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Abstract
In this lecture, we briefly review the nonrelativistic QCD (NRQCD) factor-
ization approach to describe the quarkonium production and decay. In the
NRQCD factorization formula, the long-distance nature of a heavy quarko-
nium is factorized into the NRQCD long-distance matrix elements (LDMEs)
and a physical measurable is expressed as a linear combination of the LDMEs.
If we apply the perturbation theory to enhance the theoretical accuracies in the
short-distance contributions there is no way to avoid non-analytic Coulomb
divergences in the static limit of the heavy quark and infrared divergences. A
systematic procedure to isolate such long-distance contributions out of the cor-
rection terms in the short-distance coefficients is called matching. As a heuris-
tic example of finding the NRQCD factorization formula for a specific process,
we demonstrate the matching procedure of determining the short-distance co-
efficients involving the leptonic decay of the S-wave spin-triplet state.
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1 Introduction
The heavy quarkonium is the bound system of a heavy quark (Q) and a heavy antiquark (Q̄), where
Q = c or b. If Q = c (b), it is called a charmonium (bottomonium). As we do for a hydrogen atom,
we allocate the following quantum numbers for a quarkonium system: In order to describe the radial
excitation we use the principal quantum number n. The orbital angular momentum quantum number L
(= 0, 1, 2, · · · ) is used to identify the relative motion between Q and Q̄. The states with L = 0, 1, 2
are also called the S-, P -, D-wave states, respectively. The spin angular momentum quantum number
S indicates whether the pair is in the spin-singlet (S = 0) or in the spin-triplet (S = 1) state. The
spectroscopic notation 2S+1LJ is used to represent a physical quarkonium state, where J is the total
angular momentum quantum number. A physical quarkonium system is in a color singlet state. However,
we can also think of a QQ̄ pair created or annihilated at short distances in a certain color combination.
The notations 2S+1L[1]

J
and 2S+1L[8]

J
are used for the color-singlet and -octet states, respectively. A

physical quarkonium system of 2S+1L[1]
J

state is a simultaneous eigenstate of both the parity P and
the charge conjugation parity C. If we consider the fact that the spin wave function for a QQ̄ pair is
symmetric (antisymmetric) when S = 0 (S = 1), then we find that the corresponding symmetry factor
in the spin wave function for the exchange of Q and Q̄ is (�1)S+1. The orbital angular momentum wave
function has the parity (�1)L and the intrinsic parities of Q and Q̄ differ. Thus the parity of the QQ̄
bound state is P = (�1)L+1. Because the charge conjugation is equivalent to the interchange of the
positions and spins for the Q and Q̄, C = (�1)S+1 and P = (�1)L+S . In Table 1 we list the quantum
numbers of various quarkonia.

Among various quarkonia, the 3S[1]
1 charmonium J/ of mass about 3.1GeV was discovered first

in 1974 [1, 2]. This state has a very long life time and, therefore, it has a very narrow width so that it
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Table 1: Quantum numbers of quarkonia with n = 1.

2S+1L[1]
J

charmonium bottomonium S L J
PC

1S[1]
0 ⌘c ⌘b 0 0 0

�+

3S[1]
1 J/ ⌥ 1 0 1

��

1P [1]
1 hc hb 0 1 1

+�

3P [1]
J(=0,1,2) �cJ �bJ 1 1 J++

Fig. 1: The Feynman diagrams involving the decay modes J/ ! e+e� (left) and J/ ! light hadrons (right) at
LO in ↵s, respectively. There are 5 more diagrams for the light-hadronic decay that can be obtained by permutation
of three gluons.

Fig. 2: The Feynman diagrams involving the decay modes ⌘c or �c0 ! �� (left) and ⌘c or �c0 ! light hadrons
(right) at LO in ↵s, respectively. There is another diagram that can be obtained by exchanging the two final-state
particles for each diagram.

can be detected as a sharp resonance in the invariant mass distribution of the lepton pair in the decay
mode J/ ! e+e� or µ+µ�. The annihilation of J/ involves the annihilation of a QQ̄ pair because
it cannot decay into two charmed mesons (DD̄) whose invariant mass is greater than the J/ mass. At
leading order (LO) in the strong coupling constant ↵s the light-hadronic decay mode is dominated by the
three-gluon final state of the color-singlet combination whose decay rate is of order ↵3

s . This suppression
of the hadronic decay mode of the J/ makes its width sharper than other quarkonium states such as
⌘c or �c0 whose leading decay modes are into two gluons. This elementary interpretation is based on
the conservation of the charge conjugation parity C as well as the parity P of QCD. Because a physical
S-wave spin-triplet QQ̄ bound state has JPC

= 1
��, it may only decay into an odd number of gluons

that make a color singlet combination. Thus the color-singlet combination of three gluons appears at
LO in ↵s so that the dominance of the hadronic decay mode is less severe for the S-wave spin-triplet
state in comparison with the cases of the S-wave spin-singlet and the P -wave spin-triplet states whose
charge conjugation parities are +1. Hence, the leading contributions to the 1S[1]

0 or 3P [1]
J

hadronic decay
rates are color-singlet combination of two gluons that are of order ↵2

s . Therefore, the narrow width of
3S[1]

1 quarkonium in comparison with other states is well understood in QCD and allows clean signals.
In Table 2 we list the total decay rates, branching fractions for the electromagnetic decay modes, and
those for the light-hadronic modes for J/ , ⌘c, and �c0. In Figs. 1 and 2, we list Feynman diagrams for
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Table 2: The total decay widths �tot, the branching fractions BrEM for the electromagnetic decay modes, and the
branching fractions Brhad for the light-hadronic decay modes for J/ , ⌘c, and �c0.

�tot BrEM Brhad
J/ 93 keV 2⇥ 6% 88%

⌘c 32 MeV 1.6⇥ 10
�4 ⇠ 1

�c0 11 MeV 2.2⇥ 10
�4 ⇠ 1

the electromagnetic and light-hadronic decays of J/ and ⌘c (�c0), respectively, at LO in ↵s.
An S-wave spin-triplet charmonium H is usually detected at colliders through the muon-antimuon

or electron-positron pair final states. However, the original hadron H 0 that results in these final states
is not unique. It can be the 3S[1]

1 charmonium itself or other hadrons that decay into particles including
a 3S[1]

1 charmonium. The mother hadron H 0 is mostly another charmonium resonance or B mesons. If
H 0 is a higher quarkonium resonance, then the main decay mechanism is through the strong or electro-
magnetic interaction. If H 0 is a b hadron, then its decay is governed by the weak interaction so that the
vertex of `+`� is secondary and it is largely separated from the primary vertex (collision point) at which
b hadrons are created. The CDF Collaboration of the Fermilab Tevatron installed the Silicon Vertex
Detector (SVX) [3] to achieve the asymptotic impact parameter resolutions of order 10 µm. The SVX
enabled one to reconstruct b hadrons effectively so that one can easily separate the signals coming from
b hadron decays and isolate the signals from the directly produced charmonium or higher charmonium
resonances that we call prompt charmonium. Although the SVX is useful to separate the prompt char-
monium signal from the charmonium coming from the decay of b hadrons, it is unable to distinguish
the signals of the directly produced charmonium from those coming from the feeddowns of higher char-
monium resonances. The prompt  (2S) is the same as the direct  (2S) because it does not have any
feeddowns from higher resonances. In the case of J/ , the prompt signal contains the direct J/ , J/ 
coming from the feeddowns �cJ ! J/ + � and  (2S) ! J/ ⇡⇡. Here, the �cJ is either the direct
�cJ or that coming from  (2S)! �cJ + �.

The advent of the SVX sped up the progress of the phenomenological studies of prompt J/ and
 (2S). This has eliminated the non-prompt samples whose theoretical prediction has large uncertainties.
The enormous surplus of these charmonia measured by the CDF Collaboration at the Fermilab Tevatron
in comparison with the prediction based on the conventional phenomenological model so called the color-
singlet model (CSM) was successfully explained in Ref. [4] by introduction of the color-octet mechanism
[5] of the nonrelativistic QCD (NRQCD) factorization approach [6]. This success of explaining the
production rate was followed by a puzzling contradiction that the measurements of the J/ polarization
at the Tevatron and at the LHC are against the theoretical prediction that the prompt J/ produced with
large transverse momentum pT should be transversely polarized [7–13]. In 2014, this puzzle has indeed
been resolved by considering the leading-power factorization [14].

In this lecture, we briefly review the NRQCD factorization approach to describe the production and
decay of the heavy quarkonium. In Sec. 2 we briefly review the quarkonium theory by considering the
basic nature of a quarkonium, an old phenomenological model CSM, the origin of the soft singularities
that appear in the perturbative computation of a measurable involving a quarkonium. In the latter part of
this section we review the NRQCD factorization approach that provides a systematic procedure to isolate
such infrared-sensitive factors out of the short-distance coefficients in the factorization formula. In Sec. 3
we provide a demonstration of matching that determines the short-distance coefficients of the NRQCD
factorization formula for a specific process by considering the leptonic decay of the S-wave spin-triplet
state and we summarize in Sec. 4.
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2 Quarkonium theory
In this section, we briefly review theories regarding heavy quarkonium production and decay. We first
summarize the fundamental nature of heavy quarkonia. Next we introduce a phenomenological model
so called the color-singlet model that had been resorted until mid 1990’s. At the end of this section,
we summarize basic ideas of the NRQCD factorization approach which is the most rigorous theoretical
approach at present.

2.1 Basic nature of quarkonia
The heavy quarkonium H is a bound state of a heavy quark Q and an antiquark Q̄ whose interaction
is dominated by the strong interaction. Because the Q and Q̄ are heavy, the speed of Q or Q̄ in the
meson rest frame is assumed to be much smaller than the speed of light. For example, the masses of the
spin-triplet states J/ and  (2S) are about 3.1GeV and 3.7GeV, respectively. In the case of bottomonia
⌥(1S) and ⌥(2S), they are about 9.5GeV and 10GeV, respectively. The mass difference between the
1S and 2S states are about 500 – 600MeV for both cc̄ and bb̄ states. This mass difference can be scaled
by⇠ mQv2Q roughly based on the Virial theorem, where mQ and vQ are the mass and the speed of the Q
in the meson rest frame, respectively. Thus one can guess that v2c ⇠ 0.3 and v2

b
⇠ 0.1. There are typical

scales that involve the strong interaction in a quarkonium: The heavy-quark mass⇠ mQ is the hard scale
that governs the creation or annihilation of H . The heavy-quark momentum ⇠ mQvQ in the meson rest
frame is the scale that determines the typical size ⇠ 1/(mQvQ) of the bound state. The life time of the
bound state ⇠ 1/(mQv2Q) is scaled by the reciprocal of the binding energy ⇠ mQv2Q. If we can take the
approximation that vQ ⌧ 1, then these scales are well separated as mQ � mQvQ � mQv2Q [6].

The complete production or decay process of a heavy quarkonium H includes all of these interac-
tions over a wide range of scales simultaneously. The annihilation or creation of a QQ̄ pair involving a
hard scale of order mQ or higher can be treated perturbatively because ↵s(mQ) is assumed to be small.
The interaction of Q and Q̄ that makes the bound state is governed by the strong interaction of scale
similar to or less than mQvQ or mQv2Q are nonperturbative. One can make a guess that the perturbative
factor and the nonperturbative factor are separable. The CSM assumes that the two factors are factorized
as the product of the short-distance factor that is controlled by the hard scale and the long-distance factor
that is responsible for the quarkonium wave function. The NRQCD factorization is a rigorous framework
that factorizes the two factors in a systematic double power expansions in ↵s(mQ) and vQ.

2.2 Color-singlet model
The CSM assumes that the short-distance factor and the long-distance factor are factorized. In addition,
it allows only the color-singlet QQ̄ pair with the spectroscopic state identical to the physical quarkonium
state in the short-distance contributions [15–27]. According to the CSM, the decay rates for J/ !
e+e� and �c0 ! light hadrons are factorized as

�(J/ ! e+e�) = �̂

h
cc̄(3S[1]

1 )! e+e�
i
⇥ |R(0)|2, (1a)

�(�c0 ! hadrons) = �̂

h
cc̄(3P [1]

0 )! gg
i
⇥ |R0

(0)|2, (1b)

where �̂’s are the corresponding short-distance factors that are assumed not to be sensitive to long-
distance interactions. R(0) and R0

(0) are radial wave function at the origin and the first-order derivative
of the radial wave function at the origin, respectively. The J/ decay rate formula is an immediate
application of the Van Royen-Weisskopf formula for a meson decay into a lepton pair [28]. However,
in the CSM, the infrared (IR) insensitivity of the short-distance coefficient �̂ is not guaranteed at higher
orders in ↵s. For example, as shown in Fig. 3, the short-distance coefficient for the light-hadronic decay
of �c0 contains the three-body decay mode �c0 ! gqq̄, where q is a light quark, at the next-to-leading
order (NLO) in ↵s. In the end point limit of the phase space that the q and q̄ are back to back, the gluon
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Fig. 3: One of the Feynman diagrams involving �c0 ! light hadrons at NLO in ↵s.

becomes soft. The IR divergence due to the attachment of a soft gluon to c and c̄ does not cancel if
one cannot ignore the relative momentum between c and c̄. This remaining IR divergence of the short-
distance coefficient at this order leads to the failure in factorization of the CSM [5]. Such a failure of
factorization in the CSM appears also in the S-wave case from order v4

Q
[29, 30] even at LO in ↵s. The

order-↵s correction to the short-distance process for J/ ! e+e� also brings in the IR sensitivity to all
orders in vQ as shown in Ref. [31].

2.3 Infrared divergence
The cancellation of the IR divergence when we attach a soft gluon to the QQ̄ pair is exact as long as
the two momenta for the Q and Q̄ are identical to each other. However, such cancellation does not hold
once the two momenta are different. We demonstrate this phenomenon in a schematic way. Consider the
amplitude for the production of a QQ̄ pair

iM0 = ū(p1)Av(p2), (2)

where A is the amputated amplitude that excludes the external lines for the QQ̄ pair, p1 and p2 are
the momenta for the on-shell Q and Q̄, respectively, with p21 = p22 = m2. They can be expressed as
linear combinations of the momentum P = p1 + p2 for the QQ̄ pair and half their relative momentum
q = (p1 � p2)/2 as

p1 =
1

2
P + q, (3a)

p2 =
1

2
P � q. (3b)

Analogously one can apply a similar method to the annihilation decay process.
If we attach a gluon with momentum k to the external line of the heavy quark Q, then the amplitude

becomes

iM1 = gsµ
✏ū(p1)[�i/✏⇤]

i(/p1 + /k +m)

(p1 + k)2 �m2
T aAv(p2)

= gsµ
✏ū(p1)

/✏⇤(/p1 + /k +m)

(p1 + k)2 �m2
T aAv(p2)

= gsµ
✏ū(p1)

2✏⇤ · (p1 + k)� (/p1 + /k �m)/✏⇤

2p1 · k
T aAv(p2), (4)

where ✏⇤ and a are the polarization vector and color index of the gluon, T a is the generator of the
fundamental representation of color SU(Nc) with Nc = 3, gs =

p
4⇡↵s, µ is the renormalization scale,

and we use dimensional regularization in d = 4 � 2✏ space-time dimensions. By making use of the
equation of motion for the external quark,

ū(p1)(/p1 �m) = 0, (5)
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and the transverse condition for the external gluon

✏⇤ · k = 0, (6)

we find that
iM1 = gsµ

✏ū(p1)
2✏⇤ · p1 � /k/✏⇤

2p1 · k
T aAv(p2). (7)

Taking the leading contribution as k ! 0 to collect the IR sensitive part, we find that

iMIR
1 = gsµ

✏
p1 · ✏⇤
p1 · k

ū(p1)T
a
�v(p2). (8)

If we attach a gluon with momentum k to the external line of the heavy antiquark Q̄, then

iM2 = ū(p1)AT a
i(�/p2 � /k +m)

(�p2 � k)2 �m2
[�i/✏⇤]v(p2)

= gsµ
✏ū(p1)AT a

/✏⇤(�/p2 � /k +m)

(p2 + k)2 �m2
v(p2)

= gsµ
✏ū(p1)AT a

�2✏⇤ · (p2 + k) + (/p2 + /k +m)/✏⇤

2p2 · k
v(p2). (9)

By making use of the equation of motion for the external antiquark,

(/p2 +m)v(p2) = 0, (10)

and the transverse condition
✏⇤ · k = 0, (11)

we find that
iM2 = gsµ

✏ū(p1)AT a
�2✏⇤ · (p2 + k) + /k/✏⇤

2p2 · k
v(p2). (12)

Taking the leading contribution as k ! 0 to collect the IR sensitive part, we find that

iM2 = �gsµ✏
p2 · ✏⇤
p2 · k

ū(p1)AT av(p2). (13)

In summary, the approximation for the final-state quark and antiquark amplitude emitting a soft
gluon with momentum k and the polarization vector ✏⇤ can be expressed as

i(M1 +M2) = iM0|A!A0 , (14)

where
A0

= gsµ
✏


T a

p1 · ✏⇤
p1 · k

A�AT a
p2 · ✏⇤
p2 · k

�
. (15)

We consider the simplest case like the amputated amplitude for �⇤ ! QQ̄ that is free of color structure.
In such a case, the soft-gluon attachment leads to the replacement A! A0

= CsoftA, where

Csoft = gsµ
✏T a


p1 · ✏⇤
p1 · k

� p2 · ✏⇤
p2 · k

�

= gsµ
✏T a

"
(
1
2P + q) · ✏⇤

(
1
2P + q) · k

�
(
1
2P � q) · ✏⇤

(
1
2P � q) · k

#
. (16)

It is manifest that the factor Csoft vanishes in the limit q ! 0. Thus the soft-gluon attachment is free
of IR divergence as long as we consider the S-wave case with vanishing relative momentum q = 0. In
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case of the P -wave contribution, the cancellation does not hold and the attachment of a soft gluon leads
to the IR divergence. Even in the S-wave case, the relativistic correction of order v2

Q
at the amplitude

level brings in the IR divergence. Therefore, in the cross section or the decay rate, the S-wave process
acquires the IR divergence from relative order v4

Q
or higher. Note that the soft gluon does not change

the spin state of the QQ̄ pair while it carries the orbital angular momentum resulting in the transition
with �L = ±1. Because the gluon carries color, the color state of the QQ̄ state changes. This is a
chromoelectric dipole transition. As a result, the perturbative corrections to the short-distance coefficient
for the amplitude of the color-singlet QQ̄ pair acquires the sensitivity to the long-distance contribution.
Without introducing a systematic separation of this long-distance contribution of QCD corrections, the
factorization is not achieved in the CSM.

2.4 NRQCD factorization approach
We have observed that the perturbative QCD correction to the short-distance coefficient involving the an-
nihilation decay or production of a color-singlet QQ̄ pair with the spectroscopic state 2S+1L[1]

J
introduces

IR sensitive contributions if one does not neglect vQ. The divergent contribution involves the QQ̄ pair
with the spectroscopic state 2S+1L0[8]

J 0 , where L0 �L = ±1 and S is invariant. Actually this contribution
can be understood as the QCD correction to the state 2S+1L0[8]

J 0 through the long-distance QCD interac-
tions. Based on this, the Fock-state expansion can be made to express a physical quarkonium state such
as �c0 as |�c0i = |cc̄(3P [1]

0 )i+ |cc̄(3S[8]
1 )+ gsofti+ · · · , while the CSM only allows |�c0i = |cc̄(3P [1]

0 )i.
The higher-order Fock state components are scaled with powers of vQ that involves the strength of the
corresponding long-distance interactions. The NRQCD factorization approach is a systematic theoretical
formalism to treat these long-distance transition of a QQ̄ state to another as a power series of vQ that are
assumed to be small like v2c ⇠ 0.3 and v2

b
⇠ 0.1. By making use of this formalism, the separation of the

long-distance contribution out of the perturbative corrections to the short-distance coefficient is carried
out. If such a separation is proved to be valid to all orders in ↵s, then we call it the factorization theorem.
A rigorous proof of the factorization theorem has been made for the electromagnetic annihilation decay
and the annihilation decay into light hadrons [6] as a generalization of the work on the P -wave quarko-
nium decay [5]. The rigorousness of the proof is similar to that for the Drell-Yan process [32]. Since
the introduction of the factorization conjecture for the inclusive quarkonium production in Ref. [6], a
bunch of phenomenological studies and the corresponding experimental verifications have been carried
out. We refer the readers to a recent review paper [33] for more details. The rigorous construction of
the factorization theorem for the inclusive quarkonium production is still under way. Such efforts can be
found, for example, in Refs. [34–37].

2.4.1 NRQCD Lagrangian
In order to describe the long-distance QCD interactions of the QQ̄ pair, it is convenient to reformulate
the full QCD in terms of an effective theory called the NRQCD. The NRQCD Lagrangian is therefore
equivalent to the full QCD except that in NRQCD the annihilation and/or decay of the QQ̄ pair is forbid-
den because they are of the scale above the ultraviolet (UV) cutoff ⇠ mQ of this effective theory. Thus
the full QCD Lagrangian can be expressed as the sum of the Lagrangian Llight for the light degrees of
freedom and that (Lheavy) for the heavy quark as

LQCD = Llight + Lheavy + �L. (17)

Llight is identical to that for the full QCD as

Llight = �
1

2
trGµ⌫G

µ⌫
+

X

q

 ̄q(i/D �mq) q, (18)

7

QUARKONIUM PHYSICS: NRQCD FACTORIZATION FORMULA FOR J/ DECAY

75



where Gµ⌫ = Gµ⌫
a T a and Gµ⌫

a is the field strength tensor of the gluon with color index a, q is the Dirac
spinor field for the light quark q, mq is the mass of the light quark q, Dµ

= (Dt,�D) = @µ + igsAµ is
the gauge-covariant derivative, and Aµ

= (�,A) = Aµ
aT a is the SU(3) color matrix valued gauge field.

Lheavy is the contribution to the heavy quark and antiquark at LO in vQ:

Lheavy =  †
✓
iDt +

D
2

2mQ

◆
 + �†

✓
iDt �

D
2

2mQ

◆
�, (19)

where  (�) is the Pauli spinor field that annihilates (creates) a heavy quark (antiquark). The leading
contribution Lheavy and the relativistic corrections �Lbilinear can be obtained by block-diagonalizing the
full QCD Lagrangian for the heavy quark by making use of the Foldy-Wouthuysen-Tani transformation
[38] except that we have subtracted the mass terms. Explicit expressions for the bilinear contributions
can be found in Eq. (25) of Ref. [5]. The remaining contribution �L is expressed as

�L = �Lbilinear + �Lfour-fermion. (20)

Here, �Lbilinear is bilinear in either the quark field or the antiquark field that can be read off from the
block-diagonalized expression of the full-QCD Lagrangian for the heavy quark. A convenient set of
Feynman rules for the NRQCD perturbation theory involving the bilinear contribution can be found in
Table I of Ref. [39]. The annihilation decay of a QQ̄ pair cannot be reproduced in terms of Lheavy and
�Lbilinear. Such contribution can only be reproduced by the four-fermion terms,

�Lfour-fermion =

X

n

fn(⇤)

mdn�4
Q

On(⇤), (21)

where fn(⇤) is the short-distance coefficient that is insensitive to the long-distance interactions, On(⇤)

is a higher dimensional operator, and dn is the dimension of the operator On(⇤). Because the scale
involving the creation or annihilation of a QQ̄ pair is above the UV cutoff ⇤, such a relativistic effects
can only be reproduced by adding four-fermion operators like  †��† . In the following section, we list
definitions of four-quark operators and summarize a way to determine the short-distance coefficient by
matching NRQCD Lagrangian on to the full QCD counterpart.

2.4.2 NRQCD operators
We list frequently used four-fermion NRQCD operators On(⇤) that appear in �Lfour-fermion. The dimension-
6 operators of On(⇤) that involve light-hadronic decays are given by

O(
1S[1]

0 ) =  †��† , (22a)

O(
3S[1]

1 ) =  †
�� · �†

� , (22b)

O(
1S[8]

0 ) =  †T a��†T a , (22c)

O(
3S[8]

1 ) =  †
�T a� · �†

�T a . (22d)

The color-singlet dimension-8 operators that involve light-hadronic decays are given by

O(
1P [1]

1 ) =  †
✓
� i

2

 !
D

◆
� · �†

✓
� i

2

 !
D

◆
 , (23a)

O(
3P [1]

0 ) =  †
✓
� i

2

 !
D · �

◆
��†

✓
� i

2

 !
D · �

◆
 , (23b)

O(
3P [1]

1 ) =  †
✓
� i

2

 !
D ⇥ �

◆
� · �†

✓
� i

2

 !
D ⇥ �

◆
 , (23c)

O(
3P [1]

2 ) =  †
✓
� i

2

 !
D (i�j)

◆
��†

✓
� i

2

 !
D (i�j)

◆
 , (23d)
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O2(
1S[1]

0 ) =
1

2

"
 †� · �†

✓
� i

2

 !
D

◆2

 + h.c.

#
, (23e)

O2(
3S[1]

1 ) =
1

2

"
 †
�� · �†

�

✓
� i

2

 !
D

◆2

 + h.c.

#
, (23f)

O2(
3S[1]

1 ,3D[1]
1 ) =

1

2

"
 †��†

✓
� i

2

◆2 !
D (i !D j) + h.c.

#
, (23g)

where O2(
2S+1L[1]

J
) represents the relativistic corrections of relative order v2

Q
to the LO operator O(

2S+1L[1]
J
)

and A(iBj)
=

1
2

�
AiBj

+AjBi
�
� 1

3�
ijAkBk is the traceless symmetric component of the Cartesian

tensor AiBj . The corresponding color-octet operators can be obtained in a similar manner as those for
the dimension-6 case that are listed in Eq. (22).

The four-quark operators involving the electromagnetic annihilation decay of a QQ̄ pair is very
similar to those for the light-hadronic decay except that the virtual state is the QCD vacuum. This re-
placement can be achieved by inserting the projection operator |0ih0| that projects out the QCD vacuum.
In addition, the color-octet operators are omitted because they have vanishing contribution to the vacuum-
to-quarkonium matrix element. For example, the dimension-6 operators for electromagnetic annihilation
decay of a QQ̄ pair are given by

OEM
(
1S[1]

0 ) =  †�|0ih0|�† , (24a)

OEM
(
3S[1]

1 ) =  †
��|0i · h0|�†

� . (24b)

2.4.3 NRQCD factorization formula
By making use of the effective Lagrangian �Lfour-fermion and the optical theorem, one can evaluate the
inclusive decay rate of H as [6]

�(H ! X) = 2ImhH|�Lfour-fermion|Hi

=

X

n

2Imfn(⇤)

Mdn�4
hH|On(⇤)|Hi, (25)

where |Hi is an eigenstate of the NRQCD Hamiltonian with the standard nonrelativistic normalization
hH(P

0
)|H(P )i = (2⇡)3�(3)(P 0�P ). In Appendix A of Ref. [6], one can find a systematic way to read

off the short-distance coefficients fn(⇤) and fEM
n (⇤) by evaluating the QQ̄! QQ̄ scattering amplitude

in full QCD, taking the imaginary part, and comparing this expression with the linear combination of
the corresponding perturbative NRQCD matrix elements hQQ̄|On(⇤)|QQ̄i and hQQ̄|OEM

n (⇤)|QQ̄i,
respectively. Because the NRQCD matrix elements for H and QQ̄ have a common structure in the
short-distance limit, the corresponding short-distance coefficients must be equal. This step is called the
perturbative matching. The NRQCD long-distance matrix element (LDME) hH|On(⇤)|Hi cannot be
computed perturbatively. Instead, some of them can be computed on the lattice [40–42] or they must be
determined phenomenologically against experimental data involving the LDME. The numerical accuracy
of the NRQCD factorization formula can be improved by extending the perturbative corrections to the
short-distance coefficients and by considering as many NRQCD LDMEs that are suppressed in powers
of vQ as possible. In practice, it is impossible to extend the series in vQ to all orders because it brings
in too many LDMEs in comparison with the number of independent measurables. There is no way but
to terminate the series at a certain order as long as the terminated factorization formula has uncertainties
within desirable accuracies. The velocity scaling rules of NRQCD [6,43], that are derived in the Coulomb
gauge on which the NRQCD LDMEs are formulated, can be used to determine the relative importance
of the NRQCD LDMEs.
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2.4.4 Matching
The short-distance coefficients fn(⇤) in Eq. (25) are insensitive to the long-distance nature of the quarko-
nium state and can be computed perturbatively. In order to determine the coefficients for the light-
hadronic decays, we can consider the full-QCD amplitude A(QQ̄ ! QQ̄) for the scattering process
QQ̄ ! QQ̄ whose intermediate state consists of only light degrees of freedom. This full-QCD expres-
sion can be expanded as a linear combination of perturbative NRQCD matrix elements hQQ̄|On(⇤)|QQ̄i
as

A(QQ̄! QQ̄) =

X

n

fn(⇤)

Mdn�4
hQQ̄|On(⇤)|QQ̄i, (26)

which is given in Ref. [6]. Thus the determination of fn(⇤) is straightforward by reading off the co-
efficient of hQQ̄|On(⇤)|QQ̄i in this expansion. This process is called the matching. Substituting the
coefficients fn(⇤) into the NRQCD factorization formula in Eq. (25), one can predict the light-hadronic
decay rate as long as the nonperturbative NRQCD LDMEs hH|On(⇤)|Hi are known.

The determination of the short-distance coefficients for the NRQCD factorization formula for the
electromagnetic decay is quite similar to that for the light-hadronic decay. However, in the electromag-
netic decay, the intermediate state for the scattering amplitude QQ̄! QQ̄ must not include any colored
particles.

3 Application to J/ ! e
+
e
�

While the coefficients at LO in ↵s are intrinsically free of IR divergence, higher-order corrections acquire
soft singularities. The NRQCD factorization approach provides a systematic procedure to isolate such
a long-distance contribution. This long-distance contribution will be identified as the ↵s corrections to
the NRQCD LDMEs and eventually we can obtain the short-distance coefficients that are insensitive
to the long-distance interactions. We provide only a schematic description and further details can be
found in Refs. [31, 44–46]. In this section, we demonstrate how to carry out the matching procedure
to determine the short-distance coefficients of the NRQCD factorization formula by considering the
relativistic corrections to J/ ! e+e� at NLO in ↵s. The relativistic corrections are to be computed to
all orders in vc keeping the 3S[1]

1 contribution only.
The NRQCD factorization formula for J/ ! e+e� at LO in vc and at order ↵s is given in

Ref. [6] that can be read off from the result in Ref. [47]:

�[J/ ! e+e�] =
8⇡e2c↵

2

3M2
J/ 

⇣
1� 4CF

↵s

⇡

⌘
hJ/ |OEM

(
3S[1]

1 )|J/ i, (27)

where ec is the fractional electric charge of the charm quark, ↵ is the electromagnetic fine structure
constant, CF = (N2

c � 1)/(2Nc) = 4/3, and the J/ mass can be set MJ/ = 2mc at order v0c .
The order-↵2

s and -↵3
s corrections are also available in Ref. [48] and [49], respectively. The perturbative

matching introduced in the previous section involves the analysis of the scattering amplitude QQ̄! QQ̄.
In case of the electromagnetic decay that omits QCD states in the final state, it is convenient to carry out
perturbative matching at the amplitude level.

In quite a few processes involving charmonium production and decay, the corresponding predic-
tions at LO in ↵s and at LO in vc have poor accuracies in comparison with the empirical data. It is partly
due to the fact that both ↵s and vc for a charmonium process are not sufficiently small. For example,
the prediction of the cross section for the exclusive process e+e� ! J/ + ⌘c at B factories is smaller
than the empirical values [50] by about an order of magnitude at LO in both ↵s and vc [51, 52]. A rea-
sonable agreement between theory and experiment for this process was reached only after including the
order-↵s corrections and the relativistic corrections resummed to all orders in vc [53–55]. As is stated
in Refs. [45], the NRQCD LDMEs involving relativistic corrections has intrinsic power UV divergence
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that must be subtracted in dimensional regularization, that is the most commonly used in phenomenol-
ogy. This leads to large numerical uncertainties in determining the LDMEs even in the signs when we
compute the LDMEs on the lattice which employs a hard cutoff regulator [45, 56]. The generalized
Gremm-Kapustin relation [45, 57] can be used to resum relativistic corrections to a color-singlet contri-
bution resulting in a significant improvement of the numerical accuracies in the theoretical predictions.
We regularize the UV and IR singularities using dimensional regularization in d = 4 � 2✏ space-time
dimensions.

3.1 1-loop matching
The amplitude for J/ ! e+e� can be factorized into the leptonic current, which is free of colored
particles, and the hadronic part Aµ

H
[31],

�ieec iAµ

H
= h0|J µ

EM|Hi, (28)

where �e is the electric charge, H is the spin-triplet S-wave charmonium (J/ ), and J µ

EM is the heavy-
quark electromagnetic current

J µ

EM = (�ieec) ̄�µ . (29)

The conservation of the electromagnetic current restricts that iA0
H

= 0 in the quarkonium rest frame. In
that frame, the spatial component must be a linear combination of the NRQCD matrix elements as

iAi

H =
p
2mH

X

n

cnh0|Oi

n|Hi, (30)

where cn are short-distance coefficients, Oi
n are the NRQCD operators, and mH is the quarkonium

mass. The overall factor
p
2mH is introduced because the quarkonium state |Hi on the right side is

normalized nonrelativistically while the full expression is normalized relativistically. We can think of
the corresponding amplitude for the free QQ̄ pair, where Q = c. The short-distance nature of the
process for the QQ̄ pair must be identical to that of the H . Therefore, QQ̄ must be in a state QQ̄(

3S[1]
1 ).

Thus the two processes have a common set of short-distance coefficients cn. Then the coefficients cn can
be determined from the following matching formula:

iAi

QQ̄
=

X

n

cnh0|Oi

n|QQ̄i, (31)

where Ai

QQ̄
is the amplitude for the on-shell QQ̄ pair that has the same short-distance process as Ai

H

and |QQ̄i is the on-shell QQ̄ pair state. At LO in ↵s, the short-distance coefficients are free of UV and
IR divergences. If we consider the perturbation of the amplitude corrected to order ↵s, then the matching
formula is modified as

iAi(0)
QQ̄

=

X

n

c(0)n h0|Oi

n|QQ̄i(0), (32)

iAi(0)
QQ̄

+ iAi(1)
QQ̄

=

X

n

(c(0)n + c(1)n )h0|Oi

n|QQ̄i(0) +
X

n

c(0)n h0|Oi

n|QQ̄i(1), (33)

where the superscript (i) stands for the order in ↵s. As the first step, we can read off the coefficients
c(0)n from the expression for iAi(0)

QQ̄
. Note that the NRQCD LDME h0|Oi

n|QQ̄i(i) can be computed
perturbatively although the LDME h0|Oi

n|Hi for a quarkonium state is nonperturbative. As the next
step, we subtract Eq. (32) from Eq. (33).

iAi(1)
QQ̄

=

X

n

c(1)n h0|Oi

n|QQ̄i(0) +
X

n

c(0)n h0|Oi

n|QQ̄i(1). (34)
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The first term is the order-↵s correction to the short-distance coefficient multiplied by the NRQCD ME
at LO. The second term is the LO short-distance coefficient multiplied by the NRQCD ME at NLO.
The IR divergent contribution of the short-distance coefficient, for example in the CSM, at NLO in ↵s

is to be identified as the second term in this expression. In this manner, the separation of long-distance
contribution from the short-distance factor is being carried out order by order systematically.

In order to find the relativistic corrections, it is convenient to define the following perturbative
NRQCD LDMEs for the QQ̄ pair:

h0|Oi

1n|QQ̄i(0) = h0|�†
✓
� i

2

 !r
◆2n

�i |QQ̄i(0)

= q
2n⌘†�i⇠, (35a)

h0|Oi

2n|QQ̄i(0) = h0|�†
✓
� i

2

 !r
◆2n�2✓

� i

2

 !r i

◆✓
� i

2

 !r · �
◆
 |QQ̄i(0)

= q
2n�2qi⌘†q · �⇠, (35b)

where ⇠ and ⌘ are Pauli spinors for the Q and Q̄, respectively, q = (p1 � p2)/2, p1 and p2 are the
momenta for Q and Q̄, respectively, and q is the spatial component of q in the QQ̄ rest frame.

Then the one-loop matching formula reduces into

iAi(1)
QQ̄

=

X

n

c(1)1n h0|O
i

1n|QQ̄i(0) +
X

n

c(1)2n h0|O
i

2n|QQ̄i(0) + iANRQCD,i

QQ̄
, (36)

where iANRQCD,i

QQ̄
represents the contribution that is a product of the short-distance coefficient at LO in

↵s and the perturbative NRQCD MEs at NLO in ↵s. For further information on the matching procedure,
refer to Ref. [31].

3.2 computation of Aµ
QQ̄

To any order in ↵s, the QQ̄ amplitude corresponding to the hadronic current Aµ

H
is of the form [31]

iAµ

QQ̄
= v̄(p2) [ZQ(1 + ⇤)�

µ
+Bqµ]u(p1), (37)

where ZQ is the heavy-quark wave function renormalization factor, ⇤ is the multiplicative factor for
the vertex correction, and B is the multiplicative correction factor coming from the magnetic moment
contribution that appears from order ↵s corrections to the vertex. At LO in ↵s, ZQ = 1 and ⇤ = 0

and B = 0. The B term contributes to the S-wave spin-triplet contribution only from the corrections of
order ↵s with relativistic corrections. One can find the values for ZQ and ⇤ at order ↵s keeping only the
leading contributions in powers in vc, for example, in Refs. [31] and [58] and as

ZQ = 1 +
↵sCF

4⇡

✓
� 1

✏UV
� 2

✏IR
� 3 log

4⇡µ2e��E

m2
c

� 4

◆
, (38a)

⇤ =
↵sCF

4⇡

⇢
1

✏UV
+

2

✏IR
+ 3 log

4⇡µ2e��E

m2
c

� 4 +
1

vc

✓
⇡2 � i⇡

✏IR
� i⇡ log

⇡µ2e��E

q2

◆�
, (38b)

where µ is the dimensional regularization scale, �E is the Euler-Marscheroni constant, and the subscript
of 1/✏ indicates the origin of divergence.

If we keep the leading contributions in vc only at this order, then the contribution proportianal to
qµ in the current in Eq. (37) does not appear because the corresponding NRQCD ME is to be neglected.
Then, it is sufficient to know

ZQ(1 + ⇤) = 1 +
↵sCF

4⇡

⇢
�8 + 1

vc


⇡2 � i⇡

✏IR
� i⇡ log

⇡µ2e��E

q2

��
+O(↵2

s). (39)
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The result shows that the IR divergence survives while the UV divergence cancels. In addition, there is a
non-analytic contribution as vc ! 0 which is originated from the Coulomb interaction.

According to Ref. [31], the correction factors contributing to the S-wave spin-triplet state re-
summed to all orders in vc are given by

ZQ(1 + ⇤) = 1 +
↵sCF

4⇡

⇢
2[(1 + �2)L(�)� 1]

✓
1

✏IR
+ log

4⇡µ2e��E

m2
c

◆
+ 6�2L(�)

�4(1 + �2)K(�)� 4 + (1 + �2)


⇡2

�
� i⇡

�

✓
1

✏IR
+ log

⇡µ2e��E

q2
+

3�2

1 + �2

◆��
,

(40)

B =
↵sCF

4⇡

1� �2
mc


2L(�)� i⇡

�

�
, (41)

where

� =
vcp
1 + v2c

, (42a)

L(�) =
1

2�
log

1 + �

1� � , (42b)

K(�) =
1

4�


Li2
✓

2�

1 + �

◆
� Li2

✓
� 2�

1 + �

◆�
, (42c)

and Li2 is the Spence function:

Li2(x) =
Z 0

x

dt
log(1� t)

t
. (42d)

We use the nonrelativistic normalization for the spinors to find that

v̄(p2)�
iu(p1) = ⌘†�i⇠ � qi⌘†q · �⇠

E(E +mc)
, (43a)

v̄(p2)q
iu(p1) = �qi⌘†q · �⇠

E
, (43b)

where E =

p
m2

c + q2 that is the energy of the quark or antiquark in the QQ̄ rest frame. Substituting
Eq. (43) into Eq. (37) and expanding in powers of vc, we obtain

iAi

QQ̄
= ⌘†�i⇠


1 +

↵sCF

4⇡

⇢
8v2c
3

✓
1

✏IR
+ log

4⇡µ2e��E

m2
c

◆
� 8 +

2v2c
9

+

✓
1 +

3v2c
2

◆
⇡2

vc
� i⇡

vc

✓
1

✏IR
+ log

⇡µ2e��E

q2

◆�
� 3i⇡vc

�

�qi⌘†q · �⇠
2m2

c

⇢
1 +

↵sCF

4⇡


�4 + ⇡2

vc
� i⇡

vc

✓
1

✏IR
+ log

⇡µ2e��E

q2
+ 2

◆��
+O(v3c ). (44)

In comparison with the case in Eq. (39), there are a lot of terms that carries IR divergences and non-
analytic Coulomb contributions. Note that the term proportional to qi⌘†q · �⇠ contributes to both the
S-wave spin-triplet state and D-wave state.

3.3 computation of ANRQCD,µ
QQ̄

Next we compute the amplitude iANRQCD,µ

QQ̄
by making use of the NRQCD perturbation theory rather

than the full QCD. Again, the amplitude must be of the form

iANRQCD,µ

QQ̄
= v̄(p2)

h
ZNRQCD
Q

(1 + ⇤
NRQCD

)�µ +BNRQCDqµ
i
u(p1). (45)
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If we follow the standard approach that is described in Ref. [5], it is practically impossible to carry out
the NRQCD perturbation because there are infinite number of Feynman rules that involve the relativistic
corrections to all orders in vc. Fortunately, the authors of Ref. [31] have devised a very convenient way to
achieve this goal without applying the infinite number of Feynman rules. Instead, they have introduced
an equivalent way in which they evaluate the loop integral to remove the UV power divergent scaleless
integrals. Here, we quote the results of Ref. [31]:

ZNRQCD
Q

(1 + ⇤
NRQCD

) = 1 +
↵sCF

4⇡

⇢
2[(1 + �2)L(�)� 1]

✓
1

✏IR
� 1

✏UV

◆

+(1 + �2)


⇡2

�
� i⇡

�

✓
1

✏IR
+ log

⇡µ2e��E

q2
+

3�2

1 + �2

◆��
, (46a)

BNRQCD
=

↵sCF

4⇡

1� �2
mc


� i⇡

�

�
. (46b)

If we apply Eqs. (43) and (46) into Eq. (45) and expand in powers of vc, then we find that

iANRQCD,i

QQ̄
= ⌘†�i⇠

⇢
1 +

↵sCF

4⇡

⇢
8v2c
3

✓
1

✏IR
� 1

✏UV

◆
+

✓
1 +

3v2c
2

◆
⇡2

vc
� i⇡

vc

✓
1

✏IR
+ log

⇡µ2e��E

q2

◆�
� 3i⇡vc

�

�qi⌘†q · �⇠
2m2

c

⇢
1 +

↵sCF

4⇡


⇡2

vc
� i⇡

vc

✓
1

✏IR
+ log

⇡µ2e��E

q2
+ 2

◆��
+O(v3c ). (47)

3.4 determination of short-distance coefficients
Now we are ready to apply the matching condition in Eq. (36) to determine the short-distance coefficients.
In this step, the IR divergent contribution and the non-analytic Coulomb divergent terms in Eqs. (44) and
(47) cancel. The remaining UV divergence is to be removed by renormalizing the NRQCD operator in
the modified minimal subtraction (MS) scheme as

�†�i =

h
�†�i 

i

MS
� (4⇡e��E)

✏

✏UV

2↵sCF

3⇡m2
c

�†
✓
� i

2

 !r
◆2

�i , (48)

where the subscript MS indicates that the corresponding operator is renormalized in the MS scheme. The
resultant short-distance coefficients are free of long-distance sensitivities:

c(1)10 =
↵sCF

4⇡
(�8), (49a)

c(1)11 =
↵sCF

4⇡

1

m2
c

 
2

9
+

8

3
log

µ2
NRQCD

m2
c

!
, (49b)

c(1)21 =
↵sCF

4⇡

2

m2
c

, (49c)

(49d)

where µNRQCD is the NRQCD factorization scale. At LO in ↵s through order v2c , the short-distance
coefficients are given by [29, 31, 59]

c(0)1n = �n0, (50a)

c(0)21 = � 1

2m2
c

. (50b)
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In order to apply this factorization formula for an S-wave spin-triplet state like J/ , we need to
project out the S-wave contribution out of iAi

QQ̄
. Thus we decompose the operator Oi

2n into

Oi

2n =
Oi

1n

d� 1
+Oi

Dn, (51)

where the D-wave operator Oi

Dn
is defined by

Oi

Dn = �†
✓
� i

2

 !r
◆2n�2

"✓
� i

2

 !r i

◆✓
� i

2

 !r · �
◆
� 1

d� 1

✓
� i

2

 !r
◆2

�i
#
 . (52)

The S-wave component in iAi

QQ̄
through order ↵sv2 is

iAi

QQ̄

����
S�wave

= (c(0)10 + c(1)10 )h0|O
i

10|QQ̄i+
 
c(1)11 +

c(0)21 + c(1)21

d� 1

!
h0|Oi

11|QQ̄i

=

✓
1� 8↵sCF

4⇡

◆
h0|�†�i |QQ̄i+


↵sCF

4⇡

 
2

9
+

8

3
log

µ2
NRQCD

m2
c

!

+
1

d� 1

✓
�1

2
+

2↵sCF

4⇡

◆�h0|�†
⇣
� i

2

 !r
⌘2
�i |QQ̄i

m2
c

=

✓
1� 8↵sCF

4⇡

◆
h0|�†�i |QQ̄i

+

"
�1

6
+
↵sCF

4⇡

 
8

9
+

8

3
log

µ2
NRQCD

m2
c

!# h0|�†
⇣
� i

2

 !r
⌘2
�i |QQ̄i

m2
c

. (53)

Our final results for the NRQCD factorization formula for the hadronic current that contributes to the
leptonic decay of the S-wave spin-triplet state is

iAi

H

����
S�wave

=
p
2mH

✓
1� 8↵sCF

4⇡

◆
h0|�†�i |Hi

+
p
2mH

"
�1

6
+
↵sCF

4⇡

 
8

9
+

8

3
log

µ2
NRQCD

m2
c

!# h0|�†
⇣
� i

2

 !r
⌘2
�i |Hi

m2
c

. (54)

4 Summary
In this lecture, we have briefly reviewed the NRQCD factorization approach to describe the quarkonium
production and decay. In the NRQCD factorization formula, the long-distance nature of heavy quarko-
nium is factorized into the NRQCD long-distance matrix elements (LDMEs) and a physical measurable
is expressed as a linear combination of LDMEs. We have reviewed that the infrared sensitivity emerges
if we apply the perturbation theory to enhance the theoretical accuracies in the short-distance contribu-
tions. This infrared divergence always appears as long as one does not neglect vQ and there exists the
non-analytic Coulomb singularities as vQ ! 0. The color-singlet model breaks down because this theory
is not equipped with a systematic procedure to cure this problem. In the NRQCD factorization approach,
the corresponding short-distance factors are free of infrared sensitivities. In order to improve the numer-
ical accuracies of such a measurable, one can compute corrections in powers of ↵s and vQ. One can
truncate the series in vQ by considering the velocity scaling rules that estimate the relative numerical
importance of a long-distance process in powers of vQ.
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A systematic procedure to isolate such a long-distance interactions out of the correction terms in
the short-distance coefficients is called matching. The matching procedure makes use of the fact that the
short-distance coefficients for the NRQCD factorization formula for a quarkonium must be identical to
those for the on-shell QQ̄ counterparts. While one cannot compute the NRQCD LDMEs for a quarko-
nium, one can compute the NRQCD LDMEs for an on-shell QQ̄ pair under the NRQCD perturbation
theory. By comparing the QQ̄ amplitude computed in the full QCD with that computed in the NRQCD
perturbation theory, one can isolate the infrared sensitive contributions and absorb them into the NRQCD
LDMEs. The resultant short-distance factors are free of infrared divergences. A standard renormalization
procedure can be applied to absorb the remaining UV divergences. As a heuristic example of finding the
NRQCD factorization formula for a specific process, we have demonstrated the matching procedure of
determining the short-distance coefficients involving the leptonic decay of the S-wave spin-triplet state.

In the latter part of the lecture, we have reviewed the NRQCD factorization approach for J/ 
hadroproduction and polarization. Due to the page limit of the proceedings contribution, we were not
able to describe these subjects in the text. We refer the readers to Ref. [60] for details.
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