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Abstract

We present the invited lectures given at the second Asia-Europe-Pacific School
of High-Energy Physics (AEPSHEP), which took place in Puri, India in Novem-
ber 2014. The series of lectures aimed at graduate students in particle experi-
ment/theory, covering the the very basics of flavour physics and CP violation,
some useful theoretical methods such as OPE and effective field theories, and
some selected topics of flavour physics in the era of LHC.
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1 Short introduction

We present the invited lectures given at the second Asia-Europe-Pacific School of High-Energy Physics
(AEPSHEP), which took place in Puri, India in November 2014. The physics background of students
attending the school are diverse as some of them were doing their PhD studies in experimental parti-
cle physics, others in theoretical particle physics. The lectures were planned and organized, such that
students from different background can still get benefit from basic topics of broad interest in a modern
way, trying to explain otherwise complicated concepts necessary to know for understanding the current
ongoing researches in the field, in a relatively simple language from first principles.

These notes present a small compilation of several results that over the years has become standard
in particle physics, and more concretely in the area of flavour physics. These are by no means a complete
and self-contained course in flavour physics, but rather a brief introduction to several topics that should
be explored in more detail by additional references for the interested readers. For the topics addressed
in these notes there are several textbooks and review articles that have become standard references; here
we compile an incomplete list:

e For aspects concerning the building blocks of gauge theories and the standard model see, for
example, [1]

e For C'P and flavour aspects in particle physics the books [2—4] are two excellent sources, as well
as the more specific reviews [5—18]

e For topics related with effective field theories we refer the reader to [19-23]

2 The building blocks in particle physics
2.1 What is flavour and why do we care?

In Particle Physics one attributes quantum numbers to particles in order to classify them as representa-
tions of the symmetries describing the dynamics of the underlying model. This classification allows us
to extract a lot of information just from first principles. In nature there are several copies of the same
fermionic gauge representation, i.e. several fields that are assigned the same quantum numbers. We
then say that different copies belong to different flavours (or families). Flavour physics describes the
interactions that distinguish between flavours, i.e. between the different copies.

The fermions can interact through pure gauge interactions. These interaction are related to the
unbroken symmetries and mediated therefore by massless gauge bosons. They do not distinguish among
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the flavours and do not constitute part of flavour physics. Fermions can also have Yukawa interactions,
i.e. interactions where two fermions couple to a scalar. These interactions are source of flavour and C' P
violation. Within the Standard Model (SM), flavour physics refers to the weak and Yukawa interactions.

Flavour physics can predict new physics (NP) before it’s directly observed. Some examples are:

The smallness of T'(Kp, — u™p~)/T(K™ — ptv) allowed for the prediction of the charm quark
The size of Am allowed for the charm mass prediction

The measurement of e allowed for the prediction of the third generation

The size of Amp allowed for a quite accurate top mass prediction (~ 150 GeV)

The measurement of neutrino flavour transitions led to the discovery of neutrino masses

2.2 Discrete symmetries in particle physics

In this section we present the discrete symmetries C, P and 7', which play a leading role in the construc-
tion of the present model of particle physics. These three symmetries do not leave, separately, the SM
Lagrangian invariant but their product C PT" does (at least everything points on that direction). These
discrete symmetries give rise to multiplicative conservation laws. They have three levels of action: on
the particle states, on the creation and annihilation operators, and on the fields. The action on one level
determines the action on the other two. The main properties of these symmetries are:

Charge Conjugation

Charge conjugation on the states reverses the quantum numbers of particles that are associated with
internal symmetries. The charge conjugate of a particle is another particle with the same energy
and momentum but opposite charges (anti-particle). Charge conjugation on the fields converts a
field ¢ () into a field ¢ ¢(x) with opposite internal quantum numbers. If charge conjugation is a
symmetry of the quantum field theory, there must exist a unitary operator C which represents it.
We can use charge conjugation in order to eliminate final states for scattering and decay processes
and to provide a link between different processes involving charged particles.

Parity

Classical parity is any element in the component of the Lorentz group that contains the matrix P =
diag(1,—1,—1,—1). Parity, like charge conjugation, gives rise to a multiplicative conservation
law. For example, the 17 meson and the pions are pseudoscalars (eigenstates with eigenvalue —1
as opposed "+1 for scars), and so the decay  — w7~ is forbidden by conservation of parity.
However, since parity transforms space, the eigenvalues of parity depend on the orbital angular
momentum of a state and the intrinsic parity of a state is not in general conserved.

Time Reversal

The idea of time reversal is to take the time evolution of some system and reverse it. To separate
the effects of charge conjugation from those of time reversal, it is customary to assume that time
reversal preserves the internal quantum numbers of all particles. In classical mechanics, time
reversal can be implemented by changing the sign of the Hamiltonian. If we suppose that this
effect is achieved in quantum theory by a unitary transformation Up, we get

Uletup = ¢t = ULHUp=-H = HUpn) = —E,Ur|n), (1)

for any state |n), entering in conflict with the principle that energy should be bounded from below.
The way to solve this is by dropping the unitary operator and represent time reversal by an anti-
unitary operator operator 7T .

Tables 1-2 summarize some of the most important transformations under these symmetries.
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Table 1: Discrete symmetry transformations for photon, gluon, complex scalar and fermion fields. We have
defined: ¢¢ = Cvy and s®is +1 fora = 1, 3,4, 6,8 while —1 for a, 2,5, 7.

Fields transformations

Photon: Gluon: Complex scalar:
PA,(t,7)PT = AX(t, —7) PG, 7Pt = G (t, —7) Po(t, 7)PT = e g(t, —7)
TAL(t, DT = A*(=t,T) TGt F)T ! =s"GU(—t,7)  To(t, )T 1 =ep(—t,7)
CA,(t,7)CT = —A,(t,T) CGY(t, PCT = —sGo(t,7) Co(t,7)CT = el pl(t, )

CPAL(t,)CPT = —A,(t,—7) CPGY(t,"CPT = —s2G4(t,—7) CP¢(t,F)CPT = el (t, —7)

Fermion:

P(t, PP = Py u(t, —7) POt 7P = e ip(t, —7)°

To(t, )T = éPrygiCrpl (=, 7) T, P T ! = e Bt (—t,7)(C~ 1) g
C@ZJ(?ﬁ,f‘)CT = engZ)C(t,F) C@(t,f’)CT = ewcﬁ(tﬂf)

CPY(t, )ICPT = 0y (t,—7)  CPY(t,F)ICPT = e~ T (t, —F)C~ 140

Table 2: Symmetry transformation properties of some fermionic bilinears under the action of discrete symmetries.
Overall phases and the coordinates have been omitted.

Bilinear P T C CP CPT

hx vXx x X X X

Pysx —thsx Pysx X5 —X5Y —X5Y
YPrrx  YPrrx  YPLrx  XPLRY XPr,rv XPr,rv
yFx VYuX PYux X" XVt —XYH
Pyysx = Uvsx Ywsx XYY XY XYY
YYWPLRX  YVWPrLX Y WPrrx —XV'PrrY —Xv.PLrY  —XV'PLRrY
ol x @UUWX —1/1U,WX —xot _Yo',ulﬂb Xt

2.3 Basic Building Blocks of the SM

In this section we shall briefly present the building blocks of the SM, taking special attention to the rel-
evant sector for flavour physics. Modern Quantum Field Theories are based on the gauge principle: The
Lagrangian is invariant under a continuous group of local transformations. For each group generator
there necessarily arises a corresponding vector field called the gauge field, responsible for ensuring the
Lagrangian invariance under the local group transformations.

Following the above principle, modern theories are developed through three simple steps:

(1) Define the gauge symmetry
(2) Choose the representations of the matter content under the symmetry
(3) Choose the way your original symmetry is broken

The first two steps define the model in the unbroken phase. We then need a way to break this symmetry
since at low energies we know that only charge (and colour) is manifestly preserved.

The best example satisfying the above three conditions and having an enormous success when
confronting with data is the SM. The model construct upon the gauge group (step (1))

QSM = SU(3)C X SU(Q)L X U(l)y . (2)
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From the gauge principle, each generator of Gy has a associated gauge vector field (first four lines of
the table on the right in Table 3). The known matter fields are embedded in irreducible representations
of Gsm (step (2)) and are presented on the left table in Table 3. The gauge fields interact with matter

Table 3: Standard model particle content, symmetry representations and forces.

Matter Flavour Gsm

_ (urq ur, Cr, tr, Bosons Force
wo= (i) (8 () () e2m g -
URa UR, CRr, tR (3,1,2/3) WiE, Z) Weak
dRa dr, sr, br (37 1, _1/3) A,U« EM

_ (VLa VLe VL VLT _ (o7 Yukawa-type
we= () () Ci) - () 2o o= (G) WSS
€Ra R, MR, TR (1717—1)

through the covariant derivative, which can be expressed in terms of the physical gauge bosons as

. Aa . _ , ig
D, =09, — zgSGZ?a —ig (WITy + W, T_) —ieA,Q — JZB (T — sy Q) . (3)
with (T)i; = (leij| £ €i5)/(2v/2) and (T3);; = 6;;(—1)¥ /2 for the SU(2) doublet representations.
The electric charge () is a linear combination of the generator of U(1)y and the diagonal generator of
SU(2)r, and reads Q = Y + T3. The full SM Lagrangian is now a combination of several “distinct”
parts which can, in many scenarios, be studied separately. We write it as

gauge fermion

‘CSM = ~Kin + 'CHiggs + »CYukawa + ng + /CFP . (4)

The terms L4 and Lrp denote the gauge fixing and Faddeev-Popov Lagrangian, respectively. While these
contributions are very important for the self-consistency of the model, for flavour physics they play no
role and, therefore, shall be ignored in these notes. The other Lagrangian terms are presented in Table 4.
A useful summary of Feynman rules for the SM can be found in [24].

Table 4: Standard model Lagrangian equations for the four relevant sectors. With the following definitions: G}, =
0uGY — 0,GY + g f*°GLGY  (a,b,c = 1,...,8), Wi, = 9, W2 — 0,Wi + ge®**WiW] (a,b,¢ = 1,...,3),
B, = 0,B, — 0,B,, Y% the up, down and charged-lepton Yuwaka coupling matrices and ¢ = iT2¢*.

Sector Lagrangian

L — GG, — TWHWS, — 1 B* By,

cigmer Qi + e iPUR + A% iPdy + 0D, + iDeR,
Lrigas (Dug)" (Do) =V (9)

Lyukawa _Yo(aiﬁ E‘bd%ﬁ — Y5 E‘Z’U%ﬁ - Yofﬁ Ed’e%ﬁ +he.

In the SM, step (3) is is achieved through the scalar doublet field ¢, or Higgs field. In the Higgs
sector, the Lagrangian Lyjges contains the scalar potential V' (¢) which has the general form

9\ 2
V() = uj oo+ %(45%)2 = % (qﬁTd) + ii) + const. . (5)
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The Higgs potential is responsible for the electroweak symmetry breaking SU(2);, @ U(1)y — U(1)q.
This can be achieved spontaneously when the mass parameter ui, in Eq. (5), becomes negative. In
this scenario (¢T¢) = 0 becomes a local maximum and the absolute minimum is shifted to the non-
zero vacuum expectation value (¢f¢) = v? = —2;@ /As. The Higgs field can be rewritten in a more
convenient basis, making use of the gauge freedom, in which only the physical components (the ones
associated with physical particles) are present. This is known as the unitary gauge and the scalar doublet
takes the form

¢T and Im{¢°} are the Goldstone bosons. “Rotated away”;

0 degrees
= h . .
¢ v ’ of Re{¢"} was shifted, such that h represents the true ©)
V2 freedom

oscillations around the absolute minimum.

In this basis it becomes clear that the gauge part of the kinetic term in the Higgs Lagrangian induces
masses to some of the gauge bosons, i.e. to the ones associated with the broken generators,

2, = O e
1 )
(DM¢)T (D¥¢) ~ m%v”:” “74‘577122232“0—1-' -+, with: 4 W (7)

mA:O and mG:O.

Before closing this short overview on the SM building blocks, it is useful to do a simple consistency
check and look at the degrees of freedom in the process of spontaneous symmetry breaking (SSB).
We can restrict ourself to the SU(2);, ® U(1)y — U(1)g sector. Before SSB, the theory consists
of one complex scalar doublet field (four degrees of freedom) and four gauge bosons (two degrees of
freedom each); there are 4 + 2 x 4 = 12 degrees of freedom. After the SSB, only U(1)q remains as
an explicit symmetry, i.e. only one generator leaves the vacuum invariant, so one would expect three
Nambu-Goldstone bosons associated to the broken generators. Since we are working with a local gauge
group, the Higgs mechanism allows these bosons to be absorbed as the longitudinal polarization of gauge
bosons, W* and Z°. So, in the end, we will have one real scalar field (one degree of freedom), three
massive gauge bosons (three degrees of freedom each), and one massless gauge boson (the photon with
two degrees of freedom). Summing up, after SSB there are 1 + 3 x 3 4+ 2 = 12 degrees of freedom, the
same as in the unbroken phase.

Note that no field except for the Higgs has a mass term in the unbroken phase. The Higgs mecha-
nism is responsible for the mass generation of fermions and gauge bosons, but not of its own mass!

2.4 The flavour structure of the SM

The origin of a non-trivial flavour structure in the SM is directly related with the presence of Yukawa
interactions and gauge currents. The fermionic kinetic term is responsible for the weak charged currents
(CC), weak neutral currents (NC) and for the electromagnetic neutral currents. They are given by

Charged Current: Lcc = % (@v“d%aWj + gv“ V%aWu_ ) +h.c., (8a)
Neutral Current: Lnc = eQffOy* A, + %FY“ (9{/ - g£75> 2z, (8b)

where 1 1
g = §T3f ~s5Qr, gh= §T3f7 9

are the vector (V) and axial (A) couplings of the the gauge boson Z° to the fermions, respectively. The
letter f denotes any of the fermion fields. The charge of a fermion is denoted by () s, while T3f denotes
the weak isospin associated with the left-handed fermion.

129



S.J. LEE

When a theory has several fields with the same quantum numbers (flavours) one is free to rewrite
the Lagrangian in terms of new fields, obtained from the original ones by means of a unitary transfor-
mation which mixes them. Why only unitary transformations? In principle, one can mix particles with
the same quantum numbers in ‘any way’ we want. However, by keeping it unitary we guarantee that
the kinetic terms remain unaltered. This is important since having the kinetic Lagrangian with no cross
terms, known as the canonical basis, allow us to easily identify our field content. We can define a set of
transformations called weak basis transformations (WBTs) which are defined as transformations of the
fermion fields which leave invariant the kinetic terms as well as the gauge interactions, i.e. they respect
the gauge symmetry in the unbroken phase. The WBTs depend on the gauge theory that one is consid-
ering because, if there are more gauge interactions, then, in principle there will be less freedom to make
WBTs. In the SM we define the WBTs as

Y, = Wiv,Wg,
qp = Wiy, up = Wiup, dy = Widp,
WBTs: — Yy =wiv,wg,  10)
0 = Wit &% = Whch.,
V! = WY W§.

where ng and W]%’d’e are 3 X 3 unitary matrices acting in the flavour space. The transformed Yukawa
matrices Y, , _ have the same physical content as the original ones. To see the usefulness of WBTs let
us start from a general basis where the mass matrix Y, 4 . have 18 free parameters each (9 modulus and
9 phases). An arbitrary n x n complex matrix A can be diagonalized by a bi-unitary transformation as
UzAVR = diag. This is known as single value decomposition. Using this information we can pass from

a general basis to the new basis

ﬂav;ur_ b(a]sis)\ I:V y WBTs ﬂavonllr basTis 1I:
u = YL MNVYR Yu:VCKM)‘U
wWi=y¢ we=ve wd=y4d 11
deUﬁ/\dng L L "R R>YWR R Yd/:)\d ’ (11
W€ =U¢, W& =V¢
}/e _ UZ)\eVET L L R R Ye, — )\e

with A\, = diag(yu, Ye, ¥¢), Ad = diag(ya, ys, yp) and A = diag(ye, yu, y-) the real and positive fermion
Yukawas (defined from the fermion masses, i.e. y; = V2m f /v), and Vegm = UETUg. This unitary
matrix is the well known Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrix [25,26]. As we
shall see in a while, this matrix only has four degrees of freedom. Therefore, in the flavour basis I we
only have 6(masses) + 4(mixing) = 10 free parameters in the quark sector, mush less than in the general
flavour basis I. Note that this is actually the minimal number of free parameters that one can have, since
it is equal to the physical ones. Basis with less free parameters cannot be obtained by WBTs and they
would have physical implications (correlations between physical observables).

The WBTs become much a more fundamental aspect of the model when Y*%¢ — 0. In this
limit the WBTs given in Eq. (10) leave the whole Lagrangian invariant and therefore are promoted to
symmetry generators of a global U(3)® symmetry

Gatobat = U(3)” = SU(3); x SU(3)} x U(1)°, (12)
where

SU(3)3 = SU(3)q, x SUB)up X SU(3)a, and SU(3)] = SU(3)s, x SU(3)ey, - (13)

R

In the presence of Yukawa terms only a reminiscent of the original global symmetry Ggjoba remains
unbroken. The easiest way to see which symmetry is left invariant is to look at the flavour basis II,
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introduced in Eq. (11), in which the number of parameters is reduced to the physical ones. In this
basis the only field transformations that leave the Lagrangian invariant are rephasing rotations, and the
presence of the Vegy matrix only allows one rotation in the quark sector. From this simple inspection
we see that after the introduction of the Yukawa terms we are left with the residual symmetry

Golobal — ggfggifmal =U()pxU1)exUQ), xU(),, (14)

with, of course, the gauge U(1)y symmetry unbroken. These are called accidental symmetries, they
were not imposed in the SM construction but end up appearing as a consequence of renormalizability
and perturbativity.

Looking at the WBTs as symmetry generators is actually very convenient in order to count the
number of physical parameters present in the model. No mater which parameterization we choose for the
SM flavour couplings Y, 4., the number of physical parameters always remains unaltered. To learn how
to count these parameters, let us first look at the charged lepton relevant flavour couplings YaeﬁﬁoLagbe% 3
Our goal is to find out how many of the 18 real parameters are actually physical. Now, if we look at
the limit Y¢ — 0, we know that the Lagrangian will enjoy of a larger global symmetry, i.e. a U(3),, X
U(3)c, global symmetry. Another piece of information that is crucial is the residual symmetry of our
model. Concerning the leptonic sector, as was seen above, we have the accidental U (1) xU (1), xU(1).
In other words, the presence of Y, induces the breaking

Higgs Leptons
gg Bt\ .
UMW)y x U@y X UB)ey — UM x U x UL x U(L)y, (15)
14949 g‘t;eratorS ’ ]+1+1+]§enerators

J/

~
15 broken generators

leading to the existence of 15 broken generators. We have included the Higgs and the hypercharge

symmetries for completeness'. We can now use the broken generators to rotate Y ¢ into a “convenient”
symmetry-breaking direction. These rotations are nothing more that the WBTs described in Eq. (11),
resulting in three physical parameters, i.e. the charged lepton masses. The result found in this simple
exercise is actually more general and can be stated as follows

# Physical parameters = # Total parameters — # Broken generators (16)

Let us apply this result to the quark sector, we have

Y, Y
r—’L —~
# Total parameters: (9+9)+ (9+9) = 36

—>  # Physical parameters: 10. a7
# Broken generators: 3 x9— 1 =26
N—— S~~~

U®)? UDs

Note that Eq. (14) is only true at the classical level since non-perturbative quantum effects break this
down to just one abelian group U(1)3p_1. However, this does not affect the parameter counting.

The Yukawa sector of the SM is responsible for the mass generation of the fermion species, after
SSB. The fermion mass assignment in the SM is given by a Dirac mass term, —m ff=-m #( frfr+
frfr). Although it is invariant under U (1), the fermion mass term is not invariant under SU(2)) ®
U(1)y. Indeed, a fermion mass term is not a singlet under SU (2)r,, and, besides, the right- and left-
handed components of f have different weak hypercharges. As a result, no pure fermionic mass terms

"Note that while in the SM these symmetries can be ignored in the process of counting broken generators, they play a crucial
role in several extension of the SM.
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can be constructed consistently with gauge invariant principles, as it was mention in the prevous sec-
tion. In the SM fermion masses can arise from Yukawa interactions with the scalar Higgs doublet, i.e
the Lagrangian part Lvykawa- Using the Higgs filed given in Eq. (6), one can see that the Yukawa La-
grangian splits into two parts, one relative to the fermion masses, Lp,ss, and another corresponding to
the interaction of the Higgs field with the fermions, Ly,

Mass: — Liass :Mgﬁge(}w—i—M BuLauRﬁ—i-MdﬁdLad 5 +he., (18a)
L e
hff:  — Ly = EYW e ehsh+ —= f Y u uhs h+ fYaﬁ d9,d%sh+he.,  (18b)

with the fermion mass matrices given by

M = %Yf . with f={u,d,e}. (19)
At this stage it is worth pointing out that, in the SM, no renormalizable mass term for neutrinos can be
constructed due to the absence of the right-handed fields vr. Also, a particular feature of the SM is to
have the mass terms proportional to the Yukawa couplings, leading to the absence of flavour changing
neutral currents (FCNC) in the scalar sector. Extensions beyond SM in general “struggle”, i.e. need
additional assumptions beyond new particles, in order to reproduce this alignment [27].

The Higgs mechanism breaks the SU (2), group, which means that in the broken phase we are able
to rotate the fields in the same SU(2) multiplet through different unitary transformations. Therefore,
we see from the new weak basis defined in Eq. (11) that we can redefine the field dj, as d’L = Vexmdr,
such that the mass matrices are both diagonal and charged current sector becomes

Lcc = % (m(VCKM)QQ YdrgW, + %V“VLaW;) + hec., (20)
with
Vud Vus Vub
Vom = UTUE = (Vg Vs Vi | - 1)
Vie Vis Vi

The unitary matrix present in the leptonic sector is the identity matrix since Vg can be rotated freely

through a unitary transformation, due to the absence of a mass term. Therefore, in the SM the only
tree-level flavour-changing interactions are present in the charged currents. Since the matrix Vg is a
3 X 3 unitary matrix, it has 9 free parameters. However, the additional freedom

Vekm — Kl VekmKa (22)

with K, 4 phase diagonal matrices, reflecting the freedom in redefining the phases of the quarks in the
mass basis, leads to 4 mixing parameters. Therefore, as stated before the weak basis in Eq. (11) has
4 mixing + 6 masses = 10 parameters. This is known as the quark physical basis, since the number of
free parameters coincides with the number of physical ones. Working in the mass eigenbasis, i.e. in the
basis where the mass matrix of the fermions are real and positive, one can shift all the non-trivial flavour
structure into the charged current sector. This is a very convenient basis to work in, since the fermion
propagation gets quite simple. Still, we could opt to work in another basis at the cost of introducing extra
complexity in the model.

In the SM C'P violation shows up in the complex Yukawa couplings. If we C'P conjugate a typical
Yukawa term we get, see Table 2,

P (Vradt’rs) CP' = Yrad tra (23)
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We then see that by requesting C'P invariance in the Yukawa sector we get

CPLyaCP' = Lyu = Yop=VYi3, (24)

(e}

i.e. real Yukawa couplings are the necessary condition for C'P-invariance. We can do the same exercise
but now for the charged current Lagrangian, in the mass eigenbasis,

CpﬁccCPT =Ly = Vag = ;ﬁ , (25)

i.e. real CKM mixing matrix as the necessary condition. Therefore, the complex nature of the Yukawa
couplings (or CKM mixing matrix) is the origin of CP violation in the SM. The above results are basis
dependent. We know, that there are always phases that can be rotated away. So the question is whether
we have a basis independent way of checking for C' P violation. The answer is yes, the above conclusions
can be formulated in a basis invariant way through the quantity [28]

TI'[HU, Hd]s =67 Z Z = mim%milm%, ImQaalﬁﬁl (26)

— / ! —
a,B=u,c,t,... o’ ,f'=d,s,b,...

where
Qaalﬁﬁl E Vaa/vﬁﬁl V;ﬁ/ Vﬁ*a/ (27)

is the rephasing-invariant quartet. For three generations, the above invariant reads

Te{H,, Hol® = 6i(m? — m?)(m? —m2)(m2 — m2)(m3 — m2)(mZ — m3)(m? —m2) J,  (28)

with J = ImQyscp = Im[V,,s Vi V), V5] known as the Jarlskog invariant [29]. The CKM-mechanism is
the origin of C'P violation in the SM and lead to the nobel prize attribution in 2008 to Kobayashi and
Maskawa who were the first to propose three flavours of quarks as the origin of CP violation [26].

Different parametrizations for the CKM mixing matrix can be used. We shall follow the standard
procedure and use the Particle Data Group (PDG) parametrization [30]

Verm = R1(023)1'(0) R2(6013)I'(—9) R3(012)
is

€12€13 $12€13 s13¢ (29)
6 i
= | —s12c23 — c12523513€"’  c12C23 — S12523513€" 523C13
i i
512523 — C12C23513€"°  —C12523 — 512€23513€"  €23C13

where ¢;; = cos0;j, s;j = sinf;;, R(6;;) is the rotation in the plane i — j and I'(§) = diag(1, 1, €%).
The three s;; are the real mixing parameters and J is the Kobayashi-Maskawa phase. While the range
of this phase is 0 < ¢ < 27, the measurements of C'P violation in K decays force it to be in the range
0 < § < m. From experiments we know that there exists a strong hierarchy on the mixing angles, i.e.
$13 K S23 K s12 < 1. We can write the mixing angles as

S12 =A = [Vis| ; 323:A>‘2:/\’V6b ;
Vadl” + Vs Vs (30)
5 o 3 . AN} (p+ i) V1 — A2\
s13"” =V, = AN (p+in) = > N o
V1= X2[1 — A2X\4(p + i7)]
With these relations we ensure that VoV
_ . ud Vb
p+in VeV (31)

is independent of any phase convention. The above expression allows us to express the CKM matrix in
terms of: A\, A, p and 7. While the parametrization in term of these parameter is exact, it is common to
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approximate this result for small A. Up to fourth power corrections, we can expand the bar parameters
as p = p(1 — A2/2) and j = n(1 — A\?/2) known as Wolfenstein parametrization [31]

1—)\2/2 A AX3(p —in)
Vekm = ) 1—X\2/2 AN? + 0. (32)
AN(1 —p—in) —AN? 1

The unitarity on the CKM matrix implies relations between its entries:

Columns Orthogonality: Z Vii Vit = 6k »
i

(33)
Rows Orthogonality: Z ViiVii; = Oik -
i

The six vanishing combinations are sums of complex number, so that they can be represented as triangles
in the complex plane. The most used triangle is given by

(p,7)

Vid Vb
I’J(-”' FE

“eh

ViaVj
];,-( -nl' ]; *

ch

(0,0) 1 (1,0)

Fig. 1: Unitary triangle representation in the complex plane p, 7

VudVay + VeaVag, + ViaViy = 0, (34)

In Fig. 1 we have divided each side by the best-known value, i.e. V,.4V;. The angles of the unitary
triangle are also represented in Fig. 1 and are given by

VeaV, ViaVi VudVp
= = — c = = — = = — u . 35
B=d¢ arg( ViV > o= ¢ arg( Vv )7 ¢3 = arg VeVt (35)

Measurements of C P-violating observables can constraint these angles and also the parameters 7, p.
Using the Wolfenstein parametrization as a give line, we can get simpler expressions for the unitary
triangle angles

B =n+arg(VeaVy) — arg(ViaViy,) ~ —arg(Via) ,

(36)
v =7 + arg(VuaVyp) — arg(VeaVy) ~ —arg(Vis) -
With the help of the unitary triangle where the d-quark is replaced by the s-quark, i.e.
Vus Jb + ‘/CS‘/;Z) + ‘/tsv;fz = 07 (37)
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we can define another angle

Vis Vi " "
8, = arg (—va> — ot arg(VisVyg) — arg(Vaa V) = -+ arg(Ve) (38)
csVeb

This allow us to write the CKM mixing matrix up to O(\°) as

| Vud | | Vs | | Vb | e
Vekm = | =Veal  [Vesl Vel |- (39)
[Viale®  =[Vis|e™ [Vl

The area of all triangles is the same and is given by half of the absolute value of the Jarlskog invariant,
i..e Areap = |J|/2. The Jarlskog invariant in the parametrizations presented above take the form

us

1
J =1m [VyqVe ViEVE] = 3 sin(2612) sin(2613) sin(2643) sin § ~ A2)\5 . (40)

The absolute values of the CKM matrix can be found in the following processes:

|Vial: B-decay (A, Z) — (A, Z + 1)+ e + e
|Vus|: K-decay K+ — 70 + 07 + vy

|Veq|: v-production of ¢’s vy +d — (™ + ¢;
|Ves|: charm decay DF — KO + (F + uy;

|Viup|: B-decay b — u + £~ + iy;

|Vep|: B-decay b — ¢+ 0~ + vy

|Viq| and |Vi4| : Am in B® — BO;

|Vip|: top decays.

The result of a global fit gives [30]

0.97427 + 0.00014  0.22536 + 0.00061 0.00355 + 0.00015
\Vera| = | 0.22522 £0.00061  0.97343 £ 0.00015  0.0414 £ 0.0012 (41)
0.00886 0 00as 0.0405%8% . 0.99914 + 0.00005

or in terms of the Wofenstein parameters
A =0.22537 +0.00061, A =0.8147002% 5=0.11740.021 and 7 = 0.353+0.013. (42)

The Jarlskog invariant is J = (3.06f8:§é) x 1075, The angles of the unitary triangle can be tested in
B-decays:

e sin23: BY — J/UKg
e sin2a: BY — ntr~
o sin2y: BY » DSKT

2.5 GIM mechanism

We have learned that the structure of the SM is such that it ensures the absence of the tree level flavour
changing neutral currents. Both neutral gauge boson and Higgs boson couplings are diagonal in the
flavour mass eigenstate basis. Thus, the flavour changing neutral-current processes involving quarks are
generated in higher orders in the electroweak interactions. Since they are strongly suppressed in Nature,
it is interesting to discuss the predictions for them in the electroweak theory. For the quark sector, the
generic examples of flavour changing neutral-current transitions are the reactions:
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e d5— ds (AS =2), bd— bd (AB = 2);
e s—>dy(AS=1), b—sy(AB=1).
Such transitions are responsible for physical processes like K — KO and B — BO mixing, for radiative

flavour changing decays of strange and bottom mesons and for decays like K — meTe™ or B —
K*eTe™. On dimensional grounds, we then get the following estimate for the 5d — 5d transition

5

(a) ()

Fig. 2: In (a) AS = 2 box diagrams. In (b) AS = 1 penguin contribution.

amplitude, depicted in Fig. 2a , with double W -boson, u- and/or c-quark exchange (the contribution from
the top quark exchange is strongly suppressed by its very small mixing with the first two generations of

quarks):
m2 m?2
() Ty 1+o(;,q;
\/>SW MW 1,j=u,c M M
2 (43)
~aGrp |(ViVa)?+0 [ >V, M2
i,J=u,c

In the last step we have used the CKM unitarity condition: ), e ViiVia = —V;5sViq. We then see that

the leading term is suppressed by very small CKM angles as the double top quark exchange contribution.
The remaining terms, which are proportional to larger CKM angles, are in turn suppressed by light quark
masses.

Such a mechanism of suppression of the flavour changing neutral-current amplitudes is known as
the Glashow-Iliopoulos-Maiani (GIM) mechanism [32]. The strong suppression of the flavour changing
neutral-current transitions is indeed a SM prediction. However, this follows not only from the structure
of the theory but also depends on the empirical pattern of the quark masses and mixing angles. Therefore,
from the SM point of view, the successful predictions for the flavour changing neutral-current processes
are rather accidental.

Let us now look at the AF = 1 transitions at the qualitative level. At one-loop, they receive
contributions from box diagrams and also from the so-called penguin diagrams like in Fig. 2b. The
corresponding amplitude goes as

2 m2
A~ aGp Y ViVis In 5 + O(VigVis) = aGrViigVas In % 4 OV Vi) - (44)
M,

i,j=u,c C

Note that the dimensionless coefficient of the first term contains logarithms of light quark masses. Since
the masses of the up and charm quarks are quite different, there is no additional suppression except for
the usual one in this case (unlike the previously considered box diagrams). We can then say that the GIM
mechanism is power-like in the case of box diagrams, but only logarithmic in the case of certain penguin
diagrams.
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3 Effective theories and their use in flavour physics

]

= A (New physics)

e
SU@)e x SU(2)L x U(l)y

= EW breaking
Lo + Loep Z%QF:P | Short-distance
: Physics
Perturbation Theory
QCD < t t " T "
SUB)e x U(l)g = 11 (Heavy quarks) RGE

\
p = few x Agep
Long-distance

- Physics
HQET ’IP!"F.?'I'D-‘-"'!PI' l O(]'.f"r?”":g) non ;Jvl;"’r:t]r:-:::’t ive

SU(2nq) Spin-Flavour techniques
= Aqep

Fig. 3: General schematic idea behind effective field theories

Effective field theory formalism is a very powerful tool when several scales are present in a quan-
tum field theory. The principle in effective field theories is to just include the appropriate degrees of
freedom to describe physical phenomena occurring at a given scale. By integrating out degrees of free-
dom at shorter distances we try to simplify the model at longer distances. This approach works best when
there is a large separation between length scale of interest and the length scale of the underlying dynam-
ics. Figure 3 summarizes the general philosophy behind this approach. We summarize the effective field
theory formalism in three simple steps [23]:

e Step 1: Choose a cutoff scale A < M (with M some fundamental scale) and divide the field into
high- and low-frequency modes, i.e.

¢ = oH + oL (45)
—~— ~—
Fourier modes Fourier modes
w>A w< A
The component ¢, describes the low-energy physics through the correlation functions
O {or(@1) - d(an)}l0) = iz (i i) 1) (46)

where the generating functional is
Z[Jg) = / Dy Dy SO om+i[ dPeI@)or@)  and  S(¢y, o) = / dPxL(z). (47)

We have used D for the space-time dimension and only the external source of the low-frequency
modes is relevant for the correlation functions computed at low energy.
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e Step 2: Integrate out the high-frequency modes below the scale A, i.e.

Z[JL) = /D¢L eiSa(@L)+i [dPzIp(@)or(z)  nq  iSa(eL) — /DqueiS(‘ﬁLv‘ﬁH)‘ (48)

/

No ¢ dependence

The action Sx(¢yr) is known as “Wilsonian effective action”, which is non-local on scale Az# ~
1/A and depends on the choice made for the cutoff scale A.

e Step 3: Expand the non-local action in terms of local operators composed of light fields, which is
known as operator-product expansion (OPE). This expansion is possible in the low-energy regime,
i.e. E < A, and leads to

Wilson local
coeff.  operator

Sa0) = [aPatfi@), win 0= T Q@) @)

Effective Lagrangian

The procedure described above is quite general and powerful, allowing us to obtain the Lagrangian
relevant for a given scale. However, the effective Lagrangian is a sum of infinite operators which would
naively destroy the predictability of the effective theory. In order to understand why this is not the case
one can use the remarkably simple and powerful “naive dimensional analysis” (NDA) approach:

m]=[E]=[p]=["=t"=1 e o 5
then C; =g M. (50)
(c=h=1) Assuming [C;] = —; ’

The coupling g; is dimensionless and form “naturalness” O(1), while M is the fundamental energy scale
of the theory. Taken for simplicity the effective Lagrangian dimensionless, the effective operator Q;
scales for E < A < M as
E N\ O(l) ify, =0
gi <M) =4 K1 ify, >0 D
>1 if v <0

This tell us that only the couplings that have ; < 0 are relevant. Therefore, given a precision goal we can
truncate the series in £ in a given order in E//M. This implies a finite number of operators, which brings
back the predictability of the effective theory. The dimension ~y; can change due to interactions, this is
known as anomalous dimension. We can be more formal and require the action to be dimensionless. In
this case if 6; = [O;] the coefficient dimension is 7; = §; — D. We summarize the operator relevance
classification in Table 5.

As a final comment note that while most of the time ¢y is identified with a heavy particle, the
method presented above is much more general. As opposed to integrate out some heavy particle, we
can work on a scenario where only light particles are present. In this case we can lower the cutoff scale
A by a small amount A — JA and integrate out high frequencies of the light particle. This implies that
the operators O;(¢r,) will remain the same, as no contribution from extra particles are present. And the
effects of lowering the cutoff scale must enter into the effective couplings C;(A). This approach gives an
intuitive understanding of the running of the coupling constants.

3.1 Weak currents and OPE

Hadrons can decay through weak interaction mediation, between their quark constituents. The typical
binding energy of quarks in hadrons is O(1 GeV), much below the weak scale O(Myy z). The idea
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Table 5: Classification of operators based on their dimension.

Dimension Importance for ¥ — 0 Terminology
Relevant operators (super-renormalizable)
0; <D, <0 Srows e usually unimportant;

e protected by symmetries
Marginal operators (renormalizable)
e renormalizable QFT
Irrelevant operators (non-renormalizable)
0; > D, >0 falls o the most important (relevant)
e sensitive to fundamental scale

6; =D, ~ =0 constant

behind the OPE treatment is to start from short-distance dynamics and refine it step-by-step with non-
perturbative corrections. Let us look at the part of generating functional containing the WW boson [6],
ie.

Zy ~ / [dW F][dW ~]Exp (z / d4xﬁw> : (52)

with

1
Lw == 5 (0.W, = 0,W,]) (W™ = 0"WH) + Mg W Fw =+
(53)
+ (W g W
L )
the Lagrangian density containing the kinetic terms of the W boson and its interactions with charged
currents. These interactions can be extracted from Eq. (20). Since we are not interested in W as external
sources, we have omitted gauge self-interactions. Following the usual procedure in QFT, we can perform
a Gaussian functional integration which leads us to a non-local action for quarks

Sal = / "2 Ly — 2 g dadty Jo (@) A" (z,9) T (), (54)

where AMY(x,y) is the W boson propagator. In the unitary gauge it reads

v d'k k(e ’ 1 ks
A (z,y) = /WAW(k)e e Ak (k) = 2 _ M2, (g;w - ]\’/}2 ) . (55)
w w

The idea now is to formally expand in 1 /MI%V powers the propagator, which allows us to get a local
action. To lowest order the propagator becomes

uv
A (z,y) ~ j]ﬂ §W(z —vy), (56)
w
which in turns lead to the effective Hamiltonian
Heff \[Ju ‘]—HL( ) - \[ a,BV /ﬁ/(daU5)V A(da/uﬁl)V—A' (57)

We have adopt the notation (x)y+4 = ¥7*(1 F 5)x. This simple example introduces the main
idea behind OPE, as already mentioned in the previous section. The above computation is nothing more
than the usual ‘integrating out’ in effective theories. While we have used a path integral approach, the
computation done is equivalent to the expansion of the W boson propagator in the amplitude matrix
element, obtained from the usual Feynman rules approach (Fig. 4).
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Ug d, Ug dy

I

dy Ugr .y

Fig. 4: Diagrammatic representation of the new local operators obtain from OPE formalism

Therefore, in general the OPE allows us to write an effective Hamiltonian of the form

Har = 5 ZACKMC )Qi s (58)

where /\éKM contains CKM factors (1 for semi-leptonic operators, 2 for quark operators), C;(u) are the
Wilson coefficients and Q; is a local operator governing the process in question. The coefficients C; ()
are weights of the operators Q; on the effective Hamiltonian, i.e. they describe the strength with which a
given operator contributes to the Hamiltonian. These are scale dependent couplings and can be calculated
using perturbative methods (as long the scale y is not too small). The operators O; are the leading terms
in the short-distance expansion described above; in the cases we are interested in, these will correspond
to four-fermion operators. Therefore, at short distances we see processes mediated by heavy particles as
point-like interactions.

We are interested in evaluating decay amplitude for a given type of meson P. With the help of the
effective Hamiltonian this can be done quite ‘easily’ using

G
A(P — F) = (F|Heps|P) = FZACKMO )E|Qi(p)|P) (59)

where F' denotes the final state, i.e we are looking at P — F. The matrix element (F'|Q;(u)|P) is
evaluated at the renormalization scale i and is the step that in general requires non-perturbative methods.

Equation (59) and Fig. 5 compiles the essence of the OPE method which allow the calculation of
an amplitude A(P — F') to be factorize into two contributions:

Full theory OPE description

+ +...=Cf)( X_Flﬁ.km

Short-distance Long-distance

Fig. 5: Typical full theory description vs. OPE description

Short-distance effects

The computation of short-distance effects, or perturbative calculation, are all contained in the
Wilson coefficients C;(p). These coefficients will include the contributions from integrating out
the heavy particles such as top quarks, gauge bosons W and Z, and any new heavy field present
in SM extensions. All effects of QCD interactions above the factorization scale p are contained
in these coefficients. C;(u) are independent of external states. This means that they are always
the same no matter we consider the physical amplitudes where quarks are bound inside mesons, or
any other unphysical amplitude with on-shell or off-shell quarks in the external lines.
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Long-distance effects

The computation of long-distance effects is present in the calculation of the matrix element (Q; (1)).
This means that all low-energy contributions below the factorization scale y are encoded in the ma-
trix element. The task is then to evaluate local operators between hadron states. This is the hardest
task to do in the OPE treatment, since it requires in general a non-perturbative analysis.

As we saw, the most difficult aspect of OPE is the non-perturbative computation of (Q;(x)). Still the
method offers a considerably simplified approach to the full amplitude computation. Next we shall
illustrate the OPE in the context of KO — 77~ decay. We are, therefore, interested in the transition

d d

X
L

E 3

K 0

l I

Tree-level Typical QCD

Fig. 6: General representation of K® — 777~ decay. The two diagrams on the right are the typical leading
contributions.

s — uud as shown in Fig. 6. A convenient choice is to take all the light quarks to be massless and with
the same off-shell momentum p. The Wilson coefficients C; () can then be found in perturbation theory
from the 3 simple steps:

(1) Compute the amplitude (Ay,;) of the process in the full theory, i.e. in the presence of the W
propagator, for arbitrary external states

(2) Compute the matrix element (Q); (1)) with the same treatment for external states
(3) Compute C;(y) from the relation A,y = Aepr = G—\/g > A g Ci (1) (Q4(w)); this is known as
matching of the full theory onto the effective one

Note that the choice of momenta leads to a gauge dependent amplitude. However, this cancels out
with the gauge dependence from (Q;(x)) such that C;(u) is physical. To order O(ag) we have four
diagrams contributing: 1 with just W propagator; 1 (x 3 combinations) with W and gluon. Without
QCD corrections we get the effective dimension 6 operator

Qo = (5u)v-a(ujdj)v-a, (60)

with %, 7 color indices (the notation Qs is for historical reasons.). When QCD corrections are taken into
account we at at order O(ag) the effective operator

Q1 = (Siuj)v-a(wjdi)v-a, (61)

which resembles Q5 apart from the different color structure (see Fig. 7). This structure is obtained with
the help of the SU (') Gell-Mann matrices identity

1 1
(5:Tiun) (@ Thidh) = — 57 (Siwa) (W) + 5 (Siuy) (@5di) - (62)
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U

dp g
_ -

Fig. 7: Colour structure of typical QCD correction

Gluonic corrections to the matrix element of the original operator Q5 involve not just contributions from
itself but additional structure from Q;. We say that the operators Q1 and Q» mix under renormalization.
Therefore, a convenient basis for the above operators is

_ Qo+ O

Q4 5 Cx=0%01, (63)
where the renormalization of 4+ and — are independent. We can then evaluate the full amplitude, which

gives

G M} M3
—1 A = —Z'T];VJSVud |:<1 + v4as1n ;g) Sy + (1 +v_asln _;;g) S:| , (64)

where S is the tree-level matrix elements of Q1 and 4+ some numbers to be specify. This ends our
first step. Next, we compute the matrix elements in the effective theory, which is given by

0y = —iSEyry, [1+ a (1+1n“2>}s (65)
i - \/§ us ud 7:‘: S € _p2 i

The last step is matching. From Eq. (64) and Eq. (65) one easily reads the Wilson coefficient to be

M2
Ci=14+~vtasln Tgv . (66)

A note of caution is in order. In the computation of the amplitude we did not perform any quark field
renormalization. However, the renormalization in the effective theory can be explicitly seen in Eq. (65).
Having divergent Wilson coefficients would be a clearly signal of inconsistency. Therefore, the above
result was obtained after a renormalization on (()+) and using the MS scheme [6]. The presence of this
divergence in Eq. (65) is directly linked to the In My, dependence of the decay amplitude in the full
theory, which diverges in the limit My — oo.

Summing up, the effective Hamiltonian describing K — 7+ 7~ decay is given by

Heft = @VJsVud (C4 (1) Q4 + C— (1) Q-) (67)
V2

up to O(aslog) and with Cy given by Eq. (66). In obtaining the decay amplitude from Eq. (67), the
matrix elements (27| Q4| K) have to be taken, normalized at an appropriated scale x. A typical scale for
K decays is p ~ 1GeV < My . Going beyond leading logarithmic approximation O(aslog) makes
the Wilson coefficients and matrix elements scheme dependent. This scheme dependence is unphysical
and cancels out in the product of Wilson coefficient and matrix elements, as long as both quantities are
evaluated with the same scheme.
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In the example above we have whitenessed in first hand the OPE factorization. Schematically, its
has the following structure

M2 M2 2
(1 + agy+ In V12/> — <1 + agvy+In 12/V> (1 + agy+ In M2> ) (68)
-D K -D

which is achieved from the splitting of the logarithm into the sum of two terms. From the integration
over virtual moment point of view this splitting reads

My gk My gk k2
/ W / w7 /k? | (69
N—— ——
Short-distance effects Long-distance effects
or or
large virtual momenta low virtual momenta

At this stage it is important to have a closer look to the Wilson coefficients found above. We can
rewrite them, for convenience, as
2

. « 4
with ~a(ag) = 25U00 g 7(0):{ PR

v+ (as) 1y

Ci=1 L
+ + 2 nM{%V’

4a

The factor multiplying the logarithm is O(1/10) for ; = 1 GeV and therefore sizeable for perturbation
theory; the logarithm itself is large ((10) making perturbation theory to fail. We then have the scenario
where the coupling constant is small, but we have large logarithms. This is actually a common situation
in QFTs. The naive perturbation done in terms of the coupling constant is no longer enough, and we must
resum the terms (o In g/ My)™ to all orders n. This procedure reorganizes the pertubation series by
solving the renormalization group equation (RGE) for the Wilson coefficients. The RGE for the Wilson
coefficients follows from the fact that the unrenormalized coefficients C’io ) — Z.C'y are p independent.
This then leads us to

d . 4
Cr(p) =v+(as)Cx(p) with g =—-2Z1

(71)

dln dlnp”™ "

The parameters 4 (ag) are also known as anomalous dimension of Ct. The Wilson coefficients are
dimensionless numbers in the usual sense. However, because of the presence of the scale Myy in the log-
arithm, these coefficients will depend on the energy scale p. Therefore, v+ (g) are scaling dimensions,
measuring the rate of change of these coefficients with a changing scale p. In general, when not working
in the diagonal basis, these scaling dimensions are matrices mixing all Wilson coefficients. Using the
RGE for the coupling constant

dos oz?g
= 2 (72)
we can solve Eq. (71)
(© /o © 1260
as(MW) :| pas / 0 1 T+
C = |—= Cy(My) = , (73)
0= |5 M) = |75 (s () /4m) WM, /12)

where we have used the condition C'y (Myy) = 1, since no large logarithms should be present at p =
My . The expression above contains the logarithmic corrections «g In My /pu to all orders in ag. This
shows the general result that renormalization group method allows us to go beyond the naive perturbation
theory.

Two final remarks are in order. This approach can be generalized to go from My, down to m.,
for example. Then we can do this by steps, first evolving down to the scale m;, and then see the theory
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below this scale as an effective theory where the b quark has been integrated out. One should satisfy the
continuity of the running coupling at the threshold, also known as threshold effects. These effects should
be, in general, taken in consideration in the running. The second important effect is the generation of

QCD penguin operators.

3.2 Effective Hamiltonians: Some examples

In this section we summarize the Standard Model operator basis for FCNC processes, which is useful
when computing quantities based on the OPE formalism. We use the notation ¢ = u, d, s, ¢, b. The loop

functions appearing in the Wilson coefficients are given by

~ 7
Ey(z) = — 3 + O(1/x)
4 125
f(z) zg—i—glnx—%—&-(’)(l/x) (74)
g(x) =— g ——Inz 4+ O(1/x)
e Current-current operators
u 5 u S
W
d u od u
Fig. 8: Tree-level contribution and typical QCD correction topologies
, : 11 ag(m
A =G )v-a@t)v_a, Ci(Mw)=1- 65(47rW)
(75)
. A 11 as(m
O =(sp v alp v, Coldfy) = o LW
e QCD Penguin operators:
d s
q q
Fig. 9: QCD penguin topology
o o 1 - m? \ as(mw
Q35 =(Bib")v-a Z(qjqj)vm, Cs(5) = _gEO ( - ) o(may)
miyy 47
q 1 m? \ as(mw) (76)
— 14 — 4 ad t s w
Qute) =i )v-a ) (@4 )vza. Cue) = 5Eo <m%V> o

q
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Fig. 10: Electroweak penguin topologies

¢ Electroweak Penguin operators:
Qr9) =(5:b" 3 00 (@’
70) =G )v_ay 5 Qa0 )vea,
q

2 2 1 2
coor() . m () o()) ) o

o 3
Qs(10) =(Bib")v—a Y 5@a(@0 )4, Csao) =0
q

¢ Electromagnetic and chromo-magnetic dipole operators:

b

Fig. 11: Topology for electro- and chromo-magnetic dipoles. The cross means mass insertion.

€ -— Vit 1 m2
Q'?'y = - @mb SLiU” bRF;w, 077 = —g +0 <m‘%/>
) (78)
Qsy = — Ly ST (T WG, Coy = —2 4O <mw>
g 82 ! IR g 8 m?
e AS =2 and AB = 2 operators
d
b,s
Fig. 12: Box topology
Q(AS =2) =Gid ), Gid)v—a, QAB=2)= (bid)v,bjd)yv_a (79)
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¢ Semileptonic operators:

)

¢

Fig. 13: Semileptonic penguin topology

Qrva =Gid)v_a@e)va, Qovioa= Gb)v_a(i)v.a, 80)
Qi =Gid )V v_a(@V)v_a, Quu= (Ed)v_a(ip)v—a

With the list of d = 6 operators we are able to describe several SM flavour changing processes.
For example, the relevant interactions to the parton process b — s + ¢q can be parametrized though the
Hamiltonian

S q G * *
M = =5 | 2 VW 3 Gl @+ Vihs 3T Ci(w)Qi | - 81)

p=u,c 1=1,2 i=3,---,10

If we are also interested in b — s transitions with a photon or a lepton pair in the final state, additional
dimension-six operators must be included. We then get,

S D s+qq G *
Ho T — gybstad _ TQthVZS [Cry (1) Q7 + Cgg(11)Qsg + Cov (1) Qov + Croa(p)Qro4] -
(82)

3.3 Effective theories for heavy flavours: a brief introduction

What is there to integrate out, when there are no heavy particles? The answer to this question is in looking
for different scales, e.g. in B—physics m; > Aqcp. Then we can use the effective theory approach and
integrate out all short-distance fluctuations associated with scales > Aqcp. In this scenario physics at the
my, scale are short-distance effects, while heavy quark related hadronic physics governed at confinement
scale Agcp reflect long-distance effects. The separation of the short-distance and long-distance effects
associated with these two scales is vital for any quantitative description in heavy-quark physics.

The prime example of this separation is on heavy quark effective field theory (HQET) [19]. What
is the physical picture behind HQET?

e Scale hierarchy mj; > Aqcp, ae(mp) is perturbative (asymptotic freedom)

Heavy quark - heavy quark system is perturbative

Heavy-light bound states are not perturbative

Characterized by a small Compton wavelength; A\g ~ 1/mg < 1/Agcp ~ Rhpga(typical
hadronic size)

These requirements simplify the physics of hadrons made up of a heavy quark. In mesons composed
of a heavy quark, (), and a light antiquark, ¢ (and gluons and ¢q pairs), the heavy quark acts as a static
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color source with fixed four-velocity, v,, , and the wave function of the light degrees of freedom becomes
insensitive the mass (flavour) of the heavy quark. Since the magnetic moment of a heavy quark scales
like 11 ~ 1/my, its spin also decouples. This results in

SU(2nq) spin-flavour symmetry: In heavy-quark limit (mqg — o0), configuration of light
degrees of freedom is independent of the spin and flavour of the heavy quark.

Hadron:

—
I‘;Fr

Fig. 14: Pictorial representation of the Hadron. The black central dot represents the heavy quark and the gay are
the light degrees of freedom. R}, is the size of the hadron while Ag the Compton wave length of the heavy quark.

In the effective description that we are looking there are some other important aspects:

e Heavy quarks carries almost all momentum;

e The momentum exchange between heavy quark and light degrees of freedom is predominantly soft
(soft gluon exchange):

APg = —APight = O(Aqep) = Avg = O(Aqep/mq) ; (83)

e Heavy-quark velocity becomes a conserved quantum number in mg — oo limit. This is known as
the Georgi “velocity superselection rule”;

e Spin doublets such as (B, B*) should be degenerate in the heavy quark limit: mp« — mp =
46 MeV <« AQCD;

e Away from the heavy-quark limit, 1/m corrections are expected: mp+—mp = (c1—co)A2/mp+
O(1/mp):;

e The approach gives a prediction for (mp+ — mp)/(mp« —mp) =~ m./mp =~ 1/3; Not far from
the experimental value of 0.32.

We can now construct an effective theory that makes the effects of the heavy-quark symmetry
explicit, i.e. the HQET. The heavy quark () in the interactions with soft partons (ligh quark ¢ and gluon
g) is almost on-shell, such that we can expand the momentum as

Bo—= I "
Pg mqQu + k (84)
hadron residual off-shell
rest frame momentum

ot = (1,0,0,0) |kl =O(Aqep)
Expanding the heavy quark propagator we get

i _iptmg) _ilmgptftmg) i 1+¢

p—mg p? —mg 2mou.k + k2 vk 2

S (85)

We can see that in this expansion the propagator is no longer dependent on the mass of the heavy quark, a
clear manifestation of the heavy quark flavour symmetry. To derive the effective Lagrangian is convenient
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to decompose the Dirac spinor components into ‘upper’ (large) and ‘lower’ (small) pieces

hol) = ¢V P Q)
Q(x) = e~ ™M, (z) + H,(x)], with (86)
—_— H, (1.) — eiva.a:P_Q(x)
carry the
residual k

and Py = (1 & ¢)/2 are projector operators. In the rest frame of the heavy quark P, = (1 + ~°)/2
project onto the heavy quark components. An useful identity of these projectors is

P+’)/'LLP+ = P+7)'LLP+ = ’U/’LP+ . (87)
Note that h,(z) and H,(x) are eigenstates of the velocity operator, i.e. $h,(x) = hy(x) and pH,(z) =
—H,(x). In terms of these fields the QCD Lagrangian can now be written as
Lo =Q(ip—mq)Q
=hyilDhy, + Hy(iD— 2mq)Hy, + hyilDH, + H,ilDh, (88)
=hyiv.Dhy + H,(—iv.D — 2mq)Hy + hyilp) H, + H,ilpy by,
where we defined zﬁﬁ = D" — v*v.D, orthogonal to the heavy-quark velocity v.D; = 0. In the
rest frame, Di = (0, 5) contains the spatial components of the covariant derivative. We see from the
Lagrangian above that the component A, (x) is a massless mode describing a quantum fluctuation around

mass-shell, while H,(x) is a massive mode with mass 2m describing a hard quantum fluctuation. This
heavy component can be integrated out by using the classical equation of motion

1 . 1 > iU.D " 3 D AQCD>
w=————iD hy = —— — 1D hy — Hy~|— ) hy~ hy .
2mqg +w.D Pih, 2mg n0< 2mQ) Prh, ! (mQ> Y < mQ Y
small
k< mQ
(89)
The effective Lagrangian can then be written as
Luger =  hyiv.Dshy + hyilD) Wz’@lhv —  non-local
(90)

w.D
2mQ

_ 1 _ n
= hyiv.Dshy + —— > 07 hyilD) (— > i) hy, — local
QmQ

Therefore at leading only h,(z) contributes, and the effects of H,(x) are suppressed by powers of
AQCD/mQ, i.e.
ﬁHQET = EviU.Dshv + O(l/mQ) ,  with ZD? = 0" + gng . o1
—~—
soft gluons

It is straightforward to extend the above result for higher order of power corrections. At the next to
leading order we get

— iy (iDg)2hy —4hyS.Behy
1 T f
Lrger = Juiv: Dby +3 Teo(iDy 1 )2, —f—Cmag(u)%thWG/s‘”hv] L 92
S U(2nq) kinetic-energy chromo-magnetic
spin-flavour operator

from pert. theo.
symmetry
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where we have make use of the identity
Pyii Py = Py |(iD1)* + %UWGW P, (93)

and i[D*, D¥] = gsG"" is the gluon fields-strength tensor. Here S is the spin operator and B! =
—1/2€7*GI* are the components of the colour-magnetic field. The Wilson coefficient is computed
through RGE-improved perturbation theory [33]. The leading term is SU(2n¢) spin-flavour invariant,
i.e. no reference to the heavy-quark mass (flavour symmetry) and invariant under the spin rotations
hy — (1 + i/2€.5)h,. The flavour symmetry is broken by the operators arising at order 1/mg and
higher. Note, however, that at this order the kinetic term conserves the spin symmetry, while the chromo-
magnetic operator breaks the both flavour and spin symmetry. Figure 15 shows the changes in the
Feynman rules in the new formalism.

QCD HQET
i _ J | ———
md’;j P (0)5;
t i
1 a igv”'g;ﬁ 1 a f,;gyrf-(_"y
J J

Fig. 15: Feynman rules QCD vs. HQET

Up to now we have integrated out small components in the heavy-quark fields and obtained an
effective local Lagrangian that describes the long-distance physics in the full theory. The way heavy-
quarks participate in the strong interaction is through their couplings to gluons. These can be soft (virtual
momentum small, of the order of the confining scale) or hard (virtual momentum large, of the order of the
heavy quark mass). In the approach used above we have integrated out the hard gluons as they, contrarily
to the soft ones, break the heavy-quark symmetries. However, hard gluons are important once we decide
to add short-distance effects. Their effects lead to a renormalization of the coefficients of the operators
in the HQET Lagrangian, which are calculable in perturbation theory. There is no renormalization at
leading order. Nor renormalization of the kinetic operator due to Lorentz invariance (“‘reparametrization
invariance’). However, the chromo-magnetic interaction will be affected.

Heavy-quark symmetry is particularly predictive for exclusive semi-leptonic B decays such as
B — D™(p. Tt allow us to extract the CKM matrix elements |V,,| and | V| with controlled theoretical
uncertainties, through the correlations shown in Fig. 16 .

A clever use of heavy-quark symmetries allows us to calculate the decay rate at the special kine-
matic point of maximum momentum transfer to the leptons (v = v'), i.e. “zero recoil” point. How can
we deal with confinement effects in this hadronic process? We can consider elastic scattering of a B me-
son, B(v) — B(v'), induced by the vector current J# = by*b. The heavy quark acts as a static source
of color, and the light quarks orbit around it before the action of the vector current. On average, the b
quark and the B meson have the same velocity. The action of the current is to replace instantaneously (at
t = tp) the color source by one moving at speed v’. Nothing happens if v = v/, i.e. the final state remains
a B meson with probability 1 (case (a) in Fig. 17). However, for v # v/, the probability for an elastic
transition is less than 1. The light constituents find them selfs interacting with moving source. Soft
gluons will have to be exchanged in order to rearrange them and form a B meson moving at a different
speed, leading to a form factor suppression. In the Heavy-quark mass limit, i.e. my — oo, the process is
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Flavour

L=l
e
=
A
-

) o
Spin Spin
w b4

o
[ ]
#
o~
W

Flavour
B* D*

Fig. 16: Spin-flavour symmetry between B- and D-system

described by a dimensionless probability function £(v.v") called the Isgur-Wise function. The hadronic
matrix elements describing the scattering process is then

1 _ _ _
—(B() by B(v) = € )w+ ), with Ea)<1,€1)=1.  (94)
mp

The 1/mp factor on the left-hand side of the equation compensates the normalization of the meson state,

ie. (B(p)|B(p)) = 2mpv®(2m)35(p — p'). We can then use the flavour symmetry to replace b— by

c—quark in the final state, thereby obtaining a B — D transition. This transforms the scattering process
into a weak decay process.
Nothing will happen to the matrix element since in the heavy-quark limit the Lagrangian is invari-

ant under the b, — ¢,/ replacement (case (b) in Fig. 17), i.e.

1 _ _
——— (D(v)[ew"bo| B(v)) = &) (0 + V)" 95)

This is a very interesting prediction of the heavy-quark symmetry. Since in general the matrix element
of a flavour-changing current between two pseudo-scalar mesons is given by

(D(V)[ewy"bu| B(v)) = f+(a®) (0 + )" — f=(a®)(p — )", (96)

with fi(g?) the form factors and ¢ = p — p’. The heavy-quark symmetry relates the two a priori
independent form factors to one and the same function, i.e. the Isgur-Wise function ( f(g?) o< &(v.v")).

Next, we can use the spin symmetry to flip the spin of c—quark in final state, thereby obtaining a
B — D* transition (case (c) in Fig. 17). The current gets transformed to

(D* (v, €)[ey™ (1 = v5)by| B(v)) = (D* (v, €) [eory"by| B(v)) — (D*(v', €)[euy* 7500 | B(v))  (97)
with

b

N

\/ﬂﬁ@*(v', €)|eu Y Y5bo| B(v)) =[e™ (v + 1) — ve*v]é(v.))

(D*(v', )[ewy"bo| B(v)) =ie" *esv,v5€(v.0)
(98)
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B

v.=1
(a) (2 v

B Flavour
—_—

rz‘? ?‘?f
B Spin-Flavour

D *
_
!
(e) v @

v T4

t <ty t=1p t >t

Fig. 17: Evolution with time of the hadron for the different scenarios where spin-flavour symmetry is applied.

where e denotes the polarization of the D* meson. The general Lorentz-invariant matrix elements of
these hadron currents are given by

21
mpg + mp=

(D" (v, )[e5bu| B(v)) =(mp + mp-)e, A1(q®) —

(D*(V', €)[ey"by| B(v)) = €uap€ PPV (¢%)

€“.p

! 2
e P PuAa(d)99)

* *

€*.q €*.q
— 2mp- ?QMA3(Q2) + 2mp- ?qqu(qQ)

with
mp+mp

2mD*

As(?) = Ar(?) — TEZ p (). (100)

In general, these exclusive semileptonic decays processes can be described by six a priori independent

2mD*
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hadronic form factors

[ For 0~ — 0~ transition:  — F/{y,

L (F)IVPI(0) = ymimp [§4(v.0) (0 + ) + € (v) (v = v') ]

[ For 0~ — 1~ transition: I — F*/{y, (101)

(F* (o) [VET(0)) = i ATy (00 )epape™ o0
(B () AL T(v)) = mmp-Ea, (00) (0.0 + 1)el, — Ea, (0.0)e vu,

—&a5 (v et v ]

with V,, and A, the vector- and axial-currents, respectively. The heavy-quark limit imposes the relations:

Er(wa) =&y (vn) =E€a, (00)) = Eay(v0)) = E(v') and € (v) = E€a,(00)) =0, (102)
These relations are model independent and are a consequence of QCD in the limit 1y, m. > Aqcp. For
the processes described below the form factor correlations read

() = 2ED p (2 2VMBID oy 2VIETD: (2

mpEtmp mp + mps mp + mp- (103)
_ 21/mBmD*A ( 2) _ 2./mpm px 1_ q2 —1A (q2)
mp + Mmpx ? mp + mp= (mp + mp+)? ! ’

with ¢ = mQB + mQD* —2mpmp+v.v'. These from factors play an important role in describing semilep-
tonic decays as B — D®)fu. In terms of the recoil variable w = v.¢/, the differential decay rate in the
heavy quark limit for these processes is given by

(w? = D2 F2(w), for B — D*
[Vap|? x F x : (104)
(w? —1)*2F%(w), for B— D

dl'(B — D™p)  Gin?,
dw © 4873

with 7¢,, >~ 1 a parameter accounting for the electroweak corrections to the four-fermion operator medi-
ating the decay and

4 1—-2 2 X
m%r3(1—r)2(w+1)2<1—|— w rw+r>’ mp

r= for D*
w+1l (1-r)2 mp (105)

F =
(mp +mp)*m}, for D

Both F(w) and F(w) are equal in the heavy-quark mass limit and are normalized such that F,(1) = 1,
allowing a model independent extraction of |V,;|. The above differential decay rate expressions receive
symmetry-breaking corrections, since the mass of the heavy quark is not infinitely large:

e Corrections of order O(cy (mg)) (hard gluons) can be calculated perturbatively;
e Power corrections of order O((Aqcp/mg)™) are non-perturbative and more difficult to control.
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These corrections have been estimated and schematically give

Luke lattice/
Theorem models
A A2
Fu(l) 21 + ca(as)+ 0 x 2D cons x QSD +---
N — mqg mQ
Perturbative (106)
,—/H A
F(1) ~1 4 cy(as) + const X Z2Qeb
mQ
~—_——
lattice/
models

The absence of the O(Aqcp/mq) term for B — D*(w, at the zero-recoil limit, ie. w = 1, is a
consequence of the Luke theorem:

The matrix elements describing the leading 1/mg corrections to weak decay amplitudes vanish at
zero recoil, to all order in perturbation theory.

The reason why in the semi-leptonic decay B — D{u, this is no longer true is more subtle and can be
found in [34]. Therefore, from the value of F, (1) the value of |V is estimated to be

[Vep| = (39.48 £ 0.5¢4p £ 0.744pe0) x 1073 from lattice QCD

cb| = . e O¢heo) X 107 rom sum rules ,
V, 41.4 4 0.5¢4p £ 1.0 1073 from QCD 1 (107

showing the power of HQET in describing non-pertubative systems.

4 Some aspect of C' P violation
4.1 CP violation in the Universe

One of the currents issues related with flavour physics and C'P violation is the Baryon asymmetry of
the Universe. Our understanding of the Universe is based on the Standard Cosmological Model, where
the Universe expanded from a primordial hot and dense initial state at some finite time in the past (the
so-called Big Bang) and is then followed by a period of inflationary expansion that ensured the curvature
to become approximately zero [35]. After this inflationary epoch, the Universe continued to expand but
at a low rate. The rate of expansion is determined by the component of energy density that dominates the
total energy density; at the present time this is the so-called dark energy component, which causes the
expansion to accelerate due to its negative pressure.

In our surroundings the objects are mostly made of matter, e.g. planets, stars, etc.. The present
value of the baryon asymmetry of the Universe inferred from WMAP seven-year data combined with
baryon acoustic oscillations is [36]
np —ng . (

6.19 +0.14) x 10719, (108)
Ny

nB =
where np, ni and n, are the number density of baryons, antibaryons and photons at present time,
respectively. The smallness of this quantity poses a challenge to both particle physics and cosmology. If
we take inflation for granted, then in the early Universe any primordial cosmological asymmetry would
be erased during the inflationary period. This is one argument that strongly suggests this asymmetry
to be dynamically generated, instead of being an initial accidental state. Sakharov realized the need of
three ingredients in order to create a baryon asymmetry from an initial state with baryon number equal
to zero [37]. The three conditions can be stated as follows:
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1) Baryon number violation;
ii) C and C'P violation;
iii) Departure from thermal equilibrium.

The first condition is rather obvious. If there is no B violation, the baryon number is conserved in
all interactions and, therefore, commutes with the Hamiltonian at any time, i.e.

t
B.H] =0 = B() :/ B, H]dt = 0. (109)
0
The second condition is a little more delicate. Let us start by writing the baryon number operator

B

;Z/d% ST (2, )0 (T, ) (110)

where v;(Z, t) denotes the quark field of flavour ¢ and :: denote the normal ordering. The C, P and T
transformations of these fields are given in Tables 1-2. Thus, the fermionic number satisfies the following
transformations

= yl(@ (1) -, (111)

We can, therefore, find how the baryon number operator transforms under these operators. One gets
CBC'=-B, (CP)B(CP)'=-B, (CPT)B(CPT)!=-B. (112)

Now, if C'is conserved, then [C, H] = 0 and the expectation value of the baryon number is given by
<B(t)> _ <€th3<0)6—th> _ <C—1C€thB(O)€—th> _ <ethB’(O)C_1e_mt>

A . . (113)
S <emtB(0)e_mt> _ <B(t)> .
We see that the expectation value ( B (t)> is only different from zero if C' is not a symmetry of the
Hamiltonian. The same is true for C'P.
The last condition can be understood as follows. In thermal equilibrium, the thermal average
are weighted by the density operator p = e~ 7%, with 3 = 1/T. Assuming C'PT invariance of the
Hamiltonian we get

(BW) =Tr|e™B| =Tt |(CPT) ™ (CPT)™MB| = Tr | (CPT)B(CPT) ! -

This means that, within a C PT invariant Hamiltonian, the thermal average is zero and no net baryon
asymmetry is generated since the inverse processes will destroy the asymmetry generated in the direct
decays. Departure from thermal equilibrium is very common in the early Universe when interaction rates
cannot keep up with the expansion rate of the Universe.

All three of these condition can be found in the SM, however the amount of C'P violation from
the CKM mechanisms is to small in order to generate such an asymmetry.
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4.2 Weak and strong phases

CP is violated in nature by the weak interactions. The imposition of C'P invariance in a transition
amplitude is expressed as

CP)T (P =T. (115)

In classical physics, the square of the CP transformation is identical to the identity transformation, and
therefore (CP)? corresponds to a conserved quantum number. The value of (CP)? for initial and final
states must be identical, and is a purely arbitrary phase. Without loss of generality one can choose
(CP)? = 1. The CP transformations read

CP i) = e

i)y, CPli)y=e"li), (116)

with &; an arbitrary phase. The C' P constraints on the transition amplitudes from an initial state ¢ to the
final states f and g are

~

N = ei&=¢r) (FI T |7
Final state T i) =e <f’ T ‘Z> Final state

I 17 = desso g2y 99

(9l T li) = €6~ (g| T i)

(@ T Ji) = € (g| T [2)
117)

From these transition amplitudes one sees that the modulus of each process is equal to the modulus of

the C'P conjugated one. Therefore, the C' P-violating quantities are

(AT - |[(AITR| (91 71| - @I T[7)]
Final state

b/

Final state

" 1F10)] - [ 7] (@ T -|@ TR a1
1

#0 =  CP violation — #0

If we only had one final state, say f, the relevant expressions would be the ones presented in the first line
of Eq. (117) and (118). In Eq. (117), we only have two phases for two complex equations and therefore
no other quantity beyond the one presented in Eq. (118) would violate C'P. The fact that we have two
final states, f and g, leads to three arbitrary phases but four complex equations. Since we only have four
real C P-violating quantities in Eq. (118), a physical C P condition on the phases of the decay amplitudes
must remain. One can find that the quantity

(FIT |3y (FI T 13) (9| T |i) (9| T |3) — (g| T I3} (g| T 1d) (f| T |2} (f| T |7) (119)
must vanish if C'P invariance holds.

The presence of complex phases is closely related with C'P violation. One simple argument to
support this statement is due to C' P invariance. If C'PT is conserved then C'P violation is the same as
T violation. Since T transforms a number into its complex conjugate, the C'P violation must be related
to the presence of complex numbers. One should stress, however, that the phase of a transition amplitude
is arbitrary and non-physical, due to the freedom of phase redefinition of the kets and bras. Only phases
which are rephasing invariant can lead to C'P violation. These are in general relative phases of transition
amplitudes. There are three types of phases that can arise in transitions amplitudes:

e ‘weak’ or C'P-odd phases.
The weak phases are defined as the phases that change sign under C'P conjugation, and usually
originate from complex couplings in the Lagrangian.

e ‘strong’ or C'P-even phases.
The strong phases are the ones that remain unchanged under C' P conjugation. They may arise from
the trace of products of an even number of v matrices together with ~s, or final-state-interaction
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scatterings from on-shell states. The last one appears when the total amplitude for the decay ¢ — f
includes contributions from ¢ — f’ — f, where the decay ¢ — f’ is through weak interactions
and f’ — f through strong or electromagnetic ones. If the intermediate states are on mass shell
this creates an absorptive part. These are also typical phases appearing on absorptive parts of loops
diagrams in perturbation theory.
e ‘spurious’ C P-transformation phases.

The spurious phases are global, purely conventional relative phases between the amplitude of a
process and the amplitude for the C' P-conjugate process. These phases do not originate in any
dynamics, they just come from the assumed C'P transformation of the field operators and on the
kets and bras they act upon [2].

4.3 Types of C P Violation

e (' P-violation in Decays (direct C'P violation)
This type of C'P-violation occurs when a meson P and its C'P-conjugate decay at different rates
to the same final state (up to C' P conjugacy). This can be characterized by the relation

Ay

Yy #1. (120)

In charged meson decays, where mixing is not present, this is the only source of C' P violation:

D(P~ = [7)=T(PT = f*) _ [Ap/A2 -1
D(P= = f7)+T(P* — f*)  [Af/A;2+1°

ape = (121)

In order to have C P violation in transition amplitudes from i (i) to f ( f), the transition amplitudes
need to be a sum of two or more interfering amplitudes. The way we can see this is through an
explicit example. Consider for instance

(fIT i) = Ae'C+) - (F| T [i) = Ae'O=¢+0) (122)

with A a real positive number, J a strong phase, ¢ a weak phase and 6 a spurious one. It is easy to
see that these transition amplitudes satisfy the first equation of Eq. (117) with

§i—&f=20—0, (123)

leading to o
(AT )] = [(f]T])| =A—-A=0. (124)

Therefore, no C P violation is generated in such a transition. This is no longer true when there is
interference. For that, we consider

AT Ale (01+61) + Ay el(5z+¢2)

<f’T| Ale (01—¢1+601) + Agé (02— ¢2+02) (25

where d;, ¢; and 0; are the strong, weak and spurious phases, respectively. Now, it is no longer
possible to satisfy Eq. (117). We can evaluate the C' P-violating quantity

(AT 1) = [(F] T 1)) —4A; Ay sin(6y — 85) sin(é1 — éo)
(AT P+ |(F| TR 243 +243 + 44145 cos(31 — 6) cos(61 — ¢)

(126)

This expression will be used later on (in a different form) and, therefore, it is useful to make a few
remarks:
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— The existence of both weak and strong phases is crucial for C'P violation;

— Only relative phases (weak and strong) are relevant in physical processes;

— The limiting case |¢1 — ¢2| = |01 — d2| = 7/2 and A; = As gives the maximum value of
the C'P asymmetry;

It is possible to have C' P violation without strong phases, if we have more than one final state and
its C'P conjugate. For example, having the transition amplitudes

(FIT i) = AyelCrto0  (F|T i) = AyelOr=0140)

(91T 1) = AaeiOH) | (g T i) = ApeilBr—2+0), (20
with f = f and g = g, we can build the quantity
(FITIE) (Gl T () = (g| T8) (fI T [i) = 2i A1 Age’ T2 D sin(gy — go) . (128)

In this quantity the strong phases are basically irrelevant and C'P violation is dictated by the weak
phases. However, these two distinct final states must be correlated such that the decay involve
both simultaneously, otherwise this can not be an observable. This is actually the case in kaon de
decays to 77w~ and 7070 (see Sec. 4.4).

e (' P-violation in mixing (indirect C' P violation)
This type of C'P violation occurs when degenerated neutral mesons are not the C'P eigenstates.
This can be characterized by the relation

‘q‘#l. (129)
p

This is the only source of C'P violation in semileptonic final states such as P° — [+ X. In such a
scenario the asymmetry can be observed in

D(POphys(t) = 17 X) = T(Pyy,(8) = 17X) 1 |g/pf?

asL = — =5 — = . (130)
L(POppys(t) — 1T X) + F(Pzﬁ’hys(t) —=I-X) 1+ lq/p|?
The meson P[?hys(t) represents the time evolved state. As we shall see in Sec. 4.4,
I'io )
asp =Im | —|. (131)
=t (2

This means that in our model we just need to know Mjs and I'y2, in order to compute the C' P
violating observable. However, in general I';5 is plagued with large hadronic uncertainties, making
this computation more cumbersome.

e (' P-violation in interference decays
This type of C'P violation only occurs in decays where the final state f is common for both P°
and PY. This can be characterized by the relation

ImA; #0, (132)

where \; = (¢/p)(A(PY — fop)/A(P° — fop)). One example is where this asymmetry can
be observed is in decays involving CP eigenstates with +1 eigenvalues. Then we have the C'P
violating observable o

(PO = fep) —T(P° — fop)
T(PY— fop)+T(P° = fep)

afep(t) = (133)
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In the B-system this leads to

_1 _ ’)\fCP‘Q
1+ |)‘fcp|2

2Im )\fCP

cos(Ampt) + ———<%
1+ |)‘fCP|2

af.p(t) = sin(Ampt) (134)

The fist term on th Lh.s. corresponds to CP violation through mixing, while the last term is due to
interference. In decays with |[Acp| = 1 only the interference effect survives

Afcp (t) =Im )\fCP Sin(Ath) . (135)

We know Amp so we can measure Im Ay, ,. This quantity is the phase between mixing and
decay amplitudes. To a good approximation |A(PY — fop)| = |A(P® — fop)| and since in the
standard parametrization ¢/p = ¢*2?, we have to a good approximation

q A(PY — fop)

Im\ =1 _——
M Aer =T LAY S fop)

] ~ sin20. (136)

4.4 Neutral Meson Mixing: General description

In this section we shall follow closely the the discussions in [9]. We are interested in describing how C' P
violation arises from the mixing of a neutral meson Py with its antiparticle P9. Consider the simplest
scenario where the two states |PY) and ]ﬁ> that are degenerated can neither decay or transform into
each other. In such a system an arbitrary state can then be represented as

() = a(t)|P%) + b(t)|PO) (137)

and evolve through the Schrodinger equation with diagonal Hamiltonian. This scenario is exactly what
happens in the neutral meson system when only QCD interactions are active. Turning on the electroweak
interactions will induce, even if small, off-diagonal Hamiltonian entries mixing both states leading to the
breaking of the degeneracy. In general, to describe the time evolution of this new state we would require
the state o

[6(t)) = a(t)| P°) +b(&)| %) + ) cilt)ni) . (138)

(2

where n; are final states of the P and PO decays. However, we may study the mixing in this particle-
antiparticle system separately from its subsequent decay if the following conditions are satisfied: a(0), b(0) 7
0 and ¢;(0) = 0; time scale larger than the typical strong-interaction scale; no interactions between fi-
nal states (Weisskopf-Wigner approximation). In this way the neutral meson mixing is described by

two-component wave function
w(t) = <b(t>) (139)

evolving according to a Schrodinger equation

i i
My — zI'n My — T
n-gin 125l

i) = (3 = 5 wie) = , e, (140)
— Mo — £F21 Moo — £F22

H

with ¢ the proper time, H a 2 x 2 matrix written in the P° — PO rest frame and M, T its Hermitian parts.
The meson flavour basis {\PO), ]ﬁ>} satisfies the following relations:

— Orthogonality: (P°|P%) = (PO|P°) = 0 and (P°|P°) = (P9|PY) = 1.
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— Completeness: |P%)(P°| + |PO)(PY] = 1.

— pY
— Effective Hamiltonian decomposition: H = <\PO>, \PO)) H <<|>

In terms of the total Hamiltonian

CP CPV
—— ~ =
H = Hqocp + Hoep + Hew (141)

we can have the usual perturbation expansion, up to second order,

(M—F)l (i[H]5) +Z ’H‘”E"’i”lg (142)

where ¢ and j can be K 0 or KO and |n) any eigenstate of Hocp + Hoep with eigenvalue E,,, but with
n # K9, KO, Using the identity
1 1

=P —1 - E, 14
mo — (En — ie) mo — En ’L7T(5(77’Lo ) ( 3)

we can find the Hermitian matrices M and I' up to second order in perturbation theory. They are given
by

mod;;+ (i HEw5)

— (t|Hew|n)(n|Hew|J
Mij = (ilH3) ZP . EZLO>£JL”EW>’ (144)
Lij —27725 mo — En) (i|Hew|n) (n|Hew|j) ,

with P projecting out the principal part. The general C' P transformation of the states is given by
CPIPY(@) = —¢4[PO(—p) and CP[PY(p) = —e 4| P*(—p)). (145)

We then see that the C P-invariant combinations are given by

_ L (1poy _ iepo _ L (1poy 4 iepo
)= 5 (1P%) = SP) 1R} = 5 (1P + €IPD) ) (146)
in such a way that

CP|P1>:|P1> and CP|P2>:—|P2> (147)

Requesting C'P invariance is equivalent to the Hamiltonian condition H = (CP)H(CP)'. This in turns
imply Hyip = e %€, and Hy; = Hoo. Note that £ is a spurious phase without any physical relevance,
therefore, we conclude that the phases of Hi2 and Hs; also lack meaning. We can then summarize, in
Table 6, the physical conditions given the present discrete symmetries. In these notes we are interested
in CPT -invariant theories.> As a result, the matrix responsible by the evolution of our system is given
by
My — iTy Mg — iFm)
H= 2 2 . 148
<Mfg — 5l My —5Tn (148)
If C'P was a symmetry of the system, i.e. [CP, H] = 0, the states | P} 2) would be the true eigenstates of

Eq. (140). The presence of C'P-violating terms will destroy this result, in order to see this we go to the
mass basis. The time evolution in Eq. (140) becomes trivial in the mass basis where the Hamiltonian H

’the general framework can be found in [2], for example.
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Table 6: Constrains on the mixing matrix when the system respect some or no discrete symmetries.

Conservation Constraints
CPT HH = H22 (MH = MQQ and FH = F22>
CP Hyy = Hyp and |Hyg| = [Ho|
T |Hiz| = |Ha|
None H is general

is diagonal. The complex eigenvalues (ur, ;) and corresponding eigenvectors (| Py, ) of H are given
by (using the phase convention £ = 0)

Eigenvalues: Eigenvectors:
, 1 _
Py —pg— iy =y — L IPL) = ————— (pIP") — qP)) ,
My =5l —pg=pr=mp— Iz, VIpl? + lql? (149)
. i 1 _
My —5Tn +pg=pa =mp — JTh |PH>=7<P\PO>+CI|PO>)
2 VIpl? +laf?
where . .
1 % .
pP=Ms =g, ¢ =M= 5T, (150)

Note that my 1, and I'y 1, are not eigenvalues of M and I' but, nevertheless, satisfy the relations Tr M =
myg +mp = 2My; and TrI' = 'y + I'p = 2T'1;. They can also be written as

my, =M1 —Repqg, mpy = Mi1+Repg,

(151)
'y =I'11+2Impg, T'yg=T11—2Impq.
We are using a convention in which Am = my — mp > 0. It is also convenient to define
MEMHQﬂEm—%F, AMEMH—MLEAm—%AF. (152)
with
my + my,
Am =my —myp =2Repg, m=———= = M7,
AT =Ty — T = —4lmpg, T = % =Ty.

The relation between these parameters and the elements of H in the flavour basis can be found through
the diagonalization procedure, leading to

q Hayn _ 2Hy

=Hy1 =Hy, Au=2\/HisHy, -= (154)
1% 11 22 % 124121 » T A
Which in a more familiar form can be written as
1 *
(Am)? — 1 (AT)? = 4|Mypsf* — [T12]*,  (Am) (AT) = 4Re (M},T'12) |
1-—¢€ My, — 415, _2M{y — i, Am— AT (153)

=Te

q_
I+ p \Mp—ily Am—IAT  2Mip—iT1p

The small complex parameter € depends on the phase convention chosen for the P? — PO system. There-
fore, as a spurious phase, it shall not be taken as a physical measure of C'P violation. Nevertheless,

160



FLAVOUR PHYSICS AND CP VIOLATION

the quantities Re € and r are independent of phase conventions. Therefore, departures of  from 1 are a
measure of C'P violation. If » = 1 (¢ = 0) then p = ¢ and the mass eigenstates in Eq. (149) coincide
with the C'P eigenstates in Eq. (146). When this parameter is not 1 there is a small admixture of the C' P
eigenstates in the final (mass) eigenstates, i.e.

|Pr) = (I1P1) +éP)) . |Pu) = —— (I1P2) +€[P1)) (156)

1
V14 €? 1+ |€?
The physical observables measured in neutral meson oscillations can be parametrized by the dimension-
less parameters

Am AT q
— S 1= =1. 157
T=7F o Y=o T ’p’ (157)
On can check, after some algebra, that
pl* —lgf* 172 Im(M7,T'12)

_ _ , 158
PPl = 1472 [MuaP £ [Tia/2P + 1 [(Am)? + (AL/2)) (%)

which is actually the quantity which measures the non-orthogonality between P, g, i.e.

1—r2 2Re e
Py|Pr) = = . 159
(Pu|Pr) 52 11 (159)

Concerning time evolution. For the |P? ;) states the solutions is rather trivial
‘PL,H(t» = TL,H(t)‘PL,H> , with Tx(t) = e xt — g=Ixt/2g—imxt (160)

The states produced in strong interactions are the | P°) and | P9). It turns then useful to look at the times
evolutions for these states. Using Eq. (160) and Eq. (149), we find

PO(1)) =V'p‘22p+'q'2 Ty ()| Pu) + To(8) L)) |

(1)) :W (T ()| Par) — To(8)|PL)]

(161)

This form is useful for studies in the K° — KO0 system. An alternative expression, useful in the BY — BO
system

|PO(t)) = f+ ()| P°) + %f—(t)|ﬁ> . |PO(t) = f ()| PO) + gf—(t)!P°> ; (162)
where
Folt) = TH@);LTL@) _ % [e—imHte—FHt/Q + e—imLte—FLt/Q} ' (163)

One see right away that for ¢ = 0 one has, for example, a pure | PY) state, which as time evolves mixes
with |P0). The probabilities of finding these states at later time are then given by

P(P° — P t) =P(PY — P%t) = |fL(t)]* = %exp [—F;} (cos(Amt) + cosh(AT'/2))
2 2

PP’ — PO 1) = ‘Z If- ()] = % ‘;’) exp [—Fﬂ (= cos(Amt) + cosh(AT'/2)) (164)
2 2

P(PO — POt) = ‘Z If- ()] = % ‘5 exp [—Iﬂ (= cos(Amt) + cosh(AT'/2))

Note that several important aspects in meson oscillations were not covered here. For example, the
existence of a reciprocal basis and its importance, this topic and many others can be found in [2,9].
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4.5 Neutral Meson Mixing: The K° — K° and Bg’s — ﬁd, s Systems

The general formalism for meson oscillations, shortly described in the previous section, can now be
applied to the particular systems which we are interested in.

4.5.1 The K° — KO system: |K°) = |ds), |K°) = |ds)
In this system instead of using the notation heavy (H) of light (L) for the mass eigenstates we change it
to the standard notation of long (L) and short (S) life time particle. This means

|Ks) =|Pr) and |Kp)=|PpH). (165)

From the calculation of the Kj — K g mass difference, Gaillard and Lee [133] were able to estimate the
value of the charm quark mass before its discovery. Also, kaon oscillation offers, within the Standard
Model, a viable description of C'P violation in Kj, — w7 decay.

In the kaon system we have

1 1

L= — =51.16+£02lps, 79=— = (0.8954 =+ 0.0004) x 10~ 'ps (166)
ry I's

my = 497.614 + 0.024MeV, Amyg = (3.484 £ 0.006) x 10712 MeV (167)

end up having to a good approximation

1
AmK ~ 2|M12| ~ —§AFK ~ ‘F12| y (168)
which lead us to )
1—r 1 F12
~ “Im [ === 169
1+ r2 4 m <M12> ( )

In order to relate € to measurable quantities we need to look at decays in the kaon system. The best
channels to look at are the decay to pion. The pions are pseudo-scalars, which tell us that under the
discrete symmetries C, P and T they transform in the same way as the bilinear ¢y5 in Tab. 2. Therefore,
under C'P we have

One pion state: CP|7°) = —|7),
Two pion state: CP|77°) = +|7°7%), CP|xt7~) = +|zTn7), (170)

Three pion state: CP|r’7n'7%) = —|7%7°20) | CcP|ata= 20 = (1) |z T7 =) .

For the state |7 * 7~ 7") the relative angular momentum () between 7° and 77~ is relevant. We can
then conclude, from the above properties, that a two pion final state is C' P-even and a three pion final state
(with zero angular momentum) C' P-odd. The kaon decays to two or three pions can then be characterized
as

Kg — 21 (via Ki) Kg — 3 (via K3)
CP conserving: CP violating: (171)
K — 3 (ViaKQ) Ky — 27w (ViaKl)

This type of C'P violation is called indirect since it comes from the presence of a small admixture of
CP eigenstates in the final mass eigenstates, and not from a explicit breaking in the decay. We define
the decay amplitudes:

((mm) 1=0|H| K°) = Age™ ((mm) 1=o| H|KO) = — At

CPT

Decays: decays :

(172)

((r7) 1=a|H|K?) = Agei®2 ((770) j=o| H|KO) = — A}’
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Here dp and 65 are the phase shifts where isospin quantum number / = 0 and / = 2 in 77 scattering.
These are strong phases, and thus they do not change sign under C'PT’ conjugation. These phases were
factored out explicitly so that the phases of A o are all of weak nature

AQ = ’A0|6Xp[7:¢0] y A2 = |A2’6Xp[i¢2] . (173)

From the combination of Eq. (172) and Eq. (149) we get

Ao £ qA; , 1+e€A 1—€)A; .
Ag’L =((rm)r=0|HEw|Ks.L) = %exp[zéo] = ( )Ao ¥ ( — ) Oexplido]
PP+ 1aP) 2(1+ [¢P) 174
pAs £ qA3 , (14+€A2F (1 —€)AS .
AT =((rm) o Hpw | Ks L) = ————2explido] = explid]
pI* + lal?) 2(1 + [€?)
Using the isotopic spin decomposition for the two pion states
1 2
(n7°| = <(7T7T)1:0|% - <(7T7T)I:2|\/g,
(175)

1 _ _ 2 1
E((7r+7r [+ (7 7r+|)=<(7T7T)1=o|\/;+<(7T7r)1=2|\/§7

where the charged pion state is correctly normalized, the transition amplitudes are defined as follow:

1 2
A<KS,L — 7T07i'0) E(WOWO"HE‘/V‘KS’L> = %AOS’L — \/;Ag’L,

(176)
2 1
A(K&L — 7r+7r_) E<W+W_’HEW’KS,L> = \/;AO&L + ﬁAg,L’
and
A(K® = 7tr) =t [Hw |K0) = — [V2A0+ €050 4,]
V3
AKO — o) =(ntr [Hew|K9) = —\}3 [\/§A3 + ei(‘SQ_‘SO)A;}
177)
AK® = 7°7%) =77\ Hpw | K°) = 1 [ Ay — /2¢1(02=00) AQ}
V3
A(KY — 7°7%) =77\ H pw | K0) = —\}g [AS — \/567;(52_60)14;} .

Experimentally the decay of K, to two-pion final state is observed and one can define useful quantities
that measure this CP violation, i.e.

A(Kp — 7T07r0) AOL — \/ﬁA% 2¢'

= = =€ — ——,

0 =A(Ks — 70n%) — 45— JoAS 1—+2w (178)
CAKp = mtr)  V2AE + AR S €
T T AKs ) V2AS 1A T 1t w/ve
where w = Re[Ay/Ag|e’(®2~%)  The experimental values for these quantities are [30]

oo =(2.221 +0.011) x 1073 exp[i(43.52 & 0.06)°], (179)
ny_ =(2.232 £ 0.011) x 1073 exp[i(43.51 & 0.05)°], (180)
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showing how close these two quantities are. However, the fact that ngy # 74— is the source of C'P
violation in the kaon decay to two-pion final states. The parameter € is the measure of indirect C'P
violation, which can be parametrized by amplitude ratio

B A(’} o eim/4 Im[Ay]
€= /TOS ~é4 i = ——— (ImMa+26Re Mya), &= Re[ Ao

181
NI (181)

Both € and £ have phase dependent conventions; however, since 7 and 7)gg are experimental quantities
e is convention independent (similar to €'). For direct C'P violation parameter ¢, where we have a direct
transition of a C' P-odd (even) term to a C'P-even (odd), it is convenient to parametrize it through the

following relation
e = L <A£ _ A§AOL> . (182)
VZ\AS A AS

For small €, i.e.|€] < 1, we can then write

~

Re[Ao]” © 7 V2 RelA]

Re[4;]  Re[4o (159

E~E+1

Im[Ag] , —ie'® Re[Ay] [Im[Ag] Im[AO]].

It is possible by a choice of phase convention to set Im[A(] = 0, known as Wu and Yang phase conven-
tion. The expressions are then simplified to

€ =~ 3204 +noo) ~ €

In Wu-Yang phase convention: , (184)

¢'® Im[ A,
2 Im[Ao

€ = %(77+— — oo) =

S5

where ®' = 7/2 + 09 — 09 ~ m/4. The parameter ¢, which is only non-zero if there is C'P violation
in the decay amplitudes is proportional to the difference of 14 _ and 7gg, which almost cancel. A more
practical quantity to evaluate ¢’ is the ratio given by

2

) . (185)

The parameter w is small, i.e. |w| ~ 1/25, and often ignored. This quantity can be accurately measured
on the rations I'(K, — 7%7%)/T' (K, — 7t7~) and T'(Ks — 7°7°)/T'(Kg — 7" 7~), in terms of
which

700
N+—

ey 1 [
Re(e/e)_6(1+w/\/§) (1

oo |* DIy, — 7%7%)/D(Kp — mta™) (156)
ny_| T(Kg— 707m0)/T(Kg — ntn—)’
From the fit to K — 7m data we get [30]
le| = (2.228 £0.011) x 1072, Re[€’/e] = (1/65 +0.26) x 1073 (187)

Another important observable is the C'P asymmetry of time integrated semi-leptonic decay rates
Wu-Yang

a 1 |¢ . —
(K = Tyn™) = T(Kp — £ ppm™) P 2Re[¢] 2Re[¢]

5 = - - — 188
L F(KL—)€+VZ7T_)+F(KL—)€_I7Z7T+) 1+’g‘2 1+|€|2 1+|€|2 ( )
p

‘ 2

This observable measure the orthogonality between K1, and Kg, see Eq. (158).

We can now shortly evaluate € within the SM. The off-diagonal element M5 in the kaon system
is given by o
2m My = (KO K7). (189)
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where the factor 2m g is due to the normalization of external states. |’HAS 2 is the effective Hamiltonian

for the AS = 2 transitions, this in lower order is given by the box diagrams in Fig. 2a. We can integrate
out the heavy internal particles and run down to low energies with the renormalization group. By doing
this we obtain the contact term

Q(AS =2) = (5d)y_a(5d)y_4. (190)

The effective Hamiltonian, including leading and next-to-leading QCD corrections in the improved
RGEs, for scales p < . = O(my) is given by

Moy :1652 My [(VaVea)®mSo(we) + (VisVia)*n2So(we) + 2(VeiVea) (Vi Via)nzSo (e, )]

ag’))(u)
x [ ()] 7% |1+ — 73| QAS =2) +he.

(191)
with af’) the strong coupling constant in an effective three flavour theory and J3 = 1.895 in NDR
scheme [6]. The Sy loop functions are given by (x; = m? / MI%/)

my 1.52
Sola) =2.39 (7) . Solwe) = 2o,
o) 167 GeV 0(ae) = 2
(192)
Sol ) | Tt 3z Sxt In x;
Ty Tt) =% [In —
et e 0 T AT ) A1 )

The factors 71 2,3 are correction factors describing short distance QCD effects and at NLO read [6]:
m = 1.38 £ 0.20, ny = 0.57 £ 0.01, n3 = 0.47 £ 0.04. We can now take the matrix element of our
contact interaction, the non-perturbative part of the calculation, we get

8

(KO|Q(AS = 2)|K°) = S Br(m)Fimic . B = Bic(w)[of? ()]~

(3)
14+ WJ3] ., (193)
47

where B is a renormalization group invariant parameter and Fr = 160 MeV is the kaon decay constant.
We finally find the matrix element to be
GQ

Mo = 192

— L FZ Brmg My [(ViVea)*m So(ze) + (ViiVia) 120 (1)
+2(VeVea) (VisVia)n3 So (e, zt)] -

(194)

Inserting this last result into Eq. (181) we obtain, in the Wu-Yang phase convention,
e = CBrIm[Vyi Vgl {Re[VyiVaa] [ So(wc) — 13S0 (e, 20)] — Re[ViVialmaSo(ae) } ™%, (195)
with
G2 FI%mKM2
6V 212 Am
Corrections of the order Re[V;:Viq] /Re[ViiVeq] = O(A*) have been neglected and we have used the
unitary relation Im[(V:V,4)*] = Im[VtSth]. Using the standard CKM parametrization, Eq. (29), and

comparing Eq. 195 with the experimental value Eq. (187) we can extract the CKM CP phase J, important
for the unitary triangle analysis.

~ 3.837 x 10%. (196)

e —

The K — Kg mass difference is now trivial to extract from Eqgs. (194) and (168). Using the fact
that |V;i V4| < |VEV.4|, the charm-quark contribution in the loop dominates and we get

2
F
1272

Amp ~ 2 Bremg M2, |VEV,q|*So () . (197)
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4.5.2 The B&s — BY ¢ system: |BY) = |bd) , |B%) = |bd), |B%) = |bs), |B%) = |b3)

Contrarily to the K — K0 system, in the Bg s ™ ﬁdﬁ system the long distance effects are very small
IT'12| < | Mi2| (see discussion in [9]). Therefore, to leading order in |I'12/M;2|, we get

q q* g q q Mf; 1 I,
AmBq = 2‘M12‘ , AFBq = 2Re(M12F12)/]M12 , ]; ~ |Mq | 1-— §Im SN , (198)
12 12

with ¢ = d, s and the notation of H, L states given in the general discussion is kept here. In the B-
system we have |V, Vi | ~ [V}, Vep|, however due to the quarks spectrum, i.e. m,, . < my, the top quark
contribution is now the one dominating.

b d b

d b d

Fig. 18: Box diagram contributing to B® = B mixing

)

In a similar way as was done for the K-system, the off-diagonal element M 1(3 is given by
AR
2mp, |MY3| = (B[ H&P=|BY)]. (199)

The effective Hamiltonian , obtained from integrating out the top quark, is given by

- G2 . B o
Het' = = 153 Miv (VigVig) *ni So () [ (1g)| 7% 11+ 4(;“1)% Q(AB =2) +he., (200)
with y1; = O(my) and Js5 = 1.627. The contact term is given by
Q(AB =2) = (bg)v-a(bg)v—a- (201)

Taking the matrix element we get, in an analogous ways as for the K system,

(5)

- 8 . _ s (Kq)
(B%|Q(AB =2)|B)) = ;. Bp,(1)Fj,m%,, Bp, = Ba,(0)[al (1g)] %% |1+ ="FL 0|

3 e 4

(202)
with F'p, the decay constant for B,. Using Eq. (199) and the first relation in Eq. (198) one gets
G? > 2 2
AmBq >~ ﬁanBqBBqFBqMWSO(ZUt”th’ . (203)

This relation for the mass difference in important in the standard analysis of the unitary triangle.

5 Flavour Physics Beyond the SM

C'P violation in the SM comes from the flavour sector. However, C' P violation observed so far is too
small by a factor of 1076 to explain the absence of anti-matter, which means that physics beyond the
SM (BSM) must exist. Therefore, a right question wouldn’t be whether BSM exist or not, but at which
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scale it will show up. For particle physicists, there are also two different reasons hinting us that surprises
might be awaiting to be discovered by at around TeV scale.

The first reason is coming from so-called ‘the fine-tuning/hierarchy problem, which is related
to the lightness of the Higgs particle compared to a arbitrarily high scale (below PLACK scale). The
recently discovered Higgs particle, which is the only missing piece of the Standard Model (SM), may be
the first fundamental scalar particles we have discovered. It is employed for the electroweak symmetry
breaking (EWSB) and for generating masses for the fermions. While it explains why the weak force,
unlike all other forces, is very short-ranged, it also provide us a problem. In order to obtain the observed
~ 125GeV, which is far much smaller than the size of quantum corrections from seemingly unrelated
forces, a miraculous fine-tuning has to be invoked. However, this ‘naturalness’ problem can be solved, if
new physics exists beyond the Higgs particle. And the corresponding new physics and new particles are
predicted to be observed in the scale of EWSB.

The other reason is coming from cosmology. According to the standard model of cosmology,
which is now well established, some twenty percent of the energy of the universe comes from matter that
does not shine (that is, electromagnetically neutral), but is much more massive than neutrinos. There
are no candidates among particles in the SM for this type of matter, so called “dark matter (DM)”. The
cosmological and astrophysical observations suggest us that the mass of the DM particles is light enough
to be produced and observed at the TeV scale.

In a general picture of physics beyond the SM one can see the amplitude of a given process being
described in the form
Csm CNP]

Mj, Ay

A(in — out) ~ Ay [ (204)
The coefficients C'gps(vp) Will the depend of the process and SM extension. However, we can see that
flavour physics can place strong constraints on new physics even beyond the LHC reach. In scenarios
where new physics does not respect the SM symmetries or breaking pattern, the coefficients tend to be
hierarchical C'sps < Cp, allowing to probe large scales.

For example, in the SM there are only two |AF| = 2 operators entering in K° — K and B® — B°
mixing, see Sec. 4. A common feature in NP flavour models is the presence of additional four-quark
operators, which change the flavour number by two units. Those interactions can place a strong bounds
on the NP scale. Without specifying its origin we can typically describe them through the effective
Lagrangian

A2

5 3
AF|=2 1 o o 1 adp Ada
Llel=2 = S gl chf 15 G (205)
=1 1=1

with the dimension six |AF'| = 2 operators given by [44]

Q1" = (dpLvudar) (@srWdar) » Q1" (@srm90r) (@R V1daR) |

anqﬁ = (QﬁRQaL) (quQaL) ) anqﬁ = (aﬁLQQR) (qﬁLQaR) )

Q3" = ThralThrder - 03" = TLdhrThrdin (206)
QZQ% = (aﬁRQaL) (qﬁLQaR) ;

Q3" = @hraltThrdir -

Table 7 summarizes the bounds on the new physics scale or Wilson coefficient. As seen in Table 7 new
physics scale tends to be pushed to very high scales (several orders above the TeV scale) due to flavour
constraints. Saying it in other way, in order to have new physics at the TeV scale we need it to have
specific flavour structure not so different from that of the SM at low energies. The quest for viable
new physics models is known as “New Physics flavour problem". In this section we will look at some
extensions and their confrontation with flavour observables.
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Table 7: Summary of the most relevant bounds on d = 6 four-quark flavour operators. Taken from [42]

Bounds on A in TeV (c¥* = 1) Bounds on cX? (A = 1TeV)

Operator Re Im Re Im Observable
spytdr)? 9.8 x 10? 1.6 x 10% 9.0x 107" 3.4x107Y

v Ampg; €
(srdp)(spdgr) 1.8 x 10% 3.2 x 10° 6.9x107%  2.6x 101 Ko K
(eLy"ur)? 1.2 x 10° 2.9 x 103 56 x 1077 1.0x 107" Amp: |a/pl.
(cgur)(egur) 6.2 x 103 1.5 x 104 57x 1078 1.1x 1078 D; 19/P1, #D
(brydy)* 6.6 x 10 9.3 x 10? 23x107%  1.1x107° A - S
(brdy)(brdg) 2.5 x 10 3.6 x 103 39x1077  1.9x 1077 Ba> PvKs
(bpy*sp)? 1.4 x 10? 2.5 x 102 50x107° 1.7 x107° A - S
(brsp)(brsg) 4.8 x 102 8.3 x 102 8.8x 1076  29x107° Bsr 9

5.1 Minimal flavour Violation hypothesis

One popular solution to the flavour puzzle is the minimal flavour violation (MFV) hypothesis [43]. The
MFYV is not a model, but a simple framework for the flavour structure on new physics seen from and
effective field theory point of view. The main assumptions are:

— No new operators beyond those present in the SM;
— All flavour changing transitions are governed by C' K M, i.e. no new complex phases beyond those
present in the SM
A(in — out) o< Nojeps (Fiyy 4+ Fip) (207)
——

real

In the SM the CKM is the only source of flavour violation and is approximately a unit matrix. The SM
has no flavour changing neutral currents at tree level, and in this way CKM-induced flavour change in-
teractions are guarantee to be small. If new physics is flavour-diagonal such that all the flavour-violation
goes through the CKM, then we are guaranteed to have small effects. Therefore, just like in the SM,
Yukawa couplings are the only sources of flavour symmetry breaking in physics beyond the SM. In MFV
we then have a CKM and GIM suppression working in a similar way to the SM, allowing and EFT-like
approach.

The effective approach of MFV takes into account the larger flavour group in the SM when the
Yukawa intersections are absent, see Eq. (12). This symmetry is explicitly broken in the presence of
the Yukawa terms, but we can formally restore it by promoting the Yukawa matrices to be spurions
(appropriate dimensionless auxiliary fields), which transform under the flavour group in the appropriate
way to make it invariant (see Fig. 19).

SUB)g, X SUB)uy x SU(3)q,,

Y,(3,3,1) Y;(3,1,3)

Fig. 19: Global flavour symmetry and spurious fields transformations
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Using the SU (3)2 x SU (S)Z2 symmetry, we can rotate the background values of the auxiliary field
Y, as we did in Eq. (11),
Ya=Xiy Yu=Vieyr, Ye=XA. (208)

MFV requires that the dynamics of flavour violation is completely determined by the structure of the
ordinary Yukawa couplings. In particular, all CP violation effects originates from the C' K M phase.
From the hierarchical structure of the Yukawa matrix, i.e. only top Yukawa is large, we can define the
new physics flavour coupling

YoYi)ii = y2ViiVai, i g
(AFC)U:{E) )ij = Y7 ViV, zii (209)

The basic building blocks of FCNC operators are

Table 8: Relevant d = 6 MFV flavour operators and their bounds on new physics. Taken from [45].

MFYV d = 6 operator Observables A [TeV]
7% (@ rcvugr)? ex, Amp, 5.9
¢ (dRAGAFCOWaL) (eFH) B — Xy, B = X070~ 6.1
PN (drAaAFCoWTqL) (egsG™) B — Xy, B — X T 3.4
(@ rCuqL)(eD, 1) B — X 00 1.5
i(QEAFCYuqL) 9  DH B— Xt~ B, = ptp 11
i(@AFCYuT L)' T DI B — XJt0~ By - ptp~ 11
(@Arcyuar) (Coy*r) B — X0, By — ptu” 1.7
(@A rcyumqr)(CyHTelr) B — X0, By — ptpu~ 1.7
(@ ArcyuqL) (@R er) B — X 0T, Bs — utu~ 2.7

@Y Viar, drYpY i, drY]Y.Y[Yidg (210)

expanding in powers of the off-diagonal C KM matrix elements and in powers of the small Yukawa
couplings, such as

gz rcqr  and  drAgAroqr (211)

The MFV framework is general and can be implemented in a given BSM scenario, e.g. SUSY and
composite Higgs models, resulting in reducing the cutoff scale (flavour bound) from ©(1000) TeV to
O(1) TeV, which in turn makes it a very predictive theory framework. Compared to SM, only the flavour-
independent magnitude of the transition amplitudes can be modified. A fingerprint of this framework is
the prediction (sin 23) sy k, = (sin 2/8) k—rvw, Which can be identified by experiments.

5.2 Partial compositeness

Partial compositeness is a completely different way of flavour protection mechanism [46]. The idea is
to generate quark and lepton masses through linear couplings of the Standard Model fields to composite
operators, i.e.

ALTEOR + ALTROY + ARdrO% + - -, (212)

where Ay, g are known as pre-Yukawa couplings and Oy, g are fermionic operators arising from the
strong sector. The nice aspect of this linear coupling is that no relevant operator can be built out of Oy, g,
since both have a classical mass dimension of 5/2. Also, the quadratic operators O;, O, OrOpR vanish
due to spinor identities and OrOp is forbidden by gauge invariance. Therefore, the lowest-dimension
operators on can build out of the composite operators are O1,@Oy, and Or@Og, which have classical
dimension six and therefore irrelevant.
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The physical light fermions will then be a mixture of both elementary and composite states, known
as partial compositeness,

|¢phys> = COos 9’¢elem> + sin 0|¢comp> . (213)

The flavour problem in theories with strong dynamics can be improved if partial compositeness is imple-
mented.

(214)

Partial compositeness provide partial solutions to both flavour and hierarchy puzzles. Still, this is a
partial solution since from the kaon system ex and € /e x one still needs some sort of alignment, at least
in the down sector. On the other hand, in this framework we can have a naturally sizable non-standard
contribution to Aac p. This approach can be an alternative to MFV.

5.3 B physics at the LHC

Rare decays based on the flavour transition b — s have for some time call the attention of the flavour
community, as they can be sensitive probes of new physics [47,48]:

hadronic: B — ¢K, B — 7K, B, — ¢¢, B— K7, B, - KK, ---
radiative: B — X;v, B - K*vy, Bs — ¢, - -

semi-leptonic: B — X ¢, B — K0, B — K*0l, Bs — ¢ll, ---
leptonic: By — up

neutrino: B — Kvv, B — K*vv

The most relevant ones in order to constrain new physics in the LHC era are the leptonic, semi-leptonic
and radiative exclusive decays.

Recently, the LHCD collaboration observed an excess in B — K*u™ i~ decay [49] by measuring
the angular observables with a minimal sensitivity to the choice of form factors [50]. This tension can
be soften by the presence of new physics. One useful way to search for new physics that could induce
these deviations is to look at the effective Hamiltonian relevant for this transition. From the complete list
presented in Sec. 3, the current-current, QCD penguin and electroweak penguin operators ar typically
dominated by the SM contribution at low energies and will only contribute to the considered observables
though mixing with the dominant operators. This effect is therefore small. The chromomagnetic dipole
operators, for leptonic and semi-leptonic decays enter only through mixing. Tensor operator do not
appear in d = 6 operator expansion the the SM. Having this information we can write the relevant

effective Hamiltonian o
Hepr = —71;%‘%‘4’2 > (CfOf + C{fogf) 215)
i

with « the fine structure constant and the operators considered are

O7 = %(EJHVPE())F“V, /7: %(EU#VPL}))F‘W,

Of = (57, Prb)((410) Of = (57, Prb) ((y0) ,

Ofp = B PLb)((y*56) . Ofy = (37, Prb) ((r*50) (216)
O% = (3Prb)(20), O = (sPLb)(Ie),

Op = (sPrb)((yst) O’k = (5PLb) (Tys0) .

The operators O7_19 have been listed before, they are just written in the L, R notation instead of V, A
one. The scalar and pseudo-scalar operators were also added, even though their impact is small in the
observables. The prime operators are not present in the SM expansion, they therefore correspond always
to new physics effects.
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The presence of new physics in the relevant observables can be tracked to the corresponding
operators:

B— Kutp—: ¢, ¢, cf
B Kytp—: ¢V, oV, ¥
B — K*~: Cél)

B— ¢utp~: CY, Cg,)p

Lepton-nonuniversality: Cg(/), C'ﬂ))
B ptp:Cf), Csp

InB — Kutpu~, B— K*utu~,and B — ¢u™p~ the form factors and contributions of the
hadronic weak Hamiltonian are the main theoretical challenges. Direct C'P asymmetries in B decays
can give a hint of new physics, specially in B — K™~ since the B factories measurements and LHCb
are so precise. However, new physics in this observable is proportional to the strong phase that appears
as a sub-leading effect and is also plagued with many uncertainties.

Several global fits have been done [47,48], under the assumption of new physics entering only
through one operator or two real Wilson coefficients. These analysis tend to favour values Cév P < 0in
order to accommodate the recent anomalies. New physics entering through Cg can also contribute to the
meson mixing. Bs-mixing is in general the most constraining observable.

Lepton-nouniversility is also a power probe of new physics. In the SM the process b — s/ is
lepton flavour universal. However, beyond the SM new flavour violating interactions can give substantial
deviation form lepton-universality. Ratios of branching fractions, as well as double ratios can serve as a
clean probe of new physics [52,53]. A big advantage of considering ratios is the automatic cancelling of
several uncertainties. Recently, the LHCb collaborations has reported [51]

REACY = 074570999 +0.036 (217)

which shows a 2.60 deviation form the SM prediction RZM ~ 1 + O(m?/m7) [52], in the dilepton
invariant mass squared bin 1GeV? < ¢*> < 6GeV?. The branching fractions rations of rare semi-
leptonic B decays of dimuons over dielectrons arge given by [52]

. - ]. + A+ + E+ 5 H == K
Ry = BB Hup) ) 1+A_ 43X, H = K(1430) 218)
"7 BB > Hee) | 1+4pA —Ay+% - +A, +%;, H=K"
L+ iA_+AL+2_+3,), H =X,
while the double ratios are defined as
R 1+ (A —Ay+3¥X_—-%,), H=Ky(1430)
Xp=-"Z ol 14pA_—A,+X_—-3%,), H=K* (219)
K 1+i(A-AL+32_-%)), H=X,
with
Re (C5M(Cy™* & ) ) +Re (CfM (O™ = )
AL =2 — (= 220
the new physics contribution from the interference with the SM, and
Co P + 2 + |OfTH £ Cl)?
Zj: — | 9 9 | +| 10 10’ . (,LL—> 6) (221)

C5M 2+ 1CTM 2
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the pure new physics contribution. At the m; scale we have for the SM Wilson coefficients ngM =
—CISOM ~ 4.2. The factor p is the polarization faction and is close to 1 (it is exactly 1 at zero recoil).
These expression are valid to a very good accuracy given the current experimental uncertainties. The
double ratios are very useful tool for precision tests new physics. They are only sensitive to new physics
coupled to right-handed quarks, and therefore can be seen as complementary to Rp;.

Another clean probe of new physics in the B sector are the leptonic decays B — ¢¢. The model
independent average time-integrated branching ratio for B, — ¢/ decays is [54]

B(Bs — (0)
B(Bs — 00)SM
with v, = 7.7, ye = (mu/me)y, = 1.6 x 10% and Cpg_ = Cpg — C}D,S. The current reported

2
= |1 —0.24(C{" — C15) — yeCh_| + |yeCh_|?, (222)

experimental value for By — ptp~ decays is [55]
B(ES - M—&-M—)emp
B(Bs — utu—)SM
Being a purely leptonic final state, the theoretical prediction of these processes is very clean and serves
as a good probe for NP.

= 0.79 & 0.20. (223)

6 Brief conclusions

We have presented a short overview in the topics of flavour and C'P violation in and beyond the SM. The
most relevant aspects can be summarized as:

e Often we have seen the indirect evidence of New particles in flavour physics before directly dis-
covering them;

e The SM flavour sector has been tested with impressive and increasing precision;

e In the SM, fermions come in 3 generations of quarks and leptons; flavour physics is all about them;

e All flavour violation in the SM is from the CKM matrix;

e CPV in SM is small, and comes from flavour;

e We have developed non relativistic QM tools for meson mixing;

e We have schematically shown how to calculate hadronic observables;

e Theoretical tools to understand the underlying physics is important. For example, effective field
theory allows separation of different scales (separation of calculable parts and nonperturbative
parts);

e Any sensitivity to high scales (including to physics beyond the Standard Model) can be treated
using perturbative methods;

e Flavour structure of New Physics has to be special in order to be compatible with TeV scale New
Physics. A popular example is MFV, but other possibilities exist such a partial compositeness, etc;

e If new particles discovered, their flavour properties can teach us about the underlying structure of
New Physics: masses (degeneracies), decay rates (flavour decomposition), cross sections;

e Flavour physics provide important clues to model building in the LHC era;

e LHC era is also a Flavour Precision era, and a lot of interesting measurements are coming, as we
have already seen some tensions with SM.
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