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Abstract  
Resonant extraction has its roots in the early cyclotrons where the emphasis 
was on increasing inter-turn separation. High energy physics (HEP) 
synchrotrons followed in the 1960s, but this time the emphasis was on 
extending the spill time. This lecture will concentrate on the 1/3rd integer 
resonance extraction for synchrotrons that is widely used in medical machines.  
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1 Historical note 
Resonant extraction has its roots in the early cyclotrons. These machines used scattering from an internal 
target to obtain an external proton beam, but the consequent activation and loss of intensity were strong 
incentives for change. In 1951, James Tuck and Lee Teng (Chicago cyclotron) suggested a resonant 
scheme that increased the amplitude of radial oscillations sufficiently in a single turn to clear the mouth 
of a magnetic extraction septum. A quantitative analysis that confirmed the principle of what was then 
known as the ‘Peeler-Regenerative Beam Extraction Method’ was published by Kenneth Le Couteur 
(Liverpool cyclotron) in 1953 and the first successful extraction by this technique was demonstrated in 
the Liverpool cyclotron in 1954. This was reported by Albert Crewe and Le Couteur in 1955. At this 
stage, the emphasis was on increasing inter-turn separation. 

High energy physics (HEP) synchrotrons in the 1950s were equipped with full-aperture, fast 
kickers for extraction. Single-turn extraction was efficient, but for fixed-target experiments it overloaded 
the physics counters leading to dead time and lost data. In 1961, Hugh Hereward addressed this problem 
[1] and his proposal cites Tuck, Teng, and Le Couteur. At essentially the same time, C. L. Hammer and 
Lawrence Jackson Laslett published a similar paper [2]. In contrast to cyclotrons, the emphasis was now 
on extending the spill time and a new name ‘slow extraction’ came into general usage. 

2 Overview 
For extraction, cyclotrons and synchro-cyclotrons work with the integer or half-integer resonance. This 
is consistent with a need for a large inter-turn separation and a fast extraction. To complete the historical 
picture, it is noted that in the 1980s, this situation changed for high-intensity proton cyclotrons with the 
introduction of H minus extractionI. 

In contrast, the extraction from synchrotrons works with the half-integer or 1/3rd integer 
resonance. The half-integer resonance is usually associated with fixed-target physics and spills of a few 
milliseconds while the 1/3rd integer resonance is weaker and is used widely in medical machines for 
spills of a few seconds (i.e., a few 106 turns). Higher-order resonances are not used because the 
resonances are weaker, the transit times in the resonances are longer, and the extraction separatrices 

                                                        
I  The introduction of H minus extraction was something of a revolution that made the IBA Cyclone 30 a de facto world 

standard for isotope production.  
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become too crowded making it difficult to ensure sufficient free aperture for the extraction equipment.  
Figure 1 shows some phase-space sketches to illustrate this last point. The present lecture will 
concentrate on the 1/3rd integer resonance. 

 
Fig. 1: Phase-space sketches of the half, 1/3rd, and 1/4th integer resonances 

3 Phase space 
The full beauty of resonant extraction is only visible in phase space. Figure 2 shows a 1/3rd integer 
extraction as designed for a medical machine. This diagram was generated by tracking single particles 
with progressively larger betatron amplitudes in the horizontal plane, but all with the same momentum 
(equivalent to the same horizontal position and tune). For the case shown, the relative momentum 
deviation with respect to the position of the resonance was about 0.001. 

 
Fig. 2: Horizontal phase-space diagram of a 1/3rd integer extraction (annotated screen shot, WinAgile) 

In the central region of Fig. 2, the beam has small betatron amplitudes and is stable. At the very 
centre, the invariants of the motion are unperturbed ellipses. At larger amplitudes, but still inside the 
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stable central region, the ellipses take on a triangular shape. In the outer region, the beam is unstable.  
The unstable part of the diagram is generated by one ion that ‘locks’ onto the 3 separatrices and gains 
amplitude turn after turn, while moving from one separatrix to the next. 

The phase-space presentation has the advantage that the spiral step (inter-turn separation) and 
other geometric details can be determined to a high precision to facilitate the design of the extraction 
elements. By plotting this diagram for a range of momenta close to the resonance, it is possible to see 
how the ‘last stable triangle’ and the separatrices develop as a function of the tune separation from the 
resonance. In most cases, it is sufficient to consider just two limiting cases that define the beam, or the 
part of the beam that is being extracted. Before continuing to the quantitative analysis, it is useful to look 
at some other descriptive diagrams that describe slow extraction. 

4 Other descriptive views of extraction 

4.1 A ‘strip’ spill 

The Steinbach diagram (attributed to C. Steinbach, CERN) has the advantages of being more holistic 
and showing the inclined threshold between stability and instability. The diagram plots the ‘waiting’ 
beam, the resonance and the spill using the radial position versus the effective, normalized amplitude of 
the betatron motion, Ax = √(Ex/π), where Ex is the ion’s motion invariant sometimes referred to as the 
single-particle emittance.  

In the first example shown in Fig. 3, a wide momentum stack is being accelerated by a betatron 
core into the resonance. The tune of the resonance is usually close to the centre of the chamber and the 
chromaticity is finite and positive. Figure 2 corresponds to a snapshot of the phase space at an arbitrary 
point on the inclined stability boundary between the points ‘A’ and ‘B’ which define the part of the beam 
that is being extracted and correspond to the limiting cases referred to the last section. In this case, the 
phase-space snapshot would change significantly with position between ‘A’ and ‘B’. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: An example of a Steinbach diagram for a momentum-driven slow extraction 

In the second example shown in Fig. 4, a narrow momentum stack is being driven into the unstable 
region of the resonance by RF excitation at the revolution frequency causing amplitude growth. The 
limiting points denoted by ‘A’ and ‘B’ now define the top and bottom of the waiting beam and hence 
also the limits of the spill being extracted. As before, Fig. 4 corresponds to a snapshot of the phase space 
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somewhere between ‘A’ and ‘B’.  In this case, the phase-space snapshot would be quasi-constant across 
the space from ‘A’ to ‘B’. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Steinbach diagram of an amplitude-driven slow extraction 

4.2 Near real-world view 

The pictorial presentation in Fig. 5 is closer to the real-world situation of the momentum-driven 
extraction shown in Fig. 3. The waiting beam on the left is created by multi-turn injection in the inner 
half of the aperture well away from the 1/3rd integer resonance. After trapping and acceleration to the 
extraction energy, a betatron core is used to smoothly accelerate the waiting beam into the resonance, 
which is now positioned at the centre of the chamber. The particles ‘locked’ in the resonance grow in 
radial amplitude in steps of 3 turns. Starting with small steps, they extend outwards typically over several 
hundred turns before reaching the electrostatic extraction septum (ES). The beam enters the ES with a 
final step of ~10 mm and is kicked onto the extraction trajectory. 

 

 

 

 

 

 

 

 
Fig. 5: A quasi-real-world view of a momentum-driven slow extraction 

5 Sextupole fields 
The radial 1/3rd integer or third-order resonance is driven by normal sextupole fields and can be treated 
as a perturbation to the linear machine. The transverse fields in a normal sextupole magnet are well 
known and can be written as, 
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Thus, for a positively charged ion in an anticlockwise ring, the kicks given by a sextupole will be, 

 ( ) ( )22
S

22

0
2
z

2
S

2
1

d
d

2
1

zxkzx
x
B

BB
B

x Sz −ʹ=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==ʹΔ !
!!
ρρ

 , (3) 

 xzkxz
x
B

B
z ʹ−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ρ
−=ʹΔ S

0
2
z

2
S

d
d

!
!

 , (4) 

where kʹ is the ‘normalized sextupole gradient’, 
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6 Normalized coordinates 
It is usual at this stage to introduce ‘normalized coordinates’. Starting from the real-world position and 
angle of a test ion expressed with the usual Twiss parameters, 

 
 ( ) ( ) ( ){ }DssCsy += µβ cos2/1  , (6) 

 ( ) ( ) ( ) ( ){ } ( ){ }[ ]DsDsssCsy +++−=ʹ − µµαβ sincos2/1  , (7) 

where C and D are constants and y can be either of the transverse coordinates x or z. The phase terms 
can be isolated and used to define new coordinates Y(µ) and Y´(µ) that are known as normalized 
coordinates. 
 ( ) ( ) ( ) 2/1cos −=+= βµµ syDCY  (8) 

 ( ) ( ) ( ) ( ) 2/12/1 'sin' βαβµµ sysyDCY +=+−= −  . (9) 

Note that the independent variable for real-world coordinates is s while for normalized coordinates it is 
µ. In line with general usage, normalized coordinates have upper case letters and real-world coordinates 
have lower case letters. 

The object now is to express the motion of a test ion in normalized coordinates while crossing a 
sextupole. To simplify the analysis only a ‘thin’ sextupole (i.e., a sextupole with zero thickness) will be 
considered. This approximation is well justified in most cases. Under this assumption, the increments 
excited by the sextupole will be, 
 ΔY = 0,   Δy = 0   and   ΔY′ = β1/2 Δy′. (10) 

Assuming the de facto standard configuration of a horizontal ring and a normal sextupole, the kicks 
received in the horizontal and vertical planes are given by Eqs. (3) and (4) and substitution into Eq. (10) 
gives, 
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Using Eq. (8), these kicks become, 
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During the extraction process, the amplitude x increases to almost the full half-aperture, while z remains 
small. On this basis, the motion in z is neglected to first order and the final formulation of the sextupole 
kicks to be used for the extraction analysis is  
 

Thin sextupole kicks: 
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7 Basic theory of the resonance 
The horizontal transfer matrix Mn for normalized coordinates, describing n turns in the machine is given 
by: 
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Consider an ion with a horizontal betatron tune close to a third-integer resonance, so that 
QmQx δ+±= 3/1 , where m is integer and |δQ|<<1/3). The tune increment δQ  is defined as the tune 

distance of the ion from the resonance, 
 resonanceparticle QQQ −=δ  . (14) 

The explicit transfer matrix for n turns in the unperturbed machine can then be written as 
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Thus, to a good approximation the coordinates of the ion after one, two and three turns become: 
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where ε replaces 6πδQ for brevity . The small quantity ε is called the ‘modified tune distance’. It can be 
seen that an ion with exactly the resonant tune (i.e., ε = 0) will return to its initial position every three 
turns. 

The effect of the sextupole during three turns in the machine is now calculated as a perturbation 
by the linear addition of 3 instances using Eqs. (16), (17), and (18): 

(A)  The effect of 3 turns with a sextupole placed after the 3rd turn, 
 M3 + Sextupole; 

(B)  The effect of 3 turns with a sextupole placed after the 2nd turn, 
 M2 + Sextupole + M1; 

(C)  The effect of 3 turns with a sextupole placed after the 1st turn 
 M1 + Sextupole + M2. 

In (A), (B), and (C), the sextupole is represented by the simplified, thin-lens kicks from Eqs. (11) and 
(12). Filling out the steps (A), (B), and (C) explicitly yields: 
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After the addition of the three steps (A), (B), and (C) shown above, only first-order correction terms in 
ε are retained to give: 
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The cancellation of signs shows that there is no fundamental difference between the 1/3rd and 2/3rd 
resonances. 
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Finally, the expressions for the changes in position and divergence of the ion, known as the ‘spiral step’ 
and ‘spiral kick’, over three revolutions, are obtained as: 

Spiral step: .
2
3

0003 XSXXX ʹ+ʹ=Δ ε  (19) 

Spiral kick: ( ).
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8 Kobayashi Hamiltonian 
The time needed for three revolutions in the machine is short compared to the spill time and can be 
safely used as the basic unit of time. The elementary changes occurring in this unit of time are the 
smallest that need to be resolved to understand the physics of the extraction. Thus the subscripts in Eqs. 
(19) and (20) are no longer needed and the kicks can be treated as a continuous function that is derived 
from a Hamiltonian H, such that 
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The Kobayashi Hamiltonian [3,4] is found by integrating the above partial differentials Eqs. (21) and 
(22). It should be noted that in this formulation time is dimensionless. 

Kobayashi Hamiltonian: ( ) ( )3222 3
42
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=H  . (23) 

The Hamiltonian is time independent and a constant of the motion. Contours of constant H show 
the particle trajectories in normalized phase space at the sextupole. This presentation of the motion is 
known as a ‘phase-space map’. The first term in Eq. (23) describes the unperturbed particle motion in 
the linear, machine (i.e., S = 0). These trajectories are circles of radius √(2H/ε) in normalized phase 
space. The second term contains the perturbation that distorts the circular phase-space trajectories into 
a triangular form as illustrated in Figs. 2 and 6. At a certain level of excitation, the triangle ‘breaks’ into 
open phase-space trajectories forming the three separatrices. A change in sign of either the modified 
tune distance ε or the normalized sextupole strength S is equivalent to a rotation of the phase-space 
trajectories by 180º. 

All the properties of the system can be derived from the Hamiltonian. In particular, when H has 
the value [(2ε/3)3/S2] , it factorizes into three straight lines 
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called the ‘separatrices’ that define the boundaries between the ‘last stable triangle’ and unstable regions 
in phase space. The phase-space area of the stable region is the ‘acceptance’ of the system at the given 
momentum. It could also be regarded as the ‘dynamic aperture’. The size of the stable region is 
determined by the ratio |ε/S|. For an ion that has exactly the resonant tune the stable region shrinks to 
zero. 

 

1 0.5 0 0.5 1 
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Normalised phase space   ε/S > 0 

X’ 

X  

 
Fig. 6: Phase-space map at the resonance sextupole (plotted from the Kobayashi Hamiltonian) 

Figure 7 defines the geometry of the separatrices at the sextupole and the four stable fixed points, P0 to 
P3. 

 
Fig. 7: Geometry of the phase-space map at the resonance-excitation sextupole 

The geometry of the last stable triangle is conveniently described by introducing the distance h between 
the upright separatrix A and the Xʹ-axis. A change in the sign of h is equivalent to a 180° rotation of the 
stable triangle around the origin. 
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h δ
πε 4

3
2

==  . (25) 

The area (i.e., the acceptance) of the last stable triangle can also be expressed in terms of h as, 
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Acceptance of last stable triangle: ( ) πδ
π 2

2
2 34833= Area Q

S
h =  . (26) 

Providing the sextupole is powered in an adiabatic way, the emittance will be conserved and Eq. (26) 
gives the fraction of the original beam emittance that remains stable.   

Since Figs. 6 and 7 are in normalized phase space, the unperturbed trajectories are circles and X 
is equivalent to X′. Hence, we can rotate the diagram to any position around the machine using the 
betatron phase to determine the position without altering its shape. 

9 Comment on resonances 
If this were a lecture on resonances, a more advanced Hamiltonian would be used in order to describe 
the general case of mixed horizontal and vertical resonances driven by normal and skew fields over 
much larger apertures. Some examples showing the variety of patterns generated by the relatively simple 
half-integer resonances are illustrated in Fig. 8. 

 
Fig. 8: Examples of the various phase-space views excited by the half-integer resonance 

In this lecture, a simplified Hamiltonian has been used. This is justified since only a purely radial 1/3rd 
integer resonance is being considered and, furthermore, the trajectories are being intercepted within the 
physical aperture of the machine before more exotic features such as distant stable islands can be formed. 
It is stressed, that this is a simplified situation that is only used to obtain basic parameters such as the 
spiral step and to provide some insight into how the slow extraction works. In practice, it is essential to 
back up these estimations with numerical calculations using a lattice program. 

10 The virtual sextupole 
In most rings, sextupoles are mounted in dispersion regions for controlling the chromaticity and they are 
positioned so as to cause as little resonance excitation as possible, but their mutual compensation is 
never perfect. For slow extraction, a dedicated sextupole for exciting the resonance will be needed and 
this sextupole is best positioned in a zero-dispersion region, so as not to disturb the chromaticity 
correction. The dedicated resonance sextupole, which will be dominant, the residual excitation from the 
chromaticity sextupoles and any sextupole errors from the machine (mainly from the dipoles) can be 
combined numerically into a single virtual sextupole. This virtual sextupole will behave according to 
the theory presented so far. 

For the 1/3rd integer resonance 3Qx = p, the driving term is found by integrating the normal 
sextupole components around the whole ring according to [5], 
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using the earlier definition for S in Eq. (12) and assuming short elements gives, 

 ( ) ( )∑−
=

n
nx,n0 i3exp

12
1

µ
π

κ S
C

s  . (28) 

The virtual sextupole can be found by equating its driving term to the sum of all the driving terms around 
the ring as given by Eq. (28) and separating the real and imaginary parts to give, 
 ( ) ( ),3cos3cos nx,

n
nvirtx,virt µµ ∑= SS  (29) 

 ( ) ( )nx,
n

nvirtx,virt 3sin3sin µµ ∑= SS  . (30) 

Using Eqs. (29) and (30), the betatron phase (and hence the position) and the strength of the virtual 
sextupole can be found as 
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Virtual sextupole strength: ( ) ( )
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11 Configuring the extraction 
The basic theory in the earlier sections can be exploited in a number of practical configurations.  These 
are listed briefly below with some comments on their use: 

11.1 Moving the beam 

This method has the advantage of leaving the transverse optical parameters of the machine constant, and 
hence also those of the resonance. There are two possibilities: 

11.1.1 Momentum-driven 

In this scenario the beam is accelerated towards the stationary resonance by a betatron core, or by 
stochastic noise, or possibly by phase displacement acceleration or a RF micro-bucket acceleration 
system. The principal requirement is to accelerate the beam smoothly and in a controlled way over say 
one to two seconds. The betatron core having a large inductance smooths out ripple and the steps made 
by the digital to analogue converter (DAC), but for the same underlying reason it is not ultra-fast to 
respond. Stochastic noise can be particularly slow acting and this method has been used for ultra-slow 
extractions lasting 30 minutes or more. 

11.1.2 Amplitude-driven 

In this case, the beam is excited by transverse stochastic noise or RF excitation at the revolution 
frequency, so that its betatron amplitudes grow. The chromaticity is set to near zero, so that the resonance 
line acts as a threshold in amplitude above which the ions become unstable. RF excitation of the 
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amplitude works well in the range of one to a few seconds and it is quick to respond when switched off 
[6]. 

11.2 Moving the resonance 

This method is not recommended as it alters the transverse optics of the machine during the extraction.  
Because the optics is changing, on-line compensation systems are needed to keep the extracted beam at 
a constant position, angle, momentum spread, and intensity. 

11.2.1 Quadrupole-driven 

This is probably the first method ever used. The tune of the machine is changed by a quadrupole so as 
to move the resonance across the beam. In addition to the objections in section 11.2, this method is 
particularly sensitive to ripple in the power converter driving the extraction quadrupole. 

11.2.2 Sextupole-driven 

The resonance excitation is changed by increasing the strength of the resonance sextupole. This method 
is included only for academic completeness. 

11.3 Equipment configuration 

The momentum-driven and the amplitude-driven are the two most important configurations, but for 
brevity, this paper will focus on the momentum-driven extraction with all the extraction equipment in 
the positive, outer half of the aperture. There are of course other possibilities, but in general the principles 
remain unchanged. Placing the ES in the 1st quadrant requires the virtual sextupole to be positioned so 
that the chosen extraction separatrix advances around the machine to the ES where it has the angle of 
45º±15º with respect to the x-axis. At this point, the ES intercepts the beam segment corresponding to 
the last three turns. This segment will be typically 10 mm in radial length. The ES wall, which is made 
of thin wires usually of 0.1 mm diameter will intercept an equivalent amount of beam (~1%). The beam 
segment inside the ES is given a radial kick typically of a few milliradians.  Once this is done, the beams 
continue to the magnetic septum (MS). So as to maximize the gap between the end of the extraction 
separatrix and the segment of extracted beam, there is ideally a horizontal betatron phase advance of 
about 90º between the ES and MS to convert the kick to a physical gap at the MS of typically 20 mm. 
Figure 9 summarizes these points. 

 

 

 

 

 

 

 

 
Fig. 9: Configuring the ES and MS for a slow extraction scheme 

Of course, the ES and MS must also coincide with available drift spaces in the lattice and have 
suitable Twiss parameters. There are also further conditions to be considered such as the Hardt condition 
(see sections 12−14). The final configuration will inevitably be a series of compromises. 
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12 A more generalized Hamiltonian 
The previous section referred to the Hardt condition, which is an important feature in slow extraction 
schemes. To derive this condition, it is necessary to extend the simple Kobayashi Hamiltonian given 
earlier to include the dispersion function [7]. To first order in momentum, the equilibrium orbit in 
normalized coordinates is given by: 

 
p
pDX

p
pDX nn

δδ
ʹ=ʹ= EQ.OEQ.O ,  , (33) 

where (Dn, Dʹn)  is the normalized dispersion vector and δp/p is the fractional momentum deviation. A 
second coordinate system (Xβ, Xʹβ) is introduced with its origin on the off-momentum equilibrium orbit. 
The particle coordinates are then split into a constant term, given by the dispersion function and a 
betatron term as shown in Fig. 10. 
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Fig. 10: Coordinates of the betatron motion 

The general Hamiltonian is derived following the same steps as for the Kobayashi Hamiltonian except 
that the betatron motion and the total motion now have to be separated. The analysis starts with the 
betatron motion Eqs. (34) and (35) for n turns in the unperturbed machine, as before, 
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The main difference appears when calculating the kick of the sextupole that now depends on the total 
motion of the ion, 
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This yields a more general Hamiltonian in the betatron coordinates (Xβ, X´β): 
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Re-ordering the terms in Eq. (38) shows that the dispersion-dependent term affects only the ‘circular’ 
trajectories and this can be considered as a change in the tune distance, ε. 

General form: ( ) ( )3222
n 3
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3

2
1
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δ
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Let Q~δ be the change in tune implied by the dispersion-dependent term in Eq. (39), so that 
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By introducing the chromaticity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ʹ

pdp
dQQ
/
x

x  as the linear change of the betatron tune with 

momentum, the chromatic effect of the sextupole can be expressed as 
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which corresponds exactly to the classic linear form for the tune shift introduced by a sextupole. 

The general Hamiltonian in Eq. (39) correctly describes the physics of a third-integer resonance 
to first order in a perfect lattice without any further restrictions on sextupole locations or particle 
momenta. The phase space at the sextupole has the same qualitative shape as the earlier simple theory, 
but it is scaled by the tune shift introduced by the sextupole. In readiness for the next topic, the geometry 
and general equations of the separatrices are given in Fig. 11. From these results, it is clear that any 
change in the sextupole strength will also change the tune distance of the particles and therefore the scale 
of the extraction phase space. This a second reason for putting the resonance sextupole in a dispersion-
free region (the first reason was not to affect the chromaticity). 

 
Fig. 11: Geometry of the separatrices at the sextupole for an off-momentum beam 

The above can be further extended in an exactly analogous way for the effect of closed-orbit 
errors. This can be used to put limits on the closed-orbit variation that can be tolerated at the resonant 
sextupole. 
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13 Equations for separatrices 
A general equation for a separatrix in the phase-space map can be constructed from the standard form 
for a straight line that uses the perpendicular distance (in this case h) from the origin Eq. (42) and Fig. 12. 
Standard form:  . (42) 

 

 

 

 

 
Fig. 12: Perpendicular form for a straight line 

Combining Eq. (42) with the shift of origin corresponding to the dispersion vector yields the general 
equation for a separatrix. 
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The separatrices rotate clockwise with the betatron phase advance Δµ measured from the sextupole. At 
any given position ( )µαα Δ−= 0 and by inspection of Figs. 11 and 12 the values for 0α  at the 
sextupole are: 

   (A) °=1800α  (anticlockwise); 

   (B) °= 3000α  (anticlockwise); 

   (C) °= 4200α  (anticlockwise); 

so that the three separatrices can be drawn at any position using, 
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14 Hardt condition  
Referring back to Fig. 3, it can be seen that in a momentum-driven extraction all ions on the line AB 
become unstable at the same time. Each point between A and B has its own momentum, its own stability 
threshold, its own transit time in the resonance and its own last stable triangle. This spread in parameters 
can be useful for smoothing ripple, but unless the extraction separatrices are all aligned there will be 
significant particle losses on the ES. Figure 13 illustrates the general case in real space.  The last stable 
triangles are spread out and when the extraction separatrices reach the ES they all have different angles. 
Since the ES can only be aligned for one angle, losses will occur. 
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Fig. 13: A momentum-driven extraction without alignment of the separatrices 

Minimum losses would be obtained if all the separatrices could be super-positioned. This is 
achieved by the Hardt condition [8]. Since the stable triangles have different momenta they are affected 
by the dispersion at the ES and by a suitable choice of the dispersion vector all the separatrices of the 
different momenta can be made to enter the ES with the same angle. The restrictions on the lattice 
functions to satisfy the Hardt condition can be derived with a purely mathematical approach from the 
general expression for the separatrix already given in Eq. (44). First Eq. (25) is rewritten using the 
chromaticity as, 
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The substitution of Eq. (45) into Eq. (44) gives the general expression for a separatrix as a function of 
particle momentum and the chromaticity of the machine, 

 ( ) ( ) ( ) ( )
p
pQ

Sp
psDX

p
psDX nn

δπ
µα

δ
µα

δ
ʹ=Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

4
sin''cos  . (46) 

To superimpose the extraction separatrices, the momentum dependence has to be removed from Eq. 
(46).  This is true if, 

Hardt condition: ( ) ( ) Q
S

DD ʹ−=Δ−ʹ+Δ−
π

µαµα
4

sincos nn  . (47) 

In practice, there is usually enough flexibility in Dn, Dn′, and Q′ to satisfy Eq. (47) with non-zero values. 
This corresponds to the Hardt condition being applied to the case of the momentum-driven extraction. 

There is a second possibility of making Dn = Dn′ = Q′ = 0. Clearly zero chromaticity does not 
work for the momentum-driven extraction, but the amplitude-driven extraction can work with zero, or 
rather near-zero, chromaticity. The amplitude-driven extraction also uses a narrower beam in 
momentum, which makes the problem of aligning the separatrices less critical. 

15 Numerical design 
Although the above theory explains how slow extraction works and indicates the main configurations 
for the beams and equipment, this is not enough for designing a practical scheme. Most lattice programs 
will quickly reveal that separatrices are curved and the various parameters are not predicted with 
sufficient accuracy. It is therefore necessary to resort to a lattice program and to perform some trial and 
error calculations to set the spiral step precisely, to fine tune the Hardt condition and so on. Figure 14 
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shows the Hardt condition calculated for a momentum-driven extraction. Only the separatrices for the 
largest and the zero-amplitude ions are shown. It can be seen that these separatrices are curved and are 
not superimposed over their full length, but they have been made to cross at the ES using the Hardt 
condition theory and some trial-and-error refinements. 

 
Fig. 14: The Hardt condition for a momentum-driven extraction (screen shot, WinAgile) 

16 Getting to the MS 
Another practical issue that depends on numerical calculation is the passage of the extracted beam 
segment between the ES and the MS. Depending on the lattice design, the extracted segment will stray 
beyond the edge of the machine aperture. The aperture between the ES and the MS is checked visually 
using a graphical method developed by C. Steinbach (CERN), see Fig. 15. 

 
Fig. 15: Visual check of horizontal aperture from ES to MS (screen shots from WinAgile) 

RESONANT EXTRACTION

331



In Fig. 15, the phase-space areas between the maximum and the zero-amplitude separatrices are 
marked in light blue as well as the extracted beam segment. The efficiency of the method relies on the 
computer program being given all the aperture data for all the lattice positions between the ES and MS. 

17 A ‘strip’ spill 
It is now time to look more closely at how the ions cross the resonance and how this affects the spill.  
For mathematical convenience, the origin of the Hamiltonian is shifted to the upper fixed point and the 
extraction is considered via this fixed point, see Eq. (48) and Fig. 16. 

 ( )3223
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4
XXXXhXhXhS

−ʹ+ʹ++=H  . (48) 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16: Kobayashi Hamiltonian with shifted origin 

The extraction process can be studied by considering what happens when the last stable triangle 
shrinks by a small step and a narrow strip of ions (coloured red) that were previously stable find 
themselves outside, in the unstable region, see Fig. 17. Only one of the three sides of the triangle is 
considered here. The black arrows show the general direction of movement of the ions. The grey arrows 
show the movement of the separatrices. 

 

 

 

 

 

 

 

 
Fig. 17: Effect of shrinking the last stable triangle 

In the translated frame of reference, the equations of motion become: 
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Extracted ions will follow paths of constant H close to the separatrices. The trajectories come directly 
from the initial conditions (X0, X′0) substituted into the Hamiltonian Eq. (48). 
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Close to the fixed point O′, (|X|, |X′| << h) and the third-order terms in X and X′ can be neglected, so that 
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Substituting Eq. (51) into the earlier expression for dX/dt in Eq. (49) gives the time profile. Note that 
time is dimensionless and is measured in steps of 3 turns. 
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Fortunately, Eq. (52) is a standard form that can be integrated. 
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Within the strict assumptions made earlier (|X|, |X′| << h) , the result is only valid close to Oʹ, but, since 
the particle approaches the separatrix asymptotically the third-order terms in the Hamiltonian cancel 
out, so they can also be neglected far from Oʹ along the outgoing separatrix and the integration can be 
extended right up to the ES. 

The above analysis is used to find how long it takes for a particle to leave the machine. This is 
called the resonance ‘transit time’. The transit time is split into two parts: 

– the time to travel from Oʹ to the ES; and 

– the time to move along the side of the stable triangle from an arbitrary point towards Oʹ. 

Firstly, this is done under static conditions (while the stable triangle remains constant in size and 
position). In a second step these expressions must be modified to take into account the dynamic 
conditions of a shrinking stable triangle. The static result is shown in Eq. (54) and further results can be 
found in Refs. [9,10]. 
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Firstly, Eq. (54) gives an estimate of the time needed for the first ions to arrive at the ES from the corner 
of the stable triangle. 

Delay for first ions to arrive: 
3
1

0
ε

≈t  . (55) 

Secondly, it yields the same estimate for the length of time needed for all the ions along one side of the 
triangle to reach the corner. When these results are combined with estimates of the particle density along 
the sides of the triangle (the ions tend to concentrate at the corners and move speedily along the sides), 
the time profile of a strip spill is obtained, see Fig. 18. This profile shows a narrow spike of current after 
the delay given by Eq. (55) followed by a low flat spill of the same length as the initial delay. Typically, 
the initial delay is a few hundred time units (1 time unit being 3 turns). 

 

 

 

 

 

 

 

 
Fig. 18: Time profile of a strip spill  

In the momentum-driven extraction (see Fig. 3), there is a range of momenta with stable triangles 
extending from zero to a maximum value (between points A and B). The smaller the area of the stable 
triangle, the smaller ε and the longer the transit time becomes. Combining all the strip spills leads to a 
so-called ‘band’ spill. Figure 19 shows an example. 

 
Fig. 19: Example of the time profile of a ‘band’ spill 
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18 Emittance of the extracted beam 
The conservation of phase space (Liouville’s Theorem) affords a simple and quick method for estimating 
and understanding the emittance of the extracted beam. Consider a coasting beam with a relatively large 
momentum spread. Assume that resonance is configured to give a significantly narrower momentum 
spread in the extracted beam. During the extraction, the separatrix acts like a knife shaving off the beam 
and its phase space. The transverse phase space and the longitudinal phase space (Δp/p, t)  are jointly 
conserved as a phase-space volume. In the transverse plane, one can neglect the coupling to the vertical 
plane (in line with earlier approximations), so that the ‘waiting’ beam and the extracted beam have the 
same vertical emittance. The effect of the extraction can be seen by equating the phase-space volumes 
before and after the extraction and then looking at how the horizontal emittance in particular was 
affected. This is expressed quantitatively in Eq. (56) and illustrated schematically in Fig. 20. 
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To give a quantitative impression, some orders of magnitude would be useful. Let the ‘waiting’ 
beam’s horizontal emittance be Ex,beam = 10π × 10-6 [m rad], (Δp/p)beam = 0.005, Trev = 0.5 × 10-6 [s], 
(δp/p)  spill = 0.001, Tspill = 500× 10-6 [s], so that Ex,spill = 50π × 10-12 [m rad]. Thus, the long spill time 
compared to the short revolution time is balanced by the small transverse emittance of the spill compared 
to the much larger emittance of the ‘waiting’ beam. Under perfect conditions, this emittance would be 
seen as zero. However, the small horizontal emittance is often blown-up by ripple, noise, and 
imperfections in the optics. How big the horizontal emittance ends up is basically a question of power 
converter quality, optical precision, and various effects such as hysteresis and magnet time constants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20: Schematic view of the phase-space volume during extraction 
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19 A descriptive view of spill quality 

19.1 Momentum-driven extraction 

Momentum-driven, slow extraction can be likened to the shaving action on a wood-turning lathe, see 
Fig. 21. The projected width of the shaving is equivalent to the extracted δp/p, which is smaller than the 
width of the wood (i.e., the original beam Δp/p). The thickness of the shaving is related to the horizontal 
emittance of the extracted beam and the X-section of the wood is the original beam emittance. A typical 
extraction over one second in a machine with a revolution time of about one micro-second would require 
of the order of one million turns. This means that the shaving is extremely thin and the slightest vibration 
can cause the chisel to jump and chop the shaving, which gives rise to the legendary reputation of slow 
extractions for their sensitivity to ripple. 

 

 

 

 

 

 

 

 
Fig. 21: Model of momentum-driven slow extraction 

19.2 Amplitude-driven extraction 

Amplitude-driven, slow extraction can also be likened to the shaving action on a wood-turning lathe, 
see Fig. 22. The width of the shaving is equal to the width of the wood and is equivalent to the Δp/p.  
The thickness of the shaving is the horizontal emittance of the extracted beam and the X-section of the 
wood is the original beam emittance. For ~1,000,000 turns, the shaving is extremely thin. As before, a 
typical extraction over one second in a machine with a revolution time of about one micro-second would 
require of the order of one million turns. This means that the shaving is extremely thin and the slightest 
vibration can cause the chisel to jump and chop the shaving. 

 

 

 

 

 

 

 

 

Fig. 22: Model of amplitude-driven slow extraction 
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20 Sensitivity to ripple 
A simple analysis of the effects of ripple at low frequencies can be made by assuming that the particle 
flux that enters the resonance from the ‘waiting’ beam appears instantaneously in the observed spill.  
This is a fair approximation when the transit times in the resonance are small compared to the ripple 
frequency. Transit times depend upon the circumference of the machine, the strength of the resonance, 
the emittance, and so on. For a small medical synchrotron, the transit times typically vary from 100 turns 
up to 4,000 turns. There will always be a few particles that are quicker and few that are slower.  For ease 
of computation, assume that most particles leave the machine within 2,000 turns. For a revolution time 
of 0.5 µs, this represents a generous delay of 1 ms. Thus, for 50 Hz, 100 Hz, and 300 Hz ripples (common 
in power converters), it is reasonable to say that extraction is instantaneous.  With this simplified picture 
in mind, consider the schematic model shown below in Fig. 23.  Whether the relative motion between 
the beam and the resonance is due to one partner, or both, is unimportant for the moment. 

 

 

 

 

 

 
Fig. 23: Simple model for ripple 

The relative motion between the beam and resonance will comprise a constant velocity, 
( ) 0d/d QtQ !=  plus a ripple term that may come from either the position of the beam via the main dipole 

field ripple or from the position of the resonance via the quadrupole ripple. Let the ripple have a 
sinusoidal form, 
 ( )tQQr ωδ sin=    so that  ( )tQQr ωωδ cos =!  . (57) 

The flux of ions entering the resonance will be, 

 ( ) ( )( )tQQQQ
t
N

r ωωδλλφ cos
d
d

00 +=+== !!!  , (58) 

where λ is the line density in the ‘waiting’ beam. By inspection, it is clear that while QQ ωδ>0!  the 

spill will be continuous but modulated, whereas once QQ ωδ<0!  the spill will be periodically 
‘chopped’. Thus, the critical ripple for a ‘chopped’ spill is given by 
 ( ) 0critical QQ !=ωδ  . (59) 

To give a quantitative impression, consider a typical small machine with Tspill = 1 s, Qres = 1.666 and a 
tune spread necessary to consume the beam of ΔQ = 0.01. The average tune speed would be 

1
0 01.0 −= sQ! . The relationship of the tune ripple to the current ripple would be close to 

IIQQ // Δ≈Δ . Some results are listed in Table 1. It is immediately apparent that just to stop the spill 
from being chopped requires exceeding tight specifications for the power supplies. Table 1 implies that 
extremely strict specifications for power supply ripple, transients and DAC steps are needed to prevent 
the chopping of the spill. For a project, it would be necessary to consider many more aspects before 
writing the power converter specifications. Some of these aspects will be considered in the next section. 

 

‘Waiting’ beam 
with line density λ 

Resonance, Qres 

Tune, Q 
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Table 1: Conditions for 100% modulation of the spill at low frequencies (dQ0/dt = 0.01, Qres = 1.666) 

Frequency  
[Hz] 

(δQ/Qres)critical =ΔI/I 

 50  2 ⋅ 10-5 
100 10-5 
300 3.2 ⋅ 10-6 

1000 9.6 ⋅ 10-7 
  

At higher frequencies, the spikes on the band spill (see Fig. 19) still appear as individual spikes, 
but the long tails overlap creating a uniform base spill containing about half of the ions topped by the 
narrow spikes. At much higher frequencies, the spikes start to overlap. 

21 Handling ripple 

21.1 Power converters 

Switch-mode power converters have an advantage over the more conventional units, especially if 
switch-mode frequency can be placed above 20 kHz. Care must also be taken to ensure there is always 
a sufficient number of DAC steps in the current range to be ramped. 

21.2 Eddy current smoothing 

Normally, eddying currents are avoided in accelerators; to reduce field distortion and resistive losses 
during ramping. However, during a slow extraction, very stable conditions in the 1,000 Hz region are 
required for the main lattice elements and for the betatron core. Adjusting the lamination thickness of 
the main lattice magnets can be of help. This is of course a compromise—some resistive losses and 
distortion during ramping for some field smoothing on the extraction flat top. 

21.3 Intrinsic smoothing 

Referring back to the ‘strip’ spill in Fig. 18 and the ‘band’ spill in Fig. 19, the former is a close 
approximation of what happens in a RF, amplitude-driven extraction while the latter corresponds to what 
occurs in the momentum-driven extraction with a betatron core. Clearly, there is some advantage in the 
momentum-driven extraction with the band spill, because the narrow peaks are spread out. This is known 
as ‘intrinsic smoothing’. 

21.4 Front-end acceleration 

Figure 24 gives a pictorial view of a momentum-driven extraction. In the analogy, the ‘beam ions’ are 
moved slowly into the resonance by a plunger that pushes the ions across a vibrating platform. In the 
case shown, the vibrations dominate the slow acceleration and they wobble on the edge of the platform 
shaken by the vibrations (ripple) until they fall off the platform (and into the resonance) in an 
uncontrolled way. 

The spill can be desensitized to the ripple by increasing the velocity of the ‘beam ions’ as they 
reach the edge of the platform, so that their velocity is greater than the perturbation caused by the ripple. 
Figure 25, shows the same analogy as Fig. 24, except that the ‘beam ions’ now sprint forward just before 
the edge of the platform, so that the vibrations becomes less influential. This is called ‘front-end’ 
acceleration and can be done by ‘empty-bucket’ channelling (see next section) or by RF noise. 
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Fig. 24: No addition ‘front-end’ acceleration 

 
Fig. 25: ‘Front-end’ acceleration stabilizes ions as they pass into resonance 

21.5 Empty-bucket channelling 

The ‘front-end’ acceleration mentioned in the previous section can be achieved by ‘empty-bucket’ 
channelling [11, 12]. The betatron core slowly accelerates the beam into the resonance (upwards in Fig. 
26). The empty RF buckets are nearly stationary. If they were to be filled with beam, they would 
accelerate their beam in the opposite sense to the betatron core at the same speed. When the slowly 
moving beam meets the empty buckets, it has to stream round the buckets through a narrow phase-space 
gap at a much higher speed to maintain the flow. This is similar to the rapid movement of water between 
the piers of a bridge. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 26: Empty-bucket channelling 
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Fig. 27: The bridge analogy to empty-bucket channelling 

22 Small horizontal beam size 
The mono-energetic extracted beam segment (see Figs. 5 and 9) is typically 10 mm long and 0.1 mrad 
wide and is known as the ‘bar of charge’. These dimensions are very approximate and depend on the 
power converter ripple and the optics errors as mentioned in section 19. For the momentum-driven 
extraction there is a continuum of segments of different momenta. If the Hardt condition is applied these 
segments are all superimposed and the ‘bar of charge’ is again 10 mm by 0.1 mm. 

Those designing an extraction should note that the detailed optics at the entrance to the ES are 
rather complicated. At this position, there is one set of Twiss parameters that belongs to the ring. In the 
vertical plane these parameters are handed on to the extraction line, BUT NOT in the horizontal plane. 
In the horizontal plane, careful tracking will reveal that the segments of different momenta have different 
lengths and have their low momentum sides aligned. First one should choose a central segment to define 
the momentum and position of the central orbit for the extracted beam. Next the relative positions of the 
segments with respect to this central orbit define the dispersion vector for the entry to the extraction line. 
Finally, the rectangular shape of the segments is not convenient for fitting to a betatron ellipse. If one 
tries to fit inscribed or circumscribed ellipses to all the segments a rather complicated situation is created 
with potentially exotic optics. One solution is to forget ellipses and to treat the ‘bar of charge’ as the 
diameter of an unfilled ellipse, see Fig. 28. 

 

 

 

 

 

 

 

 

 

 
Fig. 28: Controlling beam width and height 

Using the concept of an unfilled ellipse creates well-behaved optics that are relatively insensitive 
to changes in the width of the ‘bar of charge’ that will vary for example because ripple is more serious 
at low extraction energies than at top energy. For the unfilled ellipse, the width of the beam is defined 
by the projection of the ‘bar of charge’ on the x-axis. If a phase shifter is introduced in the line, then the 
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‘bar’ can be rotated. This rotation changes the beam width at the patient from a minimum value set by 
the width of the ‘bar’ up to a maximum value set by the length of the segment (see Fig. 28). The beam 
height is the projection of the Gaussian beam distribution in the vertical plane on the z-axis and can be 
changed by a ‘betatron stepper’. 

23 Scanning 
As explained above, the extracted beam spot distributions are near-uniform over a narrow rectangle in 
the horizontal phase space and near-Gaussian in the vertical phase space. For voxel scanning, 
overlapping Gaussian spots give a smooth deposition of beam, whereas overlapping rectangles give 
‘hot/cold’ ridges. The procedure is to scan with the Gaussian distribution aligned to the ‘slow’ scanning 
direction (from row to row), since errors are more likely to build up over time between rows and then to 
scan in the fast direction (along a row) taking mini-steps (say 1/5th of the voxel width).  Since the beam 
spot is not perfectly rectangular, but has some rounding at the edges, this scheme works well. 

24 Rotational matching to a gantry 
In the extraction line of a medical facility, a rather special situation is met in which a fixed transfer line 
must be matched to a section of line called the gantry that has to be able to rotate through a full 0 → 2π 
without affecting the beam spot at the patient, see Fig. 29. In cyclotron-based facilities, the problem is 
solved by making the beam distribution rotationally symmetric at the interface between the fixed and 
rotating lines. A rotationally symmetric beam requires equal emittances, equal lattice parameters, equal 
particle distributions and zero dispersion. Unfortunately, the slow-extracted beam from a synchrotron, 
as described in this lecture, is far from fulfilling these requirements (rectangular/Gaussian). A lot can be 
written on this topic about various restricted solutions and similar problems, but the only truly rotational 
solution that also includes the dispersion vector is the ‘rotator’ method attributed to Lee Teng [13]. This 
solution is extremely elegant and can be approached from a purely mathematical viewpoint. 

 

 

 

 

 

 

 

 

 

 
Fig. 29: Schematic view of an iso-centric gantry and transfer line 

Consider a section of bending-free transfer line with a betatron phase advance of 2π in the x-plane 
and π in the z-plane. This section of line will be called a ‘rotator’. According to the phase advances, the 
transfer matrix for the rotator will be; 
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Let this line be rotated by an angle ν with respect to the fixed transfer line and let ν be just half of the 
rotation angle of the gantry, 2ν. A schematic view is shown in Fig. 30. 

 

 

 

 

 

 

 

 

 

 
Fig. 30: Equipment layout for the rotator method 

The transfer matrix from the exit of the fixed beam line to the interface point at the entry to the gantry 
is found by multiplying the rotation matrix for the angle ν, the rotator and a second rotation matrix also 
for the angle ν. 
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After a simple reduction of the terms, the final overall transfer matrix maps the incoming normal modes 
directly to those of the gantry without any cross-coupling and independently of the rotation angle. 
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Since a dispersion vector in a bending-free region behaves as a betatron oscillation to first order, 
the rotator will automatically match the dispersion vector (D, D’) into the gantry at the same time as it 
matches the normal modes. There are no fundamental limitations on the beam distributions or any of the 
Twiss or dispersion functions. The matching is entirely independent of the gantry rotation angle.  This 
is important for the slow extraction from a synchrotron because the beam shape (rectangular/Gaussian) 
will always have the same orientation in the gantry nozzle whatever the gantry angle. Note, however, 
that the beam is coupled inside the rotator. 

The rotator as presented is a purely mathematical solution. For example, four FODO cells with 
π/2 phase advance horizontally and π/4 phase advance vertically would satisfy the conditions, but would 
not be a practical solution because the beam sizes inside the rotator would be impractically large. To 
achieve well-behaved beam sizes within the rotator the trick is to make the Twiss alpha functions zero 
in both planes at the entry and exit. Figure 31 shows a well-behaved triple-triplet rotator design. 

 
Fig. 31: Triple-triplet rotator (βx = βz = 3 m, αx = αz = 0, L = 13.2 m, kF = -kD) 

25 Beam cut-off 
Cutting the beam off is a security problem in medical machines. Amplitude-driven, slow extraction has 
the advantage that the RF excitation driving the amplitude growth can be switched off quickly and since 
the extraction works only with large amplitude ions the transit time in the resonance is short making the 
overall switching time a few tens of microseconds, whereas, momentum-driven, slow extraction is a 
little slower to respond. Not only is the betatron core slower than RF, there are a few small amplitude 
ions trapped in the resonance that can take a millisecond or two to transit. In both cases, the switch-off 
can be made to satisfy treatment safety, but to satisfy the wider needs of security there has to be an 
independent cut-off mechanism that is less reliant on software links. 

The usual solution is to place four identical ferrite dipoles powered in series in a single straight section 
in the transfer line to excite a closed-orbit bump that holds the beam clear of a dump block, see Fig. 32. 
By switching off the dipoles, or in the event of a power failure, the beam drops onto the dump.  The 
switching time can be less than 200 microseconds. 

 
Fig. 32: Beam chopper 

RESONANT EXTRACTION

343



References 
[1] The possibility of resonant extraction from the CPS, CERN-AR-Int-GS-61-5.  
[2] C.L. Hammer and L.J. Laslett, Rev. Sci. Instr. 32 (1962) 144−149, https://doi.org/10.1063/1.1717299. 
[3] Y. Kobayashi and H. Takahashi, Improvement of the emittance in the resonant ejection, Proc. VIth Int. 

Conf. on High Energy Accelerators, Cambridge, Massachusetts, 1967, pp. 347−51. 
[4] M.Q. Barton, Beam extraction from synchrotrons, Proc. VIIIth Int. Conf. on High Energy Accelerators, 

CERN, Geneva, 1971, pp. 85−8. 
[5] G. Guignard, A general treatment of resonances in accelerators, CERN 78-11 (CERN, Geneva, 1978), 

https://doi.org/10.5170/CERN-1978-011.  
[6] K. Hiramoto and M. Nishi, Nucl. Instr. Meth. in Phys. Res. A3320 (1992), p. 154, 

https://doi.org/10.1016/0168-9002(92)90023-W.  
[7] PIMMS, Proton-ion medical machine study, Study Leader and Editor P.J. Bryant, CERN 2000-006, 

(CERN, Geneva, 2000), https://doi.org/10.5170/CERN-2000-006.  
[8] Ultraslow extraction out of LEAR (transverse aspects), CERN Internal Note PS/DL/LEAR Note 81-6, 

(1981).  
[9] M. Pullia, Transit time for third order resonance extraction, CERN/PS 96-36 (DI).  

[10] M. Pullia, Time profile of the slowly extracted beam, CERN/PS 97-50 (DI).  
[11] R. Cappi and C. Steinbach, Low Frequency Duty Factor Improvement for the CERN PS Slow 

Extraction Using RF Phase Displacement Techniques, 1981 Particle Accelerator Conference, 
Washington, 11−13 March 1981. 

[12] RF Empty Bucket Channelling Combined With a Betatron Core to Improve Slow Extraction in Medical 
Synchrotrons, CERN/PS 97-68 (DI).  

[13] L.C. Teng, Private communication, Laboratory notebook (Jan. 1970) and Int. Rep. LL-134 (Oct. 1986). 

                                                        

P. J. BRYANT

344


