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Abstract
Classical electrodynamic theory is required theoretical training for physicists
and engineers working with particle accelerators. Basic and empirical phenom-
ena are reviewed and lead to Maxwell’s equations, which form the framework
for any calculations involving electromagnetic fields. Some necessary math-
ematical background is included in the appendices so the reader can follow
the work and the conventions used in this text. Plane waves in vacuum and in
different media, radio frequency cavities, and propagation in a waveguide are
presented.
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1 Introduction and motivation
Together with classical mechanics, quantum theory, and thermodynamics, the theory of classical electro-
dynamics forms the framework for the introduction to theoretical physics. Classical electrodynamics can
be applied where the length scale does not required a treatment on the quantum level. Although both
electricity and magnetism can exert forces on other objects, they were for a long time treated as distinct
effects. The empirical laws were unified in a single theory by Maxwell and culminated in the prediction
of electromagnetic waves. Although very successful in describing most phenomena, it is not possible
to reconcile the theory with the concepts of classical mechanics. This was solved by the introduction
of special relativity by Einstein, in studying the effects of moving charges. This reformulation not only
explained the origin of such effects as the Lorentz force, but also showed that electricity and magnetism
are two different aspects of the same underlying physics. Since in accelerator physics we are mainly
concerned about moving charges, the topic of special relativity is treated in a separate lecture at this
school [1].

This paper touches on many different areas of electromagnetic theory, with a strong focus on
applications to accelerator physics [2]. It covers the field of electrostatics and the equations of Gauss and
Poisson, magnetic fields generated by linear and circular currents, and electromagnetic effects in vacuum
and different media, and leads to Maxwell’s equations [3–5].

Electromagnetic waves and their behaviour at boundaries and in waveguides and cavity resonators
are treated in some detail. Because of their importance, such phenomena as polarization and propagation
in perfect and resistive conductors are presented.

The paper is intended as a recapitulation for physicists and engineers and mathematical subtleties
are avoided where it is acceptable.

This paper cannot replace a full course on electromagnetic theory. This is, in particular, true for
students less familiar with this subject. Although they will not be able to understand everything in this
lecture, it is attempted to provide access to the core material and the direct features relevant for accelerator
physics.

The background required is a knowledge of calculus and differential equations; some more ad-
vanced concepts, such as vector calculus are summarized in the appendices.
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Fig. 1: Charges enclosed within a closed surface

2 Electrostatics
Electrostatics deals with phenomena related to time-independent charges. It was found empirically that
charged bodies exert a force on each other, attracting in the case of unlike charges or repelling for charges
of equal sign. This is described by the introduction of electric fields and the Coulomb force acting on the
particles. Charges are the origin of electric fields, which form a vector field.

2.1 Gauss’s theorem
The fields of a distribution of charges add to form the overall field and the latter can be computed when
the distribution of charge is known. This treatment is based on the mathematical framework worked out
by Gauss and others and is summarized in Gauss’s theorem. Gauss’s theorem in its simplest form is
illustrated in Fig. 1.

We assume a surface S enclosing a volume V , within which are charges: q1, q . . . , producing
electromagnetic fields ~E originating from the charges and passing through the surface (Fig. 1).

Summing the normal component of the fields passing through the surface, we obtain the flux φ:

φ =

∫

S

~E · ~ndA =
∑

i

qi
ε0

=
Q

ε0
, (1)

where ~n is the normal unit vector and ~E the electric field at an area element dA of the surface. The
surface integral of ~E equals the total charges Q inside the enclosed volume.

This holds for any arbitrary (closed) surface S and is:

– independent of how the particles are distributed inside the volume;
– independent of whether the particles are moving or at rest;
– independent of whether the particles are in vacuum or material.

Using Gauss’s formula (see Appendix B), we can formulate the theorem as:
∫
S
~E · d ~A =

∫
V

ρ

ε0
· dV =

Q

ε0
= φE∫

S

~E · d ~A =

∫

V
∇ ~E · dV =

∫

V
div ~E · dV

︸ ︷︷ ︸
Gauss′s formula

(relates surface and volume integrals) (2)

It follows that from Eq. (2):

div ~E = ∇ · ~E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

=
ρ

ε0
, (3)
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Fig. 2: Flux through a surface element created by a single point charge

which is Maxwell’s first equation.

As a physical picture, the divergence ‘measures’ outward flux φE of the field. The simplest pos-
sible example is the flux from a single charge q, shown in Fig. 2. A charge q generates a field ~E according
to (Coulombs law):

~E =
q

4πε0

~r

r3
. (4)

It is enclosed by a sphere and obviously ~E = const. on a sphere (area, 4π · r2):
∫ ∫

sphere

~E · d ~A =
q

4πε0

∫ ∫

sphere

dA

r2
=

q

ε0
. (5)

The surface integral through the sphere A equals the charge inside the sphere (for any radius of the
sphere), consistent with Eq. (1).

2.2 Electrostatic potential and Poisson’s equation
We can derive the field ~E from a scalar electrostatic potential φ(x, y, z), i.e.,

~E = −grad φ = −∇φ = −
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (6)

then we have

∇ ~E = −∇2φ = −
(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
=
ρ(x, y, z)

ε0

This is Poisson’s equation.

Once we can compute φ for a given distribution of the charge density ρ, we can derive the fields.
As an example, the simplest possible charge distribution is an isolated point charge with the potential:

φ(r) =
q

4πε0r

~E = −∇φ(r) =
q

4πε0
· ~r
r3

As a realistic case, we assume a distribution ρ(x, y, z) that is Gaussian in all three dimensions:

ρ(x, y, z) =
Q

σxσyσz
√

2π3
exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

(σx, σy, σz are the r.m.s. sizes).

The potential φ(x, y, z, σx, σy, σz) becomes (see e.g., Ref. [6]):

φ(x, y, z, σx, σy, σz) =
Q

4πε0

∫ ∞

0

exp
(
− x2

2σ2
x+t
− y2

2σ2
y+t
− z2

2σ2
z+t

)

√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)
dt . (7)
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Fig. 3: Field lines between magnetic dipoles

In many realistic cases, the charge distribution shows a strong symmetry, Then we can rewrite the
Poisson equation and obtain some very important formulae in practice.

Poisson’s equation in polar co-ordinates (r, ϕ):

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
= − ρ

ε0
; (8)

Poisson’s equation in cylindrical co-ordinates (r, ϕ, z):

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= − ρ

ε0
; (9)

Poisson’s equation in spherical co-ordinates (r, θ, ϕ):

1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin θ

∂2φ

∂ϕ2
= − ρ

ε0
. (10)

Examples for solutions of these equations are found in Ref. [3].

3 Magnetostatics
In the treatment of magnetostatic phenomena, we follow the strategy developed for electrostatics. The
striking difference is the absence of magnetic charges, i.e., magnetic ‘charges’ occur only in combination
with opposite ‘charges’, i.e., in the form of a magnetic dipole.

The field lines between magnetic poles for a magnet and the Earth’s magnetic field are shown
in Fig. 3.

We start with some basic definitions and properties.

– Magnetic field lines always run from north to south.
– They are described as vector fields by the magnetic flux density ~B.
– All field lines are closed lines from the north to the south pole.

3.1 Gauss’s theorem
We follow the same procedure as for electrostatic charges and enclose a magnetic dipole within a closed
surface Fig. 4.

From very simple considerations, it is rather obvious that field lines passing outwards through the
surface also return through this surface, i.e., the overall flux is zero. This is formally described by Gauss’s
second theorem, for magnetic fields:

∫

S

~Bd ~A =

∫

V
∇ ~BdV = 0 . (11)
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Fig. 4: Closed surface around magnetic dipole

Fig. 5: Static electric current inducing an encircling (curling) magnetic field

This leads to Maxwell’s second equation:

∇ ~B = 0 . (12)

The physical significance of this equation is that magnetic charges (monopoles) do not exist (although
Maxwell’s equations could easily be modified if necessary).

3.2 Ampère’s law
Static currents produce a magnetic field described by Ampère’s law (Fig. 5).

Assuming a current density ~j, we can compute the magnetic field:

curl ~B = ∇× ~B = µ0
~j , (13)

or in integral form, where the current density becomes the current I ,
∫ ∫

A
∇× ~Bd ~A =

∫ ∫

A
µ0
~jd ~A = µ0

~I . (14)

For a static electric current I in a single wire (Fig. 6), we get the Biot–Savart law (we have used
Stoke’s theorem and the area of a circle, A = r2 · π):

~B =
µ0

4π

∮
~I · ~r × d~s

r3

~B =
µ0

2π

~I

r
(15)

4 Time-varying electromagnetic fields
Extending the subject of static electric and magnetic fields opens a large range of new phenomena.
Furthermore it shows a close connection between electricity and magnetism.
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Fig. 6: Induced magnetic fields by static current

Fig. 7: Maxwell’s displacement current, e.g., charging capacitor

4.1 Maxwell and time-varying electric fields
We need to address the question of whether we need an electric current to produce magnetic fields. This
was addressed by Maxwell, which led him to the introduction of the displacement current ~jd.

We define this displacement current by:

~Id =
dq

dt
= ε0 ·

dφ

dt
= ε0

d

dt

∫ ∫

area

~E · d ~A . (16)

It must be understood that this is not a current from moving charges but from time-varying electric fields.

The displacement current Id produces magnetic fields, just like ‘actual currents’ do. An example
for a displacement current is a charging capacitor (Fig. 7).

Time-varying electric fields induce magnetic fields (using the current density ~jd). We can formu-
late this as:

∇× ~B = µ0
~jd = ε0µ0

∂ ~E

∂t
. (17)

The bottom line of this result is that magnetic fields ~B can be generated in two ways:

∇× ~B = µ0
~j (18)

are the magnetic fields produced by an electric current (Ampère), while

∇× ~B = µ0
~jd = ε0µ0

∂ ~E

∂t
(19)

are the magnetic fields produced by a changing electric field (Maxwell).

Putting them together we obtain Maxwell’s third law:

∇× ~B = µ0(~j + ~jd) = µ0
~j + ε0µ0

∂ ~E

∂t
. (20)

Using Stoke’s formula, this can be rewritten in integral form:
∮

C

~B · d~s =

∫

A
∇× ~B · d ~A

︸ ︷︷ ︸
Stoke′s formula

=

∫

A

(
µ0
~j + ε0µ0

∂ ~E

∂t

)
· d ~A . (21)
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Fig. 8: Electromotive force (EMF) produced by changing magnetic flux Ω

4.2 Faraday’s law and varying magnetic fields
Assuming a conducting coil in a static magnetic field ~B (Fig. 8). The area enclosed by the coil should be
A. Changing the magnetic flux Ω through the area A produces an electromotive force (EMF) in the coil
resulting in a current I:

flux = Ω =

∫

A

~Bd ~A, EMF =

∮

C

~E · d~s , (22)

−∂Ω

∂t
= − ∂

∂t

∫

A

~Bd ~A

︸ ︷︷ ︸
fluxΩ

=

∮

C

~E · d~s , (23)

−∂Ω

∂t
= −

∫

A

∂

∂t
~Bd ~A =

∮

C

~E · d~s . (24)

The magnetic flux can be changed by:

– moving the magnet relative to the conducting coil;
– moving the coil relative to the magnet.

4.3 Ampère and Maxwell’s law
In a more general form, this can be written using Stoke’s formula, which relates line integrals and surface
integrals. It is then rewritten as:

−
∫

A

∂ ~B

∂t
d ~A =

∫

A
∇× ~Ed ~A =

∮

C

~E · d~s
︸ ︷︷ ︸

Stoke’s formula

, (25)

and we arrive at the well-known formulation:

∇× ~E = −∂
~B

∂t
. (26)

A changing magnetic field through any closed area induces electric fields in the (arbitrary) bound-
ary. A sketch demonstrating Stoke’s formula is shown in Fig. 9. This formulation is known as the
Maxwell–Faraday law.

5 Maxwell’s equations
The empirical concepts and experimental findings can be put together in a set of differential equations,
usually referred to as Maxwell’s equations.
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Fig. 9: Stoke’s formula

5.1 Maxwell’s equations in vacuum
Putting together Eqs. (3), (12), (20), and (26), Maxwell’s equations in vacuum (so-called microscopic
equations) read:

∇ ~E =
ρ

ε0
= −∆φ , (I)

∇ ~B = 0 , (II)

∇× ~E = −d ~B

dt
, (III)

∇× ~B = µ0

(
~j + ε0

d ~E

dt

)
, (IV) (27)

or, written in integral form (using Gauss’s and Stoke’s theorems):

∫

A

~E · d ~A =
Q

ε0
,

∫

A

~B · d ~A = 0 ,

∮

C

~E · d~s = −
∫

A

(
d ~B

dt

)
· d ~A ,

∮

C

~B · d~s = µ0

∫

A

(
~j + ε0

d ~E

dt

)
· d ~A . (28)

5.2 Maxwell’s equations in material
In material, we have to modify the electromagnetic fields ~E and ~H and relate those to the magnetic
induction ~B and electric displacement ~D. In vacuum, we had:

~D = ε0 · ~E, ~B = µ0 · ~H . (29)

In a material, the relations read:

~D = εr · ε0 · ~E = ε0 ~E + ~P , (30)
~B = µr · µ0 · ~H = µ0

~H + ~M . (31)

The origin of these additional contributions are ~Polarization and ~Magnetization in material.

We can summarize:

εr( ~E,~r, ω)⇒ εr is relative permittivity ≈ [1–105] ;
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µr( ~H,~r, ω)⇒ µr is relative permeability ≈ [0–106] .

If ~D and ~B do not depend on the fields ~E and ~H , they are linear; if they do not depend on the
direction (~r) or frequency (ω), they are isotropic and non-dispersive.

The so-called macroscopic Maxwell’s equations become:

∇ ~D = ρ ,

∇ ~B = 0 ,

∇× ~E = −d ~B

dt
,

∇× ~H = ~j +
d ~D

dt
. (32)

6 Electromagnetic potentials
It was shown that electric fields can be derived from a scalar potential φ:

~E = −~∇φ . (33)

Since div ~B = 0, we can write ~B using a vector potential ~A:

~B = ~∇× ~A = curl ~A , (34)

combining Maxwell (I) and Maxwell (III):

~E = −~∇φ− ∂ ~A

∂t
. (35)

Fields can be written as derivatives of scalar and vector potentials φ(x, y, z) and ~A(x, y, z). Knowledge
of the potentials allows computation of the fields.

6.1 Gauge invariance
The equations for the potentials can be directly derived from Maxwell’s equations:

∆φ =
1

c

∂(∇ · ~A)

∂t
= −4πρ , (36)

and

∆ ~A− 1

c2

∂2 ~A

∂2t
−∇

(
∇ · ~A+

1

c

∂φ

∂t

)
=

4π

c
~j . (37)

We have two coupled differential equations for the potentials, which may be difficult to solve for
general charge densities and current densities. We shall try to decouple these equations using a particular
property of the potentials. While the absolute values of the electric and magnetic fields can be measured,
the absolute values of the potentials are not defined. The electromagnetic potentials are merely aux-
iliary ‘constructions’, although very important ones, in particular, for the relativistic formulation of the
electromagnetic theory.

Without going into the details, the theory should be invariant under a change of scale (‘gauge’).
The most commonly used is the Lorentz gauge, which yields a condition between the potentials:

~Ag = ~A+∇f , (38)
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φg = φ+
1

c

∂f

∂t
, (39)

1

c

∂φg

∂t
+∇ ~Ag = 0 , (40)

where f is an arbitrary function of position and time. These equations lead to the same (measurable)
fields and do therefore satisfy Maxwell’s equations. This ‘gauge’ transformation decouples Eq. (36) and
Eq. (37) and leads to:

∆φ(~r, t) =
1

c2

∂2

∂t2
φ(~r, t) = −4π · ρ(~r, t) , (41)

∆ ~A(~r, t) =
1

c2

∂2

∂t2
~A(~r, t) = −4π

c
·~j(~r, t) . (42)

We observe two consequences: first, the equations for the potentials are decoupled and depend only on
the charge density and current density. Second, without charges or current, the equations have the form of
a wave equation. The relevance becomes clear later, in particular, when Maxwell’s equations are written
in a relativistically invariant form [1].

Another very useful gauge is the Coulomb gauge:

∇ · ~A = 0 . (43)

This leads us to a particularly simple expression for the electric potential:

∆φ(~r, t) = −4πρ(~r, t) . (44)

The name ‘Coulomb gauge’ becomes obvious.

A formal solution can now be written as:

φ =

∫
ρ(~r′, t)

| ~r − ~r′ |
dV . (45)

6.2 Example: Coulomb potential
Equation (45) can immediately be applied to compute the Coulomb potential of a static charge q:

φ(~r) =
1

4πε0
· q

|~r − ~rq|
, (46)

where ~r is the observation point and ~rq the location of the charge.

7 Powering and self-induction
There are also induction effects in a single coil. A varying current (e.g., in a transformer or power line)
produces a varying magnetic field inside itself and the flux of this field is continually changing, leading
to a self-induced electromotive force (Fig.10). This electromotive force (EMF) is acting on any current
when it is building up a magnetic field or when the field is changing in any way. This effect is called self-
inductance. According to Lenz’s rule, this EMF is opposing any flux change. The direction of an induced
EMF is always such that it produces a flux of ~B that opposes the change of the flux that produces the
EMF. It tries to keep the current constant: it is opposite to the current when the current is increasing and
in the direction of the current when it is decreasing.

This effect is particularly important for particle accelerators. A large electromagnet will have a
large self-inductance. To change the current I in such a magnet requires a minimum voltage U to over-
come this effect. This voltage is computed as:

U = −L∂I
∂t
. (47)
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Fig. 10: Self-induction by a changing electric current

The self-inductance L is measured in henrys (H).

The necessary voltage is determined by this self-inductance and the rate of change of the current
(Eq. (47)).

As a numerical example, we use the Large Hadron Collider parameters:

– required ramp rate, 10 A/s;
– self-inductance, L = 15.1 H per powering sector;
– required voltage to ramp at this rate, ≈150 V .

7.1 Lorentz force
A charge experiences forces in the presence of electromagnetic fields. This force depends not only on
where it is (which determines the electromagnetic fields), but also on how it is moving. Moving (~v)
charged (q) particles in electric ( ~E) and magnetic ( ~B) fields experience the force ~f (Lorentz force):

~f = q · ( ~E + ~v × ~B) . (48)

The electric force q · ~E is always in the direction of the field ~E and proportional to the magnitude of the
field and the charge.

The magnitude of the magnetic force q · ~v × ~B is proportional to the velocity perpendicular to the
direction of the field ~B.

The Lorentz force is often treated as an ad-hoc plug-in to Maxwell’s equation, but it is a relativistic
effect (shown in Ref. [1]).

8 Electromagnetic waves in vacuum
A remarkable success of Maxwell’s equations was the prediction of electromagnetic waves. Their exist-
ence was proven experimentally for very different wavelengths; in all cases, they were found to satisfy
Maxwell’s equations.

Starting from ∇× ~E = −∂ ~B/∂t, we can apply several mathematical transformations in steps:

=⇒ ∇× (∇× ~E) = −∇×
(
∂ ~B

∂t

)

=⇒ −(∇2 ~E) = − ∂

∂t
(∇× ~B)

=⇒ −(∇2 ~E) = −µ0ε0
∂2 ~E

∂t2
(49)

The last equation has the form of a plane wave.
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Fig. 11: Propagating electric and magnetic fields

This wave happens to be

µ0 · ε0 =
1

c2
,

and we rewrite:

∇2 ~E =
1

c2

∂2 ~E

∂t2
= µ0 · ε0 ·

∂2 ~E

∂t2

and

∇2 ~B =
1

c2

∂2 ~B

∂t2
= µ0 · ε0 ·

∂2 ~B

∂t2
(50)

This is a general form of a wave equation.

As a solution of these equations, we can write:

~E = ~E0ei(~k·~r−ωt) ,

~B = ~B0ei(~k·~r−ωt) , (51)

where we use the following definitions:

propagation vector : |~k| = 2π

λ
=

ω

c
,

wavelength, 1 cycle : λ ,
frequency · 2π : ω ,

wave velocity : c =
ω

k
.

(52)

Magnetic and electric fields are transverse to the direction of propagation (Fig. 11):

~E ⊥ ~B ⊥ ~k ⇒ ~k × ~E0 = ω ~B0 .

The speed of the wave in vacuum is exactly the speed of light: c = 299792458 m/s. Examples of
the spectrum of electromagnetic waves are shown in Fig. 12 and Table 1.

The frequencies and, therefore, energies of existing waves span about 20 orders of magnitude.

9 Polarization of electromagnetic waves
9.1 General features
The solutions of the wave equations imply monochromatic plane waves. The solutions for electric and
magnetic fields are:

~E = ~E0ei(~k·~r−ωt) , (53)
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Fig. 12: Electromagnetic spectrum

Table 1: Properties of parts of the electromagnetic spectrum

Type Frequency Energy per photon
Radio as low as 40 Hz ( .10−13 eV )
Cosmic Microwave Background .3 · 1011 Hz ( .10−3 eV )
Yellow light ≈5 · 1014 Hz ( ≈2 eV )
X rays ≤1 · 1018 Hz ( ≈4 keV )
γ rays ≤3 · 1021 Hz ( ≤12 MeV )
π0 → γγ ≥2 · 1022 Hz ( ≥70 MeV )

~B = ~B0ei(~k·~r−ωt) . (54)

These equations can be rewritten using unit vectors in the plane transverse to propagation. For example,
for the electric component:

~ε1 ⊥ ~ε2 ⊥ ~k .
The two orthogonal components are:

~E1 = ~ε1E1ei(~k·~r−ωt) ,

~E2 = ~ε2E2ei(~k·~r−ωt) .

The general field is a superposition of the two components:

⇒ ~E = ( ~E1 + ~E2) = (~ε1E1 + ~ε2E2)ei(~k·~r−ωt) . (55)

For the propagation, we can allow for a phase shift φ between the two directions as well as different
amplitudes:

~E = ~ε1E1ei(~k·~r−ωt) + ~ε2E2ei(~k·~r−ωt+φ) .

Depending on the amplitudes E1 and E2 and the relative phase φ, we get different types of polar-
ized light:

φ = 0 : linearly polarized light ;
φ 6= 0 and E1 6= E2 : elliptically polarized light ;

φ = ±π
2

and E1 = E2 : circularly polarized light .
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9.2 Polarized light in accelerators
Polarized light is rather important in accelerators and is produced (amongst others) in synchrotron light
machines (linearly and circularly polarized light, adjustable).

Typical applications and phenomena of polarized light are:

– polarized light reacts differently with charged particles;
– material science;
– beam diagnostics, medical diagnostics (blood sugar, . . . );
– inverse free electron lasers;
– 3-D motion pictures, LCD display, outdoor activities, cameras (glare), . . .

10 Energy of electromagnetic waves
We define the Poynting vector (SI units):

~S =
1

µ0

~E × ~B . (56)

The vector ~S points in the direction of propagation and describes the ‘energy flux’, i.e., energy crossing
a unit area, per second [J / m2 s].

In free space, the energy in a plane is shared between the electric and magnetic fields The energy
densityH would be:

H =
1

2

(
ε0E

2 +
1

µ0
B2

)
. (57)

11 Electromagnetic waves in material
We start now with the macroscopic Maxwell’s equations (Eq. (32)), using µ0

~H = ~B and ε0 ~E = ~D:

∇× ~E = −µ0
d ~H

dt
,

∇× ~H = ~j + ε0
d ~E

dt
. (58)

We assume a material with relative permittivity ε and permeability µ, as well as a finite conductivity σ,
and get:

∇× ~E = −µ · µ0 ·
d ~H

dt
,

∇× ~H = σ ~E + ε · ε0 ·
d ~E

dt
, (59)

where the current density~j is replaced by σ ~E (Ohm’s law). Following the same procedure as before, we
obtain for the wave equation (electric field only):

∇2 ~E = σ · ε · ε0 ·
∂ ~E

∂t
+ µ · µ0 · ε · ε0 ·

∂2 ~E

∂t2
(60)

For non-conducting media, we can set σ = 0 and obtain the previous equations.

As a direct consequence of Eq. (60) we see that the speed of this wave in the medium is now:

v =
1√

ε0 · µ0 · ε · µ
, (61)
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Fig. 13: Boundary conditions for electric fields
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nB

Fig. 14: Boundary conditions for magnetic fields

or, if rewritten using n =
√
ε · µ,

v =
c

n
. (62)

The speed of electromagnetic waves in vacuum is c, but reduced by the factor n in a medium with relative
permittivity ε and permeability µ.

11.1 Boundary conditions
When electromagnetic waves pass through the boundary between two media with different ε and µ,
we must fulfil some boundary conditions. The results are presented here without proof. For details see
Refs. [3, 7]. Assuming no surface charges and, from curl ~E = 0 we can derive that the tangential ~E-
field is continuous across a boundary (E1

t = E2
t ) (shown schematically in Fig. 13). Similarly, since

we have div ~D = ρ, the normal ~D-field must be continuous across the boundary (D1
n = D2

n) (shown
schematically in Fig.13).

We follow the same line of reasoning for the boundary conditions for magnetic fields. Assuming
no surface currents (for a proof, see, e.g., Refs. [3, 7]), we find (see Fig. 14):

From curl ~H = ~j,
⇒ tangential ~H-field continuous across boundary (H1

t = H2
t ) .

From div ~B = 0,
⇒ normal ~B-field continuous across boundary (B1

n = B2
n) .

A short summary for the electromagnetic fields at boundaries between different materials with
different permittivity and permeability (ε1, ε2, µ1, µ2) is:

(E1
t = E2

t ) (E1
n 6= E2

n) ,

(D1
t 6= D2

t ) (D1
n = D2

n) ,

(H1
t = H2

t ) (H1
n 6= H2

n) ,

(B1
t 6= B2

t ) (B1
n = B2

n) . (63)

These conditions lead to reflection and refraction of the waves at the surface; the angles are related to the
refraction index n =

√
ε1µ1 and n′ =

√
ε2µ2.
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Fig. 15: Reflected and refracted components of an incident wave

The connection between the refraction indices and the scattering and refraction angles shown in
Fig. 15 are:

sinα

sinβ
=
n′

n
= tanαB . (64)

If ε and µ depend on the wave frequency ω, the medium is dispersive and we have to write:

dn

dλ
6= 0 , (65)

i.e., the refraction index and therefore the angles depend on the wavelength.

If light is incident under the special angle αB (the Brewster angle) [3], the reflected light is linearly
polarized perpendicular to the plane of incidence.

A popular application is used when fishing, since air–water gives a comfortable angle αB ≈ 53◦

and reflections can be avoided using polarization glasses.

12 Cavities and waveguides
Of particular interest in accelerator physics and technology is the behaviour and propagation of electro-
magnetic waves in cavities and waveguides. This behaviour is determined by the boundary conditions
and we have to distinguish between material with infinite and finite conductivity. The case of perfectly
conducting cavities and wave guides is treated first.

12.1 Rectangular cavities and waveguides
Cavities can be seen as a three-dimensional storage for electromagnetic waves, i.e., photons. The wave
functions are contained inside and therefore the dimensions determine the maximum wavelength that can
fit inside. This is due to the boundary conditions at the cavity walls.

If the fields are only constrained in two dimensions and allowed to move freely in the third dimen-
sion, the fields propagate as waves. The waves are guided through these ‘wave guides’. Both are sketched
in Fig. 16.

12.2 Cavities and modes
We assume a rectangular RF cavity with dimensions (a, b, c), and as an ideal conductor.

Without derivations (e.g., Refs. [3, 7, 8]), the components of the electric fields are:

Ex = Ex0 · cos(kxx) · sin(kyy) · sin(kzz) · e−iωt ,

Ey = Ey0 · sin(kxx) · cos(kyy) · sin(kzz) · e−iωt ,
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Fig. 16: Boundary conditions for electromagnetic fields. Fields are fully enclosed in a cavity (left-hand side) and
can move freely in one dimension in waveguides (right-hand side).
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Fig. 17: Boundary conditions for electromagnetic fields

Ez = Ez0 · sin(kxx) · sin(kyy) · cos(kzz) · e−iωt . (66)

For the magnetic fields we get immediately, with∇× ~E = −∂ ~B/∂t:

Bx =
i

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · cos(kzz) · e−iωt ,

By =
i

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · cos(kzz) · e−iωt ,

Bz =
i

ω
(Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · sin(kzz) · e−iωt . (67)

12.3 Consequences for cavities
The fields must be zero at the conductor boundary, as shown before. This is possible only with the
condition:

k2
x + k2

y + k2
z =

ω2

c2
, (68)

and for kx, ky, kz we can write:

kx =
mxπ

a
, ky =

myπ

b
, kz =

mzπ

c
. (69)

The integer numbers mx,my,mz are called the mode numbers of the wave and are directly related to the
dimensions of the cavity.

Equations (68) and (69) imply that a half wavelength λ/2 must always fit exactly the size of the
cavity. This is shown in Fig. 17 for different wavelengths compared with the cavity dimensions. Only
modes that ‘fit’ into the cavity are allowed.
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We can examine three cases:
λ

2
=
a

4
,

λ

2
=
a

1
,

λ

2
=

a

0.8
.

No electric field at the boundaries requires that the wave must have ‘nodes’ at the boundaries. Only the
first two wavelengths fulfil this condition; the third form cannot exist.

12.4 Waveguide modes
Similar considerations lead to (propagating) solutions in (rectangular) waveguides:

Ex = Ex0 · cos(kxx) · sin(kyy) · ei(kzz−ωt) ,

Ey = Ey0 · sin(kxx) · cos(kyy) · ei(kzz−ωt) ,

Ez = i · Ez0 · sin(kxx) · sin(kyy) · ei(kzz−ωt) , (70)

Bx =
1

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · ei(kzz−ωt) ,

By =
1

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · ei(kzz−ωt) ,

Bz =
1

i · ω (Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · ei(kzz−ωt) . (71)

12.5 Consequences for waveguides
To have no field at the boundary, we must again satisfy the condition:

k2
x + k2

y + k2
z =

ω2

c2
. (72)

This leads to modes like (no boundaries in direction of propagation z):

kx =
mxπ

a
, ky =

myπ

b
, (73)

The numbers mx,my are called the mode numbers for planar waves in waveguides.

12.6 Cut-off frequency
One can rewrite Eq. (72) as:

k2
z =

ω2

c2
− k2

x − k2
y (74)

and

kz =

√
ω2

c2
− k2

x − k2
y . (75)

A propagation without losses requires kz to be real, i.e.,

ω2

c2
> k2

x + k2
y =

(mxπ

a

)2
+
(myπ

b

)2
. (76)

This defines a cut-off frequency ωc:
ωc =

π · c
a

. (77)

For frequencies above this cut-off frequency, we have propagation without losses. At the cut-off fre-
quency, we obtain a standing wave and an attenuated wave for lower frequencies, i.e., kz becomes com-
plex.

The cut-off frequencies are different for different modes and no modes can propagate below the
lowest frequency. The mode of Eq. (77) is assumed to be this lowest frequency mode.
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12.7 Circular cavities
Waveguides and cavities used in accelerators are more likely to be circular.

Derivation involves using the Laplace equation in cylindrical co-ordinates; for the derivation see
e.g., Refs. [7, 8]:

Er = E0
kz
kr
J ′n(kr) · cos(nθ) · sin(kzz) · e−iωt ,

Eθ = E0
nkz
k2
rr
Jn(kr) · sin(nθ) · sin(kzz) · e−iωt ,

Ez = E0Jn(krr) · cos(nθ) · sin(kzz) · e−iωt ,

Br = iE0
ω

c2k2
rr
Jn(krr) · sin(nθ) · cos(kzz) · e−iωt ,

Bθ = iE0
ω

c2krr
J ′n(krr) · cos(nθ) · cos(kzz) · e−iωt ,

Bz = 0 . (78)

12.8 Accelerating circular cavities
For accelerating cavities, we need a longitudinal electric field component Ez 6= 0 and purely transverse
magnetic fields:

Er = 0 ,

Eθ = 0 ,

Ez = E0J0

(
p01

r

R

)
· e−iωt ,

Br = 0 ,

Bθ = −i
E0

c
J1

(
p01

r

R

)
· e−iωt ,

Bz = 0 . (79)

(pnm is the mth zero of Jn, e.g., p01 ≈ 2.405.)

This would be a cavity with a TM010 mode: ω010 = p01 · c/R.

13 Case of finite conductivity
Starting from Maxwell’s equation,

∇× ~H = ~j +
d ~D

dt
=

~j︷ ︸︸ ︷
σ · ~E︸ ︷︷ ︸

Ohm’s law

+ε
d ~E

dt
, (80)

and the solutions of the wave equations,

~E = ~E0ei(~k·~r−ωt), ~H = ~H0ei(~k·~r−ωt) , (81)

we want to know k; applying the calculus to the wave equations we have:

d ~E

dt
= −iω · ~E, d ~H

dt
= −iω · ~H, ∇× ~E = i~k × ~E, ∇× ~H = i~k × ~H . (82)

Put these together, using Eqs. (80) and (82):

~k × ~H = iσ · ~E − ωε · ~E = (−iσ + ωε) · ~E . (83)
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Fig. 18: Flow of current and induced magnetic fields and eddy currents

With ~B = µ ~H:

∇× ~E = i~k × ~E = −∂
~B

∂t
= −µ∂

~H

∂t
= iωµ ~H . (84)

Multiplication with ~k and using Eq. (83):

~k × (~k × ~E) = ωµ(~k × ~H) = ωµ(−iσ + ωε) · ~E . (85)

After some calculus and using the property ~E ⊥ ~H ⊥ ~k:

k2 = ωµ(iσ + ωε) . (86)

The propagation vector k now differs from the equation in vacuum by the contributions from the medium
and the finite conductivity. This has consequences for the propagation and penetration of waves in ma-
terial.

13.1 Skin and penetration depth
For a good conductor, σ � ωε (e.g., for Cu we have σ ≈ 5.7 · 107 S/m, this value for Cu is also valid for
for very high ω):

k2 ≈ −iωµσ ⇒ k ≈
√
ωµσ

2
(1− i) =

1

δ
(1− i) . (87)

We define the parameter δ:

δ =

√
2

ωµσ
. (88)

The parameter δ is called the skin depth.

From Eq. (88), we deduce that high frequency waves ‘avoid’ penetrating a conductor, and mainly
flow near the surface. One can understand this effect using Fig. 18.

A changing ~H-field induces eddy currents in the conductor. These cancel the current flow in the
centre of the conductor but enforce current flow at the skin (surface).

13.2 Attenuated waves
Waves incident on conducting material are attenuated. It is basically skin depth, (attenuation to 1/e). The
wave form becomes:

ei(kz−ωt) = ei((1+i)z/δ−ωt) = e
−z
δ · ei( z

δ
−ωt) . (89)

Some numerical examples:

– Skin depth of copper:
1 GHz : δ ≈ 2.1 µm; 1 kHz : δ ≈ 2.1 mm, 50 Hz : δ ≈ 10 mm.
This has important consequences for the design of conducting cables since the high frequency
currents propagate at a very thin layer at the surface of the conductor.
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– Penetration depth into seawater (σ typically 4 S/m):
To get δ ≈ 25 m, one needs ≈76 Hz.
Because of the long wavelength and low frequency, communication is very inefficient and has a
very low bandwidth (0.03 bps).

14 Summary
Without any attempt to be rigorous or complete, electromagnetic effects most important for the design
and operation of particle accelerators have been presented, such as:

– basic concepts;
– Maxwell’s equations;
– fields and potentials from charge and current distributions;
– electromagnetic waves in vacuum and media;
– electromagnetic waves in waveguides and cavities;
– polarization of electromagnetic waves and skin effects.
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Appendices
A Electromagnetic units
Formulae use SI units throughout.

~E(~r, t) electric field [V/m]
~H(~r, t) magnetic field [A/m]
~D(~r, t) electric displacement [C/m2]
~B(~r, t) magnetic flux density [T]
q electric charge [C]
ρ(~r, t) electric charge density [C/m3]
~I,~j(~r, t) current [A], current density [A/m2]
µ0 permeability of vacuum, 4 π · 10−7 [H/m or N/A2]
ε0 permittivity of vacuum, 8.854 ·10−12 [F/m]

To save typing and space where possible (e.g., equal arguments):
~E(~r, t) =⇒ ~E and the same for other variables.

B Refresher on vector calculus
B.1 Vector operators
We can define a special vector∇ (sometimes written as ~∇):

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (B.1)

It is called the ‘gradient’ and invokes ‘partial derivatives’.

It can operate on a scalar function φ(x, y, z):

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= ~G = (Gx, Gy, Gz) , (B.2)

and we get a vector ~G. It is a kind of ‘slope’ (steepness) in the three directions.

Example:

φ(x, y, z) = C · ln(r2) with r =
√
x2 + y2 + z2

∇φ = (Gx, Gy, Gz) =

(
2C · x
r2

,
2C · y
r2

,
2C · z
r2

)

B.1.1 Physical interpretation of the gradient operator
The gradient applied to a scalar field measures the local slope, as shown in Fig. B.1:

– lines of pressure (isobars);
– gradient is large (steep) where lines are close (fast change of pressure).

B.2 Operation on vectors and scalar fields
The gradient ∇ can be used in a scalar or a vector product with a vector ~F , sometimes written as ~∇ and
these are used as:

∇ · ~F or ∇× ~F . (B.3)

The definition for products is the same as before; ∇ is treated like a ‘normal’ vector, but the results
depend on how they are applied:
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Fig. B.1: Gradient of a scalar field (here air pressure)

– ∇φ is a vector;
– ∇ · ~F is a scalar;
– ∇× ~F is a pseudo-vector.

B.3 Divergence and curl
Two operations of∇ have special names.

B.3.1 Divergence (scalar product of gradient with a vector):

div(~F ) = ∇ · ~F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
. (B.4)

Physical significance: ‘amount of density’ (see later).

B.3.2 Curl (vector product of gradient with a vector):

curl(~F ) = ∇× ~F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
. (B.5)

Physical significance: ‘amount of rotation’ (see later).

B.3.3 Meaning of divergence
Figure B.2 shows the field lines of a vector field ~F seen from some origin.

The divergence (scalar, a single number) characterizes what comes from (or goes to) the origin.
How much comes out is measured by the surface integral. For the integrated field vectors passing (per-
pendicularly) through a surface area A, we obtain the flux:

∫ ∫

A

~F · d ~A . (B.6)

It has the meaning of the density of field lines through the surface (Fig. B.3).

For closed surfaces, we can rewrite the integral using Gauss’s theorem: the integral through a
closed surface (flux) is the integral of the divergence in the enclosed volume

∫ ∫

A

~F · d ~A =

∫ ∫ ∫

V
∇ · ~F · dV . (B.7)

This relates surface integral to volume integrals (Fig. B.4) and is often easier to evaluate.
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∇~F < 0 ∇~F > 0 ∇~F = 0
(sink) (source) (fluid)

Fig. B.2: Field lines of a vector field ~F seen from some origin

Fig. B.3: Flux

dA

F

enclosed volume (V)

closed surface (A)

Fig. B.4: Gauss’s theorem relates surface integrals to volume integrals

B.3.4 Meaning of curl
The curl quantifies a rotation of vectors: it is the integration of (vector-) fields. For two vector fields, we
perform a line integral along a (closed) line C:

∮

C

~F · d~r =

∫ ∫

A
∇× ~F · d ~A (B.8)

i.e., we ‘sum up’ vectors (length) in the direction of the line C

The line integral for the second vector field in Fig. B.5 vanishes because the field lines are or-
thogonal to the direction of the integration path along the curve C. The physical significance of this line
integral is the work performed along a path.

We can formulate this integral more generally:
Stokes’ theorem: Integral along a closed line is integral of curl in the enclosed area.

∮

C

~F · d~s =

∫ ∫

A
∇× ~F · d ~A . (B.9)
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Fig. B.5: Two types of vector field, arbitrary units. For the left field we have:∇~F = 0 ∇× ~F 6= 0. For the right
field: ∇~F 6= 0 ∇× ~F = 0.
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.

closed curve (C)
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Fig. B.6: Stoke’s theorem

B.4 Scalar product
We define a scalar product for (usual) vectors as: ~a ·~b,

~a = (xa, ya, za) ,

~b = (xb, yb, zb) ,

~a ·~b = (xa, ya, za) · (xb, yb, zb) = (xa · xb + ya · yb + za · zb) .

This product of two vectors is a scalar (number), not a vector.

Example:
(−2, 2, 1) · (2, 4, 3) = −2 · 2 + 2 · 4 + 1 · 3 = 7 .

B.5 Vector product (sometimes referred to as cross product)
Define a vector product for (usual) vectors as: ~a×~b,

~a = (xa, ya, za) ,

~b = (xb, yb, zb) ,

~a×~b = (xa, ya, za) × (xb, yb, zb)

= (ya · zb − za · yb︸ ︷︷ ︸
xab

, za · xb − xa · zb︸ ︷︷ ︸
yab

, xa · yb − ya · xb︸ ︷︷ ︸
zab

) .

This product of two vectors is a vector, not a scalar (number), (on this account: vector product).
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Example 1:
(−2, 2, 1)× (2, 4, 3) = (2, 8,−12) .

Example 2 (two components only in the x–y plane):

(−2, 2, 0)× (2, 4, 0) = (0, 0,−12) .
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