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Abstract
I review aspects of the theory of the weak interaction in a set of lectures origi-
nally presented at the 2016 CERN-JINR European School of Particle Physics.
The topics discussed are: (1) the experimental basis of the V –A structure of the
weak interaction; (2) precision electroweak measurements at the Z resonance;
(3) the Goldstone Boson Equivalence Theorem; (4) the Standard Model the-
ory of the Higgs boson; (5) the future program of precision study of the Higgs
boson.
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1 Introduction
Today, all eyes in particle physics are on the Higgs boson. This particle has been central to the structure
of our theory of weak interactions ever since Weinberg and Salam first wrote down what we now call
the Standard Model of this interaction in 1967 [1,2]. As our understanding of particle physics developed
over the following decades. what lagged behind was our knowledge of this particle and its interactions.
Increasingly, the remaining mysteries of particle physics became centered on this particle and the Higgs
field of which it is a part.

In 2012, the Higgs boson was finally discovered by the ATLAS and CMS experiments at the
LHC [3, 4]. Finally, we have the opportunity to study this particle in detail and to learn some of its
secrets by direct observation. Many students at this summer school, and many others around the world,
are involved in this endeavor. So it is worthwhile to review the theory of the Higgs boson and the broader
theory of weak interactions in which it is embedded. That is the purpose of these lectures.

To learn where we are going, it is important to understand thoroughly where we have been. For
this reason, the first half of this lecture series is devoted to historical topics. In Section 2, I review the
basic formulae of the Standard Model and set up my notation. An important property of the Standard
Model is that, unexpectedly at first sight, charge-changing weak interactions couple only to left-handed-
polarized fermions. This structure, called the V –A interaction, is the reason that we need the Higgs
field in the first place. In Section 3, I review the most convincing experimental tests of V –A. Section 4
reviews the precision measurements on the weak interaction made possible by the e+e− experiments of
the 1990’s at the Z resonance. These experiments confirmed the basic structure of the Standard Model
and made the Higgs field a necessity.

One aspect of the Higgs field that is subtle and difficult to understand but very powerful it is
application is the influence of the Higgs field on the high-energy dynamics of vector bosons W and Z.
Section 5 is devoted to this topic. The physics of W and Z bosons at high energy is full of seemingly
mysterious enhancements and cancellations. The rule that explains these is the connection to the Higgs
field through a result called the Goldstone Boson Equivalence Theorem, first enunciated by Cornwall,
Levin, and Tiktopoulos and Vayonakis [5, 6]. In Section 5, I explain this theorem and illustrate the way
it controls the energy-dependence of a number of interesting high-energy processes.

In Sections 6 and 7, I turn to the study of the Higgs boson itself. Section 6 is devoted to the
Standard Model theory of the Higgs boson. I will review the general properties of the Higgs boson
and explain in some details its expected pattern of decay models. Section 7 is devoted to the remaining
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mysteries of the Higgs boson and the possibility of their elucidation through a future program of precision
measurements.

2 Formalism of the Standard Model
To begin, I write the formalism of the Standard Model (SM) in a form convenient for the analysis given
these lectures. The formalism of the SM is standard material for students of particle physics, so I assume
that you have seen this before. It is explained more carefully in many textbooks (for example, [7, 8]).

2.1 Gauge boson interactions
The SM is a gauge theory based on the symmetry group SU(2) × U(1). A gauge theory includes
interactions mediated by vector bosons, one boson for each generator of the gauge symmetry G. The
coupling of spin 0 and spin 1

2 particles to these vector bosons is highly restricted by the requirements of
gauge symmetry. The interactions of these fermions and scalars with one another is much less restricted,
subject only to the constraints of the symmetryG as a global symmetry. Thus, the theory of fermions and
vector bosons is extremely tight, while the introduction of a scalar field such as the Higgs field introduces
a large number of new and somewhat uncontrolled interaction terms.

The SM contains 4 vector bosons corresponding to the 3 generators of SU(2) and 1 generator of
U(1). I will call these

Aaµ , Bµ , (1)

with a = 1, 2, 3. These couple to fermion and scalar fields only through the replacement of the derivatives
by covariant derivative

∂µ → Dµ = (∂µ − igAaµta) , (2)

where ta is the generator ofG in the representation to which the fermions or scalars are assigned. For the
SM, fermion and scalar fields are assign SU(2), or weak isospin, quantum numbers 0 or 1

2 and a U(1),
or hypercharge, quantum number Y . The covariant derivative is then written more explicitly as

Dµ = ∂µ − igAaµta − ig′BµY , (3)

with
ta = 0 for I = 0 , ta =

σa

2
for I =

1

2
. (4)

This formalism makes precise predictions for the coupling of the weak interaction vector bosons
to quarks and leptons, and to the Higgs field. To obtain the masses of the vector bosons, we need to
make one more postulate: The Higgs field obtains a nonzero value in the ground state of nature, the
vacuum state, thus spontaneously breaking the SU(2) × U(1) symmetry. This postulate is physically
very nontrivial. I will discuss its foundation and implications in some detail in Section 7. However, for
now, I will consider this a known aspect of the SM.

We assign the Higgs field ϕ the SU(2)× U(1) quantum numbers I = 1
2 , Y = 1

2 . The Higgs field
is thus a spinor in isospin space, a 2-component complex-valued vector of fields

ϕ =

(
ϕ+

ϕ0

)
(5)

The action of an SU(2)× U(1) transformation on this field is

ϕ→ exp[iαa
σa

2
+ iβ

1

2
]

(
ϕ+

ϕ0

)
. (6)
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If ϕ obtains a nonzero vacuum value, we can rotate this by an SU(2) symmetry transformation into the
form

〈ϕ〉 =
1√
2

(
0
v

)
. (7)

where v is a nonzero value with the dimensions of GeV. Once 〈ϕ〉 is in this form, any SU(2) × U(1)
transformation will disturb it, except for the particular direction

α3 = β , (8)

which corresponds to a U(1) symmetry generated by Q = (I3 + Y ). We say that the SU(2) × U(1)
symmetry generated by (Ia, Y ) is spontaneously broken, leaving unbroken only the U(1) subgroup
generated by Q.

This already gives us enough information to work out the mass spectrum of the vector bosons. The
kinetic energy term for ϕ in the SM Lagrangian is

L =

∣∣∣∣Dµϕ

∣∣∣∣
2

(9)

Replacing ϕ by its vacuum value (7), this becomes

L =
1

2

(
0 v

)
(g
σa

2
Aaµ + g′

1

2
Bµ)2

(
0
v

)
. (10)

Multiplying this out and taking the matrix element, we find, from the σ1 and σ2 terms

g2v2

8

[
(A1

µ)2 + (A2
µ)2
]
, (11)

and, from the remaining terms
v2

8

(
−gA3

µ + g′Bµ

)2

(12)

So, three linear combinations of the vector fields obtain mass by virtue of the spontaneous symmetry
breaking. This is the mechanism of mass generation called the Higgs mechanism [9–11]. The mass
eigenstates are

W± = (A1 ∓ iA2)/
√

2 m2
W = g2v2/4

Z = (gA3 − g′B)/
√
g2 + g′2 m2

Z = (g2 + g′2)v2/4

A = (g′A3 + gB)/
√
g2 + g′2 m2

A = 0 (13)

As we will see more clearly in a moment, the massless boson A is associated with the unbroken gauge
symmetry Q. The combination of local gauge symmetry and the Higgs mechanism is the only known
way to give mass to a vector boson that is consistent with Lorentz invariance and the positivity of the
theory.

The linear combinations in (13) motivate the definition of the weak mixing angle θw, defined by

cos θw ≡ cw = g/
√
g2 + g′2

sin θw ≡ sw = g′/
√
g2 + g′2 . (14)

The factors cw, sw will appear throughout the formulae that appear in these lectures. For reference, the
value of the weak mixing angle turns out to be such that

s2w ≈ 0.231 (15)
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I will describe the measurement of sw in some detail in Section 3.

An important relation that follows from (13), (14) is

mW = mZ cw . (16)

This is a nontrivial consequence of the quantum number assignments for the Higgs field, and the state-
ment that the masses of W and Z come only from the vacuum value of ϕ. Using the Particle Data Group
values for the masses [12] and the value (15), we find

80.385 GeV ≈ 91.188 GeV · 0.877 = 79.965 GeV . (17)

so this prediction works well already at the leading order. We will see in Section 3 that, when radiative
corrections are included, the relation (16) is satisfied to better than 1 part per mil.

Once we have the mass eigenstates of the vector bosons, the couplings of quarks and leptons to
these bosons can be worked out from the expresssion (3) for the covariant derivative. The terms in (3)
involving A1

µ and A2
µ appear only for I = 1

2 particles and can be recast as

− i g√
2

(W+
µ σ

+ +W−µ σ
−) , (18)

The W bosons couple only to SU(2) doublets, with universal strength g.

The terms with A3
µ and Bµ can similarly be recast in terms of Zµ and Aµ,

−igA3
µ − ig′BµY = −i

√
g2 + g′2

[
cw(cwZµ + swAµ)I3 + sw(−swZµ + cwAµ)

]

= −i
√
g2 + g′2

[
swcwAµ(I3 + Y ) + Zµ(c2wI

3 − s2wY )

]

= −i
√
g2 + g′2

[
swcwAµ(I3 + Y ) + Zµ(I3 − s2w(I3 + Y )

]
. (19)

We now see explicitly that the massless gauge bosonAµ couples toQ = (I3+Y ), as we had anticipated.
Its coupling constant is

e = swcw
√
g2 + g′2 =

gg′√
g2 + g′2

. (20)

We can then identify this boson with the photon and the coupling constant e with the strength of electric
charge. The quantity Q is the (numerical) electric charge of each given fermion or boson species. The
expression (19) then simplifies to

− ieAµQ− i
e

swcs
ZµQZ , (21)

where the Z charge is
QZ = (I3 − s2wQ) . (22)

To complete the specification of the SM, we assign the SU(2) × U(1) quantum numbers to the
quarks and leptons in each generation. As I will explain below, each quark or lepton is build up from
fields of left- and right-handed chirality, associated with massless left- and right-handed particles and
massless right- and left-handed antiparticles. For the applications developed in Sections 3–5, it will
almost always be appropriate to ignore the masses of quarks and leptons, so these quantum number
assignments will apply literally. The generation of masses for quarks and leptons is part of the physics
of the Higgs field, which we will discuss beginning in Section 6.

In the SM, the left-handed fields are assigned I = 1
2 , and the right-handed fields are assigned

I = 0. It is not so easy to understand how these assignments come down from fundamental theory. They
are requred by experiment, as I will explain in later in this section.
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With this understanding, we can assign quantum numbers to the quarks and leptons as

νL : I3 = +
1

2
, Y = −1

2
, Q = 0 νR : I3 = 0, Y = 0, Q = 0

eL : I3 = −1

2
, Y = −1

2
, Q = −1 eR : I3 = 0, Y = −1, Q = −1

uL : I3 = +
1

2
, Y =

1

6
, Q =

2

3
uR : I3 = 0, Y =

2

3
, Q =

2

3

dL : I3 = +
1

2
, Y =

1

6
, Q = −1

3
dR : I3 = 0, Y = −1

3
, Q = −1

3
(23)

The νL and eL, and the uL and dL, belong to the same SU(2) multiplet, so they must be assigned the
same hypercharge Y . Note that (23) gives the correct electric charge assignments for all quarks and
leptons. The νR do not couple to the SM gauge fields and will play no role in the results reviewed in
these lectures.

2.2 Massless fermions
The idea that massless fermions can be separated into left- and right-handed components will play a
major role throughout these lectures. In this sentence, I introduce some notation that makes it especially
easy to apply this idea.

To begin, write the the 4-component Dirac spinor and the Dirac matrices as

Ψ =

(
ψL
ψR

)
γµ =

(
0 σµ

σµ 0

)
, (24)

with
σµ = (1, ~σ)µ σµ = (1,−~σ)µ . (25)

In this representation, the vector current takes the form

jµ = ΨγµΨ = ψ†Lσ
µψL + ψ†Rσ

µψR (26)

and splits neatly into pieces that involve only the L or R fields. The L and R fields are mixed by the
fermion mass term. In circumstances in which we can ignore the fermion masses, the L and R fermion
numbers are separately conserved. We can treat ψL and ψR as completely independent species and
assign them different quantum numbers, as we have already in (23). The label L, R is called chirality.
For massless fermions, the chirality of the fields and the helicity of the particles are identical. For massive
fermions, there is a change of basis from the chirality states to the helicity eigenstates.

The spinors for massless fermions are very simple. In the basis (24), we can write these spinors as

U(p) =

(
uL
uR

)
V (p) =

(
vR
vL

)
. (27)

For massless fermions, where the helicity and chirality states are identical, the spinors for a fermion
with left-haned spin have uR = 0 and the spinors for an antifermion with right-handed spin have vL =
0; the opposite is true for a right-handed fermion and a left-handed antifermion. The nonzero spinor
compoments for a massless fermion of energy E take the form

uL(p) =
√

2E ξL vR(p) =
√

2E ξL

uR(p) =
√

2E ξR vL(p) =
√

2E ξR (28)
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where ξR is the spin-up and ξL is the spin-down 2-component spinor along the direction of motion. For
example, for a fermion or antifermion moving in the 3̂ direction,

ξL =

(
0
1

)
ξR =

(
1
0

)
. (29)

Spinors for other directions are obtained by rotating these according to the usual formulae for spin 1
2 .

The reversal for antifermions can be thought of by viewing right-handed (for example) antifermions as
holes in the Dirac sea of left-handed fermions. For a massive fermion moving in the 3̂ direction, with

pµ = (E, 0, 0, p)µ , (30)

the solutions to the Dirac equation are

UL(p) =

(√
E + p ξL√
E − p ξL

)
VR(p) =

( √
E + p ξL

−√E − p ξL

)

UR(p) =

(√
E − p ξR√
E + p ξR

)
VL(p) =

( √
E − p ξR

−√E + p ξR

)
, (31)

with ξL, ξR given by (29). These formulae go over to (28) in the zero mass limit.

The matrix elements for creation or annihilation of a massless fermion pair will appear very often
in these lectures. For annihilation of a fermion pair colliding along the 3̂ axis,

〈0| jµ
∣∣e−Le+R

〉
= v†Rσ

µuL

=
√

2E
(
−1 0

)
(1,−σ1,−σ2,−σ3)

√
2E

(
0
1

)
, (32)

Note that I have rotated the e+ spinor appropriately by 180◦. This gives

〈0| jµ
∣∣e−Le+R

〉
= 2E (0, 1,−i, 0)µ . (33)

It is illuminating to write this as
〈0| jµ

∣∣e−Le+R
〉

= 2
√

2E εµ− , (34)

where
εµ+ =

1√
2

(0, 1,+i, 0)µ εµ− =
1√
2

(0, 1,−i, 0)µ (35)

are the vectors of J3 = ±1 along the 3̂ axis. The total spin angular momentum of the annihilating
fermions (J = 1) is transfered to the current and, eventually, to the final state.

More generally, we find

〈0| jµ
∣∣e−Re+L

〉
= 2
√

2E εµ+

〈0| jµ
∣∣e−Le+R

〉
= 2
√

2E εµ−〈
e−Re

+
L

∣∣ jµ |0〉 = 2
√

2E ε∗µ+〈
e−Le

+
R

∣∣ jµ |0〉 = 2
√

2E ε∗µ− . (36)

For an annihilation process such as e−Le
+
R → µ−Lµ

+
R with annihilation by a current and creation by

another current, the spinors appear as

(u†Lσ
µvR)(v†RσµuL) = 2 (2E)2 ε′∗− · ε− . (37)
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To evaluate this, rotate the ε− vector for the muons into the muon direction. If the muons come off at
polar angle θ, this gives

ε′∗− =
1√
2

(0, cos θ,−i,− sin θ) . (38)

Then (37) becomes
2(2E)2 ε′∗− · ε− = s(1 + cos θ) = −2u , (39)

in terms of the usual kinematic invariants s, t, u. Another way to write this is

|(u†LσµvR)(v†RσµuL)|2 = 4 (2pe− · pµ+)(2pe+ · pµ−) . (40)

Similarly, for e−Le
+
R → µ−Rµ

+
L ,

|(u†RσµvL)(v†RσµuL)|2 = 4 (2pe+ · pµ+)(2pe− · pµ−) . (41)

It is a nice exercise to check these answers using the usual trace theorems. The trace theorems are more
automatic, but the helicity formalism gives more physical insight.

3 Tests of the V –A Interaction
The property that the W boson only couples to fermions of left-handed chirality is a crucial property
of the SM. It is responsible for many of the surprising features of the weak interactions, both the most
attractive and the most puzzling ones. It is therefore important to understand that this feature is extremely
well supported experimentally. In this section, I review the most convincing experimental tests of this
property.

3.1 Polarization in β decay
The first applications discussed in this section involve exchange ofW bosons at low energy. In this limit,
we can simplify the W propagator to a pointlike interaction

−i
q2 −m2

W

→ i

m2
W

. (42)

In this limit, the W exchange can be represented by the product of currents

∆L =
g2

2m2
W

J+
µ J
−µ , (43)

where

J+
µ = ν†eLσµeL + u†LσµdL + · · ·
J−µ = e†LσµνeL + d†LσµuL + · · · . (44)

Here and henceforth in these lectures, I replace the label ψ with a label that gives the flavor quantum
numbers of the field. In (44), I write explicitly the terms associated with the first generation quarks and
leptons; the omitted terms are those for the higher generations. I ignore Cabibbo mixing, a reasonable
approximation for the topics discussed in these lectures. I will also ignore the masses of the neutrinos.

The theory (43) is called the V –A interaction, since

u†Lσ
µdL = Uγµ

1− γ5
2

D , (45)
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Fig. 1: Polarization of the electron emitted in β decay for a variety of β decay transitions in different nuclei,
from [13].

the difference of a vector and an axial vector current. The coefficient in (43) is conventionally represented
by the Fermi constant GF ,

g2

2m2
W

=
4GF√

2
. (46)

This interaction has maximal parity violation in charge-changing weak interactions.

The simplest consequence of V –A is that electrons emitted in β decay should be preferentially
left-handed polarized. Since the energies of electrons in β decay are of order 1 MeV, it is typically not
a good approximation to ignore the electron mass. However, since in V –A the electron is produced in
the L chirality eigenstate, we can work out the polarization from the relative magnitude of the uL terms
in the left- and right-handed helicity massive spinors given in (31). The electron polarization, in the
left-handed sense, is then given by

Pol(e−) =
(
√
E + p)2 − (

√
E − p)2

(
√
E + p)2 + (

√
E − p)2 =

p

E
=
v

c
. (47)

A data compilation is shown in Fig. 1 [13]. Careful experiments both at high and low electron energies
verify the regularity (47).

3.2 Muon decay
The V –A interaction also has striking consequences for the electron energy and polarization in muon
decay.

It is not difficult to work out the basic formulae for muon decay. In V –A theory, and ignoring
the electron mass, muon decay has a massive muon at rest decaying to νµLe−LνeR. For the muon at rest,
averaged over polarizations, we find, instead of (40),

|(u†LσµvR)(v†RσµuL)|2 = 2 (2pe− · pν)(2pν · pµ−) . (48)

To integrate this over phase space, let

xi =
2pi · pµ
p2µ

, (49)
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Fig. 2: Energy spectrum of e+ in µ+ decay at rest, from [14].

where i = e, ν, ν. Conservation of energy-momentum pµ = pe + pν + pν implies

xe + xν + xν = 2 . (50)

Each xi takes the maximum value 1 when that massless particle recoils against the other two massless
particles. Note also that

2pe · pν = (pe + pν)2 = (pµ − pν)2 = m2
µ(1− xν) . (51)

Three-body phase space takes a simple form in the xi variables,

∫
dΠ3 =

m2
µ

128π3

∫
dxedxν . (52)

Assembling the pieces, the muon decay rate is predicted to be

Γ =
1

2mµ

(
4GF√

2

)2 m2
µ

128π3

∫
dxedxν 2m4

µxν(1− xν) . (53)

The integral over xν is ∫ 1

1−xe
dxν xν(1− xν) =

1

2
x2e −

1

3
x3e . (54)

9

LECTURES ON THE THEORY OF THE WEAK INTERACTION

9



Then finally we find for the electron energy distribution

dΓ

dxe
=
G2
Fm

5
µ

16π3

(
x2e
2
− x3e

3

)
. (55)

This shape of this distribution is quite characteristic, with a double zero at Ee = 0 and zero slope at the
endpoint at Ee = mµ/2. Both effects are slightly rounded by radiative corrections, but, with these taken
into account, the prediction agrees with the measured spectrum to high precision, as shown in Fig. 2 [14].

3.3 Pion decay
Charged pion decay is mediated by the V –A interaction

4GF√
2

(d†Lσ
µuL)

(
ν†eLσµeL + ν†µLσµµL

)
(56)

At first sight, it might seem that the π+ must decay equally often to e+ and µ+. Experimentally, almost
all pion decays are to µ+. Can this be reconciled with V –A?

The pion matrix element is

〈0| d†LσµuL
∣∣π+(p)

〉
= −i1

2
Fπp

µ , (57)

where Fπ is the pion decay constant, equal to 135 MeV. The matrix element of (56) then evaluates to

4GF√
2
· (− i

2
Fπ) pµU †νLσµV`+ . (58)

The pion is at rest, so
pµσµ = mπ · 1 . (59)

The neutrino is (essentially) massless and therefore must be left-handed. The pion has spin 0, so angular
momentum requires that the `+ is also left-handed. But, from (31), the lepton spinor is then

VL =

(√
E − p ξR
×

)
(60)

The matrix element (58) reduces to

i
4GF√

2
· (1

2
Fπ)

√
2Eνmπ

√
E` − p` . (61)

Two-body kinematics gives Eν = pν = p` = (m2
π−m2

` )/2mπ. Then (E`−p`) = m2
`/m

2
π. Phase space

includes the factor 2p`/mπ, which brings another factor of (E` − p`). Finally we find

Γ(π+ → `+ν) =
G2
Fm

3
πF

2
π

8π

m2
`

m2
π

(
1− m2

`

m2
π

)2
. (62)

The overall factor m2
`/m

2
π comes from the matrix element (60). Angular momentum conservation re-

quires the `+ to have the wrong helicity with respect to V –A, accounting for this suppression factor.

The result (62) leads to the ratio of branching fractions

BR(π+ → e+νe)

BR(π+ → µ+νµ)
=
m2
e

m2
µ

(
m2
π −m2

e

m2
π −m2

µ

)2

= 1.28× 10−4 , (63)

in good agreement with the observed value 1.23× 10−4.
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Fig. 3: Kinematics of neutrino deep inelastic scattering: (a) for neutrino scattering from a proton or heavy nucleus,
(b) for neutrino scattering from a quark in the parton model description.

3.4 Neutrino deep inelastic scattering
The helicity structure of the V –A interaction is also seen in the energy distributions in deep inelastic
neutrino scattering. For electrons, deep inelastic scattering is the scattering from a proton or nuclear
target in which the momentum transfer is large and the target is disrupted to a high mass hadronic
state. The kinematics is shown in Fig. 3(a). In the leading order of QCD, deep inelastic scattering is
described by the scattering for the electron from a single quark in the parton distribution of the target.
This kinematics is shown in Fig. 3(b).

Neutrino deep inelastic scattering experiments are done in the following way: One first creates
a high-energy pion beam by scattering protons from a target. Then the pions are allowed to decay,
producing a beam of neutrinos and muons. The beam is made to pass through a long path length of
absorber to remove the muons and residual pions and other hadrons. Finally, the neutrinos are allowed to
interact with a large-volume detector. A charged-current neutrino reaction then leads to a scattering event
whose result is a µ±, depending on the charge of the decaying pion, and a high-multiplicity hadronic
system.

If k is the initial momentum of the neutrino, k′ is the final momentum of the muon, and P is the
initial momentum of the target proton, we let q = (k − k′) and define the Lorentz invariants

s = (k + P )2 Q2 = −q2

x =
Q2

2P · q y =
2P · q
2P · k (64)

We are interested in the deep inelastic limit Q2 � P 2 = m2
p. Then s ≈ 2p · k and Q2 = xys. In

the lab frame P = (mp,~0), so y = q0/k0, the fraction of the initial neutrino energy transfered to the
proton. To the extent that the initial neutrino energy k0 is known, all of the invariants x, y, and Q2 can
be determined by measurement of the final muon momentum.

At leading order in QCD, a deep inelastic reaction is an essentially elastic lepton-quark scattering,
for example, ν+d→ µ−+u. Using Feynman’s parton model, which is also the basis for QCD predictions
at hadron colliders, we model the proton or nuclear target as a collection of quarks and antiquarks that
move collinearly and share the total momentum of the proton. Let p be the momentum of the initial
quark, and approximate

p = ξP , (65)

where 0 < ξ < 1. The quarks might also have transverse momentum relative to the proton, but this is
ignorable if the momentum transfer Q2 from the neutrino scattering is large.

The final momentum of the quark is then p+ q. The condition that this quark is on-shell is

0 = (p+ q)2 = 2p · q + q2 = 2ξP · q −Q2 . (66)
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Then

ξ =
Q2

2P · q = x . (67)

This is a remarkable result, also due to Feynman: To the leading order in QCD, deep inelastic scattering
events at a given value of the invariant x arise from scattering from quarks or antiquarks in the proton
with momentum fraction ξ = x.

We can now evaluate the kinematic invariants for a neutrino-quark scattering event. I call these ŝ,
t̂, û to distinguish them from the invariants of neutrino-proton scattering. First,

ŝ = (p+ k)2 = 2p · k = 2ξP · k = x s . (68)

The momentum transfer can be evaluated from the lepton side, so

t̂ = q2 = −Q2 . (69)

Finally, for scattering of approximately massless particles, s+ t+ u = 0, so

û = xs−Q2 = xs(1− y) . (70)

The aspect of the deep inelastic scattering cross section that is most important for the subject of this
lecture is the distribution in y. To begin, consider the deep inelastic scattering of a νµ. The quark-level
reaction is

ν + d→ µ− + u (71)

In the V –A theory, the ν and the d must be left-handed. Similarly to (41),

|(u†L(µ−)σµuL(ν))(u†L(u)σµuL(d))|2 = 4 (2pµ− · pu)(2pν · pd) = 4ŝ2 . (72)

On the other hand, antineutrino scattering from a quark, which proceeds by the reaction

ν + u→ µ+ + d , (73)

is, in V –A theory, the scattering of a right-handed ν and a left-handed u. Then

|(v†R(µ−)σµvR(ν))(u†L(u)σµuL(d))|2 = 4 (2pµ+ · pu)(2pν · pd) = 4û2 . (74)

Inserting (68), (70), we see that the dependence of the deep inelastics scattering cross section on
y should be

dσ

dy
(νp→ µ−X) ∼ ŝ2 ∼ 1

dσ

dy
(νp→ µ+X) ∼ û2 ∼ (1− y)2 . (75)

These results, which I have derived for a proton target, hold for any nuclear target under the assumption
that we consider only scattering from quarks and not from antiquarks. For scattering from antiquarks,
the dependence on y is reversed, with a (1 − y)2 dependence for neutrino scattering. The experimental
result, from the CDHS experiment, a CERN neutrino experiment of the1980’s, is shown in Fig. 4 [15].
The y distribution for neutrino scattering is indeed almost flat, and that for antineutrino scattering is close
to (1−y)2. The deviations from these ideal results are consistent with arising from the antiquark content
of the proton and neutron.

The same regularity can be seen in collider physics. For example, the Standard Model predicts
that, in quark-antiquark annihilation to a W boson,

dσ

d cos θ
(du→W− → µ−ν) ∼ u2 ∼ (1 + cos θ)2

dσ

d cos θ
(ud→W+ → µ+ν) ∼ t2 ∼ (1− cos θ)2 , (76)

and these distributions are well verified at the LHC [16, 17].
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Fig. 4: Dependence on the variable y of the cross sections for neutrino and antineutrino scattering on an iron target,
from [15].

3.5 e+e− annihilation at high energy
The angular distributions in annihilation through the neutral current are more complex, first, because of
photon-Z interference, and, second, because the weak neutral current couples to both left- and right-
handed quarks and leptons.

To write formulae for the cross sections in e+e− annihilation to a fermion pair, it is simplest to
begin with the cross sections for polarized initial and final states. Using the same principles for evaluating
spinor products as before, it is not difficult to work these out. The general form of the differential cross
sections is

dσ

d cos θ
(e−Le

+
R → fLfR) =

πα2

2s
|s FLL(s)|2 (1 + cos θ)2

dσ

d cos θ
(e−Re

+
L → fLfR) =

πα2

2s
|s FRL(s)|2 (1− cos θ)2

dσ

d cos θ
(e−Le

+
R → fRfL) =

πα2

2s
|s FLR(s)|2 (1− cos θ)2

dσ

d cos θ
(e−Re

+
L → fRfL) =

πα2

2s
|s FRR(s)|2 (1 + cos θ)2 . (77)

The form factors FIJ(s) reflect photonγ–Z interference, with the pγ charges Q and the Z charges QZ
in (22). Using the subscript f to denote the flavor and chirality of the fermion,

FLL(s) =
Qf
s

+
(1/2− s2w)(I3f − s2wQf )

swcw

1

s−m2
Z

FRL(s) =
Qf
s

+
(−s2w)(−s2wQf )

swcw

1

s−m2
Z

FLR(s) =
Qf
s

+
1/2− s2w)(I3f − s2wQf )

swcw

1

s−m2
Z

FRR(s) =
Qf
s

+
(−s2w)(−s2wQf )

swcw

1

s−m2
Z

. (78)
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Fig. 5: Total cross section for e+e− → hadrons, e+e− → µ+µ−, and e+e− → τ+τ−, as a function of center
of mass energy, as measured by the DELPHI experiment at the collider LEP [18]. The continuous lines are the
predictions of the SM.

The total cross sections predicted from these formulae for e+e− → hadrons, e+e− → µ+µ−, and
e+e− → τ+τ− are shown in Fig. 5 and compared to data from the DELPHI experiment at the CERN
e+e− collider LEP. The resonance at the center of mass energy of 91 GeV is of course the Z boson.

Notice that, for s > m2
Z , we have constructive interference in the LL and RR polarization states

and destructive interference for RL and LR. Then in an experiment with unpolarized beams (as in the
program of e+e− experiments at LEP), the LL and RR modes should dominate and produce a positive
forward-backward asymmetry in the angular distribution. This behavior is actually seen in the data.
Figure 6 shows the forward-backward asymmetry in e+e− → µ+µ− and e+e− → τ+τ− measured by
the DELPHI experiment at LEP [18]. The solid line is the prediction of the SM.

It is interesting to explore the high-energy limits of the expressions (78). Begin with FRL(s),
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Fig. 6: Forward-backward asymmetry in the reactions e+e− → µ+µ− and e+e− → τ+τ−, as a function of center
of mass energy, as measured by the DELPHI experiment at the collider LEP [18]. .

corresponding to e−Re
+
L → fLfR. In the limit s� m2

Z and inserting Q = I3f + Y , this becomes

FRL →
s2wc

2
w(I3f + Yf )− s2wI3f + s4w(I3f + Yf )

s2wc
2
w s

=
s2wYf
s2wc

2
w s

=
1

e2

(
g′2YeRYf

s

)
. (79)

The expression in parentheses is exactly the amplitude for s-channel exchange of the U(1) boson B in
the situation in which the original SU(2) × U(1) symmetry was not spontaneously broken. So we see
that the full gauge symmetry is restored at high energies.

Here is the same analysis for FLL(s):

FRL →
s2wc

2
w(I3f + Yf ) + (1/2− s2w)(I3f − s2w(I3f + Yf ))

s2wc
2
w s

=
(1/2)c2wI

3
f + (1/2)s2wYf

s2wc
2
w s

=
1

e2

(
g2I3eLI

3
f

s
+
g′2YeRYf

s

)
. (80)

Now the result is a coherent sum of A3 and B exchanges in the s-channel. Again, this is the result
expected in a theory of unbroken SU(2)× U(1).
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Fig. 7: Compilation of preliminary LEP measurements of the forward-backward asymmetry in lepton, c, and b
pair production, the hadron to lepton ratio Rh and the b to all hadron ratio Rb [19]. The solid curves show the SM
prediction. The arrows at the right are the predictions of unbroken SU(2)× U(1).

It is interesting to compare the values of ratios and asymmetries measured at LEP to the asymptotic
values predicted by unbroken SU(2)× U(1). This comparison is shown in Fig. 7 from a compilation of
preliminary LEP results [19]; final LEP results on 2-fermion processes are collected in [20]. The arrows
at the extreme right show the values for restored SU(2) × U(1). The calculation of Rb involves a top
quark box diagram that does not yet reach its asymptotic limit at 200 GeV. It is remarkable that, for
allother observables, the LEP measurements at center of mass energies of 200 GeV are already close to
the asymptotic values predicted at high energy.

4 Precision electroweak measurements at the Z resonance
It is possible to test the SM theory of the weak interactions more incisively by focusing more tightly on
the properties of the Z boson. The Z boson appears as a resonance in e+e− annihilation. In the 1990’s,
the accelerators LEP at CERN and SLC at SLAC tuned their energies to the Z boson resonance to pro-
duce large numbers of Z bosons at rest in the lab, in an appropriate setting for precision measurements.
In this section, I review the results of these precision measurements, which continue to provide important
constraints on the SM and its generalizations.
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4.1 Properties of the Z boson in the Standard Model
My discussion will be based on the leading order matrix elements for Z decay to fLfR and fRfL. It
is straightforward to work these out based on the spinor matrix elements computed in Section 2.2. The
leading order matrix element for Z decay to fLfR is

M(Z → fLfR) = i
g

cw
QZf u

†
Lσ

µvR εZµ , (81)

with
QZ = I3 − s2wQ , (82)

as in (22). Using (36) for the spinor matrix element, this becomes

M = i
g

cw

√
2mZε

∗
− · εZ . (83)

Square this and average over the direction of the fermion, or, equivalently, average over three orthogonal
directions for the Z polarization vector. The result is

〈
|M|2

〉
=

2

3

g2

c2w
Q2
Zfm

2
Z . (84)

Then, since

Γ(Z → fLfR) =
1

2mZ

1

8π

〈
|M|2

〉
, (85)

we find
Γ(Z → fLfR) =

αwmZ

6c2w
Q2
ZfNf , (86)

where

αw =
g2

4π
(87)

and

Nf =

{
1 lepton

3(1 + αs/π + · · · ) quark
(88)

accounts the number of color states and the QCD correction. The same formula holds for the Z width to
fRfL.

To evaluate this formula, we need values of the weak interaction coupling constants. The elec-
tromagnetic coupling α is famously close to 1/137. However, in quantum field theory, α is a running
coupling constant that becomes larger at smalll distanct scales. At a scale of Q = mZ , α(Q) = 1/129.
Later in the lecture, I will defend a value of the weak mixing angle

s2w = 0.231 . (89)

Then the SU(2) and U(1) couplings take the values

αw =
g2

4π
=

1

29.8
α′ =

g′2

4π
=

1

99.1
(90)

It is interesting to compare these values to other fundamental SM couplings taken at the same scale
Q = mZ ,

αs =
1

8.5
αt =

y2t
4π

=
1

12.7
. (91)

All of these SM couplings are roughly of the same order of magnitude.
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Using (89) or (90), we can tabulate the values of the Z couplings to left- and right-handed
fermions,

species QZL QZR Sf Af
ν +1

2 - 0.250 1.00
e −1

2 + s2w +s2W 0.126 0.15
u +1

2 − 2
3s

2
w −2

3s
2
W 0.143 0.67

d −1
2 + 1

3s
2
w +1

3s
2
W 0.185 0.94

(92)

In this table, the quantities evalated numerically are

Sf = Q2
ZL +Q2

ZR Af =
Q2
ZL −Q2

ZR

Q2
ZL +Q2

ZR

. (93)

The quantity Sf gives the contribution of the species f to the total decay rate of theZ boson. The quantity
Af gives the polarization asymmetry for f , that is, the preponderance of fL over fR, in Z decays,

4.2 Measurements of the Z properties
It is possible to measure many of the total rates and polarization asymmetries for individual species in
a very direct way through experiments on the Z resonance. This subject is reviewed in great detail in
the report [22]. Values of the Z observables given below are taken from this reference unless it is stated
otherwise.

The Sf are tested by the measurement of the Z resonance width and its branching ratios. Using
(86), we find for the total width of the Z

ΓZ =
αwmZ

6c2w

[
3 · 0.25 + 3 · 0.126

+2 · (3.1) · 0.144 + 3 · (3.1) · 0.185

]
. (94)

The four terms denote the contributions from 3 generations of ν, e, u, and d, minus the top quark, which
is too heavy to appear in Z decays. The numerical prediction is

ΓZ = 2.49 GeV (95)

The separate terms in (94) give the branching ratios

BR(νeνe) = 6.7% BR(e+e−) = 3.3%

BR(uu) = 11.9% BR(dd) = 15.3% (96)

The measured value of the total width, whose extraction I will discuss in a moment, is

ΓZ = 2.4952± 0.0023 GeV . (97)

This is in very good agreement with (95), with accuracy such that a valid comparison with theory requires
the inclusion of electroweak radiative corrections, with typically are of order 1%. The measurements of
branching ratios and polarization asymmetry that I review later in this section are also of sub-% accuracy.
At the end of this section, I will present a more complete comparison of theory and experiment, including
radiative corrections to the theoretical predictions.

To begin our review of the experimental measurements, we should discuss the measurement of
the Z resonance mass and width in more detail. Ideally, the Z is a Breit-Wigner resonance, with cross
section shape

σ ∼
∣∣∣∣

1

s−m2
Z + imZΓZ

∣∣∣∣
2

. (98)
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At first sight, it seems that we can simply read off the Z mass as the maximum of the resonance and the
width as the observed width at half maximum. However, we must take into account that the resonance
is distorted by initial-state radiation. As the electron and positron collide and annihilate into a Z, they
can radiate hard collinear photons. Because of this, the resonance is pushed over to higher energies, an
effect that shifts the peak and creates a long tail on above the resonance. The magnitude of the photon
radiation is given by the parameter

β =
2α

π
(log

s

m2
e

− 1) = 0.108 at s = m2
Z (99)

In addition, since the Z is narrow, the effect of this radiation is magnified, since even a relatively soft
photon can push the center of mass energy off of the resonance. The size of the correction can be roughly
estimated as

− β · log
mZ

ΓZ
= 40% . (100)

To make a proper accounting of this effect, we need to include arbitrary numbers of radiated
collinear photons. Fadin and Kuraev introduced the idea of viewing the radiated photons and the final
annihilating electron as partons in the electron in the same way that quarks and gluons are treated as
partons in the proton [21]. For the proton, the parton distribution is generated by non-perturbative effects,
but for the electron the parton distributions are generated only by QED, so that they can be calculated as
a function of α. The result for the parton distribution of the electron in the electron, to order α, is

fe(z, s) =
β

2
(1− z)β/2−1(1 +

3

8
β)− 1

4
β(1 + z) + · · · , (101)

where z is the momentum fraction of the original electron carried into the e+e− annihilation to a Z
boson. The cross section for producing a Z boson would then be a convolution of the Breit-Wigner cross
section (98) with the parton distribution (101) and the corresponding distribution for the positron. For
the LEP experiments, this theory was extended to include two orders of subleading logarithms and finite
corrections of order α2 [23].

The experimental aspects of the measurement of the Z resonance lineshape were also very chal-
lenging; see Section 2.2 of [22]. Careful control was needed for point-to-point normalization errors
across the Z resonance. The absolute energy of the LEP ring was calibrated using resonant depolariza-
tion of a single electron beam and then corrected for two-beam effects. This calibration was found to
depend on the season and the time of day. Some contributing effects were the changes in the size of the
LEP tunnel due to the annual change in the water level in Lake Geneva and current surges in the LEP
magnets due to the passage to the TGV leaving Geneva for Paris.

Some final results for the resonance line shape measurement are shown in Figs. 8, 9. The first
of these figures shows the measurements by the OPAL experiment over the resonance and the detaied
agreement of the shape between theory and experiment [24]. The second shows the combination of the
resonance height and width measurements from the four LEP experiments ALEPH, DELPHI, L3, and
OPAL [22]. In this figure, the lower curve is the radiatively corrected result; the higher curve is the
inferred Breit-Wigner distribution excluding the effects of radiative corrections.

The measurement of branching ratios is more straightforward. It is necessary only to collect Z
decay events and sort them into categories. The various types of leptonic and hadronic decay modes have
very different, characteristic forms. Typical events are shown in Fig. 10 for hadronic, e+e−, µ+µ−, and
τ+τ− decays [25]. The major backgrounds are from Bhabha scattering and 2-photon events. These do
not resemble Z decay events and are rather straightforwardly separated. Nonresonant e+e− annihilations
are also a small effect, generally providing backgrounds at only the level of parts per mil. An exception
is the Z decay to τ+τ−, which can be faked by hadronic e+e− annihilations with radiation to provide a
background level of a few percent. Still, these high signal to background ratios are completely different
from the situationn at the LHC and enable measurements of very high precision.

19

LECTURES ON THE THEORY OF THE WEAK INTERACTION

19



Fig. 8: Resonance line shape of the Z in e+e− annihilation, as measured by the OPAL experiment [24].

Two particular branching ratios merit special attention. First, consider Z decays to invisible final
states. The SM includes Z decays to 3 species of neutrino, with a total branching ratio of 20%. Even
though these decays are not seen in the detector, the presence of invisible final states affects the resonance
lineshape by increasing the Z width and decreasing the Z peak height to visible modes such as hadrons.
Measurement of the resonance parameters then effectively gives the number of light neutrinos into which
the Z can decay. The result is

nν = 2.9840± 0.0082 , (102)

strongly constraining extra neutrinos or more exotic neutral particles.

Second, the Z branching ratio to b quarks is of special interest, for two reasons. First, the b belongs
to the same SU(2) × U(1) multiplet as the top quark, and, even in the SM, there is a relatively large
radiative correction due to top quark loops, from the diagrams shown in Fig. 11. These produce

QZbL = −
(

1

2
− 1

3
s2w −

α

16πs2w

m2
t

m2
W

)
, (103)
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Fig. 9: Resonance line shape of the Z in e+e− annihilation, as measured by the four LEP experiments, from [22].
The dotted curve shows the zeroth-order resonance line shape of the Z resonance. The solid line shows the
Standard Model prediction including initial-state radiative corrections.

Fig. 10: Typical e+e− → Z events corresponding to the Z decays to hadrons, to e+e−, to µ+µ−, and to τ+τ−,
from [25].
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Fig. 11: Diagrams containing the top quark which give a relatively large correction to the partial width for Z → bb.

a shift of about −2%. More generally, the b is a third-generation particle that might have a nontrivial
coupling to new, heavier, particles.

An observable that specifically tracks this effect is

Rb =
Γ(Z → bb)

Γ(Z → hadrons)
. (104)

At leading order, we predict Rb = 0.22, but in the full SM this value should be reduced according to
(103). Z decays to bb could be identified by vertex tags. The SLD detector at SLAC included a pixel
vertex detector capable of separating decays to b and c by vertex mass and by the presence of tertiary
charm decay vertices in b jets. Fig. 12(a) shows the signal and background separation in the OPAL
experiment [26]. Fig. 12(b) shows a corresponding result from SLD, in which the observed vertex mass
was used to discriminate between the c and b contributions [27]. The final LEP and SLC results gave

Rb = 0.21629± 0.00066

Rc = 0.1721± 0.0030 , (105)

confirming the shift predicted by (103) and demonstrating consistency with the SM also for Z → cc.

While the total rates for the Z decay to the various species have similar values, the asymmetries
listed in (92) vary over a wide range, from 15% for the charged leptons to almost maximal for the d-type
quarks. The SM predicts these disparate values from a common value of s2w.

There are three very different methods to measure the lepton asymmetries Ae. First, the Ae can be
found from the forward-backward asymmetry for e+e− → ff at the Z. Second, Ae can be determined
from the final-state polarization effects in the decays of τ+τ− produced at the Z. Finally, Ae can be
measured directly from the rate for Z production from polarized electron beams.

For unpolarized beams, the angular distribution for e+e− → ff can be found from (77). On the
Z resonance, the distribution takes the form

dσ

d cos θ
=
(1 +Ae

2

)(1 +Af
2

)
(1 + cos θ)2 +

(1−Ae
2

)(1 +Af
2

)
(1− cos θ)2

+
(1 +Ae

2

)(1−Af
2

)
(1− cos θ)2 +

(1−Ae
2

)(1−Af
2

)
(1 + cos θ)2 . (106)

The forward-backward asymmetry predicted by this expression is

AFB =
3

4
AeAf (107)

Especially for b quarks, which have an almost maximal asymmetry, the dependence of this quantity on
s2w is mainly through Ae.

The value of Ae determines the polarization of τ leptons produced in Z decays, and this polariza-
tion becomes visible through the V –A structure of the τ decays. The easiest case to understand is the
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Fig. 12: Measurements of the b and c branching fractions of the Z. Top: Distributions in decay length significance
and the b quark tagging variable, from the OPAL experiment, showing the relative contributions of light quarks, c,
and b, from [26]. Right: Vertex mass distribution from the SLD experiment, showing the contributions from c and
b meson decays, from [27].
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Fig. 13: Kinematics of τ → νπ decay.

Fig. 14: Pion energy spectrum in τ → νπ decays at the Z resonance, from [28]. The ordinate x = 2Eπ/mZ . The
separate contributions from τL and τR decays are indicated.

decay τ− → ντπ
−. Since the neutrino is always left-handed and the pion has zero spin, a τ− at rest

with S3 = −1
2 will decay to a forward neutrino and a backward π−, as shown in Fig. 13. When the τ−

is boosted, a left-handed τ will decay to a high-energy neutrino and a slow pion. A right-handed τ will
decay to a low-energy neutrino and a fast pion. More generally, if x is the fraction of the τ momentum
carried by the π−,

τL :
dΓ

dx
∼ (1− x) τR :

dΓ

dx
∼ x . (108)

Similar asymmetries appear in the other τ decay modes. Fig. 14 shows the distributions measured by
the ALEPH experiment for τ → πν, compared to the expected distributions from τL and τR. The 15%
asymmetry is apparent. The SM also predicts a correlation between polarization and cos θ that can be
used to improve the s2w measurement.

The SLC produced e+e− → Z events using linear acceleration of the electrons. This technique
allowed the preservation of electron polarization from the source to the collisions. The experiment was
conducted by flipping the the electron polarization in each bunch randomly, and measuring the correlation
between the polarization orientation and the total Z production rate—measured 4 km downstream of the
source. This gave a direct measurement [29]

Ae = 0.1516± 0.0021 (109)
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Fig. 15: Summary of A` measurements at the Z resonance from different observables, from [22].

Figure 15 shows the summary of the various determinations of s2w from the leptonic asymme-
tries [22]. The measurements are statistically consistent and lead to a very precise value.

The prediction that the b asymmetry is close to maximal implies that the angular distribution of
e+e− → bb at the Z should show a large dependence on beam polarization. The distribution should
be close to (1 + cos θ)2 for a left-handed polarized beam and close to (1 − cos θ)2 for a right-handed
polarized beam. The distributions measured by the SLD experiment at the SLC for left- and right-handed
beams are shown in Fig. 16. Allowing for the expected confusion in separating b and b jets, the results are
consistent with a high b polarization in Z decays. The difference in normalization of the two distributions
reflects the 15% asymmetry in the production cross section.

Figure 17 shows a summary of the precision measurements of the properties of the Z boson [22].
The measured values listed in the first column are compared to the values from the best fit to the SM,
including one-loop radiative corrections. The bars show the deviations from the SM prediction, in units
of the σ of the measurement. This is an impressive confirmation of the SU(2)× U(1) weak interaction
model.

4.3 Constraints on oblique radiative corrections
From the excellent agreement of theZ measurements with the SM, it is possible to put general constraints
on possible new particles coupling to the weak interactions.

To explain this, we should first discuss the properties of one-loop corrections to the SU(2)×U(1)
predictions in more detail. The SM contains a large number of parameters. However, the predictions
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Fig. 16: Angular distribution of e+e− → Z → bb events measured by the SLD experiment for left- and right-
handed polarized beams, from [30].

discussed in this Section depend, at the three level, only on the three parameters

g , g′ , v . (110)

The loop corrections will include divergences, including quadratically divergent corrections to v2. How-
ever, because the SU(2) × U(1) theory is renormalizable, once these three parameters are fixed, all of
the 1-loop corrections must be finite. Then each specific reaction aquires a finite prediction, which is a
testable consequence of the SM.

DIfferent schemes are used to fix the three underlying divergent amplitudes. Each gives different
expressions for the measurable cross sections. Three common schemes are

– applying MS subtraction, as in QCD
– fixing α(mZ), mZ , mW to their measured values (Marciano-Sirlin scheme) [32]
– fixing α(mZ), mZ , GF to their measured values (on shell Z scheme)

In the MS scheme, used by the Particle Data Group, the MS parameters g, g′, and v are unphysical but
can be defined as the values that give the best fit to the corpus of SM measurements [31].

The various schemes for renormalizing the SU(2) × U(1) model lead to different definitions of
s2w that are found in the literature. In the Marciano-Sirlin scheme, we define θw by

cw ≡ mW /mZ . (111)

This leads to
s2w = 0.22290± 0.00008 . (112)

We will see in Section 4 that the relation (111) is often needed to insure the correct behavior in high-
energy reactions of W and Z, so it is useful that this relation is insured at the tree level. Thus, the
Marciano-Sirlin definition of θw is the most common one used in event generators for LHC. However,
one should note that the value (112) is significantly different from the value (89) that best represents the
sizes of the Z cross sections and asymmetries.

In the on-shell Z scheme, θw is defined by

sin22θw = (2cwsw)2 ≡ 4πα(mZ)√
2GFm2

Z

, (113)
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Fig. 17: Summary of precision electroweak measurements at the Z resonance, from [22].

leading to
s2w = 0.231079± 0.000036 . (114)

This defintion gives at tree level a value that is much closer to (89). All three values of sin2 θw lead to
the same predictions for the relation of observables to observables after the (scheme-dependent) finite
1-loop corrections are included.

One particular class of radiative corrections is especially simple to analyze. If new particles have
no direct coupling to light fermions, they can apprear in radiative corrections to the Z observables only
through vector boson vacuum polarization amplitudes. Effects of this type are called oblique radiative
corrections. These effects can be analyzed in a quite general way.

There are four electroweak vacuum polarization amplitudes ΠAB(q2). I will notate them as shown
in Fig. 18. The subscripts 1, 3 refer to the weak isospin currents jµa, a = 1, 3; the subscript Q refers to
the electromagnetic current. The Z vacuum polarizations are found from these elements using (82). If
the particles in the loop have large masses M , we can Taylor expand the vacuum polarization amplitudes
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Fig. 18: Vector boson vacuum polarization diagrams..

in powers of q2/M2. Up to order q2/M2, we find

ΠQQ(q2) = Aq2 + · · ·
Π3Q(q2) = Bq2 + · · ·
Π33(q

2) = C +Dq2 + · · ·
Π11(q

2) = E + Fq2 + · · · (115)

There are six constants in this set of formulae. Three of them are fixed by the renormalizations
of g, g′, v. This leaves 3 finite combinations of vacuum polarization amplitudes will be predicted in any
new physics model. These combinations are canonically defined as [33]

S =
16π

m2
Z

[
Π33(m

2
Z)−Π33(0)−Π3Q(m2

Z)

]

T =
4π

s2wm
2
W

[
Π11(0)−Π33(0)

]

U =
16π

m2
Z

[
Π11(m

2
Z)−Π11(0)−Π33(m

2
Z) + Π33(0)

]
(116)

In [33], the amplitudes appearing in (116) are the new physics contributions only, but other analyses,
for example, [31], use different conventions. The three parameters in (116) have clear physical interpre-
tations. T parametrizes the size of weak isospin violating corrections to the relation mW = mZcw. S
parametrizes the q2/M2 corrections. U requires both effects and is predicted to be very small in most
new physics models.

The leading oblique corrections to electroweak observables can then be expressed as linear shifts
proportional to S and T . For example,

m2
W

m2
Z

− c20 =
αc2w

c2w − s2w

(
−1

2
S + c2wT

)

s2∗ − s20 =
α

c2w − s2w

(
−1

2

1

4
S − s2wc2wT

)
, (117)

where s0, c0 are the values of sw and cw in the on-shell Z scheme and s∗ is the value of sw used
to evaluate the Z asymmetries Af . By fitting to the formulae such as (117), we can obtain general
constraints that can be applied to a large class of new physics models.

Some guidance about the expected sizes of S and T is given by the result for one new heavy
electroweak doublet,

S =
1

6π
T =

|m2
U −m2

D|
m2
Z

. (118)
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A complete heavy fourth generation gives S = 0.2. The effects of the SM top quark and Higgs boson
can also be expressed approximately in the S, T framework,

top : S =
1

6π
log

m2
t

m2
Z

T =
3

16πs2wc
2
w

m2
t

m2
Z

Higgs : S =
1

12π
log

m2
h

m2
Z

T = − 3

16πc2w
log

m2
h

m2
Z

(119)

The appearance of corrections proportional to m2
t /m

2
Z , which we have already seen in (103), will be

explained in Section 5.

Figure 19 shows the progress of the S, T fit with our improved understanding of the SM. Fig-
ure 19(a) reflects the situation in 1991, before the discovery of the top quark [33]. The two vertical lines
to the left are predictions of the SM with a varying top quark mass. Values of mt in the range of 170–
180 GeV are highly favored by the precision electroweak data. The measurement of S, even without the
value of mt, strongly constrained the “technicolor” models of electroweak symmetry breaking. (I will
describe these models at the end of Section 7.2.) Figure 19(b) shows the S, T fit in 2008. The solid
curve shows the predictions of the SM with a variable Higgs boson mass. Values of the Higgs mass
close to 100 GeV are strongly favored. Figure 19(c) shows the current S, T fit [34]. The fit is in good
agreement with the SM with the now-measured values of mt and mh. It also is in substantial tension
with the presence of a fourth generation of quarks and leptons.

5 The Goldstone Boson Equivalence Theorem
In this section, I will describe the properties of the weak interactions at energies much greater than
mW and mZ . Some new conceptual issues appear here. These affect the energy-dependence of W
and Z boson reactions at high energy and the parametrization of possible effects of new physics. I will
introduce a way of thinking that can be used as a skeleton key for understanding these issues, called the
Goldstone Boson Equivalence Theorem.

5.1 Questions aboutW and Z bosons at high energy
To begin this discussion, I wil raise a question, one that turns out to be one of the more difficult questions
to answer about spontaneously broken gauge theories.

In its rest frame, with pµ = (m, 0, 0, 0)µ, a massive vector boson has 3 polarization states, corre-
sponding to the 3 orthogonal spacelike vectors

εµ+ =
1√
2

(0, 1,+i, 0)µ

εµ0 = (0, 0, 0, 1)µ

εµ− =
1√
2

(0, 1,−i, 0)µ . (120)

These vectors represent the states of the vector boson with definite angular momentum J3 = +1, 0,−1.

Now boost along the 3̂ axis to high energy, pµ = (E, 0, 0, p)µ. The boosts of the polarization
vectors in (120) are

εµ+ =
1√
2

(0, 1,+i, 0)µ

εµ0 = (
p

m
, 0, 0,

E

m
)µ

εµ− =
1√
2

(0, 1,−i, 0)µ . (121)
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Fig. 19: Allowed domain for the S, T parameters in three different eras: in 1991, before the discovery of the top
quark [33]; in 2008, before the discovery of the Higgs boson; today [34].
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The transverse polarization vectors ε+, ε− are left unchanged by the boost. However, for the longitudinal
polarization vector ε0, the components grow without bound. At very high energy

εµ0 →
pµ

m
. (122)

Another way to understand this is to recall that the polarization sum for a massive vector boson is written
covariantly as

∑

i

εµi ε
ν
j = −

(
gµν − pµpν

m2

)
. (123)

In the rest frame of the vector boson, this is the projection onto the 3 spacelike polarization vectors. For
a highly boosted vector boson, however, the second term in parentheses in this expression has matrix
elements that grow large in the same way as (122).

This potentially leads to very large contributions to amplitudes for high-energy vector bosons,
even threatening violation of unitarity. An example of this problem is found in the production of a pair
of massive vector bosons in e+e− annihilation. The amplitude for production of a pair of scalar bosons
in QED is

iM(e+e− → φ+φ−) = −ie
2

s
(2E)

√
2ε− · (k− − k+) , (124)

where k+, k− are the scalar particle momenta. In e+e− → W+W−, we might expect that this formula
generalizes to

iM(e+e− → φ+φ−) = i
e2

s
(2E)

√
2ε− · (k+ − k−) ε∗(k+) · ε∗(k−) . (125)

where ε(k+), ε(k−) are the W+ and W− polarization vectors. For longitudinally polarized W bosons,
this extra factor becomes

k+ · k−
m2
W

=
s− 2m2

W

2m2
W

(126)

at high energy. This growth of the production amplitude really would violate unitarity.

This raises the question: Are the enhancements due to ε0 ∼ p/m at high energy actually present?
Do these enhancements appear always, sometimes, or never?

The answer to this question is given by the Goldstone Boson Equivalence Theorem (GBET) of
Cornwall, Levin, and Tiktopoulos and Vayonakis [5, 6].

When a W boson or other gauge boson acquires mass through the Higgs mechanism, this boson
must also acquire a longitudinal polarization state that does not exist for a massless gauge boson. The
extra degree of freedom is obtained from the symmetry-breaking Higgs field, for which a Goldstone
boson is gauged away. When the W is at rest, it is not so clear which polarization state came from the
Higgs field. However, for a highly boosted W boson, there is a clear distinction between the transverse
and longitudinal polarization states. The GBET states, in the limit of high energy, the couplings of the
longitudinal polarization state are precisely those of the original Goldstone boson,

M(X → Y +W+
0 (p)) =M(X → Y + π+(p))

(
1 +O(

mW

EW
)
)

(127)

The proof is too technical to give here. Some special cases are analyzed in Chapter 21 of [7]. A very
elegant and complete proof, which accounts for radiative corrections and includes the possibility of
multiple boosted vector bosons, has been given by Chanowitz and Gaillard in [35]. Both arguments rely
in an essential way on the underlying gauge invariance of the theory.

In the rest of this section, I will present three examples that illustrate the various aspects of this
theorem.
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5.2 W polarization in top quark decay
The first application is the theory of the polarization of the W boson emitted in top quark decay, t →
bW+.

It is straightforward to compute the rates for top quark decay to polarized W bosons. These rates
follow directly from the form of the V –A coupling. The matrix element is

iM = i
g√
2
u†L(b) σµ uL(t) ε∗µ . (128)

In evauating this matrix element, I will ignore the b quark mass, a very good approximation. I will use
coordinates in which the t quark is at rest, with spin orientation given by a 2-component spinor ξ, and
the W+ is emitted in the 3̂ direction. The b quark is left-handed and moves in the−3̂ direction. Then the
spinors are

uL(b) =
√

2Eb

(
−1
0

)
uL(t) =

√
mtξ . (129)

For a W+
− ,

σ · ε∗− =
1√
2

(σ1 + iσ2) =
√

2σ+ (130)

and so the amplitude is
iM = ig

√
2mtEbξ2 . (131)

with, from 2-body kinematics, Eb = (m2
t −m2

w)/2mt. For a W+
+ , the sigma matrix structure is propor-

tional to σ− and the amplitude vanishes. For a W+
0 ,

σ · ε∗0 = −p+ Eσ3

mW
(132)

and the amplitude is
iM = ig

√
2mtEb

mt

mW
ξ1 . (133)

Squaring these matrix elements, averaging over the t spin direction, and integrating over phase space, we
find

Γ(t→ bW+
− ) =

αw
8
mt

(
1− m2

W

m2
t

)2

Γ(t→ bW+
+ ) = 0

Γ(t→ bW+
0 ) =

αw
8
mt

(
1− m2

W

m2
t

)2 · m2
t

2m2
W

. (134)

From these formulae, we see that the fraction of longitudinally polarized W bosons is

Γ(t→ bW+
0 )

Γ(t→ bW+)
=

m2
t /2m

2
W

1 +m2
t /2m

2
W

≈ 70% . (135)

The polarization of W bosons in t decay can be measured by reconstructing full pp → tt →
`ν + 4 jet events. Beginning in the t rest frame, we boost the leptonically decaying W to rest. The
angular distribution of the decay lepton in the W frame is then given by for the three polarization states
by

dΓ

d cos θ∗
∼





(1 + cos θ∗)2 +
sin2 θ∗/2 0
(1− cosθ∗)2 -

, (136)
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Fig. 20: Angular distributions of cos θ∗ in W boson decay for each of the three possible polarization states.

Fig. 21: CMS measurement of the cos θ∗ distribution in top decay, compared to a simulation that represents the
SM expectation [36].

where θ∗ is the angle between the boost direction and the lepton direction. These angular distributions,
which are also a consequence of V –A, are illustrated in Fig. 20. The actual distributions measured in
hadron collisions are distorted from the idealized ones, since leptons with cos θ∗ near −1, which implies
low lab-frame energy, have low acceptance. Figure 21 shows the cos θ∗ distribution measured by the
CMS experiment at the LHC and indicates an excellent agreement with the SM prediction [36].

An interesting feature of this prediction is the form of the amplitude (133). This amplitude is en-
hanced by a factormt/mW , just as we might have expected from (122). This behavior can be understood
using the GBET. According to the GBET, we should find

iM(t→ bW+
0 )→ iM(t→ bπ+) . (137)

The amplitude for emission of a Higgs boson should be proportional to the top quark Yukawa coupling
yt, given by

mt =
ytv√

2
. (138)

So the GBET predicts that the rate for t decay to a longitudinal W should be larger than the rate to a
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Fig. 22: Feynman diagrams for the process e+e− →W+W−.

transverse W by the factor
y2t
g2

=
2m2

t /v
2

4m2
W /v

2
=

m2
t

2m2
W

, (139)

and this is exactly what we found in the explicit calculation.

5.3 High energy behavior in e+e− → W+W−

The next example to study is the high energy behavior of the reaction

e+e− →W+W− . (140)

I argued earlier that the amplitude for this process cannot show the enhancement (122), at least in the
most straightforward way, since this would lead to an amplitude that violates unitarity. Indeed, the
prediction of the GBET is that

M(e+e− →W+
0 W

−
0 )→M(e+e− → π+π−) . (141)

Using (36), the high-energy limit of SU(2)×U(1), and the quantum numbers of the Higgs field (I, Y ) =
(12 ,

1
2), we can readily work out that the right-hand side of (141) is, for an e−Re

+
L initial state,

iM = −i(2E)
√

2 ε+ · (k− − k+) · e
2

2c2w

1

s
, (142)

and for an e−Le
+
R initial state,

iM = −i(2E)
√

2 ε− · (k− − k+) ·
(
e2

4c2w

1

s
+

e2

4c2w

1

s

)
, (143)

where k− and k+ are the final-state momenta. So it must be that the expression we guessed in (125) is
either incorrect or is cancelled by other factors.

In the SM, the complete tree level amplitude for e+e− → W+W− is given by a sum of three
diagrams, shown in Fig. 22. It will be instructive to work out the sum of diagrams in a careful way. I will
do this first for the initial state e−Re

+
L , for which the neutrino diagram does not appear.

The full matrix element involves the Yang-Mills vertex for the WWγ and WWZ interactions. It
is

iM = (−ie)(ie)2E
√

2 ε+µ

[−i
s

+
−s2w
swcw

cw
sw

−i
s−m2

Z

]

·
[
ε∗(−)ε∗(+)(k− − k+)µ + (−q − k−)ε∗(+)ε∗µ(−) + (k+ + q)ε∗(−)ε∗µ(+)

]
,
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(144)

where q = k− + k+ and, in the second line, ε∗(−) and ε∗(+) are the W polarizations. To evaluate the
high-energy limit for longitudinally polarized W bosons, send

ε∗(−)→ k−
mW

ε∗(+)→ k+
mW

. (145)

Then the second term in brackets becomes

1

m2
W

[
k−k+(k− − k+)µ − 2k−k+k

µ
− + 2k+k−k

µ
+

]

= −k−k+
m2
W

(k− − k+)µ = −s− 2m2
W

2m2
W

(k− − k+)µ . (146)

This expression has the enhancement (126). However, there is a nice cancellation in the first term in
brackets, [−i

s
− −i
s−m2

Z

]
=

i m2
Z

s(s−m2
Z)

. (147)

Assembling the pieces and using m2
W = m2

Zc
2
w, we find

iM = ie2 2E
√

2 ε+µ(k− − k+)µ
(
− s− 2m2

W

2c2ws(s−m2
Z)

)
, (148)

which indeed agrees with (142) in the high energy limit.

For the e−Le
+
R case, the γ and Z diagrams do not cancel, and so the neutrino diagram is needed.

The first two diagrams contribute

iM = (−ie)(ie)2E
√

2 ε+µ

[−i
s

+
(1/2− s2w)

swcw

cw
sw

−i
s−m2

Z

]

·
[
ε∗(−)ε∗(+)(k− − k+)µ + (−q − k−)ε∗(+)ε∗µ(−) + (k+ + q)ε∗(−)ε∗µ(+)

]
,

(149)

After the reductions just described, there is a term in the high-energy behavior that does not cancel,

iM = ie2 2E
√

2 ε−µ(k− − k+)µ
[

1

2s2W s

](
− s

2m2
W

)

=
ie2

4s2w
2E
√

2 ε−µ(k− − k+)µ
1

m2
W

. (150)

We must add to this the neutrino diagram, which contributes

iM = (i
g√
2

)2 vR(p)† σ · ε∗(+)
iσ · (p− k−)

(p− k−)2
σ · ε∗(−) uL(p) . (151)

Substituting ε∗(−)→ k−/mW , the second half of this formula becomes

iσ · (p− k−)

(p− k−)2
σ · k−

mW
u(p) . (152)

Since σ · p uL(p) = 0, this can be written

iσ · (p− k−)

(p− k−)2
σ · (k− − p)

mW
u(p) = − i

m2
W

u(p) . (153)
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Fig. 23: Measurement of σ(e+e− →W+W−) from the four LEP experimenta, from [20].

Sending ε∗(+) → k+/mW = ((p + p)/2 + (k+ − k−)/2)/mW and using (σ · p)uL = v†R(σ · p) = 0,
we finally find

iM = − ie
2

2s2w
2E
√

2 ε−µ
1

2
(k− − k+)µ

1

m2
W

, (154)

and this indeed cancels the high-energy behavior (150) from the γ and Z diagrams. To fully verify (143),
we would need to carry out this calculation more exactly to pick up all subleading terms at high energy.
It does work out correctly, as was first shown by Alles, Boyer, and Buras [37].

The cross section for e+e− → W+W− was measured by the LEP experiments. The result is
shown in Fig. 23 [20]. The lowest, solid line is the prediction of the SM, including one-loop radiative
corrections. It is in excellent agreement with the measurements. The upper curves show the effect of
omitting, first, the Z diagram and, second, both the γ and Z diagrams. Apparently, the cancellation I
have demonstrated here is important not only at very high energy but even in the qualitative behavior of
the cross section quite close to threshold.

5.4 Parametrizing corrections to the Yang-Mills vertex
The cancellation described in the previous section clearly requires the precise structure of the Yang-Mills
vertex that couples three vector bosons. Before the LEP measurements, when the gauge boson nature of
the W and Z was less clear, theorists suggested that the WWγ and WWZ vertices might be modified
form the Yang-Mills form, and that such modifications could be tested by measurements of W reactions
at high energy.

The most general Lorentz-invariant, CP conserving WWγ vertex in which the photon couples to
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a conserved current has the form [38]

∆L = e

[
ig1AAµ(W−νW+µν −W+

ν W
−µν) + iκAAµνW

−µW+
ν

+iλA
1

m2
W

W−λµW
+µνAν

λ

]
. (155)

In this formula, for each vector field, Vµν = (∂µVν − ∂νVµ). We can write a similar generalization of
the SM WWZ vertex, with parameters g1Z , κZ , λZ and overall coupling ecw/sw. The choice

g1γ = g1Z = κA = κZ = 1 λA = λZ = 0 (156)

gives the SM coupling. If we relax the assumption of CP conservation, several more terms can be added.

It was quickly realized that any changes to the SM vertex produce extra contributions to the W
production amplitudes that are enhanced by the factor s/m2

W . In view of the discussion earlier in this
section, this is no surprise. If the additional terms violate the gauge invariance of the theory, the GBET
will not be valid, and the cancellations it requires will not need to occur. However, this idea would seem
to be already excluded by the strong evidence from the precision electroweak measurements that the W
and Z are the vector bosons of a gauge theory.

Still, there is a way to modify the WWγ and WWZ vertices in a way that is consistent with
gauge invariance. It is certainly possible that there exist new heavy particles that couple to the gauge
bosons of the SM. The quantum effects of these particles can be described as a modification of the SM
Lagrangian by the addition of new gauge-invariant operators. This approach to the parametrizatoin f new
physics effects has become known as Effective Field Theory (EFT). The SM already contains the most
general SU(2) × U(1)-invariant operators up to dimension 4, but new physics at high energy can add
higher-dimension operators, beginning with dimension 6.

There are many dimension 6 operators that can be added to the SM. Even for 1 generation of
fermions, there are 84 independent dimension 6 operators, of which 59 are baryon-number and CP-
conserving [39]. The theory of these operators has a complexity that I do not have room to explain
here. It is possible to make many different choices for the basis of these operators, using the fact that
combinations of these operators are set to zero by the SM equations of motion. The theory of EFT
modifications of the SM is reviewed in [40] and, in rather more detail, in [41]. I will give only a simple
example here.

Consider, then, adding to the SM the dimension-6 operators

∆L =
cT
2v2

ΦµΦµ +
4gg′

m2
W

ΦaW a
µνB

µν +
g3c3W
m2
W

εabcW a
µνW

bν
ρW

cρµ , (157)

where, in this formula, W a
µν and Bµν are the SU(2) and U(1) field strengths and Φµ, Φa are bilinears in

the Higgs field,

Φµ = ϕ†Dµϕ− (Dµϕ)†ϕ Φa = ϕ†
σa

2
ϕ . (158)

It can be shown that these shift the parameters of the WWγ and WWZ couplings to

g1Z = 1 +

[
cT

2(c2w − s2w)
− 8s2wcWB

c2w(c2w − s2w)

]

κA = 1− 4cWB

λA = −6g2c3W (159)

The parameter g1A = 1 is not shifted; this is the electric charge of the W boson. The remaining two
parameters obey

κZ = g1Z −
s2w
c2w

(κA − 1) λZ = λA . (160)
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It can be shown that the relations (160) are maintained for any set of dimension-6 perturbations of the
SM. They may be modified by dimension-8 operators.

Dimension-6 operators also contribute to the S and T parameters discussed at the end of the
previous section. From the perturbation (157),

αS = 32s2wcWB

αT = cT (161)

Given that EFT is based on gauge-invariant Lagrangian, this formalism for parametrizing new
physics can be worked out explicitly in great detail. QCD and electroweak radiative corrections can be
included. The higher-dimension operators in the EFT must of course be renormalized according to some
scheme, and the detailed formulae will depend on the scheme.

A dimension-6 operator has a coefficient with the units of (GeV)−2. Thus, the effects of such oper-
ators are suppressed by one factor of s/M2, where M is then mass scale of new particles. Contributions
from dimension-8 operators suppressed by (s/M2)2, and similarly for operators of still higher dimen-
sion. So, an analysis that puts constraints on dimension-6 operators, ignoring the effects of dimension-8
operators is properly valid only when s/M2 � 1.

As a corollary to this point, I call your attention to a Devil’s bargain that arises frequently in tests
of the structure of W and Z vertices at hadron colliders. In pp collisions, the parton center of mass
energy ŝ varies over a wide range. There is always a region of phase space where ŝ becomes extremely
large. This is the region that has the greatest sensitivity to higher-dimension operators. It is tempting to
apply event selections that emphasize this region to obtain the strongest possible limits.

However, this is exactly the region where operators of dimension 8 and higher might also be
important. In many models, these give negative contribution. Then a parametrization that uses only
dimension-6 operators leads to limits on their coefficients that are stronger than the limits that would be
obtained in a more complete theory.

The question of how to interpret limits on dimension-6 EFT coefficients is now hotly debated
in the literature. My personal position is on one extreme, that only analyses in which ŝ/M2 � 1 for
all events included in the analysis should be trusted. The authors of [42] advocate for a much more
aggressive approach. Experimenters who quote such limits should study this issue carefully.

On the other hand, the SM itself makes precise predictions in all regions of ŝ. Your first priority
should be to discover a deviation from these predictions. If you are able to demonstrate a substantial
deviation from the SM predictions in any region of phase space, we can all have fun quarreling about the
interpretation of this result.

5.5 W parton distributions
As a final topic in this section, I will discuss a situation in which the GBET might be expected to apply,
but it does not. This is involves processes in which a W boson is radiated from a quark or lepton
with small transverse momentum relative to the fermion direction. In QCD, the collinear radiation of
gluons from initial quarks is essential is creating the observed quark and gluon parton distributions. In
Section 4.2, we saw that collinear radiation of photons from initial electrons and positrons is also an
important effect that makes qualitative changes in the Z resonance line shape. In this section, I will
present the analogous theory for collinear W boson emission [43]. I will carry out the analysis for quark
initial states, but the same theory applies to electron and positron initial states.

For definiteness, consider the following setup: An initial u quark, with momentum p, emits an
almost collinear W+ boson, with momentum q,

u(p)→ d(k) +W+(q) . (162)
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Fig. 24: Kinematics of a process in which a W is emitted collinearly from a quark and then initiates a large-
momentum-transfer reaction.

The W boson must be off-shell. This emission will be part of a process shown in Fig. 24, in which
the virutal W collides with a parton from the other proton to initiate a hard-scattering reaction. An
important class of processes of this type is WW scattering, including the reaction W+W− → h that we
will discuss in Section 6.2.

For W reactions that involve the Higgs boson, it will be important to have W bosons with longitu-
dinal polarization. According to the GBET, a longitudinally polarized W boson should have a coupling
equal to that of the corresponding Goldstone boson π+ from the Higgs sector. Then the study of high
energy W boson reactions allows us to directly measure the strength of Higgs boson interactions. How-
ever, it is not clear that it is possible to radiate longitudinally polarized W bosons from initial quarks.
A π+ couples to a light fermion with its Higgs Yukawa coupling, that is, negligibly, the the radiation of
longitudinally polarized W bosons would seem to be forbidden by the GBET.

To understand the correct story, we must compute the u → Wd emission amplitude explicitly.
In this calculation, I will take the W boson to be emitted approximately collinearly with the u quark.
The analysis is very similar to calcuation of the Altarelli-Parisi splitting functions that you will find, for
example, in Chapter 17 of [7]. I will assume that the W has pT ∼ mW � p‖.

First, I write the momentum vectors for the quarks, taking the u quark to move in the 3̂ direction
and the d quark to carry away an energy fraction (1− x) and to have a small transverse momentum,

p = (E, 0, 0, E)

k = ((1− z)E,−pT , 0, (1− z)E −
p2T

2(1− z)E ) . (163)

The momentum k is on-shell to order p2T . The W momentum vector is then determined by momentum
conservation

q = (zE, pT , 0, zE +
p2T

2(1− z)E ) . (164)

The denominator of the W propagator is then

q2 −m2
W = −p2T −

z

(1− z)p
2
T −m2

W = −
( p2T

1− z +m2
W

)
. (165)

Next, we compute the matrix elements for W emission

iM = ig u†L(k) σ · ε∗W uL(p) (166)

to first order in (pT ,mW ). The explicit form of the spinors is

uL(k) =
√

2(1− z)E
(
pT /2(1− z)

1

)
uL(p) =

√
2E

(
0
1

)
. (167)
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The W polarization vectors are

ε∗µ± = (0, 1,∓i,−pT /zE)µ/
√

2 (168)

for the transverse polarizations, and

ε∗µ0 = (q, pT , 0, zE)µ/mW (169)

for the longitudinal polarization state. In this formula

q = [(zE)2 −m2
W ]1/2 = zE − m2

W

2zE
(170)

Then

σ · ε∗+ =
1√
2

(
−pT /zE 0

2 pT /zE

)

σ · ε∗− =
1√
2

(
−pT /zE 2

0 pT /zE

)

σ · ε∗0 =
1

mW

(
q + zE pT
pT q − zE

)
(171)

With these ingredients, it is straightfoward to work out the matrix elements for the three W polarization
states,

iM(u→ dW+) = ig ·





√
1− z pT /z +√
1− z pT /z(1− z) -
−
√

1− z mW /
√

2z 0

. (172)

We can convert these expressions to cross sections for complete W -induced processes. The cross
section for a process uX → dY , in the approximation in which the W is almost on shell, is given by

σ =
1

2s

∫
d3k

(2π)32k

∫
dΠY (2π)4δ(4)(p+ pX − k − pY )

∣∣∣∣M(u→ dW+)
1

q2 −m2
W

M(W+X → Y )

∣∣∣∣
2

(173)

In the collinear kinematics, with ŝ = zs

1

2s

∫
d3k

(2π)32k
=

1

2ŝ/z

∫
dzEd2pT

16π3E(1− z) =
1

2ŝ

∫
dzdp2Tπ

16π3
z

(1− z) (174)

Then, also using (165), (173) simplifies to

σ =

∫
dz

∫
dp2T

(4π)2
z

(1− z)
∣∣M(u→ dW+)

∣∣2 1

p2T /(1− z) +m2
W )2

· 1

2ŝ

∫
dΠY (2π)4δ(4)(q + pX − pY )

∣∣M(W+X → Y )
∣∣2 (175)

The last line of (175) is σ(W+(q) + X → Y ). Then (175) has the form of a parton model cross
section

σ(uX → dY ) =

∫
dzfW←u(z) σ(W+X → Y ) (176)
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where fW←u(z) is the parton distribution for a W boson in the u quark,

fW←u(z) =

∫
dp2T

(4π)2
z

(1− z)
(1− z)2

(p2T + (1− z)m2
W )2

∣∣M(u→ dW+)
∣∣2 . (177)

We can evaluate this parton distribution for each W polarization state by using the formula (172). The
result is

fW−(z) =
α2

4π

∫
dp2T p

2
T

(p2T + (1− z)m2
W )2

1

z

fW+(z) =
α2

4π

∫
dp2T p

2
T

(p2T + (1− z)m2
W )2

(1− z)2
z

fW0(z) =
α2

8π

∫
dp2T m

2
W

(p2T + (1− z)m2
W )2

(1− z)2
z

(178)

For the transverse polarizations, we find a resut very similar to the Altarelli-Parisi splitting function
for collinear gluon emission,

fWT (z) =
αw
4π

1 + (1− z)2
z

· log
Q2

m2
W

, (179)

whereQ2 is the upper limit of the p2T integral, which is set by the momentum transfer in the hard reaction.

For the longitudinal W polarization, the story is different. The integral over pT is convergent,
so that the pT is restricted to the region pT ∼ mW . In this regime, as we see explicitly, longitudinal
W bosons can be produced with coupling strength g. Apparently, in this process, the error term in the
GBET is actuallyO(mW /pT ), which is consistent with (127) but, still, larger than we might expect. The
reduction of the longitudinal W boson to a Higgs boson then is not accurate in the region pT ∼ mW ,
though it does apply—and cuts off the amplitude—when pT � mW .

When we perform the convergent integral over pT , we find that the parton distribution for W0 is
substantial [43],

fW0(z) =
αw
8π

1− z
z

. (180)

Then the proton does contain longitudinal W bosons, which can induce Higgs sector reactions when this
proton collides with another proton at high energy. The collinear longitudinal W bosons have pT ∼ mW

but not higher, a kinematic feature that can be used to suppress backgrounds from reactions involving
transversely-polarized W bosons.

6 The Standard Model theory of Higgs boson decays
There remains one heavy particle of the SM that we have not yet discussed, the Higgs boson. The Higgs
boson has a central role in the structure of the weak interactions. Its field is the agent that breaks the
SU(2)×U(1) symmetry and generates the masses of all quarks, leptons, and vector bosons. This at the
same time forms a unified picture of the electroweak interactions as we have studied them so far and also
points to new mysteries whose explanations are still to be found.

The best way to enter a discussion of the Higgs boson is to understand thoroughly the predictions
for the properties of this particle given by the SM. The Higgs sector involves one more parameter of the
SM beyond those we have discussed already, the Higgs field self-coupling λ. However, this coupling
is fixed by the measurement of the Higgs boson mass. Thus, the SM makes precise predictions for all
of the Higgs boson cross sections and branching fractions. These predictions provide a starting point
for any discussion of the properties of the Higgs boson in model that generalize the SM. An excellent
reference on the theory of the Higgs boson in the Standard Model is [44]. The best current calculations
of the Higgs boson properties are compiled in [45].
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Fig. 25: Feynman rules for couplings of the Higgs boson.

6.1 Decay modes of the Higgs boson
The basic elements of the SM description of the Higgs boson are extremely simple. A general configu-
ration of the Higgs field can be written in the form of an SU(2) gauge transformation acting on a simple
scalar field

ϕ(x) = exp[−iαa(x)σa/2]

(
0

(v + h(x))/
√

2

)
. (181)

We can remove the prefactor by a choice of gauge. Then the Higgs field reduces to a vacuum expectation
value v and the dynamical scalar field h(x). The values of mW and g give

v = 246 GeV . (182)

The vertices of h(x) are given by shifting v everywhere it appears in the SM

v → v + h(x) . (183)

This gives rise to the Feynman rules shown in Fig. 25. Within the SM, there is no freedom to change
these vertices.

The couplings in Fig. 25 imply that a heavy Higgs boson would decay dominantly into pairs of the
other heavy particles of the SM,

h→W+W− , h→ ZZ , h→ tt (184)

However, it has been found at the LHC that there is no heavy resonance that decays to these final states.
On the other hand, a narrow resonance with the properties of the Higgs boson has been found at the LHC
at a mass of 125 GeV. At this mass value, the otherwise dominant decay modes of the Higgs boson are
kinematically forbidden. The actual decay modes of the Higgs are all suppressed in some way, by factors

m2
f

m2
W

,
αw
4π

, or
(αs

4π

)2
. (185)

This means that the decay pattern of the Higgs boson will be more complex that might have been ex-
pected, but also that it should be very rich, with a large number of decay modes accessible to observation.

To describe these decays, I begin with the decays to fermions. The matrix element for Higgs decay
to a light fermion is

iM(h→ fRfR) = −imf

v
u†RvR = −imf

v
(2E) . (186)

and similarly for decay to fLfL. The total decay rate is

Γ(h→ ff) =
1

2mh

1

8π

m2
fm

2
h

v2
· 2 , (187)
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or, using v2 = 4m2
W /g

2,

Γ(h→ ff) =
αw
8
mh

m2
f

m2
W

. (188)

For final-state leptons, we can immediately evaluate this,

Γ(h→ τ+τ−) = 260 keV Γ(h→ µ+µ−) = 9 keV (189)

for mh = 125 GeV.

For decays to quarks, a few more details must be added. The quark mass must be defined by some
renormalization convention. An appropriate choice that absorbs large logarithms is to set the quark mass
in (188) equal to the MS quark mass evaluated at Q = mh. This is related to the quark mass as usually
quoted by

mf (mh) = mf (mf )

[
αs(mh)

αs(mf )

]4/b0(
1 +O(αs)

)
, (190)

where b0 is the first coefficient of the QCD β function, equal to 23/3 for 5 light quark flavors. This means
that the values of the quark masses appropriate to the calculation of Higgs boson branching ratios are

mu md ms mc mb

1.5 3 60 700 2800
(191)

with all values in MeV. The formula (188) must also be multiplied by the color factor of 3 and a substan-
tial QCD correction

3 ·
(
1 +

17

3π
αs(mh) + · · ·

)
= 3 · 1.24 . (192)

Then, for example,

Γ(h→ bb) =
αwmh

8

( 2.8

mW

)2 · 3 · 1.24 = 2.4 MeV . (193)

After we compute the other major Higgs boson decay rates, this will correspond to a branching fractionn
of 58%. Then the total width of the Higgs boson is predicted to be about 4.1 MeV, and the other fermion
branching fractions should be

τ+τ− cc ss µ+µ−

6.3% 3% 0.03% 0.02%
(194)

It is somewhat surprising the that the branching ratio for τ+τ− is larger than that for cc, despite the
presence of the color factor of 3.

For a heavy Higgs boson that can decay to on-shell W and Z bosons, the decay amplitudes would
be

iM(h→W+W−) = i
2m2

W

v
ε∗(+) · ε∗(−)

iM(h→ ZZ) = i
2m2

Z

v
ε∗(1) · ε∗(2) . (195)

For a very heavy Higgs boson, there is a further enhancement for the longitudinal polarization states,

ε∗0(1) · ε∗0(2) ∼ k1 · k2
m2
Z

∼ m2
h

2m2
Z

. (196)

This factor is just
λ

(g2 + g′2)
. (197)
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Fig. 26: Feynman diagram for h→WW or h→ ZZ decay with the vector bosons off-shell.

0 20 40 60 80 100 120

m(W), m(Z)  (GeV)

h →WW*h →ZZ*

Fig. 27: Mass distributions of the off-shell W and Z bosons in the decay of a 125 GeV Higgs boson.

so the longitudinal Z andW couple to the Higgs boson as Higgs boson rather than as gauge bosons. This
is in accord with the GBET.

For the actual situation of a 125 GeV Higgs boson, one or both of the W and Z bosons must be
off-shell. Then the decay is best described as a Higgs decay to 4 fermions, as shown in Fig. 26. The
rate is suppressed by a factor of αw and by the off-shell W or Z propagator. The result is that the rate is
competitive with bb for the WW mode and a factor 10 smaller for ZZ. The SM branching fractions for
these off-shell vector boson modes are

BR(h→WW ∗) = 22% BR(h→ ZZ∗) = 2.7% . (198)

The W and Z mass distributions in these decays are shown in Fig. 27.

The Higgs boson decay to ZZ∗ is exceptionally interesting because it is completely recon-
structable in LHC events in which both Zs decay to charged leptons. The angular distribution of the
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Fig. 28: Likelihood distributions for tests of the spin and parity of the Higgs boson, from [46].

Fig. 29: Loop diagrams contributing the the h→ gg and h→ γγ decays.

leptons permits an analysis of the spin and parity of the Higgs resonance. In the SM, where the Higgs
boson must have JP = 0+, the two Z bosons are predicted to be longitudinally polarized with the two
decay planes parallel. The polarization of the Z can be measured from the decay angular distribution, as
we have discussed for W bosons in (136). This prediction contrasts with that for other possible spin 0
assigments, in which the Higgs boson couples to ZZ∗ through the interactions

0− : hεµνλσZµνZλσ 0+h : hZµνZ
µν . (199)

For the intereractions in (199), the Z bosons are preferentially transversely polarized; also, with the 0−

type interaction, the two decay planes tend to be orthogonal. The SM prediction was tested even with
the relatively small sample of about 15 Z → 4 lepton events collected by each LHC experiment in run 1
of the LHC. Figure 28 shows the expectred distributions of the likelihood for tests of the predicted SM
coupling structure against the coupling structures in (199) and 4 other structures for which the resonance
has spin 1 or spin 2. The actual value of the likelihood found by CMS experiment is shown by the arrow.
In all cases, the results strongly favor the SM hypothesis [46].

Finally, there are loop processes that allow the Higgs boson to decay to a pair of massless vector
bosons, gg or γγ, or to Zγ. The most straightforward of these to analyze is the hgg vertex. This is
generated by loop diagrams that involve quarks, such as the diagram shown on the left in Fig. 29.
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If we compute these loop diagrams, we obtain a local operator that gives an effective description
of the Higgs boson coupling to gg. The lowest-dimension operator that is invariant under the SU(3)
gauge symmetry is

∆L =
1

4
AhF aµνF

µνa , (200)

where F aµν is the QCD field strength. The coefficient A has the dimensions (GeV)−1. This operator
yields the hgg vertex

− iAδab(k1 · k2gµν − kµ2kν1 ) . (201)

I will compute the coefficient A in a moment, but, first I will estimate the order of magnitude of
the contribution from a quark of mass mq. There is a surprise here. This contribution is proportional to
the Higgs Yukawa coupling, so it must be of the form

αs
mf

v

1

M
, (202)

where M is the momentum that flows in the loop. For 2mq � mh, M will be of order mh and so the
contribution (202) will be suppressed by a factor mf/mh. On the other hand, if 2mq � mh, M will be
of order mq. In this case, the factors of mq cancel and the diagram is at full strength no matter how large
mq is. This is bizarre but correct: The hgg vertex gets only small contributions from quarks to which the
Higgs boson can decay and obtains full-strength constributions from quarks to which the Higgs boson
cannot decay because they are too heavy.

In the SM, the only quark that contributes to the hgg vertex at full strength is the top quark. If
there were a fourth generation of quarks that obtained their masses from the SM Higgs boson, each
quark would produce an equal contribution to the hgg coupling, so that the total decay rate Γ(h → gg)
would be 32 = 9 times the SM prediction [47]. Such a large shift is already excluded by the LHC Higgs
measurements. This is a much stronger constraint on a fourth generation than the one that we found from
precision electroweak measurements at the end of Section 3.

We can compute the contribution to the hgg vertex from a heavy quark t from the starting point of
the QCD vacuum polarization. The 1-loop quark vacuum polarization diagram has the value

i(k2gµν − kµkν) tr[tatb]
αs
3π

log
Λ2

m2
t

i(k2gµν − kµkν) tr[tatb]
αs
3π

log
Λ2

m2
t

. (203)

We can produce the top quark loop diagram in Fig. 29, adding a zero-momentum Higgs boson, by
shifting v → v + h as in (183). The expression (203) depends on v through mt = ytv/

√
2. This yields

a contribution to the hgg vertex that is finite and equal to

i(k2gµν − kµkν) δab
αs
3π

1

v
. (204)

Comparing to (201), we find
A =

α

3πv
=

gαs
6πmW

. (205)

From this expression, we can compute the partial width Γ(h→ gg) in the limit m2
h � 4m2

t ,

Γ(h→ gg) =
αwα

2
s

72π2
m3
h

m2
W

. (206)

The full expression can be shown to be

Γ(h→ gg) =
αwα

2
s

72π2
m3
h

m2
W

·
∣∣∣∣
3

2
τ(1− (τ − 1)(sin−1

1√
τ

)2)

∣∣∣∣
2

, (207)
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Fig. 30: Standard Model predictions for the branching ratios of the Higgs boson as a function of the its mass,
from [45].

where τ = 4m2
t /m

2
h.

Another way to interpret this argument is that the shift of v in (183) is a change of scale for the
SM. Then the 1-loop Higgs couplings to a gauge boson should be proportional to the 1-loop contribution
to the renormalization group β function. The calculation just performed satisfies this, since (203) give
the contribution of a quark to the QCD β function. Changing what needs to be changed, we can obtain
the coupling of a Higgs boson to γγ. The contribution from the top quark and the W boson to the QED
vacuum polarization is

i(k2gµν − kµkν)
α

4π

[
−22

3
+

1

3
+

4

3
· 3 ·

(2

3

)2
]

log
Λ2

m2
t,W

. (208)

The first term here is contribution from the W , it is just the standard vector boson contribution to the β
function for an SU(2) gauge theory. The second term comes from the Higgs boson that the W boson
must eat to become massive. The third term comes from the top quark; the last two factors are the top
quark color factor and electric charge. In all, we find, for mh � 2mW , 2mt,

Γ(h→ γγ) =
αwα

2

144π2
m3
h

m2
W

∣∣∣∣
21

4
− 4

3

∣∣∣∣
2

. (209)

Careful evaluation, including all finite mass effects and the QCD corrections to the gluon width, gives

BR(h→ gg) = 8.6% BR(h→ γγ) = 0.23% . (210)

We are now ready to put all of the pieces together to compile the SM predictions for the various
Higgs boson branching ratios. Figure 30 shows the predictions as a function of the Higgs boson mass. It
is a useful exercise to understand the shape of the curves based on the physics discussed in this section.
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a.) b.)

c.) d.)

Fig. 31: Reactions producing the Higgs boson in pp collisions

The position of the observed Higgs resonance is shown by the vertical line. At this mass value, there are
10 distinct final states with branching fractions larger than 10−4, including the ss channel not shown on
this plot.

6.2 Study of the Higgs boson at the LHC
With this understanding of the Higgs boson couplings, I will review very briefly the results for Higgs
boson couplings obtained by the ATLAS and CMS experiments. The most important processes for the
production of a Higgs boson at the LHC are those shown in Fig. 31: gluon-gluon fusion, vector boson
fusion, radiation of the Higgs boson from a W or Z (“Higgsstrahlung”), and associate production of a
Higgs boson with a pair of top quarks. The cross sections predicted for these processes for a 125 GeV
Higgs boson are shown in Fig. 32.

The four reactions have different advantages for the study of Higgs decays. Gluon-gluon fusion
has the highest cross section, so it gives access to rare Higgs decays. In vector boson fusion, Higgs events
are tagged by the presence of forward quark jets, reducing the background from non-Higgs SM processes.
This reaction also has the smallest theoretical error on the predicted cross section. Higgsstrahlung also
gives tagged Higgs decays. It also can lead to highly boosted Higgs bosons, which is an advantage
for isolating the h → bb decay. Finally, the top associated production process gives access to the htt
coupling.

In all cases, what is measured is a combination of the cross section for Higgs production and the
branching fraction for Higgs decay into the observed final state. This observable is related to the Higgs
couplings through

σ(pp→ AA→ h)BR(h→ BB) ∼ Γ(h→ AA)Γ(h→ BB)

Γh
. (211)

In this relation,AA is the parton combination used to produce the Higgs boson—gg,WW or ZZ, and tt,
respectively, for the processes in Fig. 32. The measured rates are quoted in terms of the signal strength µ

µ = σ(pp→ h→ BB)/(SM prediction) . (212)

Note that, if a departure from the SM value µ = 1 is seen, this might be due to a nonstandard value of the
hAA coupling, the hBB coupling, or the Higgs total width. Multiple measurements would be needed to
resolve this ambiguity.
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Fig. 32: Cross sections for Higgs production in pp collisions for a 125 GeV Higgs boson, from [48].

The original strategy for observing the Higgs boson at the LHC used the characteristic decay
modes in which this particle could be reconstructed as a resonance.

h→ γγ , h→ ZZ∗ → 4 leptons (213)

These modes correspond to branching fractions of

0.23% and 0.012% (214)

With production cross sections of about 20 pb at 7 TeV, these processes have rates coresponding to
fractions

4× 10−13 and 2× 10−14 , (215)

respectively, of the pp total cross section. The observation of these very tiny components of the total
reaction rate at the LHC is quite an achievement! Signals of the Higgs resonance in LHC run 1 data are
shown in Fig. 33.

Once we are convinced that the Higgs resonance is actually present at a mass of 125 GeV, we
can look for the signatures of this resonance in other decay modes. Higgs decays to these channels give
larger total rates than the decays to the discovery modes. But, these channels produce events that are not
obviously distinguishable from other SM reactions.

An example is
pp→ h→W+W− → `+`−νν . (216)

The observable properties of these events overlap strongly with events from

pp→W+W− → `+`−νν . (217)

The signal to background ratio can be enhanced by selecting the region where m(`+`−) and the angle
between the two leptons are both relatively small. It is also necessary to apply a jet veto (that is, to select
events with at most 1 high-pT jet) in order to avoid background from

pp→ tt→ bb`+`−νν . (218)
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Fig. 33: Signals of the Higgs boson resonance at the LHC in run 1: left: Higgs resonance in them(γγ) distribution,
from [49]; right: Higgs resonance in the m(4`) distribution [50].

Fig. 34: Evidence for the Higgs boson in its decay to WW ∗, from [51].
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Fig. 35: Evidence for the Higgs boson decay to τ+τ−, from [52].

Figure 34 shows the distributions in m(`+`−) for four event selections from the ATLAS analysis at
8 TeV. The histograms show the SM simulation of this event sample, with the various colored bands
indicating the contributions of expected processes. The largest event rates come from pp → WW and,
for the 1-jet events shown in the bottom row, pp → tt. The data points indicate a 10% excess rate over
the SM expectation from processes that do not involve a Higgs boson, which is well accounted for by the
expected rate for Higgs production.

Similar analyses support the presence of Higgs boson production and decay to τ+τ−. The most
important backgrounds are

pp→ Z → τ+τ− , pp→W+W− , (219)

and QCD reactions where two jets in the final state fake the τ signatures. The strongest evidence for the
reaction comes from vector boson fusion, since the tagging by forward jets helps to minimize the QCD
background. Figure 35 shows the very recent CMS run 2 analysis with data from 13 TeV. These events
are dominated by the large background from Z → τ+τ−. However, this background can be understood
using the observed distribution of Z → µ+µ− events. The backgrounds from WW and QCD are more
challenging to estimate. Fig. 36 shows a candidate vector boson fusion h→ τ+τ− event from ATLAS. I
use the word “candidate” advisedly; probably this event is a Z → τ+τ− event produced by vector boson
fusion.

The most challenging of the major modes of Higgs decay is the one with the highest branching
ratio, h → bb. It is probably hopeless to observe this mode in gluon fusion at low Higgs pT , since
gg → bb with m(bb) ∼ 125 GeV has a cross section about a million times larger that that of the Higgs
process. Current analyses use the Higgsstrahlung process with a tagging W or Z

pp→ V h , h→ bb (220)

where V is W or Z. However, there are other SM processes with similar signatures that do not involve
a Higgs boson,

pp→ V Z , Z → bb
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Fig. 36: A candidate event for vector boson fusion production of a Higgs boson decaying to τ+τ−, from [53].

Fig. 37: Evidence for the Higgs boson decay to bb, from [54]. The three distributions show 0, 1, and 2-lepton
events. The red (dark) boxes near the mass value of 125 GeV show the expectation from pp→ V h, h→ bb.

pp→ V g , g → bb . (221)

The second reaction involves an off-shell gluon with a mass near 125 GeV that converts to bb. Convinc-
ing evidence for this decay has been obtained only very recently, in the 13 TeV data [54]. . The current
evidence from the ATLAS run 2 data is shown in Fig. 37. It is expected that discrimination of the three
processes (220), (221) can be improved in an event sample in which the state recoiling against the vector
boson is highly boosted, using techniques that measure the dijet mass and color flow. A recent analysis
by CMS shows a small signal for h→ bb in a sample of high pT jets recoiling against a gluon jet [55].

Figure 38 shows a summary of the measurements of the Higgs boson signal strengths made by
ATLAS and CMS in run 1 of the LHC [56]. A signal strength of 0 indicates no presence of the Higgs
boson. This hypothesis is excluded by run 1 data for all of the modes considered except h → bb. I have
discussed above the more significant evidence for h → τ+τ− and h → bb found already in run 2. A
signal strength of 1 is the prediction of the SM. The measured rates agree with this prediction within
about 30% accuracy. So the quantitative study of the Higgs boson has begun and will be improved as the
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Fig. 38: Summary of Higgs µ measurements, from [56].

LHC accumulates data.

7 Precision measurements of the Higgs boson properties
In the last segment of these lectures, I take a step outside the Standard Model. In this section, I will
discuss the expectations for the couplings of the Higgs boson in theories beyond the Standard Model.
This is an interesting story that motivates a dedicated experimental campaign to measure the couplings
of the Higgs boson with high precision. First, though, I will explain why I believe there must be new
interactions of physics waiting to be discovered.

7.1 The mystery of electroweak symmetry breaking
I have shown in the previous lectures that the SM of weak interactions is an extremely successful theory
in its own domain. It is not a complete theory of nature, but we can supplement it by adding gravity,
quantum chromodynamics (QCD) as the theory of the strong interactions, and some model of dark matter
and dark energy. It is also not difficult to add neutrino masses to the model, either by introducing three
generations of right-handed neutrinos or by adding lepton-number-violating Majorana mass terms. Each
of these additions accounts for some set of observed phenomena that is outside the range of topics
considered in these lectures.

But this is not enough. A key part of the explanation for the structure of the weak interactions and
the generation of masses for quarks, leptons, and gauge bosons is the spontaneous symmetry breaking of
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Fig. 39: The Higgs potential V (|ϕ|).

SU(2)× U(1) and the generation of the Yukawa couplings that link the symmetry-breaking Higgs field
to the quarks and leptons. The structure that I have described leads immedately to questions about all of
these ingredients:

– Why just quarks and leptons? What is the origin of the quantum number assignments (I, Y ) for
the matter particles seen in nature?

– What explains the spectrum of quark and lepton masses? The SM gives the relation

mf =
yfv√

2
, (222)

where v is the Higgs field vacuum expectation value. But the yf are renormalized parameters that
cannot be predicted with the Standard Model. The presence of nonzero CKM angles—and, with
neutrinos, PMNS angles—adds further difficulty to this problem.

– What is the origin of the Higgs field? Is there only one such field, or are there multiplets of scalar
fields with different quantum numbers? The SM makes the minimal choice of one Higgs multiplet.
Is this necessary?

– Why is SU(2)×U(1) spontaneously broken? The shape of the Higgs potential energy function is
an input for which the SM gives no explanation.

This last question merits more discussion. Here is the explanation for electroweak symmetry
breaking given in the SM: The model instructs us to write the most general renormalizable potential for
the Higgs field ϕ,

V (ϕ) = µ2|ϕ|2 + λ|ϕ|4 . (223)

We assume that µ2 < 0. Then the potential has the correct shape, shown in Fig. 39, to drive spontaneous
symmetry breaking.

Why must µ2 be negative? That question cannot be addressed within the model. It is just a choice,
perhaps a random one.

We get into deeper trouble if we try to take this explanation to a higher level of precision by
computing the radiative corrections to the parameter µ2. The leading one-loop corrections, from loops
containing the Higgs and top quark fields, are shown in Fig 40. They give

µ2 = µ2bare +
λ

8π2
Λ2 − 3y2t

8π2
Λ2 + · · · . (224)

The diagrams are ultraviolet divergent. I have regularized them by cutting off their momentum integrals
at a mass scale Λ, arbitrarily chosen to be the same for Higgs and top. The final value of µ2 needed to
produce the observed Higgs boson mass is µ2 ≈ −(100 GeV)2. So if Λ is much larger than 1 TeV, this
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Fig. 40: One-loop corrections to the µ2 parameter from the Higgs field coupling to the top quark and from the
Higgs field self-coupling.

formula requires large cancellations among the ingredients with no obvious explanation. If we assert that
the SM is correct up to the Planck scale, the first 33 significant figures must cancel. It is also apparent
that the right-hand side contains both positive and negative contributions, so it is not obvious without
invoking a much deeper explanation why the final answer after the cancellation should turn out to be
negative.

The simplest resolution of this set of problems would be that there are new particles, not yet
known to us, that generate additional diagrams contributing to the calculation of µ2. If these particles
have masses of TeV size, they might cancel the divergences seen in (224) and—in the best case—leave
over a calculable answer for µ2. However, we have not yet been able to discover these particles in
high-energy experiments.

The general problem of the uncalculability of the parameter µ2 is not new to high-energy physics.
It is encountered in all systems in which a symmetry is spontaneously broken. Condensed matter physics
gives many examples.

The most direct analogy to the Higgs theory comes in the phenomenon of superconductivity seen
in most metals at cryogenic temperatures. The original papers on the Higgs mechanism by Englert and
Brout, Higgs, and Guralnik, Hagen, and Kibble [9–11] all used the analogy to superconductivity to
motivate their arguments. However, they used only a piece of the complete theory. Supercondutivity
was discovered in 1911 by Kamerlingh Onnes and was quickly seen to be associated with a sharp phase
transition [57]. However, the explanation for this phase transition was not understood for another 45
years.

In 1950, Landau and Ginzburg proposed a phenomenological theory of superconductivity based
on a scalar field with the potential (223) [58]. They assumed that the parameter µ2 would be a function
of temperature, taking negative values below the phase transition temperature TC . Coupling this theory
to electromagnetism, they found that the photon acquires a mass by the Higgs mechanism and that
the scalar fields in the vacuum can transmit electric current frictionlessly. This theory turned out to
be extremely successful in explaing many aspect of superconductivity, including the Meissner effect in
which superconductors repel magnetic flux, the existence of Type I and Type II superconductors, and the
systematics of the destruction of superconductivity by high currents or high magnetic fields.

However, this theory could not address the most important problem of why superconductivity
occured in the first place. The answer to that question waited until 1957, when Bardeen, Cooper, and
Schrieffer discovered the mechanism that causes electrons in a metal to pair up into bound states and
form a boson condensate with the properties of the Landau-Ginzburg scalar field [59].

In our understanding of the phase transition to symmetry breaking of SU(2)× U(1), we are now
at the Landau-Ginzburg stage.

In the case of superconductivity, physicists knew that there must be a deeper explanation that had
to be given in terms of the interactions of elecrons and atoms. For the symmetry-breaking of the weak
interactions, any analogous explanation must involve new elementary particles outside the SM. We do
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not know what these particles are. We only know that we have not discovered them yet.

7.2 Expectations for the Higgs boson in theories beyond the Standard Model
Even if we cannot discover new heavy particles responsible for the Higgs potential energy, we can hope to
find clues to the nature of these new particles and interactions by looking more deeply into the properties
of the Higgs boson itself. In the previous lecture, I emphasized that the SM makes precise predictions
for the couplings of the Higgs boson to all particles of the SM in terms of the measured masses of those
particles. Any deviation from these predictions must indicate the presence of new interactions beyond
the SM. In this and the next two sections, I will trace out the expectations for corrections to the Higgs
properties in different classes of models of new physics.

To begin, I will present two sets of expectations for the properties of new physics models. The
first is guidance from the concept that these models should solve the problem of the calculability of the
Higgs potential. The second comes from a constraint that is well-satisfied in the precision electroweak
measurements.

I have already explained that the parameter µ2 in the Higgs potential cannot be computed within
the SM. To construct a model in which µ2 can be computed, that model must satisfy some special
properties. In particular, some structure in the theory msut require the cancellation of quadratically
divergent Feynman diagrams which would otherwise add large, arbitrary terms to the final result for µ2.

There are two strategies to achieve this. The first is to include in the model a symmetry that forbids
the appearance of the

µ2|ϕ|2 (225)

term in the Lagrangian. It is not so obvious how to construct such a symmetry, since the operator (225)
seems to be conpletely neutral. It would be forbidden in a scale-invariant theory, but in quantum field
theory scale invariance is usually explicitly broken by the running of coupling constants. Two schemes
that do forbid such as term are supersymmetry, the spacetime symmetry that links fermions and bosons,
and the identification ofϕwith a Goldstone boson of some spontaneous symmetry breaking at a very high
mass scale. The computation of the Higgs potential in models of supersymmetry is reviewed in [60, 61].
The computation of the Higgs potential in models in which the Higgs boson is a Goldstone boson is
reviewed in [62, 63]. There are also other proposed generalizations of the SM Higgs sector in which the
Higgs potential is not calculable.

One of the properties of mass generaion in the SM is the relation mW = mZcw, as we saw in
(16). This property can be derived from a symmetry of the Higgs potential assumed in the SM. Since the
relation works so well, it is suggested that generalizations of the SM Higgs sector should also have this
property.

The origin of the relation (16) can be seen as follows: Look at the form of the vector boson mass
matrix acting on the original SU(2)× U(1) fields,

m2 =




g2

g2

g2 −gg′
−gg′ g′2


 on




A1

A2

A3

B


 . (226)

The form of the matrix is dictated by the requirement that the matrix have a zero eigenvalue, associated
with the massless photon, and that the part of the matrix acting on the SU(2) fields (A1, A2, A3) should
be symmetric among these fields. The requirement for the latter statement is that the theory contains
an SO(3) transformation that rotates the SU(2) gauge fields into one another and is unbroken even
when the SU(2) gauge symmetry is spontaeously broken. This extra transformation is called custodial
symmetry [64].
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Custodial symmetry is an accidental property of the SM Higgs potential. If we write

ϕ =
1√
2

(
ϕ1 + iϕ2

ϕ0 + iϕ3

)
(227)

the Higgs potential depends only on the combination

|ϕ|2 = (ϕ0)2 + (ϕ1)2 + (ϕ2)2 + (ϕ3)2 . (228)

A vacuum expectation value for ϕ0 preserves the SO(3) symmetry that acts on (ϕ1, ϕ2, ϕ3). From this
observation, we understand why the SM satisfies (16).

There are many generalizatios of the SM Higgs theory that also satisfy this condition. For example,
we could introduce two or more scalar field multiplets with (I, Y ) = (12 ,

1
2). In the most general case, a

different Higgs boson can be used to give mass to the charged leptons, d quarks, and u quarks, by writing
the Higgs Yukawa interactions as

L = −yeL† · ϕ1eR − ydQ† · ϕ2dR − yuQ†aεabϕ†3buR + h.c.. (229)

In this equation, L is the left-handed lepton doublet, Q is the doublet of left-handed quarks, and all
three Higgs multiplets have I = 1

2 , Y = 1
2 . The three Higgs fields should have a potential that aligns

their vacuum expectation values so that the U(1) symmetry giving electromagnetism remains unbroken.
This structure can be extended to three generations by replacing the three Yukawa couplings by three
3× 3 matrices. The resulting theory shares with the Standard Model the property that, after a change of
variables, the Higgs couplings are all CP even and flavor diagonal.

It can be shown that the Yukawa coupling with a complex conjugated field φ†3 is inconsistent
with supersymmetry. Then, in models of supersymmetry, we must introduce at least two Higgs double
fields, one with I = 1

2 , Y = +1
2 , to give mass to the d quarks and leptons, and a different field with

I = 1
2 , Y = −1

2 , to give mass to the u quarks.

More complex Higgs field multiplets are also possible. Georgi and Machacek found a way to
preserve custodial symmetry with Higgs bosons in higher representations, corresponding to spin I under
the weak interaction SU(2) symmetry [65, 66]. For example, for I = 1, we could introduce a 3 × 3
matrix of fields

X =




χ0∗ ξ+ χ++

−χ+∗ ξ0 χ+

χ++∗ −ξ+∗ χ0


 , (230)

in which the rows are SU(2) triplets and the columns have Y = −1, 0, 1, respectively. The potential for
this field can be arranged to have SU(2)× SU(2) symmetry and a minimum at

〈X〉 = V · 13 (231)

that preserves the diagonal SU(2) as a global symmetry. We need at least one I = 1
2 Higgs multiplet

to give mass to the quarks and leptons, but we can supplement this with additional Higgs fields with any
value of I .

The criterion of custodial symmetry also provides guidance in constructing models of composite
Higgs bosons that satisfy current phenomenological constraints. To provide examples of such models,
let me begin by describing the Technicolor model introduced in 1978 by Weinberg and Susskind [67,68].
These authors introduced a copy of QCD with two massless techni-quark flavors (U,D), and with
a strong interaction mass scale corresponding to a techni-ρ meson mass at 2 TeV. This model has
SU(2) × SU(2) chiral symmetry, analogous to that in the known strong interactions. Just as happens
there, the theory should have a spontaneous breaking of this symmetry to a diagonal SU(2) symme-
try, dynamically generating masses for the techni-quarks and creating three techni-pions as Goldstone
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bosons. The diagonal SU(2) symmetry remains unbroken, and this plays the role of the custodial sym-
metry. If this model is coupled to the SU(2) × U(1) gauge symmetry of the SM, the W and Z bosons
eat the Goldstone techni-pions and acquire mass through the Higgs mechanism. The W and Z masses
obey (16), with

mW =
gFπ

2
, (232)

where Fπ is the analogue of the pion decay constant in the technicolor interactions. We obtain the
observed W and Z masses for Fπ = 246 GeV, the Higgs field expectation value in the SM. In this
model, the Higgs boson would be a spin zero, isoscalar bound state of the U and D quarks and their
antiquarks.

The Weinberg-Susskind technicolor model is now excluded. The model predicts a Higgs boson
mass at about 1 TeV, and also too large an S parameter to be consistent with precision electroweak
measurements. However, it points the way to more sophisticated models that also build the Higgs boson
as a composite state.

An example is given by the following scenario, which uses the strong interaction chiral symmetry
breaking in a different way: Introduce new QCD-like strong interactions at a mass scale of 10 TeV,
with 4 associated quarks in real, rather than complex, representations of the gauge group. This theory
has a chiral symmetry SU(4), which is spontaneously broken to SO(4) when the quarks dynamically
acquire mass. SU(4) has 15 generators, and SO(4) has 6, so the symmetry-breaking creates 15− 6 = 9
Goldstone bosons. We might take two of the four quarks to transform as a doublet under the weak
interaction SU(2) and the other two to be weak interaction singlets that form a doublet under another
SU(2). Then the Goldstone boson multiplet will contain 4 bosons that transform as (12 ,

1
2) under this

SU(2)×SU(2). We can identify this multiplet with the Higgs boson doublet. This scenario realizes the
idea of the Higgs doublet as a set of Goldstone bosons that, by Goldstone’s theorem, stay massless while
the strong interaction chiral symmetry is broken. In a set of models called Little Higgs, it is possible to
perturb the strong interaction theory to produce a nonzero, calculable Higgs potential [69, 70].

7.3 The Decoupling Theorem
Through the strategies described in the previous section, it is possible to build many models of the Higgs
field that are more complex than the SM and yet compatible with all current experimental constraints.
One’s first instinct is that these models will lead to wildly different predictions for the properties of the
Higgs boson that are easily distinguished experimentally. However, this is not correct. To distinguish
models of the Higgs sector, it is necessary to make detailed measurements reaching a relatively high
degree of precision. This is a consequence of the Decoupline Theorem, enunciated by Howard Haber
in [71].

The Decoupling Theorem states: If the spectrum of the Higgs sector contains one Higgs boson of
mass mh, with all other Higgs particles having masses at least M , then the influence of these particles
on the properties of the light Higgs boson is proportional to

m2
h/M

2 . (233)

If the Higgs sector contains additional particles, but these particles have masses of 1 TeV, they shift the
properties of the known Higgs boson by corrections to the Higgs couplings at the percent level.

The proof of this theorem is quite straightforward. It uses the viewpoint of effective Lagrangians
described in Section 5.4. As I have explained above, once we have measured the mass of the Higgs boson,
the parameters of the SM relevant to the Higgs field are fixed, and the SM makes precise predictions for
the Higgs couplings. On the other hand, I have also explained that the SM Lagrangian is the most
general renormalizable Lagrangian with the known quark and lepton fields and the gauge symmetry
SU(3) × SU(2) × U(1). So, in an effective Lagrangian description, any perturbation of the Higgs
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couplings away from the SM predictions must be associated with operators of dimension 6. These
operators have dimensionalful coefficients. If they are generated by particles of massM , their coeffcients
will be of order 1/M2.

This situation is challenging but not hopeless. It implies that the current level of agreement of
the Higgs boson properties with the predictions of the SM—to 20-30%, as described in the previous
section—is absolutely to be expected no matter how complex the Higgs sector might be. But, it offers
the opportunity that, with measurements of higher precision, an picture of the Higgs boson entirely
different from that of the SM might be revealed.

7.4 Effects on the Higgs boson couplings from models of new physics
To amplify this discussion of the effects of new physics on the SM Higgs couplings, I will now review
some specific examples of those effects.

To begin, consider models with two Higgs scalar doublets. I remind you that supersymmetric
models necessarily contain these effects, since supersymmetry requires two different Higgs doublets ϕu,
ϕd to give mass to the u and d quarks.

In a model with two Higgs doublets, there are a total of 8 Higgs degrees of freedom. When the
Higgs fields acquire vacuum expectation values, 3 of these bosons are eaten by W and Z when these
particles obtain mass through the Higgs mechanism. The remaining physical Higgs particles include two
CP-even neutral Higgs bosons h0 andH0, a neutral pseudoscalar bosonsA0, and a pair of charged Higgs
bosons H±. Most of the parameter space for such particles to have masses below 200 GeV has been
excluded by searches at the LHC [72, 73].

In general, these particles correspond to mixtures of the fields in the original two Higgs doublets.
The mixing angle that defines the CP-even mass eigenstates is called α. For the CP-odd states, one
mixture gives the eaten Goldstone bosons and orthogonal combination gives the physical boson mass
eigenstates. The mixing angle that defines these linear combinations is called β, with

tanβ = 〈ϕu〉 / 〈ϕd〉 . (234)

The properties of the observed Higgs boson are then predicted to be modified as a result of these mixings.
At the lowest order,

g(hdd) = − sinα

cosβ

md

v
g(huu) =

cosα

sinβ

md

v
. (235)

The first of these modifications applies to the b quark-Higgs coupling, the second to the c and t couplings.

The Decoupling Theorem requires that the angles α, β cannot take arbitrary values but rather must
be correlated. For example, in the minimal supersymmetric model,

− sinα

cosβ
= 1 +O(

m2
Z

m2
A

) , (236)

consistent with the expected decoupling.

In supersymmetric models, the Higgs couplings also receive corrections from loop diagrams in-
volving the partners of the quarks and leptons. Typically, the largest effects come from diagrams with the
b squarks and the gluino. These diagrams obey decoupling, but they are enhanced when tanβ is large.

Figure 41 shows the distribution of effects on the Higgs couplng g(hbb) seen in a large collection
of supersymmetric models constructed by Cahill-Rowley, Hewett, Ismail, and Rizzo [74]. The colored
panels in the figure show the sensitivity of the models to searches for supersymmetric particles at the
LHC. It is interesting that the constraint from a precision measurement of the Higgs coupling to bb is
essentially orthogonal to the current and expected constraints from LHC searches. Thus, the precision
study of Higgs couplings gives us a new and different way to probe for new physics. Figure 42 shows
the comparable distribution for perturbations of the coupling g(hττ).
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Fig. 41: Values of rbb = Γ(h → bb)/SM in a collection of about 250,000 allowed parameter points of the
Minimal Supersymmetric Standard Model, from [74]. The colored bands show models that can be discovered in
new particle searches in the various stages of the LHC and the HL-LHC.

Fig. 42: Values of rττ = Γ(h → τ+τ−)/SM in a collection of about 250,000 allowed parameter points of the
Minimal Supersymmetric Standard Model, from [74]. The colored bands show models that can be discovered in
new particle searches in the various stages of the LHC and the HL-LHC.
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It is important to note that, while the presence of multiple Higgs doublets can have significant
effects on the Higgs couplings to fermions, it typically has a smaller effect on the Higgs couplings to the
W and Z bosons. In the minimal supersymmetric model,

g(hV V ) =
2m2

V

v
·
(
1 +O(

m4
Z

m4
A

)
)

(237)

for V = W,Z.

However, there are many other scenarios in which the Higgs couplings to W and Z are shifted
as much as possible consistent with the Decoupling Theorem. If the Higgs boson mixes with a Higgs
singlet field of mass ms by an angle γ, the whole set of Higgs couplings is shifted by

g(hV V ) =
2m2

V

v
· cos γ (238)

where, typically, γ ∼ mh/ms. A similar effect is produced by loop corrections from any new particles
that modify the Higgs boson self-energy diagrams [75, 76].

If the Higgs boson is a composite Goldstone boson, the Higgs couplings are corrected in a similar
way by the nonlinear Lagrangian generated by spontaneous symmetry breaking. This gives

g(hV V ) =
2m2

V

v
· (1− v2/F 2)1/2 ≈ 2m2

V

v
· (1− 1

2
v2/F 2) , (239)

an effect of 1–3%.

We have seen in the previous section that the decays

h→ gg , h→ γγ , h→ γZ (240)

proceed through loop diagrams in which the dominant contributions come from particles for which
2M > mh. Tnis means that new heavy particles have the potential to make large corrections to the
rates of these decays. But this would only be true for particles that obtain their full mass from elec-
troweak symmetry breaking.

As we have discussed already, the LHC measurement of pp → h → γγ already excludes a
conventional fourth generation of quarks and lepton, up the mass at which the Yukawa coupling exceeds
the unitarity bound. Any fermions that we have not yet discovered must then be vectorlike fermions,
with equal electroweak quantum numbers for the left- and right-handed fields. Such fermions can obtain
an SU(2) × U(1)-invariant mass term that does not require the Higgs field vacuum expectation value.
For example, in models with extra space dimensions, excitations in the extra dimensions lead to separate
Dirac fermion partners for the left- and right-handed states, which obtain masses M ∼ π/R, where R
is the size of the extra dimensions. The Higgs field can mix these states, leading to a small correction
δM to the mass matrix that depends on the Higgs vacuum expectation value. The relative shift in the
masses due to the Higgs vacuum expectation value is of the order of (δM)2/M2, and so the contribution
of these particles to loop decays of the Higgs is suppressed by this factor—just as we would expect from
the decoupling theorem.

A similar effect is seen in Little Higgs models. These models typically contain several new heavy
quarks, which also mix with the top quark. An estimate of the corrections to the loop decays in the
“Littlest Higgs” model is shown in Fig. 43 [77]. Mixing with heavy states can also modify the top quark
Yukawa coupling. To fully understand the origin of the effects, it is important to measure separately
the Higgs-gluon coupling and the Higgs-top coupling. The LHC might provide some complementary
information by measuring Higgs boson production from gluon fusion at large pT [78].

The Higgs boson also has a self-coupling that determines the shape of the Higgs potential. This
is something of a special case in the general story of the Higgs couplings. On one hand, the Higgs
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Fig. 43: Corrections to Γ(h→ γγ) and Γ(h→ gg) in the Littlest Higgs model.

self-coupling is more difficult to measure. While there are realistic proposals to measure the other Higgs
couplings to the percent level, it will already be difficult to measure the self-coupling to the level of
10–20% accuracy. On the other hand, there are models that require very large deviations of the Higgs
self-coupling form its SM value. Theories of baryogenesis, the origin of the matter-antimatter asymmetry
of the universe, require a period when the early universe was out of thermal equilibrium. We are confident
that the nonzero Higgs field expectation value was established at a phase transition from a hot symmetric
phase just after the Big Bang. In the SM, this phase transition is predicted to be second-order and thus too
smooth for substantial out-of-equilibrium effects. If the Higgs phase transition were strongly first-order,
then it is possible the the universe might have developed a baryon-antibaryon asymmetry through CP-
and baryon number violating interactions available at that time [79]. This requires values of the Higgs
self-coupling substantially different from that in the SM, a 50% increase or more [80].

The result of this survey of new physics effects is that each individual Higgs coupling has its own
personality and is guided by different types of models. In very broad terms:

– The Higgs couplings to fermions are sensitive to the presence of multiple Higgs doublets.
– The Higgs couplings to W and Z are sensitive to the presence of Higgs singlets and to composite-

ness of the Higgs boson.
– The Higgs couplings to gg and γγ are senstive to the presence of new vectorlike fermions.
– The Higgs coupling to tt is sensitive to new heavy fermions that mix with the top quark and to

composite structure of the top quark.
– The Higgs self-coupling has large deviations from its SM value in models of baryogenesis at the

electroweak scale.

Each model of new physics predicts is own pattern of deivations of the Higgs couplings from the pre-
dictions of the SM. Two examples of these patterns, for specific supersymmetric and composite Higgs
models, is shown in Fig. 44 [82]. The challenge for us to is measure the full suite of couplings with
sufficient accuracy that we can read this pattern and use it to gain information about physics beyond the
SM.
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Fig. 44: Patterns of deviations in Higgs couplings, from [81]. These examples of nonstandard Higgs effects are
taken from a broader survey in [82].

a.) b.)

c.) d.)

Fig. 45: Reactions producing the Higgs boson in e+e− collisions

7.5 Measurement of the Higgs boson properties at e+e− colliders
Given the interest in obtaining precise knowledge of the couplings of the Higgs boson and the difficulty of
reaching a sufficient level of accuracy at the LHC, it is not surprising that there are a number of proposals
for new e+e− colliders that would specifically address the measurement of the Higgs couplings. It would
be very valuable to study the Higgs boson with precision, in the same way that, in the 1990’s, experiments
at e+e− colliders carried out the precision study of the Z boson that I reviewed in Section 4 of these
lectures.

The most important processes for the production of a Higgs boson at e+e− colliders are those
shown in Fig. 45. These are analogous to the corresponding processes in hadron-hadron collisions shown
in Fig. 31. The most important reaction near the Higgs threshold is radiation of the Higgs boson from
a W or Z (“Higgsstrahlung”). At higher energies, Higgs bosons are also produced by vector boson
fusion, associated production of a Higgs with a pair of top quarks, and the double Higgs production
reactions shown in the last line of the figure. The cross sections predicted for the Higgsstrahlung and
fusion reactions for a 125 GeV Higgs boson are shown in Fig. 46.

Just as at hadron-hadron colliders, the different reactions available at e+e− colliders have different
advantages for the study of Higgs boson decays. Higgsstrahlung is available at the lowest center of mass
energy. In this reaction, the Higgs boson is produced in association with a Z boson at a fixed energy. At
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Fig. 46: Cross sections for Higgs production in e+e− collisions for a 125 GeV Higgs boson.

250 GeV in the center of mass, the Z boson has a lab frame energy of 110 GeV. To a first approximation,
any Z boson observed at this energy arises from the reaction e+e− → Zh, and whatever particles are
on the other side of the event are the decay products of the Higgs boson. This is an ideal setup for
measuring the branching ratios of the Higgs boson and for discovering and identifying Higgs decays
into exotic modes not expected in the SM. Also, since e+e− → Zh events can be recognized without
reconstruction of the Higgs boson, this reaction allows a measurement of the absolute cross section rather
than a σ · BR as in (211). Then this reeaction can be used to determine the absolute magnitude of the
Z-Higgs coupling.

The remaining reactions have complementary advantages. Using the Higgs branching ratio to bb
measured with Higgsstrahlung, the WW fusion reaction can complement and firm up the measurement
of the absolute normalization of Higgs couplings. As we see from Fig. 46, this reaction also gives higher
statistics for Higgs decays at energies well above the threshold. The remaining processes allow the
measurement of the Higgs coupling to top quarks and the Higgs self-coupling.

A compete description of the program of Higgs studies at e+e− colliders can be found in [83].
Here I will just provide some snapshots of this program. The recoil mass spectrum in the reaction
e+e− → Zh, Z → µ+µ− is shown in Fig. 47. The main background is e+e− → ZZ plus initial state
radiation, a reaction that is understood to very high accuracy. We estimate that this measurement gives
the Higgs boson mass with an accuracy of 15 MeV [85]. The precision Higgs coupling program actually
needs a Higgs boson mass with this high accuracy. The partial widths for h → WW and h → ZZ
depend strongly on the Higgs mass, so that this accuracy already corresponds to a 0.1% systematic error
on the SM predictions. Figure 48 shows a Higgsstrahlung event with Higgs decay to τ+τ−. In general,
these events are very characteristic of the various Zh event topologies. Figure 49, from the physics study
for the CLIC accelerator, shows the separation of Higgs eventse+e− annhiliation events at 250 GeV
into 4 Higgs categories and one background category by template fitting [87]. The figure shows that the
modes h → gg and even h → cc, which has a 3% branching ratio in the SM, can be cleanly extracted.
Figure 50 shows the recoil mass distribution for events with a Z boson plus missing momentum. The
simulation assumes a high value (10%) for the Higgs branching ratio to invisible decay products, but the
figure makes clear that this process is visible at much smaller values of the branching ratio, well below
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Fig. 47: Recoil mass distribution in e+e− → Zh, Z → µ+µ−, from [85]

Fig. 48: Event display of an e+e− → Zh, h→ τ+τ− event simulated in the ILD detector [84].
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Fig. 49: Identification of Higgs boson decays to hadronic final states by template fitting, from [87]. Note in
particular the sharp discrimination of the modes h→ bb, h→ cc, h→ gg.

1% [86].

Finally, Figure 51, from [81], shows the accuracies for the determination of Higgs couplings to
the full range of SM particles projected for the complete program of the International Linear Collider
(ILC). For the Higgs decay to γγ, the blue histograms show the result of combining the ILC data with the
LHC measurement of BR(h → γγ)/BR(h → ZZ∗). The accuracy of the measurement of the Higgs
coupling to the top quark is limited by the fact that this figure considers only ILC running at 500 GeV
and below. Even an energy increase to 550 GeV would improve the accuracy of this measurement to 3%.

The precision study of Higgs boson couplings at an e+e− collider will then yield a wealth of infor-
mation about the properties of this particle. Through the logic of the previous section, that information
will give us insight not only into the existence of new physics beyond the SM but also into its qualitative
nature. I look forward to this program as the next great project in the future of particle physics.

8 Conclusions
In these lectures, I have developed the theory of the weak interaction from its experimental foundations
in the V –A effective theory, through the precision study of SU(2)×U(1) couplings at the Z resonance,
to the present and future study of the couplings of the Higgs boson. We have learned much about this
fundamental interaction of nature, but there is much more that we need to learn, and that we can learn
from future experiments. The study of the weak interaction is not a closed subject but one that still
contains tantalizing questions and promises to open new chapters in our exploration of particle physics.
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