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Abstract
The low-level radio frequency (LLRF) system generates the drive sent to the
high-power components. In this paper, we give the basics of LLRF controls and
feedback. This includes a brief introduction to the two concepts for this school,
i.e., the energy recovery linac and the free-electron laser, and their main differ-
ences, from a LLRF perspective. The physical behaviour of the subcomponents
(detector, amplifier, cavity, etc.) within an LLRF feedback loop is outlined, to-
gether with its system modelling in the time and frequency domains. System
identification using special input–output signals is introduced. Furthermore,
stability checks for the closed-loop operation and the feedback controller de-
sign in the time and frequency domains are briefly discussed. This paper con-
cludes with some examples for system identification, its feedback design, and
the achieved stability at different facilities, showing the need for LLRF control
and feedback operation.

Keywords
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1 Introduction
Low-level RF (LLRF) field control is used to stabilize the accelerating field inside normal- and super-
conducting RF cavities, mainly using digital feedback loops. Optimal feedback regulation is part of
this contribution and discussed in this paper. First, a brief introduction to energy recovery linacs and
free-electron lasers is given. Here, the main focus is on the differences between both concepts. At the
end of this section, a short introduction to the need for LLRF controls is discussed. The mathematical
modelling of certain components within the feedback loop (Section 2) is often necessary to optimize
the feedback controller. An alternative to this mathematical modelling using differential equations is
system identification using special excitation signals and relating them to the corresponding output signal
(Section 3). Based on such a system model, the optimal feedback controller can be designed in the time
or frequency domain, as shown in Section 4. Examples for the system identification and the feedback
controller design are discussed in Section 5, justifying the need of LLRF controls and feedback.

1.1 Energy recovery linac
An energy recovery linac concept is given in the CAS 2016 contribution from Dr. A. Jankowiak (HZB)
Concept of ERL. At bERLinPro, the beam current will be 100 mA and the accelerating structures are
superconducting RF cavities operated in continuous wave mode at an RF frequency of 1.3 GHz [1–3].
Another energy recovery linac, the compact energy recovery linac at KEK, is described in the follow-
ing [4]. The compact energy recovery linac is an ongoing project at KEK, intended to demonstrate excel-
lent energy recovery linac performance towards a future light source. The compact energy recovery linac
is illustrated in Fig. 1. The injector consists of a photocathode d.c. gun, a normal-conducting buncher
cavity with a loaded quality factor (QL) of 1.1 × 105 and three two-cell superconducting cavities oper-
ated with QL = 5 × 105. The recirculation loop hosts several magnets (dipoles and quadrupoles), the
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Fig. 1: Compact energy recovery linac ©Rey.Hori/KEK [6]: the injector part (located in the lower left) and the
recirculation loop are shown.

Table 1: Example RF and beam parameters for energy recovery linac and free-electron laser

Compact energy recovery linac bERLinPro FLASH
Desired RF stability (r.m.s.) ∆A/A ≤ 0.1% ∆A/A ≤ 0.05% ∆A/A ≤ 0.01%

∆ϕ ≤ 0.1◦ ∆ϕ ≤ 0.02◦–0.1◦ ∆ϕ ≤ 0.01◦

Loaded quality factor QL 1.1× 105–1× 107 1× 105–5× 107 1.2× 105–3× 106

Nominal beam energy 35 MeV 50 MeV max. 1.25 GeV
Beam current ∼100 mA ∼100 mA ∼1 mA
Mode of operation Continuous wave Continuous wave Pulsed

beam diagnostics (e.g., beam position monitors), and two nine-cell superconducting cavities operated
with QL = 1 × 107. The RF frequency for all cavities is 1.3 GHz. For the compact energy recovery
linac, a RF field stability of 0.1% in amplitude and 0.1◦ in phase is required [5]. The compact energy
recovery linac is operated in continuous wave mode with a beam current of up to 100 mA; normal- and
superconducting RF structures, powered with klystrons and solid state amplifiers, are used to accelerate
the beam to its target energy.

Energy recovery linacs are widely used in research facilities. The beam current is of the order
of 100 mA; it is foreseen to increase to the ampere regime. Normal- and superconducting RF cavities
are used to reach the final target energy. The cavities are driven by klystrons, solid state amplifiers,
or inductive output tubes. The key parameters of this compact energy recovery linac at KEK and the
bERLinPro at HZB are given in Table 1.
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Fig. 2: FLASH: beam direction is from left to right. Both beamlines are shown, the old FLASH1 beamline and the
new FLASH2 beamline [7].

Fig. 3: Location of electron bunch for different phase settings [8]

1.2 Free-electron laser
The free-electron laser (FLASH) is the world’s first soft X-ray free-electron laser (XFEL). It is a linear
accelerator with a total length of about 315 m [7]. Electron bunches are generated using an external laser
and a photocathode inside the normal-conducting RF-gun (QL ≈ 1.2×105). They are further accelerated
by 56 superconducting RF cavities operated at 1.3 GHz with QL = 3× 106 in seven cryomodules. Each
cryomodule is depicted in Fig. 2 as a blue box hosting eight superconducting RF cavities. Furthermore,
four superconducting RF cavities (red box with one cryomodule) operated at 3.9 GHz, i.e., the third
harmonic of 1.3 GHz, are used for phase space linearization. The cavities at FLASH are all driven by
klystrons. Up to a maximum of 16 cavities are driven by one klystron, for cost efficiency. FLASH is
operated in short-pulse mode with a repetition rate of 10 Hz and 800 µs maximum beam time. Each RF
pulse is active for about 1.4 ms (including fill time and beam time), corresponding to a duty factor of
about 1%. During the beam time a maximum of 800 electron bunches at 1 MHz repetition rate can be
used for experiments. The maximum final bunch energy is 1.25 GeV, corresponding to a fundamental
laser light wavelength of 4.12 nm using fixed gap undulators at the FLASH1 beamline. The maximum
bunch charge of each electron bunch is of the order of 1 nC; therefore, the maximum beam current is of
the order of 1 mA (1 nC bunch at 1 MHz repetition rate), instead of 100 mA for an energy recovery linac,
see Table 1.

1.3 LLRF in general—control goal
The LLRF system is used to supply the accelerating cavities with high-power RF signals. Furthermore,
it is used to modify or adjust the accelerating field in amplitude and phase (A/P). The desired A/P
value depends on the mode of operation, i.e., acceleration, deceleration, or an imposed energy chirp,
see Fig. 3. The typical RF stability of an accelerating section is of the order of ∆A/A ≤ 0.1%–0.01%
and ∆ϕ ≤ 0.1◦–0.01◦.

Consider, e.g., a free-electron laser with a bunch compressor to achieve high peak currents. Its
injector laser stability, cavity amplitude, phase stability are directly related to the timing jitter after a
bunch compressor defining the achievable free-electron laser performance, see contribution from Dr. M.
Divall (PSI) Lasers in FEL Facilities. This requires a precise timing and synchronization of the master
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Fig. 4: The LLRF control loop with master oscillator, actuator, amplifier, cavity, and sensor. The controller closes
the feedback loop.

clock and all attached subdevices, such as the accelerating modules. For now, we will assume that the
timing and synchronization are perfect.

We will start with the description of the closed-loop system to be controlled. An example of a
LLRF feedback control loop is depicted in Fig. 4. The master oscillator provides a constant sinusoidal
signal with the desired frequency, e.g., 1.3 GHz. This master oscillator signal is amplified from low
power (a few volts) to high power to drive the cavity. A sensor, e.g., a pick-up or magnetic loop, is placed
inside the cavity to detect a fraction of the RF field. This information is used by a controller to control
the amplitude and phase inside the cavity by modulating the amplitude and phase of the master oscillator
signal. This closes the feedback loop. The LLRF regulates on a low power signal, while only the part
after the amplifier and in the cavity are operated at high power (e.g., in the megavolt regime).

In the following we will discuss the individual blocks separately before modelling the system
behaviour to optimize the controller.

2 System description
In this section, we will focus on the individual blocks within a feedback loop for the LLRF system. A
brief overview is given in Fig. 4.

2.1 RF detection
The principles of RF field detection are based on mixing a reference signal (LO) with the RF signal to
be detected. Here, the goal is to measure the amplitude and phase, or the in-phase (I) and quadrature (Q)
part of an RF signal with respect to a reference signal. The relation between A/P and I/Q is:

I = A · cosϕ A =
√
I2 +Q2

Q = A · sinϕ ϕ = atan2(Q, I) ,

with

atan2(Q, I) =





arctan
(
Q
I

)
if I > 0 ,

arctan
(
Q
I

)
+ π if I < 0 and Q ≥ 0 ,

arctan
(
Q
I

)
− π if I < 0 and Q < 0 ,

+π
2 if I = 0 and Q > 0 ,

−π
2 if I = 0 and Q < 0 ,

undefined if I = 0 and Q = 0 .
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Fig. 5: RF down-sampling directly to baseband (BB) or via an intermediate frequency (IF)

The high-frequency signal is down-converted to the baseband. Different amplitude and phase conditions
between the RF and the LO are responsible for the corresponding output signal (A/P or I/Q). Only a
short overview of different detection schemes is given; detailed information can be found in Ref. [9].

The briefly discussed detection schemes are:

1. direct amplitude and phase detection:

– no down-conversion;
– analogue or digital (up to 800 MHz analogue-to-digital converters);

2. baseband sampling (analogue I/Q detector);
3. digital I/Q sampling;
4. intermediate-frequency sampling (non-I/Q sampling).

Scheme (1) is a direct sampling scheme, while schemes (2)–(4) are based on mixing a reference signal
(LO) with the RF signal, meaning that the RF signal is down-converted into baseband directly or using
an intermediate frequency, see Fig. 5.

2.1.1 Analogue direct amplitude and phase detection
The analogue amplitude and phase detection are achieved by splitting the RF signal into two parts, see
Fig. 6. The first part is used to detect the amplitude using a diode. The second part is mixed with a
frequency- and phase-stable LO signal (the same frequency as the expected RF signal), leading, for
small angle variations, to a signal proportional to the phase difference between the RF and LO signal.
The mathematical description for the phase signal is given by:
Input signals:

VRF(t) = ARF sin(ωt+ ϕ0) ,

VLO(t) = ALO cos(ωt) ,

Output signal:

Vmixer = ARF sin(ωt+ ϕ0) ·ALO cos(ωt) =
ARFALO

2
(sin(ϕ0) + sin(2ωt+ ϕ0)) ,

Output signal after low-pass filtering:

VLPF =
ARFALO

2
sin(ϕ0) ≈ ARFALO

2
ϕ0 (for small ϕ0) .
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Fig. 6: Basic principle of analogue direct amplitude and phase detection

Fig. 7: Analogue I/Q detection [9]

2.1.2 Digital direct amplitude and phase detection
Nowadays, high-speed analogue-to-digital converters are available with sampling rates of more than
500 megasamples per second and analogue input bandwidth of up to 1.5 GHz. These analogue-to-
digital converters enable the RF signal to be sampled directly without any RF converter or intermediate-
frequency scheme, with a signal-to-noise ratio of more than 50 dB. The advantage is the reduction of the
number of input stages for pre-configuration (down-conversion, filter, amplifier, etc.), reducing possible
errors and noise sources and increasing reliability. The disadvantage is the increasing impact of the clock
jitter on the signal-to-noise ratio for higher input frequencies. This effect is linear and can be reduced by
the process gain due to digital band-limitation and averaging as a function of the square root. If digit-
al filtering is used to filter out noise components outside the bandwidth, then the process gain must be
included in the equation to account for the resulting increase in the signal-to-noise ratio using an N -bit
analogue-to-digital converter, as shown in Eq. (1):

signal-to-noise ratio = 6.02×N + 1.76 dB + 10 log10

fs

2× fBW
. (1)

See, in addition, Ref. [10] for the noise characteristics and measurements performed at FLASH.

2.1.3 Baseband sampling (analogue I/Q detector)
This concept is an analogue I/Q detector, in which a direct conversion from RF to baseband is performed.
The RF signal is multiplied by the LO signal resulting in analogue I/Q signals. Here, the LO signal is
split by a hybrid and one signal is given a phase difference of 90◦, see Fig. 7. Two analogue-to-digital
converters are required for the digitization of an I/Q pair; hence, it requires more space and leads to
higher cost than using only one analogue-to-digital converter, and the reliability is reduced. The main
problem of this scheme is the phase-dependent amplitude detection due to I/Q imbalances and offsets,
see Fig. 8.
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Fig. 8: Constellation diagram with different errors in I and Q. (a) The output signals of the mixers are not exactly
I and Q, i.e., the phase difference is not 90◦. (b) Gain mismatch between I and Q mixer branch. (c) I/Q offset at
the mixer outputs [9].

Fig. 9: Left-hand side: digital I/Q sampling scheme. Right-hand side: corresponding output sequence in time and
complex domains [9].

2.1.4 Digital I/Q sampling
This detection scheme is similar to baseband sampling, but here only one analogue-to-digital converter
and a switched LO are required, see Fig. 9. The LO signal after each sampling is switched in phase by
90◦ for a fixed time interval, leading to an output signal that represents a series of I,Q,−I,−Q, . . . and
so on. If the signal to be detected is of low bandwidth, or if it can be assumed that the signal does not
change significantly between two samples, the field vector can be computed by two consecutive samples
(I/Q value). To do this, the signal needs to be shifted by n × 90◦ (n = 0, 1, 2, 3). The problem for
this scheme is that the Nyquist frequency is fs/4. Furthermore, owing to the switching with rectangular
output signal, the entire signal chain needs a relatively high bandwidth.

2.1.5 Intermediate-frequency sampling (non-I/Q sampling)
In contrast with the conversion directly from RF to baseband, the RF can be first mixed down to an
intermediate frequency and sampled. The detection scheme is depicted in Fig. 10. Based on the sampled
analogue-to-digital converter signals, the actual I/Q detection is achieved by multiplication of the input
signal by a sine and a cosine function on a digital level. The advantage of this scheme is that, e.g., phase
and gain imbalance of the two multipliers of an analogue IQ-detector do not exist. For a series of samples,
the series of I[i] and Q[i] are calculated by:
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Fig. 10: Intermediate-frequency (IF) sampling principle with LO and clock (CLK) generation synchronized to the
master oscillator (MO) [9]

Fig. 11: Intermediate-frequency sampling: left-hand side, with sliding window detection; right-hand side, with step
window detection [9]

(1) sliding window detection (left-hand plot in Fig. 11):

I(i) =
2

M

M−1∑

k=0

s(k + i) cos((k + i)∆ϕ) ,

Q(i) =
2

M

M−1∑

k=0

s(k + i) sin((k + i)∆ϕ) ;

(2) step window detection (right plot in Fig. 11):

I(i) =
2

M

M−1∑

k=0

s(k + iM) cos((k + iM)∆ϕ) ,

Q(i) =
2

M

M−1∑

k=0

s(k + iM) sin((k + iM)∆ϕ) .

For further details, see, e.g., Ref. [9].

2.2 RF manipulation using a vector modulator
A vector modulator is often used to up-convert a baseband signal in I/Q coordinates back to an RF signal.
The basic operation of a vector modulator is shown in Fig. 12. The signal from the master oscillator
yin(t) is split into two parts, i.e., a 0◦ and a 90◦ part. The baseband I/Q values are multiplied with the
corresponding sine and cosine parts. The sum of both signals leads to the RF output signal, i.e., the signal
to the klystron, which is modulated by the I/Q components. In this way, the amplitude and phase of the
RF output signal can be modulated by an I/Q pair with respect to the RF input signal. The bandwidth of
a vector modulator is usually tens of megahertz [11].
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Fig. 12: Principle of vector modulator

Fig. 13: Desired and real amplifier characteristics [12]

Fig. 14: Result of iSim simulation without klystron linearization (blue) and with linearization (purple). Left-
hand side: klystron linearization algorithm output amplitude [arbitrary units] versus input amplitude [arbitrary
units]. Right-hand side: klystron linearization algorithm output phase [degrees] versus input amplitude [arbitrary
units] [12].

2.3 Amplifier
Each amplifier, e.g., a klystron, solid state amplifier, or inductive output tube, is itself a non-linear device.
The non-linearity is caused by, e.g., saturation at maximum output power. Furthermore, non-linearities
in terms of changes of the output amplitude and phase are mostly present if only the input amplitude is
changed, see, for example, Fig. 13. For most applications, such as superconducting RF cavity control, it
is sufficient to linearize the amplifier input–output (I/O) behaviour using a static I/O characteristic. An
example is shown in Fig. 14, where a simulation of a real and corrected klystron characteristic is shown.
The bandwidth of a klystron is of the order of 10 MHz [11]. Refer to, e.g., Ref. [12] for further details of
the klystron linearization.

2.4 Cavity
This section gives a brief overview of the mathematical modelling for a TESLA-type RF cavity; detailed
information can be found in Ref. [11].
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Fig. 15: TESLA-type superconducting RF cavity [13]

Table 2: Parameters for superconducting RF Tesla-
type cavity

Operating frequency 1.3 GHz
Length 1.036 m
Aperture diameter 70 mm
Cell to cell coupling ≈ 2%
Quality factor Q0 ≈ 1010

r/Q := rsh/Q0 1036 Ω

2.4.1 Introduction
A typical nine-cell TESLA-type superconducting RF cavity is shown in Fig. 15. The cavity has a length
of about 1 m and is operated with a driving frequency of 1.3 GHz; its typical parameters are shown in
Table 2.

2.4.2 Cavity modelling by RCL circuit
The TESLA-type superconducting RF cavity consists of nine electrically coupled cells. An equivalent
RCL circuit model with nine magnetically coupled cells is shown in Fig. 16. Such a structure with nine
coupled cells has nine normal modes, the so-called passband modes. The fundamental operating mode is
called the π-mode, meaning that the RF fields in adjacent cells are at a phase difference of π. The closest
mode to the operating mode is the 8π/9-mode, with a frequency separation of about 800 kHz. A plot of
all the modes is shown in Fig. 17. Every passband mode can be modelled by an RCL circuit, which is in
parallel with the others. To simplify the modelling, let’s first consider only the π-mode and neglect all the
other modes. Then the nine-cell structure simplifies to a single cell, displayed in Fig. 18, with generator
driving term Ĩg, beam-induced driving term Ib, and an external load Zext. Here, the transmission line,
circulator, and coupler are already part of the model and can be neglected. The total current going into
the RCL circuit must be the same as the current inside the RCL circuit, i.e.,

IC + IRL
+ IL = I = Ĩg + Ib (IRL

= IR + IZext , see Eq. (5)) , (2)

using Kirchhoff’s rule. Inserting the well-known relationships

dIL
dt

= İL =
V

L
, İRL

=
V̇

RL
, and İC = CV̈ (3)

leads to the differential equation for a driven RCL circuit:

V̈ (t) +
1

RLC
V̇ (t) +

1

LC
V (t) =

1

C
İ(t) . (4)

Here, the external load Zext and the cavity resistor R are combined to give the so-called loaded shunt
impedance

RL =

(
1

R
+

1

Zext

)−1

=
R

1 + β
, with coupling factor β =

R

Zext
. (5)

The loaded quality factor is defined similarly to the loaded shunt impedance as

QL =

(
1

Q0
+

1

Qext

)−1

=
Q0

1 + β

(
β =

Q0

Qext

)
. (6)
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Fig. 16: Equivalent RCL circuit for nine-cell cavity modelled with nine magnetically coupled loops [11]

Fig. 17: Passband modes of TESLA-type nine-cell cavity [11]

Fig. 18: Simplified equivalent RCL circuit for single-cell cavity with external load and, as driving source, generator
and beam [11].

The inductance L and capacitance C can be described by the measurable cavity quantities QL and ω0

with

1

RLC
=
ω0

QL
and

1

LC
= ω2

0 . (7)

Using these relations in Eq. (4) gives the well-known cavity differential equation,

V̈ (t) +
ω0

QL
V̇ (t) + ω2

0V (t) =
ω0RL

QL
İ(t) , (8)

with harmonic RF driving term I(t) = Î0 sin(ωt), e.g., with driving frequency ω = 2π × 1.3 GHz.

The solution of the cavity differential equation (Eq. (8)) for a driving term I(t) = Î0 sin(ωt) will
be proportional to cos(ωt). Its stationary solution, i.e., the particular solution of the cavity differential
equation, is given by

V (t) = V̂ (t) · sin(ωt+ ψ) (9)

with

V̂ =
RLÎ0√

1 + tan2(ψ)
≈ RLÎ0√

1 +
(
2QL

∆ω
ω

)2 , (10)
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Fig. 19: Resonance curves for amplitude and phase [11]

and ψ as angle between the driving current and cavity voltage; ψ(t) = ∠(I(t), V (t)). Furthermore, it
is shown in Ref. [11] that the tuning angle can be approximated if the generator frequency ω is very
close to the cavity resonance frequency ω0 (ω ≈ ω0) by tanψ ≈ 2QL

∆ω
ω , with ∆ω = ω0 − ω � ω.

The frequency dependence of the amplitude is known as the Lorentz curve, shown in Fig. 19. The half
bandwidth ω1/2 is defined as the frequency offset where the voltage drops to 1/

√
2 (−3 dB) from its

maximum. The corresponding phase at the −3 dB point will have an offset of 45◦
(∣∣ψ(ω1/2)

∣∣ = π/4
)
.

The half bandwidth of a cavity is inversely proportional to the loaded quality factor QL and is given by:

ω1/2 =
ω0

2QL
=

1

τ
(� ω), with time constant τ .

The definition of half bandwidth can be used to rewrite Eq. (10) as:

V̈ (t) + 2ω1/2V̇ (t) + ω2
0V (t) = ω1/2RLİ(t) . (11)

2.4.3 Baseband model
The high-frequency part from the generator, i.e., sin(ωt) or, more generally, ejωt, is not of interest in the
case of a down-conversion regulation scheme. For this reason, the high-frequency part can be separated
from the slow variations using

V =
→
V (t)ejωt ;

→
V (t) = VI + jVQ ,

I =
→
I (t)ejωt ;

→
I (t) = II + jIQ .

(12)

Consider the phasor diagram in Fig. 20. Both the driving current
→
I (t) and the cavity voltage

→
V (t)

have the same driving frequency component ω. The cavity voltage and phase with respect to the driving
current depend on the tuning angle ψ(t), see Eq. (10). Inserting Eq. (12) in Eq. (11) and neglecting the
second-order time derivatives of V (t) leads to the first-order differential cavity equation for the envelope
(cavity baseband equation) in the complex domain, as

→̇
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I . (13)

Separating its real and imaginary parts gives the two first-order equations:

V̇I + ω1/2VI + ∆ωVQ = RLω1/2II ,

V̇Q + ω1/2VQ −∆ωVI = RLω1/2IQ .
(14)

The latter is well known in accelerator physics and can be rewritten in a so-called state space form,

d

dt

[
VI(t)
VQ(t)

]
=

[−ω1/2 −∆ω

∆ω −ω1/2

] [
VI(t)
VQ(t)

]
+RL · ω1/2

[
II(t)
IQ(t)

]
, (15)
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Fig. 20: Phasor diagram of driving current and cavity voltage
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Fig. 21: Transient step responses of a cavity for different normalized detuning values: left-hand side, shown in
amplitude and phase; right-hand side, shown in complex plane.

in which V is the complex cavity voltage, I the complex driving current, ω1/2 the half bandwidth,
∆ω = ω0 − ω the detuning and RL the shunt impedance of the cavity. This cavity equation has two
inputs (the driving current in I and Q) and two outputs (the cavity voltage in I and Q). We will call this
a multi-input, multi-output (MIMO) system.

2.4.4 Step response
Drawing the step response of Eq. (15) for different normalized detuning values ∆ω/ω1/2 for
an input of which the real part is normalized to one and the imaginary part is zero, i.e.,
RL · [II(t) IQ(t)]T = [1 0]T, we have the graphs shown in Fig. 21. Here, the left panel of Fig. 21
shows the amplitude and phase of the resulting cavity voltage. The right panel shows the step response as
a time-dependent field vector in the complex plane with the steady-state value located on the resonance
circle (black dashed line), corresponding to the stationary solution in Eq. (8).

2.4.5 Additional passband modes
The latter cavity equation is given around the baseband frequency, meaning that the operating π-mode is
located at frequency zero; Eq. (15) holds only for this mode. Eight other passband modes (see Fig. 17)
are present for a nine-cell cavity. Thus, all the differential equations for each mode have to be added to
get the overall cavity model; remember that all cavity mode models are in parallel. The field probe signal
is measured at the end cell of the cavity; thus, each even mode, e.g., the 8/9π-mode, is sign-inverted
such that each fundamental mode is represented in the complex domain—compare this with Eq. (13) for
the π-mode—as

→̇
V +

(
(ω1/2)n

9
π − j(∆ω)n

9
π

) →
V= (−1)n+1Kn

9
π(ω1/2)n

9
π ·RL

→
I , n = 1, . . . , 9 .

13

LLRF CONTROLS AND FEEDBACK: FREE-ELECTRON LASERS AND ENERGY RECOVERY LINACS

513



The extended state space form, see Eq. (15), is given as

d

dt

[
VI(t)
VQ(t)

]
=

[
−(ω1/2)n

9
π −∆ωn

9
π

∆ωn
9
π −(ω1/2)n

9
π

] [
VI(t)
VQ(t)

]
+ (−1)n+1Kn

9
π(ω1/2)n

9
π ·RL

[
II(t)
IQ(t)

]
. (16)

This equation is used to compute the transfer function matrix of the π-mode (n = 9) with Kπ = 1.
The variation in the coupling and loaded quality factor for the remaining modes (n 6= 9) is described in
Ref. [14] and requires an adjustment of static gain, bandwidth, and detuning by

Kn
9
π
n6=9
= 2 sin2

(nπ
18

)
, (ω1/2)n

9
π
n6=9
= 2 sin2

(nπ
18

) πfn
9
π

QL
and ∆ωn

9
π = 2π

(
fn

9
π − fπ

)
,

(17)

where QL is the loaded quality factor and fπ is the resonance frequency of the π-mode.

2.5 Summary
In this section, we have seen the different components acting in an LLRF feedback loop. For a feed-
back controller design, one can follow and identify the mathematical description of each component
separately. However, setting up an optimal feedback regulation of each LLRF system, e.g., 27 LLRF
feedback loops at the European XFEL, requires the mathematical description and parameter estimation
of a huge amount of components. To avoid this, a system modelling for all components within one step
can be performed, as described in the next section.

3 System modelling
The last section gave an overview of the main components within an LLRF feedback loop, such as the
vector modulator, klystron, and cavity. However, additional components are required, e.g., to transport
the signal using a cable or waveguide. Mathematical modelling using, e.g., differential equations of a
complete signal chain is a huge amount of work and very complex. Furthermore, consider the European
XFEL project with its 27 RF stations. Each RF station will differ in its mechanical design, e.g., waveguide
distribution, but also in the mathematical description of the individual components, e.g., klystron. Here,
separate modelling for 27 feedback systems is required, but very time consuming. Furthermore, ageing
and, e.g., temperature changes may require this modelling to optimize the feedback controller. Another
way to overcome this mathematical description of each feedback loop is system modelling using a special
input signal, discussed next. Such system modelling can be done in the time or frequency domain. We
will see in this section why the frequency domain is the preferable approach. Furthermore, we will
assume that only linear time-invariant systems are considered. These are linear systems because they
are describable by linear differential equations. Time-invariance of a system implies that for any time
delay d > 0 the response to the delayed input u(t− d) is a time-delayed output y(t− d). Moreover, the
coefficients of the transfer function are time-invariant and their values are constant.

3.0.1 Example RCL circuit
The electrical circuit in this example (Fig. 22) contains an inductance L, a resistance R, and a capaci-
tance C. Applying Kirchhoff’s voltage law to the system, we obtain the equations:

L
di

dt
+Ri(t) + Vo(t) = Vi(t) ,

C
dVo

dt
= i(t) .
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L R

CVi(t) Vo(t)

i(t)

Fig. 22: Electrical RCL circuit

Eliminating the current i(t) between both equations yields

LC
d2Vo

dt2
+RC

dVo

dt
+ Vo(t) = Vi(t) ,

leading to

V̈o(t) +
R

L
V̇o(t) +

1

LC
Vo(t) =

1

LC
Vi(t) .

We can identify Vi(t) with the input signal u(t) and Vo(t) with the output signal y(t).

3.1 State space model
The previous example illustrates how dynamic systems can be modelled by a second-order linear ordin-
ary differential equation. It may be more convenient to rewrite the differential equation in a more compact
form, called a state space model, when dealing with systems that are described by higher-order differ-
ential equations. Each nth-order linear differential equation model can be transformed into a first-order
vector differential equation model. Let’s use the previous example and introduce a second variable as
Vm(t) = V̇o(t). Then we can write

V̈o(t) +
R

L
V̇o(t) +

1

LC
Vo(t) =

1

LC
Vi(t)

as

V̇o(t) = Vm(t) ,

V̇m(t) = −R
L
Vm(t)− 1

LC
Vo(t) +

1

LC
Vi(t) .

Defining a state vector

x(t) =

[
Vo(t)
Vm(t)

]
,

we can express this second-order ordinary differential equation in a more compact form as
[
V̇o(t)

V̇m(t)

]
=

[
0 1

− 1
LC −R

L

] [
Vo(t)
Vm(t)

]
+

[
0
1
LC

]
Vi(t) . (18)

Furthermore, the output is

Vo(t) =
[
1 0

] [Vo(t)
Vm(t)

]
. (19)

Equations (18) and (19) are an example of a state space model, which in general has the form

ẋ(t) = Ax(t) +Bu(t) , (20)

y(t) = Cx(t) +Du(t) , (21)

with input u(t), output y(t), state x(t), system matrix A, input matrix B, output matrix C, and
feedthrough matrix D.
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G(s)

g(t)

plant

U(s)

u(t)

input

Y (s)

y(t)

output

Fig. 23: System or plant g(t) with input u(t) and output y(t); with signal notation in frequency domain using
Laplace operator s.

3.2 System description in the time and frequency domains
3.2.1 Time domain
The system output y(t), see Fig. 23, can be computed by a convolution of the input signal u(t) with the
impulse response of the system g(t) as

y(t) = g(t) ∗ u(t) . (22)

Solving a convolution in the time domain and, by this, analysing the system behaviour is complicated,
making the system analysis very complex. Therefore, system analysis is typically done in the frequency
domain.

3.2.2 Frequency domain
The system output Y (s), see again Fig. 23, in the frequency domain is given as a multiplication of the
transformed input signal U(s) and the impulse response G(s):

Y (s) = G(s) · U(s) , (23)

with s := σ + jω, as operator in the frequency domain.

3.3 Transformation into the frequency domain
The transformation into the frequency domain using Fourier transformation is well known and given by

F{f(t)} = F (ω) =

∫ ∞

t=−∞
f(t) · e−jωtdt .

This transformation is defined for all times, even negative times, which are not needed for system model-
ling. The Laplace transform, often used by system engineers, is very similar to the Fourier transform. The
Fourier transform of a function is a complex function of a real variable (frequency), while the Laplace
transform of a function is a complex function of a complex variable.

3.3.1 Laplace transform
Laplace transforms are usually restricted to functions of t with t ≥ 0, with f(t) = 0,∀t < 0. A
consequence of this restriction is that the Laplace transform of a function is a holomorphic function
of the variable s := σ + jω. The Laplace transform from the time to the frequency domain is given as

L{f(t)} = F (s) =

∫ ∞

t=0
f(t) · e−stdt . (24)

The Laplace transform of a signal f(t) as defined in Eq. (24) exists if the integral converges. In practice,
the question of existence and the region of convergence are not usually issues of concern. The inverse
Laplace transform, mapping from the frequency to the time domain is defined as:

f(t) = L−1{F (s)} =
1

2πj
lim
T→∞

∫ α+jT

s=α−jT
F (s) · est ds .

We will not go into detail with the Laplace transform, since many properties and examples of using the
Laplace transform can be found in the literature, e.g., Ref. [15].

16

S. PFEIFFER

516



3.3.1.1 Example cavity equation

The cavity equation introduced in Eq. (13) is given in the time domain as

→̇
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I .

Mapping this equation into the frequency domain using the Laplace transform is done by solving Eq. (24)
or by using the relations given in Table 3. Here, the cavity equation in the frequency domain is given as

s
→
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I ,

(s+ (ω1/2 − j∆ω))
→
V = ω1/2RL

→
I ,

where only the first derivative in time is transformed using No 5 from Table 3 and setting f(0) = 0.

Sorting the input (
→
I ) and output (

→
V ) of the system leads to the transfer function G(s), defined as the

ratio of the output to the input signal, as:

→
V (s) =

ω1/2RL

s+ (ω1/2 − j∆ω)
·
→
I (s)

G(s) =

→
V (s)
→
I (s)

=
ω1/2RL

s+ (ω1/2 − j∆ω)
.

This concept is shown in Fig. 23. If we consider the non-complex MIMO case from Eq. (14), with

V̇I + ω1/2VI + ∆ωVQ = RLω1/2II ,

V̇Q + ω1/2VQ −∆ωVI = RLω1/2IQ ,

and if we assume that ∆ω = 0, i.e., there is no coupling between the I and Q channels, we get

V̇I + ω1/2VI = RLω1/2II ,

V̇Q + ω1/2VQ = RLω1/2IQ ,

leading to two decoupled first-order single-input, single-output (SISO) systems as

GII(s) = GQQ(s) =
Vx
Ix

=
RLω1/2

s+ ω1/2
,

with x as ∗II or ∗QQ. Based on this transformation, we can directly find several properties of a first-order
transfer function given as

G(s) =
b0

s+ a0
,

such as the static gain, given as KP = b0/a0 for s → 0, the time constant, as τ = 1/a0, and the step
response in time, as y(t) = KP(1− e−t/τ ); these properties are displayed in Fig. 24.

3.3.1.2 Time delay

A positive time delay within the system shifts the output signal by the delay. Such a time-delayed system
can be described by a system free of time delay G(s) and the delay. The overall system including the
time delay Td is hereby given as

Gd(s) = G(s) · e−Td·s .
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Table 3: Examples of Laplace transforms

No Time domain f(t) Frequency domain F (s)

1 Unit impulse δ(t) 1
2 Unit step σ(t) 1

s
3 t 1

s2

4 tn n!
sn+1

5 df
dt = ḟ(t) sF (s)− f(0)

6 f̈(t) s2F (s)− sf(0)− f ′
(0)

7 eat 1
s−a ; s > a

8 tneat n!
(s−a)n+1 ; s > a

9 sin at a
s2+a2

; s > 0

10 cos at s
s2+a2

; s > 0

· · · · · · · · ·

Fig. 24: Step response of first-order system: time delay, Td = 2 ms

3.3.1.3 Bode diagram

The information about the frequency response can be displayed graphically. The most widely used graph-
ical representation of a frequency response is the Bode diagram. The magnitude and phase are plotted
versus frequency in two separate plots, where a log scale is used for magnitude and frequency and a
linear scale for the phase. The magnitude and phase are defined as

|G(s)|dB = 20 log10(|G(s = jω)|) and ∠(G(s)) = arg(G(s = jω)) .

Consider a system given with a measurable input u(t) and output y(t). Apply to the input a sinusoidal
signal with amplitude set as 1 and frequency fi as u(t) = sin(2πfit). This leads to an output signal
y(t) = K·sin(2πfit+ϕ), where the amplitude and phase of the sinusoidal frequency may change. The in-
put/output gain and phase relation between input and output signal for all frequencies fi results in a Bode
diagram. An example of a Bode diagram is given in Fig. 25. This Bode diagram shows the delay-free sys-
tem G(s), the pure time delay exp(−Tds), and its combination as serial connection, G(s) · exp(−Tds).
Here, it can be seen that the log scale is useful because the transfer function is composed of pole and zero
factors that can be added graphically, i.e., adding G(s) and exp(−Tds) leads to the combined transfer
function. Again, the static gain (f → 0) and the corner frequency (−3 dB drop at 214 Hz) can be read
out. Furthermore, it is shown that a pure time delay has no effect on the magnitude given as |e−Td·s| = 1,
i.e., only the output is delayed without change in the gain. The phase of a pure time delay shows a roll-off
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Fig. 25: Bode diagram of example system without and with time delay

of

∠(e−Td·s) = ϕ(ω) = −Tdω [rad]

= −Tdω
180

π
[deg] .

3.3.1.4 Example Bode diagram for cavity model

Figure 26 shows the resulting continuous-time white-box model for the cavity with all fundamental
modes. Here, it is assumed that the cavity equation includes an initial detuning of ∆ωπ = −2π · 10 Hz
and a loaded quality factor of QL = 3× 106. The Bode diagram is computed by Eqs. (16) and (17).

3.4 System connection
If not just one system but several systems are considered, it may required to connect them using a serial
and parallel connection or in a feedback scheme.

3.4.1 Serial connection
The serial connection of two systems is simply the multiplication of the individual systems, shown in
Fig. 27.

3.4.2 Parallel connection
The parallel connection of two systems is the sum of the systems, resulting in a combined system, Fig. 28.

3.4.3 Feedback
In contrast with a serial and parallel connection, a positive feedback loop, indicated by a summation
of the feedback path from G2(s) to the input of the system G1(s), leads to a combined system with a
forward path divided by one minus the loop path, i.e., in this example the serial connection of G1(s) and
G2(s), Fig. 29. For a negative feedback loop, used for most of the feedback controller, the sign of the
denominator needs to be changed from minus to plus.
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Fig. 26: Continuous-time cavity baseband white-box model without time delay. The fundamental π-mode
(fπ = 1.3 GHz) is located at frequency zero. The other peaks are the eight additional fundamental cavity modes,
i.e., from 8π/9-mode to 1π/9-mode.

Fig. 27: Serial connection of two systems

Fig. 28: Parallel connection of two systems

Fig. 29: Feedback of two systems
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Fig. 30: Overview of system modelling

3.4.4 Summary
We have considered the system description using input/output signals of individual subsystems. The
combination of different systems with different paths is shown in Section 3.4. In the next section, we
will focus on the identification of a system model by exciting a system with special input signals and
observing its output response.

3.5 System identification
A system model is a simplified representation or abstraction of a reality. Modelling the reality is gener-
ally too complex to produce an exact copy. Furthermore, much of the complexity is actually irrelevant
in problem solving, e.g., controller design. This can be overcome to define a robust controller that can
cope with model uncertainties. In general, one can describe a system using different approaches. On the
one hand, a mathematical description can be created, using differential equations. This is a so-called
white-box model, where all necessary components are described, e.g., the cavity modelling described
in Section 2.4, which is already an example of the white-box modelling approach. On the other hand,
system engineers often use so-called black-box models, where no assumption about the system is made,
see Fig. 30. Applying special input signals, e.g., pseudo-random binary signals, and observing the output
signal leads to the possibility of estimating the system impulse response, i.e., the transfer function in
the frequency domain or the state space model in the time domain. A combination of white-box and
black-box modelling is often used to define the main physical equations describing a system. A grey-box
model can be identified by leaving important parameters within those main equations of the white-box
model as free parameters to be identified. The main possibilities of a system identification and its different
approaches to identify a system are described in Ref. [16]. An example of a grey-box modelling approach
to identify a superconducting RF feedback loop can be found in Ref. [17].

In the following, a short example of a black-box modelling using MATLAB is given. For the mod-
elling, MATLAB provides a graphical tool within the System Identification Toolbox™. This tool allows
the transfer function, state space models, etc., to be identified only for SISO systems. Estimation of
MIMO systems requires use of the command line.
Let’s define a transfer function (tf command) of a systemG(s), its input signal u(t), which is a step, and
an output signal, which is the simulation of the input with the system using the MATLAB lsim command,
see Fig. 31. To this output signal, 1% noise is added by a random signal generator. The MATLAB ident
command opens a graphical interface for SISO system identification, see Fig. 32. Within this graphical
tool, the following steps need to be taken.

1. Import data.

– Choose data format and select the input and output data.
– Hint: An example data-set should be available.
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Fig. 31: MATLAB command line to define system identification

– Adjust the sampling interval.

2. Estimate the system model.

– Select one of the proposed methods, e.g., transfer function, state space model.
– Define the number of poles and zeros.
– Choose continuous or discrete time for the resulting model.
– If necessary, set the I/O delay.

3. Compare the model (tf1) with the plant G.

– Hint: You can import the initial plant model G for comparison.

4. Export the system model to the workspace for further use of the dataset, e.g., controller design.

This graphical tool gives an idea of how system identification using MATLAB works. Without going into
detail, the identification requires some knowledge of the plant, to avoid the identification of unnecessary
dynamics of the system using an overestimated model order. As a rule of thumb, start with a low system
order and increase the model order (number of poles and zeros) until the system response fits the simu-
lated model response sufficiently well. Another method to estimate the minimum model order is to use
the state space model as the resulting model and choose the option Pick best value in the range. This
option guessing the optimal model order based on the I/O data.

The interested reader is referred to other books and publications for detailed information of the
systems identification.

4 Feedback controller design
We will start in this section with an overview of the different regulation or control schemes and their
usage before defining the objective of a feedback control problem. Since each feedback scheme changes
the transfer function (poles and zeros) of the closed loop, it is further necessary to introduce some checks
for the stability of the resulting system.

4.1 Ways to control
There are different ways to control a plant or system. On the one hand, there is the open-loop case,
Fig. 33, and on the other hand, regulation using a feedback loop, Fig. 34. If the disturbance acting on
the plant is known, using only a feedforward adaptation scheme, Fig. 35, or using a feedforward control
scheme for the reference and disturbance together with feedback control, Fig. 36, are further ways to
minimize disturbances.
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Fig. 32: System identification tool in MATLAB

Fig. 33: Open-loop scheme Fig. 34: Feedback scheme

Fig. 35: Feedforward scheme
Fig. 36: Feedback scheme with feedforward compen-
sation
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4.1.1 Open loop
The input/output (I/O) behaviour of a system driven in open loop needs to be known exactly, since there
is no feedback to adjust the input signal to compensate for output variations e.g., caused by disturbances.
Such a scheme can be used if the output signal is not critical and may change by several per cent without
losing system performance.

4.1.2 Feedforward scheme
Like the open-loop case, a precise knowledge of I/O behaviour is required when operating a system in
a feedforward scheme. The disturbances must be measurable and therefore they can be compensated for
by adjusting the drive signal. However, in the feedforward scheme, there is no process for automatically
adjusting the output signal to be controlled.

4.1.3 Feedback scheme
The signal to be controlled (output) is fed back using a feedback regulation scheme. Therefore, the output
signal acts directly on the input. In contrast with the feedforward scheme, this interconnection of signals
changes the system transfer function, as seen in Section 3.4.

4.1.4 Feedback controller together with feedforward scheme
This control structure is often called a two-degrees-of-freedom controller, where two signals, i.e., the
output and reference, are treated independently by introducing, in addition to a feedback controller, a
feedforward controller to the reference (FFr). Furthermore, a feedforward controller for the measurable
disturbance is used. Hence, this concept copes with a combination of the feedback and the two feed-
forward controllers.

4.1.5 Short summary
The optimal regulation approach depends on the application for which it is used. Here, several questions
must be addressed, e.g., are the signals of interest of even all signals measurable or observable? Further
information on the different regulation schemes can be found, e.g., in Ref. [18] or control theory lectures
from universities.

4.1.5.1 Example feedback loop for cavities

Figure 37 depicts an example of a feedback loop in LLRF controls. The plant consists in this case of a
serial connection of its main components, i.e., the pre-amplifier, klystron, and cavity. The signal to be
controlled is depicted as an ideal signal yi(t), while, in practice, disturbances to the output dy(t) need
to be added. The measurable signal yr(r) is overlapped with noise n(t) from the detection scheme. The
feedback controller with the error signal as input, i.e., the difference between the reference r(t) and the
measured output signal yr(t) + n(t), optimizes the ideal drive signal ui(t). Again, we can assume that
the drive signal to the real plant is modulated by a disturbance du(t) leading to the real drive signal ur(t),
which is the input to the plant. To complete the entire feedback loop, several time delays in the detection
path, the controller, and plant must be added; these are not negligible and affect the feedback operation.

4.2 Objective of a feedback control problem
The main objective of a feedback regulation scheme is to make the output y(t) behave in a desired way
by manipulating the plant input u(t). Two different scenarios can be considered.

1. Regulator problem (output disturbance rejection with constant reference);
2. Servo problem (reference tracking without disturbance).
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Fig. 37: Simplified block diagram of cavity feedback loop with signals and subsystems to be considered

On the one hand, in the regulator problem, the main goal is to suppress output disturbances. Here, it is
assumed that the reference signal is constant and the feedback loop counteracts only the effect of disturb-
ances. On the other hand, in the servo problem, the reference signal must be tracked optimally. In this
case, it is assumed that no disturbance acts on the plant. Therefore, the goal is to keep the output close to
the reference by manipulating the plant input.

Mostly, the regulator problem is addressed in practice. However, for both cases, the error signal,
which is the difference between reference and output, should be minimal.

4.3 Stability
A system is stable if, for a given bounded input signal, the output signal is bounded and finite (bounded
input, bounded output stable); otherwise, the system is called unstable. Stability can be checked for
stable and unstable linear systems in open or closed feedback loops. For an unstable open-loop system,
the main goal is to stabilize the closed-loop system behaviour using a feedback controller. The stability
can be checked in the time or frequency domain.

4.3.1 Time domain
The system is stable if its impulse response g(t) is absolutely integrable and bounded:

∫ ∞

t=−∞
|g(t)|dt <∞ .

This stability check in the time domain is often not preferred and frequency domain checks are recom-
mended.

4.3.2 Frequency domain
The stability can be checked in the frequency domain using:

1. pole location (all poles in left half plane);
2. Bode diagram;
3. Nyquist plot;
4. H-infinity norm (mostly for MIMO systems);
5. harmonic balance (for non-linear systems).

In the following, we will restrict the stability check to SISO systems, i.e., cases (1) to (3). The interested
reader is referred to, e.g., Ref. [18] to learn about MIMO stability checks using the H-infinity norm.
Furthermore, special methods, e.g., the harmonic balance, exist to check the stability for non-linear sys-
tems, which are beyond the scope of this paper.
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Fig. 38: Time-domain impulse response for different pole locations [19]

4.3.2.1 Pole location

Assume a SISO continuous-time transfer function of the system given as

G(s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

ansn + an−1sn−1 + . . .+ a1s+ a0
.

This system has n poles and m zeros, and if it is physically realizable, we have n ≥ m. The values of s
at which the denominator of G(s) takes the value zero, and therefore at whichG(s) becomes infinite, are
called the poles of the transfer function G(s). The locations of the poles in the complex plane determine
the dynamic behaviour of the system; for this reason the denominator polynomial of the transfer function
is called the characteristic polynomial. To check the stability, the poles of the system must be computed
and its pole location must be checked. If all poles have negative real part and therefore lie in the left half
plane of the complex plane, the system is stable. A system is called semi-stable if the real part of a pole
is zero. A visualization is given in Fig. 38 as an example.

4.3.2.2 Bode diagram and Nyquist plot

Another way of checking the stability of the system is by its Bode magnitude and phase plot or by its
corresponding Nyquist representation. The Nyquist plot is simply the mapping from the Bode amplitude
and phase plot to the complex plane; here, the frequency information is lost. The following description
is a very simplified check; for further details, the reader is referred to, e.g., Ref. [18].

The system is plotted in open loop and the so-called gain margin and phase margin can be read
from the graph. This gives an easy stability check for the closed-loop system using a proportional control-
ler. Hence, both checks are made in open loop, and the closed-loop stability can be predicted.

Example: Assume a proportional controller connected serially with the system and plot the system as a
Bode diagram or a Nyquist plot, as shown in Figs. 39 and 40, respectively. Read out the phase margin
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Fig. 39: Bode: gain and phase margin Fig. 40: Nyquist: gain and phase margin

at point A, where the magnitude crosses 0 dB and the gain margin at point B, where the phase crosses
−180◦. Increasing the proportional controller gain from one shifts the point A towards higher frequencies
for the Bode representation. This obviously reduces the phase margin. If points A and B are equal, i.e.,
if the controller gain is equal to the reciprocal of the gain margin, from the system Bode plot, the closed-
loop system becomes unstable, i.e., with a phase shift of 180◦, the negative feedback loop becomes a
positive feedback loop. The same can be observed using the Nyquist plot. Here, the complex system line
is blown up and the point B moves towards the critical point −1, i.e., with magnitude 0 dB and phase
−180◦ in the Bode plot. Furthermore, point A moves on the circle with radius 1 towards −1 causing a
decrease of the phase margin.

Thus, both representations help to identify the maximum possible proportional feedback gain.
Furthermore, one can easily see whether the loop is stable or not. To err on the side of caution in real
applications, it is often recommended to choose a phase margin of 60◦ to cope with system variations
and to keep the closed-loop operation more robust.

4.3.2.3 MIMO system stability check

Consider a MIMO system with transfer matrix Gcl(s) with input r(t) and output y(t) operated in a
closed feedback loop, see e.g., the example given in Fig. 29. This feedback system is stable if and only
if the transfer function matrix Gcl(s) is stable. Furthermore, it is mandatory that each transfer function
itself within the transfer matrix is stable. Furthermore, the MIMO stability can be checked using the
generalized Nyquist plot or H-infinity based methods, see, e.g., Ref. [18].

4.4 Gang of four
Often it is not sufficient to check the stability or closed-loop behaviour for only one I/O pair. It is highly
recommended to check it for the so-called gang of four. An example of a feedback loop is depicted in
Fig. 41. Here, the system has one output (y(t)), three inputs (r(t), d(t), n(t)), and intermediate signals
(e.g., e(t) and u(t)). First check the response of y(t) to disturbance d(t) and the response of u(t) to
measurement noise n(t) by

Gyd(s) =
G(s)

1 +G(s)C(s)
and Gun(s) = − C(s)

1 +G(s)C(s)
.

This is followed by a check of the robustness to process variations by

S(s) =
1

1 +G(s)C(s)
and T (s) =

G(s)C(s)

1 +G(s)C(s)
,
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Fig. 41: Closed loop with feedback controller C(s) and plant G(s) operated in negative feedback loop. The main
signals are given: reference r(t), output y(t), error e(t), controller output u(t), disturbance d(t), and noise n(t).

Fig. 42: Increase of feedback gain and the waterbed effect [20]

where S(s) is the so-called sensitivity function and T (s) is the so-called complementary sensitivity
function. Both transfer functions depend on the loop transfer function L(s) = G(s) · C(s). The cou-
pling between the sensitivity and complementary sensitivity function is given for the SISO case as
S(s) + T (s) = 1. In a typical feedback operation S(s), for frequencies towards zero should be small
(S(0) → 0) and S(∞) → 1, i.e., often referred to as disturbance rejection, and T (0) → 1 and
T (∞) → 0, i.e., referred to as reference tracking. By changing the controller transfer function C(s),
all four transfer functions to be checked for stability and its behaviour are changing. The effect of chang-
ing the controller gain is often visualized by S(s) and T (s); an example is given in Fig. 42. Pushing
down the sensitivity function S(s) for low frequencies pushes up S(s) for higher frequencies caused
by the so-called waterbed effect. In this way, high-frequency oscillations occur if the controller gain is
increased. Hence, the optimal feedback strategy is often not reaching high feedback gain. The optimal
controller is often a trade-off between reference tracking and disturbance rejection.

Hint: By using, in addition, a filter function for the reference, the so-called gang of six is formed, so, in
total, six transfer functions need to be checked.

4.5 Types of feedback controller design
A feedback controller can be designed in two different ways, i.e., in the frequency or time domain.
The classical feedback controller design is normally implemented in the frequency domain for a SISO
controller design using loop-shaping techniques. Here, the open-loop controller and system analysis is
performed using e.g., Bode or Nyquist plots, see Section 4.3.2. A simple example is the PID controller
with transfer function

U(s)

E(s)
= C(s)
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Fig. 43: PID controller

and the error signal as input, i.e., the difference between the set-point and the signal to be controlled, and
the output signal, i.e., the signal driving the system or plant. Its time and frequency response is given as

u(t) = KP

(
e(t) +

1

TI

∫ t

t0

e(τ)dτ + TD
de(t)

dt

)
,

= KPe(t) +KI

∫ t

t0

e(τ)dτ +KDė(t) ,

U(s) = KPE(s) +
1

s
KIE(s) + sKDE(s) ,

= KP

[
1 +

1

TIs
+ TDs

]
E(s) ,

with a block diagram for the frequency domain depicted in Fig. 43. The proportional part accounts for
present values of the error, i.e., for a positive proportional gain, and if the error is positive, the control
output will also be positive. The integral part accounts for past values of the error. Therefore, the integral
of the error will accumulate over time and the controller will respond by applying a stronger action. The
derivative part accounts for possible future trends of the error, based on its current rate of change.

A PID controller relies only on the measured process variable, not on knowledge of the underly-
ing process. The use of the PID algorithm does not guarantee optimal control of the system, or even its
stability. Normally PI controllers are in use, since the derivative action is sensitive to measurement noise
(for digital signal processing this involves analogue-to-digital converter noise), whereas the absence of
an integral term may prevent the system from reaching its target value. Here, the goal is to tune two pa-
rameters (KP andKI) to achieve a kind of optimal closed-loop behaviour. The tuning of a PID controller
in general can be implemented in different ways, e.g., loop-shaping techniques, manual tuning by ob-
serving the closed-loop behaviour, or the Ziegler–Nichols tuning rules. The interested reader is referred
to the literature for more detail on such tuning rules.

In contrast with classical feedback control, the modern feedback controller design is usually imple-
mented as time-domain analysis, i.e., the system is presented as a state space model, given as

ẋ(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) +Du(t) .

Such a system representation and, therefore, the modern feedback controller design is not restricted to
SISO systems. Hence, it is more general for MIMO systems and often based on signals directly, e.g.,
the linear quadratic regulator, or closed-loop shaping methods, e.g., considering the H-infinity norm of
the weighted sensitivity function. The linear quadratic regulator control approach assumes that the plant
dynamics are linear and known. The quadratic cost function is given as

J =

∫ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt , (25)
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Fig. 44: H∞ design problem with shaping filter WS(s), WCS(s), and WT(s)

with weighted state x(t) and weighted controller output u(t); the constant weighting matrices Q and R
are the design parameters. The optimal solution to this problem is

u(t) = −K · x(t) ,

with K = R−1BTX and X as the unique positive semi-definite solution of the Riccati equation

ATX +XA−XBR−1BTX +Q = 0 .

Often not all states x(t) are directly measurable, a prerequisite for linear quadratic regulator state feed-
back. This requires a Kalman filter as state estimator and its regulation on the estimated state. The reader
is referred to Ref. [18].

In contrast with state feedback using a linear quadratic regulator, direct feedback to the measurable
output signal y(t) can be designed, e.g., using H-infinity (H∞) based optimization methods and weight-
ing filter functions to shape the sensitivity and complementary sensitivity function, see Section 4.4. A
block diagram is given in Fig. 44. Here, the goal is to find the optimal controller minimizing the H∞-
norm

‖Tzr(s)‖∞ =

∥∥∥∥∥∥




WS(s) · S(s)
WCS(s) · C(s)S(s)
WT(s) · T (s)



∥∥∥∥∥∥
∞

< 1 (26)

from the reference r(t) to the fictitious output signals z(t), which are connected by shaping filters to
different signals within the feedback loop. Keeping theH∞-norm below 1 one guarantees a stable closed-
loop system, see the small-gain theorem. A complete description of the H∞-norm optimization would
be beyond the scope of this paper and the interested reader is referred to Ref. [18].

5 Examples
Next, some examples for feedback controller design at different facilities are given. First let’s start with
the feedback controller design for an RF field regulation, where the system is operated in pulsed mode.
The transition from pulsed to continuous wave mode often requires an increase in QL, putting additional
effort in microphonics suppression or rejection acting to the cavities, described in the second example. If
additional disturbances are measurable, a feedback scheme based on known disturbance is recommended,
discussed in the last example.
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Fig. 45: Pulsed mode at FLASH with filling, flattop, and decay. The electron bunches are injected during the flattop
time, where the amplitude and phase of the RF field needs to be kept constant.
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Fig. 46: LLRF system overview with plant and LLRF control system

5.1 RF field feedback loop
This example is performed at the FLASH based on the description in Ref. [17]. FLASH is operated in a
pulsed mode with 10 Hz repetition rate and a pulse length of about 1 ms, see Fig. 45.

Each RF pulse can be divided into three parts: the filling; the flattop, where the electron bunches
are accelerated; and the decay. The regulation goal is to achieve a stability of ∆A/A ≤ 0.01% and
∆ϕ ≤ 0.01◦. Two main concepts are used; on the one hand, adaptation by learning from pulse to pulse,
i.e., the optimization of the drive signal at 10 Hz, and, on the other hand, the feedback controller acting
within an RF pulse, i.e., at 9 MHz sampling frequency. The system is controlled in the in-phase (I)
and quadrature (Q) plane. Hence, the signals for regulation are mapped from the amplitude and phase
representation. With this, the system has two inputs and two outputs, i.e., it is a MIMO system (Fig. 46).

The feedback controller is designed using H∞-norm optimization. To do this, a system model is
required. This is created by adding, in addition to the nominal drive signal (the input to the system u),
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Fig. 47: Bode diagram of model and cross-validation, confirming system modelling

a small excitation signal. The change in output and its corresponding input signal are used to estimate
a small signal model around the nominal operating point. In this way, the transfer matrix is estimated;
its transfer functions (four in total for a 2 × 2 MIMO system) are given as a Bode diagram in Fig. 47.
Furthermore, a cross-validation (the new excitation signal differs from the signal used for the system
identification) shows the accuracy of the system identification.

With this model, the optimal MIMO controller coefficients based on an H∞ approach are com-
puted and follow the introduction in Section 4.5. Here, the weighting filters for closed-loop shaping
are used to define the resulting closed-loop behaviour. The filter function for the controller sensitivity
WCS(s) is chosen such that the controller must suppress the 7π/9 resonance mode at 3 MHz; a notch
filter at the analogue-to-digital converter for the 8π/9 resonance mode is set such that this mode is not
present in the error signal. The optimization is performed and leads to a MIMO controller with the control
objectives of plant decoupling (no coupling from channel I to Q and vice versa), avoidance of passband
mode excitation, and optimal closed-loop behaviour.

The idea of iterative learning control [21] for pulse-to-pulse feedforward adaptation is described
in Ref. [22]. It is similar to the MIMO controller design for a model-based regulation scheme. The time-
dependence within an RF pulse is given by t = 0, . . . , T , and the indices k and k + 1 represent the
previous and current RF pulses, respectively. Given is a discrete linear time-invariant state space model,

x(t+ 1) = Ax(t) +Bu(t) , x(0) = x0 , 0 ≤ t ≤ T ,

y(t) = Cx(t) ,

of the closed-loop system G(z), with the discrete time shift operator z. Mapping from continu-
ous (Gc = G(s)) to discrete time (Gd = G(z)) can be done in MATLAB, using the command
Gd = c2d(Gc,Ts,'tustin'); Ts is the sampling time in seconds and 'tustin' the bilinear discretiza-
tion method. Here, the closed-loop transfer function is given with the error as input (u(t) → e(t)) and
the controller output as output (y(t) → u(t)), since the LLRF system is operating with MIMO feed-
back and the iterative learning control is acting on u(t) with the signal to be minimized from pulse to
pulse e(t), see Fig. 41. The iterative learning control performance index is given by

Jk+1(uk+1) =
1

2

(
T∑

t=1

ek+1(t)TQ(t)ek+1(t) +
T−1∑

t=0

(uk+1(t)− uk(t))T R(t) (uk+1(t)− uk(t))
)

,

where the weighting matrices Q(t) and R(t) are of compatible dimensions. This is the familiar perform-
ance criterion from linear quadratic optimal control theory. The optimal correction signal for the next RF
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Fig. 48: Resonance frequency change by microphonics (courtesy: C. Schmidt)

pulse uk+1(t) is computed by

ξk+1(t) = β(t)ξk+1(t+ 1) + γ(t)ek(t+ 1),

uk+1(t) = uk(t) + ωξk+1(t),

where the required matrices β(t), γ(t), λ(t), and ω are calculated by solving a Riccati equation back-
wards with the corresponding closed-loop model. For further information see, e.g., Refs. [17, 21, 22].

Using both feedback schemes, the MIMO controller, together with iterative learning control, the
regulation goal in amplitude and phase stability are met and typically below the specification, i.e.,
∆A/A ≈ 0.008% and ∆ϕ ≈ 0.008◦.

5.2 Microphonics suppression
Microphonics is one of the main disturbances acting to a cavity leading to small deformations of the
cavity body. Such small deformations lead to an amplitude and phase error of a driven cavity caused by
a detuning of the cavity from its resonance frequency, see Fig. 48.

The effect is mainly dominant for highQL (QL > 107) cavities used in continuous wave operation.
However, even at FLASH, microphonics was observed during the construction of the European XFEL.
FLASH is typically operated withQL = 3×106, where microphonics is not the main disturbance source.
This changes, by using e.g., a compacting machine at the XFEL injector (distance to FLASH is approx.
400 m) and its strong ground shaking, see Fig. 49. Here, the system performance gets worse (up to a
factor of four during the work). Hence, a decoupling from the ground or all external noise sources is
often the first approach. This could be confirmed for a continuous wave driven cavity by placing an anti-
vibration mat below a vacuum pump, see Fig. 50. Such passive noise reduction helps improve the system
performance. However, not all disturbance and noise sources can be avoided.

An active microphonics reduction for high QL (QL > 107) superconducting RF cavities was
studied [23]. In this thesis, the main disturbances acting on a superconducting RF cavity were studied,
see Fig. 51.

Furthermore, a system model is estimated, which consists of different mechanical cavity modes:

∆ω̈cav,k(t) + 2ξkωm,k ·∆ω̇cav,k(t) + ω2
m,k ·∆ωcav,k(t) = ±kLF,k2πω

2
m,kVPiezo(t) ,

∆ωcav(t) =
∑

k

∆ωcav,k(t) ,
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Fig. 49: Left-hand side, amplitude stability at the FLASH superconducting RF modules; right-hand side, compact-
ing machine at XFEL injector (noise source).

Fig. 50: Left-hand side, superconducting RF cavity detuning (courtesy: R. Rybaniec); right-hand side, vacuum
pump as noise source (courtesy: J. Eschke).

Fig. 51: TESLA cavity welded in cryo-unit; possible detuning sources are depicted [23]
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Fig. 52: Left-hand side, principle of transfer function measurement; right-hand side, model transfer function in
frequency range of 10–200 Hz [23].

Fig. 53: Left-hand side: detuning compensation scheme given by a feedback and an adaptive feedforward signal
path. Right-hand side: time-domain detuning data in open loop (blue), PI controller (red), and combined feedback
and feedforward control (black).

Fig. 54: Disturbance observer-based control scheme in combination with PI feedback loop [26]
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Fig. 55: Left-hand side, power supply ripple reduction using disturbance observer-based control; right-hand side,
beam-induced disturbance rejection [26].

with the applied piezo voltage Vpiezo as input and the corresponding eigenmode detuning ∆ωcav,k as
output. Thus, the model for each mode k in frequency domain using Laplace transform is given as

Hk(s) =
ω2
kMk

s2 + 2ξkωks+ ω2
k

.

Together with a low-pass behaviour and a time delay, the total system model is

H(s) =

(
H0(s) +

N∑

k=1

Hk(s)

)
·Hdelay(s) ,

with

H0(s) =
M0

τs+ 1
(low-pass)

and

Hdelay(s) = exp(−Tdelay · s) (time delay) .

A model is identified for the Saclay II tuner and its measured and estimated transfer function is shown in
Fig. 52. Based on this model a controller consisting of a feedforward and feedback scheme is designed,
as shown in the left panel of Fig. 53. The resulting detuning stability for a superconducting RF cavity
operated at 1.8 K with QL = 6.4 × 107 is shown on the right panel of Fig. 53. For further information,
see Refs. [23] and [24].

5.3 Disturbance rejection
Reference [25] describes the application using a disturbance observer-based control scheme for LLRF
systems. It is in use at the compact energy recovery linac at KEK. In the following, a brief outline of this
topic is given. Assume, a disturbance acting on the system, and that, for this example, the disturbance is
not precisely measurable. However, a disturbance observer can be used to estimate the disturbance. This
requires a sufficiently precise system model GP (s). The system output is filtered by the inverse system
transfer function G−1

n (s) together with a filter function Q(s), see Fig. 54. This filter function is needed
to low-pass filter high-frequency components, to set the frequency region of interest for the expected
occurring disturbance and to cope with the inversion of causal systems. Furthermore, it is necessary to
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filter the system input (known from the drive signal) by the same filter function. The difference between
the filtered drive signal and the estimated drive signal computed from the output signal is an estimate of
the disturbance. This estimated disturbance signal is subtracted from the drive, i.e., in the best case, the
subtracted estimated disturbance and the real disturbance cancel.

Beside this feedforward disturbance cancellation, a PI feedback loop is added as an outer loop.
This further reduces the occurrence of disturbances that are not compensated by the disturbance observer-
based control scheme. Two examples are given in Fig. 55: the suppression of power supply ripples and
the beam-induced voltage decrease. Both examples show that using advanced control schemes helps to
improve the system performance. For further details, see Ref. [25].
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