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Abstract
Cosmology and particle physics are deeply interrelated. Among the common
problems are dark energy, dark matter and baryon asymmetry of the Universe.
We discuss these problems in general terms, and concentrate on several par-
ticular hypotheses. On the dark matter side, we consider weakly interacting
massive particles and axions/axion-like particles as cold dark matter, sterile
neutrinos and gravitinos as warm dark matter. On the baryon asymmetry side,
we discuss electroweak baryogenesis as a still-viable mechanism. We briefly
describe diverse experimental and observational approaches towards checking
these hypotheses. We then turn to the earliest cosmology. We give arguments
showing that the hot stage was preceded by another epoch at which density
perturbations and possibly primordial gravity waves were generated. The best
guess here is inflation, which is consistent with everything we know of density
perturbations, but there are alternative scenarios. Future measurements of the
properties of density perturbations and possible discovery of primordial grav-
ity waves have strong potential in this regard.
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1 Introduction
Cosmology is one of the major sources of inspiration—and confusion—for particle physicists. It gives
direct evidence for the necessity to extend the Standard Model of particle physics, possibly at an en-
ergy scale that can be probed by collider experiments. Indeed, there is no doubt that most part of the
mass in the present Universe is in the form of mysterious dark matter particles which are not present
in the Standard Model. Also, the very existence of conventional matter in our Universe (i.e., matter–
antimatter asymmetry) calls for processes with baryon number violation and substantial charge parity
(CP)-violation, which have not been observed in experiments. These processes had to be rapid in the
early Universe and, furthermore, the asymmetry between matter and antimatter had to be generated in
a fairly turbulent cosmological epoch. Again, the conditions necessary for the generation of this asym-
metry are not present in the Standard Model. Solving the problems of dark matter and matter–antimatter
asymmetry are the two immediate challenges for particle physics.

Going very much back into the cosmological history, we encounter another challenging issue.
It is very well known that matter in the Universe was very hot and dense early on. It is less known
that the properties of the matter distribution in the past and present Universe, reflected in the properties
of the cosmic microwave background (CMB), galaxy distribution etc, unambiguously tell us that the
hot epoch was not the earliest. It was preceded by another, completely different epoch responsible
for the generation of inhomogeneities which in the end have become galaxies and their clusters, stars
and ourselves. Obviously, the very fact that we are confident about the existence of such an epoch
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is a fundamental result of theoretical and observational cosmology. The most plausible hypothesis on
that epoch is cosmological inflation, though the observational support of this scenario is presently not
overwhelming, and alternative possibilities have not been ruled out. For the time being it appears unlikely
that we will be able to probe the physics behind that epoch in terrestrial experiments, but there is no doubt
that this physics belongs to the broad domain of ‘particles and fields’.

After this brief introduction, the scope of these lectures must be clear. To set the stage, we briefly
consider the basic notions of cosmology. We then discuss several dark matter particle candidates and
mechanisms for dark matter generation. Needless to say, these candidates do not exhaust the long list of
the candidates proposed; our choice is based on a personal view of what candidates are more plausible.
Our next topic is the matter–antimatter asymmetry of the Universe, and we present electroweak baryoge-
nesis as a mechanism particularly interesting from the viewpoint of the LHC experiments. The last part
of these lectures deals with cosmological perturbations, inflation (and its alternatives) and the potential
of future observational data.

These lectures are meant to be self-contained, but we necessarily omit numerous details, while
trying to make clear the basic ideas and results. More complete accounts of cosmology and its particle-
physics aspects may be found in various books [1–6]. Dark matter candidates we consider in these
lectures are reviewed in Refs. [7–10]. Electroweak baryogenesis is presented in detail in reviews [11–13];
for reference, a plausible alternative scenario, leptogenesis, is discussed in reviews [14, 15]. Aspects of
inflation and its alternatives are reviewed in Refs. [16–20].

2 Expanding universe
2.1 Friedmann–Lemaître–Robertson–Walker metric
Our Universe (more precisely, its visible part) is homogeneous and isotropic. Clearly, this does not apply
to relatively small spatial scales: there are galaxies, clusters of galaxies and giant voids. But boxes of
sizes exceeding about 200 Mpc all look the same. Here the Mpc is the distance unit conventionally used
in cosmology,

1 Mpc ≈ 3× 106 light years ≈ 3× 1024 cm .

There are three types of homogeneous and isotropic three-dimensional spaces, labelled by an integer
parameter κ. These are three-sphere (closed model, κ = +1), flat (Euclidean) space (flat model, κ = 0)
and three-hyperboloid (open model, κ = −1). We will see that the parameter κ enters the dynamical
equations governing the space–time fabric of the Universe.

Another basic property of our Universe is that it expands. This is encoded in the space–time metric

ds2 = dt2 − a2(t)dx2 , (1)

where dx2 is the distance on a unit three-sphere, Euclidean space or hyperboloid. The metric (1) is
called the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, and a(t) is the scale factor. In these
lectures we use natural units, setting the speed of light and Planck and Boltzmann constants equal to 1,

c = ~ = kB = 1 .

In these units, Newton’s gravity constant is G = M−2
Pl , where MPl = 1.2 × 1019 GeV is the Planck

mass.

The meaning of Eq. (1) is as follows. One can check that a free mass put at a certain x at zero
velocity will stay at the same x forever. In other words, the coordinates x are comoving. The scale
factor a(t) increases in time, so the distance between free masses of fixed spatial coordinates x grows,
dl2 = a2(t)dx2. The space stretches out; the galaxies run away from each other.

This expansion manifests itself as a red shift. Red shift is often interpreted as the Doppler effect for
a source running away from us with velocity v: if the wavelength at emission is λe, then the wavelength
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we measure is λ0 = (1 + z)λe, where z = v/c (here we temporarily restore the speed of light). This
interpretation is useless and rather misleading in cosmology (with respect to which reference frame
does the source move?). The correct interpretation is that as the Universe expands, space stretches out
and the photon wavelength increases proportionally to the scale factor a. So, the relation between the
wavelengths is

λ0 = (1 + z)λe , where z =
a(t0)

a(te)
− 1 ,

where te is the emission time. For z � 1, this relation reduces to the Hubble law,

z = H0r , (2)

where r is the physical distance to the source and H0 ≡ H(t0) is the present value of the Hubble
parameter

H(t) =
ȧ(t)

a(t)
.

In the formulas above, we label the present values of time-dependent quantities by subscript 0; we will
always do so in these lectures.

Question. Derive the Hubble law (2) for z � 1.

The red shift of an object is directly measurable. The wavelength λe is fixed by physics of the
source, say, it is the wavelength of a photon emitted by an excited hydrogen atom. So, one identifies a
series of emission or absorption lines, thus determining λe, and measures their actual wavelengths λ0.
These spectroscopic measurements give accurate values of z even for distant sources. On the other hand,
the red shift is related to the time of emission and hence to the distance to the source. Absolute distances
to astrophysical sources have a lot more systematic uncertainty, and so do the direct measurements of
the Hubble parameter H0. According to the Planck Collaboration [21], the combination of observational
data gives

H0 = (67.8± 0.9)
km

s Mpc
≈ (14.4× 109 yr)−1 , (3)

where the unit used in the first expression reflects the interpretation of red shift in terms of the Doppler
shift. The fact that the systematic uncertainties in the determination of H0 are pretty large is illustrated
in Fig. 1.

Traditionally, the present value of the Hubble parameter is written as

H0 = h× 100
km

s Mpc
. (4)

Thus, h ≈ 0.7. We will use this value in further estimates.

2.2 Hot Universe: recombination, Big Bang nucleosynthesis and neutrinos
Our Universe is filled with CMB. The CMB as observed today consists of photons with an excellent
black-body spectrum of temperature

T0 = 2.7255± 0.0006 K . (5)

The spectrum has been precisely measured by various instruments, see Fig. 2, and does not show any
deviation from the Planck spectrum (see Ref. [23] for a detailed review).

Once the present photon temperature is known, the number density and energy density of CMB
photons are known from the Planck distribution formulas,

nγ,0 = 410 cm−3 , ργ,0 =
π2

15
T 4

0 = 2.7× 10−10 GeV
cm3

(6)
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Fig. 1: Recent determinations of the Hubble parameter H0 [22]

Fig. 2: Measured CMB energy spectrum as compiled in Ref. [24]

(the second expression is the Stefan–Boltzmann formula).

The CMB is a remnant of an earlier cosmological epoch. The Universe was hot at early times and,
as it expands, the matter in it cools down. Since the wavelength of a photon evolves in time as a(t), its
energy and hence temperature scale as

ω(t) ∝ a−1(t) , T (t) =
a0

a(t)
T0 = (1 + z)T0 .

When the Universe was hot, the usual matter (electrons and protons with a rather small admixture of
light nuclei, mainly 4He) was in the plasma phase. At that time photons strongly interacted with elec-
trons due to the Thomson scattering and protons interacted with electrons via the Coulomb force, so all
these particles were in thermal equilibrium. As the Universe cooled down, electrons ‘recombined’ with
protons into neutral hydrogen atoms (helium recombined earlier), and the Universe became transparent
to photons: at that time, the density of hydrogen atoms was quite small, 250 cm−3. The photon last
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scattering occurred at temperature and red shift

Trec ≈ 3000 K , zrec ≈ 1090 ,

when the age of the Universe was about t ≈ 380 thousand years (for comparison, its present age is
about 13.8 billion years). Needless to say, CMB photons got red shifted since the last scattering, so their
present temperature is T0 = Trec/(1 + zrec).

The photon last scattering epoch is an important cornerstone in the cosmological history. Since
after that CMB photons travel freely through the Universe, they give us a photographic picture of the
Universe at that epoch. Importantly, the duration of the last scattering epoch was considerably shorter
than the Hubble timeH−1(trec); to a reasonable approximation, recombination occurred instantaneously.
Thus, the photographic picture is only slightly washed out due to the finite thickness of the last scattering
surface.

At even earlier times, the temperature of the Universe was even higher. We have direct evidence
that at some point the temperature in the Universe was in the MeV range. A traditional source of evidence
is the Big Bang nucleosynthesis (BBN). The story begins at a temperature of about 1 MeV, when the age
of the Universe was about 1 s. Before that time neutrons were rapidly created and destroyed in weak
processes like

e− + p←→ n + νe , (7)

while at Tn ≈ 1 MeV these processes switched off, and the comoving number density of neutrons froze
out. The neutron-to-proton ratio at that time was given by the Boltzmann factor,

ne

np
= e−

mn−mp
Tn .

Interestingly, mn − mp ∼ Tn, so the neutron–proton ratio at neutron freeze-out and later was neither
equal to 1, nor very small. Were it equal to 1, protons would combine with neutrons into 4He at a
somewhat later time, and there would remain no hydrogen in the Universe. On the other hand, for very
small nn/np, too few light nuclei would be formed, and we would not have any observable remnants of
the BBN epoch. In either case, the Universe would be quite different from what it actually is. It is worth
noting that the approximate relation mn −mp ∼ Tn is a coincidence: mn −mp is determined by light
quark masses and electromagnetic coupling, while Tn is determined by the strength of weak interactions
(which govern the rates of the processes (7)) and gravity (which governs the expansion of the Universe).
This is one of numerous coincidences we encounter in cosmology.

At temperatures somewhat below Tn, the neutrons combined with protons into light elements in
thermonuclear reactions like

p + n → 2H + γ ,
2H + p → 3He + γ ,

3He +2 H → 4He + p , (8)

etc, up to 7Li. The abundances of light elements have been measured; see Fig. 3. On the other hand,
the only parameter relevant for calculating these abundances (assuming negligible neutrino–antineutrino
asymmetry) is the baryon-to-photon ratio

ηB ≡ η =
nB

nγ
, (9)

characterizing the number density of baryons. Comparison of the BBN theory with the observational de-
termination of the composition of the cosmic medium enables one to determine ηB and check the overall
consistency of the BBN picture. It is even more reassuring that a completely independent measurement
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Fig. 3: Abundances of light elements, measured (boxes; larger boxes include systematic uncertainties) and cal-
culated as functions of baryon-to-photon ratio η [25]. The determination of η ≡ ηB from BBN (vertical range
marked BBN) is in excellent agreement with the determination from the analysis of CMB temperature fluctuations
(vertical range marked CMB).

of ηB that makes use of the CMB temperature fluctuations is in excellent agreement with BBN. Thus,
BBN gives us confidence that we understand the Universe at T ∼ 1 MeV, t ∼ 1 s. In particular, we are
convinced that the cosmological expansion was governed by general relativity.

Another class of processes of interest at temperatures in the MeV range is neutrino production,
annihilation and scattering,

να + ν̄α ←→ e+ + e−

and crossing processes. Here the subscript α labels neutrino flavours. These processes switch off at
T ∼ 2–3 MeV, depending on neutrino flavour. Since then neutrinos do not interact with the cosmic
medium other than gravitationally, but they do affect the properties of CMB and distribution of galaxies
through their gravitational interactions. These effects are not negligible, since the energy density of
relativistic neutrinos is almost the same as that of photons and, at temperature Trec ' 3000 K, the energy
density of these relativistic species is only three times smaller than the energy density of non-relativistic
particles (dark matter and baryons). Thus, observational data can be used to establish, albeit somewhat
indirectly, the existence of relic neutrinos and set limits on neutrino masses. An example is shown in
Fig. 4, where the number of neutrino flavours Neff and the sum of neutrino masses are taken as free
parameters. We see that cosmology requires relic neutrinos of at least three flavours and sets the limit on
neutrino mass mν . 0.1 eV (neutrino oscillation data tell that neutrinos with masses above 0.1 MeV are
degenerate in mass). The latest Planck analysis gives [21]

∑

i

mνi < 0.23 eV , Neff = 3.15± 0.23 .
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Fig. 4: Effective number of neutrino species and sum of neutrino masses allowed by cosmological observa-
tions [26].

2.3 Dynamics of expansion
The basic equation governing the expansion rate of the Universe is the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8π

3M2
Pl

ρ− κ
a2

, (10)

where the dot denotes derivative with respect to time t, ρ is the total energy density in the Universe
and κ = 0,±1 is the parameter, introduced in Section 2.1, that discriminates the Euclidean 3-space
(κ = 0) and curved 3-spaces. The Friedmann equation is nothing but the (00)-component of the Einstein
equations of general relativity, R00 − 1

2g00R = 8πT00, specified to the FLRW metric. Observationally,
the spatial curvature of the Universe is very small: the last, curvature term in the right-hand side of
Eq. (10) is small compared to the energy density term [21],

1/a2

8πρ/(3M2
Pl)

< 0.005 ,

while the theoretical expectation is that the spatial curvature is completely negligible. Establishing that
the three-dimensional space is (nearly) Euclidean is one of the profound results of CMB observations.

In what follows we set κ = 0 and write the Friedmann equation as

H2 ≡
(
ȧ

a

)2

=
8π

3M2
Pl

ρ . (11)

The standard parameter used in cosmology is the critical density,

ρc =
3

8π
M2

PlH
2
0 ≈ 5× 10−6 GeV

cm3
. (12)

According to Eq. (11), it is equal to the sum of all forms of energy density in the present Universe.
There are at least three of such forms: relativistic matter, or radiation, non-relativistic matter, M and
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dark energy, Λ. For every form λ with the present energy density ρλ,0, one defines the parameter

Ωλ =
ρλ,0
ρc

.

One finds from Eq. (11) that ∑

λ

Ωλ = 1 .

The Ω are important cosmological parameters characterizing the energy balance in the present Universe.
Their numerical values are

Ωrad = 8.7× 10−5 , (13a)

ΩM = 0.31 , (13b)

ΩΛ = 0.69 . (13c)

The value of Ωrad needs qualification. At early times, when the temperature exceeds the masses of all
neutrino species, neutrinos are relativistic. The value of Ωrad in Eq. (13a) is calculated for the unrealistic
case in which all neutrinos are relativistic today, so the radiation component even at present consists of
CMB photons and three neutrino species. This prescription is convenient for studying the energy (and
entropy) content in the early Universe, since it enables one to scale the energy density (and entropy) back
in time in a simple way, see below. For future reference, let us give the value of the present entropy
density in the Universe, pretending that neutrinos are relativistic,

s0 ≈ 3000 cm−3 . (14)

Question. Calculate the numerical value of Ωγ and the entropy density of CMB photons.

Non-relativistic matter consists of baryons and dark matter. The contributions of each of these
fractions are [21]

ΩB = 0.048 ,

ΩDM = 0.26 .

Different components of the energy density evolve differently in time. The energy of a given pho-
ton or massless neutrino scales as a−1, and the number density of these species scales as a−3. Therefore,
the energy density of radiation scales as ρrad ∝ a−4 and

ρrad(t) =

(
a(t)

a0

)4

ρrad,0 = (1 + z)4 Ωradρc . (15)

The energy of non-relativistic matter is dominated by the mass of its particles, so the energy density
scales as the number density, i.e.,

ρM(t) =

(
a(t)

a0

)3

ρM,0 = (1 + z)3 ΩMρc . (16)

Finally, the energy density of dark energy does not change in time, or changes very slowly. We assume
for definiteness that ρΛ stays constant in time,

ρΛ = ΩΛρc = const . (17)

In fact, whether or not ρΛ depends on time (even slightly) is a very important question. If dark energy is
a cosmological constant (or, equivalently, vacuum energy), then it does not depend on time at all. Even
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a slight dependence of ρΛ on time would mean that we are dealing with something different from the
cosmological constant, like, e.g., a new scalar field with a very flat scalar potential. The existing limits on
the time evolution of dark energy correspond, roughly speaking, to the variation of ρΛ by not more than
20% in the last 8 billion years (from the time corresponding to z ≈ 1); usually these limits are expressed
in terms of the equation-of-state parameter relating energy density and effective pressure pΛ = wΛρΛ:

wΛ ≈ 1.0± 0.1 . (18)

The relevance of the effective pressure is seen from the covariant conservation equation for the energy–
momentum tensor,∇µTµν = 0, whose ν = 0 component reads

ρ̇ = −3
ȧ

a
(ρ+ p) .

It shows that the energy density of a component with equation of state p = wρ, w = const scales as
ρ ∝ a−3(1+w). As pointed out above, radiation (wrad = 1/3) and matter (w = 0) scale as ρrad ∝ a−4

and ρM ∝ a−3, respectively, while the cosmological constant case corresponds to wΛ = −1.

Question. Show that for a gas of relativistic particles, p = ρ/3.

According to Eqs. (15), (16) and (17), different forms of energy dominate at different cosmological
epochs. The present Universe is at the end of the transition from matter domination to Λ domination: the
dark energy will ‘soon’ completely dominate over non-relativistic matter because of the rapid decrease
of the energy density of the latter. Conversely, the matter energy density increases as we go backwards in
time, and until relatively recently (z . 0.3) it dominated over dark energy density. At even more distant
past, the radiation energy density was the highest, as it increases most rapidly backwards in time. The
red shift at radiation–matter equality, when the energy densities of radiation and matter were equal, is

1 + zeq =
a0

a(teq)
=

ΩM

Ωrad
≈ 3500

and, using the Friedmann equation, one finds the age of the Universe at equality

teq ≈ 50 000 years .

Note that recombination occurred at matter domination, but rather soon after equality. So, we have the
following sequence of the regimes of evolution:

. . . =⇒ Radiation domination =⇒ Matter domination =⇒ Λ domination .

The dots here denote some cosmological epoch preceding the hot stage of the evolution; as we mentioned
in Section 1, we are confident that such an epoch existed, but do not quite know what it was.

2.4 Radiation domination
The epoch of particular interest for our purposes is radiation domination. By inserting ρrad ∝ a−4 into
the Friedmann equation (11), we obtain

ȧ

a
=

const
a2

.

This gives the evolution law
a(t) = const ·

√
t . (19)

The constant here does not have physical significance, as one can rescale the coordinates x at some fixed
moment of time, thus changing the normalization of a.
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There are several points to note regarding the result (19). First, the expansion decelerates:

ä < 0 .

This property holds also for the matter-dominated epoch, but it does not hold for the domination of the
dark energy.

Question. Find the evolution laws, analogous to Eq. (19), for matter- and Λ-dominated Universes. Show
that the expansion decelerates, ä < 0, at matter domination and accelerates, ä > 0, at Λ domination.

Second, time t = 0 is the Big Bang singularity (assuming erroneously that the Universe starts
being radiation dominated). The expansion rate

H(t) =
1

2t

diverges as t → 0, and so do the energy density ρ(t) ∝ H2(t) and temperature T ∝ ρ1/4. Of course,
the classical general relativity and usual notions of statistical mechanics (e.g., temperature itself) are not
applicable very near the singularity, but our result suggests that in the picture we discuss (hot epoch
right after the Big Bang), the Universe starts its classical evolution in a very hot and dense state, and
its expansion rate is very high in the beginning. It is customary to consider for illustrational purposes
that the relevant quantities in the beginning of the classical expansion take the Planck values, ρ ∼ M4

Pl,
H ∼MPl etc.

Third, at a given moment of time the size of a causally connected region is finite. Consider signals
emitted right after the Big Bang and travelling with the speed of light. These signals travel along the
light cone with ds = 0 and hence a(t)dx = dt. So, the coordinate distance that a signal travels from the
Big Bang to time t is

x =

∫ t

0

dt

a(t)
≡ η . (20)

In the radiation-dominated Universe,
η = const ·

√
t .

The physical distance from the emission point to the position of the signal is

lH(t) = a(t)x = a(t)

∫ t

0

dt

a(t)
= 2t .

As expected, this physical distance is finite, and it gives the size of a causally connected region at time
t. It is called the horizon size (more precisely, the size of the particle horizon). A related property is that
an observer at time t can see only the part of the Universe whose current physical size is lH(t). Both at
radiation and matter domination one has, modulo a numerical constant of order 1,

lH(t) ∼ H−1(t) . (21)

To give an idea of numbers, the horizon size at the present epoch is

lH(t0) ≈ 15 Gpc ' 4.5× 1028 cm .

Question. Find the proportionality constant in Eq. (21) for a matter-dominated Universe. Is there a
particle horizon in a Universe without matter but with positive cosmological constant?
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It is convenient to express the Hubble parameter at radiation domination in terms of tempera-
ture. The Stefan–Boltzmann law gives for the energy density of a gas of relativistic particles in thermal
equilibrium at zero chemical potentials (chemical potentials in the Universe are indeed small)

ρrad =
π2

30
g∗T 4 , (22)

with g∗ being the effective number of degrees of freedom,

g∗ =
∑

bosons

gi +
7

8

∑

fermions

gi ,

where gi is the number of spin states and the factor 7/8 is due to Fermi statistics. Hence, the Friedmann
equation (11) gives

H =
T 2

M∗Pl

, M∗Pl =
MPl

1.66
√
g∗
. (23)

One more point has to do with entropy: the cosmological expansion is slow, so that the entropy is
conserved (modulo exotic scenarios with large entropy generation). The entropy density in thermal
equilibrium is given by

s =
2π2

45
g∗T 3 .

The conservation of entropy means that the entropy density scales exactly as a−3,

sa3 = const , (24)

while temperature scales approximately as a−1. The temperature would scale as a−1 if the number of
relativistic degrees of freedom would be independent of time. This is not the case, however. Indeed, the
value of g∗ depends on temperature: at T ∼ 10 MeV relativistic species are photons, neutrinos, electrons
and positrons, while at T ∼ 1 GeV four flavours of quarks, gluons, muons and τ -leptons are relativistic
too. The number of degrees of freedom in the Standard Model at T & 100 GeV is

g∗(100 GeV) ≈ 100 .

If there are conserved quantum numbers, such as the baryon number after baryogenesis, their
density also scales as a−3. Hence, the time-independent characteristic of, say, the baryon abundance is
the baryon-to-entropy ratio

∆B =
nB

s
.

The commonly used baryon-to-photon ratio ηB, Eq. (9), is related to ∆B by a numerical factor, but this
factor depends on time through g∗ and stays constant only after e+e− annihilation, i.e., at T . 0.5 MeV.
Numerically,

∆B = 0.14ηB,0 = 0.86× 10−10 . (25)

3 Dark energy
Before turning to our main topics, let us briefly discuss dark energy. We know very little about this
‘substance’: our knowledge is summarized in Eqs. (13c) and (18). We also know that dark energy does
not clump, unlike dark matter and baryons. It gives rise to the accelerated expansion of the Universe.
Indeed, the solution to the Friedmann equation (11) with constant ρ = ρΛ is

a(t) = eHΛt ,
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Fig. 5: Observational data on the time derivative of the scale factor as function of red shift z [27]. The change of
the behaviour from decreasing to increasing with decreasing z means the change from decelerated to accelerated
expansion. The theoretical curve corresponds to a spatially flat Universe with h = 0.7 and ΩΛ = 0.73.

where HΛ = (8πρΛ/3M
2
Pl)

1/2 = const. This gives ä > 0, unlike at radiation or matter domination. The
observational discovery of the accelerated expansion of the Universe was the discovery of dark energy.
Recall that early on (substantial z), the Universe was matter dominated, so its expansion was decelerating.
The transition from decelerating to accelerating expansion is confirmed by combined observational data,
see Fig. 5, which shows the dependence on red shift of the quantity H(z)/(1 + z) = ȧ(t)/a0.

Question. Find the red shift z at which decelerated expansion turned into an accelerated one.

As a remark, the effective pressure of dark energy or any other component is defined as the (pos-
sibly time-dependent) parameter determining the spatial components of the energy–momentum tensor in
a locally Lorentz frame (a = 1 in the FLRW context),

Tµν = diag (ρ, p, p, p) .

In the case of the cosmological constant, the dark energy density does not depend on time at all:

Tµν = ρΛηµν ,

where ηµν is the Minkowski tensor. Hence, wΛ = −1. One can view this as the characteristic of vacuum,
whose energy–momentum tensor must be Lorentz-covariant. As we pointed out above, any deviation
from w = −1 would mean that we are dealing with something other than vacuum energy density.

The problem with dark energy is that its present value is extremely small by particle-physics
standards,

ρDE ≈ 4 GeV m−3 = (2× 10−3 eV)4 .

In fact, there are two hard problems. One is that particle-physics scales are much larger than the scale
relevant to the dark energy density, so the dark energy density is zero to an excellent approximation.
Another is that it is non-zero nevertheless, and one has to understand its energy scale. To quantify the
first problem, we recall the known scales of particle physics and gravity,

Strong interactions : ΛQCD ∼ 1 GeV ,
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Electroweak : MW ∼ 100 GeV ,
Gravitational : MPl ∼ 1019 GeV .

Off hand, physics at scale M should contribute to the vacuum energy density as ρΛ ∼ M4, and there is
absolutely no reason for vacuum to be as light as it is. The discrepancy here is huge, as one sees from
the above numbers.

To elaborate on this point, let us note that the action of gravity plus, say, the Standard Model has
the general form

S = SEH + SSM − ρΛ,0

∫ √−g d4x ,

where SEH = −(16πG)−1
∫
R
√−g d4x is the Einstein–Hilbert action of general relativity, SSM is the

action of the Standard Model and ρΛ,0 is the bare cosmological constant. In order that the vacuum energy
density be almost zero, one needs fantastic cancellations between the contributions of the Standard Model
fields into the vacuum energy density, on the one hand, and ρΛ,0 on the other. For example, we know that
quantum chromodynamics (QCD) has a complicated vacuum structure, and one would expect that the
energy density of QCD should be of the order of (1 GeV)4. At least for QCD, one needs a cancellation
of the order of 10−44. If one goes further and considers other interactions, the numbers get even worse.

What are the hints from this ‘first’ cosmological constant problem? There are several options,
though not many. One is that the Universe could have a very long prehistory: extremely long. This
option has to do with relaxation mechanisms. Suppose that the original vacuum energy density is indeed
large, say, comparable to the particle-physics scales. Then there must be a mechanism which can relax
this value down to an acceptably small number. It is easy to convince oneself that this relaxation could
not happen in the history of the Universe we know of. Instead, the Universe should have a very long
prehistory during which this relaxation process might occur. At that prehistoric time, the vacuum in the
Universe must have been exactly the same as our vacuum, so the Universe in its prehistory must have
been exactly like ours, or almost exactly like ours. Only in that case could a relaxation mechanism work.
There are concrete scenarios of this sort [28, 29]. However, at the moment it seems that these scenarios
are hardly testable, since this is prehistory.

Another possible hint is towards anthropic selection. The argument that goes back to Weinberg and
Linde [30, 31] is that if the cosmological constant were larger, say, by a factor of 100, we simply would
not exist: the stars would not have formed because of the fast expansion of the Universe. So, the vacuum
energy density may be selected anthropically. The picture is that the Universe may be much, much
larger than what we can see, and different large regions of the Universe may have different properties. In
particular, vacuum energy density may be different in different regions. Now, we are somewhere in the
place where one can live. All the rest is empty of observers, because there the parameters such as vacuum
energy density are not suitable for their existence. This is disappointing for a theorist, as this point of
view allows for arbitrary tuning of fundamental parameters. It is hard to disprove this option, on the other
hand. We do exist, and this is an experimental fact. The anthropic viewpoint may, though hopefully will
not, get more support from the LHC, if no or insufficient new physics is found there. Indeed, another
candidate for an environmental quantity is the electroweak scale, which is fine tuned in the Standard
Model in the same sense as the cosmological constant is fine tuned in gravity (in the Standard Model
context, this fine tuning goes under the name of the gauge hierarchy problem).

Turning to the ‘second’ cosmological constant problem, we note that the scale 10−3 eV may
be associated with some new light field(s), rather than with vacuum. This implies that ρΛ depends
on time, i.e., wΛ 6= −1 and wΛ may well depend on time itself. Current data are compatible with
time-independent wΛ equal to −1, but their precision is not particularly high. We conclude that future
cosmological observations may shed new light on the field content of the fundamental theory.
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4 Dark matter
Unlike dark energy, dark matter experiences the same gravitational force as baryonic matter. It consists
presumably of new stable massive particles. These make clumps of mass which constitute most of the
mass of galaxies and clusters of galaxies. There are various ways of measuring the contribution of non-
baryonic dark matter into the total energy density of the Universe (see Refs. [7–10] for details).

1. The composition of the Universe affects the angular anisotropy and polarization of CMB. Quite
accurate CMB measurements available today enable one to measure the total mass density of dark
matter.

2. There is direct evidence that dark matter exists in the largest gravitationally bound objects—
clusters of galaxies. There are various methods to determine the gravitating mass of a cluster,
and even the mass distribution in a cluster, which give consistent results. As an example, the total
gravitational field of a cluster, produced by both dark matter and baryons, acts as a gravitational
lens for extended light sources behind the cluster. The images of these sources enable one to re-
construct the mass distribution in the cluster. This is shown in Fig. 6. These determinations show
that baryons (independently measured through their X-ray emission) make less than 1/3 of total
mass in clusters. The rest is dark matter.

Fig. 6: Cluster of galaxies CL0024 + 1654 [32], acting as gravitational lens. Right-hand panel: cluster in visible
light. Round yellow spots are galaxies in the cluster. Elongated blue images are those of one and the same galaxy
beyond the cluster. Left-hand panel: reconstructed distribution of gravitating mass in the cluster; brighter regions
have larger mass density.

A particularly convincing case is the Bullet Cluster, Fig. 7. Shown are two galaxy clusters that
passed through each other. The dark matter and galaxies do not experience friction and thus do not
lose their velocities. On the contrary, baryons in hot, X-ray-emitting gas do experience friction and
hence get slowed down and lag behind dark matter and galaxies. In this way the baryons (which
are mainly in hot gas) and dark matter are separated in space.

3. Dark matter exists also in galaxies. Its distribution is measured by the observations of rotation
velocities of distant stars and gas clouds around a galaxy, Fig. 8. Because of the existence of dark
matter away from the luminous regions, i.e., in halos, the rotation velocities do not decrease with
the distance from the galactic centres; rotation curves are typically flat up to distances exceeding
the size of the bright part by a factor of 10 or so. The fact that dark matter halos are so large
is explained by the defining property of dark matter particles: they do not lose their energies by
emitting photons and, in general, interact with conventional matter very weakly.
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Fig. 7: Observation [33] of the Bullet Cluster 1E0657-558 at z = 0.296. Closed lines show the gravitational
potential produced mainly by dark matter and measured through gravitational lensing. Bright regions show X-ray
emission of hot baryon gas, which makes most of the baryonic matter in the clusters. The length of the white
interval is 200 kpc in the comoving frame.

Dark matter is characterized by the mass-to-entropy ratio,

(ρDM

s

)
0

=
ΩDMρc

s0
≈ 0.26× 5× 10−6 GeV cm−3

3000 cm−3
= 4× 10−10 GeV . (26)

This ratio is constant in time since the freeze out of dark matter density: both number density of dark
matter particles nDM (and hence their mass density ρDM = mDMnDM) and entropy density get diluted
exactly as a−3.

Dark matter is crucial for our existence, for the following reason. Density perturbations in baryon–
electron–photon plasma before recombination do not grow because of high pressure, which is mostly
due to photons; instead, perturbations are sound waves propagating in plasma with time-independent
amplitudes. Hence, in a Universe without dark matter, density perturbations in the baryonic component
would start to grow only after baryons decouple from photons, i.e., after recombination. The mechanism

Fig. 8: Rotation velocities of hydrogen gas clouds around the galaxy NGC 6503 [34]. Lines show the contributions
of the three main components that produce the gravitational potential. The main contribution at large distances is
due to dark matter, labelled ‘halo’.
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of the growth is pretty simple: an overdense region gravitationally attracts surrounding matter; this matter
falls into the overdense region, and the density contrast increases. In the expanding matter-dominated
Universe this gravitational instability results in the density contrast growing like (δρ/ρ)(t) ∝ a(t).
Hence, in a Universe without dark matter, the growth factor for baryon density perturbations would be at
most

a(t0)

a(trec)
= 1 + zrec =

Trec

T0
≈ 103 . (27)

Because of the presence of dark energy, the growth factor is even somewhat smaller. The initial amplitude
of density perturbations is very well known from the CMB anisotropy measurements, (δρ/ρ)i = 5 ×
10−5. Hence, a Universe without dark matter would still be pretty homogeneous: the density contrast
would be in the range of a few per cent. No structure would have been formed, no galaxies, no life. No
structure would be formed in future either, as the accelerated expansion due to dark energy will soon
terminate the growth of perturbations.

Since dark matter particles decoupled from plasma much earlier than baryons, perturbations in
dark matter started to grow much earlier. The corresponding growth factor is larger than (27), so that the
dark matter density contrast at galactic and subgalactic scales becomes of order one, perturbations enter
the non-linear regime and form dense dark matter clumps at z = 5–10. Baryons fall into potential wells
formed by dark matter, so dark matter and baryon perturbations develop together soon after recombina-
tion. Galaxies get formed in the regions where dark matter was overdense originally. For this picture to
hold, dark matter particles must be non-relativistic early enough, as relativistic particles fly through grav-
itational wells instead of being trapped there. This means, in particular, that neutrinos cannot constitute
a considerable part of dark matter.

4.1 Cold and warm dark matter
Currently, the most popular dark matter scenario is cold dark matter, CDM. It consists of particles which
get out of kinetic equilibrium when they are non-relativistic. For dark matter particles Y which are
initially in thermal equilibrium with cosmic plasma, this means that their scattering off other particles
switches off at T = Td � mY. Since then the dark matter particles move freely, their momenta decrease
due to red shift, and they remain non-relativistic until now. Note that the decoupling temperature Td may
be much lower than the freeze-out temperature Tf at which the dark matter particles get out of chemical
equilibrium, i.e., their number in the comoving volume freezes out (because, e.g., their creation and
annihilation processes switch off). This is the case for many models with weakly interacting massive
particles (WIMPs), a class of dark matter particles we discuss in some detail below. Note also that dark
matter particles may never be in thermal equilibrium; this is the case, e.g., for axions.

An alternative to CDM is warm dark matter, WDM, whose particles decouple, being relativistic.
Let us assume for definiteness that they are in kinetic equilibrium with cosmic plasma at temperature
Tf when their number density freezes out (thermal relic). After kinetic equilibrium breaks down at
temperature Td ≤ Tf , their spatial momenta decrease as a−1, i.e., the momenta are of order T all the time
after decoupling. Warm dark matter particles become non-relativistic at T ∼ m, where m is their mass.
Only after that do the WDM perturbations start to grow: as we mentioned above, relativistic particles
escape from gravitational potentials, so the gravitational wells get smeared out instead of getting deeper.
Before becoming non-relativistic, WDM particles travel the distance of the order of the horizon size;
the WDM perturbations therefore are suppressed at those scales. The horizon size at the time tnr when
T ∼ m is of order

lH(tnr) ' H−1(T ∼ m) =
M∗Pl

T 2
∼ M∗Pl

m2
.

Due to the expansion of the Universe, the corresponding length at present is

l0 = lH(tnr)
a0

a(tnr)
∼ lH(tnr)

T

T0
∼ MPl

mT0
, (28)
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where we neglected (rather weak) dependence on g∗. Hence, in the WDM scenario, structures of sizes
smaller than l0 are less abundant as compared to CDM. Let us point out that l0 refers to the size of the
perturbation in the linear regime; in other words, this is the size of the region from which matter collapses
into a compact object.

There is a hint towards the plausibility of warm, rather than cold, dark matter. It is the dwarf-
galaxy problem. According to numerical simulations, the CDM scenario tends to overproduce small
objects—dwarf galaxies: it predicts hundreds of satellite dwarf galaxies in the vicinity of a large galaxy
like the Milky Way, whereas only dozens of satellites have been observed so far. This argument is still
controversial, but, if correct, it does suggest that the dark matter perturbations are suppressed at dwarf-
galaxy scales. This is naturally the case in the WDM scenario. The present size of a dwarf galaxy is a
few kpc, and the density is about 106 of the average density in the Universe. Hence, the size l0 for these
objects is of order 100 kpc ' 3× 1023 cm. Requiring that perturbations of this size, but not much larger,
are suppressed, we obtain from (28) the estimate for the mass of a dark matter particle

WDM : mDM = 3–10 keV . (29)

On the other hand, this effect is absent, i.e., dark matter is cold, for

CDM : mDM � 10 keV . (30)

Let us recall that these estimates apply to particles that are initially in kinetic equilibrium with cosmic
plasma. They do not apply in the opposite case; an example is axion dark matter, which is cold despite
being of very small axion mass.

4.2 WIMP miracle
There is a simple mechanism of the dark matter generation in the early Universe. It applies to cold dark
matter. Because of its simplicity and robustness, it is considered by many as a very likely one, and the
corresponding dark matter candidates—WIMPs—as the best candidates. Let us describe this mechanism
in some detail.

Let us assume that there exists a heavy stable neutral particle Y, and that Y particles can only be
destroyed or created via their pair annihilation or creation, with annihilation products being the particles
of the Standard Model. The general scenario for the cosmological behaviour of Y particles is as follows.
At high temperatures, T � mY, the Y particles are in thermal equilibrium with the rest of the cosmic
plasma; there are lots of Y particles in the plasma, which are continuously created and annihilate. As the
temperature drops below mY, the equilibrium number density decreases. At some ‘freeze-out’ tempera-
ture Tf , the number density becomes so small that Y particles can no longer meet each other during the
Hubble time, and their annihilation terminates. After that the number density of surviving Y particles
decreases like a−3, and these relic particles contribute to the mass density in the present Universe.

Let us estimate the properties of Y particles such that they really serve as dark matter. Elementary
considerations of mean free path of a particle in gas give for the lifetime of a non-relativistic Y particle
in cosmic plasma, τann,

〈σann · v〉 · τann · nY ∼ 1 ,

where v is the relative velocity of Y particles, σann is the annihilation cross-section at velocity v, averag-
ing is over the velocity distribution of Y particles and nY is the number density. In thermal equilibrium
at T � mY, the latter is given by the Boltzmann law at zero chemical potential,

n
(eq)
Y = gY ·

(
mYT

2π

)3/2

e−
mY
T , (31)

where gY is the number of spin states of a Y particle. Let us introduce the notation

〈σann · v〉 = σ0
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(in kinetic equilibrium, the left-hand side is the thermal average). If the annihilation occurs in an s-wave,
then σ0 is a constant independent of temperature; for a p-wave it is somewhat suppressed at T � mY,
namely σ0 ∝ v2 ∝ T/mY. A quick way to come to correct estimate is to compare the lifetime with the
Hubble time, or the annihilation rate Γann ≡ τ−1

ann with the expansion rate H . At T ∼ mY, the equilib-
rium density is of order nY ∼ T 3, and Γann � H for not too small σ0. This means that annihilation
(and, by reciprocity, creation) of Y pairs is indeed rapid, and Y particles are indeed in complete thermal
equilibrium with the plasma. At very low temperature, on the other hand, the equilibrium number den-
sity n(eq)

Y is exponentially small, and the equilibrium rate is small too, Γ
(eq)
ann � H . At low temperatures

we cannot, of course, make use of the equilibrium formulas: Y particles no longer annihilate (and, by
reciprocity, are no longer created), there is no thermal equilibrium with respect to creation–annihilation
processes and the number density nY gets diluted only because of the cosmological expansion.

The freeze-out temperature Tf is determined by the relation1

τ−1
ann ≡ Γann ' H , (32)

where we use the equilibrium formulas. Making use of the relation (23) between the Hubble parameter
and the temperature at radiation domination, we obtain

σ0(Tf) · nY(Tf) ∼
T 2

f

M∗Pl

(33)

or

σ0(Tf) · gY ·
(
mYTf

2π

)3/2

e−
mY
Tf ∼ T 2

f

M∗Pl

. (34)

The latter equation gives the freeze-out temperature, which, up to log–log corrections, is

Tf ≈
mY

ln(M∗PlmYσ0)
(35)

(the possible dependence of σ0 on temperature is irrelevant in the right-hand side: we are doing the
calculation in the leading-log approximation anyway). Note that this temperature is somewhat lower
than mY if the relevant microscopic mass scale is much below MPl. This means that Y particles freeze
out when they are indeed non-relativistic and get out of kinetic equilibrium at even lower temperature,
hence the term ‘cold dark matter’. The fact that the annihilation and creation of Y particles terminate at
a relatively low temperature has to do with the rather slow expansion of the Universe, which should be
compensated for by the smallness of the number density nY.

At the freeze-out temperature, we make use of Eq. (33) and obtain

nY(Tf) =
T 2

f

M∗Plσ0(Tf)
. (36)

Note that this density is inversely proportional to the annihilation cross-section (modulo a logarithm).
The reason is that for higher annihilation cross-sections, the creation–annihilation processes are longer
in equilibrium, and fewer Y particles survive.

1In fact, we somewhat oversimplify the analysis here. The chemical equilibrium breaks down slightly earlier than what we
find from Eq. (32): the corresponding temperature is obtained by equating the equilibrium creation–annihilation rate Γann to
the rate of evolution of the equilibrium number density (31), rather than to the Hubble parameter H . For T � mY , this gives
the equation for the temperature

Γann ' ṅY

nY
' −mY

T

Ṫ

T
=
mY

T
H(T ) .

This temperature differs by the log–log correction from Tf determined from Eq. (34) and, at this temperature, one has nY �
T 2/(M∗Plσ0), cf. Eq. (36). However, below this temperature, the annihilation of Y particles continues, and it terminates at
temperature Tf determined by Eq. (32), which gives Eqs. (33) and (36). All this gives rise to log–log corrections, which we do
not calculate anyway. So, our estimate for the present dark matter mass density remains valid.
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Up to a numerical factor of order 1, the number-to-entropy ratio at freeze-out is

nY

s
' 1

g∗(Tf)M
∗
PlTfσ0(Tf)

. (37)

This ratio stays constant until the present time, so the present number density of Y particles is nY,0 =
s0 · (nY/s)freeze-out, and the mass-to-entropy ratio is

ρY,0

s0
=
mYnY,0

s0
' ln(M∗PlmYσ0)

g∗(Tf)M
∗
Plσ0(Tf)

' ln(M∗PlmYσ0)√
g∗(Tf)MPlσ0(Tf)

,

where we made use of (35). This formula is remarkable. The mass density depends mostly on one
parameter, the annihilation cross-section σ0. The dependence on the mass of a Y particle is through the
logarithm and through g∗(Tf); it is very mild. The value of the logarithm here is between 30 and 40,
depending on parameters (this means, in particular, that freeze-out occurs when the temperature drops
30 to 40 times below the mass of a Y particle). Inserting g∗(Tf) ∼ 100, as well as the numerical factor
omitted in Eq. (37), and comparing with (26), we obtain the estimate

σ0(Tf) ≡ 〈σv〉(Tf) = (1–2)× 10−36 cm2 . (38)

This is a weak-scale cross-section, which tells us that the relevant energy scale is TeV. We note in passing
that the estimate (38) is quite precise and robust.

If the annihilation occurs in an s-wave, the annihilation cross-section may be parametrized as
σ0 = α2/M2, where α is some coupling constant and M is a mass scale (which may be higher than
mY). This parametrization is suggested by the picture of Y-pair annihilation via the exchange by another
particle of mass M . With α ∼ 10−2, the estimate for the mass scale is roughly M ∼ 1 TeV. Thus, with
very mild assumptions, we find that the non-baryonic dark matter may naturally originate from the TeV-
scale physics. In fact, what we have found can be understood as an approximate equality between the
cosmological parameter, the mass-to-entropy ratio of dark matter and the particle-physics parameters,

mass-to-entropy ' 1

MPl

(
TeV
αW

)2

.

Both are of order 10−10 GeV, and it is very tempting to think that this ‘WIMP miracle’ is not a mere
coincidence. If it is not, the dark matter particles should be found at the LHC.

The most prominent candidate for WIMPs is neutralinos of the supersymmetric extensions of
the Standard Model. The situation with neutralinos is somewhat tense, however. The point is that
the pair annihilation of neutralinos often occurs in the p-wave, rather than the s-wave. This gives the
suppression factor in σ0 ≡ 〈σannv〉 proportional to v2 ∼ Tf/mY ∼ 1/30. Hence, neutralinos tend to be
overproduced in most of the parameter space of the Minimal Supersymmetric Standard Model (MSSM)
and other models. Yet neutralinos remain a good candidate, especially at high tanβ.

A direct search for dark matter WIMPs is underway in underground laboratories. The idea is that
WIMPs orbiting around the centre of our Galaxy with velocity of order 10−3 sometimes hit a nucleus
in a detector and deposit a small energy in it. These searches have become sensitive to neutralinos, as
shown in Fig. 9. Indirect searches for dark matter WIMPs include the search for neutrinos coming from
the centres of the Earth and Sun (WIMPs may concentrate and annihilate there), see, e.g., Ref. [36] and
positrons and antiprotons in cosmic rays (produced in WIMP annihilations in our Galaxy), see, e.g.,
Ref. [37]. Collider searches are sensitive to WIMPs too, see Fig. 10. We conclude that the hunt for
WIMPs has entered the promising stage.

Question. Estimate the energy deposited in the XENON detector due to elastic scattering of a dark matter
WIMP, for WIMP masses 10 GeV, 100 GeV and 1 TeV. Estimate the number of events per kilogram per
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Fig. 9: MSSM predictions for spin-independent elastic neutralino–nucleon cross-section versus neutralino mass
and experimentally excluded regions [35]. Shaded regions correspond to MSSM parameters consistent with col-
lider limits and yielding ΩDM ≈ 0.25. Regions above the open solid lines are ruled out by direct searches, closed
solid curves correspond to regions favoured by experiments indicated. Dashed lines are sensitivities of future direct
search experiments LUX and XENON 1T.

Fig. 9: MSSM predictions for spin-independent elastic neutralino-nucleon cross section versus neutralino mass and
experimentally excluded regions [20]. Shaded regions correspond to MSSM parameters consistent with collider
limits and yieldingΩDM ≈ 0.25. Regions above the open solid lines are ruled out by direct searches, closed
solid curves correspond to regions favored by experiments indicated. Dashed lines are sensitivities of future direct
search experiments LUX and XENON 1T.
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Fig. 10: Excluded regions in the parameter space(MX , σpX) [23] for spin-dependent (left) and spin-independent
(right) WIMP interactions with nucleon. Regions above the curves are ruled out at at 90 % confidence level. CMS
denotes searches for WIMPs at the Large Hadron Collider (assuming contact interactionY Y f1f2, wheref1,2 are
Standard Model fermions); IceCube and Super-K are searchesfor neutrinos from WIMP annihilation in the Sun;
others are direct searches. The shaded region in the middle of the right panel is favored by possible signal at CDMS
experiment.

assuming that the WIMP mass density around the Earth is similar to the av-
erage baryon mass density,ρDM ∼ 0.3 GeV/cm3, and thatvDM ∼ 10−3.
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Fig. 10: Excluded regions in the parameter space (MX, σpX) [38] for spin-dependent (left) and spin-independent
(right) WIMP interactions with nucleons. Regions above the curves are ruled out at 90 % confidence level. CMS
denotes searches for WIMPs at the LHC (assuming contact interaction YYf1f2, where f1,2 are Standard Model
fermions); IceCube and Super-K are searches for neutrinos from WIMP annihilation in the Sun; others are direct
searches. The shaded region in the middle of the right-hand panel is favoured by a possible signal at the CDMS
experiment.

year for the same masses and elastic cross-sections 10−5 pb, 10−9 pb and 10−8 pb, respectively (see
Fig. 9), assuming that the WIMP mass density around the Earth is similar to the average baryon mass
density, ρDM ∼ 0.3 GeV cm−3, and that vDM ∼ 10−3.
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4.3 Light long-lived particles
Many extensions of the Standard Model contain light scalar or pseudoscalar particles. In some models
these new particles are so weakly interacting that their lifetime exceeds the present age of the Universe.
Hence, they may serve as dark matter candidates. The best motivated of them is the axion, but there is
an entire zoo of axion-like particles.

Let us consider general properties of models with light scalars or pseudoscalars. These particles
should interact with the usual matter very weakly, so they must be neutral with respect to the Standard
Model gauge interactions. This implies that interactions of scalars S and pseudoscalars P with gauge
fields are of the form

LSFF =
CSFF

4Λ
· SFµνFµν , LPFF =

CPFF
8Λ

· PFµνFλρεµνλρ , (39)

where Fµν is the field strength of the SU(3)c, SU(2)W or U(1)Y gauge group. The parameter Λ has
dimension of mass and can be interpreted as the scale of new physics related to an S and/or a P particle.
This parameter has to be large; then the interactions of S and P with gauge bosons are indeed weak
at low energies. Because of that, the Lagrangians (39) contain gauge-invariant operators of the lowest
possible dimension. Dimensionless constants CSFF and CPFF are typically numbers of order 1. The
terms (39) describe interactions of (pseudo)scalars with pairs of photons, gluons as well as with Zγ, ZZ
and W+W− pairs.

Interactions with fermions can also be written on symmetry grounds. Since S and P are singlets
under SU(3)c × SU(2)W × U(1)Y, no combinations like Sf̄f or P f̄γ5f are gauge invariant, so they
cannot appear in the Lagrangian (hereafter f denotes the Standard Model fermions). Gauge-invariant
operators of the lowest dimension have the formHf̄f , whereH is the Englert–Brout–Higgs field. Hence,
the interactions with fermions are

LSHff =
YSHff

Λ
· SHf̄f , LPHff =

YPHff
Λ

· PHf̄γ5f .

It often happens that the couplings YSHff and YSPff are of the order of the Standard Model Yukawa
couplings, so upon electroweak symmetry breaking the low-energy Lagrangians have the following struc-
ture:

LSff =
CSffmf

Λ
· Sf̄f , LPff =

CPffmf

Λ
· P f̄γ5f , (40)

where we assume that the dimensionless couplings CSff and CPff are also of order 1.

Making use of Eqs. (39) and (40), we estimate the partial widths of decays of P and S into the
Standard Model particles:

ΓP (S)→AA ∼
m3
P (S)

64πΛ2
, ΓP (S)→ff ∼

m2
fmP (S)

8πΛ2
, (41)

where A denotes vector bosons. By requiring that the lifetime of the new particles exceeds the present
age of the Universe, τS(P ) = Γ−1

S(P ) > H−1
0 , we find a bound on the mass of the dark matter candidates,

mP (S) <
(
16πΛ2H0

)1/3
. (42)

Assuming that the new physics scale is below the Planck scale, Λ < MPl, we obtain an (almost) model-
independent bound,

mP (S) < 100 MeV . (43)

Hence, the kinematically allowed decays are P (S) → γγ, P (S) → νν̄ and P (S)→ e+e−. It follows
from Eq. (41) that the two-photon decay mode dominates, unless the mass of the new particle is close to
that of the electron.
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Let us now consider generation of relic (pseudo)scalars in the early Universe. There are several
generation mechanisms; one of them is fairly generic for the class of models we discuss. This is genera-
tion in decays of condensates (we will consider another mechanism later, in the model with axions). The
picture is as follows. Let some scalar field φ be in a condensate in the early Universe. The condensate
can be viewed as a collection of φ particles at rest. Equivalently, the condensate is the homogeneous
scalar field that oscillates at relatively late times, when mφ > H . Let both particles, φ and S, interact
with matter so weakly that they never get into thermal equilibrium, and let the interaction between φ and
S have the form µφS2/2, where µ is the coupling constant. Then the width of the decay φ → SS is
estimated as

Γφ→SS ∼
µ2

16πmφ
. (44)

If the widths of other decay channels do not exceed the value (44), the decay of the φ condensate occurs
at a temperature Tφ determined by

Γφ→SS ∼ H(Tφ) =
T 2
φ

M∗Pl

.

Let the energy density of the φ condensate at that time be equal to ρφ, so that the number density of
decaying φ particles is nφ ∼ ρφ/mφ. Immediately after the epoch of φ-particle decays, the number
density of S particles is of order ερφ/mφ, where ε is the fraction of the condensate that decayed into S
particles. After S particles become non-relativistic, their mass density is of order

ρS ∼ ερφ ·
mST

3

mφT
3
φ

,

where we omitted the dependence on g∗ for simplicity. In this way we estimate the mass fraction of S
particles today,

ΩS =
ρS
ρc
∼ mST

3
0

ρc
· ερφ
mφT

3
φ

∼ 0.2 ·
( mS

1 eV

)
· ερφ
mφT

3
φ

. (45)

With an appropriate choice of parameters, the correct value ΩS ' 0.2 can indeed be obtained. We note
that the last factor on the right-hand side of Eq. (45) must be small.

4.4 Axions
Let us now turn to a concrete class of models with Peccei–Quinn symmetry and axions. This symmetry
provides a solution to the strong CP-problem, and the existence of axions is an inevitable consequence
of the construction.

The strong CP-problem [39–41] emerges in the following way. One can extend the Standard
Model Lagrangian by adding the following term:

∆L =
αs

8π
· θ0 ·Ga

µνG̃
µν a , (46)

where αs is the SU(3)c gauge coupling, Ga
µν is the gluon field strength, G̃µν a = 1

2ε
µνλρGa

λρ is the
dual tensor and θ0 is an arbitrary dimensionless parameter (the factor αs/(8π) is introduced for later
convenience). The interaction term (46) is invariant under gauge symmetries of the Standard Model, but
it violates P and CP. The term (46) is a total derivative, so it does not contribute to the classical field
equations, and its contribution to the action is reduced to the surface integral. For any perturbative gauge
field configurations (small perturbations about Ga

µ = 0), this contribution is equal to zero. However,
this is not the case for configurations of instanton type. This means that CP is violated in QCD at the
non-perturbative level.
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Furthermore, quantum effects due to quarks give rise to the anomalous term in the Lagrangian,
which has the same form as Eq. (46) with proportionality coefficient determined by the phase of the
quark mass matrix M̂q. The latter enters the Lagrangian as

Lm = q̄LM̂qqR + h.c.

By chiral rotation of quark fields, one makes quark masses real (i.e., physical), but that rotation induces
a new term in the Lagrangian,

∆Lm =
αs

8π
·Arg

(
DetM̂q

)
·Ga

µνG̃
µν a . (47)

There is no reason to think that Arg
(

DetM̂q

)
= 0. Neither there is a reason to think that the ‘tree-level’

term (46) and the anomalous contribution (47) cancel each other. Indeed, the former term is there even
in the absence of quarks, while the latter comes from the Yukawa sector, as the quark masses are due to
their Yukawa interactions with the Englert–Brout–Higgs field.

Thus, the Standard Model Lagrangian should contain the term

∆Lθ =
αs

8π

(
θ0 + Arg

(
DetM̂q

))
Ga
µνG̃

µν a ≡ αs

8π
· θ ·Ga

µνG̃
µν a . (48)

This term violates CP, and off hand the parameter θ is of order 1.

The term (48) has non-trivial phenomenological consequences. One is that it generates the electric
dipole moment (EDM) of the neutron, dn, which is estimated as [42]

dn ∼ θ × 10−16 e cm . (49)

The neutron EDM has not been found experimentally, and the searches place a strong bound

dn . 3× 10−26 e cm . (50)

This leads to the bound on the parameter θ,

|θ| < 0.3× 10−9 .

The problem to explain such a small value of θ is precisely the strong CP-problem.

A solution to this problem does not exist within the Standard Model. The solution is offered by
models with axions. These models make use of the following observation. If at the classical level the
quark Lagrangian is invariant under axial symmetry U(1)A such that

qL → eiβqL , qR → e−iβqR , (51)

then the θ term would be rotated away by applying this transformation. This global symmetry is called
the Peccei–Quinn (PQ) symmetry [43], U(1)PQ. There is no PQ symmetry in the Standard Model, but
one can extend the Standard Model in such a way that the classical Lagrangian is invariant under the PQ
symmetry. Quark masses are not invariant under the PQ transformations (51), so PQ symmetry is spon-
taneously broken. At the classical level, this leads to the existence of a massless Nambu–Goldstone field
a(x), an axion. As for any Nambu–Goldstone field, its properties are determined by its transformation
law under the PQ symmetry:

a(x)→ a(x) + β · fPQ , (52)

where β is the same parameter as in Eq. (51) and fPQ is a constant of dimension of mass, the energy
scale of U(1)PQ symmetry breaking. The mass terms in the low-energy quark Lagrangian must be
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symmetric under the transformations (51) and (52), so the quark and axion fields enter the Lagrangian in
the combination

Lm = q̄Rmqe
−2i a

fPQ qL + h.c. (53)

Making use of Eq. (47), we find that at the quantum level the low-energy Lagrangian contains the term

La = Cg
αs

8π
· a

fPQ
Ga
µνG̃

µν a , (54)

where the constantCg is of order 1; it is determined by PQ charges of quarks. Clearly, PQ symmetry (51)
and (52) is explicitly broken by quantum effects of QCD, and an axion is a pseudo-Nambu–Goldstone
boson.

Hence, the θ parameter multiplying the operatorGa
µνG̃

µν a obtains a shift depending on the space–
time point and proportional to the axion field,

θ → θ̄(x) = θ + Cg
a(x)

fPQ
. (55)

Strong interactions would conserve CP provided the axion vacuum expectation value is such that 〈θ̄〉 = 0.
The QCD effects indeed do the job. They generate a non-vanishing quark condensate 〈q̄q〉 ∼ Λ3

QCD at
the QCD energy scale ΛQCD ∼ 200 MeV. This condensate breaks chiral symmetry and in turn generates
the axion effective potential

Va ∼ −
1

2
θ̄2 mumd

mu +md
〈q̄q〉+O(θ̄4) ' 1

8
θ̄2 ·m2

πf
2
π +O(θ̄4) , (56)

where mπ = 135 MeV and fπ = 93 MeV are pion mass and decay constant. In fact, the axion potential
must be periodic in θ with period 2π, so the expression (56) is valid for small θ only. The potential has
the minimum at 〈θ̄〉 = 0, so the strong CP-problem finds an elegant solution. It follows from Eqs. (55)
and (56) that the axion has a mass

ma ≈ Cg
mπfπ
2fPQ

, (57)

i.e., it is indeed a pseudo-Nambu–Goldstone boson.

There are various ways to implement the PQ mechanism. One is to introduce two Englert–Brout–
Higgs doublets and choose the Yukawa interaction as

Y dQ̄LH1DR + Y uQ̄Liτ2H∗2UR . (58)

The two scalar fields transform under the U(1)PQ transformation (51) as follows:

H1 → e2iβH1 , H2 → e−2iβH2 .

This ensures U(1)PQ invariance of the Lagrangian (58) and hence the absence of the θ term. Both
scalars acquire vacuum expectation values v1 and v2. If no other new fields are added, we arrive at the
Weinberg–Wilczek model [44,45]. In that case, the axion field θ is the relative phase of H1 and H2, and
the PQ scale equals the electroweak scale:

fPQ = 2
√
v2

1 + v2
2 = 2vSM = 2× 246 GeV .

The axion is quite heavy,ma ∼ 15 keV, and its interaction with quarks, gluons and photons is too strong.
Because of that, the Weinberg–Wilczek axion is experimentally ruled out.

This problem is solved in the Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) model [46, 47] by
adding a complex scalar field S which is a singlet under the Standard Model gauge group. Its inter-
actions involve PQ invariants

S†S , H†1H2 · S2 .
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The field S transforms under U(1)PQ as S → e2iβS. The axion field is now a linear combination of the
phases of fields H1, H2 and S and

fPQ = 2
√
v2

1 + v2
2 + v2

s , (59)

where vs is the vacuum expectation value of the field S. The latter can be large, so it is clear from
Eq. (59) that the mass of the axion is small and, most importantly, its couplings to the Standard Model
fields are weak: these couplings are inversely proportional to fPQ ∼ vs. The DFSZ axion interacts with
both quarks and leptons.

Another approach is called the Kim–Shifman–Vainshtein–Zakharov (KSVZ) mechanism [48,49].
It does not require more than one Englert–Brout–Higgs field of the Standard Model. The mechanism
makes use of additional quark fields ΨR and ΨL, which are triplets under SU(3)c and singlets under
SU(2)W ×U(1)Y. Only these quarks transform non-trivially under U(1)PQ, while the usual quarks have
zero PQ charge. One also introduces a complex scalar field S, which is a singlet under the Standard
Model gauge group. One writes the PQ-invariant Yukawa interaction of the new fields,

L = yΨSΨ̄RΨL + h.c. ,

so that S again transforms under U(1)PQ as S → e2iβS. PQ symmetry is spontaneously broken by the
vacuum expectation value 〈S〉 = vs/

√
2. The axion here is the phase of the field S; therefore,

fPQ = 2vs . (60)

The KSVZ model does not contain an explicit interaction of an axion with the usual quarks and leptons.

To summarize, an axion is a light particle whose interactions with the Standard Model fields are
very weak. The latter property relates to the fact that it is a pseudo-Nambu–Goldstone boson of a global
symmetry spontaneously broken at the high-energy scale fPQ � MW. As for any Nambu–Goldstone
field, the interactions of an axion with quarks and leptons are described by the generalized Goldberger–
Treiman formula

Laf =
1

fPQ
· ∂µa · JµPQ . (61)

Here
JµPQ =

∑

f

e
(PQ)
f · f̄γµγ5f . (62)

The contributions of fermions to the current JµPQ are proportional to their PQ charges e(PQ)
f ; these charges

are model-dependent. In accord with Eq. (53), the action (61) can be integrated by parts and we obtain
instead

Laf = − 1

fPQ
· a · ∂µJµPQ

= − a

fPQ
·
∑

f

2e
(PQ)
f mf · f̄γ5f . (63)

Besides the interaction (61), there are also interactions of axions with gluons, see Eq. (54), and photons,

Lag = Cg
αs

8π
· a

fPQ
·Ga

µνG̃
µν a , Laγ = Cγ

α

8π
· a

fPQ
· FµνF̃µν , (64)

where the dimensionless constants Cg and Cγ are also model-dependent and, generally speaking, are of
order 1. The interaction terms (63) and (64) indeed have the form (39) and (40), i.e., models with axions
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belong to the class of models with light, weakly interacting pseudoscalars. The axion mass, however, is
not a free parameter: we find from Eq. (57) that

ma ≈ mπ ·
fπ

2fPQ
≈ 0.6 eV ·

(
107 GeV
fPQ

)
. (65)

The main decay channel of the light axion is decay into two photons. The lifetime τa is found
from Eq. (41) by setting Λ = 2πfPQ/α and using Eq. (65),

τa =
1

Γa→γγ
=

64π3m2
πf

2
π

α2m5
a

' 4× 1024 s ·
(

eV
ma

)5

.

By requiring that this lifetime exceeds the age of the Universe, τa > t0 ≈ 14 billion years, we find the
bound on the mass of the axion as a dark matter candidate,

ma < 25 eV . (66)

There are astrophysical bounds on the strength of axion interactions f−1
PQ and hence on the axion mass.

Axions in theories with fPQ . 109 GeV, which are heavier than 10−2 eV, would be intensely produced
in stars and supernovae explosions. This would lead to contradictions with observations. So, we are left
with very light axions, ma . 10−2 eV.

As far as dark matter is concerned, thermal production of axions is irrelevant. There are at least
two mechanisms of axion production in the early Universe that can provide not only right axion abun-
dance but also small initial velocities of axions. The latter property makes an axion a cold dark matter
candidate, despite its very small mass. One mechanism has to do with decays of global strings [50]—
topological defects that exist in theories with spontaneously broken global U(1) symmetry (U(1)PQ in
our case; for a discussion of this mechanism, see, e.g., Ref. [51]). Another mechanism employs an axion
condensate [52–54], an homogeneous axion field that oscillates in time after the QCD epoch. This is
called the axion misalignment mechanism. Let us consider the second mechanism in some detail.

As we have seen in Eq. (56), the axion potential is proportional to the quark condensate 〈q̄q〉. This
condensate breaks chiral symmetry. The chiral symmetry is in fact restored at high temperatures Hence,
one expects that the axion potential is negligibly small at T � ΛQCD. This is indeed the case: the
effective potential for the field θ̄ = θ + a/fPQ vanishes at high temperatures, and this field can take any
value,

θ̄i ∈ [0 , 2π) ,

where we recall that the field θ̄ is a phase. There is no reason to think that the initial value θ̄i is zero. As
the temperature decreases, the axion mass m(T ) starts to get generated, so that

ma(T ) ' 0 at T � ΛQCD ,

ma(T ) ' ma at T � ΛQCD .

Hereafter ma denotes the zero-temperature axion mass. As the mass increases, at some point the field
θ̄, remaining homogeneous, starts to roll down from θ̄i towards its value θ̄ = 0 at the minimum of the
potential. The axion field practically does not evolve when ma(T ) � H(T ) and at the time when
ma(T ) ∼ H(T ) it starts to oscillate. Let us estimate the present energy density of the axion field in this
picture, without using the concrete form of the function m(T ).

The oscillations start at the time tosc when

ma(tosc) ∼ H(tosc). (67)

At this time, the energy density of the axion field is estimated as

ρa(tosc) ∼ m2
a(tosc)f

2
PQθ̄

2
i .
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The oscillating axion field is the same thing as a collection of axions at rest. Their number density at the
beginning of oscillations is estimated as

na(tosc) ∼
ρa(tosc)

ma(tosc)
∼ ma(tosc)f

2
PQθ̄

2
i ∼ H(tosc)f

2
PQθ̄

2
i .

This number density, as any number density of non-relativistic particles, then decreases as a−3.

The axion-to-entropy ratio at time tosc is

na

s
∼
H(tosc)f

2
PQ

2π2

45 g∗T
3
osc

· θ̄2
i '

f2
PQ√

g∗ToscMPl
· θ̄2

i ,

where we use the usual relation H = 1.66
√
g∗T 2/MPl. The axion-to-entropy ratio remains constant

after the beginning of oscillations, so the present mass density of axions is

ρa,0 =
na

s
mas0 '

maf
2
PQ√

g∗ToscMPl
s0 · θ̄2

i . (68)

In fact, it is a decreasing function of ma. Indeed, fPQ is inversely proportional to ma, see Eq. (57); at
the same time, the axion obtains its mass near the epoch of QCD transition, i.e., at T ∼ ΛQCD, so Tosc

depends on ma rather weakly.

To obtain a simple estimate, let us set Tosc ∼ ΛQCD ' 200 MeV and make use of Eq. (57) with
Cg ∼ 1. We find

Ωa ≡
ρa,0

ρc
'
(

10−6 eV
ma

)
θ̄2

i . (69)

The natural assumption about the initial phase is θ̄i ∼ π/2. Hence, an axion of mass 10−5–10−6 eV is a
good dark matter candidate. Note that an axion of lower mass ma < 10−6 eV may also serve as a dark
matter particle, if for some reason the initial phase θ̄i is much smaller than π/2. This is cold dark matter:
the oscillating field corresponds to axions at rest.

A more precise estimate is obtained by taking into account the fact that that the axion mass
smoothly depends on temperature:

Ωa ' 0.2 · θ̄2
i ·
(

4× 10−6 eV
ma

)1.2

.

We see that our crude estimate (69) is fairly accurate. Interestingly, the string mechanism of the axion
production leads to the same parametric dependence of Ωa on the axion mass.

Search for dark matter axions with massma ∼ 10−5–10−6 eV is difficult, but not impossible. One
way is to search for axion–photon conversion in a resonator cavity filled with a strong magnetic field.
Indeed, in the background magnetic field the axion–photon interaction (second term in Eq. (64)) leads
to the conversion a→ γ, and the axions of mass 10−5–10−6 eV are converted to photons of frequency
m/(2π) = 2–0.2 GHz (radio waves). Bounds on the dark matter axions are shown in Fig. 11.

4.5 Warm dark matter: sterile neutrinos and light gravitinos
As we discussed in Section 4.1, there are arguments, albeit not particularly strong, that favour warm,
rather than cold, dark matter. If WDM particles are thermal relics, i.e., if they were in kinetic equilibrium
at some epoch in the early Universe, then their mass should be in the range 3–10 keV. Reasonably well
motivated particles of this mass are sterile neutrinos and gravitinos.
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Fig. 11: Bounds on dark matter axions: axion–photon coupling versus axion mass [55]. Inclined straight line
labelled ‘KSVZ axion’ is the prediction of the KSVZ model, shaded region along this line is the range of predictions
of other axion models. Region below the line labelled ALP CDM is the range of predictions of other reasonably
motivated models with axion-like particles as dark matter candidates. Dashed lines show the sensitivities of future
experiments.

4.5.1 Sterile neutrinos
Sterile neutrinos are most probably required for giving masses to ordinary, ‘active’ neutrinos. The masses
of sterile neutrinos cannot be predicted theoretically. Although sterile neutrinos of WDM massmνs = 3–
10 keV are not particularly plausible from the particle-physics prospective, they are not pathological
either. In the simplest models the creation of sterile neutrino states |νs〉 in the early Universe occurs due
to their mixing with active neutrinos |να〉, α = e, µ, τ . In the approximation of mixing between two
states only, we have

|να〉 = cos θ|ν1〉+ sin θ|ν2〉 , |νs〉 = − sin θ|ν1〉+ cos θ|ν2〉 ,

where |να〉 and |νs〉 are active and sterile neutrino states, |ν1〉 and |ν2〉 are mass eigenstates of masses
m1 and m2, where we order m1 < m2, and θ is the vacuum mixing angle between sterile and active
neutrinos. This mixing should be weak, θ � 1, otherwise sterile neutrinos would decay too rapidly, see
below. The heavy state is mostly sterile neutrinos |ν2〉 ≈ |νs〉, and m2 ≡ ms is the sterile neutrino mass.

The calculation of sterile neutrino abundance is fairly complicated, and we do not reproduce it
here. If there is no sizeable lepton asymmetry in the Universe, the sterile neutrino production is most
efficient at temperature around

T∗ ∼
(
ms

5GF

)1/3

' 200 MeV ·
( ms

1 keV

)1/3
.

The resulting number density of sterile neutrinos is estimated as

nνs

nνα
∼ T 3

∗M
∗
PlG

2
F · sin2 2θ ∼ 10−2 ·

( ms

1 keV

)
·
(

sin 2θ

10−4

)2

. (70)
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The number density of relic active neutrinos today is about 110 cm−3, so we find from Eq. (70) the
estimate for the present contribution of sterile neutrinos into energy density,

Ωνs ' 0.2 ·
(

sin 2θ

10−4

)2

·
( mν

1 keV

)2
. (71)

Thus, a sterile neutrino of mass mν & 1 keV and small mixing angle θα . 10−4 would serve as a dark
matter candidate. However, this range of masses and mixing angles is ruled out. The point is that due to
its mixing with an active neutrino, a sterile neutrino can decay into an active neutrino and a photon,

νs → να + γ .

The sterile neutrino decay width is proportional to sin2 2θ. If sterile neutrinos are dark matter particles,
their decays would produce a narrow line in X-ray flux from the cosmos (orbiting velocity of dark matter
particles in our Galaxy is small, v ∼ 10−3, hence the photons produced in their two-body decays are
nearly monochromatic). Such a line has not been observed, and there exist quite strong limits. These
limits, translated into limits on sin2 2θ as a function of sterile neutrino mass, are shown in Fig. 12; they
rule out the range of masses giving the right mass density of dark matter, Eq. (71). Recall that the mass
of a sterile neutrino should exceed 3 keV (in fact, a more precise limit is ms > 5.7 keV [56]).
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Fig. 12: Limits on sterile neutrino parameters (mass M1, mixing angle θ) obtained from X-ray telescopes. Solid
line corresponds to sterile neutrino dark matter produced in non-resonant oscillations, Eq. (71). Dashed lines show
the case of resonant oscillations at non-zero lepton asymmetry; numbers in unit of 10−6 show the values of lepton
asymmetry (lepton-to-photon ratio ηL) [57].

A (rather baroque) way out [58] is to assume that there is a fairly large lepton asymmetry in
the Universe. Then the oscillations of active neutrinos into sterile neutrinos may be enhanced due to
the Mikheyev-Smirnov-Wolfenstein (MSW) effect, as at some temperature they occur in the Mikheev–
Smirnov resonance regime. In that case the right abundance of sterile neutrinos is obtained at smaller θ,
and may be consistent with X-ray bounds. This is also shown in Fig. 12.
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4.5.2 Light gravitino
A gravitino—a superpartner of a graviton—is necessarily present in supersymmetric (SUSY) theories. It
acquires mass as a result of SUSY breaking (super-Higgs mechanism). The gravitino mass is of order

m3/2 '
F

MPl
,

where
√
F is the supersymmetry breaking scale. Hence, gravitino masses are in the right WDM ballpark

for rather low supersymmetry breaking scales,
√
F ∼ 106–107 GeV. This is the case, e.g., in the gauge-

mediation scenario. With so low mass, a gravitino is the lightest supersymmetric particle (LSP), so it is
stable in many supersymmetric extensions of the Standard Model. From this viewpoint gravitinos can
indeed serve as dark matter particles. For what follows, important parameters are the widths of decays
of other superpartners into gravitinos and the Standard Model particles. These are of order

ΓS̃ '
M5

S̃

F 2
'

M5
S̃

m2
3/2M

2
Pl

, (72)

where MS̃ is the mass of the superpartner.

One mechanism of the gravitino production in the early Universe is decays of other superpartners.
A gravitino interacts with everything else so weakly that once produced, it moves freely, without interact-
ing with cosmic plasma. At production, gravitinos are relativistic and hence they are indeed warm dark
matter candidates. Let us assume that production in decays is the dominant mechanism and consider
under what circumstances the present mass density of gravitinos coincides with that of dark matter.

The rate of gravitino production in decays of superpartners of the type S̃ in the early Universe is

d(n3/2/s)

dt
=
nS̃

s
ΓS̃ ,

where n3/2 and nS̃ are number densities of gravitinos and superpartners, respectively, and s is the entropy
density. For superpartners in thermal equilibrium, one has nS̃/s = const ∼ g−1

∗ for T & MS̃, and
nS̃/s ∝ exp(−MS̃/T ) at T � MS̃. Hence, the production is most efficient at T ∼ MS̃, when the
number density of superpartners is still large, while the Universe expands most slowly. The density of
gravitinos produced in decays of the S̃ is thus given by

n3/2

s
' ΓS̃

g∗
H−1(T ∼MS̃) ' 1

g∗
·

M5
S̃

m2
3/2M

2
Pl

· M
∗
Pl

M2
S̃

.

This gives the mass-to-entropy ratio today,

m3/2n3/2

s
'
∑

S̃

M3
S̃

g
3/2
∗ MPlm3/2

, (73)

where the sum runs over all superpartner species which have ever been relativistic in thermal equilibrium.
The correct value (26) is obtained for gravitino masses in the range (29) at

MS̃ = 100–300 GeV . (74)

Thus, the scenario with a gravitino as a warm dark matter particle requires light superpartners [59], which
are to be discovered at the LHC.

A few comments are in order. First, decays of superpartners is not the only mechanism of gravitino
production: gravitinos may also be produced in scattering of superpartners [60]. To avoid overproduction
of gravitinos in the latter processes, one has to assume that the maximum temperature in the Universe
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(e.g., reached after the post-inflationary reheating stage) is quite low, Tmax ∼ 1–10 TeV. This is not a
particularly plausible assumption, but it is consistent with everything else in cosmology and can indeed
be realized in some models of inflation. Second, existing constraints on masses of strongly interacting
superpartners (gluinos and squarks) suggest that their masses exceed (74). Hence, these particles should
not contribute to the sum in (73), otherwise WDM gravitinos would be overproduced. This is possible
if masses of squarks and gluinos are larger than Tmax, so that they were never abundant in the early
Universe. Third, a gravitino produced in decays of superpartners is not a thermal relic, as it was never in
thermal equilibrium with the rest of the cosmic plasma. Nevertheless, since gravitinos are produced at
T ∼MS̃ and at that time have energy E ∼MS̃ ∼ T , our estimate (28) does apply.

Question. Let S̃ be the next-to-lightest superpartner which decays into a gravitino of massm3/2 = 5 keV
and a Standard Model particle. Let S̃ be produced at the LHC at subrelativistic velocity. How far is
the decay vertex of S̃ displaced from the proton collision point? Give numerical estimates for MS̃ =
100 GeV and MS̃ = 1 TeV.

4.6 Discussion
If dark matter particles are indeed WIMPs, and the relevant energy scale is of order 1 TeV, then the hot
Big Bang theory will be probed experimentally up to a temperature of (a few) · (10–100) GeV and down
to an age of 10−9–10−11 s in the relatively near future (compare to 1 MeV and 1 s accessible today
through BBN). With microscopic physics to be known from collider experiments, the WIMP density
will be reliably calculated and checked against the data from observational cosmology. Thus, the WIMP
scenario offers a window to a very early stage of the evolution of the Universe.

Search for dark matter axions and signals from light sterile neutrinos makes use of completely
different methods. Yet there is a good chance for discovery if either of these particles make dark matter.

If dark matter particles are gravitinos, the prospect of probing quantitatively such an early stage of
the cosmological evolution is not so bright: it would be very hard, if at all possible, to get an experimental
handle on the gravitino mass; furthermore, the present gravitino mass density depends on an unknown
reheat temperature Tmax. On the other hand, if this scenario is realized in nature, then the whole picture
of the early Universe will be quite different from our best guess on the early cosmology. Indeed, the
gravitino scenario requires a low reheat temperature, which in turn calls for a rather exotic mechanism
of inflation.

The mechanisms discussed here are by no means the only ones capable of producing dark matter,
and the particles we discussed are by no means the only candidates for dark matter particles. Other
dark matter candidates include axinos, Q-balls, very heavy relics produced towards the end of inflation
(wimpzillas) etc. Hence, even though there are grounds to hope that the dark matter problem will be
solved soon, there is no guarantee at all.

5 Baryon asymmetry of the Universe
As we discussed in Section 2.4, the baryon asymmetry of the Universe is characterized by the baryon-
to-entropy ratio, which at high temperatures is defined as follows:

∆B =
nB − nB̄

s
,

where nB̄ is the number density of antibaryons and s is the entropy density. If the baryon number is
conserved and the Universe expands adiabatically (which is the case at least after the electroweak epoch,
T . 100 GeV), ∆B is time-independent and equal to its present value ∆B ≈ 0.8× 10−10, see Eq. (25).
At early times, at temperatures well above 100 MeV, cosmic plasma contained many quark–antiquark
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pairs, whose number density was of the order of the entropy density,

nq + nq̄ ∼ s ,

while the baryon number density was related to densities of quarks and antiquarks as follows (baryon
number of a quark equals 1/3):

nB =
1

3
(nq − nq̄) .

Hence, in terms of quantities characterizing the very early epoch, the baryon asymmetry may be ex-
pressed as

∆B ∼
nq − nq̄

nq + nq̄
.

We see that there was one extra quark per about 10 billion quark–antiquark pairs. It is this tiny excess
that is responsible for the entire baryonic matter in the present Universe: as the Universe expanded and
cooled down, antiquarks annihilated with quarks, and only the excessive quarks remained and formed
baryons.

There is no logical contradiction to suppose that the tiny excess of quarks over antiquarks was
built in as an initial condition. This is not at all satisfactory for a physicist, however. Furthermore, the
inflationary scenario does not provide such an initial condition for the hot Big Bang epoch; rather, infla-
tionary theory predicts that the Universe was baryon-symmetric just after inflation. Hence, one would
like to explain the baryon asymmetry dynamically [61, 62], i.e., find the mechanism of its generation in
the early Universe.

5.1 Sakharov conditions
The baryon asymmetry may be generated from an initially baryon-symmetric state only if three necessary
conditions, dubbed Sakharov conditions, are satisfied. These are:

1. baryon number non-conservation;
2. C- and CP-violation;
3. deviation from thermal equilibrium.

All three conditions are easily understood. (1) If baryon number were conserved, and initial net
baryon number in the Universe was zero, the Universe today would still be symmetric. (2) If C or CP
were conserved, then the rate of reactions with particles would be the same as the rate of reactions with
antiparticles, and no asymmetry would be generated. (3) Thermal equilibrium means that the system is
stationary (no time dependence at all). Hence, if the initial baryon number is zero, it is zero forever,
unless there are deviations from thermal equilibrium. Furthermore, if there are processes that violate
baryon number, and the system approaches thermal equilibrium, then the baryon number tends to be
washed out rather than generated.

At the epoch of the baryon-asymmetry generation, all three Sakharov conditions have to be met
simultaneously. There is a qualification, however. These conditions would be literally correct if there
were no other relevant quantum numbers that characterize the cosmic medium. In reality, however,
lepton numbers also play a role. As we will see shortly, baryon and lepton numbers are rapidly violated
by anomalous electroweak processes at temperatures above, roughly, 100 GeV. What is conserved in the
Standard Model is the combination B−L, where L is the total lepton number. So, there are two options.
One is to generate the baryon asymmetry at or below the electroweak epoch, T . 100 GeV, and make
sure that the electroweak processes do not wash out the baryon asymmetry after its generation. This leads
to the idea of electroweak baryogenesis (another possibility is Affleck–Dine baryogenesis [63]). Another
is to generate B − L asymmetry before the electroweak epoch, i.e., at T � 100 GeV: if the Universe
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is B − L asymmetric above 100 GeV, the electroweak physics reprocesses B − L partially into baryon
number and partially into lepton number, so that in thermal equilibrium with conserved B − L one has

B = C · (B − L) , L = (C − 1) · (B − L) ,

where C is a constant of order 1 (C = 28/79 in the Standard Model at T & 100 GeV). In the second
scenario, the first Sakharov condition applies to B − L rather than baryon number itself.

Let us point out two most common mechanisms of baryon number non-conservation. One emerges
in grand unified theories and is due to the exchange of supermassive particles. It is similar, say, to the
mechanism of charm non-conservation in weak interactions, which occurs via the exchange of heavy
W bosons. The scale of these new, baryon number violating interactions is the grand unification scale,
presumably of order MGUT ' 1016 GeV. It is rather unlikely, however, that the baryon asymmetry was
generated due to this mechanism: the relevant temperature would be of order MGUT, while such a high
reheat temperature after inflation is difficult to obtain.

Another mechanism is non-perturbative [39] and is related to the triangle anomaly in the baryonic
current (a keyword here is ‘sphaleron’ [64,65]). It exists already in the Standard Model and, possibly with
mild modifications, operates in all its extensions. The two main features of this mechanism, as applied to
the early Universe, is that it is effective over a wide range of temperatures, 100 GeV < T < 1011 GeV,
and, as we pointed out above, that it conserves B − L.

5.2 Electroweak baryon number non-conservation
Let us pause here to discuss the physics behind electroweak baryon and lepton number non-conservation
in a little more detail, though still at a qualitative level. A detailed analysis can be found in the book [66]
and in references therein.

Let us consider the baryonic current,

Bµ =
1

3
·
∑

i

q̄iγ
µqi ,

where the sum runs over quark flavours. Naively, it is conserved, but at the quantum level its divergence
is non-zero because of the triangle anomaly (a similar effect goes under the name of the axial anomaly
in the context of quantum electrodynamics (QED) and QCD),

∂µB
µ =

1

3
· 3colours · 3generations ·

g2

32π2
εµνλρF a

µνF
a
λρ ,

where F a
µν and g are the field strength of the SU(2)W gauge field and the SU(2)W gauge coupling,

respectively. Likewise, each leptonic current (α = e, µ, τ ) is anomalous in the Standard Model (we
disregard here neutrino masses and mixings, which violate lepton numbers too),

∂µLµα =
g2

32π2
· εµνλρF a

µνF
a
λρ . (75)

A non-trivial fact is that there exist large field fluctuations, F a
µν(x, t) ∝ g−1, such that

Q ≡
∫

d3xdt
g2

32π2
· εµνλρF a

µνF
a
λρ 6= 0 . (76)

Furthermore, for any physically relevant fluctuation the value of Q is an integer (‘physically relevant’
means that the gauge field strength vanishes at infinity in space–time). In four space–time dimensions
such fluctuations exist only in non-Abelian gauge theories.
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Suppose now that a fluctuation with non-vanishing Q has occurred. Then the baryon numbers at
the end and beginning of the process are different,

Bfin −Bin =

∫
d3xdt ∂µB

µ = 3Q . (77)

Likewise,
Lα, fin− Lα, in = Q . (78)

This explains the selection rule mentioned above: B is violated, B − L is not.

At zero temperature, the field fluctuations that induce baryon and lepton number violation are
vacuum fluctuations, called instantons [67]. Since these are large field fluctuations, their probability is
exponentially suppressed. The suppression factor in the Standard Model is

e−
16π2

g2 ∼ 10−165 .

Therefore, the rate of baryon number violating processes at zero temperature is suppressed by this factor,
making these processes totally negligible. On the other hand, at high temperatures there are large thermal
fluctuations (‘sphalerons’) whose rate is not necessarily small. And, indeed, B-violation in the early
Universe is rapid as compared to the cosmological expansion at sufficiently high temperatures, provided
that (see Ref. [11] for details)

〈φ〉T < T , (79)

where 〈φ〉T is the Englert–Brout–Higgs expectation value at temperature T .

One may wonder how baryon number is not conserved in the absence of explicit baryon number
violating terms in the Lagrangian of the Standard Model. To understand what is going on, let us consider
a massless left-handed fermion field in the background of the SU(2) gauge field A(x, t), which depends
on space–time coordinates in a non-trivial way. As a technicality, we set the temporal component of
the gauge field equal to zero, A0 = 0, by the choice of gauge. One way to understand the behaviour
of the fermion field in the gauge field background is to study the system of eigenvalues of the Dirac
Hamiltonian {ω(t)}. The Hamiltonian is defined in the standard way

HDirac(t) = iαi (∂i − igAi(x, t))
1− γ5

2
,

where αi = γ0γi, so that the Dirac equation has the Schrödinger form,

i
∂ψ

∂t
= HDiracψ .

So, let us discuss the eigenvalues ωn(t) of the operator HDirac(t), treating t as a parameter. These
eigenvalues are found from

HDirac(t)ψn = ωn(t)ψn .

At A = 0, the system of levels is shown schematically in Fig. 13. Importantly, there are both positive-
and negative-energy levels. According to Dirac, the lowest-energy state (Dirac vacuum) has all negative-
energy levels occupied, and all positive-energy levels empty. Occupied positive-energy levels (three of
them in Fig. 13) correspond to real fermions, while empty negative-energy levels describe antifermions
(one in Fig. 13). Fermion–antifermion annihilation in this picture is a jump of a fermion from a positive-
energy level to an unoccupied negative-energy level. As a side remark, this original Dirac picture is, in
fact, equivalent to the more conventional (by now) procedure of the quantization of the fermion field,
which does not make use of the notion of negative-energy levels. The discussion that follows can be
translated into the conventional language; however, the original Dirac picture turns out to be a lot more
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ω

Fig. 13: Fermion energy levels at zero background gauge field

transparent in our context. This is a nice example of the complementarity of various approaches in
quantum field theory.

Let us proceed with the discussion of the fermion energy levels in gauge field backgrounds. In
weak background fields, the energy levels depend on time (‘move’), but nothing dramatic happens. For
adiabatically varying background fields, the fermions merely sit on their levels, while fast-changing
fields generically give rise to jumps from, say, negative- to positive-energy levels, that is, creation of
fermion–antifermion pairs. Needless to say, fermion number (Nf −Nf̄) is conserved.

The situation is entirely different for the background fields with non-zero Q. The levels of left-
handed fermions move as shown in the left-hand panel of Fig. 14. Some levels necessarily cross zero, and

ω

t

ω

t

Fig. 14: Motion of fermion levels in background gauge fields with non-vanishing Q (shown is the case Q = 2).
Left-hand panel: left-handed fermions. Right-hand panel: right-handed fermions.

the net number of levels crossing zero from below equals Q. This means that the number of left-handed
fermions is not conserved: for an adiabatically varying gauge field A(x, t), the motion of levels shown
in the left-hand panel of Fig. 14 corresponds to the case in which the initial state of the fermionic system
is vacuum (no real fermions or antifermions) whereas the final state contains Q real fermions (two in
the particular case shown). If the evolution of the gauge field is not adiabatic, the result for the fermion
number non-conservation is the same: there may be jumps from negative-energy levels to positive-energy
levels or vice versa. These correspond to creation or annihilation of fermion–antifermion pairs, but the
net change of the fermion number (number of fermions minus number of antifermions) remains equal
to Q. Importantly, the initial and final field configurations of the gauge field may be trivial, A = 0 (up
to gauge transformation), so that fermion number non-conservation may occur due to a fluctuation that
begins and ends in the gauge field vacuum. These are precisely instanton-like vacuum fluctuations. At
finite temperatures, processes of this type occur due to thermal fluctuations, i.e., sphalerons.
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If the same gauge field interacts also with right-handed fermions, the motion of the levels of the
latter is opposite to that of left-handed fermions. This is shown in the right-hand panel of Fig. 14.
The change in the number of right-handed fermions is equal to −Q. So, if the gauge interaction is
vector-like, the total fermion number (Nleft + Nright) is conserved, while chirality (Nleft − Nright) is
violated even for massless fermions. This explains why there is no baryon number violation in QCD.
The above discussion implies, instead, that there is non-perturbative violation of chirality in QCD in
the limit of massless quarks. The latter phenomenon has non-trivial consequences, which are indeed
confirmed by phenomenology. In this sense anomalous non-conservation of fermion quantum numbers
is an experimentally established fact.

In electroweak theory, right-handed fermions do not interact with the SU(2)W gauge field, while
left-handed fermions do. Therefore, fermion number is not conserved (the anomalous relations (75) and
(76) suggest that this result is valid also in the presence of the Standard Model Yukawa couplings of
quarks and leptons; this is indeed the case). Since fermions of each SU(2)W doublet interact with the
SU(2)W gauge bosons in one and the same way, they are equally created in a process involving a gauge
field fluctuation with non-zero Q. This again leads to the relations (77) and (78), i.e., to the selection
rules ∆B = ∆L and ∆Le = ∆Lµ = ∆Lτ .

5.3 Electroweak baryogenesis
It is tempting to make use of the electroweak mechanism of baryon number non-conservation for ex-
plaining the baryon asymmetry of the Universe. This scenario is known as electroweak baryogenesis. It
meets two problems, however. One is that CP-violation in the Standard Model is too weak: the CKM
mechanism alone is insufficient to generate a realistic value of the baryon asymmetry. Hence, one needs
extra sources of CP-violation. Another problem has to do with departure from thermal equilibrium that is
necessary for the generation of the baryon asymmetry. At temperatures well above 100 GeV, electroweak
symmetry is restored, the expectation value of the Englert–Brout–Higgs field φ is zero, the relation (79)
is valid and the baryon number non-conservation is rapid as compared to the cosmological expansion. At
temperatures of order 100 GeV, the relation (79) may be violated, but the Universe expands very slowly:
the cosmological time-scale at these temperatures is

H−1 =
M∗Pl

T 2
∼ 10−10 s , (80)

which is very large by the electroweak physics standards. The only way in which a strong departure from
thermal equilibrium at these temperatures may occur appears to be the first-order phase transition.

The property that at temperatures well above 100 GeV the expectation value of the Englert–Brout–
Higgs field is zero, while it is non-zero in vacuo, suggests that there may be a phase transition from the
phase with 〈φ〉 = 0 to the phase with 〈φ〉 6= 0. The situation is pretty subtle here, as φ is not gauge
invariant and hence cannot serve as an order parameter, so the notion of phases with 〈φ〉 = 0 and
〈φ〉 6= 0 is vague. In fact, neither electroweak theory nor most of its extensions have a gauge-invariant
order parameter, so there is no real distinction between these ‘phases’. This situation is similar to that in a
liquid–vapour system, which does not have an order parameter and may or may not experience a vapour–
liquid phase transition as temperature decreases, depending on other, external parameters characterizing
this system, e.g., pressure. In the Standard Model the role of such an ‘external’ parameter is played by
the Englert–Brout–Higgs self-coupling λ or, in other words, the Higgs boson mass.

Continuing to use somewhat sloppy terminology, we recall that in thermal equilibrium any system
is at the global minimum of its free energy. To figure out the expectation value of φ at a given temperature,
one introduces the temperature-dependent effective potential Veff(φ;T ), which is equal to the free energy
density in the system where the average field is pinpointed to a prescribed value φ, but otherwise there is
thermal equilibrium. Then the global minimum of Veff at a given temperature is at the equilibrium value
of φ, while local minima correspond to metastable states.
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Veff(φ) Veff(φ)

φ φ

Fig. 15: Effective potential as function of φ at different temperatures. Left: first-order phase transition. Right:
second-order phase transition. Upper curves correspond to higher temperatures. Black blobs show the expectation
value of φ in thermal equilibrium. The arrow in the left-hand panel illustrates the transition from the metastable,
supercooled state to the ground state.

The interesting case for us is the first-order phase transition. In this case, the system evolves as
follows. At high temperatures, there exists one minimum of Veff at φ = 0, and the expectation value of the
Englert–Brout–Higgs field is zero. As the temperature decreases, another minimum appears at finite φ,
and then becomes lower than the minimum at φ = 0; see left-hand panel of Fig. 15. However, the minima
with φ = 0 and φ 6= 0 are separated by a barrier of Veff , the probability of the transition from the phase
φ = 0 to the phase φ 6= 0 is very small for some time and the system gets overcooled. The transition
occurs when the temperature becomes sufficiently low and the transition probability sufficiently high.
This is to be contrasted to the case, e.g., of the second-order phase transition, right-hand panel of Fig. 15.
In the latter case, the field slowly evolves, as the temperature decreases, from zero to non-zero vacuum
value, and the system remains very close to thermal equilibrium at all times.

During the first-order phase transition, the field cannot jump from φ = 0 to φ 6= 0 homogeneously
throughout the whole space: intermediate homogeneous configurations have free energies proportional
to the volume of the system (recall that Veff is free energy density), i.e., infinite. Instead, the transition
occurs just like the first-order vapour–liquid transition, through boiling. Thermal fluctuations sponta-
neously create bubbles of the new phase inside the old phase. These bubbles then grow, their walls
eventually collide and the new phase finally occupies the entire space. The Universe boils. In the cos-
mological context, this process happens when the bubble nucleation rate per Hubble time per Hubble
volume is roughly of order 1, i.e., when a few bubbles are created in Hubble volume in Hubble time. The
velocity of the bubble wall in the relativistic cosmic plasma is roughly of the order of the speed of light
(in fact, it is somewhat smaller, from 0.1 to 0.01), simply because there are no relevant dimensionless
parameters characterizing the system. Hence, the bubbles grow large before their walls collide: their size
at collision is roughly of the order of the Hubble size (in fact, one or two orders of magnitude smaller).
While the bubble is microscopic at nucleation—its size is determined by the electroweak scale and is
roughly of order (100 GeV)−1 ∼ 10−16 cm—its size at collision of walls is macroscopic, R ∼ 10−2–
10−3 cm, as follows from (80). Clearly, boiling is a highly non-equilibrium process, and one may hope
that the baryon asymmetry may be generated at that time. And, indeed, there exist mechanisms of the
generation of the baryon asymmetry, which have to do with interactions of quarks and leptons with mov-
ing bubble walls. The value of the resulting baryon asymmetry may well be of order 10−10, as required
by observations, provided that there is enough CP-violation in the theory.

A necessary condition for the electroweak generation of the baryon asymmetry is that the inequal-
ity (79) must be violated just after the phase transition. Indeed, in the opposite case the electroweak
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baryon number violating processes are fast after the transition, and the baryon asymmetry, generated
during the transition, is washed out afterwards. Hence, the phase transition must be of strong enough
first order. This is not the case in the Standard Model. To see why this is so, and to get an idea of in
which extensions of the Standard Model the phase transition may be of strong enough first order, let us
consider the effective potential in some detail. At zero temperature, the Englert–Brout–Higgs potential
has the standard form,

V (φ) = −m
2

2
|φ|2 +

λ

4
|φ|4 .

Here

|φ| ≡
(
φ†φ
)1/2

(81)

is the length of the Englert–Brout–Higgs doublet φ, m2 = λv2 and v = 246 GeV is the Englert–Brout–
Higgs expectation value in vacuo. The Higgs boson mass is related to the latter as follows:

mH =
√

2λv . (82)

Now, to the leading order of perturbation theory, the finite-temperature effects modify the effective po-
tential into

Veff(φ, T ) =
α(T )

2
|φ|2 − β

3
T |φ|3 +

λ

4
|φ|4 . (83)

Here α(T ) = −m2 + ĝ2T 2, where ĝ2 is a positive linear combination of squares of coupling constants
of all fields to the Englert–Brout–Higgs field (in the Standard Model, a linear combination of g2, g′ 2 and
y2
i , where g and g′ are SU(2)W and U(1)Y gauge couplings and yi are Yukawa couplings). The phase

transition occurs roughly when α(T ) = 0. An important parameter β is a positive linear combination
of cubes of coupling constants of all bosonic fields to the Englert–Brout–Higgs field. In the Standard
Model, β is a linear combination of g3 and g′ 3, i.e., a linear combination of M3

W/v
3 and M3

Z/v
3,

β =
1

2π

2M3
W +M3

Z

v3
. (84)

The cubic term in (83) is rather peculiar: in view of (81), it is not analytic in the original Englert–Brout–
Higgs field φ. Yet this term is crucial for the first-order phase transition: for β = 0 the phase transition
would be of the second order.

Question. Show that the phase transition is second order for β = 0.

The origin of the non-analytic cubic term can be traced back to the enhancement of the Bose–
Einstein thermal distribution at low momenta, p,m� T ,

fBose(p) =
1

e

√
p2+m2

a
T − 1

' T√
p2 +m2

a

,

where m ' ga|φ| is the mass of the boson a that is generated due to the non-vanishing Englert–Brout–
Higgs field, and ga is the coupling constant of the field a to the Englert–Brout–Higgs field. Clearly, at
p� g|φ| the distribution function is non-analytic in φ,

fBose(p) '
T

ga|φ|
.

It is this non-analyticity that gives rise to the non-analytic cubic term in the effective potential. Impor-
tantly, the Fermi–Dirac distribution,

fFermi(p) =
1

e

√
p2+m2

a
T + 1

,
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is analytic in m2
a, and hence φ†φ, so fermions do not contribute to the cubic term.

With the cubic term in the effective potential, the phase transition is indeed of the first order:
at high temperatures the coefficient α is positive and large, and there is one minimum of the effective
potential at φ = 0, while for α small but still positive there are two minima. The phase transition occurs
at α ≈ 0; at that moment

Veff(φ, T ) ≈ −βT
3
|φ|3 +

λ

4
|φ|4 .

We find from this expression that immediately after the phase transition the minimum of Veff is at

φ ' βT

λ
.

Hence, the necessary condition for successful electroweak baryogenesis, φ > T , translates into

β > λ . (85)

According to (82), λ is proportional to m2
H, whereas in the Standard Model β is proportional to (2M3

W +
M3

Z). Therefore, the relation (85) holds for small Higgs boson masses only; in the Standard Model one
makes use of (82) and (84) and finds that this happens formH < 50 GeV, while in realitymH = 125 GeV.
In fact, in the Standard Model with mH = 125 GeV, there is no phase transition at all; the electroweak
transition is a smooth crossover instead. The latter fact is not visible from the expression (83), but that
expression is the lowest-order perturbative result, while the perturbation theory is not applicable for
describing the transition in the Standard Model with large mH.

This discussion indicates a possible way to make the electroweak phase transition strong. What
one needs is the existence of new bosonic fields that have large enough couplings to the Englert–Brout–
Higgs field(s), and hence provide large contributions to β. To have an effect on the dynamics of the
transition, the new bosons must be present in the cosmic plasma at the transition temperature, T ∼
100 GeV, so their masses should not be too high, M . 300 GeV. In supersymmetric extensions of the
Standard Model, the natural candidate for a long time has been stop (superpartner of top-quark) whose
Yukawa coupling to the Englert–Brout–Higgs field is the same as that of top, that is, large. The light stop
scenario for electroweak baryogenesis would indeed work, as has been shown by the detailed analysis in
Refs. [68–70].

There are other possibilities to make the electroweak transition strongly first order. Generically,
they require an extension of the scalar sector of the Standard Model and predict new fairly light scalars
which interact with the Standard Model Englert–Brout–Higgs field and may or may not participate in
gauge interactions.

Yet another issue is CP-violation, which has to be strong enough for successful electroweak baryo-
genesis. As the asymmetry is generated in the interactions of quarks and leptons with the bubble walls,
CP-violation must occur at the walls. Recall now that the walls are made of the scalar field(s). This
points towards the necessity of CP-violation in the scalar sector, which may only be the case in a theory
containing scalar fields other than the Standard Model Englert–Brout–Higgs field.

To summarize, electroweak baryogenesis requires a considerable extension of the Standard Model,
with masses of new particles in the range 100–300 GeV. Hence, this mechanism will most likely be ruled
out or confirmed by the LHC. We emphasize, however, that electroweak baryogenesis is not the only
option at all: an elegant and well-motivated competitor is leptogenesis [14, 15, 71]; there are many other
mechanisms proposed in the literature.

6 Before the hot epoch
6.1 Cosmological perturbations: preliminaries
With BBN theory and observations, and due to evidence, albeit indirect, for relic neutrinos, we are
confident of the theory of the early Universe at temperatures up to T ' 1 MeV, which correspond to an
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age of t ' 1 s. With the LHC, we hope to be able to learn the Universe up to temperature T ∼ 100 GeV
and age t ∼ 10−10 s. Are we going to have a handle on an even earlier epoch?

The key issue in this regard is cosmological perturbations. These are inhomogeneities in the en-
ergy density and associated gravitational potentials, in the first place. This type of inhomogeneities is
called scalar perturbations, as they are described by 3-scalars. There may exist perturbations of another
type, called tensors; these are primordial gravity waves. We will mostly concentrate on scalar perturba-
tions, since they are observed; tensor perturbations are important too, and we comment on them later on.
While perturbations of the present size of order 10 Mpc and smaller have large amplitudes today and are
non-linear, amplitudes of all known perturbations were small in the past, and the perturbations can be de-
scribed within the linearized theory. Indeed, CMB temperature anisotropy tells us that the perturbations
at the recombination epoch were roughly at the level

δ ≡ δρ

ρ
= 10−4–10−5 . (86)

Thus, the linearized theory works very well before recombination and somewhat later. We will be rather
sloppy when talking about scalar perturbations. In general relativity, there is arbitrariness in the choice of
reference frame, which can be viewed as a sort of gauge freedom. In a homogeneous and isotropic Uni-
verse, there is a preferred reference frame, in which quantities like energy density or distribution function
of CMB photons are manifestly homogeneous and isotropic. It is in this frame that the metric has FLRW
form (1). Once there are perturbations, no preferred reference frame exists any longer. As an example,
one can choose a reference frame such that the three-dimensional hypersurfaces of constant time are
hypersurfaces of constant total energy density ρ. In this frame one has δρ = 0, so Eq. (86) does not
make sense. Yet the Universe is inhomogeneous in this reference frame, since there are inhomogeneous
metric perturbations δgµν(x, t). We will skip these technicalities and denote the scalar perturbation by δ
without specifying its gauge-invariant meaning.

Equations for perturbations are obtained by writing for every variable (including metric) an ex-
pression like ρ(x, t) = ρ̄(t) + δρ(x, t) etc, where ρ̄(t) is the homogeneous and isotropic background,
which we discussed in Section 2.3. One inserts the perturbed variables into the Einstein equations and
covariant conservation equations ∇µTµν = 0 and linearizes this set of equations. In many cases one
also has to use the linearized Boltzmann equations that govern the distribution functions of particles out
of thermal equilibrium; these are necessary for evaluating the linearized perturbations of the energy–
momentum tensor. In any case, since the background FLRW metric (1) does not explicitly depend on x,
the linearized equations for perturbations do not contain x explicitly. Therefore, one makes use of the
spatial Fourier decomposition

δ(x, t) =

∫
eikxδ(k, t) d3k .

The advantage is that modes with different momenta k evolve independently in the linearized theory, i.e.,
each mode can be treated separately. Recall that dx is not the physical distance between neighbouring
points; the physical distance is a(t)dx. Thus, k is not the physical momentum (wavenumber); the
physical momentum is k/a(t). While for a given mode the comoving (or coordinate) momentum k
remains constant in time, the physical momentum gets red shifted as the Universe expands, see also
Section 2.1. In what follows we set the present value of the scale factor equal to 1 (in a spatially flat
Universe this can always be done by rescaling the coordinates x):

a0 ≡ a(t0) = 1 ;

then k is the present physical momentum and 2π/k is the present physical wavelength, which is also
called the comoving wavelength.

Properties of scalar perturbations are measured in various ways. Perturbations of fairly large
spatial scales (fairly low k) give rise to CMB temperature anisotropy and polarization, so we have very
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detailed knowledge of them. Somewhat shorter wavelengths are studied by analysing distributions of
galaxies and quasars at present and in relatively near past. There are several other methods, some of
which can probe even shorter wavelengths. There is good overall consistency of the results obtained by
different methods, so we have a pretty good understanding of many aspects of the scalar perturbations.

The cosmic medium in our Universe has several components that interact only gravitationally:
baryons, photons, neutrinos and dark matter. Hence, there may be and, in fact, there are perturbations in
each of these components. As we pointed out in Section 4, electromagnetic interactions between baryons,
electrons and photons were strong before recombination, so to a reasonable approximation these species
made a single fluid, and it is appropriate to talk about perturbations in this fluid. After recombination,
baryons and photons evolved independently.

By studying the scalar perturbations, we have learned a number of very important things. To
appreciate what they are, it is instructive to consider first the baryon–electron–photon fluid before re-
combination.

6.2 Perturbations in the expanding Universe: subhorizon and superhorizon regimes.
Perturbations in the baryon–photon fluid before recombination are nothing but sound waves. It is in-
structive to compare the wavelength of a perturbation with the horizon size. To this end, recall (see
Section 2.4) that the horizon size lH(t) is the size of the largest region which is causally connected by
the time t, and that

lH(t) ∼ H−1(t) ∼ t
at radiation domination and later, see Eq. (21). The latter relation, however, holds under the assumption
that the hot epoch was the first one in cosmology, i.e., that the radiation domination started right after the
Big Bang. This assumption is in the heart of what can be called hot Big Bang theory. We will find that
this assumption in fact is not valid for our Universe; we are going to see this ad absurdum, so let us stick
to the hot Big Bang theory for the time being.

Unlike the horizon size, the physical wavelength of a perturbation grows more slowly. As an
example, at radiation domination

λ(t) =
2πa(t)

k
∝
√
t ,

while at matter domination λ(t) ∝ t2/3. For obvious reasons, the modes with λ(t) � H−1(t) and
λ(t) � H−1(t) are called subhorizon and superhorizon at time t, respectively. We are able to study
the modes which are subhorizon today; longer modes are homogeneous throughout the visible Universe
and are not observed as perturbations. However, the wavelengths which are subhorizon today were
superhorizon at some earlier epoch. In other words, the physical momentum k/a(t) was smaller than
H(t) at early times; at time t× such that

q(t×) ≡ k

a(t×)
= H(t×) ,

the mode entered the horizon, and after that evolved in the subhorizon regime k/a(t) � H(t), see
Fig. 16. It is straightforward to see that for all cosmologically interesting wavelengths, horizon crossing
occurs much later than 1 s after the Big Bang, i.e., at the time we are confident about. So, there is no
guesswork at this point.

Question. Estimate the temperature at which a perturbation of comoving size 10 kpc entered the horizon.

Another way to look at the superhorizon–subhorizon behaviour of perturbations is to introduce a
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t

q2(t) q1(t) = k1/a(t)

H(t)

t×

Fig. 16: Physical momenta q(t) = k/a(t) (solid lines, k2 < k1) and Hubble parameter (dashed line) at radiation-
and matter-dominated epochs. Here t× is the horizon entry time.

new time coordinate (cf. Eq. (20)),

η =

∫ t

0

dt′

a(t′)
. (87)

Note that this integral converges at the lower limit in the hot Big Bang theory. In terms of this time
coordinate, the FLRW metric (1) reads

ds2 = a2(η)(dη2 − dx2) .

In coordinates (η,x), the light cones ds = 0 are the same as in Minkowski space, and η is the coordinate
size of the horizon, see Fig. 17.

Every mode of perturbation has a time-independent coordinate wavelength 2π/k, and at small η
it is in superhorizon regime, 2π/k � η, and after horizon crossing at time η× = η(t×) it becomes
subhorizon.

Fig. 17: Causal structure of space–time in the hot Big Bang theory. Here tr is the conformal time at recombination.
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6.3 Hot epoch was not the first
One immediately observes that this picture falsifies the hot Big Bang theory. Indeed, we see the horizon
at recombination lH(trec) at an angle ∆θ ≈ 2◦, as schematically shown in Fig. 17. By causality, at re-
combination there should be no perturbations of larger wavelengths, as any perturbation can be generated
within the causal light cone only. In other words, CMB temperature must be isotropic when averaged
over angular scales exceeding 2◦; there should be no cold or warm spots of angular size larger than 2◦.
Now, CMB provides us with the photographic picture shown in Fig. 18. It is seen by the naked eye that

Fig. 18: CMB sky as seen by Planck

there are cold and warm regions whose angular size much exceeds 2◦; in fact, there are perturbations
of all angular sizes up to those comparable to the entire sky. We come to an important conclusion: the
scalar perturbations were built in at the very beginning of the hot epoch. The hot epoch was not the first,
it was preceded by some other epoch, and the cosmological perturbations were generated then.

Question. Assuming (erroneously) that there is no dark energy, and that recombination occurred deep in
the matter-dominated epoch, estimate the angular scale of the horizon at recombination.

Another manifestation of the fact that the scalar perturbations were there already at the beginning
of the hot epoch is the existence of peaks in the angular spectrum of CMB temperature. In general,
perturbations in the baryon–photon medium before recombination are acoustic waves,

δ(k, t) = δ(k)eikx cos

[∫ t

0
vs

k

a(t′)
dt′ + ψk

]
, (88)

where vs is sound speed, δ(k) is time-independent amplitude and ψk is time-independent phase. This
expression is valid, however, in the subhorizon regime only, i.e., at late times. The two solutions in
superhorizon regime at radiation domination are

δ(t) = const , (89a)

δ(t) =
const
t3/2

. (89b)

Were the perturbations generated in a causal way at radiation domination, they would be always subhori-
zon. In that case the solutions (89) would be irrelevant, and there would be no reason for a particular
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choice of phase ψk in Eq. (88). One would rather expect that ψk is a random function of k. This is
indeed the case for specific mechanisms of the generation of density perturbations at the hot epoch [72].

On the other hand, if the perturbations existed at the very beginning of the hot epoch, they were
superhorizon at sufficiently early times, and were described by the solutions (89). The consistency of
the whole cosmology requires that the amplitude of perturbations was small at the beginning of the
hot stage. The solution (89b) rapidly decays away, and towards the horizon entry the perturbation is
in constant mode (89a). So, the initial condition for the further evolution is unique modulo amplitude
δ(k), and hence the phase ψ(k) is uniquely determined. For modes that enter the horizon at radiation
domination this phase is equal to zero and, after entering the horizon, the modes oscillate as follows:

δ(k, t) = δ(k)eikx cos

[∫ t

0
vs

k

a(t′)
dt′
]
.

At recombination, the perturbation is

δ(k, tr) = δ(k)eikx cos(krs) , (90)

where

rs =

∫ trec

0
vs

dt′

a(t′)

is the comoving size of the sound horizon at recombination, while its physical size equals a(trec)rs.
So, we see that the density perturbation of the baryon–photon plasma at recombination oscillates as a
function of wavenumber k. The period of this oscillation is determined by rs, which is a straightforwardly
calculable quantity.

So, if the perturbations existed already at the beginning of the hot stage, they show the oscillatory
behaviour in momentum at the recombination epoch. This translates into an oscillatory pattern of the
CMB temperature angular spectrum. Omitting details, the fluctuation of the CMB temperature is partially
due to the density perturbation in the baryon–photon medium at recombination. Namely, the temperature
fluctuation of photons coming from the direction n in the sky is, roughly speaking,

δT (n) ∝ δγ(xn, ηrec) + δTsmooth(n) ,

where Tsmooth(n) corresponds to the non-oscillatory part of the CMB angular spectrum and

xn = −n(η0 − ηrec) .

Here (η0−ηrec) is the coordinate distance to the sphere of photon last scattering, and xn is the coordinate
of the place where the photons coming from the direction n scatter the last time. The quantity Tsmooth(n)
originates from the gravitational potential generated by the dark matter perturbation; dark matter has
zero pressure at all times, so there are no sound waves in this component, and there are no oscillations at
recombination as a function of momentum.

One expands the temperature variation on the celestial sphere in spherical harmonics:

δT (n) =
∑

lm

almYlm(θ, φ).

The multipole number l characterizes the temperature fluctuations at the angular scale ∆θ = π/l. The
sound waves of momentum k are seen roughly at an angle ∆θ = ∆x/(η0 − ηrec), where ∆x = π/k is
the coordinate half-wavelength. Hence, there is the correspondence

l←→ k(η0 − ηrec) .
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Fig. 19: The angular spectrum of the CMB temperature anisotropy [73]. The quantity on the vertical axis is Dl

defined in (92). Note the unconventional scale on the horizontal axis, aimed at showing both small-l region (large
angular scales) and large-l region.

Oscillations in momenta in Eq. (90) thus translate into oscillations in l, and these are indeed observed,
see Fig. 19.

To understand what is shown in Fig. 19, we note that all observations today support the hypothesis
that alm are independent Gaussian random variables. For a hypothetical ensemble of Universes like
ours, the average values of products of the coefficients alm would obey

〈alma∗l′m′〉 = Clδll′δmm′ . (91)

This gives the expression for the temperature fluctuation:

〈[δT (n)]2〉 =
∑

l

2l + 1

4π
Cl ≈

∫
dl

l
Dl ,

where

Dl =
l(l + 1)

2π
Cl . (92)

Of course, one cannot measure the ensemble average (91). The definition of Cl used in experiments is

Cl =
1

2l + 1

l∑

m=−l
|alm|2 ,

where alm are measured quantities. Since we have only one Universe, this is generically different from
the ensemble average (91): for given l, there are only 2l + 1 measurements, and the intrinsic statistical
uncertainty—cosmic variance—is of order (2l + 1)−1/2. It is this uncertainty, rather than experimental
error, that is shown in Fig. 19.

We conclude that the facts that the CMB angular spectrum has oscillatory behaviour and that there
are sizeable temperature fluctuations at l < 50 (angular scale greater than the angular size of 2◦ of the
horizon at recombination) unambiguously tell us that the density perturbations were indeed superhorizon
at the hot cosmological stage. The hot epoch has to be preceded by some other epoch—the epoch of the
generation of perturbations.
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6.4 Primordial scalar perturbations
There are several things which we already know about the primordial density perturbations. By ‘pri-
mordial’ we mean the perturbations deep in the superhorizon regime at the radiation-domination epoch.
As we already know, perturbations are time-independent in this regime, see Eq. (89a). They set the ini-
tial conditions for further evolution, and this evolution is well understood, at least in the linear regime.
Hence, using observational data, one is able to measure the properties of primordial perturbations. Of
course, since the properties we know of are established by observations, they are valid within certain error
bars. Conversely, deviations from the results listed below, if observed, would be extremely interesting.

First, density perturbations are adiabatic. This means that there are perturbations in the energy
density, but not in composition. More precisely, the baryon-to-entropy ratio and dark matter-to-entropy
ratio are constant in space,

δ
(nB

s

)
= const , δ

(nDM

s

)
= const . (93)

This is consistent with the generation of the baryon asymmetry and dark matter at the hot cosmological
epoch: in that case, all particles were at thermal equilibrium early at the hot epoch, the temperature
completely characterized the whole cosmic medium at that time and as long as physics behind the baryon
asymmetry and dark matter generation is the same everywhere in the Universe, the baryon and dark
matter abundances (relative to the entropy density) are necessarily the same everywhere. In principle,
there may exist entropy (another term is isocurvature) perturbations, such that at the early hot epoch
energy density (dominated by relativistic matter) was homogeneous, while the composition was not.
This would give initial conditions for the evolution of density perturbations, which would be entirely
different from those characteristic of the adiabatic perturbations. As a result, the angular spectrum of
the CMB temperature anisotropy would be entirely different. No admixture of the entropy perturbations
has been detected so far, but it is worth emphasizing that even a small admixture will show that many
popular mechanisms for generating dark matter and/or baryon asymmetry have nothing to do with reality.
One will have to think, instead, that the baryon asymmetry and/or dark matter were generated before
the beginning of the hot stage. A notable example is the axion misalignment mechanism discussed
in Section 4.4: in a latent sense, the axion dark matter exists from the very beginning in that case, and
perturbations in the axion field δθ0(x) (which may be generated together with the adiabatic perturbations)
would show up as entropy perturbations in dark matter.

Second, the primordial density perturbations are Gaussian random fields. Gaussianity means that
the three-point and all odd correlation functions vanish, while the four-point function and all higher order
even correlation functions are expressed through the two-point function via Wick’s theorem:

〈δ(k1)δ(k2)δ(k3)〉 = 0,

〈δ(k1)δ(k2)δ(k3)δ(k4)〉 = 〈δ(k1)δ(k2)〉 · 〈δ(k3)δ(k4)〉
+ permutations of momenta .

We note that this property is characteristic of vacuum fluctuations of non-interacting (linear) quantum
fields. Hence, it is quite likely that the density perturbations originate from the enhanced vacuum fluctu-
ations of non-interacting or weakly interacting quantum field(s). The free quantum field has the general
form

φ(x, t) =

∫
d3ke−ikx

(
f

(+)
k (t)a†k + eikxf

(−)
k (t)ak

)
,

where a†k and ak are creation and annihilation operators. For the field in Minkowski space–time, one has
f

(±)
k (t) = e±iωkt, while enhancement, e.g., due to the evolution in time-dependent background, means

that f (±)
k are large. But, in any case, Wick’s theorem is valid, provided that the state of the system is

vacuum, ak|0〉 = 0.
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We note in passing that non-Gaussianity is an important topic of current research. It would show
up as a deviation from Wick’s theorem. As an example, the three-point function (bispectrum) may be
non-vanishing,

〈δ(k1)δ(k2)δ(k3)〉 = δ(k1 + k2 + k3) G(k2
i ; k1k2; k1k3) 6= 0 .

The functional dependence of G(k2
i ; k1k2; k1k3) on its arguments is different in different models

of generation of primordial perturbations, so this shape is a potential discriminator. In some models the
bispectrum vanishes, e.g., due to symmetries. In that case the trispectrum (connected four-point function)
may be measurable instead. It is worth emphasizing that non-Gaussianity has not been detected yet.

Another important property is that the primordial power spectrum of density perturbations is
nearly, but not exactly, flat. For a homogeneous and anisotropic Gaussian random field, the power
spectrum completely determines its only characteristic, the two-point function. A convenient definition
is

〈δ(k)δ(k′)〉 =
1

4πk3
P(k)δ(k + k′) . (94)

The power spectrum P(k) defined in this way determines the fluctuation in a logarithmic interval of
momenta,

〈δ2(x)〉 =

∫ ∞

0

dk

k
P(k) .

By definition, the flat spectrum is such that P is independent of k. In this case all spatial scales are alike;
no scale is enhanced with respect to another. It is worth noting that the flat spectrum was conjectured
by Harrison [74], Zeldovich [75] and Peebles and Yu [76] at the beginning of the 1970s, long before
realistic mechanisms of the generation of density perturbations have been proposed.

In view of the approximate flatness, a natural parametrization is

P(k) = As

(
k

k∗

)ns−1

, (95)

where As is the amplitude, ns− 1 is the tilt and k∗ is a fiducial momentum, chosen at one’s convenience.
The flat spectrum in this parametrization has ns = 1. This is inconsistent with the cosmological data,
which give [21]

ns = 0.968± 0.06 .

This quantifies what we mean by a nearly, but not exactly flat, power spectrum.

6.5 Inflation or not?
The pre-hot epoch must be long in terms of the time variable η introduced in Eq. (87). What we would
like to have is that a large part of the Universe (e.g., the entire visible part) be causally connected towards
the end of that epoch, see Fig. 20. A long duration in η does not necessarily mean a long duration in
physical time t; in fact, the physical duration of the pre-hot epoch may be tiny.

An excellent hypothesis on the pre-hot stage is inflation, the epoch of nearly exponential expan-
sion [77–82],

a(t) = e
∫
Hdt , H ≈ const .

Inflation makes the whole visible Universe, and likely a much greater region of space, causally connected
at very early times. The horizon size at inflation is at least

lH(t) = a(t)

∫ t

ti

dt′

a(t′)
= H−1eH(t−ti) ,
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Fig. 20: Causal structure of space–time in the real Universe

where ti is the time inflation begins, and we set H = const for illustrational purposes. This size is huge
for t− ti � H−1, as desired.

Question. Assuming that at inflation H � MPl, show that if the duration of inflation ∆t is larger than
100H−1, the whole visible Universe is causally connected by the end of inflation. What is 100H−1 in
seconds for H = 1015 GeV? Using the time variable η, show that the causal structure of space–time in
inflationary theory with ∆t > 100H−1 is the one shown in Fig. 20.

From the viewpoint of perturbations, the physical momentum q(t) = k/a(t) decreases (gets red
shifted) at inflation, while the Hubble parameter stays almost constant. So, every mode is first subhorizon
(q(t) � H(t)) and later superhorizon (q(t) � H(t)). This situation is opposite to what happens at
radiation and matter domination, see Fig. 21; this is precisely the prerequisite for generating the density
perturbations. In fact, inflation does generate primordial density perturbations [83–87] whose properties
are consistent with everything we know about them. Indeed, at the inflationary epoch, fluctuations of all

inflation RD, MD epochs

H(t)

q(t)= a(t)
k

tte

inside
horizon

inside
horizon

outside
horizon

Fig. 21: Physical momentum and Hubble parameter at inflation and later: te is the time of the inflation end
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light fields get enhanced greatly due to the fast expansion of the Universe. This is true, in particular, for
the field that dominates the energy density at inflation, called an inflaton. Enhanced vacuum fluctuations
of the inflaton are nothing but perturbations in the energy density at the inflationary epoch, which are
reprocessed into perturbations in the hot medium after the end of inflation. The inflaton field is very
weakly coupled, so the non-Gaussianity in the primordial scalar perturbations is very small [88]. In fact,
it is so small that its detection is problematic even in the distant future.

The approximate flatness of the primordial power spectrum in inflationary theory is explained by
the symmetry of the de Sitter space–time, which is the space–time of constant Hubble rate,

ds2 = dt2 − e2Htdx2 , H = const .

This metric is invariant under spatial dilatations supplemented by time translations,

x→ λx , t→ t− 1

2H
log λ .

Therefore, all spatial scales are alike, which is also a defining property of the flat power spectrum. At
inflation, H is almost constant in time and the de Sitter symmetry is an approximate symmetry. For this
reason, inflation automatically generates a nearly flat power spectrum.

The distinguishing property of inflation is the generation of tensor modes (primordial gravity
waves) of sizeable amplitude and nearly flat power spectrum. The gravity waves are thus a smoking gun
for inflation. The reason for their generation at inflation is that the exponential expansion of the Universe
enhances vacuum fluctuations of all fields, including the gravitational field itself. Particularly interesting
are gravity waves whose present wavelengths are huge, 100 Mpc and larger. Many inflationary models
predict their amplitudes to be very large, of order 10−6 or so. Shorter gravity waves are generated too,
but their amplitudes decay after horizon entry at radiation domination, and today they have much smaller
amplitudes making them inaccessible to gravity wave detectors like LIGO or VIRGO, pulsar timing
arrays etc. A conventional characteristic of the amplitude of primordial gravity waves is the tensor-to-
scalar ratio

r =
PT

P ,

where P is the scalar power spectrum defined in Eq. (94) and PT is the tensor power spectrum defined
in a similar way, but for transverse traceless metric perturbations hij . The result of the search for effects
of the tensor modes on CMB temperature anisotropy is shown in Fig. 22. This search has already ruled
out some of the popular inflationary models.

All the above referred to the simplest, single-field inflationary models. In models with more
than one relevant field, the situation may be different. In particular, sizeable non-Gaussianity may be
generated, while the amplitude of tensor perturbations may be very low. So, it would be rather difficult
to rule out the inflationary scenario as a whole.

Inflation is not the only hypothesis proposed so far. One option is the bouncing Universe scenario,
which assumes that the cosmological evolution begins from contraction, then the contracting stage termi-
nates at some moment of time (bounce) and is followed by expansion. A version is the cycling Universe
scenario with many cycles of contraction–bounce–expansion. See reviews by Lehners and Branden-
berger in Ref. [16–20]. Another scenario is that the Universe starts out from a nearly flat and static state
with nearly vanishing energy density. Then the energy density increases and, according to the Friedmann
equation, the expansion speeds up. This goes under the name of the Genesis scenario [90]. Theoretical
realizations of these scenarios are more difficult than inflation, but they are not impossible, as became
clear recently.

The generation of the density perturbations is less automatic in scenarios alternative to inflation.
Similarly to inflationary theory, the flatness of the scalar power spectrum is likely to be due to some
symmetry. One candidate symmetry is conformal invariance [91–94]. The point is that the conformal
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Fig. 22: Allowed regions (at 68% and 95% confidence levels) in the plane (ns, r), where ns is the scalar spectral
index and r is the tensor-to-scalar ratio [89]. The right lower corner (the point (1.0, 0.0)) is the Harrison–Zeldovich
point (flat scalar spectrum, no tensor modes). Intervals show predictions of popular inflationary models.

group includes dilatations, xµ → λxµ. This property indicates that the theory possesses no scale and has
a good chance for producing the flat spectrum. A model building along this direction has begun rather
recently [92–94].

6.6 Hunt continues
Until now, only very basic facts about the primordial cosmological perturbations have been observa-
tionally established. Even though very suggestive, these facts by themselves are not sufficient to un-
ambiguously figure out what was the Universe at the pre-hot epoch of its evolution. New properties of
cosmological perturbations will hopefully be discovered in the future and shed more light on this pre-hot
epoch. Let us discuss some of the potential observables.

6.6.1 Tensor perturbations = relic gravity waves
As we discussed, primordial tensor perturbations are predicted by many inflationary models. On the
other hand, there seems to be no way of generating a nearly flat tensor power spectrum in alternatives to
inflation. In fact, most, if not all, alternative scenarios predict unobservably small tensor amplitudes. This
is why we said that tensor perturbations are a smoking gun for inflation. Until recently, the most sensitive
probe of the tensor perturbations has been the CMB temperature anisotropy [95–98]. However, the most
promising tool is the CMB polarization. The point is that a certain class of polarization patterns (called
B-mode) is generated by tensor perturbations, while scalar perturbations are unable to create it [99,100].
Hence, dedicated experiments aiming at measuring the CMB polarization may well discover the tensor
perturbations, i.e., relic gravity waves. Needless to say, this would be a profound discovery. To avoid
confusion, let us note that the CMB polarization has been already observed, but it belongs to another
class of patterns (so-called E-mode) and is consistent with the existence of the scalar perturbations only.
The original claim of the BICEP-2 experiment [101] to detect the B-mode generated by primordial tensor
perturbations was turned down [102]: the B-mode is there, but it is due to dust in our Galaxy.
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6.6.2 Non-Gaussianity.
As we pointed out already, non-Gaussianity of density perturbations is very small in the simplest in-
flationary models. Hence, its discovery will signal that either inflation and inflationary generation of
density perturbations occurred in a rather complicated way, or an alternative scenario was realized. Once
the non-Gaussianity is discovered, and its shape is revealed even with modest accuracy, many concrete
models will be ruled out, while at most a few will get strong support.

6.6.3 Statistical anisotropy.
In principle, the power spectrum of density perturbations may depend on the direction of momentum,
e.g.,

P(k) = P0(k)

(
1 + wij(k)

kikj
k2

+ · · ·
)
,

where wij is a fundamental tensor in our part of the Universe (odd powers of ki would contradict com-
mutativity of the Gaussian random field δ(k), see Eq. (94)). Such a dependence would definitely imply
that the Universe was anisotropic at the pre-hot stage, when the primordial perturbations were gener-
ated. This statistical anisotropy is rather hard to obtain in inflationary models, though it is possible in
inflation with strong vector fields [103–105]. On the other hand, statistical anisotropy is natural in some
other scenarios, including conformal models [106, 107]. The statistical anisotropy would show up in
correlators [108, 109]

〈almal′m′〉 with l′ 6= l and/or m′ 6= m.

At the moment, the constraints [110, 111] on statistical anisotropy obtained by analysing the CMB data
are getting into the region which is interesting from the viewpoint of some (though not many) models of
the pre-hot epoch.

6.6.4 Admixture of entropy perturbations.
As we explained above, even a small admixture of entropy perturbations would force us to abandon the
most popular scenarios of the generation of baryon asymmetry and/or dark matter, which assumed that
it happened at the hot epoch. Once the dark matter entropy mode is discovered, the WIMP dark matter
would no longer be well motivated, while other, very weakly interacting dark matter candidates, like
axions or superheavy relics, would be preferred. This would redirect the experimental search for dark
matter.

7 Conclusion
It is by now commonplace that the two fields studying together the most fundamental properties of matter
and the Universe—particle physics and cosmology—are tightly interrelated. The present situations in
these fields have much in common too. On the particle-physics side, the Standard Model has been
completed by the expected discovery of the Higgs boson. On the other hand, relatively recently a fairly
unexpected discovery of neutrino oscillations was made, which revolutionized our view on particles and
their interactions. There are grounds to hope for even more profound discoveries, notably by the LHC
experiments. While in the past there were definite predictions of the Standard Model, which eventually
were confirmed, there are numerous hypotheses concerning new physics, none of which is undoubtedly
plausible. On the cosmology side, the Standard Model of cosmology, ΛCDM, has been shaped, again
not without an unexpected and revolutionary discovery, in this case of the accelerated expansion of the
Universe. We hope for further profound discoveries in cosmology too. It may well be that we will
soon learn which is the dark matter particle; again, there is an entire zoo of candidates, several of which
are serious competitors. The discoveries of new properties of cosmological perturbations will hopefully
reveal the nature of the pre-hot epoch. There is a clear best guess, inflation, but it is not excluded that
future observational data will point towards something else.
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Neither in particle physics nor in cosmology are new discoveries guaranteed, however. Nature
may hide its secrets. Whether or not it does is the biggest open issue in fundamental physics.
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