p) as a x? [35].
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In general, Wilks’ theorem applies if we have two hypotheses Hy and H; that are nested, i.e.: they
can be expressed as sets of nuisance parameters 0 c ©¢ and g e O, respectively, such that ©y C ;.
Given the likelihood function:

N
L=]]r@.0), (156)
i=1

if Hy and H; are nested, then the following quantity, for N — oo, is distributed as a x? with a number
of degrees of freedom equal to the difference of the ©; and © dimensionalities:

(157)

In case of a search for a new signal where the parameter of interest is u, Hy corresponds to 4 = 0 and
H; toany o > 0, Eq. (157) gives:

N
sup | [ L(#; . 0)
6 =
Xp(p) = —2In —= : (158)

sup HL(fi; 1, 6)
w0 =1

Considering that the supremum is equivalent to the best fit value, the profile likelihood defined in
Eq. (155) is obtained.

As a concrete example of application of the profile likelihood, consider a signal with a Gaussian
distribution over a background distributed according to an exponential distribution. A pseudoexperiment
that was randomly-extracted accordint to such a model is shown in Fig. 23, where a signal yield s = 40
was assumed on top of a background yield b = 100, exponentially distributed in the range of the random
variable m from 100 to 150 GeV. The signal was assumed centered at 125 GeV with a standard deviation
of 6 GeV, reminding the Higgs boson invariant mass spectrum. The signal yields s is fit from data. All
parameters in the model are fixed, except the background yield, which is assumed to be known with some
level of uncertainty modeled with a log normal distribution whose corresponding nuisance parameter is
called 8. The likelihood function for the model, which only depends on two parameters, s and S, is, in
case of a single measurement m:

L(m;s, B) = Lo(m; s, by = be’) Lg(B;05) , (159)
where:
—(s+bo) 1
e 2 2
Lo(m;s,by) = s e (m=m)7/207 4 )\e)‘m) , 160
of 0) o < N 0 (160)
]. 2 2
Lo(Biog) = o—B/20% 161
8(B;03) Va0 (161)
If we measure a set values 17 = (mg, - - - my ), the likelihood function is:
N
= [ L(mi;s,8). (162)
=1

The scan of —In A(s) is shown in Fig. 24, where the profile likelihood was evaluated assuming o3 = 0
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Fig. 23: Example of pseudoexperiment generated with a Gaussian-distributed signal over an exponential back-
ground. The assumed distribution for the background is the red dashed line, while the distribution for signal plus
background is the blue solid line.

0 HLMHNAMIMHHHHMHHHH
0 10 20 30 40 50 60 70 80
S

Fig. 24: Scan of the negative logarithm of the profile likelihood as a function of the signal yield s. The blue curve
shows the profile likelihood curve defined assuming the background yield to be a constant (i.e.: b known without
any uncertainty), the red curve shows the same curve defined with 03 = 0.3. The green line at —In A(s) = 0.5
determines the uncertainty interval on s.
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(no uncertainty on b, blue curve) or 03 = 0.3 (red curve). The minimum value of —In \(s) is equal
to zero, since at the minimum numerator and denominator in Eq. (155) are identical. Introducing the
uncertainty on 3 (red curve) makes the curve broader. This causes an increase of the uncertainty on the
estimate of s, whose uncertainty interval is obtained by intersecting the curve of the negative logarithm
of the profile likelihood with an horizontal line at — In A(s) = 0.5 (green line in Fig. 241).

In order to evaluate the significance of the observed signal, Wilks’ theorem can be used. If we
assume 4 = 0 (null hypothesis), the quantity go = —21n A(0) can be approximated with a 2 having one
degree of freedom. Hence, the significance can be approximately evaluated as:

7~ @ (163)

qo 1s twice the intercept of the curve in Fig. 24 with the vertical axis, and gives an approximate signifi-
cance of Z ~ /2 x 6.66 = 3.66, in case of no uncertainty on b, and Z ~ /2 x 3.93 = 2.81, in case
the uncertainty on b is considered. In this example, the effect of background yield uncertainty reduces
the significance bringing it below the evidence level (30). Those numerical values can be verified by
running many pseudo experiments (toy Monte Carlo) assuming ¢ = 0 and computing the corresponding
p-value. In complex cases, the computation of p-values using toy Monte Carlo may become unpractical,
and Wilks’ approximation provides a very convenient, and often rather precise, alternative calculation.

5.7 Variations on test statistics

A number of test statistics is proposed in Ref. [28] that better serve various purposes. Below the main
ones are reported:

— Test statistic for discovery:

— _21n)‘(0)7 p=0,
%—{0, o (164)

In case of a negative estimate of u (v < 0), the test statistic is set to zero in order to consider only
positive /i as evidence against the background-only hypothesis. Within an asymptotic approxima-
tion, the significance is given by: Z ~  /qo.

— Test statistic for upper limit:

_ _21n/\(:u)7 <,
qu = { 0, 0> (165)

If the [ estimate is larger than the assumed value for y, an upward fluctuation occurred. In those
cases, (4 is not excluded by setting the test statistic to zero.

— Test statistic for Higgs boson search:

_91n HEmIw) 5 <o,

. L(#0,6(0)
= —QIHM’{(M))’ 0<p<p, (166)
L(&|,0(1)
0, >

This test statistics both protects against unphysical cases with p < 0 and, as the test statistic for
upper limits, protects upper limits in cases of an upward /i fluctuation.

! The plot in Fig. 24 was generated with the library ROOSTATS in ROOT [36], which by default, uses — In X instead of
—2In A
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A number of measurements performed at LEP and Tevatron used a test statistic based on the
ratio of the likelihood function evaluated under the signal plus background hypothesis and under the
background only hypothesis, inspired by the Neyman—Pearson lemma:

L(Z|s +b)

=21
9 AED)

(167)
In many LEP and Tevatron analyses, nuisance parameters were treated using the hybrid Cousins—
Hyghland approach. Alternatively, one could use a formalism similar to the profile likelihood, setting
¢ = 0 in the denominator and ¢ = 1 in the numerator, and minimizing the likelihood functions with
respect to the nuisance parameters:

q=—2In

L(@n =1,6(1) 168)
F

L(Z|p =0,

For all the mentioned test statistics, asymptotic approximations exist and are reported in Ref. [28].
Those are based either on Wilks’ theorem or on Wald’s approximations [37]. If a value p is tested, and
the data are supposed to be distributed according to another value of the signal strength y/, the following
approximation holds, asymptotically:

_ 2
—2InA(p) = % +0 <\/1N> , (169)

where fi is distributed according to a Gaussian with average 1/ and standard deviation o. The covariance
matrix for the nuisance parameters is given, in the asymptotic approximation, by:

9?InL
—l_ /2 = 1
Vz] <89laej > ‘MM ’ ( 70)

where y/ is assumed as value for the signal strength.

In some cases, asymptotic approximations (Eq. (169)) can be written in terms of an Asimov
dataset [38]:

We define the Asimov data set such that when one uses it to evaluate the estimators for all
parameters, one obtains the true parameter values [28].

In practice, an Asimov dataset is a single “representative” dataset obtained by replacing all observable
(random) varibles with their expecteted value. In particular, all yields in the data sample (e.g.: in a binned
case) are replaced with their expected values, that may be non integer values. The median significance
for different cases of test statistics can be computed in this way without need of producing extensive sets
of toy Monte Carlo. The implementation of those asymptotic formulate is available in the ROOSTATS
library, released as part an optional component ROOT [36].

5.8 The look-elsewhere effect

When searching for a signal peak on top of a background that is smoothly distributed over a wide range,
one can either know the position of the peak or not. One example in which the peak position is known
is the search for a rare decay of a known particle, like B; — pt . A case when the position was not
know was the search for the Higgs boson, whose mass is not prediceted by theory. In a case like the
decay of a particle of known mass, it’s easy to compute the peak significance: from the distribution of
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the test statistic f(q) computed assuming 1 = 0 (background only), given the observed value of the test
statistic ¢°P%, a p-value can be determined and then translated into a significance level:

“+o0
p= / flalu=0)dg, Z=o"'(1-p). (171)
q

obs

In case, instead, the search is performed without knowing the position of the peak, Eq. (171) gives
only a local p-value, which means it reflects the probability that a background fluctuation at a given mass
value m gives a value of the test statistic greater than the observed one:

+oo

p(m) = / fglp = 0)dg. (172)
qobs(m)

The global p-value, instead, should quantify the probability that a background fluctuation at any mass

value gives a value of the test statistic greater than the observed one.

The chance that an overfluctuation occurs for at least one mass value increases with the size of the
search range, and the magnitude of the effect depends on the resolution.

One possibility to evaluate a global p-value is to let also m fluctuate in the test statistic:

L(p=0)

¢g=—2In —
L(j1; 1)

: (173)

Note that in the numerator L doesn’t depend on m for p = 0. This is a case where Wilks’ theorem
doesn’t apply, and no simple asymptotic approximations exist. The global p-value can be computed, in
principle, as follows:

“+o00
pBloP — / f(dlp=0)dgo. (174)
q

obs

The effect in practice can be evaluated with brute-force toy Monte Carlo:

Produce a large number of pseudoexperiments simulating background-only samples.

Find the maximum ¢ of the test statistic ¢ in the entire search range.
— Determine the distribution of ¢.

Compute the global p-value as probability to have a value of § greater than the observed one.

This procedure usually requires very large toy Monte Carlo samples in order to treat a discovery case: a
p-value close to 3 x 107 (50 level) requires a sample significantly larger than ~ 107 entries in order to
determine the p-value with small uncertainty.

An asymptotic approximation for the global p-value is given by the following inequation [39] 2:
PP = P(§ > u) < (Nu) + PO > u), (175)

where P(x? > u) is a standard x? probability and (NN,,) is the average number of upcrossings of the test
statistic, i.e.: the average number of times that the curve ¢(m) crosses a given horizontal line at a level u
with a positive derivative, as illustrated in Fig. 25.

The number of upcrossings may be very small for some values of u, but an approximate scaling
law exists and allows to perform the computation at a more convenient level u:

(Ny) = (N, ) e~ (wmu0)/2 (176)

2 In case of a test statistic for discovery qo (Eq. (164)), the term P (X2 > u) in Eq. (175) achieves an extra factor 1/2, which
is usually not be present for other test statistics.
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gom)]

Fig. 25: Tllustration of the evaluation of the number of upcrossing of a test statistic curve ¢(m). The upcrossings
are noted as 1, 2, and 3, hence the corresponding V,, is equal to 3.

So, (N,,) can be more conveniently evaluated using a reasonable number of toy Monte Carlo gener-
ations, then it can be extrapolated following the exponential scaling law. Numerical comparisons of
this approach with the full toy Monte Carlo show that good agreement is achieved for sufficiently large
number of observations.

In case more parameters are estimated from data, e.g.: when searching for a new resonance whose
mass and width are both unknown, the look-elsewere effect can be addressed with an extension of the
approach described above, as detailed in Ref. [40].
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