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Abstract
This is summary of three lectures on neutrino physics at the CERN school in
Evora, Portugal, for experimental PhD students. There is a brief review of
neutrino interactions in the Standard Model, Majorana and Dirac mass terms,
oscillations in vaccuum and matter for 2 generations, the leptonic unitarity
triangle and 3 generation mixing, and bounds on the the absolute neutrino
mass scale. Follows a few topics going beyond the physics of three light active
neutrinos: an introduction to a few seesaw models for Majorana masses, and
leptogenesis in the type I seesaw.
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1 Introduction
Neutrinos are shy particles in the laboratory, but make several relevant contributions in cosmology and
astrophysics. They could be responsable for the observed matter excess of the Universe [1], and possi-
bly also the dark matter [2]. We know that there were three species of relativistic neutrinos in thermal
equilibrium in the plasma when the Univers was a few minutes old at the moment of Big Band Nuceosyn-
thesis [3], because the observed primordial ratios of light elements depend on the energy density at the
time. Additional constraints on the summed-mass, and number of light neutrinos in equilibrium are ob-
tained from the observed anisotropies in the Cosmic Microwave Background (CMB) [4]. In the following
1010 years of the life of our Universe, stars were born, radiated photons and neutrinos, and died — the
massive ones in supernova explosions [5] (whose explosion probably required assistance from neutri-
nos), thereby spreading heavy elements through the Universe and making our life possible. Humanity
became acquainted with neutrinos only in the previous century, and in the last decades, they have given
us laboratory evidence [14, 15] of New Physics beyond the Standard Model (SM). This has generated
significant interest in the community — so many excellent review articles are available. Some review
articles that I have read (much more complete than this introduction), can be found in reference [6], and
useful websites in reference [8].

1.1 Notation
I use chiral (2-component) spinors, but 4-component spinor notation, where a 4-component spinor � has
4 degrees of freedom labelled by {±E,±s}, and can be written in the chiral decomposition
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where  L = PL �, R = PR � with PL = (1��5)

2
. Recall that chirality is not an observable, but

becomes helicity (the projection of spin along the direction of motion ±ŝ · k̂ = ±1/2) in the relativistic
limit, and is simpler to calculate with than helicity.

In later sections of these notes, the chiral subscript on the fermions may suppressed (for instance,
in the leptogenesis section, I write N for NR).

The Higgs vev v = 174 GeV.

Proceedings of the 2017 European School of High-Energy Physics, Evora, Portugal, 6–19 September 2017, edited by M. Mulders and
G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 3/2018, CERN-2018-006-SP (CERN, Geneva, 2018)

2519-8041– c� CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2018-003.167

167



2 Neutrino interactions
2.1 Weak neutrino Interactions in the Standard Model
The Standard Model (SM) contains 3 generations of lepton doublets, and charged singlets:
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which here are listed in the charged lepton mass eigenstate basis, to which a greek index is commonly
attributed. I do not include a ⌫R in the SM because data did not require m⌫ when the SM was written
down, and because ⌫R has no gauge interactions, so a ⌫R is not required in each generation for anomaly
cancellation. However, some authors consider that the SM can be defined including three ⌫R and neutrino
Dirac masses, in which case they do not count neutrino masses as evidence for “New Physics”.

A Lagrangian which reproduces all the observed interactions of neutrinos and charged leptons is:
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where ↵ 2 {e, µ, ⌧} is a sum over generations, L is in the charged lepton mass basis, the covariant
derivatives are

Dµ = @µ + i
g

2
�aW a

µ + ig0Y (`L)Bµ , Dµ = @µ + ig0Y (eR)Bµ , (3)

Bµ is the hypercharge gauge boson, the fermion hypercharge is Y (f) = T3 + Qem, and eHT =�
�H+, H0⇤� gives masses m↵ = y↵hH0i to the charged leptons.

The first term of eqn (2) , `L
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where sW = sin ✓W , tan ✓W = g0/g, and the photon and Z fields are defined as Aµ ⌘ cW Bµ +
sWW 3

µ , Zµ ⌘ �sW Bµ + cWW 3
µ . This gives the familiar Feynman rules illustrated in figure 1. These

Fig. 1: W,Z Feynman rules in the SM with massless neutrinos

Feynman rules illustrate that, in the SM, there is no flavour change in the lepton sector — lepton flavour
is conserved.

The Lagrangian of eqn (2) does not only reproduce all lepton interactions (except neutrino oscilla-
tions); it is also the most general renormalisable, SU(2)⇥ U(1)-invariant L for those particles. In order
to see that, one has to show how to get rid of flavour-changing kinetic or Yukawa terms such as:
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Since such terms are gauge invariant, the most general Lagrangian can be written as

i`L
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µDµe
g
R � `

0b
L [Ỹe]bd eHedR + h.c. (5)

and the next few paragraphs aim to show that eqn (5) can be transformed into the canonical version give
in eqn (2).

The first step is to diagonalise Z, which must be hermitian because L should be real. It can
therefore be diagonalised as V ZV †

= DZ where V is unitary and DZ diagonal, as

`
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where at the last equality, the eigenvalues of Z were absorbed into the definition of the fields. This is
allowed, because the magnitude of a fermion field cannot be measured.

The basis transformation and field rescaling that removed the Z matrix affect the definition of the
Yukawa matrix. Defining Ye = D

�1/2
Z VZ

eYe (and implicitly performing similar operations to remove
Z(e)) , the Lagrangian now can be written

L = i `bL
T
D/ `bL + i eaR D/ eaR � { (`bL [Ye]bc eH)ecR + h.c.}

where [Ye] is in principle an arbitrary 3 ⇥ 3 matrix. A diagonal charged-lepton mass matrix can be
obtained by different unitary transformations on left and right:

VL[Ye]V
†
R = De .

(Notice that the Yukawa index order is LR in these notes). The matrices VL, VR can be obtained by
diagonalising the hermitian matrices [Ye][Ye]† = V †

LD
2
eVL and [Ye]†[Ye] = V †

RD
2
eVR.

2.2 Gravitational interactions
Neutrinos also have gravitational interactions, as is expected form the equivalence principle, since they
carry 4-momentum. We know this because light elements (such as H , D, 4He, and 7Li) were produced
in the first few minutes of the life of the Universe (“Big Bang Nucleosynthesis” [3]), and their primordial
abundances can be infered from observation. They depend on the age of the Universe at the time, which
depends on the energy density (dominated at the time by relativistic species), and allows to conclude that
three or four species of neutrino were in thermal equilibrium in the Universe at that time. Current Cosmic
Microwave Background data can constrain neutrino parameters [4], which also confirms that neutrinos
have gravitational interactions.

2.3 Historical problems
Since a long time, neutrinos have disappeared... The solar neutrino problem is the most long-standing:
the sun produces energy by a network of nuclear reactions, which should produce ⌫e, which escape the
sun without interacting. The photons diffuse slowly to the surface. However, the observed ⌫e flux from
the sun is ⇠ .3 ! .5 that expected from the solar energy output. This problem was resolved by the SNO
experiment [14], who showed that the flux in all flavours was as expected from the photon output, and as
predicted by solar models.

There was also an “atmospheric neutrino problem”, which was a deficit in the neutrinos produced
in cosmic ray interactions in the earth atmosphere: such interactions produce many pions, who generi-
cally decay (⇡� ! µ⌫̄µ ! e⌫̄e⌫µ⌫̄µ) to twice as many ⌫µ + ⌫̄µ as ⌫e + ⌫̄e. However, there was a deficit
of ⌫µ + ⌫̄µ, and the community became convinced that neutrinos had mass, when the SuperKamiokande
Collaboration [15] showed that there was a deficit of ⌫µ, ⌫̄µ from below, that could nicely be fit by
⌫µ ! ⌫⌧ oscillations.
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3 Neutrino masses
Before discussing oscillations and the kinematics of m⌫ , let us first think about how to write a mass
term for neutrinos in L. Since it is known from cosmology that neutrino masses <⇠ eV, we start in the
effective QED and QCD invariant theory that is relevant below mW , and neglect the SU(2) invariance of
the Lagrangian. Then the only constraint on the neutrino mass is that it must be a Lorentz-scalar. The
only possibility that can be constructed with two chiral fermion fields is

m  = m L  R +m R  L (6)

3.1 Dirac masses
The first way to construct such a mass term for an active ⌫L of the SM, is to introduce a chiral gauge
singlet fermion ⌫R for each SM generation. Then one can construct a fermion number conserving mass
term, as for other SM fermions: m⌫L ⌫R +m⌫R ⌫L. In the full SU(2)-invariant SM, this can be written
as :

�(⌫L, eL)

✓
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⌫R + h.c ⌘ �(`H)⌫R + hc ! m = �hH0i

In three generations, the neutrino Yukawa coupling � generalises to an arbitrary 3⇥3 matrix [�]�I ,
which can be diagonalised like other Yukawa matrices with different unitary transformations on left and
right: U [�]U †

R⌫ = D⌫ . If this diagonalisation is performed in the charged lepton mass eigenstate basis,
the matrix U is the leptonic version of CKM sometimes called the PMNS matrix (Pontecorvo, Maki,
Nakagawa and Sakata).

3.2 Majorana masses
There is a second way to write a Lorentz-invariant mass term for ⌫L, in our low-energy not-SU(2)-
invariant theory. This is called a Majorana mass term. It uses the fact that the charge conjugate of ⌫L is
right-handed: charge conjugation on a Dirac fermion is defined as
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This allows to write a mass term with only ⌫L (no new fields are required):
m
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2
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(where the second line is in 2 component notation for fermions, reviewed in appendix 12, which has the
attraction of being less cluttered).

Notice that the mass term involves either the field twice1, or its complex conjugate⇥charge conju-
gate, so this mass violates fermion number by two units, and cannot be written in this way for a fermion

1 The factor of 1
2 in L is to avoid 2s in Feynman rules and physical parameters, because I work in conventions where ⌫c and

⌫ are considered identical. Recall that Feynman rules are obtained as �nL/�⌫n, so �(⌫c⌫)/�⌫ = 2⌫.
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with gauge interactions (= with a conserved charge). So the simplest way to write this mass term in the
full SU(2) invariant SM is to write the dimension five operator (often called Weinberg operator)

L = ...+
K

2⇤
(`H)(`cH) + h.c. ! m

2
⌫L⌫

c
L + h.c. , m =

K

⇤
hH0i2 (8)

Since this operator is non-renormalisable, we assume it is induced by heavy new particles at the scale
M , whose interactions with active neutrinos are parametrised in K.

With multiple generations, the Majorana mass matrix 1

2
⌫L↵[m]↵�(⌫L)c� is symmetric2, so can be

diagonalised as:
UTmU = Dm . (9)

If the eigenvalues of m are non-degenerate, the matrix U can be obtained by diagonalising U †m†mU =
D2

m.
The diagonalisation recipe of eqn (9) implies that the eigenvector equation for Majorana matrices

is modified with respect to the familiar case of a hermitian matrix H with eigenvalues hi and eigenvectors
~vi: H~vi = hi~vi. In the Majorana case, eqn (9) implies mU = U⇤Dm, or m~ui = mi~u⇤i , where the
eigenvectors ~ui are the colomns of U .

3.3 U
The leptonic mixing matrix, which lives in 3 generation space and rotates from the charged lepton mass
basis (index ↵) to the neutrino mass basis (index i), has three angles and at least one phase:
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where P is a diagonal matrix discussed in section 3.3.1, two of the angles are large, and the CP-violating
phase � is placed on the smallest one:

✓23 ' ⇡/4 ✓12 ' ⇡/6 ✓13 ' 0.15, 8o � ⇠ 1.4⇡

The current experimental determinations of the angles can, for instance, be found in [10, 11]. For com-
paraison, the magnitudes of off-diagonal CKM matrix elements [11] are much smaller

Vcb ' 0.04 Vus ' 0.225 Vub ' 0.004

One of the reasons that the PDG quotes ranges for CKM matrix elements, and for leptonic mixing angles,
is that CKM matrix elements are probed in meson decays, whereas the dynamics of neutrino oscillations
makes it convenient to measure the angles of the leptonic mixing matrix.

3.3.1 Majorana phases

The diagonal matrix of phases P is the identity for Dirac neutrinos, and diag{e�i�1/2, e�i�2/2, 1} for
Majorana. The origin of these phases can be understood as follows:

1. suppose that all parameters in L that can be complex (U and m⌫i), are complex
2Fermion operators anti-commute, but the spinor contraction for the Majorana mass is also antisymmetric. This is easiest

seen in 2-component spinor notation: ⌫̂⇢
Li"⇢� ⌫̂

�
Lj = �⌫̂�

Lj"⇢� ⌫̂
⇢
Li = ⌫̂�

Lj"�⇢⌫̂
⇢
Li, where ↵, ⇢ are spinor indices, and ⌫̂j is the

operator for mass eigenstare j.
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2. There are 3 angles and 6 phases in a generic unitary matrix U (There are 18 real parameters in an
arbitrary 3⇥ 3 complex matrix; then the Unitarity condition UU † = 1 reduces this to 9.)

3. There are five relative phases between the fields eL, µL, ⌧L, ⌫1, ⌫2, ⌫3 ...so they can chosen to
remove all but one phase in the mixing matrix.

4. now check that the masses can be made real: for dirac masses, the phase of the mass can be
absorbed with ⌫RI . If ⌫L3 has a Majorana mass, between itself and anti-self, the absolute phase
of ⌫L3 can be chosen to make the mass real. This fixes all LH fermion phases, so the phases from
m⌫1,m⌫2 cannot be removed. They contribute extra CP Violation in processes where Majorana
masses appear linearly (not as mm⇤, so not in kinematics = not in oscillations). These phases can
be left on the masses, or rotated into the diagonal P given in eqn (10).

3.3.2 Where do mixing matrices appear?

As in the quark sector, the mixing matrix will appear at W vertices. This can be seen by writing the
{e↵R}, and {⌫IR} in the mass eigenstate basis (means UR⌫ is unphysical), and the `a in the mass basis of
charged leptons:
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The 3⇥ 3 mixing matrix U↵,i appears at W± vertices
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while the Z vertex remains flavour-diagonal:
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X
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�i
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j
L�
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µ U↵k⌫
k
L = �jk

g

2
⌫jL�

µZ+
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k
L .

3.4 Dirac vs Majorana
There is a discrete difference in the number of light degrees of freedom required for Dirac or Majorana
masses: a ⌫L with a Majorana (Dirac) mass requires one(two) light chiral fermions. However this distinc-
tion is not currently observable. There is also a continuous difference, that Majorana masses are Lepton
Number Violating(LNV) so give rise to �L = 2 processes e.g. 0⌫2�. There is also more CP violation
in the Majorana case (all but one of the Majorana ⌫ masses are complex), but this is only detectable in
LNV processes.

In the community, it is common to present Majorana vs Dirac as a “either–or” question. Which
it is, as a “model discrimination” question: are there three light majorana ⌫ with LNV masses, or three
light dirac ⌫ with LN conserving masses. However, if its neither of those models, it seems to the author
that the question is continous, not discrete, because the phenomenological question is the LNV rate (one
can’t measure number of light chiral fermions). For instance, if ones adds an undetectably small LNV
mass to a Dirac mass matrix; does that make the neutrinos Majorana? (There would be 6 chiral fermions
as for Dirac, and no observed LNV. This case has been studied recently in [16].)
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4 Two generation vaccuum oscillations
This section gives three derivations of the 2-neutrino oscillation probability in vaccuum. The first is
a relativistic quantum mechanics version, which in my opinion gives the right intuition and physics,
but contains several twiddles so the normalisation of the result is doubtful. The second is a quantum
mechanical derivation using the Schrodinger equation, which is easy to rederive and gives the correct
answer, but is a doubtable formalism for studying neutrinos (One can wonder if the Schrodinger equation
is appropriate for relativistic neutrinos, whether the ⌫ propagates with fixed ~k and variable energy, and
whether the notion of neutrino flavour eigenstate is useful, since we usually quantise mass eigenstates.).
The last is a quantum field theory justification for the Schrodinger equation version, whose purpose is to
justify the Schrodinger approach used for matter oscillations in a later section.

An insightful discussion clarifying many questions about neutrino oscillations can be found in
[17].

4.1 Relativistic Quantum Mechanics
We are interested in a physical process, where a muon decays at the production point, then later a muon
is produced in the detector. We do not know what happened between these two events, so we should sum
all the possibilities at the amplitude level.

We suppose a relativistic neutrino is produced in muon decay at t = 0. We know how to quantise
and do perturbation theory with mass eigenstate particles, so we suppose that neutrinos propagate as
mass eigenstates. The amplitude to produce a mass eigenstate i is

/ Uµi .

The propagator for a scalar particle of mass mi to travel a distance L in time t to the detector is

G[(0, 0); (L, t)] /
Z

d3p

(2⇡)3
ei(Et�pL)✓(t)

This position-space formula (which can be found in chapter 6 of Bjorken and Drell volume II) looks
unfamiliar, because propagators are usually given in momentum space. I suppose that including spin
would be a straightforward complication. The amplitude to produce a charged lepton e↵ at detector is
then:

Aµ↵ /
X

j

Uµj ⇥ e�i(Ejt�kjL) ⇥ U⇤
↵j .

In the relativistic limit where mj ⌧ E, p, one can take L ' t so �i(Ejt � pjL) ' �i(Ej � pj)L

=�i
E2

j�p2j
Ej+pj
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j

2EL which gives

Pµ↵ = |Aµ↵|2 = |
X

j

Uµje
�im2

jL/(2E)U⇤
↵j |2

In the 2 generation case, where the mixing matrix U is

U =
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� sin ✓ cos ✓

�

one obtains

Pµ!⌧ (t) =
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3L/2E

⌘���
2

7

NEUTRINO PHYSICS

173



= sin2(2✓) sin2
✓
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where E is the ⌫ energy and L is the source-detector distance (for atmospheric ⌫s: E ⇠ 10 GeV and
L : 20km ! 10000km. For reactor neutrinos, E ⇠ MeV and L ⇠ km). The probability for a muon
to decay in production and reappear in the detector (sometimes called the ⌫µ survival probability) is
illustrated in figure 4.1.
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4.2 neutrino oscillations in quantum mechanics(easy to rederive)
A relativistic neutrino, with momentum ~k, is produced in muon decay at t = 0 (at Tokai/edge atmo-
sphere). It can be described as a quantum mechanical state: |⌫(t = 0)i = |⌫µi. After it travels a distance
L in time t to the detector, it can be written |⌫(t)i. We wish to calculate the probability with which it
produces an µ in CC scattering at the detector:

Pµ!µ(t) = |h⌫µ|⌫(t)i|2 = ?

For two generations of massive neutrinos the flavour and mass eigenstates are related as ⌫↵ = U↵i⌫i:
✓
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◆
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◆
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If time evolution in the mass basis is described by a Schrodinger-like equation

i
d

dt

✓
⌫2
⌫3

◆
=


E2 0
0 E3

�✓
⌫2
⌫3

◆
, E2

i = k2 +m2

i
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X

j
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X

j

Uµje
�iEjt|⌫ji

so the amplitude for the neutrino to produce a charged lepton ↵ in CC scattering in detector after time t
is:

|h⌫↵|⌫(t)i| =
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So in the 2 generation case, using t = L, E3�E2 ' m2
3�m2

2
2E ⌘ �

2
32

2E , one obtains the probabilities already
given in equations (12) and (11).

One can anticipate that if the neutrino propagates distances L � E/�2, some sort of decoherence
should occur, and one should sum the probabilities to propagate the various mass eigenstates. Issues of
quantum coherence and decoherence have been discussed in [17]. Here are just some simple estimates
about the overlaps of wavepackets:

1. at production, the neutrino energy and momentum are not perfectly known (otherwise one could
compute the masses as

p
E2 � p2), so one should sum the amplitudes for a given ⌫2 and ⌫3 to

have various energies and momenta: this gives two wavepackets of masses m2, m3.

2. The group velocity of the packets is vi = @E
@p = p

E ' 1 � m2
i

2E2 , so after a distance L, the packets
have separated by

(v2 � v3)L ' m2
3
�m2

2

E2
L ' L

`osc

1

E

3. one could expect the packets to not interfere, if they are separated by more than their size, which
by the uncertainty principle should by ⇠ 1/(�|p|), where �|p| ⇠ �E ⇠ the energy uncertainty of
the packet. So one expects the oscillating sin2(�2L/4E) to average to 1/2 when

L

`osc
>⇠

E

�E
.

4.3 A skeletal QFT derivation of oscillations
One can think that since neutrinos are relativistic, one should do oscillations in Quantum Field Theory.
The aim of this skeletal derivation, is to show that QFT is equivalent to the Schrodinger equation of the
previous subsection.

In second quantised field theory, in the Heisenberg representation where operators are time-
dependent, the equations of motion for the number operator n̂ are

d

dt
n̂ = +i[Ĥ, n̂] (13)

where the Hamiltonian Ĥ for vaccuum oscillations can be taken as free = Ĥ0 ⇠
P
!n̂!. Recall the

free hamiltonian is the sum over all states of the number of particles ⇥ their energy. It is the integral of
hamiltonian density, with which it should not be confused (the dimensions are different).

In second quantised formalism, in the conventions of Peskin and Schroeder, the neutrino field can
be written:

 ̂I(x) =
X

s=+,�

Z
d3p

(2⇡)3
1p
2E

⇣
e�ip·xâIs(~p)us(p) + eip·xb̂I†s (~p)vs(p)

⌘

where s is helicity, I is generation, â† creates particles, et b̂† creates anti-particules. The cre-
ation/annihilation operators â are defined here for energy= mass eigenstates, but the formalism is co-
variant.

We want to know the time/space evolution of a beam neutrinos (no ⌫), of positive helicity, and, to
simplify the notation, the momentum is fixed to ~p. The number operator for such modes is

n̂IJ
sr (~p) = âI†+ (~p)âJ+(~p)

which is covariant in generation space (indices I, J).
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The equation of motion for the number operator n̂ is given in (13), where

H0 =
X

I

Z
d3p

(2⇡)3
!II(|~p|)

�
n̂II
++(~p) + n̂II

��(~p)
�
, !II =

q
~p2 +m2

I .

The commutator can then be calculated as

d

dt
n̂IJ
++(~p) = i

Z
d3k

(2⇡)3

⇣
!2(~k)â

2†
+ (~k)â2+(~k) + !1(~k)â

1†
+ (~k)â1+(~k)

⌘
âI†+ (~p)âJ+(~p)

�âI†+ (~p)âJ+(~p)
⇣
!2(~k)â

2†
+ (~k)â2+(~k) + !1(~k)â

1†
+ (~k)â1+(~k)

⌘

= i
D" 0 (!1 � !2)â

1†
+ (~p)â2+(~p)

(!2 � !1)â
2†
+ (~p)â1+(~p) 0

#E
(14)

which turns out to be the equation one would obtain for the neutrino density matrix in the quantum
mechanical formulation.

To see this connection, identify the vacuum-expectation value hn̂II
++(~p)i ⌘ [f++]IJ(~p) with the

density matrix for the 2-state neutrino system. The QM density matrix for |⌫(t)i = s|⌫1(t)i + c|⌫2(t)i
can also be constructed as

[f++] =


s2|⌫1(t)ih⌫1(t)| sc|⌫1(t)ih⌫2(t)|
sc|⌫2(t)ih⌫1(t)| c2|⌫2(t)ih⌫2(t)|

�

One can then check that the evolution of [f++] given by eqn (14) and by QM Hamiltonian
"

�m2
2�m2

1
4! 0

0
m2

2�m2
1

4!

#

is identical.

5 Two generation matter oscillations
Neutrinos have weak cross sections which are very small:� ⇠ G2

FE
2
⌫ . Nonetheless, when the propagate

in matter, they have an amplitude to notice the matter, which is / GF and can contribute an effective
mass. This effect is described by coherent forward scattering of ⌫ in matter, as illustrated in figure
2, which will give an extra contribution to the Hamiltonian. This effect can be relevant for neutrinos
propagating in the earth, the sun or supernovae, here only the sun is discussed.

Fig. 2: Forward scattering interactions(the neutrino momentum is unchanged) of neutrinos with matter. The Z
exchange diagram affects all neutrinos in the same way, so gives a contribution to the Hamiltonian / identity.
Therefore it does not induce phase differences between the propagation amplitudes of different ⌫i, and can be
neglected from oscillation studies.
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To see how forward scattering on matter can give rise to an effective mass, one can use the Hamil-
tonian Hmat = H0 +Hint in the QFT derivation of oscillations, with

Hint ' 2
p
2GF

Z
d4x(⌫̂e(x)�

↵PL⌫̂e)(ê�↵PLê(x)) (15)

evaluated in a medium with electrons. Only the charged current interaction of ⌫e with e need be included,
because the NC interaction is the same for all the ⌫L, so could only induce a universal a contribution to
H proportional to the unit matrix. One can show that

hmedium|ê�↵PLê(x)|mediumi ! �↵0
ne

2
,

so that Hmat in the flavour basis (⌫e, (⌫⌧ � ⌫µ)/
p
2), is

Hmat = ...+


cos ✓ � sin ✓
sin ✓ cos ✓

�
0 0
0 �2/(2E)

�
cos ✓ sin ✓
� sin ✓ cos ✓

�
+


Ve 0
0 0

�

= ...+

"
��

2

4E cos 2✓ + V �
2

4E sin 2✓
�

2

4E sin 2✓ �
2

4E cos 2✓

#

where Ve =
p
2GFne.

This matter hamiltonian can be diagonalised by a rotation through the angle ✓mat, where

tan(2✓mat) =
�2 sin(2✓12)

2EVe ��2 cos(2✓12)
(16)

�2

mat =
p
(�2c2✓ � 2EV )2 + (�2s2✓)2

so we see that for Ve ⌧ �
2

2E cos(2✓12), matter effects are negligeable. However the matter mixing angle
becomes maximal (✓mat ! ⇡/4) when Ve ' �

2

2E cos(2✓12), corresponding to the MSW resonance. And
for V � �

2

2E cos(2✓12), ⌫e propagates as a mass eigenstate. A useful expression for Ve, which allows to
estimate where matter is relevant for which energy neutrinos, is

Ve =
p
2GFne ' 8 eV

⇢Ye
1014g/cm3

Ye =
ne

nn + np
, ⇢ =

8
<

:

10g/cm3 earth
100g/cm3 sun
1014g/cm3 supernova

(17)

Finally, it is important to notice that Ve is of opposite sign3 for ⌫̄, which allows to determine the sign of
the vaccuum mass difference �2

12
. In particular, since matter effects are observed in solar neutrinos, one

concludes that m2
2
> m2

1
.

5.1 matter of varying density
In order to understand the effect of solar matter on the neutrinos exiting the sun, one should consider
matter of varying density. For varying ⇢(r), the matter Hamiltonian becomes time-dependent:

"
��

2

4E cos 2✓ + Ve(t)
�

2

4E sin 2✓
�

2

4E sin 2✓ �
2

4E cos 2✓

#

3 The sign arises because the interaction Hamiltonian of eqn (15) contains ¯̂⌫�0⌫̂ � â†â, b̂b̂†. The negative sign arises in
anti-commuting the b̂b̂†, in order to annihilate the incident ⌫̄ before creating the outgoing one.
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Fig. 3: On the right, solar neutrino fluxes and sensitivities of various experiments. On the left, the effective neutrino
mass2 as a function of density, normalised to 2m2

sol
. Figures from hep-ph/0606054.

so the mixing angle ✓mat becomes time dependent. This is simple to account for in the adiabatic limit,
where the time variation ✓̇mat can be neglected compared to the oscillation timescale. Then one can
imagine that if oscillations occur, they are between the instantaneous mass eigenstates. In the case of the
sun, the adiabatic condition is satisfied, and it turns out that the matter effect can suppress oscillations.

The core of the sun produces ⌫e in various nuclear reactions, with energies from 0.4 to 10 MeV (see
[13] for a review). The principle fluxes, as well as the sensitivities of different detectors, are illustrated
in figure 3.

1. From equations (16) and (17), one sees that Ve > �2
21
/2E for the E ⇠ 8MeV Boron neutrinos,

observed in SNO and SK. So these ⌫es are mass eigenstates when they are produced, and remain
mass eigenstates as they exit the sun, despite that their mass is adiabatically changing. They have
no amplitude to be any other state, so there no oscillations, and they exit the sun as the heavier
mass eigenstate ⌫2. This is illustrated in the left in figure 3 : the neutrino just tracks the mass
eigenstate (upper line). The probability to produce an electron in a detector on earth is therefore
|Ue2|2:

Pee ' sin2 ✓12

2. On the other hand, the matter potential Ve is negligeable for the ⌫e with energies ⇠ MeV, who
therefore oscillate as in vaccuum. However the vacuum oscillation length ⇠ E

�2 ⌧ Rsun, so the
oscillations decohere (sin2 �

2L
E ! 1/2) and the probability of producing an electron in a detector

on earth is
Pee = 1� 1

2
sin2 2✓12

This explains why the ⌫e survival probability was higher at the Davis experiment [12], than in the water
cherenkov detectors [14].

6 Three generations
It is well-known that the SM has three generations. Nonetheless, in neutrino oscillations, some observ-
ables can be approximately calculated in the much simpler 2-generation formalism, because the dynamics
of oscillations selects a particular mass difference and allows to measure a particular angle 4. This is the
first topic of this section.

4So in neutrino physics, one quotes experimental constraints on the angles ✓ij , rather than the matrix elements as is quark
flavour physics.
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Secondly, the CP-violating part of the 3-generation oscillation probability is introduced, and the
current preference of T2K for � ⇠ �⇡/2 is discussed.

6.1 The drunken Unitarity triangle
The unitarity triangle is less discussed in lepton flavour physics than in quark flavour. This is perhaps
because one discusses the angles rather than the matrix elements in the lepton sector, however, I use it
here to illustrate why 2-flavour oscillations can be a good approximation to some observables.

The amplitude to oscillate from flavour ↵ to � over distance L is:

A↵�(L) = U↵1U
⇤
�1 + U↵2U

⇤
�2e

�i(m2
2�m2

1)L/(2E) + U↵3U
⇤
�3e

�i(m2
3�m2

1)L/(2E) . (18)

At L = 0, this is just the unitarity relations A↵� = 1 for ↵ = �, A↵� = 0 for ↵ 6= �, which just say the
rows of U are orthonormal. The three terms (complex numbers) can be represented as vectors adding to
zero in the complex plane, as in figure 4. At L = t 6= 0, eqn (18) implies that two of the vectors rotate in

Fig. 4: Example unitarity triangles: for ↵ = µ, � = e the triangle is flattened, because Ue3 ⇠ sin ✓13 ⇠ 0.015 is
small. For ↵ = µ, � = ⌧ , the triangle is more equilateral.

the complex plane, with frequencies (m2

j �m2
1
)/2E, so oscillations can be visualised as time-dependent

non-unitarity.
As a first example of why the two-flavour approximation works, consider the amplitude to oscillate

from e to e at an energy and baseline combination such that 4E/L ' m2
2
�m2

1
. This corresponds, for

instance, to reactor anti-neutrinos travelling to the Kamland detector. The amplitude is

Aee(L) = Ue1U
⇤
e1 + Ue2U

⇤
e2e

�i(m2
2�m2

1)L/(2E) + Ue3U
⇤
e3e

�i(m2
3�m2

1)L/(2E) (19)

and is illustrated on the right in figure 4. At L ⇠ (m2
2
�m2

1
)/2E, vector 2 rotates, at a frequency (m2

2
�

m2
1
)/2E, whereas vector 3 spins rapidly at a frequency (m2

3
�m2

1
)/2E. The two-flavour approximation

works because Ue3 = sin✓13 is small, so the rapid spinning of vector 3 can be neglected.
As a second example, consider the determination of ✓13 at reactors. The amplitude is again given

in eqn (19), and the diagram is again on the right in figure (4).
However, in this case, the energy-baseline is chosen such that 4E/L ⇠ (m2

3
� m2

1
), so only the

third vector rotates. The first and second are stationary, and Ue3 ⇠ ✓13 is obtained by measuring the
small ⌫e disappearance, corresponding to the decreased length of the vector in figure 4, resulting from
the rotation of the short vector “3”.

6.2 What is left?
Adding three generations of massive neutrinos to the SM introduces new parameters: 3 masses and a
mixing matrix containing three angles and at least one phase. The three angles are measured, as are
two mass-squared differences: (m2

2
�m2

1
), |m2

3
�m2

j |. From matter effects in the sun, it is also known
that (m2

2
� m2

1
) is positive. Remaining to be determined are the sign of (m2

3
� m2

j ) (refered to as the
“hierarchy”: m3 > m2 > m1 is the normal hierarchy, m2

>⇠ m1 > m3 is inverse hierarchy), the absolute
mass scale, and the phase.
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6.3 The phase �

The CP-violating phase � would be absent in 2 generations, so all three generations must contribute to
the oscillation amplitude, in order to have sensitivity to �.
To compactify the ⌫↵ ! ⌫� oscillation amplitude (eqn (18)), it is convenient to define5 xji ⌘ (m2

j �
m2

i )L/(2E), and the mixing matrix combination 6 �i = U↵iU⇤
�i. Then

P↵�(L) = |�1 + �2 + �3|2 � �1�
⇤
2 � �⇤1�2 � �1�

⇤
3 � �⇤1�3 � �3�

⇤
2 � �⇤3�2

+�1�
⇤
2e

+ix21 + �⇤1�2e
�ix21 + �1�

⇤
3e

+ix31 + �⇤1�3e
�ix31

+�2�
⇤
3e

+ix32 + �⇤2�3e
�ix32

= �↵� � 4
X

i<j

Re{U↵iU
⇤
�iU

⇤
↵jU�j} sin2

xji
2

+ 2
X

i<j

Im{U↵iU
⇤
�iU

⇤
↵jU�j} sinxji (20)

To make a first acquaintance with the real part of this formula, one can take the 2 generation limit
(↵ = µ, � = ⌧ , i = 2, j = 3) and see that the formula (11) is recovered:

Pµ⌧ (L) = 0� 4Re{� cos ✓ sin ✓ sin ✓ cos ✓} sin2 x32
2

+ 0

= sin2(2✓) sin2
(m2

3
�m2

2
)L

4E

The imaginary part of the three-flavour oscillation probability (the last sum in eqn (20)) represents
CP Violation, and it will give a dependence on the phase �. To see that this term is CP Violating, one can
check that it has opposite sign in the transition probabilities for ⌫↵ ! ⌫� vs ⌫↵ ! ⌫� . The amplitude
A(⌫↵ ! ⌫�) was obtained in section 4.1; following the same steps, but using that the Feynman rule for
e↵ ! ⌫i is ⇠ U⇤

↵i, one sees that the Imagainary term in eqn (20) is of opposite sign in the two cases.
It can be checked that {U↵iU⇤

�iU
⇤
↵jU�j} is invariant under changes in the choices of phases of

fields. made in order to remove phases from U . Recall that in section 3.3.1, the 5 relative phases of
{e↵, ⌫j} were chosen in order to remove 5 phases from U . If the field phases were chosen differently, for
instance e↵ ! e�i�↵ , ⌫j ! ⌫je�i�j , then U↵j ! e�i�↵U↵jei�j , but the combination {U↵iU⇤

�iU
⇤
↵jU�j}

is invariant, because e±i�↵ cancels between U↵i and U⇤
↵j , etc.

Indeed, the combination {U↵iU⇤
�iU↵jU⇤

�j} is proportional to the area of the unitarity triangle area,
and to the Jarlskog invariant. Suppose the phases are chosen such that the base = Uµ1U⇤

⌧1 of the central
triangle in figure (4) is real. Then base ⇥ height / Im{Uµ1U⇤

⌧1U
⇤
µjU⌧j} for both j = 2 and j = 3

(its less simple to demonstrate that the third term of the imaginary sum is also / the triangle area). To
compactify the notation, it is convenient to define

eJ = 8c213s13c23s23c12s12 (21)

where the area of the triangle and the Jarlskog invariant computed from the neutrino and charged lepton
mass matrices are propotional to eJ sin �.

6.3.1 ✓13, � at T2K

The current T2K data [19] has some sensitivity to the CP violating phase �, and favours a maximal value
� ⇠ �3⇡/2. The aim of this section is to understand this preference.

5From the review [7].
6The dependence on the indices ↵,� is suppressed because they are fixed by the physical process under consideration.
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At JPARC, a beam of muons, [or anti-muons], hits a target, and produces neutrinos of energy ' 0.6
GeV, which travel 295 km underground to SuperK. In order to be sensitive to ✓13 and �, SuperK then
searches for electrons, [or positrons]. The baseline and energy are chosen to maximise the appearance
probability of electrons via the angle sin ✓13. So at leading order, the vaccuum probability is

Pµe ' sin2(✓23) sin
2(2✓13) sin

2(
x31
2

) x31 =
(m2

3
�m2

1
)L

2E
(22)

However, s2
13

⇠ �2
21
/�2

31
, so the x21 oscillations could give some detectable contribution, in which case

a dependence on � becomes possible in the three generation oscillation probability. But if CP violation
from the mixing matrix is allowed in the calculation, matter effects should also be included, because, like
the Imaginary term in the oscillation probability of eqn (20), they are of opposite sign for neutrinos and
anti-neutrinos.

So in principle, the relevant amplitude is

Aµe = eUµ1
eU⇤
e1 + eUµ2

eU⇤
e2e

�iex21 + eUµ3
eU⇤
e3e

�iex31

where ex = �2
matL/2E, and eU are the mass differences and mixing matrix in matter.

Matter effects in three generations are discussed, for instance, in [18]; here, the small matter effects
are only included in the leading two-generation mixing term, following the discussion of section 5, so
eqn (22) becomes

Pµe ' sin2(✓23) sin
2(2e✓13) sin2(

ex31
2

) (23)

where 2EVe/�2
31

<⇠ .1, and the mass difference and mixing angles in matter are given in eqn (16).
Then the three-generation mixing term that depends on � can be included in perturbation theory

by writing e�ix21 ' 1� i�2
21
L/2E:

Pµe ' sin2(✓23) sin
2(2e✓13) sin2(

ex31
2

) + eJ �2
21
L

2E
sin(ex31) cos(±� +

x31
2

)

where eJ is defined in eqn (21).
The current T2K data contains a larger ratio of ⌫e to ⌫e (electrons to positrons) than expected for

any value of �. So there is a preference for � that flips the sign of the second term. Since T2K is on the
oscillation peak x31 ' ⇡/2, this suggests that � ' 3⇡/2.

If this observation is confirmed with more data, it is doubly interesting: first because it indicates
that CP violation is generic, and not just a property of the CKM matrix. Secondly, leptogenesis scenarios
require CP violation in the leptonic sector, so its presence supports them.

7 Mass pattern/hierarchy
Two possible mass patterns, or hierarchies, are consistent with current oscillation data:
normal hierarchy: m1 < m2 ⌧ m3

inverted hierarchy: m3 ⌧ m1
<⇠ m2

It is known that m2
2
> m2

1
because there are matter effects for Boron neutrinos exiting from the sun.

The sign of the big mass difference m2
3
�m2

j appears in oscillation probability:

1. when ⌫ and ⌫ travel through matter, because the matter contribution to the Hamiltonian is of
opposite sign for ⌫ and ⌫...

2. in 3-neutrino oscillations, where interference between �2
21

and �2
31

occurs, suppressed by sin2 ✓13

So there are proposals [20] to determine the hierarchy by studying atmospheric ⌫e and ⌫e in high
statistics detectors such as PINGU or ORCA [21]. Determining the hierarchy is also among the aims of
the DUNE experiment [22].
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8 mass scale
8.1 cosmology —a probe of the neutrino mass scale
The mass of neutrinos can have effects on the growth of Large Scale Structure, and also on the Cosmic
Microwave Background (principally its evolution from recombination until today).

The participation of neutrinos in Structure formation is intuitive: they are “hot dark matter”, that
is, in the early Universe after matter-radiation equality, neutrinos still have non-trivial velocities. They
can therefore free-stream out of over-densities, rather than collapsing with the overdensity as cold dark
matter would do. However, since the neutrinos progressively slow down due to the expansion of the
Universe, they only succeed in escaping from small overdensities, which suppresses the power spectrum
of Large Scale Structure on small scales. The scale below which the power spectrum is suppressed allows
to identify the neutrino mass. However, if neutrino masses are small, the suppression factor is small.

The effect of neutrino masses on the CMB is more subtle, because neutrinos become non-
relativistic after recombination (= the moment when the CMB is born), so their masses affect the propa-
gation of CMB photons from recombination until today. This is pedagogically explained in [4]. One of
the subtleties of the CMB dependence on neutrino parameters, is that other physical processes, encoded
in other parameters of the cosmological ⇤CDM model, can have some of the same effects. This was
explored in [23], who obtained bounds on the sum of neutrino masses ⌃ ⌘

P
im⌫i [23]

⌃ <⇠ 0.1 ! .6 eV now : PLANCK,+LSS/Ly↵ (in ⇤CDM)
<⇠ 0.6 ! 1 eV now : PLANCK+ ... (in 12 param ⇤CDM)

! <⇠ 2matm cosmo.indep. (Planck + EUCLID...)

⇠ matm ⇤CDM

8.2 Beta decay
� decay provides a direct kinematic probe of the neutrino mass, because m2

⌫ distorts the e spectrum in
n ! p+ e+ ⌫̄. The KATRIN experiment [24], which is running now, uses Tritium, so consider Tritium
� decay:

3H !3He+ e+ ⌫̄e , Q = Ee + E⌫ = 18.6eV

where the high-energy tail of the electron distribution turns down due to the neutrino mass Ee = Q �
E⌫  Q� “me⌫“. The endpoint of e spectrum can be described as :

dNe

dEe
/
X

i

|Uei|2
q
(18.6 keV � Ee)2 �m2

⌫i (24)

The current �-decay bound is m⌫e
<⇠ 2 eV; the Katrin sensitivity [24] is expected to be ⇠ 0.3 eV.

8.2.1 ⌫-capture and the Cosmic Neutrino Background

It is known that in the early Universe at the moment of of Nucleosynthesis (BBN), there was a thermal
density of SM neutrinos, comparable to the density of photons. So today there should be a Cosmic
Neutrino Background, comparable to the CMB, consisting of ⇠ 100⌫/cm3 [25]. Detecting these non-
relativistic neutrinos would be interesting, and also difficult since their energy ⇠ m⌫ .

A not unpromising detection possibility [26] could be neutrino capture �decay: n+⌫CNB ! p+e.
One can compare the ⌫ capture rate on a nucleus N , to the usual � decay rate as the ratio of the incident
CNB number density to the outgoing phase space density in � decay:

n⌫CNB

⌫ phase space
' T 3

CNB

⇡2
1

Q3
⇠
✓
10�4eV

20keV

◆3

⇠ 10�24
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However, in the capture case, the electron energy is Ee = Q + m⌫ , so is 2m⌫ larger than the upper
bound of the � decay spectrum. So with improved resolution, perhaps the CNB could be measured by
observing electrons beyond the end-point of the � decay spectrum.

8.3 Neutrinoless double beta decay
Neutrinoless double beta decay (0⌫2�) is a Lepton Number Violating (LNV) process, to which Majorana
neutrino masses can contribute. Other lepton number violating scenarios (such as sparticles in R-parity
violating supersymmetry) can also contribute, but here only the Majorana mass contribution will be
discussed.

For some nuclei, single � decay is kinematically forbidden: for instance, 76
32
Ge is lighter than

76
33
As, so 76

32
Ge has a double beta decay to 76

34
Se+ ee⌫̄e⌫̄e, with a lifetime ⇠ 1021 yrs. The lifetime is long

because the matrix element is suppressed by ⇠ G2

F (two W are exchanged), as illustrated on the left in
figure 5. In the presence of Majorana masses, double beta decay can be neutrinoless, as illustrated on

Fig. 5: Double beta decay (left) and neutrinoless double beta decay(right)

the right in figure 5. This diagram can only occur for Majorana neutrino masses, which violate lepton
number, because two units of lepton number disappear into the mass insertion x on the neutrino line. As
a result, the electrons emerge back-to-back, with opposite momenta and half the available energy each.
So the signature of 0⌫2� is a line just beyond the end of the electron spectrum of 2⌫ double beta decay.

8.3.1 The 0⌫2� matrix element

The matrix element for 0⌫2� can schematically be written

|M|2 =

������

nuclear
matrix
element

������

2

⇥
���
X

i

U2

eimi

���
2

for m⌫ ⌧ Q ⇠ 100 MeV (the mass of heavier Majorana neutrinos would appear downstairs in the
propagator). The calculation of the nuclear matrix elements is involved; experts obtain results in different
models that can differ by factors of a few [27, 28].

It is interesting to focus on the neutrino part of |M|2:

|M|2 /
���c213c212e�i�1m1 + c213s

2

12e
�i�2m2 + s213e

�i2�m3

���
2

where the majorana masses appear linearly, so accompagnied by their phases (or equivalently, by the
Majorana phases from P of eqn (10). So this Lepton Number Violating process is sensitive to the
Majorana phases.
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Fig. 6: |M| for 0⌫2� mediated by majorana neutrino masses, plotted as a function of the lightest neutrino mass.
The green region is allowed for the inverse hierarchy, and the red region corresponds to the normal hierarchy.. The
plot is taken from 1601.07512 by Dell’Oro etal [28].

8.4 What can we learn/confirm?
Suppose that the only source of lepton number violation is the majorana masses of the SM neutrinos, the
largest of which is ⇠

p
|m2

3
�m2

2
|. Then the rate is larger for the Inverse Hierarchy m1 ⇠ m2 > m3 :

|M|2 / |3
4
e�i2�m1 +

1

4
e�i2�0

m2 + s213e
�i2�m3|2

! m2

atm|3 + e�i2(�0��)|2

For this hierarchy, which corresponds to the green band in figure 6, either 0⌫2� is observed, or neutrino
masses are Dirac.

On the other hand, in the case of the Normal Hierarchy, ( m1 < m2 < m3), the contribution of
the atmospheric mass is suppressed by s2

13
:

|M|2 ! |3
4
e�i2�m1 +

1

4
e�i2�0

msol + (.15)2e�i3⇡matm|2

' m2

sol|
3m1

msol
+ e�i2(���0

)|2

so the rate is lower, and for m1 ⇠ m2/3 and suitably chosen Majorana phases, the matrix element can
vanish, despite that the neutrinos are Majorana. This case corresponds to the red region of figure 6.

8.4.1 A curious example of EFT

From an Effective Field Theory point of view, it may seem curious to set restrictive bounds on the
coefficient of of the dimension 5 operator K

⇤NP

¯̀H`cH , from upper bound on coefficients of dimension
9 or 11 operators such as

(ū�µPRd)(ū�µPRd)(¯̀H)(`cH) (q̄⌧i�
µPLq)(q̄⌧j�µPLq)(¯̀⌧iH)(`c⌧jH)

dim9 (ū�µPRd)(ū�µPRd)ee
c
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because New Physics is expected to appear in lower dimensional operators (those of higher dimension
would be suppressed by additional powers of 1/⇤NP ).

However, the naive expectation does not take into account the matching of the SMEFT onto a
QED⇥QCD invariant EFT at mW , where the Higgs gets a vev. Factors of GF and v can change operator
dimensions in this process, for instance the coefficient of the dimension 11 operator is only suppressed
by one power of ⇤NP :

⇠ K

v4⇤
(ū�µPRd)(ū�µPRd)(¯̀H)(`cH)

Furthermore, Avogadro’s number( ' 6⇥ 1023) is large, allowing a great sensitivity to rare decays
of otherwise stable particles: 0⌫2� may occur 10�16 times in the age of the Universe, but it still be
observed by watching a tonne of material for a year.

9 Mechanisms and models for small neutrino masses
This section outlines a few models involving heavy New Particles, that are renormalisable and can gener-
ate Majorana masses for the SM neutrinos at tree level. They are refered to as “seesaw models”, because
the light SM neutrino masses are obtained as the ratio of larger scales. These models are attractive
because they involve a minimal number of new particles and couplings.

There are three models that generate the Majorana mass operator

K

2⇤
[`H][`cH] ! ⌫⌫c

KhH0i2
2⇤

by tree-level exchange of at most one new particle per generation. The new particle can be an SU(2)
singlet fermion (the Type I seesaw [29]), an SU(2) triplet fermion(the Type III seesaw [32]), or a scalar
triplet (the Type II seesaw [30, 31]).

9.1 The Type I seesaw, one generation
Consider the type I seesaw [29] in one generation, where a singlet fermion NR, with all its allowed
renormalisable interactions, is added to the SM Lagrangian. It is allowed a Yukawa coupling with the
doublet lepton and the Higgs, and a Majorana mass, which is not bounded above by the weak scale
because the mass of N is not generated by the Higgs vev. The leptonic Lagrangian, written in terms of
chiral fermions, is then:

LY uk
lep = he(⌫L, eL)

✓
�H+

H0⇤

◆
eR + �(⌫L, eL)

✓
H0

H�

◆
NR +

M

2
N c

RNR + h.c.

meeLeR +mD⌫LNR +
M

2
N c

RNR + h.c.

where the second line gives the masses after the Higgs gets a vev. The neutrino mass matrix can be
written (in notation where ⌫cL ⌘ (⌫L)c)

�
⌫L N c

R

�  0 mD

mD M

�✓
⌫cL
NR

◆

Unlike a Dirac mass matrix, where different fields appear on either side, in this “Majorana” mass matrix,
the same chiral degrees of freedom appear on either side: to the left are all the chiral fermions in barred-
left-handed form, and to the right, the same fermions appear in unbarred right-handed form.

The eigenvectors/values are approximately ⌫L with m⌫ ⇠ m2
D

M and NR with mass ⇠ M .
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9.1.1 Factors of 2 in the seesaw

A Majorana mass m⌫ appears in the low-energy L as m⌫
2
⌫cL⌫L + h.c.. The previous section showed

that in the low-energy effective theory after electroweak symmetry breaking, the type-1 seesaw gives
m⌫ = m2

D/M . Here we want to check that the same result is obtained with the SU(2) invariant model
and operator.

The SU(2)-invariant Majorana mass operator is of dimension 5, and can be written

L � K

2⇤
(`cH)(`H) + h.c. =

K

2⇤
(`cn�

nNHN )(`m�
mMHM ) + h.c.

where n,m,N,M are SU(2) indices that run from 1 to 2. In the high energy SM, with dynamical Higgs,
this interaction has Feynman rule:

i
�4L

� ¯̀i�`cj�HI�HJ
= i

K

2⇤

�4L
� ¯̀i�HI�HJ

((`H)�jNHN + �jMHM (`H)) (25)

= i
K

2⇤

�4L
�HI�HJ

(�iN�jM + �jN�iM )HNHM

= �i
K

⇤
(�iI�jJ + �jI�iJ) (26)

Now to match this operator onto the seesaw model, in the seesaw model there is an s and a t channel

Fig. 7: Seesaw diagrams matching onto the Feynman rule for the one-generation neutrino mass operator, given in
eqn (26). i, j, I, J are SU(2) doublet indices that run over 1,2.

diagram, as illustrated in figure 7, so one obtains K
⇤

= �2

M in agreement with the result from diagonalising
the mass matrix.

9.2 The type I seesaw in three generations
Add 3 singlet NRs to the SM (the chiral projection subscript will be dropped in the following to stream-
line the notation). One can always choose to work in the mass eigenstate basis of the charged leptons
and NRs, where the Lagrangian can be written

L = LSM + �↵J`↵ ·HNJ � 1

2
NJMJN

c
J + h.c. (27)

The three generation type 1 seesaw adds 18 parameters to the Lagrangian: three (real) singlet masses, and
18 real parameters in the Yukawa matrix �, from which three phases can be removed by phase choices
on the doublets `↵.

In the presence of electroweak symmetry breaking, for M � mD = �v, the mass matrix for SM
neutrinos is

[m⌫ ] = �M�1�T v2 , v = hH0i .
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In the effective low-energy Lagrangian, where the SM neutrinos have this Majorana mass matrix, there
are nine new parameters in the Lagrangian: the three neutrino masses m1,m2,m3 , and the 3 angles and
3 phases of UMNS . There are therefore 9 free parameters of the high-scale model which are inaccessible
at low energy, so in a later section of these lectures, it will not come as a surprise that they can be chosen
to reproduce the Baryon Asymmetry of the Universe.

An attractive feature of the seesaw, is that one can easily obtain the observed neutrino masses for
reasonable choices of the singlet masses M and Yukawas �. For instance, if the neutrino Yukawa matrix
ressembles that of the up-type quarks, with � ⇠ ht, then m⌫ ⇠ .1 eV is obtained for M ⇠ 1015 GeV.
Or if one prefers an electroweak scale M ⇠ TeV, then � ⇠ 10�6 (⇠ the electron Yukawa coupling)
generates m⌫ ⇠ .1 eV.

However, a disadvantage of the type I seesaw, is that even if the singlets are kinematically ac-
cessible at the LHC, their only coupling to the SM is their Yukawa, which is small and suppresses the
production rate.

Another drawback of the non-supersymmetric seesaw is that the neutrino loop contributions to the
Higgs mass can be uncomfortably large. A one-loop diagram is illustrated in figure 8. The loop is finite

Fig. 8: Loop contribution to the Higgs mass in the seesaw model .

and calculable [33]:

�m2

H ' �
X

I

[�†�]II
8⇡2

M2

I ⇠ m⌫M3

I

8⇡2v4
v2 (28)

so for M >⇠ 107 GeV, this loop gives a larger contribution to the Higgs mass-squared than its observed
value. Of course, the Higgs mass sitting in the Lagrangian is unknown, so a cancellation is possible
but requires a “tuning” for which no justification is known. Alternatively, the loop contribution can be
cancelled by another loop contribution, as arises in, for instance, supersymmetric models.

9.3 A low-scale tree model detectable at the LHC: the inverse seesaw
The “inverse seesaw” [34] is a model that gives Majorana masses of the observed magnitude to the SM
neutrinos, and contains heavy singlets that could be found at the LHC. There are more new particles than
in the type 1 seesaw.

For each generation, add two gauge-singlet, chiral fermions N,S, which share a ⇠ TeV-scale
Dirac mass. In the one generation case:

L = LSM + �N` ·H �NMS � 1

2
SµSc (29)

where N is the usual “right-handed neutrino” who interacts with the SM doublet leptons via the Yukawa
coupling, and N and S share a TeV-scale Dirac mass M . Then a small (⇠ keV) Majorana mass µ is
added for S. In the limit µ = 0, lepton number conserved, and L=1 for `, N, Sc. However m⌫ = 0 in
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this limit, as can by writing the 1 generation mass matrix in Majorana form

�
⌫L N c S

�
2

4
0 mD 0
mD 0 M
0 M µ

3

5

0

@
⌫cL
N
Sc

1

A .

For µ = 0 the determinant vanishes, but S and N share a Dirac mass M , so ⌫L must be massless. For
µ 6= 0, the determinant is µm2

D, so for M > mD � µ, the three masses are M,M,m2

Dµ/M
2. It is

straightforward to check that for � ⇠ 0.1 , M ⇠ TeV, and µ ⇠ 0.1 keV, m⌫ ⇠ .1eV is obtained. So as
advertised, this model gives naturally small m⌫ , and singlets with TeV masses and with O(1) yukawa
couplings.

The three generation light neutrino mass matrix in this model:

[m⌫ ] = [�][M ]�1[µ][M ]�1[�]T v2 ⇠ .05 eV

(in square brackets are matrices) can be obtained diagrammatically from figure 9, where one distributes
the various mass insertions upstairs in the fraction if they are small, and downstairs if they are large.

Fig. 9: Diagram for the SM neutrino mass in the inverse seesaw model

10 Leptogenesis
Leptogenesis [1, 41] is a class of recipes, that use majorana neutrino mass models to generate the mat-
ter excess of the Universe. The model generates a lepton asymmetry (before the Electroweak Phase
Transition), and the non-perturbative SM B+L violation reprocesses it to a baryon excess.

10.1 The Matter Excess of the Universe
If you step out the door in the countryside at night, the sky is decorated with stars. Like us, they are all
made of matter, and the puzzle is to understand the origin of this excess of matter over anti-matter in our
Universe.

Stars are mostly made of Hydrogen, containing a proton(baryon) and an electron. So the matter
excess is equivalent to an excess of baryons over anti-baryons. Leptons are neglected in this discussion,
because (despite that every Hydrogen contains an electron), there should be a Cosmic Background of
Neutrinos whose density is far higher than that of electrons, which could contain a significant (and
difficult-to-observable) lepton asymmetry today.

We define the nucleons that we are made of to be baryons (as opposed to anti-baryons), then by
touching objects around us, we observe that they are also made of baryons (as opposed to anti-baryons)
because matter combined with anti-matter becomes a puff of photons. This argument can be extended
to the solar system (bathed in the solar wind), and to the scale of galaxy clusters, because if a cluster
of matter brushing against a cluster of anti-matter, photons would be produced by proton-antiproton
annihilation, and these are not observed in the cosmological spectrum. So we assume that all the Universe
we see is made of matter (dark matter, of course, can be matter-antimatter symmetric).
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The matter density of the Universe (⇠ 5% of the energy budget today) can be quantified [35] as

YB ⌘ nB � nB̄

s

����
0

= 3.86⇥ 10�9⌦Bh
2 ' (8.53± 0.11)⇥ 10�11

where s is the entropy density (conserved during most the Universe history) whose value today s0 is
about 7⇥ the number density of CMB photons, and nB, (nB̄) is the number density of (anti)baryons. So
in practise, there are 6 baryons for every 1010 photons in our Universe today.

A first question about the baryon asymmetry, is “where did it come from?”

1. For instance, maybe the Universe is matter-anti-matter symmetric, but composed of islands of
matter and anti-matter? The islands would need to be larger than galaxy clusters, in order to agree
with the photon background, and it appears more difficult to make a model that spatially separates
baryons from anti-baryons than to make a model that generates an asymmetry. So this idea is not
pursued.

2. Putting the baryon excess as an initial condition at the birth of the Universe does not work to well
either, because a period of inflation is required to explain the large-scale coherent temperature
fluctuations in the CMB. After “60 e-folds” of inflation, the volume of the Universe has grown
by ⇠ (1030)3, so any pre-existing density of baryons is decreased by ⇠ 10�90...and the energy
density that drives inflation usually appears as entropy after inflation, so it seems difficult to obtain
YB ⇠ 10�10 this way.

So it seems that the baryon asymmetry needs to be generated in the early Universe after inflation.

10.2 Required Ingredients
There are many recipes for making the baryon asymmetry, but they all share three required ingredients,
initially given by Sakharov [36] and sometimes called Sakharov conditions:

1. Baryon number violation : if the Universe starts in a state of nB � nB̄ = 0, then B� is required to
evolve to nB � nB̄ 6= 0.

2. C and CP violation : it is clear that particles need to behave differently from anti-particles. Other-
wise the particles would make a baryon asymmetry, the anti-particles would make an anti-baryon
asymmetry of the same magnitude, and no net asymmetry would be created.
C is maximally violated in the SM, and CP violation is present in the SM quarks, observed in
Kaons and Bs, and current neutrino oscillation data favours a non-zero phase in the leptonic mixing
matrix.

3. departure from thermal equilibrium: the generation of the baryon asymmetry is a dynamical pro-
cess, so cannot occur in thermal equilibrium, which is static. An alternate way to see this, is
that there are no asymmetries in un-conserved quantum numbers in equilibrium (and B is not
conserved, by condition 1).
In the standard cosmological model, departures from equilibrium can be obtained by interactions
that occur on timescales of order or longer than the age of the Universe, or at phase transitions.

10.2.1 B non-conservation in the SM

The second and third Sakharov conditions are realised in the Standard Model (of particle physics and
cosmology). And contrary to superficial expectations, it turns out that B+L violation is also present in
the SM, and rapid at temperatures above mW .

B and L are global symmetries of the SM Lagrangian, in which appear terms of the form

LSM � qD/ q , `D/ ` , `He , q eHu , qHd
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where q, ` are the quark and lepton SU(2) doublets, e, u, and d are the SU(2) singlets. So it is clear that
there are symmetries under phase rotations of all the leptons, or all the quarks, or equivalently, that all
the Feynman rules conserve B and L. This is reassuring, because the lower bound on the proton lifetime,
for decays such as p ! e+⇡0 is >⇠ 1033 years (to be compared with the age of the Universe >⇠ 1010 yrs).

Nonetheless, the SM does not conserve B + L. This is a consequence of the axial anomaly [37]
in QFT, which says that axial currents (containing a �5, which count the number of left minus right
fermions) which appear conserved at the classical level, are not conserved at one loop.

We are interested in B + L. This is not a pure axial current (left - right), but it is classically
conserved and has an axial component because the SM is a chiral theory. As a result of the anomaly, one
obtains for one generation(↵ is colour )

X

SU(2)
singlets

@µ( �µ ) + @µ(`�µ`) + @µ(q↵�µq↵) /
1

64⇡2
WA

µ⌫
fWµ⌫A.

where integrating the RHS over space-time counts the “winding number” of the SU(2) gauge field con-
figuration. As a result, W field configurations of non-zero winding number are sources of a doublet
lepton and three (for colour) doublet quarks for each generation (no singlets because they do not have
SU(2) interactions). These field configurations therefore change baryon and lepton number by three units
(one for each generation).

It is curious that this (non-perturbative) effect does not appear in the Feynman rules. Some intu-
ition for what is happening can be obtained in the Dirac sea picture of the fermion vacuum, illustrated in
the following figure(for which I think V Rubakov). At t ! �1, on the left of the figure, is a vacuum.
Then at t = 0, is a W field configuration of finite winding number — for each doublet field of the SM,
one of the negative energy states from the sea becomes a positive energy state.

E

t

Left!handed fermions

For baryogenesis, it is important to know the rate for this SM non-perturbative B+L violation. At
zero temperature, it is tunneling process (from a vaccuum with one winding number to the next), and
exponentially suppressed [38] � / e�8⇡/g2(this is usually negligeable). At finite temperature, 0 < T <
mW , the fields can climb over the barrier and the rate is only Boltzmann suppressed [39]: �B+L�� ⇠
e�mW /T , and finally most interestingly, �B+L�� ⇠ ↵5T for T > mW so SM B+L�� is “in equilibrium
(=fast) for mW < T < 1012 GeV. This SM B+L�� is sometimes called “sphalerons”, and in the presence
of a lepton asymmetry, they partially transform it to a baryon asymmetry.

10.2.2 Summary of preliminaries:

There are three required ingredients to generate the Baryon asymmetry of the Universe :B� , CP�� , and
TE�� . They are all present in the Standard Models of particle physics and cosmology, but to my knowledge
noone has succeeded7 to combine them so as to obtain a big enough asymmetry YB . So the baryon
asymmetry is usually taken to be evidence for New Physics from Beyond the Standard Model. However,

7The cold electroweak baryogenesis mechanism of Tranberg etal [40] is interesting.
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since there is only one number to fit, and NP models have many parameters, it is motivated to try to make
the baryon asymmetry in models that are introduced for some other reason... such as the type 1 seesaw,
which can fit the observed neutrino masses and mixings, and will be discussed next.

10.3 Leptogenesis in the type I seesaw
This section sketches how leptogenesis occurs in seesaw models with mediators of mass M >⇠,� TeV.
To be concrete, the type 1 seesaw is discussed ; the details are different in the type 2 and 3 seesaws, but
the general picture is similar.

The type one seesaw Lagrangian is given in eqn (27). Recall first that for � ⇠ 1, the singlets should
have masses <⇠ 1015 GeV. So here, suppose that the lightest singlet, N1, has a mass M1 ⇠ 109 GeV, and
that the reheat temperature of the Universe after inflation Treheat

>⇠ M1. Different mass spectra for the
singlets will be discussed afterwards. Recall also that the 3 generation type-1 seesaw has 18 parameters
in the high-scale Lagrangian, to be compared with the 3 masses, 3 mixing angles and 3 phases of the low-
energy majorana mass matrix for SM neutrinos. This implies that there are numerous parameters in the
high-energy Lagrangian that can be ajusted to obtain the correct baryon asymmetry, without observable
consequences. Leptogenesis in the type 1 seesaw (originally proposed by [41]) with heavy singlets is
therefore something of a fairy tale for physicists, and its as a fairy tale that it is presented here.

10.3.1 The Fairy Tale

Once upon a time, a Universe was born. So all the fairies came to the christening of the Universe...

... and gave to the Universe the Standard Model and the Seesaw (heavy sterile Nj with L� masses
and CP�� interactions).

The adventure begins after inflationary expansion of the Universe:

1. If its hot enough, a population of Ns appear(they like heat).
2. The temperature drops below M , and the N population decays away.
3. In the CP�� and L� interactions of the N , an asymmetry in SM leptons is created.
4. If this asymmetry can escape the big bad wolf of thermal equilibrium...
5. ...the lepton asym gets partially reprocessed to a baryon asymmetry by non-perturbative B + L

-violating SM processes (“sphalerons”).

And the Universe lived happily ever after, containing many photons. And for every 1010 photons,
there were 6 extra baryons (wrt anti-baryons).
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10.3.2 To calculate something?

There are a very large number of bayogenesis scenarios, and in some cases the state of the art in cal-
culating the dynamics is advanced (quantum field theory of oscillations at finite temperature in curved
space-time). The aim here is simpler: given a baryogenesis scenario at the “fairy tale” level, how does
one estimate whether it could work? For this, it is helpful to focus on the Sakharov conditions, calculate
a suppression factor for each Sakharov condition, then multiply them together to get YB:

nB � nB̄

s
⇠ 1

3g⇤
✏⌘ ⇠ 10�3✏⌘ (want 10�10) (30)

where the entropy density in the early Universe at temperature T is s ⇠ g⇤n� (g⇤ counts the number of
light modes, the definition can be found in table A.1 of [1]), ✏ is the lepton asymmetry generated in the
CP and L violating interactions, and ⌘ is some measure of the departure from thermal equilibrium.

As an illustration, we estimate ⌘ and ✏ for the fairy tale. Suppose at T >⇠ M1, an N1 density
⇠ T 3 is produced. Later, at the temperature drops below M1 the N1 population starts to decay away. We
assume that a lepton asymmetry is always generated in these decays; however, it can only survive if it is
not washed out by inverse decays H` ! N1. Or equivalently, the asymmetry can only survive after the
inverse decays go out of equilibrium

�ID(H`! N) ' �(N ! H`)e�M1/T =
[��†]11M1

8⇡
e�M1/T < H ⇠ 10T 2

mpl
(31)

where the out-of-equilibrium condition is that the rate is small compared to H, the expansion rate of the
Universe8.

Since the interactions of the Ns are in equilbrium, they should follow a thermal Boltzmann distri-
bution, so the fraction of N1 remaining at TID (=when the inverse decays turn off), is

nN

n�
(TID) ' e�M1/T↵ ' H

�(N ! `↵H)
⌘ ⌘ (32)

where H is the Hubble expansion rate ⇠ 10T 2/mpl. This is the density of N1 whose decays can con-
tribute to the baryon asymmetry of the Universe.

Now estimate ✏, the CP asymmetry in decays. The constraints from unitarity and CPT and gen-
eral results of about CP violation are clearly presented in the Appendix of [42]. Recall that the CP
transformation is defined, in the S-matrix as

CP : hH`|S|Ni ! hH`|S|Ni = hH`|S|Ni (33)
8equivalently, one can say that the interaction timescale is long compared to the age of the Universe

26

S. DAVIDSON

192



where overline means the CP-conjugate particle (anti-particle). N is its own anti-particle because it is
Majorana.

In leptogenesis, we are interested in the CP�� ,L� interactions of NI . In the fairy tale, we only
included decays, so consider the asymmetry:

✏↵1 =
�(N1 !H`↵)� �(N̄1! H̄ ¯̀

↵)

�(N1 ! H`) +�(N̄1 !H̄ ¯̀)
(recall N1 = N̄1) (34)

which represents the fraction of N1 decays producing excess leptons. It is labelled by lepton flavour,
because the flavour is relevant in detailed calculations, but from now on here, we sum on ↵ and drop the
↵ index.

Fig. 10: Tree⇥loop diagrams generating a CP asymmetry ✏ in the decay of the heavy singlet N1.

The asymmetry ✏1 can be calculated as the Imaginary part of the interference of tree ⇥ loop
diagrams illustrated in figure 10 [43]. The CP�� arises from complex coupling, and must be multiplied by
an imaginary part of the amplitude (sometimes refered to as a “strong phase”) arising from some particles
in the loop being on-shell. So in practise, it arises from the Imaginary part of the Feynman parameter
integration that one performs in evaluating a loop integral in dimensional regularisation. This is not very
intuitive, so lets try to estimate ✏ without doing a loop calculation. This is possible because some of the
loop particles need to be on-shell in order to give the strong phase.

The unitarity and CPT invariance of S-matrix elements can be used to calculate ✏ from tree ampli-
tudes. However, here we just estimate diagrammatically. Consider M1 ⌧ M2,3, so in the loop diagrams
contributing to ✏, the internal NJ can be replaced by the SM neutrino mass matrix [K]↵�

⇤
⌘ [m⌫ ]↵�

v2 . This
works because the momentum in the loop is of order M1 (so can be neglected compared to M2,3), and N1

on the internal line does not contribute because the coupling constant combination must be Imaginary.
Then can estimate

✏1 ⇠
1

16⇡2
�2K

�2⇤
M1 <

3

8⇡

mmax
⌫ M1

v2
⇠ 10�6

M1

109GeV

where in the first estimate, the 1/16⇡2 is for the loop (but for the Im part of the loop, one should really
take 1/8⇡), the |�|2 downstairs is because ✏ is normalised to �, and the mass factor M1 is to make the
dimensions work. The second inequality is a ⇠ in our approach here, it gives an idea of the magnitude of
✏, assuming that the phases cooperate. However, in a more careful derivation, the inequality is an upper
bound, which combined with eqn (30):

nB � nB̄

s
⇠ 10�3✏⌘ ⇠ 10�3

H
�
10�6

M1

109GeV

implies that one needs M1
>⇠ 109 GeV to get a sufficient asymmetry YB ⇠ 10�10 for hierarchical singlets

in the type 1 seesaw.
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10.3.3 Leptogenesis for M1 < 10
9

GeV?

Singlets with M >⇠ 109 GeV have some undesirable features: they are not kinematically accessible at
upcoming colliders, and overcontribute to the Higgs mass (see eqn 28). The contribution to the Higgs
mass can be cancelled by considering the SUSY seesaw, but in some low-scale (< 10 TeV) SUSY
models, gravitinos are over-produced in the early Universe if the reheat temperature is above ⇠ 105 GeV
(so heavy supersymmetric Ns may have troubles too). Fortunately it is simple to do leptogenesis with
TeV < MK < 107 GeV: for MI ⇠ MJ the second loop diagram of figure 10 resonantly enhances ✏,
allowing to reach ✏ <⇠ 1/8⇡.

In the leptogenesis scenario discussed here, where the asymmetry is produced in N decay, there is
a lower bound on the singlet mass from requiring that the asymmetry be produced before the Electroweak
Phase Transition (in order to profit from sphalerons):

�ID ⇠ e�M/T�(N ! �`) < H ) M >⇠ 10Tc

where Tc ⇠ 100 GeV is the critical temperature of the electroweak phase transition (a cross-over in the
SM). So in summary, the fairy tale can work for NI with MI

>⇠ TeV.
Leptogenesis can also work with lighter singlets (who decay after the electroweak phase transi-

tion), provided that the asymmetry is generated as the singlets are produced. The scenario outlined here
relies in oscillations among the singlets, so they must be sufficiently degenerate (mN2 ' mN3). This was
initially explored in [44], then revisited in the context of the ⌫M(inimal)SM — see for instance [45, 46].
Here is presented only a superficial summary.

The singlets N are “light” (suppose 1 GeV), so the Yukawas � are necessarily small: � ⇠q
m⌫⇤GeV

v2
<⇠ 10�7. The N2, N3 start being produced at temperatures T <⇠ TeV, via their Yukawa in-

teractions. Then they oscillate, among themselves and can transform back to doublet leptons via the
Yukawa interactions. These three processes occur coherently, so CP violation in ��M2�T generates
lepton flavour asymmetries in the ⌫L↵ (Notice that lepton number in `L + NR, defined as L|SM + he-
licity of N , is conserved in these processes.). The sphalerons only see the lepton number in the SM
doublets, and partially transform it to a baryon asymmetry. From the time oscillations start, until the
sphalerons turn off at the electroweak phase transition, the asymmetries in the ⌫L↵ seed asymmetries
in the N which give larger asymmetries in the ⌫L↵. Recent calculations (see e.g. [47]) show that a
sufficiently large baryon asymmetry can be obtained.

11 The End
Most of the students at the school work at hadron colliders, where neutrinos are missing energy. However,
neutrino physics might by interesting for two reasons: the observed neutrino masses are evidence for
Beyond-the Standard Model Physics (and its encouraging to know that BSM exists somewhere, despite
being shy at the LHC), and secondly, the Standard Model neutrino lives in an SU(2) doublet, so there
should be BSM physics involving charged leptons — we just need to find it.
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12 Appendix: To convert from 4- to 2-component fermion notation
A 4-component fermion  D can be written as two chiral 2-comp fermions (LeftHanded = �, and
RightHanded = ⌘̄):

 D =

✓
�↵

⌘̄�̄

◆

where usual dotted indices of the right-handed fermion are here written barred. The 2-comp indices ↵
and �̄ run from 1..2, and are contracted with the anti-symmetric epsilon tensor

"↵̄�̄ = "↵� =

✓
0 1
�1 0

◆
, "↵̄�̄ = "↵� = �"↵�

Notice the sign flip in going from dotted to undotted indices.
Undotted indices are always contracted up-down:

�⇢ = �↵⇢↵ = "↵���⇢↵ = �⇢↵�↵ = ⇢↵�↵

and dotted indices down-up, and the " flips sign in getting bars (sign flip because of up-down vs down-up
summing conventions: ⇢̄�̄ = ⇢̄↵̄"↵̄�̄ , but ⇢̄�̄ = (⇢�)⇤ = (⇢↵"�↵)⇤. This perverse set of conventions is
so that one can copy Wess+Bagger(W+B) 2-component spinor results, and also Peskin and Schroeder.
W+B define

(⌘⇢)⇤ = (⌘⇢)† = ("↵�⌘↵⇢�)
⇤ = (�"↵̄�̄)⇢̄�̄ ⌘̄↵̄

= ⇢̄↵̄⌘̄
↵̄

So, eg

 ̄D =
�
�̄↵̄⌘�

�✓ 0 �↵̄⇢̄
�!� 0

◆
=
�
⌘! �̄⇢̄

�
(35)

In practice, there is a -ve sign from interchanging fermion fields in an operator, but not when you take cc
of the op.
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