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Abstract 
When a charged particle travels across the vacuum chamber of an accelerator, 
it induces electromagnetic fields, which are left mainly behind the generating 
particle. These electromagnetic fields act back on the beam and influence its 
motion. Such an interaction of the beam with its surroundings results in beam 
energy losses, alters the shape of the bunches, and shifts the betatron and 
synchrotron frequencies. At high beam current the fields can even lead to 
instabilities, thus limiting the performance of the accelerator in terms of beam 
quality and current intensity. We discuss in this lecture the general features of 
the electromagnetic fields, introducing the concepts of wakefields and giving 
a few simple examples in cylindrical geometry. We then show the effect of 
the wakefields on the dynamics of a beam in a linac, dealing in particular with 
the beam breakup instability and how to cure it. 
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1 Introduction 
Self-induced electromagnetic (e.m.) forces in an accelerator are generated by a charged particle beam 
which interacts with all the components of the vacuum chamber. These components may have a complex 
geometry: kickers, bellows, RF cavities, diagnostics components, special devices, etc. The study of the 
fields generally requires the solution of Maxwell’s equations in a given structure, taking the beam 
current as the source of the fields. This could be a quite complicated task, and therefore several dedicated 
computer codes, used to study and design accelerator devices, which solve the e.m. problem in the 
frequency or time domain, have been developed. These include, for example, CST Studio Suite [1], 
GDFIDL [2], ACE3P [3], ABCI [4], and others. 

In this lecture, we discuss some general features of the self-induced e.m. forces and introduce the 
concepts of wakefields and coupling impedances [5–12], and we present some simple examples in 
cylindrical geometry. Although the space charge forces have been studied separately [13], they can be 
seen as a particular case of wakefields.  

In the second part of the lecture we study the effects of the wakefields on the dynamics of a beam 
in a linac, such as energy loss and energy spread. Finally, we deal with the beam breakup (BBU) 
instability [14], and the way to cure it [15]. 
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2 Wake fields and potentials 

2.1 Longitudinal and transverse wakefields 

The self-induced e.m. fields acting on a particle inside a beam depend on the whole charge distribution. 
However, if we know the fields in a given structure that are created by a single charge (i.e. we obtain 
the Green function of the structure), by using the superposition principle we can easily reconstruct the 
fields produced by any charge distribution.  

The e.m. fields created by a point charge act back on the charge itself, and on any other charge of 
the beam. Referring to the coordinate system of Fig. 1, let us call q0(s0, r0) the source charge, travelling 
with constant longitudinal velocity v = c (ultrarelativistic limit) along a trajectory parallel to the axis of 
a given accelerator structure. Let us consider a test charge q, in a position (s = s0 − z, r), which is moving 
with the same constant velocity on a parallel trajectory inside the structure. 

 
Fig. 1: Reference coordinate system 

Let E and B be the electric and magnetic fields generated by q0 inside the structure. Since the 
velocity of both charges is along z, the Lorentz force acting on q has the following components: 
  ( ) ( )ˆ ˆˆz x y y xq E z E vB x E vB y ⊥

 = + − + + ≡ + F F F


. (1) 

From Eq. (1) we see that there can be two effects on the test charge: a longitudinal force, which 
changes its energy, and a transverse force, which deflects its trajectory. If we consider a device of length 
L, the energy change (in joule) of q due to this force is given by  

 ( )0
0

, ,  d
L

U z F s= ∫r r


,  (2) 

and the transverse deflecting kick (expressed in Newton metres), is given by 

 ( )0
0

, ,  d
L

z s⊥= ∫M r r F . (3) 

Note that the integration is performed over a given path of the trajectory. The quantities given by 
Eqs. (2) and (3), normalized to the two charges q0 and q, are called the longitudinal and transverse 
wakefields, respectively. In many cases, we deal with structures having particular symmetric shapes, 
generally cylindrical. It is possible to demonstrate that, with a multipole expansion of the wakefields, 
the dominant term in the longitudinal wakefield depends only on the distance z between the two charges, 
while the dominant one in the transverse wakefield, although still a function of the distance z, is also 
linear with the transverse position of the source charge r0. If we then divide the transverse wakefield by 
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r0, we obtain the transverse dipole wakefield, that is the transverse wake per unit of transverse 
displacement, depending only on z. 

Longitudinal wakefield [V/C]:                 ( )
0

Uw z
q q

= −


 ;                                                               (4) 

Transverse dipole wakefield [V/C·m]:     ( )
0 0

1z
r q q⊥ =

Mw .                                                              (5) 

The minus sign in the definition of the longitudinal wakefield means that the test charge loses 
energy when the wake is positive. A positive transverse wake means that the transverse force is 
defocusing. The wakefields are properties of the vacuum chamber and the beam environment, but they 
are independent of the beam parameters (bunch size, bunch length, etc.). 

To study the effect of wakefields on the beam dynamics, it is convenient to distinguish between 
short-range wakefields, which are generated by the particles at the head of the bunch affecting trailing 
particles in the same bunch, and those that influence the multibunch (or multiturn) beam dynamics, 
which are generally resonant modes trapped inside a structure, and are called long-range wakefields. 

As a first example of wakefields, let us consider the longitudinal wakefield of ‘space charge’. 
Even if in the ultrarelativistic limit with γ → ∞ , and there is no space charge effect, we can still define 
a wakefield by considering a moderately relativistic beam with 1γ   but not infinite. It turns out that 
the space charge forces can fit into the definition of a wakefield, and when that is done we find that the 
wake depends on the beam properties such as the transverse beam radius a and the beam energy γ. In 
Appendix A we show an example of such an interpretation. Let us consider here a relativistic beam with 
cylindrical symmetry and uniform transverse distribution of radius a. The longitudinal force acting on 
a charge q of the beam travelling inside a cylindrical pipe of radius b is given by [13] 

 
2

2 2
0

( )( , ) 1 2ln  
4

q r b zF r z
a a z

∂λ
πε γ ∂

 −
= − + 

 


, (6) 

with λ(z) the longitudinal distribution (z > 0 at the bunch head). Note that, since the space charge forces 
move together with the beam, they are constant along the accelerator if the beam pipe cross-section 
remains constant. We can therefore define the longitudinal wakefield per unit length [V/C·m]. To obtain 
the longitudinal wakefield of a piece of pipe, we just multiply by the pipe length. Assuming r → 0 
(particle on-axis), and a charge line density given by 0( ) ( )z q zλ δ= , we obtain 

 2
0

d ( ) 1  1 2ln ( )
d 4

w z b z
s a z

∂ δ
πε γ ∂

 = + 
 

 , (7) 

which has the peculiarity of being also dependent on the beam size a. 

Another interesting case is the longitudinal wake potential of a resonant higher-order mode 
(HOM) in an RF cavity, which is an example of long-range wakefield. When a charge crosses a resonant 
structure, as an RF cavity, it excites the fundamental mode and HOMs. Each mode can be treated as an 
electric RLC circuit loaded by an impulsive current, as shown in Fig. 2. 
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Fig. 2: RF cavity and the equivalent RLC parallel circuit model driven by a current generator 

Just after the charge passage, the capacitor is charged with a voltage 0(0) /V q C= , and the 

longitudinal electric field is /zE V l= , where l is the length of the cavity. The time evolution of the 
electric field is then governed by the same differential equation of the voltage, which can be written as 
follows: 

 . (8) 

The passage of the impulsive current charges only the capacitor, which changes its potential by 
an amount Vc(0). This potential will oscillate and decay, producing a current flow in the resistor and 
inductance. After the charge passage, for t > 0 the potential satisfies the following equation and 
boundary conditions: 

  (9) 

which has the following solution: 

 0

2 2 2
r

( ) e cos( ) sin( ) ,

,

tV t V t tω ω
ω

ω ω

−Γ Γ = −  
= − Γ

 (10) 

where 2
r 1 LCω =  and 1 2RCΓ = . For the HOM it is also convenient to define the quality factor

r 2Q ω= Γ , from which we can write rC Q Rω= . 

Putting z = ct (z is positive behind the source charge), we obtain the longitudinal wakefield shown 
in Fig. 3: 

 /r

0

( )( ) e cos( / ) sin( / )z cRV zw z z c z c
q Q

ω ω ω
ω

−Γ Γ = = −  


. (11) 
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Fig. 3: Qualitative behaviour of a resonant mode wakefield 

In an analogous way, it is possible to obtain the transverse wakefield of a HOM, 

 /r( ) e sin( / )z cRw z z c
Q
ω ω−Γ⊥

⊥ = , (12) 

with R⊥  expressed in ohm per metre. 

We conclude this section by giving the longitudinal and transverse short-range wakefields of a 
rectangular cell, as shown in Fig. 4, under the hypothesis that the bunch length is much smaller than the 
pipe radius b. Its expression can be useful in studying the effects of the short-range wakefields of an 
accelerating structure in a linac.  

 
Fig. 4: Geometry of a single cell of a linac accelerating structure 

The model considers each cell as a pillbox cavity. When a bunch reaches the edge of the cavity, 
the e.m. field it creates is simply the one that would occur when a plane wave passes through a hole; 
using this hypothesis, it is possible to use the classical diffraction theory of optics to calculate the fields 
[7]. If the condition g < (d − b)2/(2σ) is satisfied, where g is the cell gap, d is the cell radius, and σ is the 
rms bunch length of a Gaussian bunch, the longitudinal and transverse wakefields can be written, 
respectively, as: 

 

0
2

3/2
0

2 3

( ) ,
2

2( ) .

Z c gw z
zb

Z cw z gz
b

π

π⊥

=

=



 (13) 

For a collection of cavities, Eqs. (13) cannot be used because the wakefields along the cells do 
not sum in phase and the result would be an overestimation of the effects. An asymptotic wakefield for 
a periodic collection of cavities of period p, obtained numerically at SLAC [16] and then fitted to a 
simple function, is used instead. Such wakefields are thus valid after a certain number of cavities given 
by 
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2

cr 22

bN
bg σ

γ

=
 

+ 
 

. (14) 

Under these assumptions, the wakefields of Eqs. (13) are modified to 

 

1

2

/0
2

/0 2
4

2

( ) e ,

4( ) 1 1 e ,

z s

z s

Z cpw z
b
Z cps zw z

b s

π

π

−

−
⊥

=

  
= − +      



 (15) 

with 

 

1.8 1.6

1 2.4

1.79 0.38

2 1.17

0.41 ,

0.17 .

b gs
p

b gs
p

=

=
  (16) 

2.2 Loss factor and beam loading theorem 

A useful quantity for the effects of the longitudinal wakefield on the beam dynamics is the loss factor, 
defined as the normalized energy lost by the source charge q0: 

 2
0

( 0)U zk
q

=
= − . (17) 

For charges travelling at the velocity of light, there is the problem that the longitudinal wakefield 
is discontinuous at z = 0, as shown in Fig. 5, leading to an ambiguity in the evaluation of the loss factor. 
Indeed, when the source charge travels at the velocity of light, it leaves the e.m. fields in its wake, hence 
the reason why we call these fields ‘wakefields’. Any e.m. perturbation produced by the charge cannot 
overtake the charge itself. This means that the longitudinal wakefield vanishes in the region z < 0. This 
property is a consequence of the causality principle. It is the causality that requires that the longitudinal 
wakefield of a charge travelling at the velocity of light to be discontinuous at the origin. 

 
Fig. 5: Examples of longitudinal wakefields: left β < 1, right β = 1 

The exact relationship between k and ( 0)w z →


 is, in this case, given by the beam loading 
theorem [17], which states that 
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( 0)

2
w z

k
→

=  . (18) 

As an example of verification of the beam loading theorem, let us consider the wakefield of the 
resonant mode given by Eq. (11). The energy lost by the charge q0 loading the capacitor is 

2 2
0 02 2U CV q C= = , giving 1 2k C= , compared with ( 0) 1w z C→ =



. 

2.3 Relationship between transverse and longitudinal forces 

Another important feature worth mentioning here is the differential relationship existing between 
longitudinal and transverse forces and the corresponding wakefields: the transverse gradient of the 
longitudinal force/wake is equal to the longitudinal gradient of the transverse force/wake, that is 

 
,

.

F
z

w
z

∂
∂
∂
∂

⊥ ⊥

⊥ ⊥

∇ =

∇ =

F

w





 (19) 

The above relations are known as the Panofsky–Wenzel theorem [18]. 

2.4 Coupling impedance 

The wakefields are generally used to study the beam dynamics in the time domain. If we take the 
equations of motion in the frequency domain, we need the Fourier transform of the wakefields. Since 
these quantities have units of ohm, they are called coupling impedances. 
Longitudinal impedance [Ω]: 

 ( ) ( )
i1 e  d

z
vZ w z z

v

ω

ω
∞

−∞

= ∫ 

; (20) 

Transverse dipole impedance [Ω/m]: 

 ( ) ( )
i

e  d
z

vi z z
v

ω

ω
∞

⊥ ⊥
−∞

= − ∫Z w . (21) 

The longitudinal coupling impedance of the space charge wake given by Eq. (7) [Ω/m] is given 
by 

 
( ) ( ) ( )i i

2
0

1 2 ln1 de  d ( )e  d
4 d

z z
v v

Z w z b a
z z z

s v s v z

ω ω∂ ω ∂
δ

∂ ∂ πε γ

∞ ∞

−∞ −∞

+
= =∫ ∫  ; (22) 

since '( ) ( )d '(0)z f z z fδ
∞

−∞
=∫ , we get 

 
( ) 0

2 2

 1 2 ln
4

Z i Z b
s c a

∂ ω ω
∂ π β γ

 = + 
 

 . (23) 

The longitudinal coupling impedance of a resonant HOM, corresponding to the Fourier transform 
of Eq. (11), is given by 
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 ( )
r

r

1 i

RZ
Q

ω
ω ω
ω ω

=
 

+ − 
 



, (24) 

where R is also called the shunt impedance of the longitudinal HOM. Note that the loss factor can be 
written as r 2k R Qω= . 

The transverse impedance obtained from Eq. (12) is given by 

 ( )
r

r

1 i

RZ
Q

ωω
ω ω ω

ω ω

⊥
⊥ =

 
+ − 

 

, (25) 

where R⊥  is called the transverse shunt impedance. 

2.5 Wake potential and energy loss of a bunched distribution 

When we have a bunch with total charge q0 and longitudinal distribution λ(z), such that 

0 ( ')d 'q z zλ
∞

−∞
= ∫ , we can obtain the amount of energy lost or gained by a single charge q in the beam 

by using the superposition principle. 

To this end, we calculate the effect on the charge by the whole bunch, as shown in Fig. 6, with 
the superposition principle, which gives the convolution integral: 

 ( )( ) ' ( ')d 'U z q w z z z zλ
∞

−∞

= − −∫ 

. (26) 

 
Fig. 6: Convolution integral for a charge distribution to obtain the energy loss of a particle due to the whole bunch 

Equation (26) allows us to define the longitudinal wake potential of a distribution: 

 ( )
0 0

( ) 1( ) ' ( ')d 'U zW z w z z z z
qq q

λ
∞

−∞

= − = −∫ 

. (27) 

The total energy lost by the bunch is computed by summing the energy loss of all the particles: 

 ( ) ( ) ( ) ( )bunch 0
1 d dU U z z z q W z z z
q

λ λ
∞ ∞

−∞ −∞

′ ′ ′ ′ ′ ′= = −∫ ∫ 

. (28) 
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3 Wakefield effects in linear accelerators 

3.1 Energy spread 

The longitudinal wake forces change the energy of individual particles depending on their position in 
the beam, as given by Eq. (26). As a consequence, the short-range wakefield can induce an energy 
spread in the beam.  

For example, the energy spread induced by the space charge force in a Gaussian bunch is given 
by 

 
( ) 2 2( /2 )0

2 3
0

d 'd ( ) ( ')d ' 1 2 ln  e
d d 4 2

zz

z

w z z qqU z bq z z z
s s a

σλ
πε γ πσ

∞
−

−∞

−  = − = + 
 ∫  . (29) 

The bunch head gains energy (z > 0), and the tail loses energy. The total energy lost by the bunch, 
Ubunch, is zero. 

In a similar way, one can show that the energy loss induced by a resonant HOM inside a 
rectangular uniform bunch of length l0 when  is given by 

 

0r

0 r

r 0

sin
2( )

2
2

l z
cqq RU z

lQ
c

ω
ω

ω

  −  −   =
 
 
 

, (30) 

and the total energy loss obtained with Eq. (28) is 

 
2 2

20 r 0
bunch 2

r 0

2 sin
2

q Rc lU
l Q c

ω
ω

 = −  
 

. (31) 

3.2 Single-bunch beam breakup: two-particle model 

A beam injected off-centre in a linac, for example due to misalignments of the focusing quadrupoles, 
executes betatron oscillations. The bunch displacement produces a transverse wakefield in all the 
devices crossed during the flight, which deflects the trailing charges (single-bunch BBU), or other 
bunches following the first one in a multibunch regime (multibunch BBU). The first observation of 
BBU was made at SLAC in 1966 [19]. 

To understand the effect, we consider, as a first example, a simple model with only two charges, 
q1 = q0/2 (leading = half bunch) and q2 = q (trailing = single charge), travelling with β = 1. 

The leading charge executes free betatron oscillations of the following kind: 

 1 1ˆ( ) cos yy s y s
c

ω 
=  

 
. (32) 

The trailing charge, a distance z behind, experiences over a length Lw an average deflecting force 
that is proportional to the displacement y1 and dependent on the distance z. From the definition of the 
transverse dipole wakefield, this force is given by 

 0
1 1

w

( , ) ( ) ( )
2y
qqF z y w z y s
L ⊥= . (33) 
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Note that Lw is the length of the device for which the transverse wake has been computed. For 
example, in the case of a cavity cell, Lw is the length of the cell. This force drives the motion of the 
trailing charge: 

 
2

0
2 2 1

o w

( ) ˆ cos
2

y yqq w zy y y s
c E L c

ω ω
⊥   

′ + =   
   

. (34) 

This is a typical equation for a resonator driven at the resonant frequency. 

The solution is given by the superposition of the ‘free’ and the ‘forced’ oscillations, which, being 
driven at the resonant frequency, grow linearly with s, as shown in Fig. 7: 

 forced
2 2 2ˆ( ) cos yy s y s y

c
ω 

= + 
 

, (35) 

 forced 0
2 1

o w

( ) ˆ sin
4

y

y

cqq w z sy y s
E L c

ω
ω

⊥  
=  

 
. (36) 

 
Fig. 7: HOMDYN [20] simulation of a typical BBU instability, 50 µm initial offset, no energy spread 

At the end of a linac of length LL, the oscillation amplitude will have grown by 1 2ˆ ˆ( )y y=   

 2 L

2 o wmax

ˆ ( )
ˆ 4 ( / )y

y cNew z L
y E e Lω

⊥ ∆
= 

 
. (37) 

If the transverse wake is given per cell, the relative displacement of the tail with respect to the 
head of the bunch depends on the number of cells. Of course, it also depends on the focusing strength 
through the betatron frequency ωy.  

3.3 BNS damping 

The BBU instability is quite harmful and hard to control even at high energy with strong focusing, and 
after careful injection and steering. A simple cure has been proposed after observing that the strong 
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oscillation amplitude of the bunch tail is mainly due to the ‘resonant’ driving head. If the tail and the 
head move with different frequencies, this effect can be significantly reduced [15]. 

Let us assume that the tail oscillates with a frequency ωy +∆ωy, so that Eq. (34) becomes 

 
2 2

2 2 1
o w

( ) ˆ cos
2

y y yNe w zy y y s
c E L c

ω ω ω
⊥

+ ∆   
′ + =   

   
, (38) 

the solution of which is given by 

 
2 2

2 2 1
o w

( )ˆ ˆ( ) cos cos cos
4

y y y y y

y y

c Ne w zy s y s y s s
c E L c c

ω ω ω ω ω
ω ω

⊥
+ ∆  + ∆      

= − −      ∆      
. (39) 

In this case, we observe that the amplitude of the oscillation is limited and no longer grows 
linearly with s. Furthermore, by making a suitable choice for ∆ωy, it is possible to suppress fully the 
oscillations of the tail. Indeed, by setting 

 
2 2

o w

( )Δ
4y

y

c Ne w z
E L

ω
ω

⊥=  (40) 

if 2 1ˆ ˆy y= , from Eq. (39) we obtain  

 2 1ˆ( ) cos yy s y s
c

ω 
=  

 
; (41) 

that is, the tail oscillates with the same amplitude as the head and with the same betatron frequency. 
This method of curing the single-bunch BBU instability is called BNS damping, after the names of the 
authors Balakin, Novokhatsky, and Smirnov who proposed it [15]. 

To have BNS damping, Eq. (40) imposes an extra focusing at the tail, which must have a higher 
betatron frequency than the head. This extra focusing can be obtained by: (1) using a Radiofrequency 
Quadrupole (RFQ), where the head and tail see a different focusing strength, (2) creating a correlated 
energy spread across the bunch, which, because of the chromaticity, induces a spread in the betatron 
frequency. An energy spread correlated with position is attainable with the external accelerating voltage 
or with wakefields. 

In Fig. 8, we show the betatron oscillation corresponding to Fig. 7, but with a 2% energy spread.  

 
Fig. 8: HOMDYN simulation of a typical BNS damping, 50 µm initial offset, 2% energy spread 
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3.4 Single-bunch beam breakup: general distribution 

To extend the analysis carried out in Section 3.2 to a particle distribution, we write the transverse 
equation of motion of a single charge q with the inclusion of the transverse wakefield effects as follows 
[14]: 

 2
2

0 w

( , )( ) ( ) ( ) ( , ) ( , ') ( ' ) ( ')d 'y
z

y z s qs k s s y z s y s z w z z z z
s s m c L

γ γ λ
∞

⊥

∂ ∂  + = − ∂ ∂  ∫ , (42) 

where ( )sγ  is the relativistic parameter, which varies along the linac, and 1/ ( )yk s  is the betatron 

function. We recall that the integral of the longitudinal distribution function ( )zλ  is the total charge of 
the bunch, q0. 

The solution of the equation in the general case is unknown. We can, however, apply a 
perturbation method to obtain the solution at any order in the wakefield intensity. Indeed, we write 
 ( )( , ) ( , )n

n
y z s y z s= ∑ , (43) 

where n represents the nth-order solution. The first-order solution is found without the wakefield effect 
from the following equation: 

 
(0)

2 (0)( , )( ) ( ) ( ) ( , ) 0y
y z ss k s s y z s

s s
γ γ

 ∂ ∂
+ = ∂ ∂ 

. (44) 

It is important to note that the above equation no longer depends on z. This means that the bunch 
distribution remains constant along the structure. 

If the s-dependence of ( )sγ  and 2 ( ) ( )yk s sγ  is moderate, we can use the Wentzel–Kramers–
Brillouin (WKB) approximation [5], and the solution of the above equation with the starting conditions 

ˆ(0)y y= , yʹ(0) = 0 is 

 [ ]0 0(0) ˆ( ) cos ( )
( ) ( )

y

y

k
y s y s

s k s
γ

ψ
γ

= , (45) 

where 

 
0

( ) ( ')d '
s

ys k s sψ = ∫ . (46) 

Equation (45) represents the unperturbed transverse motion of the bunch in a linac. 

The differential equation of the second-order solution is obtained by substituting the first-order 
solution (45) into the right-hand side of Eq. (42), yielding 

 
(1)

2 (1) (0)
2

0 w

( , )( ) ( ) ( ) ( , ) ( ) ( ' ) ( ')d 'y
z

y z s qs k s s y z s y s w z z z z
s s m c L

γ γ λ
∞

⊥

 ∂ ∂
+ = − ∂ ∂ 

∫ . (47) 

We are interested in the forced solution of the above equation that can be written in the form 

 0 0(1)
2

0 w

ˆ( , ) ( ) ( ' ) ( ')d '
( ) ( )

y

y z

kqy z s y G s w z z z z
m c L s k s

γ
λ

γ

∞

⊥= −∫ , (48) 

where  
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−
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∫

∫ ∫
 (49) 

The first integral undergoes several oscillations with s, and if ( )sγ  and ( )yk s  do not vary much 
it is negligible, so that we can finally write 

 [ ]0 0(1)
2

0 w 0

d 'ˆ( , ) sin ( ) ( ' ) ( ')d '
2 ( ) ( ) ( ') ( ')

s
y

y y z

kq sy z s y s w z z z z
m c L s k s s k s

γ
ψ λ

γ γ

∞

⊥= −∫ ∫ . (50) 

Note that the last integral in Eq. (50) is proportional to the transverse wake potential produced by 
the whole bunch, defined in a similar way to Eq. (27). This solution can then be substituted again into 
the right-hand side of Eq. (42) to obtain a third-order solution, and so on. If we consider constant ( )sγ  
and ( )yk s , Eq. (50) gives the same result as for the two-particle model of Eq. (36) when we substitute 

( )zλ  with q0/2 representing the leading half bunch affecting a trailing charge q. 

If the BBU effect is strong, it is necessary to include higher-order terms in the perturbation 
expansion. Under the following assumptions: 

i) rectangular bunch distribution 0 0( ) /z q lλ = , −l0 / 2 < z < l0 / 2, where l0 is the bunch length; 

ii) monoenergetic beam; 

iii) constant acceleration gradient, dE0 /ds = const.; 

iv) constant beta function; 

v) linear wake function inside the bunch, 0 0( ) /w z w z l⊥ ⊥= , 

the sum of Eq. (43) can be written in terms of powers of the adimensional parameter , also called the 
BBU strength, 

 
( )

0 0 f

0 w i

ln ,
d / dy

qq w
k E s L

γη
γ

⊥  
=  

 
 (51) 

where iγ  and fγ  are the initial and final relativistic parameter, respectively. 

By using the method of steepest descent [8], it is possible to obtain the asymptotic expression of 
y(z,s) thus finding, at the end of the linac, 

 1/6 1/3 1/3i
L m L

f

3 3 3( ) exp cos
6 4 4 12yy L y k Lγ πη η η
πγ

−    = − +     
, (52) 

which, unlike the two-particle model and that from the first-order solution, gives a tail displacement 
growing exponentially with η . 

3.5 Multibunch beam breakup 

We have seen in the previous sections that when a bunch passes off-axis (due, for example, to betatron 
oscillations) in an axis-symmetric accelerating structure, it excites transverse wakefields which may 
cause the tail of the bunch to oscillate with increasing amplitude as the bunch goes along the linac. In 
the same way, the whole bunch may excite deflecting trapped modes in the RF cavities of the linac that 
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may cause trailing bunches to be deflected, whether they are on-axis or not. These angular deflections 
are transformed into transverse displacements through the transfer matrices of the focusing system, and 
the displaced bunches will themselves create similar wakefields in the downstream accelerating 
structures of a linac. The subsequent bunches will be further deflected leading to beam blow-up. Due to 
the long-range wakefields, there is a coupling in the motion of the bunches that are increasingly 
deflected as they proceed along the linac in a process called multibunch BBU. Even if the bunches are 
not lost, the transverse beam emittance ￼ can be greatly increased, leading to a significant luminosity 
reduction. 

We summarize here the analytical study of multibunch BBU performed with the formalism used 
in [14]. All the bunches are considered to be rigid macro-particles, such as delta-functions, separated by 
period T, and we assume all bunches to be injected with the same initial offset x0. We consider the 
transverse equation of motion of a bunch as a whole, ignoring internal structures; the beam is therefore 
made of a train of bunches with the same charge (Qb) evenly spaced by period T, which is an integer 
number of the RF period of the accelerating mode. 

We also consider all the cells of the linac accelerating structure to be identical and with the same 
dipole trapped mode in each cell of length Lw. Rigorously, the analytical approach requires that many 
betatron oscillations are performed in the linac, and the BBU remains moderate within a betatron 
oscillation. Moreover, the theory is valid if the beam energy does not change too much in a betatron 
wavelength. This last hypothesis is also called adiabatic acceleration. 

The transverse wakefield force experienced by the kth bunch, spaced kT from the first bunch, 
depends on the transverse wakefield generated by the preceding bunches (and thus by their transverse 
displacement). The dipole long-range wakefield is produced by a high-order deflecting mode, identical 
in all the cavities of the structure, and it is described in terms of its resonant frequency ωr, the quality 
factor Q, and the dipole shunt resistance R⊥ (expressed in ohm per meter). 

The equations of motion are then written in terms of the Z-transform (see, e.g., Ref. [21]) since 
the displacement x(kT, s) of the kth bunch at the position s is a discrete function of time. The solution 
can be retrieved with a perturbation method, which considers its expansion as a series of the driving 
wakefield force. 

The zeroth-order solution is given for a vanishing driving force, i.e. a pure betatron oscillation 
(unperturbed motion). It represents the motion of the first bunch, which is not affected by any wakefield 
because of the causality principle (the wakefield cannot travel ahead of the bunch itself). The nth-order 
solution is driven by the wakefield excited by the solution of the order n − 1. Thus the first-order solution 
is computed from the motion of the first bunch, and it affects all the bunches, except the first one; it 
means that the nth-order solution affects only bunches of index larger then n. Therefore the summation 
of the series can be stopped at the Mth order of a train of M bunches. The nth-order solution in the Z-
domain can be written as follows [14]: 

 ( ) ( ) ( )
( ) ( )0 0 i

0
( ), e

i !

n
y s

n nn
y

k a sx z s x G z
s k s n

ψγ
γ

= , (53) 

where a(s) is the so-called dimensionless BBU strength given, in case of constant ky(s), by 

 ( ) ( )b
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0 w 0

ln
2 y

sQ Ra s
k G L Q
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γ
⊥  

=  
 

, (54) 

where G is the accelerating gradient [V/m], and 

 ( ) ( )
1

n
n

zG z w z
z ⊥=

−
  (55) 
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with 

  (56) 

and 

 
r

ri2
1,2 e e

T
TQz

ω
ω

−
±= . (57) 

The inverse Z-transform of xn(z,s), i.e. xn(kT,s), can then be summed to get the transverse 
displacement of the kth bunch as 

 ( ) ( )
0

, ,n
n

x kT s x kT s
∞

=

= ∑ . (58) 

We recall that the sum can be stopped at the Mth term for a beam containing M bunches. 

For a(s)≪ 1 the series expansion can be stopped at the first-order term, although, if the BBU 
strength parameter a is moderate, it is sufficient to keep only a few terms of the summation. 

In the Z-domain, the nth-order solution, given by Eq. (53), has been determined analytically, and 
the same is possible with its infinite sum, but its inverse Z-transform, Eq. (58), is, in general, not possible 
to write in a closed analytical form. It is, however, possible to compute the exact solution for the nth 
bunch as a sum of n terms if the BBU instability is moderate in a betatron period. Moreover, it is possible 
to use an asymptotic technique, valid when the blow-up is strong, to have an expression of the transverse 
displacement that puts in evidence the main parameters playing an important role in the instability.  

The asymptotic transverse displacement of the kth bunch, expressed in terms of the oscillation 
amplitude only, is [14] 
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 (59) 

where x∞(s) is the steady state solution that is reached when long (rigorously infinite) trains of bunches 
are accelerated. 

In Fig. 9, we show a comparison between the analytical solution obtained by numerically solving 
Eq. (58) and a simple tracking code that considers the bunches in the train as rigid macro-particles, but 
which can also take into account the contribution of several resonant modes, along with different initial 
offsets and displacements of the bunches. The parameters used for the calculations are given in Table 
1. They refer to a C-band linac with the BBU effect produced by a HOM. In the vertical axis the 
normalized transverse position, evaluated at the exit of the linac, is defined as follows: 

 
( ) ( ) ( )

0 0 0

, y

y

s k sx kT s
x k

γ
γ

. (60) 
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Fig. 9: Normalized transverse position as a function of the bunch number: comparison between the analytical 
solution and a tracking code. 

Table 1: Beam parameters used for comparing the analytical solution of multibunch BBU with the results of a 
tracking code. 

Linac length 30 m 

Initial energy 80 MeV 

Energy gradient 30 MeV/m 

Betatron function, 1/ky 1 m 

Bunch spacing, T 15 ns 

Bunch charge 1 nC 

HOM resonant frequency, fr 8.4 GHz 

HOM transverse impedance, R⊥ 50 MΩ/m 

HOM quality factor 11 000 

Cell length 17.5 cm 

From Eq. (53), we see that one possible way to reduce the BBU instability is to act on the 
dimensionless BBU strength given by Eq. (54). For example, we can reduce the bunch charge Qb or the 
betatron function, i.e. increase the focusing strength. A better approach is to remove the source of the 
instability by damping the transverse dipole mode, for example with an improved electromagnetic 
design of the accelerating cells.  

The other main approach to BBU instability suppression is to detune the cell frequencies to 
introduce a spread in the resonance frequency of the dangerous mode so that it will no longer be excited 
coherently by the beam. Indeed, by properly detuning each cell, a damping of the BBU instability is 
produced via a decoherence of the various cell wakefields. It has been demonstrated [22] that a Gaussian 
distribution of the cell frequencies, which provides a rapid drop in the wakefield for a given total 
frequency spread, would be optimal. The analytical approach to determine the effectiveness of this 
detuning technique for the BBU multibunch instability can be found in Ref. [14], where it is also shown 
that the damping increases with the amplitude of the frequency spread. 
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Appendix A: Power radiated by a bunch passing through a taper 
In the case of a uniform charge distribution, and γ → ∞, the electric field lines of a beam passing inside 
a perfectly conducting circular pipe are perpendicular to the direction of motion and travel together with 
the charge [9], as shown in Fig. A.1. In other words, the field map does not change during the charge 
flight, as long as the trajectory is parallel to the pipe axis. Under this condition, the transverse field’s 
intensity can be computed as in the static case, applying Gauss’s and Ampere’s laws: 
  (A.1) 

Let us consider a cylindrical beam of radius a and current I, with uniform charge density 
2I a vρ π=  and current density 2J I aπ= , propagating with relativistic speed v cβ=  along the axis 

of a cylindrical perfectly conducting pipe of radius b, as shown in Fig. A.1. 

 
Fig. A.1: Cylindrical bunch of radius a propagating inside a cylindrical perfectly conducting pipe of radius b 

By applying Eqs. (A.1), one obtains for the radial component of the electric field: 
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The electrostatic potential satisfying the boundary condition ( ) 0bϕ =  is given by 
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How can a perturbation of the boundary conditions affect the beam dynamics? Let us consider 
the following example: a smooth transition of length L (taper) from a beam pipe of radius b to a larger 
beam pipe of radius d is experienced by the beam [9]. To satisfy the boundary condition of a perfectly 
conducting pipe also in the tapered region, the field lines are bent, as shown in Fig. A.2. Therefore there 
must be a longitudinal electric field Ez(r,z) in the transition region. 

A test particle moving outside the beam charge distribution will experience along the transition 
of length L a voltage difference given by (e.g. see Ref. [21]): 

( ) ( ) ( )
0

, d , , ln
2

z L

z
z

I dV E r z z r z L r z
v b

ϕ ϕ
πε

+

′ ′= − = − + − = −  ∫ , 

which is decelerating if d > b. The power lost by the beam to sustain the induced voltage is given by 
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Fig. A.2: Smooth transition of length L (taper) from a beam pipe of radius b to a larger beam pipe of radius d 

This means that for d > b the power is deposited into the energy of the fields: moving from left 
to right of the transition, the beam induces the fields in the additional space around the bunch (i.e. in the 
region b < r < d, 0 < z < l0) at the expense of the only available energy source, which is the kinetic 
energy of the beam itself. 

 
Fig. A.3: During the beam propagation in the taper, additional e.m. power flow is required to fill the new available 
space. 

To verify this interpretation, let us now compute the e.m. power radiated by the beam to fill the 
additional space available around the bunch, as shown in Fig. A.3. On integrating the Poynting vector 
through the surface 2 2( )S d bπ∆ = −  representing the additional power passing through the right part 
of the beam pipe, one obtains 
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which is exactly the same expression as in Eq. (A.2). Note that if d < b the beam gains energy. If 
d → ∞ , the power goes to infinity. Such an unphysical result is nevertheless consistent with the 
original assumption of an infinite energy beam ( γ → ∞ ). 
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