
1 

Space Charge Mitigation 

M. Ferrario 
Frascati National Laboratory, National Institute for Nuclear Physics, Rome, Italy 

Abstract 
In this paper we introduce, from basic principles, the main concepts of beam 
focusing and transport of space charge dominated beams in high brightness 
accelerators using the beam envelope equation as a convenient mathematical 
tool. Matching conditions suitable for preserving beam quality are derived 
from the model for significant beam dynamics regimes. 
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1 Introduction 
Light sources based on high-gain free electron lasers or future high-energy linear colliders require the 
production, acceleration, and transport up to the interaction point of low divergence, high charge-density 
electron bunches [1]. Many effects contribute in general to degradation of the final beam quality, 
including chromatic effects, wake fields, emission of coherent radiation, and accelerator misalignments. 
Space charge effects and mismatch with focusing and accelerating devices typically contribute to 
emittance degradation of high charge-density beams [2]; hence, control of beam transport and 
acceleration is the leading edge for high-quality beam production. 

Space charge effects represent a very critical issue and a fundamental challenge for high-quality 
beam production and its applications. Without proper matching, significant emittance growth may occur 
when the beam is propagating through different stages and components owing to the large differences 
of transverse focusing strength. This unwanted effect is even more serious in the presence of finite 
energy spread. 

In this paper we introduce, from basic principles, the main concepts of beam focusing and 
transport in modern accelerators using the beam envelope equation as a convenient mathematical tool. 
Matching conditions suitable for preserving beam quality are derived from the model for significant 
beam dynamics regimes. A more detailed discussion of the previous topics can be found in the many 
classical textbooks on this subject, as listed in Refs. [3–6]. 

2 Laminar and non-laminar beams 
An ideal high-charge particle beam has orbits that flow in layers that never intersect, as occurs in a 
laminar fluid. Such a beam is often called a laminar beam. More precisely, a laminar beam satisfies the 
following two conditions [6]: 

i) all particles at a given position have identical transverse velocities. On the contrary, the orbits 
of two particles that start at the same position could separate and later cross each other; 

ii) assuming that the beam propagates along the z axis, the magnitudes of the slopes of the 
trajectories in the transverse directions x and y, given by  and , 
are linearly proportional to the displacement from the z axis of beam propagation. 

( ) d / dx z x z¢ = ( ) d / dy z y z¢ =
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Trajectories of interest in beam physics are always confined to the inside of small, near-axis regions, 
and the transverse momentum is much smaller than the longitudinal momentum, px,y << pz ≈ p. As a 
consequence, it is possible in most cases to use the small angle, or paraxial, approximation, which 
allows us to write the useful approximate expressions x′ = px/pz ≈ px/p and y′ = py/pz ≈ px/p. 

To help understand the features and advantages of a laminar beam propagation, the following 
figures compare the typical behaviour of a laminar and a non-laminar (or thermal) beam. 

Figure 1 illustrates an example of orbit evolution of a laminar mono-energetic beam with half 
width x0 along a simple beam line with an ideal focusing element (solenoid, magnetic quadrupoles, or 
electrostatic transverse fields are usually adopted to this end), represented by a thin lens located at the 
longitudinal coordinate z = 0. In an ideal lens, focusing (defocusing) forces are linearly proportional to 
the displacement from the symmetry axis z, so that the lens maintains the laminar flow of the beam. 

 
Fig. 1: Particle trajectories and phase space evolution of a laminar beam [7] 

The beam shown in Fig. 1 starts propagating completely parallel to the symmetry axis z; in this 
particular case, the particles all have zero transverse velocity. There are no orbits that cross each other 
in such a beam. Ignoring collisions and inner forces, such as Coulomb forces, a parallel beam could 
propagate an infinite distance with no change in its transverse width. When the beam crosses the ideal 
lens, it is transformed into a converging laminar beam. Because the transverse velocities after the linear 
lens are proportional to the displacement off axis, particle orbits define similar triangles that converge 
to a single point. After passing through the singularity at the focal point, the particles follow diverging 
orbits. We can always transform a diverging (or converging) beam into a parallel beam by using a lens 
of the proper focal length, as can be seen by reversing the propagation axis of Fig. 1. 

The small boxes in the lower part of the figure depict the particle distributions in the trace space 
(x, x′), equivalent to the canonical phase space (x, px ≈ x′p) when p is constant, i.e., without beam 
acceleration. The phase space area occupied by an ideal laminar beam is a straight segment of zero 
thickness. As can be easily verified, the condition that the particle distribution has zero thickness 
proceeds from condition 1; the segment straightness is a consequence of condition 2. The distribution 
of a laminar beam propagating through a transport system with ideal linear focusing elements is thus a 
straight segment with variable slope. 

Particles in a non-laminar beam have a random distribution of transverse velocities at the same 
location and a spread in directions, as shown in Fig. 2. Because of the disorder of a non-laminar beam, 
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it is impossible to focus all particles from a location in the beam toward a common point. Lenses can 
influence only the average motion of particles. Focal spot limitations are a major concern for a wide 
variety of applications, from electron microscopy to free electron lasers and linear colliders. The phase 
space plot of a non-laminar beam is no longer a straight line: the beam, as shown in the lower boxes of 
Fig. 2, occupies a wider area of the phase space. 

 
Fig. 2: Particle trajectories and phase space evolution of a non-laminar beam [7] 

3 The emittance concept 
The phase space surface A occupied by a beam is a convenient figure of merit for designating the quality 
of a beam. This quantity is the emittance εx and is usually represented by an ellipse that contains the 
whole particle distribution in the phase space (x, x′), such that A = πεx. An analogous definition holds 
for the (y, y′) and (z, z′) planes. The original choice of an elliptical shape comes from the fact that when 
linear focusing forces are applied to a beam, the trajectory of each particle in phase space lies on an 
ellipse, which may be called the trajectory ellipse. Being the area of the phase space, the emittance is 
measured in metres radians. More often is expressed in millimetres milliradians or, equivalently, in 
micrometres. 

The ellipse equation is written as 
  , (1) 

where x and x′ are the particle coordinates in the phase space and the coefficients αx(z), βx(z), and γx(z) 
are called Twiss parameters, which are related by the geometrical condition: 
  . (2) 

As shown in Fig. 3, the beam envelope boundary Xmax, its derivative (Xmax)′, and the maximum 
beam divergence X′max, i.e., the projection on the axes x and x′ of the ellipse edges, can be expressed as 
a function of the ellipse parameters: 

2 22x x x xx xx xg a b e¢ ¢+ + =

2 1x x xb g a- =
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. (3)

 

 
Fig. 3: Phase space distribution in a skewed elliptical boundary, showing the relationship of Twiss parameters to 
the ellipse geometry [6]. 

According to Liouville’s theorem, the six-dimensional (x, px, y, py, z, pz) phase space volume 
occupied by a beam is constant, provided that there are no dissipative forces, no particles lost or created, 
and no Coulomb scattering among particles. Moreover, if the forces in the three orthogonal directions 
are uncoupled, Liouville’s theorem also holds for each reduced phase space surface, (x, px), (y, py), 
(z, pz), and hence emittance also remains constant in each plane [3]. 

Although the net phase space surface occupied by a beam is constant, non-linear field components 
can stretch and distort the particle distribution in the phase space, and the beam will lose its laminar 
behaviour. A realistic phase space distribution is often very different from a regular ellipse, as shown in 
Fig. 4. 

 
Fig. 4: Typical evolution of phase space distribution (black dots) under the effects of non-linear forces with the 
equivalent ellipse superimposed (red line). 

We introduce, therefore, a definition of emittance that measures the beam quality rather than the 
phase space area. It is often more convenient to associate a statistical definition of emittance with a 
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generic distribution function f(x, x′, z) in the phase space; this is the so-called root mean square (rms) 
emittance: 
  . (4) 

The rms emittance is defined such that the equivalent-ellipse projections on the x and x′ axes are equal 
to the rms values of the distribution, implying the following conditions: 

  , (5) 

where 

  (6) 

are the second moments of the distribution function f(x, x′, z). Another important quantity that accounts 
for the degree of (x, x′) correlations is defined as 

  . (7) 

From Eq. (3) it also holds that 

   

see also Eq. (16), which allows us to link the correlation moment, Eq. (7), to the Twiss parameter as 
  . (8) 

One can easily see from Eqs. (3) and (5) that 

  

also holds. 

By substituting the Twiss parameter defined by Eqs. (5) and (8) into condition 2 we obtain [5] 

 
 .
 (9) 

Reordering the terms in Eq. (8) we obtain the definition of rms emittance in terms of the second moments 
of the distribution: 

  , (10) 
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where we omit, from now on, the subscript x in the emittance notation: εrms = εx,rms. The rms emittance 
tells us some important information about phase space distributions under the effect of linear or non-
linear forces acting on the beam. Consider, for example, an idealized particle distribution in phase space 
that lies on some line that passes through the origin, as illustrated in Fig. 5. 

 
 (a) (b) 

Fig. 5: Phase space distributions under the effect of (a) linear or (b) non-linear forces acting on the beam 

Assuming a generic correlation of the type x′ = Cxn and computing the rms emittance according 
to Eq. (10) we have 

  . (11) 

When n = 1, the line is straight and the rms emittance is εrms = 0. When n > 1 the relationship is non-
linear, the line in phase space is curved, and the rms emittance is, in general, not zero. Both distributions 
have zero area. Therefore, we conclude that even when the phase space area is zero, if the distribution 
is lying on a curved line, its rms emittance is not zero. The rms emittance depends not only on the area 
occupied by the beam in phase space, but also on distortions produced by non-linear forces. 

If the beam is subject to acceleration, it is more convenient to use the rms normalized emittance, 
for which the transverse momentum  is used instead of the divergence: 

 . (12) 

The reason for introducing a normalized emittance is that the divergences of the particles x′ = px/p are 
reduced during acceleration as p increases. Thus, acceleration reduces the un-normalized emittance, but 
does not affect the normalized emittance.  

It is interesting to estimate the fundamental limit of the beam emittance that is set by quantum 
mechanics on the knowledge of the two conjugate variables (x, px). The state of a particle is actually not 
exactly represented by a point, but by a small uncertainty volume of the order of  in the 6D phase 

space. According to the Heisenberg uncertainty relation  one gets from Eq. (12)

, where  is the reduced Compton wavelength. For electrons it gives:

.  

In the classical limit we see also from Eq. (12) that the single particle emittance is zero. 
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Assuming a small energy spread within the beam, the normalized and un-normalized emittances 
can be related by the approximated relation 〈𝛽𝛾〉𝜀&'( . This approximation, which is often used in 
conventional accelerators, may be strongly misleading when adopted for describing beams with 
significant energy spread, like those currently produced by plasma accelerators. A more careful analysis 
is reported next [8]. 

When the correlations between the energy and transverse positions are negligible (as in a drift 
without collective effects), Eq. (12) can be written as 

  . (13) 

Consider now the definition of relative energy spread 

  

which can be inserted into Eq. (13) to give 

 
 . (14) 

Assuming relativistic particles (β = 1), we get 
 

 . (15) 

If the first term in the parentheses is negligible, we find the conventional approximation of the 
normalized emittance as . For a conventional accelerator, this might generally be the case. 
Considering, for example, beam parameters for the SPARC_LAB photoinjector [9]: at 5 MeV the ratio 
between the first and the second term is ~10−3; while at 150 MeV it is ~10−5. Conversely, using typical 
beam parameters at the plasma–vacuum interface, the first term is of the same order of magnitude as for 
conventional accelerators at low energies; however, owing to the rapid increase of the bunch size outside 
the plasma (σx′ ~ mrad) and the large energy spread (σγ > 1%), it becomes predominant compared with 
the second term after a drift of a few millimetres. Therefore, the use of approximated formulas when 
measuring the normalized emittance of plasma accelerated particle beams is inappropriate [10]. 

4 The root mean square envelope equation 
We are now interested in following the evolution of the particle distribution during beam transport and 
acceleration. One can use the collective variable defined in Eq. (6), the second moment of the 
distribution termed the rms beam envelope, to derive a differential equation suitable for describing the 
rms beam envelope dynamics [11]. To this end, let us compute the first and second derivative of σx [4]: 

  . (16) 

Rearranging the second derivative in Eq. (16), we obtain a second-order non-linear differential equation 
for the beam envelope evolution, 
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  , (17) 

or, in a more convenient form, using the rms emittance definition Eq. (10), 

 
 . (18)

 

In Eq. (18), the emittance term can be interpreted physically as an outward pressure on the beam 
envelope produced by the rms spread in trajectory angle, which is parameterized by the rms emittance. 

Let us now consider, for example, the simple case with , describing a beam drifting in 
free space. The envelope equation reduces to 

  . (19) 

With initial conditions σ0, σ′0 at z0, depending on the upstream transport channel, Eq. (19) has a 
hyperbolic solution: 

  . (20) 

Considering the case of a beam at waist ( ) with σ′0 = 0, using Eq. (5), the solution Eq. (20) is 
often written in terms of the β function as 

  . (21) 

This relation indicates that without any external focusing element the beam envelope increases from the 
beam waist by a factor √2 with a characteristic length , as shown in Fig. 6. 

 
Fig. 6: Schematic representation of the beam envelope behaviour near the beam waist 

At the waist, the relation ε2rms = σ2
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,
 

showing that beams with large energy spread and divergence undergo a significant normalized emittance 
growth even in a drift of length (z − z0) [8, 12]. 

Notice also that the solution Eq. (21) is exactly analogous to that of a Gaussian light beam for 
which the beam width w = 2σph increases away from its minimum value at the waist w0 with 
characteristic length  (Rayleigh length) [4]. This analogy suggests that we can identify an 

effective emittance of a photon beam as . 

For the effective transport of a beam with finite emittance, it is mandatory to make use of some 
external force providing beam confinement in the transport or accelerating line. The term  accounts 
for external forces when we know x″, given by the single particle equation of motion: 

 
 . (22) 

Under the paraxial approximation px << p = βγmc, the transverse momentum px can be written as px = 
px′ = βγm0cx′, so that 

  , (23) 

and the transverse acceleration results in 

  
.
 (24) 

It follows that 

 
 .

 (25) 

Inserting Eq. (25) into Eq. (18) and recalling Eq. (16), , the complete rms envelope 
equation is: 

  , (26) 

where we have included the normalized emittance εn,rms = γεrms. Notice that the effect of longitudinal 
accelerations appears in the rms envelope equation as an oscillation damping term, called ‘adiabatic 
damping’, proportional to p′/p. The term  represents the moment of any external transverse force 
acting on the beam, such as that produced by a focusing magnetic channel. 

5 External forces 

Let’s now consider the case of an external linear force acting on the beam in the form . It can 
be focusing or defocusing, according to the sign. The moment of the force is 
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  (27) 

and the envelope equation becomes 

  , (28) 

where we have explicitly used the momentum definition p = γmc for a relativistic particle with β ≈ 1 and 
defined the wavenumber 

  . 

Typical focusing elements are quadrupoles and solenoids [3]. The magnetic quadrupole field is 
given in Cartesian coordinates by 

  , (29) 

where d is the pole distance and  is the field gradient. The force acting on the beam is 

 and, when B0 is positive, is focusing in the x direction and defocusing in the y 

direction. The focusing strength is 

  . 

In a solenoid the focusing strength is given by 

  . 

Notice that the solenoid is always focusing in both directions, an important property when the cylindrical 
symmetry of the beam must be preserved. However, being a second-order quantity in γ, it is more 
effective at low energy. 

It is interesting to consider the case of a uniform focusing channel without acceleration described 
by the rms envelope equation 

 
 .
 (30) 

By substituting  into Eq. (30) one obtains an equation for the ‘betatron function’ βx(z) 
that is independent of the emittance term: 
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Equation (31) contains just the transport channel focusing strength and, being independent of the 
beam parameters, suggests that the meaning of the betatron function is to account for the transport line 
characteristic. The betatron function reflects exterior forces from focusing magnets and is highly 
dependent on the particular arrangement of the quadrupole magnets. The equilibrium, or matched, 

solution of Eq. (31) is given by  , as can be easily verified. This result shows that the 

matched βx function is simply the inverse of the focusing wavenumber or, equivalently, is proportional 
to the ‘betatron wavelength’ λβ. The corresponding envelope equilibrium condition, i.e., a stationary 

solution of Eq. (30), is given by: . 

In analogy with the kinetic theory of gases we can define the beam temperature in a transverse 
direction at equilibrium and without correlations as 

, 

where kB is the Boltzmann constant and we have used Eq. (12), showing that the conditions for a cold 
beam are typically: low emittance, low energy, high betatron function.   

By means of the beam temperature concept one can also define the beam emittance at the source 
called the thermal emittance. Assuming that electrons are in equilibrium with the cathode temperature 

Tc = Tbeam and g=1, the thermal emittance is given by  which, per unit rms spot size at 

the cathode, is  = 0.3 µm/mm at Tc = 2500 K. For comparison, in a photocathode illuminated by a 
laser pulse with photon energy  the expression for the variance of the transverse momentum of the 

emitted electrons is given by , where ,  being the material work 

function and  the Schottky work function [19]. The corresponding thermal emittance is 

 that, with the typical parameters of a Copper photocathode illuminated by a UV 

laser, gives a thermal emittance per unit spot size of about 0.5 µm/mm. 

6 Space charge forces 
Another important force acting on the beam is the one produced by the beam itself due to the internal 
Coulomb forces. The net effect of the Coulomb interaction in a multiparticle system can be classified 
into two regimes [3]: 

i) collisional regime, dominated by binary collisions caused by close particle encounters; 

ii) collective regime or space charge regime, dominated by the self-field produced by the 
particles’ distribution, which varies appreciably only over large distances compared with the 
average separation of the particles. 

A measure for the relative importance of collisional versus collective effects in a beam with particle 
density n is the relativistic Debye length, 
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As long as the Debye length remains small compared with the particle bunch transverse size, the beam 
is in the space charge dominated regime and is not sensitive to binary collisions. Smooth functions for 
the charge and field distributions can be used in this case, and the space charge force can be treated as 
an external applied force. The space charge field can be separated into linear and non-linear terms as a 
function of displacement from the beam axis. The linear space charge term defocuses the beam and 
leads to an increase in beam size. The non-linear space charge terms also increase the rms emittance by 
distorting the phase space distribution. Under the paraxial approximation of particle motion, we can 
consider the linear component alone. We shall see next that the linear component of the space charge 
field can also induce emittance growth when correlations along the bunch are taken into account. 

For a bunched beam of uniform charge distribution in a cylinder of radius R and length L, carrying 
a current Ȋ and moving with longitudinal velocity vz = βc, the linear component of the longitudinal and 
transverse space charge field are given approximately by [13] 

 
 , (33) 

 
 . (34) 

The field form factor is described by the functions: 

  (35) 

  , (36)
 

where ζ = z/L is the normalized longitudinal coordinate along the bunch, ζ = 0 being the bunch tail, and 
A = R/γL is the beam aspect ratio. The field form factors account for the variation of the fields along the 
bunch and outside the bunch for ζ<0 and ζ>L. As γ increases,  and , thus showing 
that space charge fields mainly affect transverse beam dynamics. It shows also that an energy increase 
corresponds to a bunch lengthening in the moving frame L′ = γL, leading to a vanishing longitudinal 
field component, as in the case of a continuous beam in the laboratory frame. 

To evaluate the force acting on the beam, one must also account for the azimuthal magnetic field 
associated with the beam current, which, in cylindrical symmetry, is given by 

  . 

Thus, the Lorentz force acting on each single particle is given by 

 
 .

 (37) 

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the 
repulsive electric force. Therefore, space charge defocusing is primarily a non-relativistic effect and 
decreases as γ−2. 

To include space charge forces in the envelope equation, let us start by writing the space charge 
forces produced by the previous fields in Cartesian coordinates: 
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 .

 (38) 

Then, computing the moment of the force, we need 

  (39)
 

where we have introduced the generalized beam perveance, 

  (40)
 

where IA = 4πε0m0c3/e = 17 kA is the Alfvén current for electrons. Notice that in this case the perveance 
in Eq. (40) explicitly depends on the slice coordinate ζ. We can now calculate the term that enters the 
envelope equation for a relativistic beam, 

  , (41) 

leading to the complete envelope equation 

 
 .
 (42)

 

From the envelope equation Eq. (42), we can identify two regimes of beam propagation: space 
charge dominated and emittance dominated. A beam is space charge dominated as long as the space 
charge collective forces are largely dominant over the emittance pressure. In this regime, the linear 
component of the space charge force produces a quasi-laminar propagation of the beam, as one can see 
by integrating one time Eq. (39) under the paraxial ray approximation x′ 1.   

A measure of the relative importance of space charge effects versus emittance pressure is given 
by the laminarity parameter, defined as the ratio between the space charge term and the emittance term: 

 
 . (43) 

When ρ greatly exceeds unity, the beam behaves as a laminar flow (all beam particles move on 
trajectories that do not cross), and transport and acceleration require a careful tuning of focusing and 
accelerating elements to keep laminarity. Correlated emittance growth is typical in this regime, which 
can be made reversible if proper beam matching conditions are fulfilled, as discussed next. When ρ < 1, 
the beam is emittance dominated (thermal regime) and space charge effects can be neglected. The 
transition to the thermal regime occurs when ρ ≈ 1, corresponding to the transition energy 

 
 . (44) 

For example, a beam with Ȋ = 100 A, εn = 1 µm, and σ = 300 µm is leaving the space charge dominated 
regime and is entering the thermal regime at the transition energy of 131 MeV. From this example, one 
may conclude that the space charge dominated regime is typical of low-energy beams. Actually, for 
such applications as linac-driven free electron lasers, peak currents exceeding kA are required. Space 
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charge effects may recur if bunch compressors are active at higher energies and a new energy threshold 
with higher Ȋ must be considered. 

7 Correlated emittance oscillations 
When longitudinal correlations within the bunch are important, like that induced by space charge effects, 
beam envelope evolution is generally dependent also on the coordinate along the bunch ζ. In this case, 
the bunch should be considered as an ensemble of n longitudinal slices of envelope , whose 
evolution can be computed from n slice envelope equations equivalent to Eq. (42), provided that the 
bunch parameters refer to each single slice: γs, γ′s, ksc,s = kscg(ζ). Correlations within the bunch may cause 
emittance oscillations that can be evaluated, once an analytical or numerical solution [13] of the slice 
envelope equation is known, by using the following correlated emittance definition: 
  , (45) 

where the average is performed over the entire slice ensemble, assuming uniform charge distribution 
within each slice. In the simplest case of a two-slice model, the previous definition reduces to 
  , (46) 

which represents a simple and useful formula for an estimation of the emittance scaling [14]. 

The total normalized rms emittance is given by the superposition of the correlated and 
uncorrelated terms as 

  . (47) 

An interesting example to consider here, showing the consequences of non-perfect beam 
matching, is the propagation of a beam in the space charge dominated regime nearly matched to an 
external focusing channel, as illustrated in Fig. 7. To simplify our computations, we can neglect 
acceleration, as in the case of a simple beam transport line made by a long solenoid (k2

ext = ksol). The 
envelope equation for each slice, indicated as σs, reduces to 

  . (48) 

 
Fig. 7: Schematic representation of a nearly matched beam in a long solenoid. The dashed line represents the 
reference slice envelope matched to the Brillouin flow condition. The other slice envelopes are oscillating around 
the equilibrium solution. 

A stationary solution corresponding to slice propagation with constant envelope, called Brillouin 
flow, is given by 
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 , (49) 

where the local dependence of the current Ȋs = Ȋg(ζ) within the bunch has been explicitly indicated. This 
solution represents the matching conditions for which the external focusing completely balances the 
internal space charge force. Unfortunately, since kext has a slice-independent constant value, the Brillouin 
matching condition is different for each slice and usually cannot be achieved at the same time for all of 
the bunch slices. Assuming that there is a reference slice perfectly matched (49) with an envelope σr,B 

and negligible beam energy spread, the matching condition for the other slices can be written as: 

  , (50) 

with respect to the reference slice. Considering a slice with a small perturbation δs with respect to its 
own equilibrium Eq. (50) in the form 
  , (51) 

and substituting into Eq. (48), we can obtain a linearized equation for the slice offset 
  , (52) 

which has a solution given by 
  , (53) 

where δ0 = σso − σsB is the amplitude of the initial slice mismatch, which we assume, for convenience, is 
the same for all slices. Inserting Eq. (53) into Eq. (51) we get the perturbed solution: 
 

 . (54) 

Equation (54) shows that slice envelopes oscillate together around the equilibrium solution with 
the same frequency for all slices (√2kext, often called the plasma frequency) dependent only on the 
external focusing forces. This solution represents a collective behaviour of the bunch, similar to that of 
the electrons subject to the restoring force of ions in a plasma. Using the two-slice model and Eq. (54), 
the emittance evolution Eq. (46) results in 

 , (55)
 

where ∆I= Ȋ1 − Ȋ2. Notice that, in this simple case, envelope oscillations of the mismatched slices induce 
correlated emittance oscillations that periodically return to zero, showing the reversible nature of the 
correlated emittance growth. It is, in fact, the coupling between transverse and longitudinal motion 
induced by the space charge fields that allows reversibility. With proper tuning of the transport line 
length or of the focusing field, one can compensate for the transverse emittance growth. 

At first, it may seem surprising that a beam with a single charge species can exhibit plasma 
oscillations, which are characteristic of plasmas composed of two-charge species. However, the effect 
of the external focusing force can play the role of the other charge species, providing the necessary 
restoring force that is the cause of such collective oscillations, as shown in Fig. 8. The beam can actually 
be considered as a single-component, relativistic, cold plasma. 
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Fig. 8: The restoring force produced by the ions (green dots) in a plasma may cause electron (red dots) oscillations 
around the equilibrium distribution. In a similar way, the restoring force produced by a magnetic field may cause 
beam envelope oscillations around the matched envelope equilibrium. 

It is important to bear in mind that beams in linacs are also different from plasmas in some 
important respects [5]. One is that beam transit time through a linac is too short for the beam to reach 
thermal equilibrium. Also, unlike a plasma, the Debye length of the beam may be larger than, or 
comparable to, the beam radius, so shielding effects may be incomplete. 

8 Matching conditions in a radiofrequency linac 
In order to prevent space charge induced emittance growth in a radiofrequency (rf) linac, as in the case 
of a high brightness photoinjector, and to drive a smooth transition from the space charge to the thermal 
regime, space charge induced emittance oscillations have to be damped along the linac in such a way 
that an emittance minimum is obtained at the transition energy Eq. (44). To this end the beam has to be 
properly matched to the accelerating sections with a Brillouin like flow in order to keep under control 
emittance oscillations that in this case are provided by the ponderomotive rf focusing force [2] acting in 
the rf structures. In some case rf focusing is too weak to provide sufficient beam containment. A long 
solenoid around the accelerating structure is a convenient replacement to provide the necessary focusing.  

The matching conditions for a beam subject to acceleration (assuming  and  
) can be obtained following the previous example (Brillouin flow). This process can be described 

using the envelope equation (42) for a generic slice with external focusing provided by 

where  and . The quantity  is a measure of the higher spatial harmonic 

amplitudes of the rf wave and it is generally quite close to unity in standing wave (SW) structures and 
close to 0 in travelling wave (TW) structures [15].  

Being now g(z) a time-dependent function, a stationary solution of Eq. (42) cannot be found by 
simply looking for a constant envelope solution. A possible way to find an 'equilibrium' solution is 
described hereafter. By substituting the reduced variable  [16] in the envelope equation (42) 
we obtain  

                                                                (56) 
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with the scaled parameters and . Eq. (56) is 

equivalent to Eq. (42) but the damping term has disappeared and the and  parameters have the 
same  dependence. In the space charge regime the emittance term can be neglected in Eq. (56) and 
an equilibrium solutions in the reduced variables (called the ‘invariant envelope’ in the literature [2]) is 

given by , corresponding to the matching conditions for the beam envelope: 

     for                                               (57)  

where . 

The expression for the emittance oscillation in the space charge dominated regime, i.e. when 
, can be obtained from Eq. (55) using reduced variables and results: 

        .                                     (58) 

Before the transition energy is achieved the emittance performs damped oscillations with 
wavelength depending on the external fields and with amplitude depending on the current profile. A 
careful tuning of the external fields and bunch charge profile can minimize the value of the emittance at 
the injector extraction. A successful application of the emittance compensation technique can be seen 
in [17, 18].  

When the beam enters in the thermal regime an equilibrium solution can be found directly from 
Eq. (42) neglecting the space charge term. The result is 

 

     

     

for                                               (59) 

and no correlated emittance oscillations are expected. Note also that Eq. (57) scales like  while 
Eq. (59) is independent of .  
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