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Abstract
In this paper, we will report on the basic concepts of ultra-relativistic wake-
fields and their effects on particles while focusing; in this context, particularly
on particle accelerators. We will introduce the commonly used terminology,
and will derive and explain important quantities, such as the wake potential and
wake function, the impedance as the Fourier transform of the wake potential,
and loss parameters. To deepen knowledge on wake functions and potentials
further, we will illustrate the derived quantities using, as examples, the cylin-
drical cavity and a rectangular waveguide lined with dielectrics.
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1 Introduction
1.1 The term ‘wakefield’
Outside of accelerator physics, the term ‘wake’ is mostly known from fluid dynamics, referring to the
wave pattern behind an object moving in a liquid (e.g., a ship moving in water). This also comes to mind
first if the term is used in everyday language.

In accelerator physics, the word ‘wakefield’ has a different meaning, as it describes an electro-
magnetic effect created by charged particles (see next paragraph). However, it is not completely wrong
to think of the wakefield as a certain field pattern that follows a charged particle, as water waves follow
a ship.

Wakefields, in the context of accelerator physics, are generated by a charged particle that travels
through a metallic vacuum chamber. The self-field of an ultra-relativistic particle ends perpendicular to
the highly conductive walls. On the surface of the walls, image charges are created (electric polarization),
which turn into the sources of new fields and act back on the particle. In a metallic vacuum chamber
without any geometric variation, the image charges travel together with the ultra-relativistic particle.
Any geometric variation forces the field lines to bend, since they still need to stay perpendicular to
the conductive walls. Then, some parts of the fields (and the energy stored therein) stay behind and
consequently trail behind the particle. These fields are denoted wakefields. If a second particle follows
the first closely enough, it will still see the wakefields of the first particle and interact with them. In
a bunch of charged particles, the trailing particles of the bunch will see the wakefields of the leading
particles and interact with them.

Figure 1 illustrates this process. A Gaussian pulse enters a so-called pillbox cavity. A pillbox
cavity consists of a cylindrical cavity resonator with round openings that are attached to the beam pipe.
The beam axis equals the symmetry axis of the pillbox cavity. At the transitions between the cylindrical
cavity and the beam pipes, the diameter of the vacuum chamber changes so that a wakefield can be
generated—a figurative description would say that part of the self-field of the bunch is ‘stripped off’ by
the geometric changes in the structure. The wakefield remains in the structure and oscillates for some
time after the bunch has left. A second particle bunch that traverses the structure would consequently be
influenced by the generated wakefield. The pillbox cavity used in Fig. 1 has a radius of R = 5 cm and a
length of R = 10 cm and will be used in examples throughout this paper as a model pillbox.
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Fig. 1: Electric field lines of a Gaussian pulse travelling through the model pillbox cavity (R = 5 cm, g = 10 cm),
calculated using the CST STUDIO SUITE® [1]: (a) while entering the structure; (b) leaving the cavity; (c) leaving
the structure; (d) after leaving. It can be seen that a part of the electric field remains in the structure even after the
bunch has left.

The word ‘wakefield’ is usually understood as a general term. More specifically, we speak about
‘wake potentials’, when considering the wakefield behind a particle bunch, and ‘wake functions’, when
the wakefield behind a point charge is considered. These expressions will be explained in more detail in
subsequent sections.

This report follows the lines of Ref. [2]. For further reading on wakefields and linear accelerators,
please refer to Refs. [3–5].

1.2 Basic concepts of ultra-relativistic wakefields
To understand the underlying principles of wakefields, we first need to understand what happens to a
point charge q that moves in free space with a velocity close to the speed of light, v ≈ c.

Owing to the Lorentz contraction, the electromagnetic field of the electron will be shrunk to a thin
disk perpendicular to its moving direction. The opening angle of the field travelling with the particle
is given by 1/

√
1− β2 = 1/γ with the factor β = v/c. If the velocity approaches the speed of light,

the thickness of the disk shrinks further, to a δ-distribution (see Fig. 2). This field is strictly radial, i.e.,
there are no components of the field behind or in front of the charge, which is also a consequence of the
principle of causality. Accordingly, in this case, there can be no wakefield behind the electron in free
space.

To actually achieve a field and a force behind the field-generating charge, additional mechanisms
are required. For example, the image charges and fields created on the waveguide walls are only
synchronous with the fields generating them if the walls are perfectly conducting. In resistive or im-
perfectly conducting walls, the image fields will trail behind the field-generating charge. Other possi-
bilities include obstacles in the beam pipe, e.g., geometric variations (cf. Fig. 1), from which the fields
are scattered. Another possibility is to introduce dielectric walls because the speed of light will be lower
here than in a vacuum. This means that the fields are ‘slowed down’, in the sense that travelling waves
in these media will have a lower phase velocity and thus trail behind the generating fields.

2 Basic definitions
In the following, we will consider a field-generating charge q1, which is located at the three-dimensional
coordinate r. First, we want to examine the electromagnetic force that this field-generating charge exerts
on a test charge q2 that moves at the speed of light along the z-axis, v = cez . This force is simply the
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Lorentz force,
F (r, t) = q2 (E (r, t) + cez ×B (r, t)) . (1)

We introduce a new variable for the distance between q2 and q1 (see Fig. 3), so that

s = ct− z ,

and
F (s, t) = F (x, y, z = ct− s, t) .

The net momentum change δp of the test charge due to the Lorentz force will then be

δp ∼
∫

F (s, t) dt . (2)

Fig. 2: Radial electric field of an electron
moving at the speed of light, contracted
to a disc.

Fig. 3: Field-generating and test charges in a pillbox cavity. The
grey dots represent the possibility of a particle bunch generating
the wakefield instead of a single charge.

2.1 The wake potential
The concept of wake potentials is related to the concept of the momentum change on a test charge,
described before. Consider the situation described in Fig. 3: a pillbox cavity with its transitions between
the cylindrical cavity and the beam pipes introduces a radial change of the vacuum chamber and thus
wakefields can be generated. Additionally, both charges are assumed to have a transverse offset r1 from
the centre of the beam pipe, while the movement is still parallel to the z-axis. In cylindrical coordinates,
the described situation is as shown in Fig. 3. For this case, the three-dimensional wake potential is
defined as

W (r1, s) =
1

q1

∞∫

−∞

[E (r1, z, t) + cez ×B (r1, z, t)]t=(z+s)/c dz , (3)

which is basically an integral over the Lorentz force evaluated on the beam axis and normalized to the
field-generating charge. Additionally, time is substituted with t = z + s/c. The momentum change of
the test charge is related to this via

δp = q1q2W(s) . (4)

Usually, the wake potential is separated into the longitudinal wake potential and the transverse wake
potential.

For the longitudinal wake potential, the projection of the Lorentz force onto the z-axis is used:

W (r1, s) · ez =
1

q1

∞∫

−∞

[E (r1, z, t) · ez + c (ez ×B (r1, z, t)) · ez]t=(z+s)/c dz .
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Here, the second term vanishes because ez · (ez ×B (r1, z, t)) = 0. The longitudinal component of the
wake potential is thus only dependent on the electric field:

W|| (r1, s) =
1

q1

∞∫

−∞

Ez

(
r1, z,

z + s

c

)
dz . (5)

Consequently, the transverse wake potential is only dependent on the transverse components of
the electric and magnetic field:

W⊥ (r1, s) =
1

q1

∞∫

−∞

[E⊥ (r1, z, t) + cez ×B⊥ (r1, z, t)]t=(z+s)/c dz . (6)

Both wake potentials are dependent on the distance s between the field-generating charges and the test
charge. This distance is measured in the negative longitudinal direction (see Fig. 3). This means that
a negative distance s corresponds to the case in which the test charge is in front of the field-generating
charges. Owing to the principle of causality, in this case there can be no wake potential. Consequently,
this means that:

W|| (r1, s) = 0 for s < 0, and (7)

W⊥ (r1, s) = 0 for s < 0 . (8)

Example wake potentials of Gaussian pulses inside a pillbox cavity are shown in Figs. 4 and 5.

Fig. 4: Longitudinal wake potentials of Gaussian pulses
with different pulse width σ inside the model pillbox
cavity, computed using CST STUDIO SUITE ® [1].

Fig. 5: Transverse wake potential of a Gaussian pulse
of width σ = 2.5 cm inside the model pillbox cavity,
computed using CST STUDIO SUITE ®. Note that the
transverse wake potential is several orders of magnitude
weaker than the longitudinal wake potential of the same
pulse, displayed in Fig. 4.

2.2 The Panofsky–Wenzel theorem
The Panofsky–Wenzel theorem connects the longitudinal and transverse wake potentials via

W⊥ (x, y, s) = −∇⊥
s∫

−∞

W||
(
x, y, s

′
)

ds
′
. (9)
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Therefore, in principle, knowledge of only the longitudinal component of the wake potential is enough,
since the transverse component can be constructed from it.

In the following, we want to briefly sketch the proof of this theorem.

We start with the transverse wake potential from Eq. (6). Its derivative with respect to s is

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞



∂

c∂t
E⊥ (r1, z, t)

︸ ︷︷ ︸
T1

+ ez ×
∂

∂t
B⊥ (r1, z, t)

︸ ︷︷ ︸
T2



t=(z+s)/c

dz , (10)

where we used s = ct− z and ∂s = c∂t.

Now we want to replace T1 and T2 with more convenient expressions. For term T1, we need the
total derivative of the transverse electric field with respect to z. Using s = ct− z this reads as

d

dz
E⊥

(
r1, z,

z + s

c

)
=

(
∂

∂z
+

1

c

∂

∂t

)
E⊥

(
r1, z,

z + s

c

)
,

where d/dz is the total differential with respect to z. We reformulate T1 in Eq. (10) as

1

c

∂

∂t
E⊥

(
r1, z,

z + s

c

)
=

(
d

dz
− ∂

∂z

)
E⊥

(
r1, z,

z + s

c

)
. (11)

For term T2, we start with Faraday’s law of induction,

∇×E (r, t) = − ∂

∂t
B (r, t) .

Computing the cross product of this equation with the beam axis leads to

ez ×
∂

∂t
B (r, t) = −ez × (∇×E (r, t)) =

∂

∂z
E⊥(r, t)−∇⊥Ez (r, t) . (12)

Inserting Eqs. (11) and (12) into Eq. (10) results in

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞

(
d

dz
− ∂

∂z

)
E⊥

(
r1, z,

z + s

c

)

+

(
∂

∂z
E⊥

(
r1, z,

z + s

c

)
−∇⊥Ez

(
r1, z,

z + s

c

))
dz .

We reformulate this as

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞

d

dz
E⊥

(
r1, z,

z + s

c

)
−∇⊥Ez

(
r1, z,

z + s

c

)
dz .

We assume perfect electric conductor boundary conditions at the waveguide walls so that the tangential
electric field vanishes there. This simplifies Eq. (10) to

∂

∂s
W⊥ (r1, s) = − 1

q1

∞∫

−∞

∇⊥Ez
(
r1, z,

z + s

c

)
dz ,

which is equivalent to
∂

∂s
W⊥ (r1, s) = −∇⊥W|| (r1, s) .

Integrating the last statement over s leads to Eq. (9).
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2.3 The fundamental theorem of beam loading
This section follows the lines of Ref. [5].

Up to this point, we only defined wakefields for s > 0. For s < 0, we concluded from the principle
of causality that there can be no wakefield, and thus W (r1, s) = 0.

We now want to consider the case of s = 0, which we had excluded before. For this, we will
first look at a different example situation: two particles with equal charge q and a distance of a half
wavelength, λ/2, between them are moving along the same axis, at the same speed. The first charge
enters a previously empty cavity with no internal electric fields or stored energy (see Fig. 6). The charge
will induce surface charges, electric fields, and voltages in the cavity,

Vi = −
∫

C
Edl ,

where the voltage is defined as a line integral over the electric field along a closed path C.

We will refer to this induced voltage as −Vi. This induced voltage is left in the cavity, even after
the first charge left. From the law of energy conservation, we also infer that energy must be left behind
in the cavity. However, the first charge will also ‘see’ a fraction a of its own induced voltage while in the
cavity,

V1 = −aVi .
This corresponds to an energy loss of the first particle,

∆W1 = qV1 = −qaVi .
Thus, with the first particle in the cavity, the net cavity voltage is Vc = −Vi, while the stored energy U
will be proportional to this voltage squared, U ∝ V 2

i . This situation is shown in Fig. 7.

When the second particle arrives in the cavity, the voltage induced by the first particle will have
changed phase by π, owing to the distance between the two particles. Thus, the induced voltage from
particle 1 is now +Vi. The second particle, however, will also induce a voltage in the cavity of −Vi. The
net cavity voltage will be

Vc = +Vi − Vi = 0 .

Particle 2 will also lose energy according to

∆W2 = qVi︸︷︷︸
from particle 1

− qaVi︸︷︷︸
from own induced voltage

.

Since the net energy of the cavity must remain 0, the energy changes of particle 1 and 2 have to compen-
sate each other (see Fig. 8),

∆W1 + ∆W2 = 0 ,

qVi − qaVi − qaVi = 0 .

This leads directly to

a =
1

2
.

From this, we can directly derive the fundamental theorem of beam loading: a moving charge will
experience (or ‘see’) half of its own induced voltage.

For the case of the wake potential, this implies that, for s = 0, when the field-generating and test
charges are virtually at the same place, the wake potential must be multiplied by 1/2. Thus, the final
definition of the longitudinal wake potential is:

W|| (r1, s) =
1

q1

∞∫

−∞

Ez

(
r1, z,

z + s

c

)
dz





0 for s < 0
1
2 for s = 0

1 for s > 0

. (13)
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Fig. 6: Two charges separated by
a distance λ/2 travelling along the
same beam axis at the same speed
are about to enter a previously
empty elliptic cavity.

Fig. 7: The first charge has tra-
versed the cavity and induced an
image voltage of−Vi in the cavity.

Fig. 8: Both charges have left the
cavity. The total energy change in
the cavity is 0, while both charges
have lost energy, owing to the im-
age fields they experienced. From
this, the proportionality factor a
can be calculated.

3 Impedances and loss parameters
3.1 Wakefields and impedances
The impedance is a physical quantity closely related to the wake potential by the Fourier transform:

Z|| (x, y, ω) =
1

c

∞∫

−∞

W|| (x, y, s) exp
(
−i
ω

c
s
)

ds . (14)

Physically, the impedance and the wake potential describe one and the same effect; namely, the coupling
between the beam and its environment. In contrast with the wake potential, which is described in the time
domain, the impedance is described in the frequency domain. The impedance corresponds to a frequency
spectrum that shows which of the structure’s eigenmodes couple with the beam. The amplitude of the
impedance in the frequency spectrum can also indicate the mode’s coupling strength.

For more information on impedances, see Ref. [2].

3.2 Loss parameters
In the following, we want to have a closer look at the coupling strength of eigenmodes.

In general, it is possible to expand any physical quantity into a complete set of orthonormal func-
tions. While in theory, any complete set of orthonormal functions will suffice, the choice of a suitable set
of functions will usually decrease the effort for such an expansion while simultaneously increasing the
numerical accuracy. For waveguide structures, the eigenmodes of the structure represent a suitable set of
functions into which other fields can be expanded, e.g., the electric and magnetic field. This is often done
if a straightforward solution of Maxwell’s equation to obtain these fields directly is either very difficult
or outright impossible.

In this case, let us assume that we expand the electric field inside an arbitrary cavity or waveguide
into a set of this structure’s spatial eigenmodes En (r),

E (r, t) =

∞∑

n=0

χn (t)En (r) . (15)

This expansion is analytically correct as long as the upper limit of the summation is infinity. Of course,
this is not feasible for practical use. For the moment, however, it shall be sufficient to note that if the
summation is ceased after a finite number of terms, the expansion will be a mere approximation of the
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analytically correct result, and that the quality of the approximation strongly depends on the number of
expansion functions used.

From the spatial electric fields, the energy stored in each of these eigenmodes can be computed
according to

Un =
ε0
2

∫
|En (r)|2 d3r . (16)

A point charge moving at c along the beam axis will experience a voltage drop (per mode) of

Vn =

∞∫

−∞

Ez,n (z) exp
(

i
ωnz

c

)
dz, (17)

where ωn is the eigenfrequency of the mode.

The loss parameter kn of an eigenmode is defined using these two quantities,

kn =
|Vn|2
4Un

. (18)

It is independent of the phase and frequency of the eigenmode and represents the eigenmode’s coupling
strength to the beam and thus its contribution to the wakefield. Moreover, it describes how much energy
a point charge loses into a mode n by

∆Wn = q21kn .

Another useful aspect of the loss parameters is that they are closely related to the wakefield of a point
charge (called the wake function),

W||,0 =
∞∑

n=0

2kn cos
(ωns
c

)




0 for s < 0
1
2 for s = 0

1 for s > 0

. (19)

The wake function is a sum of the contributions from all modes, and can be calculated from just the
knowledge of the loss parameters and the eigenfrequencies of the modes. Its main merit is that it serves
as a Green’s function, i.e., the wake potentials of any arbitrary bunch shape can be derived from it by
convolution.

We assume a bunch with the shape function ψ (s), i.e., a normalized distribution of particles
measured relative to the field-generating particle. This bunch’s wake potential can be obtained from the
wake function via a convolution with the bunch shape function,

W||(s) =

∞∫

0

ψ
(
s− s′

)
W||,0

(
s
′
)

ds
′
. (20)

This relation makes the wake function a very versatile quantity. For simple geometries, it is possible
to calculate the eigenmodes, and thus the wake function, analytically. In general, there exist several
error sources, owing to the different kinds of approximation needed. First, there is truncation error in
the series expansion. Second, for customary accelerating cavities, it is usually necessary to compute the
eigenmodes numerically, thus introducing a numerical error. This can render the numerical determination
of the wake function infeasible in a number of cases. However, numerical software, as e.g., CST STUDIO
SUITE®, is able to compute the wake potential but not the wake function, as this would require modelling
of the idealized point charge. Such software directly computes the wake potential of the studied bunch
shape. Should the wake function be needed and not be available analytically, it is then often replaced
with the wake potential of a very short Gaussian bunch (since an infinitesimally short Gaussian pulse
would represent a point charge). Again, this is an approximation and can lead to systematic errors.
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Another quantity related to the wake potential and the bunch shape function is the total loss para-
meter of the bunch,

ktot =

∞∫

−∞

ψ (s)W|| (s) ds . (21)

The total loss parameter can give information about the total power lost due to wake potential, Ptot via

Ptot = Iqktot , (22)

where I denotes the electric current.

4 Example 1: cylindrical cavity
4.1 The eigenmodes
In this section, we want to examine the longitudinal wake potential inside a cylindrical cavity. We assume
that the cavity has a radius of R and a width of g, and that all the cavity walls are perfectly conducting.
For the sake of simplicity, we also assume that the point charge traverses the cavity on the z-axis so that
r1 = 0.

A pillbox cavity with beam pipes, as shown in Fig. 3, could also be regarded as such a cylindrical
structure below the cut-off frequencies of the interesting eigenmodes (a length of the beam pipes above
the attenuation length of these modes). For the rest of this subsection, though, we will restrict our
considerations to the ideal cylindrical cavity.

First, we regard the eigenmodes of the evacuated cavity. For this example, it is possible to obtain
an analytical expression for the eigenmodes by solving Maxwell’s equations inside the cavity (for a
harmonic time dependence, ρ = 0 and j = 0):

∇ ·E (r) = 0 , (23)

∇ ·B (r) = 0 , (24)

∇×E (r) = −iωB (r) , (25)

∇×B (r) = i
ω

c2
E (r) . (26)

Generally, two types of eigenmode can exist in cavities. Transverse electric (TE) modes do not exhibit an
electric field component in the longitudinal direction (in most cases, this means Ez = 0); for transverse
magnetic (TM) modes the magnetic field is zero in the longitudinal direction (Bz = 0). (The third
type, the transverse electromagnetic (TEM) mode, cannot exist in a cylindrical cavity. Its occurrences
are limited to geometries in which two isolated conductors exist, such as in coaxial cables, or to mode
considerations in structures that are not electrically conducting.) Since we want to determine the longi-
tudinal wakefield, which is an integral over the longitudinal electric field according to Eq. (5), we do not
need to consider TE modes for this purpose, since their electric field along the z-axis is zero. Therefore,
we will restrict our consideration to TM modes.

Choosing a vector potential A(r) and defining the magnetic field as its rotation,

B(r) = ∇×A(r) , (27)

automatically fulfils Eq. (24), since ∇ · B = ∇ · (∇×A) = 0. Additionally, since for all TM modes
Bz = 0, it is convenient to choose the vector potential parallel to the z-axis:

A(r) = A(r) ez . (28)

In this way, Eq. (27) automatically results in a magnetic field with Bz = 0.
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The dependence of the electric field on the vector potential can be determined by plugging Eq. (27)
into Eq. (25),

∇×E (r) = −iω∇×A (r) .

This means that, up to the gradient of a scalar potential φ, the electric field and the vector potential are
equivalent,

E (r) = −iω (A (r) +∇φ) . (29)

Inserting Eq. (27) into Eq. (26), and using fundamental vector algebra, yields:

∇×∇×A (r) = ∇ · (∇ ·A (r))−∇2A (r) = i
ω

c2
E (r) .

After we insert Eq. (29) into this equation, we can choose the gauge φ = c2

ω2∇ ·A,

∇ · (∇ ·A (r))−∇2A (r) =
ω2

c2
(A (r) +∇φ)

=
ω2

c2
A (r)− ω2

c2
∇ ·
(
c2

ω2
∇ ·A (r)

)
,

and eliminate two terms.

Introducing the wavenumber k2 = ω2/c2, this leads to the Helmholtz equation for the vector
potential,

∇2A (r) + k2A (r) = 0 . (30)

Since we chose the vector potential to be parallel to the z-axis and the Laplacian is a scalar operator, we
can simplify this equation to

∇2A (r) + k2A (r) = 0 .

It is convenient to work in cylindrical coordinates in this case. In cylindrical coordinates, the Helmholtz
equation reads

1

r

∂

∂r

(
r
∂

∂r

)
A (r, ϕ, z) +

1

r2
∂2

∂ϕ2
A (r, ϕ, z) +

∂2

∂z2
A (r, ϕ, z) = −k2A (r, ϕ, z) . (31)

To solve this equation, we employ a separation ansatz for A. We assume that A (r, ϕ, z) =
Ar (r)Aϕ (ϕ)Az (z). Using this ansatz and dividing by A (r, ϕ, z) leads to three separate equations:

1

r

∂

∂r

(
r
∂

∂r

)
Ar (r) = −k2rAr (r) , (32)

1

r2
∂2

∂ϕ2
Aϕ (ϕ) = −k2ϕAϕ (ϕ) , (33)

∂2

∂z2
Az (z) = −k2zAz (z) , (34)

together with the separation equation k2 = k2r + k2ϕ + k2z .

The solution of Eq. (34) can be expressed generally as a linear combination of sine and cosine
functions,

Az (z) = Cz,1 sin (kzz) + Cz,2 cos (kzz) . (35)

For the solution of Eq. (33), we want to reformulate the equation first,

∂2

∂ϕ2
Aϕ (ϕ) = − k2ϕr2︸︷︷︸

=m2

Aϕ (ϕ) .
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The solution of this equation, like the solution of Az , can be expressed as a linear combination of sine
and cosine functions. Moreover, because of the periodicity of the structure regarding the angle ϕ, the
condition Aϕ (ϕ) = Aϕ (ϕ+ 2π) must be met. From this, we can deduce that m has to be an integer.
Without any loss of generality, the origin can always be set such that either a sine or a cosine function is
sufficient to express Aϕ. Since the sine function would be zero for m = 0, we choose the cosine, so that

Aϕ (ϕ) = Cϕ cos (mϕ) , with m = 0, 1, 2, 3 . . . (36)

With these two solutions at hand, we now examine the radial equation, Eq. (32). Using the separation
equation to replace kr, it can be reformulated as

1

r

∂

∂r
Ar (r) +

∂2

∂r2
Ar (r) = −

(
k2 − k2z − k2ϕ

)
Ar (r) .

We now multiply the whole equation with r2 and substitute k2ϕ = m2/r2, so that

r2
∂2

∂r2
Ar (r) + r

∂

∂r
Ar (r) = −r2

(
k2 − k2z −

m2

r2

)
Ar (r) . (37)

The solutions of this equation are the so-called Bessel functions Zm. Accordingly, the solution can be
written as

Ar (r) = Zm

(
r
√
k2 − k2z

)
.

For a restricted area, like the cylindrical cavity, only the Bessel functions of the first kind, Jm, and the
Bessel functions of the second kind, Ym, must be considered. Since the functions of the second kind
diverge for r → 0, we can restrict the solution to the functions of the first kind,

Ar (r) = Jm (Kr) , (38)

where we introduce K =
√
k2 − k2z .

The complete solution for the vector potential A (r) is a product of Eqs. (38), (36), and (35):

A (r, ϕ, z) = CϕJm (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ez . (39)

The resulting components of the electric and magnetic field can be determined by employing the curl in
cylindrical coordinates and using Eqs. (27), (26), and (29):

Br (r, ϕ, z) =
1

r

∂

∂ϕ
A = −Cϕ

m

r
Jm (Kr) sin (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

Bϕ (r, ϕ, z) = − ∂

∂r
A = −CϕKJ

′
m (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

Er (r, ϕ, z) = i
c2

ω

∂

∂z
Bϕ = iCϕ

kzc
2

ω
KJ

′
m (Kr) cos (mϕ) (Cz,1 cos (kzz)− Cz,2 sin (kzz)) ,

Eϕ (r, ϕ, z) = −i
c2

ω

∂

∂z
Br = −iCϕ

kzc
2

ω

m

r
Jm (Kr) sin (mϕ) (Cz,1 cos (kzz)− Cz,2 sin (kzz)) ,

Ez (r, ϕ, z) = −i
c2

ω
K2A = −iCϕ

c2

ω
K2Jm (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

where we introduce the derivative of the Bessel function,

J
′
m =

d

d (Kr)
Jm (Kr) .
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To specify this intermediate solution, we also need to employ boundary conditions. We assumed that
the cavity is made of perfect electric conductor material, so that the tangential electric field components
vanish at the boundaries. In the radial direction, this means that Ez and Eϕ must be zero at the boundary
at r = R. Both components are proportional to Jm, so that we can deduce

Jm (Kr) = 0 , at r = R .

From this we can determine the eigenvalue K with

K =
jm,n
R

, (40)

with jm,n referring to the nth zero of the Bessel function Jm.

In the longitudinal direction, the perfect electric conductor condition means that Er and Eϕ must
be zero at the boundaries at z = 0 and z = g. Both components are proportional to the derivative of Az .
From this, we can deduce that:

d

dz
Az (z)

∣∣∣∣
z=0,z=g

= kz (Cz,1 cos (kzz)− Cz,2 sin (kzz))|z=0,z=g = 0 .

For z = 0, the sine term always vanishes. To meet the boundary condition, the cosine term must also
vanish, which can only be fulfilled if Cz,1 = 0. The second condition thus simplifies to

−kzCz,2 sin (kzg) = 0 ,

which is fulfilled for kz = pπ/g and integer mode numbers p.

With these specifications the field components can be finalized as:

Bm,n,p
r (r, ϕ, z) = −Cm

r
Jm

(
jm,n

r

R

)
sin (mϕ) cos

(
pπ
z

g

)
,

Bm,n,p
ϕ (r, ϕ, z) = −C jm,n

R
J

′
m

(
jm,n

r

R

)
cos (mϕ) cos

(
pπ
z

g

)
,

Em,n,pr (r, ϕ, z) = −iC
pπ

g

c2

ωm,n,p

jm,n
R

J
′
m

(
jm,n

r

R

)
cos (mϕ) sin

(
pπ
z

g

)
,

Em,n,pϕ (r, ϕ, z) = iC
pπ

g

c2

ωm,n,p

m

r
Jm

(
jm,n

r

R

)
sin (mϕ) sin

(
pπ
z

g

)
,

Em,n,pz (r, ϕ, z) = −iC
c2

ωm,n,p

(
jm,n
R

)2

Jm

(
jm,n

r

R

)
cos (mϕ) cos

(
pπ
z

g

)
, (41)

with the integer mode numbers m, n, and p and the normalization constant C = CϕCz,2. The eigen-
frequency of the modes is

ωm,n,p =

√(
jm,n
R

)2

+

(
pπ

g

)2

. (42)

For more information on the eigenmodes of cylindrical structures, see Ref. [6].

4.2 The loss parameters and the monopole wake function
We want to further limit our considerations to the so-called monopole modes, and the subsequent
monopole wake function. In the monopole case, the azimuthal mode number is zero, m = 0. The
resultant time-dependent field components of the TM modes are:

B0,n,p
r (r, ϕ, z, t) = 0 ,
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B0,n,p
ϕ (r, ϕ, z, t) = −C j0,n

R
J

′
0

(
j0,n

r

R

)
cos

(
pπ
z

g

)
exp (iω0,n,pt) ,

E0,n,p
r (r, ϕ, z, t) = −iC

pπ

g

c2

ω0,n,p

j0,n
R
J

′
0

(
j0,n

r

R

)
sin

(
pπ
z

g

)
exp (iω0,n,pt) ,

E0,n,p
ϕ (r, ϕ, z, t) = 0,

E0,n,p
z (r, ϕ, z, t) = −iC

c2

ω0,n,p

(
j0,n
R

)2

J0

(
j0,n

r

R

)
cos

(
pπ
z

g

)
exp (iω0,n,pt) , (43)

employing a harmonic time dependence.

To calculate the loss parameters, we first need to compute the voltage drop per mode,

V0,n,p =

g∫

0

E0,n,p
z

(
r = 0, z, t =

z

c

)
dz .

Inserting E0,n,p
z and evaluating the integral yields:

V0,n,p = Cc

(
1− (−1)p exp

(
iω0,n,pg

c

))
. (44)

We also need to know about the energy stored in each mode,

Un,p =
1

2µ0

R∫

0

2π∫

0

g∫

0

r
(
B0,n,p
ϕ

) (
B0,n,p
ϕ

)∗
dzdϕdr ,

which is equivalent to Eq. (16), since ε0
2

∫
|En (r)|2 d3r = 1

2µ0

∫
|Bn (r)|2 d3r. We useBϕ from Eq. (43)

and solve the integral to get

U0,n,p = C2
j20,nπg

4
J2
1 (j0,n) (1 + δ0,p) . (45)

Here, we made use of the properties of the Bessel function to substitute J
′
0 (x) = −J1 (x), and introduced

the Kronecker symbol, δ0,p, i.e., δ0,p = 1 if p = 0 and δ0,p = 0 otherwise.

With this, the loss parameters can be calculated via Eq. (18). For the cylindrical cavity, the loss
parameters of the monopole eigenmode identified by the radial and axial mode numbers n and p are:

k0,n,p =
1

πε0g

2

1 + δ0,p

1− (−1)p cos
(ω0,n,pg

c

)

j20,nJ
2
1 (j0,n)

. (46)

Figure 9 demonstrates the loss parameters of eigenmodes inside the given cylindrical cavity. The modes
are first distinguished by their radial mode number n and then plotted against their axial mode number
p. The graph shows that the loss parameters, and therefore the contribution strength of each mode to the
wake potential, strongly vary. The mode with the strongest contribution is the TM0,1,1-mode, visible in
the sharp peak displayed in the graph. It can be generally assumed that if we were to increase n even
further, the contributions of the modes (the so-called higher order modes) would further decrease.

From the loss parameters, the wake function can be calculated similarly to Eq. (19),

W||,0 (s) =
∞∑

n=1

∞∑

p=0

2k0,n,p cos
(ω0,n,ps

c

)
. (47)
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Fig. 9: Loss parameters of different monopole
modes, discriminated by their radial mode num-
ber n and plotted against their axial mode num-
ber p. It is clearly visible that the strengths of the
loss parameters, and thus their contributions to the
wake potential, vary. The TM0,1,1 mode shows
the strongest contribution of the displayed modes.

Fig. 10: Wake potential of a Gaussian pulse with
σ = 2.5 cm inside the exemplary pillbox cavity.
The dash-dotted line denotes the analytical result
for 110 considered modes; the dashed line for
420 modes. The solid line represents a numer-
ical approximation of the wake potential com-
puted with the software ECHO. All wake poten-
tials are in very good agreement. The bunch shape
function is plotted in red as a reference.

We now want to compute the wake potential of a Gaussian pulse. The bunch shape function of such a
pulse is:

ψ (s) =
1√

2πσ2
exp

(
−s− s0

2σ2

)
. (48)

Here, we assume that the Gaussian is centred on s0 = 0, and that the width is σ = 2.5 cm. We will test
the accuracy of the expansion for two different numbers of expansion functions, 110 (i.e., 1 ≤ n ≤ 10
and 0 ≤ p ≤ 10) and 420 modes (i.e., 1 ≤ n ≤ 20 and 0 ≤ p ≤ 20). The analytical results are compared
with a numerical result obtained using the software ECHO [7]; the comparison is shown in Fig. 10. The
results are in very good agreement; the difference in the accuracy of the analytical wake potentials is very
small. From this, we can conclude that the influence of the higher-order modes on the wake potential is,
indeed, comparatively small in this case, though still necessary to increase the accuracy of the analytical
approximation of the wake potential.

5 The effects of wakefields
5.1 Ultra-relativistic wakefields
As described before, wakefields that remain in cavities can have large effects on trailing particles and
bunches. Effectively, they represent energy modulations of the trailing particles—which can already hold
true for particles of the same bunch as the wakefield-generating particle. Generally, this phenomenon is
hardly predictable in complicated structures. These energy modulations can lead to an increase the
emittance of the particle bunch. Usually, this is unwanted since—as soon as the beam has reached its
design parameters—it might lead to beam instabilities if no measures are undertaken.

Nevertheless, there are certain cases in which the energy modulating effect of wake potentials
can be useful. Devices called wakefield dechirpers or wakefield silencers are simple, passive acceler-
ator components that are used to counteract the energy spreads of particle beams. Figure 11 compares
the effect of a wakefield on a beam with a strong energy spread with that on a beam with no energy
spread. In both cases, the modulation of the dechirper is represented by a linear energy gradient over
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the coordinate s (red line). One beam has a low initial energy spread (dashed line), and so, adding the
modulation of the wake potential, the resulting energy width after the wakefield is larger. The second
beam, however, has a strong initial energy spread opposing the modulation of the dechirper (solid line).
Here, applying the wake potential will effectively lower the total energy spread. This effect is currently
studied at accelerators all over the world. Section 6 describes the wake potentials in a suitable structure
in more detail.

Fig. 11: The energy modulation induced by a wakefield (red) acts on two different beams, one with initial energy
spread that is opposed to the modulation (black, solid line), one without (black, dashed line). Effectively, the
modulation is added to the phase space of the beams, so that, after the dechirper, the energy width of the initially
unchirped beam is increased, while the energy width of the chirped beam is reduced, owing to the interaction with
the wake potential.

5.2 Space charge wakefields
So far, we have only dealt with ultra-relativistic wakefields, which are limited to the case v ' c. For
v < c, space charge effects also play a role.

The reason for space charge effects are the Coulomb interactions of the charged particles, which
play a role for non-ultra-relativistic beams and need to be taken into account there for every type of
simulation or analytical consideration. Usually, these effects have an even larger influence on the trailing
particles than the wakefields themselves. The effects of space charges can include the deflection of
charged particles, the causing of beam instabilities, the generation of high (unwanted) field intensities,
which in turn can lead to material breakdown, etc.

However, space charge effects are not the subject of these considerations. Thus, the reader is
referred to Refs. [8] or [9] for more information.

6 Example 2: rectangular waveguide with dielectric linings
6.1 The eigenmodes
Figure 12 shows a rectangular waveguide with dielectric linings, which can be used as a wakefield
dechirper ( [10], [11]). The outer waveguide is made of a highly conductive material, e.g., copper or
aluminium. As discussed before, the phase velocity of electromagnetic waves is smaller in the dielectric
regions, which effectively slows down the image fields responsible for wake potentials, so that they can
act on trailing particles as well. For this section, we will assume an exemplary waveguide with the par-
ameters a = 5 cm, b = 1.3 cm, L = 30 cm; and dielectric coatings of a thickness b− d = 1.5 mm and a
relative permittivity, εr = 4.8.

As for the pillbox cavity considered before, the wake function is now analysed. First, it is required
to take a look at the eigenmodes of these structures. We will consider three-dimensional eigenmodes
here. In reality, this would be equivalent to the examination of a structure that is closed in all three
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dimensions. This is of course unrealistic—for the dechirper to work, it must be passed by a particle beam,
and consequently, the structure needs to be open in the z-direction. In this special case, however, owing
to the properties of the structure, the wake function resulting from the three-dimensional eigenmodes of
the close structure is identical to the wake function of the open structure.

Fig. 12: A rectangular waveguide lined with two dielectric plates (shaded), which can be used as a dechirper. The
outer waveguide is made of a highly conductive material. One or both plates (only the upper plate in the case
shown) can be left unconnected to the remaining waveguide, so that the distance between the dielectrics can be
adjusted.

The similarities between this dielectrically lined waveguide and an empty rectangular waveguide
without dielectrics become obvious when the structure is considered for the first time. It would make
sense if the eigenmodes reflect these similarities, i.e., if the eigenmodes are similar to TE and TM modes,
which are the eigenmodes of conventional empty rectangular waveguides. Indeed, the eigenmodes of the
lined waveguide are related to TE and TM modes and can be viewed as a superposition of them. This
new set of eigenmodes, however, needs to reflect the dielectrics, which can be effectively described as
a change in permittivity in one direction (the y-direction in this case). As a consequence, none of the
longitudinal components of the eigenmodes’ electric or magnetic fields is zero, as in the case of TE and
TM modes but one of the transverse components is (the y-component, in this case). These kinds of mode
are called longitudinal-section electric (LSE) modes (where Ey = 0) and longitudinal-section magnetic
(LSM) modes (where By = 0) [6].

Their electric and magnetic fields can be derived from Maxwell’s equations (assuming a harmonic
time dependence and ρ = 0,J = 0). However, the changing relative permittivity εr must be taken into
account, so that:

∇ ·D (r) = ε0∇ · (εr(y)E (r)) = 0 , (49)

∇ ·B (r) = 0 , (50)

∇×E (r) = −iωB (r) , (51)

∇×B (r) = i
ω

c20
εr(y)E (r) . (52)

Under the given circumstances, solution of these equations is analytically possible. In the x- and z-
directions, the solution procedure follows a similar line as the derivation of the eigenmodes in an empty
waveguide, since the phase velocity is the same everywhere in these directions. In the y- direction,
the changing permittivity makes a straightforward solution like this impossible, though. To obtain an
analytical expression for the eigenmodes, a Fourier expansion can be used to describe the unknown
behaviour in the y- direction. Reference [6] provides a detailed example of the solution procedure for
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the case of only one dielectric lining. The resulting electric fields (for two dielectric slabs) are

ELSE (r) = ωLSE




kz cos(kxx)
N∑
m=1

bm sin(kymy) sin(kzz)

0

−kx sin(kxx)
N∑
m=1

bm sin(kymy) cos(kzz)



,

for LSE modes and

ELSE (r) =
1

εr(y)




−kx cos(kxx)
N∑
m=0

bmkym sin(kymy) sin(kzz)

(
k2x + k2z

)
sin(kxx)

N∑
m=0

bm cos(kymy) sin(kzz)

−kz sin(kxx)
N∑
m=0

bmkym sin(kymy) cos(kzz)



,

for LSM modes. Here, kx, kym, and kz represent the eigenvalues in the x-, y-, and z- directions. Just as in
the case of the empty rectangular waveguide, all eigenvalues indicate the number of nodes or antinodes
of the sine and cosine functions in the fields, e.g., kx = nπ/a, with a being the structure’s width.
Consequently, kym = mπ/b and kz = lπ/L, with b being the structure’s height and L the structure’s
length. The index m also indicates the Fourier expansion; the expansion coefficients are qm. Note that
the summation is ceased after N terms, which makes the analytical expression an approximation of the
real result. N is usually determined in a convergence study.

6.2 The electric field and longitudinal wake potential
As a next step, we want to determine the longitudinal wake potential inside a dielectrically lined rect-
angular waveguide. To achieve this, we first compute the wake function, and subsequently the loss
parameters.

Until this point, we have determined the loss parameters using a relation between the stored energy
and voltage drop per mode. This time, we want to calculate the wake function by a straightforward
integration over the electric field. We still expand the electric field into a series of eigenmodes as shown
in Eq. (15). We carry out this summation over both LSE and LSM modes. The time-dependent expansion
coefficients are determined by solving Maxwell’s equations for a point charge moving along the beam
axis in the z-direction:

∇ ·D (r) = ε0∇ · (εr(y)E (r)) = ρ (r) , (53)

∇ ·B (r) = 0 , (54)

∇×E (r) = − ∂

∂t
B (r) , (55)

∇×B (r) = µ0j (r) + µ0εr(y)ε0
∂

∂t
E (r) . (56)

The beam axis goes straight through the centre of the waveguide, so through the point
(xbeam, ybeam) = (a/2, b/2).

Once the coefficients have been determined, the longitudinal component of the electric field on
the beam axis is integrated following Eq. (5). The process of the integration is tedious but analytically
possible. We want to skip it here; Ref. [12] provides a more detailed solution of the wake function
integral.

Within the scope of this paper, it is sufficient to discuss the final result of the integration. The
integration automatically leads to a description of the wake function similar to Eq. (19). The cosine
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dependence is a direct result of the integration; the summation is a remnant of the eigenmode expansion
of the electric field. From this direct integration, the loss parameters can be read out as:

Kn,m,l,LSE = − 4

ε0aL

k2xk
2
z

k2x + k2z

( ∑

even m

qm sin
(mπ

2

))2 (
2− 2eilπ cos (k0,λL)

)
(
k20,λ − k2z

)2 ,

Kn,m,l,LSM = − 4

ε0aL

k4z
k0,µ (k2x + k2z)

(∑

evenm

qmky,m sin
(mπ

2

))2 (
2− 2eilπ cos (k0,µL)

)
(
k20,µ − k2z

)2 .

To avoid confusing the loss parameters with the eigenvalues, we refer to them as Kn,m,l in this
case. The expressions of the loss parameters appear very lengthy and complicated; on a closer inspection,
however, we see that they only depend on the mode characteristics and geometrical properties of the
structure and thus can be determined without previous knowledge of the electric field. The electric field
expansion is merely an intermediate analytical step to determine the formula for the loss parameters
once. After this is done, it does not have to be repeated for every structure; rather the expressions for the
loss parameters can be used straight from the formula at hand.

Fig. 13: Loss parameters of LSM modes with
different n and m plotted over their longitudinal
eigenvalue kz . It can be seen that several modes
exhibit much higher loss parameters than others,
resulting in the observed peak structure.

Fig. 14: Wake function in the exemplary di-
electrically lined rectangular waveguide.

In Fig. 13, the loss parameters (of LSM modes of an arbitrary rectangular waveguide with an arbi-
trary dielectric lining) are again sorted (according to the numbers of nodes or antinodes in the transverse
direction, n and m) and plotted against their longitudinal eigenvalue. As in the exemplary cylindrical
cavity in Fig. 9, we observe several distinguished peaks. These eigenmodes obviously have the largest
contribution to the wake function, while the loss parameters of other modes can be so small that their
contributions to the wake function are negligible.

Following Eq. (19), the wake function can be calculated from the loss parameters. The wake
function resulting from the modes displayed in Fig. 13 is displayed in Fig. 14.

At this point, we want to have a closer look at the influence of the bunch shape function on the
resulting wake potential. According to Eq. (20), all that is needed to obtain the wake potential from
the wake function is a convolution with the bunch shape function. This can be carried out easily, either
numerically or analytically.

Figure 15 compares the short range wake potentials (i.e., the wake potentials in the vicinity of the
bunch) of a Gaussian bunch (cf. Eq. (48)) and a so-called flat top pulse, i.e., a pulse with a constant
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Fig. 15: Wake potentials of a Gaussian pulse (solid line, σ = 0.3 mm) and a flat top pulse (dashed line, pulse
length 1.8 mm) inside the exemplary rectangular waveguide with dielectric linings. The bunch shape functions are
displayed in red for comparison.

particle distribution over the bunch length. Both bunches are designed to have the same length and both
bunch shape functions are normalized to 1. It can be seen that the wake potentials over both bunch shapes
refer to an overall energy loss. The maximum loss over the bunch shape is similar in both cases. This
results from the normalization of the pulses: the convolution can generally be imagined as ‘moving’ the
bunch shape function over the wake function and measuring the area enclosed by both. If the area under
both used bunches is the same, owing to the normalization, it follows that the maximum energy loss
should be nearly equal for both bunches. The gradient of the energy loss, however, shows significant
differences when comparing both bunch shapes. The gradient for the flat top pulse is perfectly linear
with sharp edges, while the gradient for the Gaussian pulse is steeper in the middle section and shows
softened edges. This is a direct result of the different bunch shapes: the gradient for the flat top pulse
is linear because of the equal distribution of particles over the bunch length and the gradient for the
Gaussian pulse shows softened edges, owing to the Gaussian pulse’s smooth behaviour.

For the total energy loss due to the wake potential, the bunch shape thus plays only a minor role,
i.e., Fig. 15 clearly shows that the maximum energy loss over the particle bunch is nearly identical, and
only dependent on the normalization of the bunch shape function (which should be 1 in any case). For
the phase space of the bunch, however, the bunch shape function can have a significant influence. Here,
it plays a role in determining ‘how many’ particles are subjected to a certain energy reduction. The
dechirper can significantly alter the phase space of the bunch, depending on its bunch shape.

7 Summary and conclusions
In this paper, we introduced the basic quantities that are necessary to understand the concept of wake-
fields. We discussed the basic structural requirements for the generation of wakefields. We derived the
longitudinal and transverse wake potential from the Lorentz force and introduced the Panofsky–Wenzel
theorem, which links both quantities to each other. In addition, we briefly discussed the impedance as
the Fourier transform of the wake potential.

When the eigenmodes of a structure are known, it is possible to derive the wake function, the
wakefield of a point charge as a sum over each eigenmode’s contribution. These contributions are called
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loss factors. The wake function then serves as the Green’s function for the calculation of the wake
potential of an arbitrary bunch shape, and the total loss factor can give an insight into the total power loss
due to the wakefield.

The effects of wakefields represent energy modulations, which consequently result in a modulation
of the longitudinal and possibly also transverse phase space of a particle bunch. This is why wakefields, at
least most of the time, are considered unwanted effects that have to be taken into consideration during the
design process of accelerators, to mitigate their negative influence on the functionality of the accelerator.
However, special structures called ‘wakefield dechirper’ can be used to utilize the energy modulating
effect of wakefields to reduce the energy spread of particle beams.

Further reading
As complementary further reading, the following article for beginners on the topic might be helpful: P.
Tenenbaum, Fields in Waveguides—A Guide for Pedestrians, 2003, available at http://www.desy.de/
~njwalker/uspas/coursemat/notes/unit_2_notes.pdf.
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