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Abstract 
An introduction to radio-frequency and magnetic bunch length compression 
of ultra-relativistic particle beams in linear accelerators is given, with a 
treatment of the single-particle motion up to the second order, and attention to 
the production of high peak current bunches for free-electron lasers. 
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1 Introduction 
There is a growing demand for generating and transporting very short, high charge density electron 
bunches. Applications range from light sources driven by radio-frequency linear accelerators (RF linacs) 
such as free-electron lasers (FELs), to future linear colliders and novel electron-beam-driven 
acceleration schemes, e.g., dielectric- and plasma-wake-field-driven accelerators. The generation of 
hundreds of amperes peak current electron bunches directly out of an electron source is in conflict with 
the production of small transverse emittance beams, due to the repulsive interparticle Coulomb 
interactions (‘space-charge’ forces) that are especially effective at low beam energies. It is therefore 
preferable to create only a few tens of amperes peak current bunches at the source, such as an RF photo-
injector, in order to dilute the charge density, and thereby ensure small transverse emittances. Beam 
manipulations are implemented then in the downstream transport line, at higher beam energies, in order 
to obtain short electron bunches while preserving the transverse emittance at the injector level. The 
process of manipulating an electron beam so to enhance its peak current is called, in short, bunch 
compression.  

In this chapter, we introduce the reader to bunch-length compression by means of RF and 
magnetic insertions, with an analytical treatment of the single-particle motion up to second order in the 
particle coordinates. We pay special attention to the production of high peak current bunches for high-
gain FELs. Other schemes aimed to produce short bunches have been proposed, either with a special 
design of the electron source or by selecting only one part of the bunch, e.g., via energy-dispersive 
collimation or spoiling. These latter techniques, however, are not addressed in this chapter. 

2 Why FELs require high peak current bunches 
Over the last decade several linac-driven FELs in the ultra-violet (UV) and X-ray wavelength ranges 
have been built, have met their design specifications and are now operating reliably in several 
laboratories around the world [1, 2]. One of the main factors contributing to this successful development 
has been the ability to create, accelerate, transport and control electron bunches of very high brightness.  

The six-dimensional (6D) energy-normalized electron-beam brightness is defined as the total 
bunch charge divided by the product of the root-mean-square (rms) horizontal, vertical and longitudinal 
normalized emittances, barring numerical factors that can be found in the literature. Essentially, it is the 
beam charge density in the 6D phase space. For simplicity, particle motion is intended to be uncoupled, 
and each transverse emittance is meant to be ‘projected’, i.e., it is computed over the particles’ 
coordinates projected onto the longitudinal z-coordinate internal to the bunch [3]. The normalized 
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transverse emittances scale as the product of beam size and angular divergence. The normalized 
longitudinal emittance scales as the product of bunch length and energy spread, the latter being in fact 
the particles’ spread in longitudinal momentum. The transverse normalized emittances are invariant 
under acceleration and linear transport, presuming that collective effects, such as space-charge forces, 
can be neglected. The same is true for the longitudinal normalized emittance if the energy spread is 
purely uncorrelated (i.e., not correlated with z) and particles are in the ultra-relativistic approximation: 
in this case, neither the bunch length, zσ , nor the beam energy spread, Eσ , vary during acceleration. 

The presence of non-linear motion and collective effects along the beam-delivery system may 
dilute the rms normalized emittances from their values at the injection point [2]. By introducing an 
effective degradation factor 1≥ς  in each plane of particle motion so that

n ,f 0 ,0 n ,f 0 ,0,x x x y y yε ς γ ε ε ς γ ε= =  and n ,f ,f E,f ,0 E,0z z z zε σ σ ς σ σ= = , we are able to relate the 6D 
normalized brightness at the undulator, Bn,f, to the one at the linac injection, Bn,0: 

 n,0
n,f 2

n ,f n ,f n ,f 0 ,0 ,0 ,0 E,0

 .
x y z x y z x y z x y z

BQ QB
ε ε ε ς ς ς γ ε ε σ σ ς ς ς

= = =  (1) 

In the ideal case of vanishing non-linear and collective effects, 1,, →zyx ςςς , and the 6D normalized 
brightness is preserved at the injector level under acceleration and bunch-length compression.  

The importance of electron-beam brightness for linac-driven high-gain FELs is underlined by the 
characteristic FEL parameter ρ , through which most of the one-dimensional (1D) FEL dynamics can 
be depicted [4]. In the so-called 1D, ‘cold-beam’ limit, where the effects on the FEL output of electron-
beam energy spread, transverse emittance and radiation diffraction are all neglected, the radiation peak 
power at the resonant wavelength grows exponentially along the undulator with a gain length

( )G u 4 3L λ π ρ= , where 
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 (2) 

pΩ being the plasma frequency,γ  the relativistic Lorentz factor for the electron-beam mean energy, 

uλ the undulator period length, I the electron-bunch peak current, IA = 17045 A the Alfven current, xσ  
the standard deviation of the (assumed round) electron-beam transverse size; [JJ] is the 
undulator–radiation coupling factor [5], equal to 1 for a helically polarized undulator and to

( ) ( )[ ]ξξ 10 JJ −  for a plane-polarized undulator, where J0 and J1 are Bessel functions of the first kind with 
argument ( )22 24 KK +=ξ . Here aw and K are defined in the expression for the FEL fundamental 
wavelength of emission [6]:  

 ( )2u
w2 1  ,

2
aλλ

γ
= +  (3) 

with aw = K for helically and aw = K/√2 for plane-polarized undulators, and
( )0 u e 0 u2 0.934 [T] [cm]K eB m c Bλ π λ= = , in practical units, is the so-called undulator parameter, B0 the 

undulator peak magnetic field, e and me the electron charge and rest mass, respectively, and c the speed 
of light in vacuum. K is linearly proportional to the electron’s amplitude of transverse oscillation in the 
undulator field and is typically in the range 1–5. Equation (3) is often referred to as the FEL ‘resonance 
condition’ since it selects, for any undulator period and magnetic field strength, the necessary electron 
beam energy for lasing atλ . 
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For kA-current beams, typicallyρ ≈ 10−3 in the UV range, and it drops to ∼10−4 in the X-ray range. 
If the undulator length u uN λ , with uN the number of undulator periods, is equal to or longer than ∼20LG, 
the conversion of electrons’ kinetic energy to photon energy considerably enlarges the electron-beam 
energy spread, with an eventual reduction in the FEL gain [6]. When the FEL process starts up from 
noise in the electron-charge distribution – it is therefore said to operate in self-amplified spontaneous 
emission (SASE) mode [7, 8] – the associated FEL power saturates at a level sat 1.6P EI eρ≈ . In spite 
of the low FEL extraction efficiency relative to the electron-beam power (because 1<<ρ ), an electron 
beam at multi-GeV energies and kA-scale peak currents is able to produce multi-GW-scale radiation 
peak power. For SASE devices, the value of ρ  also defines the approximate number of undulator periods

sat 1N ρ≈ and the length sat uL λ ρ≈ necessary to reach power saturation. The normalized spectral 
bandwidth at saturation is ρωω ≈∆ , presuming a more or less mono-energetic electron beam with little 
z-correlated energy spread.  

Equation (2) suggests that a smaller beam transverse emittance, which is proportional to the 
square of the beam transverse size, is associated with a higher FEL gain. In fact, the most efficient 
electron–photon beam interaction occurs when the transverse beam phase space area and distribution 
match those of the emitted radiation. This is also the condition for maximum transverse coherence of 
FEL radiation, and it translates into an electron-beam emittance at the undulator smaller than or of the 
same order as the one of the diffraction-limited photon beam [9]: 

 ,  .
4x y
λε
π

≤  (4) 

By substituting Eqs. (3) and (4) (with the beam emittance at the diffraction limit) into Eq. (1), we can 
establish a relationship between Bn,f andλ  [10]: 
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 (5) 

It is worth noticing that the ratio EI σ is invariant under acceleration and compression, when collective 
effects are ignored. So, for any given undulator, efficient lasing at shorterλ requires a higher Bn,f. This 
is confirmed by Fig. 1, where Bn,f of designed and existing single-pass linac-driven FEL facilities is 
shown as a function of the maximum photon energy (i.e., minimum fundamental wavelength) from UV 
to X-rays.  

At this point one might wonder why a high peak current is required at the undulator, if the FEL 
dynamics appears to be so tightly related to the 6D normalized electron-beam brightness, the latter one 
being approximately invariant for a well-set beam-delivery system. The fact is that, as long as the beam 
effective rms relative energy spread is smaller than ρ (here ‘effective’ refers to the contribution of both 
beam transverse emittance and spread in longitudinal momentum to the lack of synchronism between 
the electrons and the radiation emitted in the undulator [6]), the FEL dynamics is well depicted by the 
1D cold-beam model in Eq. (2). We therefore see that the higher the peak current, the larger the FEL 
gain, the shorter the saturation length. The relatively weak dependence of ρ on I is one of the reasons 
why ρ  typically spans over one order of magnitude only, for lasing from UV to hard X-rays, whereas I 
has typically to be increased from a few tens of amperes out of photo-injectors to kA level at the 
undulator. With the common prescription of relative energy spread ρσδ 5.0< in mind for maximum FEL 
gain [6], it makes sense to collapse the electron-beam quality into the 5D normalized brightness, which 
is just n,f EB σ× . This quantity is not invariant under compression, and is actually linearly proportional 
to the bunch length total compression factor.  
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Fig. 1: 6D normalized electron-beam brightness (Eq. (1)) vs. maximum photon energy at fundamental FEL 
emission, for facilities in the UV to X-rays, in design stage (blue) or operational (red), up to 2013. From lower to 
higher photon energies, “existing” facilities are: SPARC (Italy), SDUV-FEL (China), FLASH-I (Germany), 
FERMI (Italy), LCLS (USA), SACLA (Japan). The brightness refers to the projected (circle) or slice value in the 
bunch (diamond). Published in Ref. [2]. Copyright of Elsevier. 

In summary, bunch-length compression is required for increasing the bunch peak current from 
the injection level by usually one to three orders of magnitude, and eventually driving a high-gain FEL, 
given that transverse emittances and relative energy spread are kept small at the undulator. In the 
following we will focus on RF and magnetic bunch-length compression of ultra-relativistic electrons. 
As we will see, RF compression is achieved by exploiting the longitudinal slippage of electrons in an 
RF linac, at beam energies typically lower than ∼100 MeV. A magnetic compressor is made of an RF 
linac followed by a magnetic insertion including dipole magnets, and the electrons’ longitudinal slippage 
happens in the magnetic insertion only. Magnetic compression is commonly achieved at beam energies 
higher than ∼100 MeV. An exhaustive literature on bunch-length compression is available, and some 
fundamental references are provided in this chapter. Still, we will introduce the reader to the salient 
topics related to the single-particle dynamics, and will illustrate the basic equations of motion. 

3 Particle motion in a RF linac 
We consider the motion of ultra-relativistic particles in an RF linac made, for example, of copper 
structures with inner iris. We assume each structure made of identical cylindrical cells; the RF power 
flows through the cells, and is eventually extracted on a load. Such structures behave like waveguides 
of cylindrical symmetry, and the longitudinal electric field component, which has in general a radial 
dependence, is a superposition of n field harmonics characterized by an angular RF frequencyω and by 
an RF wave-number k [11]: 

 ( ) ( )( ) ( )TW TW
, ,0 syn

TW TW
,0 syn ,0 rf

cos cos

cos( ) cos( ) ,

z n n r n n z
n

z z

E a J k r t z k s E t t ks

E t ks kz E kz

ω ϕ ω ω ϕ

ω ϕ φ

+∞

=−∞

= − + ≅ + ∆ − +

= − + + ≡ +

∑  (6) 

where the generic particle time coordinate t(z) was expanded in the arrival time tsyn of the reference (or 
synchronous) particle, e.g. the bunch centroid, plus the arrival time of the generic particle with respect 
to it. We then used the identity kzt =∆ω . The z-coordinate runs inside the bunch, with z = 0 for the 
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reference particle. The s-coordinate runs along the electric axis of the cell. The arbitrary phaseϕ
determines the arrival time of the reference particle relative to the electric field inside the cell. Finally, 
we defined the RF phase rf synt ksφ ω ϕ= − + , which tends to be constant for ultra-relativistic beams. 

The last term of Eq. (6) describes the fundamental on-axis mode of the longitudinal electric field 
in a ‘travelling wave’ (TW) accelerating structure. In fact, we assume that the transverse beam sizes are 
much smaller than the structure inner radius, and that the beam is well centred on the structure’s electric 
axis. Moreover, most of the acceleration is provided by the fundamental mode of the field. 

If the structure is made in order to allow reflections of the RF power, we calculate the resulting 
net positive interference of two counter-propagating waves as follows: 

 

 

( )( ) ( )( )
( ) ( )

( )

SW TW TW
,0 ,0

TW
,0 syn

,0 syn

cos cos

2 cos cos

cos( )cos  .

z z z

z

z

E E t z ks E t z ks

E t t ks

E t kz ks

ω ϕ ω ϕ

ω ω ϕ

ω ϕ

≅ − + + + +

= + ∆ + −

≡ + +

 (7) 

Equation (7) describes the on-axis longitudinal electric field in a ‘standing wave’ (SW) structure. 
We now assume that the electric field is approximately uniform across the cell gap (i.e., cos(ks) ≈ const.), 
and that the reference particle’s velocity v, as well as those of all other particles, does not change 
substantially during acceleration (ultra-relativistic limit). Then the generic particle energy gain through 
a cell of coordinates [–g/2, g/2] is 
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∫ ∫

∫  (8) 

T is called the ‘transit-time factor’; it is always less than 1 (typically in the range 0.85–0.95) and it 
describes the reduction of energy gain because of the time variation of the electric field along the cell, 
when the beam traverses the cell with a finite velocity v < c. In the following, for the sake of brevity, 
we will collapse T into an effective electric potential ∆V0. It is worth noticing that the final expression 
for the energy gain in Eq. (8) applies to a TW as well with T = 1, where the TW structure is assumed to 
be tuned in order to maintain the synchronism between the RF field and the reference particle. 

Finally, we notice that the first equality in Eq. (7) can be rewritten as
( ) ( ) ( )SW TW

,0 rf rf0 cos cos 2z zE z E ksφ φ= ≅ + +   . This tells us that a particle travelling in synchronism 

with the forward wave at the light speed experiences both a constant accelerating force and an oscillating 
force from the backward wave. The latter has a double oscillation frequency, and it does not contribute 
to beam motion on average. Henceforth, we keep the notation according to which beam acceleration 
(i.e., acceleration sampled by the reference particle) is maximum for rf 0φ = : in this case the beam is 
said to be ‘on-crest’ of the RF wave. As we will see in the next section, magnetic bunch-length 
compression requires a correlation of the particles’ energy with their longitudinal positions inside the 
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bunch (see Figs. 3 and 4 below), and such a correlation is established by operating the linac ‘off-crest’, 
namely at an RF phase rf 0π φ− < < or rf0 φ π< < , depending on the geometry of the downstream 
magnetic insertion. The special point rf 2φ π= ±  is commonly called ‘zero crossing’. Accelerated either 
on-crest or off-crest, we assume that the beam longitudinal phase space (z, E) is mainly determined by 
the curvature imposed by the cosine-like behaviour of the accelerating field. 

The coefficient used to quantify the linear correlation in (z, E) is named ‘linear energy chirp’, and 
it can be evaluated by expanding the electric field-induced energy gain in Eq. (8) to first order in z: 

 

 
( ) ( ) ( )2

i 0 rf 0 rf
0 i 0 rf

0 rf

i 0 rf

1 d 1 d cos sin
d cos d

sin  ,
cos

Eh E e V e V kz o z
E z E e V z

e V k
E e V

φ φ
φ

φ
φ

 ≡ ≅ + ∆ − ∆ + + ∆
∆

= −
+ ∆

 (9) 

where the beam is injected into the linac with a mean energy Ei. When the beam energy spread induced 
by the RF curvature is much larger than the uncorrelated energy spread, which depends on the process 
of beam generation, we may estimate zh σσδ≈ . As a consequence, as long as the beam correlated 
energy spread is constant when the bunch length is shortened (or lengthened) in a magnetic insertion, 
the energy chirp is increased (or lowered) by the same compression factor. 

4 Particle motion in a magnetic chicane 
By evaluating the Lorentz force for a particle with longitudinal momentum pz traversing a dipole magnet 
with uniform vertical field B0, one finds that the radius of curvature R of the particle’s trajectory depends 
on the magnetic field and the momentum according to [ ] [ ]0GeV 0.2998 T [m]zp c B R= . This suggests 
that particles with different momentum will follow different (longer vs. shorter) orbits. Since the 
longitudinal velocity of all particles is assumed to be very close to c independently from their spread in 
energy, the particles will arrive at a longitudinal position s downstream of the magnet at different times. 
In other words, the longitudinal coordinate z of particles inside the bunch is changed. We therefore 
envision a way to shorten or lengthen the bunch, with a suitable arrangement of energy spread and dipole 
magnets. The former is manipulated with an RF linac as depicted in the previous section. In particular, 
the energy spread is correlated along the bunch so that, for example, less energetic particles in the bunch 
head will follow orbits longer than more energetic particles in the bunch tail, as shown in Fig. 2. At the 
exit of the magnetic insertion, the bunch head and tail will have been caught towards the bunch centre, 
and the bunch length will be shortened. The final aim of bunch-length compression, as explained in 
Section 2, is that of increasing the bunch peak current. 

In linacs driving single-pass FELs, it is usually convenient to maintain the beam trajectory on a 
straight path, which is also the electric axis of the accelerating structures. For this reason dipole magnets 
devoted to bunch compression are arranged in geometries that do not provide a net beam deflection, 
such as a four-dipole chicane. We first consider a symmetric geometry made of identical dipoles, as 
shown in Fig. 2. In each dipole of length ld, the bending angle of the reference (on-momentum) particle 
is 0 d 0 d ,0zl R eB l pθ = = , and the total deflection angle through the chicane is

04,03,02,01,0 =+++ θθθθ . For a generic off-momentum particle the bending angle is

( ) ( )0 d ,0 0 1z zeB l p pθ θ δ= + ∆ ≡ + , and still the net deflection through the chicane is zero. The same 

result holds for an expansion of the total bending angle to any order inδ .  
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We now assume that when particles are travelling in the drift section upstream of the chicane, 
their transverse position and angular divergence do not depend on their energy difference, i.e. the 
energy-dispersion function and its first derivative w.r.t. s, evaluated at the entrance of the chicane, are 
both zero  [12]: ( ) ( ) 0'0',00 ≡∆==≡∆== δηδη xsxs xx . For symmetry, those functions are also 
zero at the chicane exit. Naively, this means that particles lying on a line at the entrance of the chicane 
and with no angular divergence still lie on a line at the chicane exit, regardless of their spread in energy 
(see Fig. 2). Such a property defines the chicane as an ‘achromatic’ line. Since the total bending angle 
of an off-momentum particle through the chicane is zero at all orders inδ , as demonstrated above, such 
a chicane is achromatic at all orders (barring magnets’ errors or geometry imperfections). 

 
Fig. 2: Geometry (not to scale) of a four-dipole symmetric magnetic chicane, and particles’ motion through it for 
the case of bunch-length compression. See context for the meaning of symbols. 

In accelerator physics, the evolution of particle 6D coordinates through an arbitrary beam line is 
commonly depicted through the matrix formalism [12], i.e., each element of the beam line is depicted 
through a matrix whose terms depend on the element’s parameters and geometry. A beam line made of 
consecutive elements is represented by a matrix that is the ordered product of the individual ones. Thus, 
the dependence of a particle’s z-coordinate at the exit of the chicane on its momentum deviation can be 
written as ( )f i 56z z Rδ δ= + , with R56 the chicane matrix element. We now calculate R56 looking at the 
particle longitudinal slippage ∆z = zf – zi, through the chicane, for the geometry shown in Fig. 2, and 
assuming once more ultra-relativistic particles. 

We neglect for the moment the length of dipole magnets with respect to other lengths of the 
chicane involved. The path length of an off-momentum particle through the chicane is

2
1

cos
2 LLsz +=
θ

, 

and the one of the on-momentum particle
2

0

1
0, cos

2 LLsz +=
θ

. Their path-length difference, i.e. the 

longitudinal slippage of the off-momentum particle w.r.t. the on-momentum one, at the exit of chicane, 
is 

 ( ) ( )
( )

( )

( )

2 2 4 2 4
,0 1 1 0 1 0 2

0

2 4 2
1 0

1 1 12 1
cos cos 1

2 ,  .

z zs s s L L o L o

L o

θ θ θ θ θ
θ θ δ

θ δ θ δ

  
∆ = − = − ≅ − + = − − +  

+    

≅ − +

 (10) 

Equation (10) tells us that 2
0156 2 θ

δ
LzR −≅

∆
= for 10 <<θ ; namely, at first order inδ  the bunch-length 

shortening is quadratic with the dipoles’ bending angle, and does not depend on the drift length in 
between the inner dipoles (in that region, particles are travelling on parallel trajectories at the same 
velocity, and therefore they do not slip one with respect to the others). When the path length in non-
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zero-length dipoles is included, we find 2
56 0 1 d

22
3

R L lθ  ≅ − + 
 

. More accurate expressions can be found 

in the literature [13]. 

There is an intrinsic connection between R56 and the energy-dispersion function (henceforth, 
simply dispersion), which we explicit below. Let us introduce the ‘momentum compaction’ factor of a 
dispersive beam line, i.e., the particle’s relative variation of path length per relative momentum 

deviation, 0
c

L Lα
δ

∆
≡ . In a dipole magnet we have ( ) 0000 θθθ xRxRL ∆≅−∆+=∆ for

( ) 00 →−=∆ θθθ , with R0 the curvature radius of the on-momentum particle, and ∆x the lateral 
distance in the bending plane of the off-momentum particle from the reference trajectory. Hence, we 

obtain c
0

1 x
R

α
δ
∆

≅ . For R56 we find 

 ( ) ( ) ( )
( ) ( )

( )56 c 0 56 c
0 0 0

' '1' d ' d ' d '
' '

s s s
xx s sz LR L R s s s s s

R s R s
η

α α
δ δ δ

∆∆ ∆
= ≅ = → = = =∫ ∫ ∫  , (11) 

where we have retained a generic dependence of the bending radius on the s-coordinate, and we used 
the definition of dispersion function introduced above. Equation (11) holds for an arbitrary beam line, 
and it shows that longitudinal slippage of particles only happens in the presence of curvature, i.e., inside 
dipole magnets. At the same time, manipulation of the dispersion function in between consecutive 
dipoles (e.g., through a suitable distance between dipoles of a chicane, or with additional quadrupole 
magnets in between them) allows R56 of the system to be tuned.  

We finally point out that if particles are not in the ultra-relativistic regime, i.e., their longitudinal 
velocity varies with their longitudinal momentum, then an effective particles’ slippage also happens in 
a drift section. It can be shown that the drift section is characterized by a matrix element: 

 ,0 ,0 0
56 0 2 2

,0 0 0

z zz

z z z

p LzR L L
p

ββ
δ β γ β γ

∆∆
= = −∆ = − = −

∆ ∆
 , (11a) 

where the suffix ‘0’ refers to the reference particle. At low beam energies, this term may become 
important. If applied to a chicane, L0 refers to the path length through the whole line. 

5 Bunch-length linear compression factor 
We now consider a particle motion in the chicane of Fig. 2. We differentiate the particle longitudinal 
slippage, evaluated through the whole chicane, and keep only terms to first order in the particle 
coordinates (linear approximation): 

 

( )

unc
f i 56 i 56 i 56 56

0 0 i 0

i i 56 56 unc i 56 unc

dd 1 d ( )d d d d d 1
d

d 1 d  .

EE E zz z R z R z R R
E E z E

z h R R z C R

δ

δ δ

 
= + ≅ + = + + 

 
= + + ≡ +

 (12) 

In Eq. (12), E0 is the electron beam mean energy at the compressor and δ is the energy deviation relative 
to E0. We have split the particle energy deviation into two terms, one for the energy deviation correlated 
with z, which translates into the initial linear energy chirp hi, and the other one for the initial uncorrelated 
energy deviation, uncδ . Equation (12) defines the linear compression factor ( ) 1

56i1 −+= RhC . It is worth 
noticing that ∞→C for 56 i1R h= − . However, even in that limit, the actual bunch length is finite and 
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reaches the minimum rms value ,min 56 ,uncz R δσ σ=  by virtue of a non-zero uncδ . Thus, ‘full’ compression 
at higher beam energies would result in shorter minimum bunch lengths. With accepted convention, the 
chicane geometry in Fig. 2 provides R56 < 0, and therefore the bunch length is shortened if hi > 0, namely 
if the bunch head has a lower energy than the bunch tail. If a non-linear energy chirp is present (E 
depends on z at higher orders in z), we expect hi(z) to vary along the bunch, and so will C. 

The uncorrelated energy spread plays an important role in the build up of the FEL instability, and 
for this reason it is convenient to point out its evolution during the compression process. In practical 
situations the linearly correlated energy spread is controlled through a proper setting of the linac RF 
phase. Quadratic and cubic components may require more sophisticated beam manipulations – such as 
acceleration through higher harmonic RF frequency structures or shaping the bunch current profile – 
which are not considered at the moment.  

We write down the total relative energy spread of a generic particle as the sum of an uncorrelated 
term ( uδ ) and a z-correlated term ( cδ ), the latter being the beam energy chirp times the particle z-
position. The total energy spread is assumed constant through the chicane (only magnetic fields are 
involved, and no frictional forces), and the final bunch length is expressed as a function of the initial 
one through the definition of C given above: 

 ( )2 2i
tot u,i c,i u,i i i u,f f f u,f i 56 u,i... ,  .zh z h z Ch R o z

C
δ δ δ δ δ δ δ δ∆ = + = + ∆ ≡ + ∆ = = + + + ∆ 

 
 (13) 

By equating the third and the last terms of Eq. (13), and then passing to the rms value of the quantities 
involved, we find ( )22 2 2 2

u,f u,i i 56 u,i1 Ch R Cσ σ σ= − = , i.e., the uncorrelated energy spread is increased by 
the same factor C by which the bunch length is shortened. This result is often referred to as ‘preservation 
of longitudinal emittance’ because, when the energy chirp is removed (virtually or in reality) from the 
phase space, the longitudinal emittance is just the product of bunch length and uncorrelated energy 
spread. The product is constant, in fact, in the approximation of linear motion and absence of frictional 
forces. An illustration of the preservation of the longitudinal emittance for ‘undercompressed’, ‘fully 
compressed’ and ‘overcompressed’ beams is given in Fig. 3.  

 
Fig. 3: Sketch of beam longitudinal phase space (ellipses) before (grey shadow) and after (blue) a magnetic 
chicane. Following accepted convention, R56 < 0 and bunch head is at z < 0; therefore, a positive chirp hi at the 
entrance of the chicane (bunch head at lower energy) leads to bunch shortening. The ‘undercompression’ scenario 
on the left is the prevalent mode of operation of FEL linac drivers. When hi = –1/R56, the longitudinal phase space 
at the chicane exit is upright (plot at centre), and the bunch length lb reaches its minimum value as set by the 
uncorrelated energy spread uδ . If hi > 0 but R56 is so negative that 1+ R56 hi < 0, then the bunch head and tail flip 
their longitudinal positions, and the energy chirp at the chicane exit has changed its sign. This is the case of 
‘overcompression’ (right-hand plot), in which the bunch surpasses the point of ‘full compression’, and therefore 
the final bunch length is longer than its minimum value. In the absence of frictional forces (collective effects), the 
total energy spread totδ  is constant through the chicane, as well as the beam longitudinal emittance, represented 
by the area of the ellipses. 
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6 Bunch-length compression at second order and linearization 
Quadratic and even cubic components of the energy chirp, as anticipated above, may play an important 
role in the compression process, as C is no longer constant through the bunch, and different longitudinal 
portions of the bunch (slices) may be compressed in a different manner. Such a dynamics would imply 
that the current profile before compression (e.g., uniform, parabolic, Gaussian, etc.) is not preserved by 
the compression process. The situation is additionally deteriorated by a higher order dispersion function 
that translates into a higher order momentum compaction (T566 term at second order, U5666 at third order 
etc). In order to evaluate such a non-linear dynamics, we start expanding the expression for the energy 
gained by a generic particle in an RF linac to second order in z. For illustration, we ignore at this stage 
the second-order momentum compaction in the chicane. As already done for Eq. (8), we find  

 

 ( )2 2 30
1 i 0 rf 0 rf rfcos sin cos

2
e VE E e V e V kz k z o zφ φ φ∆

≅ + ∆ − ∆ − +  . (14) 

The second-order term in z of Eq. (14) can be cancelled by means of an additional RF component, but 
with different RF wavenumber: 
 

 
( )

( )
2 1 H H H

2 2 3H
1 H H H H H H H

cos

cos sin cos  .
2

E E e V k z
e VE e V e V k z k z o z

φ

φ φ φ

= + ∆ +

∆
≅ + ∆ − ∆ − +

 (15) 

By comparing Eqs. (14) and (15), we find that the quadratic term generated by the additional 
structure(s) has to be positive, i.e., Hcosφ < 0  (say, Hφ π= ) and therefore the zeroth-order term from 

the additional linac is decelerating the beam. The new linac voltage has to satisfy
2

H 0 rf2
H

coskV V
k

φ∆ = ∆ . 

Thus, compensation of the second-order energy chirp (‘RF curvature’) and net beam acceleration can 
only be achieved simultaneously if the RF wavenumber of the additional linac (often named ‘linearizer’) 
is larger than the one of the baseline accelerator. The scaling of the linearizer peak voltage with the 
wavenumber favours this approach, as long as the ratio of wavenumbers is 1/3 or smaller. For example, 
a baseline RF linac running in the S-band 3 GHz RF and providing 200 MeV energy gain, can be 
supplied by an additional X-band 12 GHz RF structure with peak voltage at ∼15 MV level.  

As anticipated above, we have so far ignored the non-linear z-motion of particles through the 
chicane, which is depicted by ( ) 2

f i 56 566z z R Tδ δ δ= + + up to second order. In a more complete 
analysis, the energy deviation in this expression combines with the expression for the energy chirp up 
to second order. In this more general and realistic case, linearization does not apply to the longitudinal 
phase space at the entrance of the chicane only, but to the compression process as a whole, through the 
RF linac and the chicane. As a result of cancellation of all second-order terms in the particles’ dynamics, 
we expect that the current profile at the exit of the chicane resembles the one at its entrance, just squeezed 
in the z-coordinate. It can be shown [14] that cancellation of all the second-order terms for the special 

case Hcos 1φ = −  implies 0566
2

56 =+ TabR , with 0
rf

i

sine Va
E

φ
∆

= −  and 
2 2

0 rf H H

i

cos
2

e V k e V kb
E
φ∆ + ∆

= − . 

By imposing that the beam mean energy at the chicane, EBC, and the final bunch length do not 
change w.r.t. the case of purely linear motion, and additionally ignoring the contribution of the 
uncorrelated energy spread to the final bunch length, we find the necessary peak voltage of the harmonic 
cavity [14]: 
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 ( )
3

566
H BC i322 2

H 56

1 2 11 1
1

Te V E E
k Ck k R

    ∆ = + − −   −      
 . (16) 

Figure 4 shows beam longitudinal phase-space and peak-current profiles simulated with the 1D 
tracking code LiTrack [15] up to second order, in the first stage of the FERMI FEL linac. The linac 
upstream the four-dipole chicane is set at 26 deg S-band far from the crest. With no X-band cavity, the 
RF curvature leads to a current spike in the bunch head, and to a ramped current profile at much lower 
level. A uniform current profile is recovered with an X-band cavity voltage of –15 MV. 

Although Eq. (16) is valid for a one-stage compression only, the dependence of the linearizer 
peak voltage on the RF wavenumber is the same for multistage compression schemes. Moreover, when 
two chicanes or more are adopted, the peak-voltage setting of the linearizer does not vary much because 
after the first chicane, at lower energy, the bunch is shorter and less vulnerable to RF curvature [16]. A 
semi-analytical treatment of linearization of the compression process through RF cavities in the presence 
of higher order beam dynamics and single-bunch collective effects (e.g., short-range geometric wake 
fields [17]) can be found in Ref. [18]. 

    

 
Fig. 4: Longitudinal phase space (top row) and current profile (bottom row) of a 700 pC charge bunch injected 
into the S-band FERMI FEL linac at 97 MeV (left). Centre plots are for the beam after magnetic compression in 
a four-dipole chicane, with no linearizer included. Right-hand plots are for the same beam when an X-band cavity 
in the upstream linac is set to –15 MV, for linearization of the compression process. Simulations were done with 
LiTrack code and up to second order. 

Compensation of third-order terms is also possible by running the linearizer off-crest. However, 
the third-order energy chirp is commonly generated in the beam injector by space-charge forces (at 
energies typically lower than 5 MeV for photocathode RF injectors), and is of a sign [19] that is difficult 
to cancel without also partially cancelling the linear energy chirp necessary for compression, resulting 
in either inefficient acceleration or insufficient compression factor.  

Alternative methods for the linearization of the compression process include passive dielectric-
lined insertions or magnetic elements. In the former case, an optimum longitudinal voltage loss over the 
length of the bunch can be provided in order to compensate both the second-order RF time curvature 
and the second-order momentum compaction term [20]. Removal of second-order non-linearities in the 
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longitudinal phase space through optical elements is typically dealt with by sextupole magnets [21–23]. 
Sextupoles introduce a quadratic dependence of the particle path-length difference on energy deviation 
through an effective T566 term that, if supplied with the appropriate sign, ‘stretches’ the curvature in 
phase space. This mechanism is illustrated in Fig. 5. However, if the beam has to enter the undulator 
chain for lasing, tight tolerances on the final beam transverse emittance make the sextupole correction 
in a four-dipole chicane less attractive due to possible high-order magnetic aberrations. Moreover, the 
use of a higher-harmonic RF field does not introduce coupling between longitudinal and transverse 
phase-space coordinates, unlike optical manipulation of R56 and T566 terms does. For this reason, to date 
most of the FEL facilities have chosen to linearize the magnetic compression process with up-frequency 
RF structures. In principle, sextupole-induced aberrations can be counteracted with a suitable betatron 
phase advance between those magnets. This approach, however, implies a more sophisticated design of 
the chicane [24] or a different magnetic insertion [25]. 

It is worth noticing that a larger T566 term, such as the one provided by a multistage compression 
scheme, may be helpful in the reduction of the quadratic energy chirp induced by longitudinal geometric 
wake fields excited in small-iris accelerating structures [2]. The multistage compression, however, tends 
to amplify the so-called microbunching instability, which implies a finally increased energy spread and 
modulated current profile, as discussed in the next chapter.  

 
Fig. 5: Linearization of longitudinal phase space with T566 transport matrix element provided, e.g., by a sextupole 
magnet installed in a dispersive region. (1) RF curvature imprints  second-order non-linearity onto the phase space 
(‘RF curvature’). (2) Linear energy chirp is imparted to the beam with off-crest acceleration upstream of a chicane. 
(3) Beam passes through a sextupole magnet in the middle of the chicane, and it is time-compressed at the chicane 
exit. (4) Linear chirp is removed with (opposite) off-crest phasing in a linac downstream of the chicane. 

Most common geometries of magnetic insertions for bunch-length compression are shown in Fig. 
6. C-shape symmetric chicanes are very common because they allow remote control of the bending 
angle through a translation stage of the inner dipoles, for a tuning of the compression factor and balance 
of momentum compaction vs. coherent synchrotron radiation (CSR) instability, which is discussed in 
the next chapter. The inner drift section does not contribute to the compression, but it offers room for 
hosting beam diagnostics and scrapers or masks for beam shaping. The chicane lateral arms may host 
weak quadrupole magnets for the correction of spurious dispersion function due to dipole magnet errors. 
Different geometries (S-shape, asymmetric tuneable C-shape and double C-shape) of the chicane have 
been explored in order to minimize the impact of CSR emission on the beam emittance. 

In symmetric C-shape geometries, all dipoles provide the same bending angle. For any given
2

56 0 1 d
22
3

R L lθ  ≅ − + 
 

 (see Section 4 for notation), we have T566 ≅ –1.5 × R56, U5666 ≅ 2 × R56. For 

compactness, the inner dipoles can be collapsed to one magnet with double bending angle than the outer 

S. DI MITRI

374



ones. In S-shape geometries, the inner dipoles provide a bending angle larger than the outer ones. 
Quadrupole and sextupole magnets can interleave dipole magnets. 

Arcs usually provide an R56 term with sign opposite to that of four-dipole chicanes, and are a natural 
choice for compression in recirculating machines, such as energy-recovery linacs. They may offer the 
chance of accommodating sextupole magnets for the linearization of the compression process, with a 
phase advance suitable for the cancellation of geometric and chromatic aberrations (the latter ones 
commonly dominate because of the relatively large relative energy spread required for compression). 
However, additional constraints on the linear optics functions in the bending plane are required in the 
arcs in order to minimize or cancel the otherwise CSR-induced projected emittance growth [26]. An arc 
composed of Nc fodo cells (focusing and defocusing quadrupoles alternate, interleaved by identical 
dipoles), with betatron phase advance µx per cell in the bending plane, and extending over a total length 

Larc, is characterized by
2
0 arc

56 2 2
c4 sin ( 2)x

LR
N

θ
µ

≅  ; with no sextupoles included, T566 ≈ 2 × R56 or larger. A 

dog-leg can be built with two consecutive arc-fodos. For the simplest two-dipole symmetric geometry, 
the dog-leg features 2

56 0 d 3R lθ≅ . A series of double- or multibend achromatic cells can be used to build 
up an arc of arbitrary bending angle. In a periodic arc made of Nc identical symmetric double-bend 
achromatic cells, 2

56 c 0 d2R N lθ≅ . 

    
 

 

            
 

 
Fig. 6: Most common geometries (not to scale) of magnetic insertions for bunch-length compression. From top, 
left to right: C-shape, S-shape and double C-shape chicanes; bottom, arc-fodo, dog-leg-fodo and double-bend 
achromatic cells.  

7 Jitter of bunch arrival time and compression factor 
FELs usually require tight control of the electron-beam arrival time at the undulator. The shot-to-shot 
reproducibility of the arrival time of consecutive electron bunches, henceforth named ‘arrival time jitter’ 
(ATJ), is of great importance for multishot experiments. On the single-pulse basis, it is even more 
important for FELs driven by an external laser (externally seeded FELs), in order to ensure synchronism 
between the laser and the electron bunch. The requirement of small ATJ is particularly stringent when 
the electron bunch is longitudinally compressed to sub-ps durations, in order for the jitter to be (much) 
smaller than the bunch duration. Following Ref. [27], we introduce a model for the ATJ in the presence 
of magnetic compression in a four-dipole chicane, like the one sketched in Fig. 2. The error sources 
contributing to the ATJ we consider are: photo-injector laser arrival time on the cathode, jitter of phases 
and voltages of the RF linac and fluctuations of the compressor’s dipole field, as may be produced by 
fluctuations of the power converters.  
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We adopt the bunch centroid as the reference particle. Its final time coordinate in the laboratory 

frame is f i
l Lt t
c

∆ +
= + , where ti is the reference initial arrival time, L is the straight trajectory length 

through the chicane (zero bending angle) and ∆l is the path-length difference between the beam 
trajectory through the chicane with dipoles turned on and the straight trajectory. If θ << 1, one finds [13]

256Rl −≅∆ . The ATJ after the beam has passed through an RF linac and one chicane is 
 

 
( ) ( ) ( )

( ) ( )
f i i

56 56 56
i

56

d d d d d d

d d d d d  ,i

l l
c t c t l c t E B

E B
l l R R Rc t dE B c t E B

E R B E B
θ θ

θ θ

∂ ∆ ∂ ∆
= + ∆ = + +

∂ ∂
∂ ∆ ∂ ∆ ∂∂ ∂

= + + ≅ + −
∂ ∂ ∂ ∂ ∂

 (17) 

where E is the beam mean energy at the chicane and B is the dipoles’ magnetic field. The last equality 
makes use of the expressions for the dipole length d sinl R θ=  and of the curvature radius ( ).R E eBc=

The differential of the beam energy w.r.t. the variation of the peak voltage, RF phase and arrival time at 
the linac entrance, is rf id cos d sin d sin dE e V eV ecVk tφ φ φ φ= − − . Substituting it into Eq. (17), and 
also introducing the linear compression factor C (see Eq. (12)), we obtain 
 

 

56 rf
f i i

56i

sincos sin dd d d d d

d cos sin dd d  .

R eVckeV Bt t e V t
c E E E B

Rt eV Be V
C c E E B

φφ φ φ

φ φ φ

 ≅ + − − − 
 

 = + − − 
 

 (18) 

We now move from the single-particle picture in Eq. (18) to the rms value of the ATJ, where all 
the jitter sources are assumed to be small and independent perturbations to the particles’ motion: 
 

 
2 2 2 22 2

t,i2 256
t,f

cos sin  .V BR eV eV
C c E V E Bφ

σ σ σφ φσ σ
           ≅ + + +           
            

 (19) 

If no additional dispersive insertions are foreseen between the chicane and the undulator, the ATJ at the 
exit of the chicane will be frozen up to the end of the beam line. Reduction of the ATJ at the entrance 
of the chicane by the compression factor is due to the fact that an earlier (later) arrival of the bunch 
centroid to the RF field in the upstream linac translates, e.g., to a lower (higher) energy at the chicane, 
and therefore to a shorter (longer) path length with respect to the reference trajectory.  

The linac peak voltage jitter maximally (minimally) contributes to the ATJ for the linac operated 
on crest (at zero crossing). For on-crest operation, the RF phase jitter term can usually be neglected as 
long as the bunch length is much shorter than the RF wavelength. This opposite behaviour of the two 
RF jitter sources as a function of the RF phase, suggests the possibility of choosing the RF linac phase 
in a way that, for any specified error budget, the ATJ is minimum [27]. Although quite an attractive 
option in principle, such an optimal linac configuration constrains the compression factor to some 
specific values or to a limited range, for any given setting of the magnetic chicane. In the case of 
multistage compression schemes, more RF settings are available that may simultaneously ensure the 
lowest ATJ for a design compression factor, energy spread and chicane bending angle. 

A jitter of the compression factor implies a jitter of the final bunch length or of the final peak 
current, for initially constant bunch length and bunch charge. Owing to the fact that the linac upstream 
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of the chicane is run off-crest in practical cases, the jitter of C is dominated by the RF phase jitter. We 
therefore differentiate the expression for C assuming that only the RF phase varies (namely, we neglect 
any variation of linac peak voltage and dipole field): 
 

 

( ) ( )

( )

( )
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sin1 1  ,
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 

∆ ∆ ∆
≅ − = −

≅ −

 (20) 

Equation (20) shows that the relative jitter of C is proportional to C itself and that, for any given RF 
phase jitter, it is maximum for the phase set at zero crossing. 

8 RF compression 
RF compression [28] refers to two techniques of bunch-length shortening that exploit the relative 
longitudinal slippage of low-energy electrons as induced by a suitable arrangement of the RF linac 
phase. In RF ‘ballistic bunching’, an energy chirp is imparted to the beam in a cavity run off-crest. If 
the beam energy is low enough (particles are not in the ultra-relativistic limit yet), a difference in 
longitudinal momentum translates into a difference in longitudinal velocities, and therefore in arrival 
time at a given position downstream of the cavity. In order for a ∼10 MeV bunch to be shortened by, 
say, a factor ∼5, a drift length of the order of ∼1 m or longer may be needed after the cavity. Bunch 
shortening happens if the bunch head is at lower energies than the bunch tail. Most of bunch shortening 
happens outside the cavity, and the energy–position correlation established in the cavity tends to be 
removed later in the drift section. However, the final longitudinal phase space usually shows strong non-
linearities as induced by both the RF curvature and space-charge forces, which are enhanced by the 
increased charge density [29].  

RF ‘velocity bunching’ differs from ballistic bunching in that the phase-space rotation happens 
inside an RF linac, still run off-crest, and the energy chirp is smoothly removed in the linac itself through 
electrons’ longitudinal slippage and acceleration. Similarly to the ballistic bunching, the minimum 
bunch length achievable with this technique is determined by the distortion of the final phase space 
induced by RF field nonlinearities and space-charge forces.  

In order to follow the longitudinal particle motion in the presence of RF compression, we assume 
the beam to be accelerated in a (series of) SW structure(s), which were introduced in Section 3. The 
evolution of the beam mean energy gain and the beam arrival time along the beam line is  
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 (21) 

where we introduced the ‘electron capture’ parameter ,0
2

e2
zeE

km c
α ≡ and the RF phase ϕ; the factor ‘2’ in

α disappears for TW structures. The physical meaning of such a normalized strength of the accelerating 
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field is that, for values larger than 1, the particle dynamics shows relativistic effects within one period 
of the RF wave.  

Following Ref. [30], we notice that dt (equivalent to beam phase) changes considerably near the 
cathode, where the electrons are still not or weakly relativistic. In that region s is small and we integrate 
Eq. (21) as follows:  
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−

∫ ∫
 (22) 

We now insert the upper expression of Eq. (22) in the lower one, to find an approximate 
expression for the beam phase. The latter will be inserted into Eq. (21) again to find a more accurate 
expression for the energy gain. Eventually, we find  
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 (23) 

The asymptotic value of the beam phase in Eq. (23) is for γ >> 1. Figure 7 shows particle trajectories in 
the longitudinal phase space as depicted by Eq. (23). In that example, acceleration is maximum for

2πϕ = . 

A rough estimation of the bunch length compression factor in the limit of high beam energy can 
be obtained by recalling that bunch-length shortening means also compression of an incoming time or 
phase jitter (see Section 7). We differentiate the phase expression in Eq. (23) and find 
 

 
1

0 0
2

0

d sin1  .
d 2 cos

C φ φ
φ α φ

−

∞

 
≈ = − 

 
 (24) 

For example, for 2=α and 30 πϕ = , C ≈ 10.  

Although neglected so far, the longitudinal particle dynamics at beam energies as low as 
considered in this section is intrinsically coupled to the transverse one by means of the repulsive 3D 
space-charge forces. In practical situations, the compression factor achieved through RF compression is 
limited by the tolerable transverse emittance dilution induced by space-charge forces. This effect can be 
mitigated by the application of external magnetic focusing, such as solenoidal fields, that counteract the 
particles’ repulsion (‘emittance compensation’) [31]. 
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Fig. 7: Phase-space apparent rotation in RF sinusoidal accelerating field, leading to bunch-length shortening for a 
bunch injected near the phase of zero crossing. Published in Ref. [29]. Copyright of American Physical Society. 
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