
Coherent Synchrotron Radiation and Microbunching Instability 

S. Di Mitri 
Elettra – Sincrotrone Trieste, Trieste, Italy 

Abstract 
Emission of coherent synchrotron radiation (CSR) in dipole magnets by ultra-
relativistic electron beams is treated. The CSR impact on beam energy 
distribution and transverse emittance is discussed, and methods for 
minimizing emittance growth are recalled. A qualitative explanation of the 
contribution of CSR to the microbunching instability is given. This instability 
is treated in some detail in the presence of longitudinal space-charge force and 
magnetic bunch-length compression. Special attention is given to the 
aforementioned collective effects such as for the production of high peak 
current bunches driving free-electron lasers. 
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1 Coherent synchrotron radiation 
The advent of sub-picosecond-long electron beams with very high brightness in ultra-violet (UV) and 
X-ray free-electron lasers (FELs) driven by radio-frequency linear accelerators (RF linacs) has raised 
the awareness of the accelerators community to the effect of coherent synchrotron radiation (CSR) 
emission on the beam energy distribution and transverse emittance (primarily in the bending plane). In 
fact, CSR is one of the limitations associated to magnetic bunch-length compression (see previous 
chapter) and to transport of short bunches in multibend lines. 

CSR is the low-frequency component (typically up to the THz frequency range) of 
electromagnetic radiation emitted by ultra-relativistic particles in dipole magnets, see Fig. 1.  

 
Fig. 1: Synchrotron radiation flux spectral distribution, emitted by the ~70 pC electron-bunch profile in the inset, 
through a dipole magnet, at the beam kinetic energy of 12.5 MeV. Courtesy of I.V. Bazarov. 
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Particles are there subject to centripetal acceleration according to the Lorentz force. Radiation 
emitted by particles accelerated perpendicularly to their velocity is called synchrotron radiation (SR). 
The low-frequency part of the SR spectrum is amplified w.r.t. the high-frequency one, by the fact that 
electrons in the bunch are confined to a length scale of the order of, or shorter than, the radiation 
wavelength. As a consequence, the electric field of radiation produced by individual electrons adds in 
phase. This gives rise to a total radiation intensity that is proportional to the number of electrons in the 
bunch squared. In contrast, at shorter wavelengths the radiation field adds incoherently, i.e., the total 
intensity goes linearly with the number of beam particles. For a typical ~100 pC bunch charge, the CSR 
intensity is amplified by a factor ~5 ´ 108 w.r.t. the incoherent component.  

The SR total power emitted in the fully incoherent and fully coherent regime in a dipole magnet 
of bending radius R is, respectively: 

  (1) 

with N the number of particles in the bunch, g the Lorentz factor for the beam mean energy, e the electron 
charge, c the light speed in vacuum and e0 the vacuum permittivity. The choice of beam energy and 
dipole radius typical of magnetic insertions in linac-driven FELs is a compromise between radiation 
effects and space-charge effects on the beam quality. As a result, SR is emitted in a regime of partial 
coherence in which the power of coherent emission is independent of beam energy (this happens for 
rms bunch lengths of the order of the characteristic SR wavelength ~ , and up to ~7 orders of 
magnitude longer wavelengths) [1]. In this case the total CSR power emitted by a Gaussian line-charge 
distribution moving along an arc is 

  (2) 

Equation (2) shows that CSR power is highest for shortest bunches. For example, a 70 pC charge 
bunch with 20 µm rms bunch length emits MeV/m energy per meter in a 2 m radius 
dipole. At the energy of 1 GeV, that corresponds to 0.03% loss of kinetic energy in a 1 m long magnet. 
This is comparable to the equivalent energy bandwidth of a UV or X-ray FEL [2]; thus, it is a significant 
amount of CSR power.  

Owing to particles’ curved path, radiation emitted by trailing particles in the bunch is allowed to 
catch up with leading particles within the dipole magnet (see Fig. 5 below). The primary impact of this 
tail–head CSR interaction [3] is a slice-by-slice change of longitudinal momentum. Such a change is in 
fact correlated with the z-coordinate internal to the bunch, and the z–E correlation length scale is of the 
order of the bunch length. Hence, particles in the same bunch slice, with a slice length much shorter 
than the bunch length, are subjected to the same longitudinal electric field. The change in particle energy 
in a dispersive region causes particles to deviate from their design trajectory. This accumulates into 
transverse offsets and angular divergence of bunch slices, by an amount of the order of 

where are the energy dispersion function and its longitudinal derivative, 
respectively, at the location of CSR emission, and  is the CSR-induced relative energy deviation. This 
slice-by-slice character is illustrated in Fig. 2. Assuming typical values in magnetic compressors 

m, rad and , the CSR power corresponds to transverse errors of the order 
of . These are comparable to typical unperturbed rms beam size and angular 
divergence. We see from such examples that it is essential to incorporate CSR in the design and 
optimization stage of a magnetic lattice.  
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Fig. 2. Top-view representation of longitudinal bunch slices. Passing through a dipole magnet and interacting with 
CSR, the slices change their mean energy and energy spread. Energy change in a dispersive region causes different 
slices to end up at different transverse positions and angular divergences. 

2 One-dimensional CSR model 
The tail-to-head effect depicted in the previous section relies on the finite time that photons take to travel 
on a straight path from the source particle to the witness particle, in the same bunch. The CSR physics 
can therefore be described by taking into account the field retardation effect, i.e., the relation between 
the position and time t at which a field is observed, and the retarded position  and time t’ at which 
this field is actually generated: . The electric field and the magnetic field at 

position and time t due to a point charge q in general motion with instantaneous velocity  

and acceleration , derived from the Liénard–Wiechert retarded potentials, are [4] 

                            (3) 

where . The first term of the electric field in Eq. (3) is commonly named ‘velocity’ 
or ‘Coulomb’ term; the second one, ‘acceleration’ or ‘radiation’ term. When the distance of an observer 
from the emission point (say, ³ 0.1 m or so) is much larger than the bunch length (say, £ 1 mm or so), 
the physical system of any source particle–witness particle is well aligned with the circular trajectory. 
For this reason, the one-dimensional (1D) approximation to the description of the CSR field can be 
applied when the transverse offset of particles from the reference orbit can be neglected. An estimation 
of the regime in which the 1D approximation applies, also named the ‘Derbenev criterion’, is obtained 
by demanding that the retarded bending angle in the 1D model is a good approximation of the actual 
retarded angle, as shown in Fig. 3. This brings us to the constraint [3], where 

the symbols refer to rms transverse beam size in the bending plane, bunch length, and dipole radius. It 
is worth mentioning that in some cases [5, 6] the 1D model was found to reproduce well experimental 
evidence of transverse and longitudinal CSR effects, even if k was approaching unity. 
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Fig. 3: CSR modelling in 1D approximation neglects the transverse offset of source and witness particles. The 
condition according to which leads to the so-called Derbenev criterion (see context for details). 

A rather common 1D CSR model implemented, e.g., in the elegant particle-tracking code [7, 

8] approximates the electron bunch by a line-charge density , where

 is the volume-charge density. The calculation of the retarded electromagnetic field due to

is done on a path given by an infinitely long drift, a circular arc with radius R and angle , and a 

drift with finite length. Since any change in during the CSR interaction is neglected, the system 
is said to be in the ‘frozen-beam’ approximation. Namely, it is assumed that the current profile during 
CSR emission is the same as during CSR interaction.  

The point-charge field in Eq. (3) can be used to directly calculate the electric field due to a whole 
charge distribution  by a Green’s function method, i.e., by considering as a collection of 

infinitesimal charges  and integrating (in practice, some mathematical elaborations are done in 
order to speed up this calculation). The result for the component of the (longitudinal) electric field 
tangent to the beam trajectory at the interaction point, for an observation point on the arc, turns out to 
be [9] 

 ,                   (4) 

where we introduced the electron–photon path-length difference or ‘slippage length’ 

over a circular arc of length . For beam energies of interest 

here, the term ~ can usually be neglected.  

The term in square bracket of Eq. (4) dominates at the entrance of the dipole magnet (‘entrance 
transient’ regime of CSR emission) and finds its origin in the Coulomb term of Eq. (3). The integral 
dominates as becomes large (‘steady-state’ regime of CSR emission), and is mostly due to the radiation 
term in Eq. (3). The entrance transient effect is opposite in sign to that of the bulk contribution. It 
describes the physical picture in which some head particles are inside the magnet, but they do not interact 
with CSR because tail particles still lie outside the magnet (and therefore are not radiating yet). In 
elegant, an infinitely long drift section is always assumed at the magnet entrance. This implies that, 
by using the full expression of Eq. (4), the global CSR effect might be underestimated if the drift section 
between two consecutive dipoles is shorter than the characteristic formation length
[10]. Mostly depending on beam energy, LEN can be as long as ~0.1 m to ~10 m.  
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When both leading and trailing particles are inside the magnet, CSR interaction can be described 
in the steady-state regime. Formally, we are allowed to do this if emission happens at wavelengths 
comparable to bunch length, and much longer than the characteristic wavelength of incoherent 

synchrotron radiation (ISR), . Moreover, the bunch has to be short enough to allow 

photons emitted by trailing particles through the dipole to overcome leading particles. In short, we 
assume that [9], with lb the characteristic bunch length. The last inequality also means 
that the magnet has to be longer than the characteristic distance from the magnet entrance at which 

transition to the steady state takes place, i.e., . Equivalently, the transient effect at the 

dipole entrance extends to approximately an angle , and it can be ignored w.r.t. the 
steady-state emission as long as the retarded bending angle  [9]. Finally, propagation of CSR 
field through a drift section following the magnet enhances the global CSR effect, where the field is 
usually assumed to decay exponentially or so with the drift length [10].  

In summary, Eq. (4) relies on the following approximations: 

i) electrons are ultra-relativistic; 

ii) transverse offsets of bunch particles from the reference orbit are neglected; 

iii) the charge-density distribution rigidly moves along the curved path; 

iv) the CSR field only influences particles ahead of emitters, i.e., radiation emitted backward is 
neglected; 

v) the separation angle between the source particle and the witness particle is << 1; 

vi) the CSR effect is assumed to be purely longitudinal, i.e., only the longitudinal component of the 
emitted electric field at any point tangent to the witness particle’s orbit is responsible for change 
of its longitudinal momentum. Transverse electric field components, as well as magnetic field 
components, are all neglected. 

 As already mentioned, CSR physics relies on the CSR slippage length (it is documented that the 
classical expression for sL was already known to Ipparco in ancient Greece around 100 B.C.), i.e., on 
the fact that photons travel straight, and doing so they catch up with electrons ahead of the source, which 
move on a curved path. Since angles involved are all assumed to be small, one may wonder if the angular 
divergence of CSR radiation is large enough to justify the tail-to-head interaction. Henceforth, we will 
discuss this point by limiting our attention to the steady-state regime.  

It is known that most of SR is emitted in the laboratory frame in the forward direction, tangent to 
the source orbit, and with rms value of field intensity at angular divergence , as shown in Fig. 

4, left-hand plot. For example, in a case with and rad, the characteristic angle of 
emission of ISR would not permit any tail-to-head interaction. Instead, CSR emitted at wavelengths 

shows an intensity field distribution with angular divergence , and 
approximately independent of beam energy (see Fig. 4, right-hand plot) [11]. As an example, a 10 µm 
long bunch bent in a 0.3 m long dipole by an angle of 0.1 rad at the energy of 300 MeV would emit ISR 
at nm with rms opening angle mrad. CSR would be emitted with a characteristic 
opening angle from 6 mrad up to several tens of mrad. Roughly speaking, the opening angle of CSR, 
evaluated at wavelengths equal to or longer than the bunch length, is large enough to be comparable to 
the dipole bending angle, and thereby to allow photons emitted by the bunch tail to catch up with the 
head, inside the dipole.  
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Fig. 4: Left-hand side: angular distribution of SR intensity emitted in a dipole magnet, in the moving frame of the 
electron and in the laboratory frame. Presented in Ref. [12]. Right-hand side: spectral dependence of SR opening 
angle in the bending plane. SR emitted forward at wavelengths  shows an intensity 

distribution approximately Gaussian with rms width . At wavelengths , 

. Published in Ref. [11]. 

A geometrical representation of the tail-to-head effect is given in Fig. 5, where the vectors for the 
electric field of Eq. (3) are shown. The source particle has a charge q and the witness particle is at point 
P. The electric field associated to the emitted radiation is orthogonal to the plane wave’s direction of 
propagation in free space. We aim to estimate the electric field component E//, parallel to the longitudinal 
velocity of the witness particle at P. We see that as long as , we can approximate the motion of q 
as if it had constant velocity, in both modulus and direction. In this case, the expression for the retarded 
field at P is as if it originated by a line-charge distribution at point D [4] (we are now considering the 
effect from a whole 1D bunch). Moreover, at large distances and high energies , only the 
‘radiation’ field term in Eq. (3) contributes at P (‘far-field’ approximation). Hence, we can write

. By substituting the expression of d (see Fig. 5) and of the CSR 

‘overtaking length’s (the slippage length for an arbitrary angle q within the dipole) into , and also 

noticing that , we find , in agreement with [3]. For a 

uniform line-charge distribution , and for a bunch sufficiently short so that CSR emitted by 
the bunch tail overtakes the bunch head before the bunch leaves the magnet, we find that the single-

particle energy loss per unit length is . This result can be extended to any 

line-charge distribution by introducing the steady-state CSR ‘wake’ or Green’s function [3]:  

                                          (5) 

Equation (5) is just the integral term introduced abruptly in Eq. (4). We remark that the total 
bunch energy loss is N times the single-particle one and therefore, as expected, the coherent emission 
shows an N2 dependence on the total field intensity. It is also important to stress out that the CSR-
induced energy loss does not depend on beam energy. Equation (5) suggests that the energy loss is 
enhanced by fast variations of l(z) (current spikes, fast rises of the current profile and current 
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modulation), so that along the bunch can be monotonic or an oscillating function of z, for 
example, depending on the shape of the bunch current profile.  

With the help of Eq. (5), we find for a Gaussian line-charge distribution: 

                                                     (6) 

for the single-particle energy loss, relative mean energy loss and rms relative energy spread, 
respectively. is the vacuum impedance and re the classical electron radius. For typical 

numbers in FEL linac drivers, and . 

 
Fig. 5: Geometrical representation of CSR electric field in the 1D steady-state regime of emission in a dipole 
magnet. Symbols refer to Eq. (3). See context for details. 

3 Transverse emittance growth 
The growth of beam emittance in the bending plane is treated assuming the steady-state 1D CSR model 
discussed above. The transverse charge distribution in phase space (x, x’) is characterized by its second-
order momenta, which are associated to the so-called Twiss parameters: 

; is the beam geometric emittance [13]. Particle motion 

is described as the linear superposition of betatron and dispersive coordinates [14]: 

                                      (7) 

Here is the relative change in longitudinal momentum due to, e.g., absorption of CSR radiation in a 
dipole magnet. In the presence of a single energy perturbation (‘kick’) at location s, the perturbed beam 
emittance becomes 
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  (8) 

If is due to uncorrelated events (e.g., ISR emission), the perturbed emittance results:

 (and an analogous integral of R26). The integral is always 

positive, that is, the emittance growth is a non-reversible process. On the contrary, if is correlated 

with bunch length, the perturbed emittance is (and 

analogously for R26). In the latter case, a magnetic lattice can be designed in a way that the integral 
evaluated over the whole beam path is minimized or made null [15–17]. This situation applies to CSR 
emission, whose induced energy loss along a Gaussian bunch is shown in Fig. 6, left-hand plot.  

We associate to each longitudinal bunch slice an average slice longitudinal momentum, and 
follow the slice centroid motion in (x, x’) as predicted by Eq. (7). As a consequence of change of 
longitudinal momentum in a dispersive region, each slice will start moving on a different dispersive 
trajectory, and the beam projected emittance will increase according to Eq. (8) (see Fig. 6, centre plot). 
Moreover, since Dx and Dx’ are correlated along the bunch, we have that  

and, given the single-kick approximation , with the rms 

relative energy spread induced by CSR, we rewrite Eq. (8) as follows: 

              (9) 

Equation (9) introduces the optics function , to be evaluated at the 

location of the CSR kick. It suggests that CSR-induced projected emittance growth can be minimized 
or even cancelled through a suitable design of H-function, for any given value of . It is worth 
noticing that, according to this picture, the slice emittance is not affected. 

         
Fig. 6: (Left-hand side) CSR-induced mean slice energy difference for a Gaussian line-charge density, time 
compressed in a four-dipole symmetric chicane. The result is shown at the entry to third dipole (red), the entry to 
fourth dipole (green) and the exit of fourth dipole (blue). Published in Ref. [18]. Copyright of American Physical 
Society. (Middle) Charge distribution in the horizontal phase space of a beam matched to some design phase-space 
ellipse (blue dots), and for a beam mismatched due to CSR-induced emittance dilution (red dots). Ellipses represent 
second-order momenta. Courtesy of P. Emma. (Right-hand side) H-function and CSR-induced projected emittance 
growth along the first bunch compressor chicane of FERMI FEL. Published in Ref. [19]. Copyright of Elsevier. 
All plots are simulation results. 
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The single-kick picture in Eq. (9) usually applies to a four-dipole magnetic chicane adopted for a 
bunch-length compressor, and henceforth named a BC (see previous chapter). The CSR effect is 
strongest for a shortest bunch (see Eq. (6)) and, since the bunch approaches its final length already at 
the exit of the third magnet of a BC, this usually leads to a dominant CSR contribution from the fourth 
dipole, as shown in Fig. 6, left- and right-hand plots. Now, if the beam is forced to a horizontal waist in 
the second half of the chicane, and the dipoles’ bending angle is small, it can be shown [19] that Eq. (9) 
reduces to . Thus, emittance growth can be minimized by small bending 

angle and small horizontal betatron function in proximity of the fourth dipole magnet [20]. 

The perturbed emittance at the exit of a multibend transport line, locally isochronous so that the 
beam has the same length at identical dipole magnets, can be expressed in the form

, with  at the location of the first CSR kick, 

and is a function of Twiss parameters and relative betatron phase advance at the 

location of all other kicks. The energy kicks all being identical in modulus, the beam-line optics can be 
designed in a way that consecutive transverse kicks eventually cancel [21]. A most common and simple 
set-up is the one of identical Twiss parameters and dispersion functions at identical dipole magnets 
separated by p phase advance [16]. Other designs with non-symmetric optics parameters and phase 
advance different from p are in principle allowed. Similarly, emittance growth in a non-isochronous 
multibend line, such as an arc compressor, can be minimized with a proper optics design, where the 
‘optimal’ Twiss functions now depend on the local compression factor [22, 23].  

As an alternative to CSR-immune optics designs, Eq. (5) suggests that a line-charge distribution 
could be suitably produced at the entrance of a BC in order to generate a uniform energy loss by CSR 
along the bunch. In this case there would be no relative misalignment of bunch slices in phase space, 
and therefore no projected emittance growth [18]. 

4 Three-dimensional CSR model and shielding 
A 3D CSR model is usually considered in numerical simulations whenever the Derbenev criterion 
largely fails. This may happen when a large relative energy spread or large dispersion function enlarges 
the beam size well above the betatron envelope, such as in the inner dipoles of a BC. Moreover, when 
the bunch is deflected, a longitudinal bunch slice does not stay perpendicular to the slice longitudinal 
momentum, but yaws with respect to it. In the former case, particles far from the beam axis, either 
belonging to the same slice or not, can sample a radial dependence of the CSR field. In the latter case, 
particles within the same slice can sample non-linearities of the longitudinal CSR field. In both cases, 
slice emittance growth may happen [1, 24]. Numerical predictions and experimental results suggest that 
these mechanisms may be playing a role already at relatively low compression factors, and affecting the 
slice normalized emittance at the level of ~0.1 µm rad [25, 26]. 

An additional complication to a CSR-dominated beam dynamics in a real lattice is provided by 
the shielding effect of the CSR field by the vacuum chamber [27]. In general, not all spectral components 
of CSR propagate in the chamber, and therefore the actual radiating energy is smaller than in a free-
space environment. An analytical recipe for evaluating the shielding effect of an infinite parallel plate 
chamber of total height h, in a dipole magnet of curvature radius R, is [28] 

                                      (10) 
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Here is the threshold harmonic number for propagating radiation, and is 

the characteristic harmonic number for a Gaussian longitudinal density distribution whose standard 
deviation is . The meaning of nc is that the spectral component of radiation with harmonic numbers 
beyond it is incoherent. A more immediate although less accurate recipe for evaluating the shielding 

effect says that CSR emission is suppressed if , where w is the vacuum chamber width [29]. 

In practice, it is difficult to shield CSR completely because, for example, a beam pipe diameter 
of £ 2 mm would be needed for ultra-relativistic sub-picosecond-long bunches. At such small gaps, 
resistive-wall wake field could become intolerable [30]. 

5 Microbunching instability 
Self-developing microstructures in the longitudinal phase space of electron bunches undergoing strong 
compression have been observed in several high-brightness FEL linac drivers. In accordance with 
experimental results, computer simulations of longitudinal space charge (LSC) force (longitudinal 
interparticle Coulomb interaction) [31] and CSR in bunch compressors show that a so-called 
microbunching instability (MBI) may significantly amplify small longitudinal density and energy 
modulations, and hence degrade the beam quality. In its simplest picture, MBI relies on the accumulation 
of energy modulation induced by initial non-uniformity of the charge distribution, such as due to 
electron beam intrinsic shot noise or non-uniformity of the photo-injector laser pulse, and on its 
successive transformation to an amplified density modulation through non-isochronous (R56 ¹ 0) 
dispersive insertions, as shown in Fig. 7  [32]. Amplified density modulations will further drive energy 
modulations at higher amplitudes, and thereby a positive feedback for the instability is established. The 
process repeats at downstream stages of acceleration and compression and, in spite of relatively high 
energies, the beam may eventually show strong density and energy modulations. Especially disrupting 
for an FEL, the beam will show large slice energy spread, at scales equal to or longer than the (shortest) 
modulation wavelength. The model assumes that density modulations induce energy modulations at the 
same wavelength(s). Moreover, the effects of LSC and of R56 are fully decoupled: energy modulation 
only happens in drift (linac) sections, while density modulation only changes through BCs. Of course, 
as the bunch length is compressed, the initial modulation wavelength is compressed by the same factor. 
At this stage of description, CSR is not needed. In fact, it amplifies the LSC-induced MBI with an 
analogous mechanism established in the BC. 

In order to estimate the spatial scale and beam energies at which LSC and therefore MBI becomes 
important, we consider a two-particle 1D beam model. The beam is assumed to be ultra-relativistic, with 
Lorentz mean energy factor . One particle is at bunch centre, and it represents the whole bunch 
charge Q. The other particle of charge q is at the very bunch head, and the two are separated by a distance 
l’b in the co-moving frame of the bunch. The longitudinal electric field sampled by q is

. In the laboratory frame, the two particles are separated by the Lorentz-contracted 

length lb = l’b/g, and the electric field sampled by q is . Thus, the LSC field 

is stronger at lower energies and at shorter scale lengths. The model also suggests that (leading) particles 
gain energy, while others (trailing) lose it, namely, an energy modulation builds up. The work 

done by the LSC field over a length L ~ 10 m becomes comparable to typical beam energies 
spread values at beam mean energies < 10 MeV, and at bunch length scales of the order of 1 mm. At 
higher beam energies, the LSC effect can only be important at wavelengths much shorter than the bunch 
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length, e.g., < 0.1 mm. In the following, we present a quantitative analytical treatment of MBI as induced 
by LSC, and compare it with other collective effects common to beam dynamics in FEL linac drivers. 

 
Fig. 7: Evolution (left-hand diagrams) of density (n) and energy modulation (d) along the bunch (z), evaluated at 
different locations of an RF linac plus BC beam line (sketched on the right-hand side; beam is at the yellow dot). 
MBI is assumed to be only driven by LSC in the linac section, and by R56 in the BC. Upper: beam at the linac 
entrance has a small density modulation, and is uniform in energy. Middle: passing through the linac, the initial 
density modulation induces an energy modulation at the same wavelength via LSC field. Bottom: beam has passed 
through the BC. The longitudinal phase space is sheared due to the non-zero R56 in the BC (ddisp, red curve), and 
the density modulation is amplified (ndisp, orange curve). For a direct comparison, the initial density and energy 
modulations are superimposed. 

6 Impedances 
Accumulation of energy modulation in straight sections is driven by LSC and, at longer wavelengths, 
by linac geometric wake fields [30]. Since MBI is commonly studied in the frequency domain, an energy 
modulation at wavenumber  can be evaluated as the integral of the LSC impedance ZLSC(k) 
over a drift length L, times the Fourier transform of the bunch peak current I [33]: 

 ,                          (11) 

is called the ‘bunching factor’, and its value is proportional to the density modulation amplitude 
relative to the average bunch current. For a line-charge distribution dominated by shot noise, the 

bunching in a bandwidth  can be written . The free-space LSC impedance per unit 

length, averaged over a Gaussian transverse distribution of rms sizes , is [34] 

 ,                                             (12) 

with , I1 and K1 being modified Bessel functions of the first kind and  

is the equivalent radius of a transverse uniform distribution with area [35]. ZLSC has a maximum for
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. It tends to underestimate the effect of 3D fluctuations of the electric field, which happens at 
[35], i.e., when the Lorentz-contracted wavelength of modulation becomes comparable to, or 

shorter, than the transverse beam size (‘pancake-beam’ scenario). In the strict 1D limit (‘pencil-beam’ 
scenario),  and, for x << 1, [36]. Analytical approximations for ZLSC 

in the presence of boundary conditions, for example as given by a perfectly conducting round vacuum 
chamber of given radius rp, are available in the literature [37]. They rarely apply to cases of interest here 
because they become important at relatively long wavelengths, . 

In a way analogous to Eq. (12), we introduce an impedance per unit length for the CSR 
longitudinal electric field in a dipole of curvature radius R [38, 39], and the longitudinal geometric 
impedance of an RF structure of inner iris radius a [40]: 

 ,                                       (13) 

The imaginary nature of an impedance implies a redistribution of the particles’ longitudinal momentum 
inside the bunch, with no net energy loss, as contrary to a real impedance. In Eq. (13), the RF geometric 
impedance is associated to a ‘wake function’ in a periodic structure (this is proportional to a longitudinal 

electric field in the time domain) , with s0 » 1 mm [30], and we considered 

the impedance behaviour at high frequencies. Figure 8 shows the spectral domain of each of the 
aforementioned impedances. The typical band of interest for the MBI is at initial wavelengths in the 
range 1–100 µm, which, after a compression factor in the range 10–100, fit characteristic scale lengths 
of UV and X-ray FEL dynamics, such as FEL co-operation length and undulator slippage length [2].  

 
Fig. 8: Spectral behaviour of the modulus of RF, CSR and LSC impedance per unit length, see Eqs. (12) and (13). 
ZRF is for an iris radius a = 10 mm. ZCSR is calculated for R = 5 m. ZLSC is calculated for a beam energy of 300 
MeV and rb = 400 µm. The shadow area on the left-hand side covers characteristic lengths of uncompressed 
electron bunches. The shadow area on the right-hand side highlights the typical band of interest for the MBI 
(wavelengths before compression). 
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7 Spectral gain 
Modulation wavelengths of interest for FELs are usually much shorter than the electron-bunch length 
(‘coasting beam’ approximation). Moreover, it has physical sense to require that density modulation 
amplitudes be much smaller than the average current (‘linear regime’ of the instability). When both 
these assumptions hold, the amplitude of the density modulation at each wavelength grows 
independently, and the strength of MBI is quantified by a spectral gain

[32]. 

We now want to estimate the MBI gain in a relatively simple system, e.g. a straight section 
followed by a BC. Let us assume that the instability starts from a monochromatic sinusoidal modulation 
of the beam-current profile, , with A the relative modulation amplitude (the 

same logic and formalism applies to the case of initial energy modulation). According to Eq. (11), an 

energy modulation  is accumulated over a 

distance L. As the beam travels with a correlated energy spread dc or, equivalently, a linear energy chirp 
hi through the BC, the generic particle’s longitudinal coordinate follows

(see previous chapter).  

We will make use of the differential form to find the final 

line-charge density: . This expression is valid at 

first order in  and having introduced the linear compression factor . We are now 
able to write down the expression for the MBI gain as a function of the initial modulation wavenumber: 

 . (14) 

Owing to the fact that any real beam has a non-zero uncorrelated relative energy spread , 
particles belonging to the same bunch slice will travel through the BC along different path lengths 
because of their energy difference. The MBI gain is partially suppressed by those additional particles’ 
longitudinal slippage. The particles’ motion being uncorrelated, this process is called energy or 
longitudinal Landau damping, and it tends to exponentially smear energy and density modulations at 
relatively short wavelengths. With  defined at the entrance of the BC, the MBI gain after a linac 
plus BC section becomes [36]: 

.               (15) 

One can see that for ZLSC(k) approximately constant in amplitude over a wide range of k, the 
gain is peaked at the wavelength that satisfies . ZLSC(k) being a broadband impedance (see 
Fig. 8), this result is approximately true in general. Owing to the fact that the gain is exponentially 
suppressed by  at short wavelengths, we find a natural cut-off of the MBI gain at . If 
the dispersive line is isochronous, and MBI is only driven by LSC in the linac, we do not expect any 
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gain, because particles’ position inside the bunch would be the same at the entrance and at the exit of 
the BC.  

It is worth pointing out that the gain in Eq. (15) is independent of initial modulation amplitudes. 
In other words, the final bunching factor is assumed to be dominated by the energy-to-density 
transformation that happens in the BC, and the contribution of the very initial bunching to the final 
bunching is neglected. This is the so-called ‘high-gain’ approximation. A representative LSC-induced 
spectral gain is shown in Fig. 9, left-hand plot, evaluated under all the approximations discussed so far. 

If the MBI gain is relatively small, it may have physical sense to include the initial bunching 
into its expression [41]. Instead, if the linear regime of development of MBI is not satisfied (in our 
derivation of Eq. (14), that regime essentially corresponds to a Taylor expansion of at first order in

), an analytical prediction of the final gain could become a difficult task. In fact, a non-linear theory 
of MBI is still an open field of research [42]. For example, the linear regime may or may not apply to 
the case of weak compression, multistage compression schemes or to multibend lines. In a two-stage 
compression, the approximation of linear gain still holds through the second BC only if the bunching 
factor at the entrance of it is small, , as well as the induced energy modulation, 

. The total gain of the beam line can in that case be estimated as the product 

of individual gains at the two BCs: . Depending on beam and machine parameters, those 
conditions may not happen, and the total gain can largely exceed the product of individual gains. In 
general, the presence of numerous dipoles, such as in arcs or multibend transport lines, leads to multiple 
stages of amplification of the MBI, whose gain evaluation requires numerical methods.  

An expression for the amplification of initial energy modulation amplitudes equivalent to Eq. (15) 
can be obtained as well. Here, we prefer to point out that, once the final energy modulation amplitude 
is computed (see Eq. (11)), an upper limit for the growth of beam uncorrelated energy spread due to 
MBI is given by the assumption that the whole modulation translates into energy spread. Such a limit is 
obtained by integrating the final energy modulation amplitude over all frequency components [43]: 

                                            (16) 

with nz the line-charge density in m–1. 

The CSR contribution to MBI in compressors of FEL linac drivers is typically weaker than the 
one from LSC, because the effect of the latter one is summed over much longer distances. As the lattice 
starts being dominated by dipole magnets, however, such as in recirculating accelerators, the 
contribution to the gain from ZCSR may become comparable to, if not greater than, the one from ZLSC. In 
general, the CSR effect reinforces, if not drives, MBI [44]. This is because the CSR field modulates 
particles in energy inside dipole magnets, and the dispersion function translates energy modulations into 
density ones. A positive feedback for the instability, as already depicted for the LSC field, is therefore 
established inside the dispersive insertion [8].  

At the same time, since the CSR instability couples transverse and longitudinal motion of 
particles, we should also consider that particles belonging to the same bunch slice but moving with 
different betatron amplitudes, as in a beam with non-zero horizontal geometrical emittance e0, will 
follow different path lengths. Thus, beam emittance causes some damping of the CSR-induced MBI in 
a way analogous to energy-Landau damping induced by . It can be shown [19] that in order for the 
rms path-length difference to generate smearing of MBI at a wavenumber k, beam emittance and optics 
functions at the entrance of the dipole of interest must satisfy 
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                                                                (17) 

The H-function can be related to R51 and R52 transport matrix terms of an arbitrary beam line. If we do 
so for a BC, and if some relevant CSR gain is generated in the third and fourth dipoles of it (we could 
expect that because the beam is shorter, and therefore the CSR field stronger, in the second half of the 
BC), transverse Landau damping has to be calculated by means of matrix terms that propagate particles’ 
coordinates from the third dipole to the exit of the BC. We would therefore obtain an expression for the 
gain similar to that in Eq. (15), but now also dependent on ZCSR, and including an additional transverse 
damping term describing suppression of the final bunching [45]: 

     (18) 

In Eq. (18), beam motion is assumed to start at coordinate s = 0, and the matrix terms have to be 
calculated at position s > 0; are Twiss parameters at s = 0. A representative 1D CSR-induced 
spectral gain is shown in Fig. 9 – left and right, including the effect of energy- and emittance-Landau 
damping. We stress that since R51 = R52 = 0 through a whole four-dipole chicane, there is no net 
transverse damping of MBI induced by an upstream ZLSC, unless we consider a collective effect (ZCSR) 
taking place inside the chicane.   

    
Fig. 9: (Left-hand side) MBI spectral gain induced by LSC after an RF linac section and a BC in the LCLS beam 
line, as a function of the initial modulation wavelength. Published in Ref. [36]. Copyright of American Physical 
Society. (Right-hand side) MBI spectral gain induced by CSR from a 6 kA peak current bunch in a BC at 5 GeV 
and R56 = –25 mm. Beam initial uncorrelated energy spread and normalized horizontal emittance are: (1)

, ; (2) , ; (3) , 

; (4) , . Published in Ref. [46]. 

8 Laser heater 
Equation (18) illustrates the two mechanisms discussed so far for suppression of MBI gain, i.e., energy- 
and emittance-Landau damping. Owing to the fact that, in FEL linac drivers, MBI is usually dominated 
by LSC, the main setting for gain suppression is to increase the beam initial uncorrelated relative energy 
spread. Typical energy spread values for high-brightness beams generated in RF photo-injectors are
» 1–3 keV [47], and the associated peak gain in long FEL drivers may be as high as 102–104. It was 
demonstrated in existing facilities that by increasing to 10–40 keV rms level at the beam energy of 
~100 MeV, the total peak gain can be lowered by a factor of up to 102, and the FEL intensity is increased 
by a factor of up to 3 [48, 49]. Doing so, however, the final beam uncorrelated energy spread is increased 
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too, by approximately , where C is the total compression factor, the natural 

relative energy spread at the injector exit and sd,LH the relative energy spread added to the beam. For an 
FEL, we shall still require  [2]. 

A ‘laser heater’ (LH) was proposed [50], and is now in operation or in design stages at several 
FEL facilities, in order to generate sd,LH in a controlled manner. Basically, a resonant interaction of 
electron bunches with an external infrared (IR) laser in a short undulator induces rapid energy 
modulation at the laser frequency. If the undulator is installed in the middle of a small chicane, the 
chicane geometry and the beam-line optics can be designed in a way that the IR modulation eventually 
washes out, and transforms into purely uncorrelated energy spread for Landau-damping purposes. 
Typically, the electron beam is forced to a waist in the undulator, so that the beam angular divergence 
is large. Then the transport through the second half of the chicane allows smearing of the IR modulation 
if . Due to beam interaction with electromagnetic radiation in a dispersive section, beam 

emittance is also affected and its growth can be estimated at the level of , with 

optical parameters evaluated at the undulator location. 

For a plane-polarized undulator with strength parameter K (see previous chapter) and length Lu, 
the relative energy spread induced by a LH is approximately [48] 

 ,                                                     (19) 

where sx, sy are rms electron beam sizes at the undulator, GW, is the 
undulator length, given by the number of undulator periods times the period length, 

are Bessel functions of argument  and PL is the required 

laser peak power. Equation (19) is valid in the limit that the laser Rayleigh length is much longer than 
the undulator: , with w0 twice the laser rms transverse size at the undulator. This 
ensures that the laser cross-section does not vary substantially along the undulator due to radiation 
diffraction.  

Figure 10 shows the slice energy spread of a beam compressed in a two-BC scheme in the FERMI 
linac, measured at the beam energy of 1.2 GeV, as a function of the energy spread induced by a LH at 
0.1 GeV (approximately 150 m upstream) [49]. For large heating levels, MBI is suppressed and the final 
energy spread is linearly proportional to the initial value.  The constant of proportionality reflects the 
total compression factor C = 7, by virtue of the preservation of the longitudinal emittance (see previous 
chapter). For small heating levels, MBI ‘wins’ and the final energy spread is dominated by the instability 
gain. In this case, the final energy spread has a non-linear dependence on the initial value. In between 
the two regions, an optimum for the FERMI FEL is found that allows us to mitigate MBI while achieving 
a minimum slice energy spread at the linac end. The measurement was found to be in agreement with 
numerical predictions [51]. 
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Fig. 10: Slice energy spread of a 500 pC charge bunch, compressed by a total factor of 7 in a two-BC scheme at 
the FERMI FEL, and measured at the energy of 1.2 GeV, as a function of the energy spread added by the LH at 
the energy of 0.1 GeV. Published in Ref. [49]. Copyright of American Physical Society. 

9 Recent trends 
Analytical modelling of MBI may become challenging when complicated beam lines are considered, 
and when some of the approximations depicted so far do not apply any more. Several codes are available 
for a numerical computation of the instability gain and of its effect on the beam energy spread, each 
code having its own weak and strong points. One of the major issues related to particle-in-cell codes is 
the one of avoiding numerical sampling noise generated by tracking (macro)particles, which are often 
treated in populations a few orders of magnitude smaller than the real number of beam particles. For 
MBI driven by shot noise, the final bunching (see Section 6), with N the real 

number of electrons per modulation wavelength l. By tracking a number of particles , we tend 

to overestimate the total gain by a factor [32]. Attempts to overcome this issue include filtering 
techniques, preparation of ‘quiet’ initial distributions, tracking the real number of particles, and 
development of algorithms intrinsically noise-free. 

Present paths of research in physics of particle accelerators include practical ways to suppress the 
MBI, either alternative or complementary to a LH. For example, machine designs that minimize the 
MBI gain with a suitable compression scheme, and techniques to enhance either energy or transverse 
Landau damping without affecting the final beam quality. A review of such works can be found in Ref. 
[19]. Recently, some focus has been given to multibend lattice designs able to simultaneously minimize 
CSR-induced projected emittance growth and CSR-induced MBI [52].  

Theoretical, numerical and experimental studies have pointed out the capability of a LH of 
improving the FEL intensity also as a function of transverse shaping of the LH photon pulse and, 
indirectly, of the electron beam energy distribution that results from the LH interaction [53]. The 
adoption of a LH is also opening the door to an optical shaping of the FEL pulse duration [54] and of 
its spectral content [55]. MBI itself has been used, on purpose and in a controlled manner, to enlarge the 
range of spectral features of a coherent light source [56, 57]. 
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