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Abstract
A lecture on Higgs boson physics to highlight why it is necessary and how it
looks like. I review the Standard Model and why a small electroweak scale
is our strongest indication for an extended Higgs sector, that can be searched
for by a precise study of Higgs properties. To this goal, I discuss effective
field theories and how they capture the most relevant effects in large classes of
scenarios beyond the Standard Model.
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1 Motivation
1964-1967: A quantum field theoretical (QFT) description of the electroweak (EW) interactions is de-
veloped; among a handful of models that can give mass to the W± and Z bosons, one stands out for
its predictiveness, simplicity and for seemingly getting as close as possible to a fundamental theory:
the Standard Model (SM) of particle physics [1–3]. Its most distinctive prediction is the existence of a
resonance, the Higgs boson, whose properties are uniquely fixed by parameters that are already known,
except for one, the Higgs boson mass mh.
2009-2012: the Large Hadron Collider (LHC) is built to collide protons up to 14 TeV energies, and
to search explicitly for the Higgs boson, or any alternative source for the EW masses. A discovery is
guaranteed by theoretical inconsistency of the EW massive theory above ⇡ 3 TeV. And is indeed made
on July 4, 2012 [4,5]. The last parameter of the SM is now measured, mh = 125.09 [6]. With this mass,
the Higgs boson properties are just right for a rich experimental program to be carried out, as Higgs
decays in a rather equilibrated way to all SM particles. With this mass, we can compute the quantum
lifetime of our universe, and find that it is just right to last 13.7 billion years [7].

The most relevant aspect of the Higgs discovery, however, is that it constitutes the last brick of
the SM, and this brick is just right, that the theory has in principle a very large range of validity. For
this reason, the Higgs discovery interrupts an important trend in particle physics, where well-established
fundamental principles were pointing the finger towards guaranteed discoveries.

In these lecture notes I will try to give a feeling of physics before the SM, in the SM, and Beyond
the SM, to appreciate the necessity for a Higgs boson, but also its limitations. I think they provide a nice
little story to understand why we are interested in studying Higgs physics, and how we are going to do
so at the LHC and future colliders. Hundreds of relevant references will be omitted, sorry, and loads
of interesting physics will not even be mentioned, sorry - see for instance the complementary reviews
Refs. [8–11].

The notes as organized as follows. The QFT of massless and massive spin-1 states, and the neces-
sity for a Higgs mechanism is reviewed in section 2, leading to the SM in section 3. The reader familiar
with the SM and interested in the most modern aspects of Higgs physics, relevant for colliders, can skip
to section 4, were I discuss the motivations why the SM might not be the end of the story. This section
includes a discussion of Effective Field Theories (EFTs) relevant for Higgs physics, ranging from practi-
cal aspects relevant for global fits in SM precision tests, to power-counting rules to identify what are the
relevant high-energy features that we can test in low-energy experiments.
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2 bSM - before the Standard Model
To appreciate the importance of the Higgs mechanism, and of its SM realization, I must first discuss how
the SM looks like without a Higgs boson. In particular I want to discuss the difficulties of providing a
QFT description of the massless and massive spin-1 states/resonances observed in Nature: the photon �
and W, Z bosons respectively.

2.1 Gauge Invariance – 4 Legs Good, 2 Legs Better
The observation that physics is invariant under the Poincaré symmetry P = R4nSO(1, 3) of translations,
rotations and boosts, shapes most of our understanding of nature [12]. We realize this symmetry by
building objects with well-defined transformation properties and combine them in an invariant way. An
important mismatch strikes us at the very start of this program. Physical states |pi = a†(~p)|0i at finite
momentum ~p and spin s, and their scattering amplitudes, transform accordingly to the Little group, the
subgroup of Lorentz that leaves the momentum of a particle unchanged (we can think of the momentum
as spontaneously breaking the Lorentz group SO(1, 3), the Little group is what is left). On the other
hand, the fields �{µ}(x) appearing in the Lagrangian in position space, and Feynman diagrams, appear
in full representations of SO(1, 3) (denoted here with generic indices {µ}). The two are however related,

�{µ}(x) =
X

s

Z
d3p ✏{µ}(x; ~p, s)a(~p, s) , (1)

with ✏{µ}(x; ~p, s) the polarization vectors, that define how representations of Lorentz break into repre-
sentations of the Little group LG ⇢ SO(1, 3). For ⇤µ

⌫ 2 SO(1, 3),

�{µ}(x) ! D(⇤�1)�{µ}(⇤x) a(~p, s) !
X
s0

U j
s,s0(⇤

Little)a(⇤~p, s), (2)

where D(⇤) and U(⇤Little) are representations of the full and Little Lorentz group respectively, that
typically differ from one another.

Massive vectors. In this case, the Little group is the group of rotations SO(3). Its representations are
well known and classified according to their dimension 2j + 1, where j is half-integer and refers to the
spin of the particle annihilated by a(~p, s) (and it bounds the sum in Eq. (2) into s, s0  j). The spin-1
representation, in which we are interested to describe W and Z bosons, is 3-dimensional, corresponding
in practice to the two transverse and one longitudinal polarizations of massive vectors.

The smallest full representation of SO(1, 3) that can accommodate these 3 states, is the vector
field �{µ} = V µ, with D(⇤) = ⇤µ

⌫ , that can source 4 degrees of freedom. The remaining one, 4 = 3�1
under SO(1, 3) ! SO(3), corresponds to a j = 1 state and has a polarization ✏µ(p) / pµ in Eq. (1).
This is equivalent to the state sourced by the derivative of a scalar �{µ}(x) = @µ�(x) and it does not
interest us in the description of spin-1 states. Luckily, it is easy to eliminate it: on the physical states,
pµ✏µ(p) = 0 singles out the spin-1 polarizations (for the scalar pµ✏µ(p) / pµpµ = m2 6= 0), which is
equivalent to,

h phys0 |@µV µ| physi = 0 (3)

on physical states, that separates the Hilbert space into two disjoint parts.
The most general Lagrangian (up to dimension-4 and bilinear in V µ – so as to describe a free field)

compatible with the Lorentz transformation of V µ, can be written as

L = � 1

4g2
Fµ⌫F

µ⌫ � ⇠

2
(@µV µ)2 � v2

2
VµV µ, (4)
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where we have defined Fµ⌫ ⌘ @µV⌫ � @⌫Vµ and introduced generic parameters g, v, ⇠. Clearly Eq. (4)
describes four dynamical degrees of freedom, since it contains the time derivative of all 4 components of
V µ. If we call � = @µV µ, the equations of motion for V µ read

� ⇠@⌫� � v2V ⌫ = @µFµ⌫/g2 )@⌫ �⇠2� � v2� = 0 , (5)

where in the second equation we have exploited the fact that Fµ⌫ is antisymmetric1 Eq. (5) is interesting
because it shows that the fields � is not sourced by the other components of the vector field, it is a free
field. For this reason it is consistent to have it vanish at all times, Eq. (3). In fact, the (Proca) Lagrangian

L = � 1

4g2
Fµ⌫F

µ⌫ � v2

2
VµV µ , (6)

automatically provides this condition Eq. (3) as a consequence of the equations of motion (Eq. (5) with
⇠ = 0), and can be thought as the correct Lagrangian to describe the dynamics of one massive vector
with m = vg.

Massless vectors. For massless particles the little group is ISO(2), the isometries of a 2-dimensional
plane, and its representations are 2-dimensional2 and labelled by the helicity of the state: a spin-1 state
has 2 degrees of freedom.

The problem is that in this peculiar case, it is not possible to find polarization vectors ✏µ(x, ~p),
such that the left-hand and the right hand side of Eq. (1) have the right transformation properties: no
4-vector field can be constructed with annihilation/creation operators of a spin-1 massless particle [12].
If one tries to force so, the resulting monster will do the following under a Lorentz transformation:

Vµ(x) ! ⇤⌫
µV⌫(⇤x) + @µ⌦(x, ⇤), (7)

for a function ⌦(x, ⇤). This second piece in the transformation law for Vµ clearly differentiates it from
a Lorentz vector, but its peculiar form suggests that, if a theory can be defined modulo transformations
of the type

Vµ(x) ! Vµ(x) + @µ↵(x) (8)

for any function ↵(x), then Eq. (7) might be concealed with the correct Lorentz transformation for a
4-vector. This is called gauge invariance/redundancy and plays a central rôle in our understanding of
the fundamental interactions: it is an inevitable consequence of Lorentz invariance and the existence of
massless spin-1 states (in this sense, symmetries are a consequence of dynamics, rather than the opposite)
and leads to a unique Lagrangian,

L = � 1

4g2
Fµ⌫F

µ⌫ . (9)

In fact, this symmetry also accounts for the disappearance of the one degree of freedom w.r.t. the massive
case. This type of symmetry is perhaps better referred to as a redundancy, since it characterizes a situation
in which different mathematical descriptions correspond to the same physical system. In fact, there is
even so much of this redundancy (since ↵(x) is a complete set of functions) that an entire degree of
freedom becomes unphysical.

In summary, a massless spin-1 state has 2 degrees of freedom, and its description in terms of a
quantum field requires the introduction of gauge invariance. A massive spin-1 state has instead 3 degrees
of freedom and gauge invariance is not apparently manifest; its description in terms of a quantum 4-vector
Lorentz field requires the additional Lorentz covariant condition Eq. (3).

1This argument is not modified if Vµ couples to a conserved current gV µJµ in Eq. (4), since this cancels Eq. (5) because
@⌫J⌫ = 0.

2The representations are in fact 1-dimensional, but since parity interchanges helicity h ! �h, a manifestly parity preserving
description must include multiplets with states of opposite helicity (for h = 0 this is trivially satisfied and the representation is
in fact 1-dimensional)
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2.2 The Higgs Mechanism: 4 + 1 � 2 = 3

There is an interesting way of writing the Lagrangian for a massive spin-1 field, that is surprisingly
equivalent to Eq. (6), but it involves an additional degree of freedom, in the form of a scalar U(x) =
exp i�(x), and the Lagrangian

L = � 1

4g2
Fµ⌫F

µ⌫ +
v2

2
(DµU)2 = � 1

4g2
Fµ⌫F

µ⌫ � v2

2
(@µ� � Vµ)2 (10)

where Dµ = @µ � iVµ. This is, in fact, invariant under the symmetry

U(x) ! ei↵(x)U(x) �(x) ! �(x) + ↵(x) Vµ(x) ! Vµ(x) � @µ↵(x) (11)

which includes the gauge invariance Eq. (8) for vector fields, and extends it to the scalar field. The the-
ory described by Eq. (10) must therefore describe 4 � 2 + 1 = 3 degrees of freedom (gauge invariance
removing two degrees of freedom from a 4-vector, and the scalar adds one), equivalently to Eq. (6). That
it is equivalent can also be understood by exploiting the gauge invariance and perform a transformation
Eq. (11) on Eq. (10) with ↵ = �: this results in Eq. (6). This equivalence allows us to compare the the-
ories for massive and massless vectors on an equal footing, both of them being based on intrinsic gauge
invariance, and differing by the addition of a scalar degree of freedom, with the appropriate transforma-
tion properties. This is the essence of the Higgs mechanism and, in this form, provides a description
of individual massive vectors, associated with Abelian gauge symmetries (such as in massive Quantum
Electrodynamics – QED). In particular, the theory described by Eq. (6) or Eq. (10), and their extension
to couplings with fermions based on gauge symmetry, can be extrapolated to arbitrary high energy.

Non-Abelian symmetries. We are interested however in providing a description of Nature and of the
W±, Z bosons, whose gauge symmetry SU(2)L is in fact non-abelian. This can be described in a
generalization of Eq. (10),

L = � 1

4g2
tr [Fµ⌫F

µ⌫ ] +
(v + ah)2

2
tr [DµU †DµU ] (12)

where now Fµ⌫ = @µV⌫ � @⌫Vµ � i[Vµ, V⌫ ] for Vµ = V i
µ�i, �i the Pauli matrices, and

U = ei�i�i
(13)

for three scalars �a, so that the Lagrangian is invariant under gL 2 SU(2)L

U ! gLU , Vµ ! gLVµg†
L � ig†

L@µgL . (14)

Notice that I’ve included an additional scalar h in Eq. (12), whose importance will become clear later,
but for the moment we can take a = 0. Contrary to the abelian case of Eq. (10), that is basically a
free theory, Eq. (12) has self-interactions, that contribute for instance to the 2 ! 2 scattering between
four spin-1 states. In this process, a surprising feature appears in the particular channel involving their
longitudinal polarization. As shown in the left panel of Fig. 1, this theory predicts an uncontrolled rise
with energy in the scattering probability in this channel. In fact, for

E & ⇤cut =
4⇡vp
|1 � a|

(15)

the theory doesn’t make sense anymore as a Lagrangian weakly coupled description of this scattering
process (the amplitude calculated with this theory would appear to violate unitarity).

Why does the amplitude grow? Scalar fields that appear in the Lagrangian through the exponential
representation Eq. (13) (the non-linear sigma-model), are in fact very special in Nature: their interactions

4
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Fig. 1: Taken from [13]. Cross sections (in nanobarns) �(VLVL ! VLVL) for the longitudinal polarization of
vectors in the SM, V = W±, Z. The LEFT panel shows the energy-growth in the absence of a Higgs boson, while
the RIGHT panel includes a Higgs bosons with mh = 120 GeV.

are always associated with derivatives, and this leads to the rapid energy growth observed above. In fact,
fields like these are Nambu-Goldstone bosons of spontaneously broken symmetries, and they always
correspond to the low energy manifestation of a more complicated microscopic theory. This is were
the unphysical behavior of Fig. 1 is bringing us: at high energy the theory of massive vectors does not
describe Nature.

a=0 – Pions. A familiar example where we find the necessary scalar Eq. (13), is the pion Lagrangian from
quantum chromodynamics (QCD). Here, for small mu,d, QCD is almost invariant under the symmetry
G = SU(2)L ⇥ SU(2)R, independently acting on the left- and right-handed up and down quark doublet

 L,R ⌘
✓

u
d

◆
L,R

. (16)

At low energy the quarks are no longer the relevant degrees of freedom, they condense at E ⇠ ⇤QCD

and define a new QCD vacuum, so that, at low energy, only the symmetry SU(2)L = SU(2)R ⌘
SU(2)V = H survives, while independent LR transformations are spontaneously broken. Goldstone
theorem predicts three associated Nambu Goldstone bosons (NGB) corresponding to the pions ⇡a, which
are the relevant degrees of freedom at low energy, as opposed to the quarks being the appropriate degrees
of freedom at high-energy. These NGBs span the coset manifold G/H, which can be parametrized by
U = exp i⇡a�a, transforming as U ! gLUgR. This is equivalent to Eq. (13), since the quark global
SU(2)L corresponds indeed to the gauged weak interactions, while U(1)Y can be identified with a
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subgroup of SU(2)R. So, QCD gives mass to the EW bosons: at E . ⇤QCD Eq. (12) (with a = 0)
describes massive W, Z bosons, while at E & ⇤QCD they appear massless, and the anomalous behavior
of Fig. 1 is not realized. Eq. (12) is an effective field theory (EFT) with a finite range of validity. The
problem with QCD is that v in Eq. (12) is not a free parameter, but determines also other pion interactions
and has been measured v = f⇡ ⇡ 130 MeV, so that mW± = g f

2 ⇡ 40 MeV...
This is clearly not what we observe in Nature, but this example remains illustrative as it provides

an important proof of principle, that led the physics community to speculate on the existence of a new
strong interaction, called Technicolor [14, 15], with new (techni)quarks in addition to the SM ones, such
that the magic of QCD is repeated at a higher scale

v = fTC = 246GeV (17)

thus reproducing the correct mass spectrum for the EW gauge bosons.

a=1 – Higgs. Recall that in Eq. (12) I’ve included the interaction with an additional real scalar h (with
assumed canonical kinetic term). The reason for doing so is that it is easy to see that this gives an
additional contribution to the amplitude for VLVL scattering, that at thigh-energy has the opposite sign
compared to the a = 0 one, and leads to Eq. (15). For a = 1, the high-energy behavior cancels and
Eq. (12) goes from an EFT with a small cutoff to a theory that in principle has an arbitrarily large range
of validity ⇤cut ! 1.

The reason is the following. For a = 1 we can write

(v + h)U ⌘ ⌃ = ( eH, H) , ) (v + h)2

2
tr [DµU †DµU ] = |DµH|2 (18)

where we have rewritten the fields using a different parametrization,

H = exp(i⇡a�a/�)

✓
0
�

◆
= U

✓
0
�

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (19)

and eH = ✏H† (✏ the antisymmetric tensor). This map works only when |H| ⌘ � 6= 0, and is singular in
� = 0. The important aspect is that now H transforms as a fundamental representation 2 of SU(2)L and
his own Lagrangian at dimension  4 is simply

LH = @µH†@µH � V (H) , V (H) = �m2
H |H|2 + �|H|4 , (20)

which describes four real scalars with non-pathological self interactions, whose scattering amplitudes are
well-behaved also at high-energy. This has to be contrasted with the Lagrangian for U only, v2tr [@µU@µU ]/2
that has instead a cutoff at 4⇡v.

In some sense, we have found a different UV completion for our effective Lagrangian Eq. (12),
that simply involves an additional scalar � = v + h, that however renders the amplitude physical, thanks
to its contribution to scattering processes. This is illustrated in the right panel of figure 1. Now, what
guarantees |H| 6= 0 everywhere so that the field H has a vacuum expectation value h0|H†H|0i 6= 0?
This is revealed from the H potential V (H) in Eq. (20). Notice that this is independent of the NGBs,
which cancel in |H|2; this is why they are massless NGBs, because they don’t appear in the potential.
Then we see that for positive m2 > 0 and positive � > 0 the potential has a minimum at

h�i ⌘ v =

p
m2

�
(21)

and this is the average value of the field everywhere in spacetime. Because of this value, the low-
energy Lagrangian has SU(2)L ⇥ U(1)Y symmetry realized non-linearly: we say that EW symmetry is
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SM Fields SU(3)C , SU(2)L, U(1)Y

spin-0 Higgs H ( 1, 2 , �1
2)

spin-1/2

Quarks QL = (uL dL) ( 3, 2 , 1
6)

(⇥3 families) u†
R ( 3, 1, �2

3)

d†
R ( 3, 1, 1

3)
Leptons LL = (⌫ eL) ( 1, 2 , �1

2)

(⇥3 families) e†
R ( 1, 1, 1)

spin-1
Gluon g ( 8, 1 , 0)

W bosons W± W 0 ( 1, 3 , 0)
B boson B0 ( 1, 1 , 0)

Table 1: The SM field content and quantum numbers.

spontaneously broken (EWSB). Now field excitations have to be considered around this minimum, and
we see that �� ⌘ h has mass

m2
h = �v2 . (22)

So, this theory gives the 3 massive vectors and one massive scalar, a prediction summarized by Higgs
in his original article [2], as the prediction of incomplete multiplets of scalar and vector bosons, which
granted him and Englert [3] the Nobel prize in 2013.

In this introduction to the Higgs mechanism, I have tried to give a feeling for the necessity of
gauge invariance and the Higgs mechanism, and then exposed to examples of the latter. We do not know
yet with certitude how the EW symmetry breaking sector looks like, although we already know that it
is not of the form of a purely technicolor interaction. Indeed, in 2012, an incomplete multiplet – called
the Higgs boson – has been discovered at the LHC, suggesting that a field in the linear representation of
the EW group provides an appropriate description of nature, at least in the regime of energy tested at the
LHC so far.

3 The Standard Model
In a seminal article, Weinberg [1] proposed a model in which fermions and vectors interact with the Higgs
field H . He pointed out the well-behaved high-energy limit of amplitudes, saying that this model may be
renormalizable: this is now the definition of the Standard Model of particle physics. The field content
includes gauge bosons V = G, W, B associated with the SM gauge symmetry SU(3)⇥SU(2)L⇥U(1)Y ,
matter fermions  = Q, u, d, L, e, and of course the Higgs field. The quantum numbers are reported in
table 1, while their dynamics is described by a very simple Lagrangian which, at least at first sight,
appears to plausibly describe the behavior of elementary particles:

LSM =
X
 

i ̄6D + h.c. �
X
V

1

4
Vµ⌫V

µ⌫ + |DµH|2 � V (H) + yD,L
ij H ̄i j + yU

ijH̃ ̄i j , (23)

where Dµ = (@µ + ig0Y Bµ + igW a
µ�

a + igsGa
µ�

a). Notice that Left- and Right-handed fermion
have different quantum numbers (they are referred to as chiral), implying that a standard mass term
m( ̄L R +  ̄R L) would not respect gauge symmetry. In this sense, the Higgs field becomes necessary
also to provide a mass to the fermions: indeed  ̄LH R is a gauge singlet, and induces a fermion mass
after EWSB, � ! h + v.

3.1 Accidental and Approximate Symmetries
The SM Lagrangian Eq. (23) consists of only relevant and marginal operators (that is, operators with
dimension D  4). This is its defining feature, that allows it to be a valid theory over many orders of
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magnitude in distance (in principle) and also that makes it such a predictive theory. Indeed, the limited
number of interactions Eq. (23) implies many relations and structures that can be tested. An interesting
way of keeping track of these relations, and to understand to what extent these relations are solid, is to
identify the symmetries of the SM Lagrangian (some of which might be only approximate).

The SM Lagrangian Eq. (23) is invariant under a U(1)B symmetry, called Baryon symmetry or
Baryon number, that acts on quarks and anti-quarks with opposite charge, as well as three U(1)Li global
symmetries that act on the three families of leptons, called lepton numbers. These symmetries are ac-
cidental, in the sense that they follow from the fact that only interactions of dimension  4 appear in
Eq. (23), but they are exact. Indeed an operator of dimension-5, LHHL, called Weinberg operator, vi-
olates the lepton numbers (and gives mass to neutrinos), while at dimension-6, there are operators that
violate baryon number. These symmetries imply important predictions in the SM: the absence of proton
decay and vanishing neutrino masses.

Many other relations, especially in the context of Higgs physics, can instead be understood in terms
of custodial symmetry SU(2)c. This is an accidental and approximate symmetry of the Lagrangian.
Custodial symmetry is best understood by writing the Higgs field as the 2⇥2 matrix ⌃ in Eq. (18). Now,
⌃ transforms as ⌃ ! gL⌃ under gL 2 SU(2)L, but we can conceive an extended (global) transformation
⌃ ! ⌃ ! gL⌃gR for gL,R 2 SU(2)L,R. For g0 ! 0 and vanishing Yukawas, the SM Lagrangian
involving the Higgs field can be written as

L⌃
SM = tr (Dµ⌃†Dµ⌃) � V (|⌃|) (24)

and respects this symmetry. The Higgs vev h⌃i = diag(v, v) breaks it spontaneously to the diagonal
subgroup SU(2)c = SU(2)L = SU(2)R. This is called custodial symmetry because it implies that the
mass of the W and Z bosons be identical. We can now keep track of the parameters that do not respect
this symmetry by attributing them spurious transformation properties [16]

g0 ⇠ (1L,3R) Y U ⇠ (1L,2R) . (25)

This can help to keep track of the size of certain effects in the SM. For instance, the W boson mass
matrix mab

W W aW b reduces into 3 ⌦ 3 = 1 � 3 � 5, and the Z/W mass difference m2
Z � m2

W± =
(m2

W )33 � (m2
W )11, can only appear in the 5 of SU(2)L = SU(2)R = SU(2)c. Using Eq. (25) we can

see that, in the SM, we can have effects m2
Z � m2

W± / (g0)2. Indeed, at tree-level,3

m2
Z

m2
W

= 1 +
g02

g2
(27)

This is particularly important for BSM physics, where custodial symmetry is no longer accidental and
the ratio Eq. (27) can be modified.

3.2 Higgs Physics in the SM
Other accidental relations that characterize the SM cannot be attributed directly to symmetries, yet they
can be considered on the same footing as defining features of the SM.

3At loop-level, effects involving the top-Yukawa become manifest. Our power-counting suggests that these / (Y t)4, but
the explicit computation gives, for mt � mb,

�
m2

Z

m2
W

= �3
2

(Y t)2

16⇡2
cos2 ✓w . (26)

This is due to the fact that this contribution is related to an IR effect, regulated by m2
t in the propagator, that removes two

powers of Yt from our power-counting. In other words, Yt cannot be considered a small spurion compatibly with the mt � mb

assumption: in the limit Yt ! 0, the approximated expression Eq. (26) actually becomes infinite, but an exact computation
with mb, mt ! 0 would show the expected behaviour.
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The classical Lagrangian Eq. (23) can be expanded as � ! h + v, and the Goldstone bosons can
be absorbed through an SU(2)L transoformation (unitary gauge).

|DµH|2 � (m2
W W+

µ W�µ +
1

2
m2

ZZµZµ)

✓
1 + 2

h

v
+

h2

v2

◆
(28)

V (H) � �1

2
m2

hh2

✓
1 + 2

h

v
+

h2

v2

◆
(29)

H ̄i � m  ̄i (1 +
h

v
) , (30)

where mW = gv/2, mZ = mW / cos ✓W (cos ✓W = g/
p

g2 + g02), mh = �v/2 and m = yv/2 in
terms of the Lagrangian parameters. Interestingly, once the masses of the SM particles are measured,
Eqs. (28-30) fix uniquely their coupling to physical Higgs bosons, in such a way that it is proportional to
their mass. The fact that h interactions are naturally aligned with the fermion masses plays a crucial rôle
for the phenomenology of the SM, forbidding to very high accuracy Flavor Changing Neutral Currents
(FCNCs).

Fig. 2: Tree-level Higgs couplings in the SM.

The SM is a renormalizable theory. In practice this means that infinite quantum effects must be
unobservable, as they cancel against infinite Lagrangian counter-terms and relate to input (measured)
parameters of the theory. On the contrary, finite quantum effects are physical and observable: these
constitute a robust prediction of the theory and an important test of its structure. For instance, quantum

2.3 Loop induced decays into ��, �Z and gg

Since gluons and photons are massless particles, they do not couple to the Higgs boson

directly. Nevertheless, the Hgg and H�� vertices, as well as the HZ� coupling, can be

generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. The H�� and HZ� couplings are mediated by W boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.

For fermions, only the heavy top quark and, to a lesser extent, the bottom quark contribute

substantially for Higgs boson masses MH >⇠ 100 GeV.
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Figure 2.14: Loop induced Higgs boson decays into a) two photons (Z�) and b) two gluons.

For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ⇠ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

In this section, we first analyze the decays widths both at leading order (LO) and then

including the next–to–leading order (NLO) QCD corrections. The discussion of the LO

electroweak corrections and the higher–order QCD corrections will be postponed to the next

section.

88

1.2.2 The electroweak radiative corrections

The electroweak radiative corrections can be cast into three main categories; Fig. 1.4:

a) The fermionic corrections to the gauge boson self–energies. They can be divided them-

selves into the light fermion f 6= t contributions and the contribution of the heavy

top quark f = t. For the contributions of quarks, one has to include the important

corrections stemming from strong interactions.

b) The contributions of the Higgs particle to the W and Z boson self–energies both at

the one–loop level and at the two–level when e.g. the heavy top quark is involved.

c) Vertex corrections to the Z decays into fermions, in particular into bb̄ pairs, and vertex

plus box contributions to muon decay [in which the bosonic contribution is not gauge

invariant by itself and should be combined with the self–energy corrections]. There are

also direct box corrections, but their contribution at the Z–peak is negligible.
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Figure 1.4: Generic Feynman diagrams for the main electroweak radiative corrections: a)

fermionic contributions to the two–point functions of the V = W/Z bosons, b) Higgs boson

contributions to the two–point functions and c) vertex and box corrections.

The contribution of the light fermions to the vector boson self–energies can be essentially

mapped into the running of the QED coupling constant which, as discussed in the previous

section, is defined as the di�erence between the vacuum polarization function of the photon

evaluated at low energies and at the scale MZ , ��(M2
Z) = ���(0) � ���(M2

Z) = 0.0590 ±
0.00036. Therefore, the only remaining fermionic contribution to the two–point functions is

the one due to the top quark on which, besides the e�ects of the Higgs boson, we will mainly

concentrate by studying three important quantities, ��, �r and the Zbb̄ vertex.

35

Fig. 3: Some loop effects involving the Higgs in the SM.

effects imply small (finite) departures of the tree-level relations in Fig. 2, that can be ignored for the
purpose of this review. They are however important when they are associated with effects that are not
present at tree level. I will discuss the most important here, though keep in mind that experiments can
be designed to be sensitive also to other effects that I am here neglecting. First of all, the Higgs doesn’t
couple to photons, to gluons, nor to Z� at tree-level; all these are generated by loop effects, some of
which are reported in Fig. 3. The exact expressions can be found e.g. in [11]; what matters to us is
that the resulting expressions are completely determined by the tree-level couplings Eqs. (28-30) and
are therefore a prediction of the SM. For these reason, knowledge of the SM particle masses gives us
a concrete prediction on the physics of the Higgs boson, as shown in Fig. 4 that shows the different
branching ratios for Higgs decays in the SM, for different values of mh (computed before the discovery
of the Higgs boson).

It is interesting to point out that loop effects allowed to test the physics of the Higgs boson, even
before its discovery. Indeed, the last diagram of Fig. 3 shows a loop effect that contributes a finite amount
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to processes involving a Z or a W boson. Since H propagate in the loop, these effects are / log mh.
Precise measurements of the Z-boson properties at LEP [17], allowed therefore to extract the information
of the RH side of Fig. 4, mh = 94+29

�24 GeV.
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generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. The H�� and HZ� couplings are mediated by W boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.
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For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ⇠ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

In this section, we first analyze the decays widths both at leading order (LO) and then

including the next–to–leading order (NLO) QCD corrections. The discussion of the LO

electroweak corrections and the higher–order QCD corrections will be postponed to the next

section.
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top quark f = t. For the contributions of quarks, one has to include the important

corrections stemming from strong interactions.

b) The contributions of the Higgs particle to the W and Z boson self–energies both at

the one–loop level and at the two–level when e.g. the heavy top quark is involved.

c) Vertex corrections to the Z decays into fermions, in particular into bb̄ pairs, and vertex

plus box contributions to muon decay [in which the bosonic contribution is not gauge

invariant by itself and should be combined with the self–energy corrections]. There are
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The contribution of the light fermions to the vector boson self–energies can be essentially

mapped into the running of the QED coupling constant which, as discussed in the previous

section, is defined as the di�erence between the vacuum polarization function of the photon

evaluated at low energies and at the scale MZ , ��(M2
Z) = ���(0) � ���(M2

Z) = 0.0590 ±
0.00036. Therefore, the only remaining fermionic contribution to the two–point functions is

the one due to the top quark on which, besides the e�ects of the Higgs boson, we will mainly

concentrate by studying three important quantities, ��, �r and the Zbb̄ vertex.

35

Fig. 4: LEFT: Higgs branching ratios in the SM, for different values of mh [18]. RIGHT: preferred value of mh,
from a global fit to EW data; the yellow band corresponds to the direct LEP constraints mh > 114.4 GeV [19].

So, when produced, a Higgs boson decays predominantly in b-quarks, W -bosons, gluons, etc. But
how is it produced, to begin with? Amusingly, the dominant production mode at the LHC is through a
loop effect: the cross-section for gluon fusion gg ! h is large �gg!h ⇡ 44(19) pb at 13(8) TeV, simply
because the proton content of gluons is very large. This is followed by tree-level, but electroweak,
processes: vector boson fusion qq ! V V qq ! hqq has �V BF ⇡ 3.7(1.6) pb, while vector-associated
production q̄q ! V ⇤ ! V h has �V H ⇡ 2.2(1.1) pb; yet these are the dominant production modes at
e+e� colliders. Finally, production in association with top quarks pp ! tt̄h constitute a small fraction
of the total cross-section �tth ⇡ 0.51(0.13) pb.

For what concerns the SM, the only information that was still missing before the LHC was mh.
This could be measured with extreme precision

mh = 125.09 ± 0.24 GeV [6] (31)

thanks to the Higgs decaying to �� and ZZ, which have the best mass-resolution (decays to W -bosons
are instead penalized by the impossibility to detect neutrinos and hence to reconstruct the invariant mass
of the W -pair).

As we will see in the next section, from a BSM point of view, all channels are important, because
they allow us to test alternative hypotheses in which the Higgs couplings might depart from the SM ones.
In this sense (borrowing Fabiola Gianotti words), Nature has been kind to us, because the Higgs mass
happens to be such that all decay channels are more or less important. Indeed, had mh be for instance
170 GeV, we would have been dominated by the WW mode, with no hope to ever observing �� decays.

In the BSM-motivated quest of testing the Higgs couplings, it is important to keep in mind that the
LHC is a complicated machine, in which size does not always matter. For instance, the process gg !
h ! bb̄ has by far the largest cross-section, but the same is true for the QCD-dominated background,
which renders this channel practically invisible. Decays into b̄b have therefore to be tested in the VH
production mode, where the leptonic decays of the associated vector allow the event to be detected (or in
VBF, where the same rôle is played by the special kinematics of the qq pair).
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A convenient way to express the results of this exploration, is portrayed in Fig. 5. Here the Higgs
couplings to the SM particles are multiplied by an arbitrary factor µ, the signal strength, such that the SM
coincides with µ = 1; then the µi are fitted as if they were free parameters of the theory. The information
contained in these fits, will form the basis for our BSM exploration in the next section.
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Fig. 5: One of the rare ATLAS+CMS combinations from [20]. LEFT: fit to tree-level Higgs couplings, testing the
coupling/mass relation as predicted in the SM, Eqs. (28-30). RIGHT: test of the SM Higgs couplings, performed
with a global fit by rescaling each SM tree-level coupling to particle i by a factor i (the "" framework) - BBSM

denotes a branching ratio into undetected particles.

4 Beyond the Standard Model
I mentioned before that the defining feature of the SM is the possibility, given its matter content, to
extrapolate it to very high-energy, thus allowing it to be (very close to) a fundamental theory.4 First of
all, this is just a possibility: nothing forbids the presence of new structure at distances close to the ones
probed today. Secondly, we have indications that such structure exists. For instance, electric charge runs
towards higher values as the energy is increased, and eventually becomes strong and non-perturbative
at MLandau ⇡ 10275 GeV, signaling the existence of new dynamics. Gravity, must ultimately become
part of the SM, but it’s known to become strong at energies of order MP lank ⇡ 1019GeV. Other in-

4More precisely, the SM includes only relevant and marginal operators that represent a finite theory keeping their couplings
fixed and sending the cutoff to 1.
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dications include the existence of Dark Matter, the neutrino masses, the necessity for a mechanism for
baryo(lepto)genesis, all of which are not accommodated in the SM.

All these reasons motivate searches for physics beyond the SM, in all its possible incarnations.
There is however one additional reason, that pushes us to search for BSM physics explicitly at the LHC
and in particular in Higgs physics: Naturalness. This much disputed principle has to do with the hierarchy
problem, expressed by Wilson [21] as the impossibility for the existence of light scalar particles that are
not associated with the breaking of some symmetry. This argument includes an elementary Higgs scalar,
such as the one appearing in the SM, and is a consequence of the fact that the Higgs mass term |H|2
in the Lagrangian has dimension-2 and is therefore a very relevant operator. Relevant operators are
UV-sensitive, so that the value of the Higgs mass we observe is related to quantities at high-energy; for
instance changing the value of m2

h(MP lank) - the Higgs mass parameter measured at the Planck scale -
by a factor of two within the SM, corresponds to changing m2

h(TeV) by a factor M2
P lank/TeV2 = 1032!

This Wilsonian point of view is the formal implementation of reductionist thinking, that is: low-energy
quantities such as m2

h(TeV) can be computed in terms of more fundamental quantities m2
h(MP lank); in

this sense the observed value m2
h ⌘ m2

h(TeV) ⇡ (100GeV)2 ⌧ 104+32GeV2 appears to be finely tuned
in the UV and this is the essence of the hierarchy problem.5

More concretely, in a fundamental theory that predicts m2
h in terms of more fundamental parame-

ters, we could integrate m2
h(E) along the renormalization group flow (denoted here with E, to highlight

the physical Wilsonian interpretation of E as the momentum of particles in the loops), to obtain its value
at small energy (see e.g. [9]):

m2
h =

Z 1

0
dE

dm2
h(E)

dE
=

Z ⇤UV

0

dm2
h(E)

dE
+

Z 1

⇤UV

dE
dm2

h(E)

dE| {z }
⌘m2

h(⇤UV )

, (32)

where we have separated the contribution from below/above an arbitrarily chosen physical scale ⇤UV .
The point is that we can compute the first integral in the RH side of Eq. (32) with the observation that
at low-energy the SM describes properly Higgs physics; for ⇤UV = MP lank we obtain a contribution
�m2

h = 1036GeV2 as mentioned above, that must be finely cancelled against an (uncorrelated, in the
Wilsonian point of view!) contribution from m2

h(⇤UV ).
Paradoxically, the best way to formulate the hierarchy problem, is in models that solve it, i.e.

models that do exhibit additional symmetry, such as composite Higgs models (CHM) or Supersymmetry
(SUSY), such that

m2
h(⇤UV ) = 0 . (33)

This is achieved in CHM because |H|2 is a composite operator in the theory above ⇤UV and is in fact
irrelevant. In SUSY, instead, non-renormalization theorems imply that dm2

h(E)/dE = 0 and hence
Eq. (33). In both cases, however the dominant contribution to m2

h comes from the first integral in the
RH side of Eq. (32) that is typically a loop factor smaller than ⇤2

UV (in strongly coupled CHM this is
possible only if the Higgs is a PNGB of a global SSB [23]). Given the Higgs couplings in the SM, this
part can be calculated and one finds that no fine-tuning corresponds to

⇤UV . 450 GeV , (34)

that is: new dynamics has to modify Higgs physics at a physical scale accessible to the LHC.
Now, we can tolerate some level of fine-tuning (this can be quantified using the definition of

Ref. [24] and increases quadratically with the new physics scale), but these arguments clearly single out
different directions for the future of particle physics:

5In the SM, this relevant operator is very sensitive to the UV, but in principle one could immagine a modification of the SM
where this sensitivity is tamed, because the dimension of the |H|2 operator is smaller. First principles exclude this possibil-
ity [22].
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– Rethink the Wilsonian approach in the grander scheme of things
– Search directly for the new states at ⇤UV

– Test the properties of the Higgs boson, which are expected to depart from the SM ones, signaling
a modification of the first integral in Eq. (32)

The first approach has recently provided promising directions that take into account the cosmological
history of the universe [25] with or without the inclusion of anthropic arguments [26], and it is not clear
how wide the spectrum of possibilities is. The search of direct states in the TeV region constitutes instead
the bulk of the LHC search program; its different ramifications depend very much on how we think this
different dynamics will be, I refer to reviews on CHM or SUSY.

Instead, testing the properties of the Higgs boson is a well-defined and compact field of research.
Indeed, from an experimental point of view, there is only a limited number of observables that can be
tested in the context of Higgs physics. Interestingly, also from a theoretical point of view, independently
from the details of the UV dynamics, there is only a limited number of ways in which Higgs physics can
be modified. This is a consequence, again, of the Wilsonian point of view: integrating out new physics
at the scale ⇤UV generates a set of local operators, corresponding to an Effective Field Theory (EFT).
Given that only the more relevant ones survive at low-energy and given that there is only a finite number
of operators of a given relevance, there can be only a finite number of effects that is worth studying in
Higgs physics. We discuss this in detail in what follows.

4.1 BSM Higgs Phenomenology
An important thing to keep in mind, when thinking about Higgs phenomenology, is that the structure
of the SM is rather unique: the relation between the different couplings, implied mostly by gauge-
invariance, allow the theory to be valid to high-scales. So,

Any modification of the SM couplings reduces the cut-off of the theory.

This has to be read together with the definition that

Any theory with a cutoff is an Effective Field Theory,

that can be written as an expansion in local field operators of different dimensionality

Leff = LSM +
X

i

c(6)
i

M2
O(6)

i +
X

j

c(8)
j

M4
O(8)

j + · · · , (35)

where c(D)
i are called Wilson coefficients and the leading (relevant) contribution LSM ⌘ L4 is the one

surviving in the limit where M , which is here the mass of new physical states, is taken ! 1.6

In other words, what we can learn from testing different aspects of Higgs physics, can be captured
in the language of EFTs. For instance, the ’’ framework [18], where all SM Higgs couplings are rescaled
(as in Z = ghZZ/gSM

hZZ for the hZµZµ coupling to Z-bosons), lowers the cutoff of the theory for  6= 1,
and eventually corresponds to an EFT, despite the fact that no scale appears explicitly in its formulation
(we had an example of this for a 6= 1 in Eq. (12)).

From a practical, experimental, point of view, there have been different proposals to parametrize
the experimental information that can be extracted from measurements of the Higgs properties, but ul-
timately, the information they carry can be matched to EFTs. Most notably, pseudo-observables - POs

6Here I’ll discuss only theories that have a well defined decoupling-limit, see however [27] for an interesting case, with a
naturally light Higgs, that cannot be captured by such an EFT. Moreover, I refer to Refs. [28, 29] (and to the appendix of [30])
for parameterizations in which EW symmetry is never linearly realized (useful for instance to capture Technicolor theories with
an accidentally light Higgs).
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- [31, 32] are designed as EFT-inspired expansions around the poles of certain scattering amplitudes
involving h; as such they are physical quantities and can be used as an important tool to extract infor-
mation about EFTs from experiment. They are particularly useful in processes involving on/off-shell
EW bosons, such as h ! V  ̄ , because their measurement depends on a minimum of theoretical input:
precision QCD/EW calculations can then be used to extract from them information about the Wilson
coefficients ci, but since the precision of such computations constantly improve, measurements in terms
of POs constitute a durable legacy.

For processes involving QCD states, POs are unfortunately less effective, since the experimental
information is encoded in objects -jets - that correspond to a multiplicity of states at the fundamental
level. In this case, simplified template or fiducial cross-section measurements [33] try to package the
experimental information in a way that has reduced sensitivity to theoretical uncertainties (which are
prone to improve when future calculations will be available) and enhanced sensitivity to the effects
induced by EFTs.

Having said this, let us discuss what EFTs for Higgs physics really are, were we are interested
in theories which have the same field content as the SM (see table 1). EFTs are all about formulating
hypotheses about microscopic physics and to follow how these hypotheses can be tested with low-energy
experiments. The assumptions I’ll make in what follows are:

– There are no states beyond the SM ones at the energies relevant for these experiments, i.e. E ⌧ M .
This assumption is motivated by the so far null results of the LHC.

– There is well-defined decoupling limit M ! 1 in which the SM is recovered; in particular the
Higgs field behaves (at least approximately) like an SU(2)L SM linear doublet. This is motivated
by the left panel of Fig. 5: experimental data implies that departures from this limit must be small
and presumably associated with a small expansion parameter.

– New physics is flavor-universal. This is motivated by the difficulty of accommodating experimental
constraints in models with flavor non-universal new physics, but also from simplicity. See Ref. [34]
where this assumption is relaxed in the context of Higgs/EW physics. Similarly we assume here
that new physics conserves CP.

– We assume, to begin with, that the new physics is such as to generate all allowed operators, so
that the leading effects are necessarily given at dimension-6, all higher dimension effects being
irrelevant.

This last assumption is the least motivated: typically scenarios of new physics affect different sectors of
the SM in different ways, symmetries can forbid some operators in favor of others, and large couplings
can enhance effects that would otherwise be small. We will discuss these aspects below, but for the
moment this hypotheses provides a conservative way for exploring the new physics landscape without
much commitment.

4.1.1 Dimension-6 Effects
An important aspect of EFTs is that some (combinations of) effective couplings are redundant and do
not induce any physical effect. Consider an infinitesimal (small ✏) local transformation

�(x) ! �(x) + ✏F (�(x), @�(x)) (36)

for a generic function F . Such field redefinition does not change the S-matrix, as long as the redefined
field has non-vanishing matrix elements with the states sourced by the original one, but it changes the
action by

�S[�] = ✏

Z
d4x

�S[�]

��(x)
F (�(x), @�(x)) . (37)
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This implies that pieces of the action that can be written in the form of Eq. (37), can be eliminated
by such field redefinition without changing the physics: they are therefore redundant. An example can
clarify this better:

S =

Z
d4x

(@µ�)2

2
+

c�
M2

�32�

✓
�!��c�

�3

M2

◆

����������! S =

Z
d4x

(@µ�)2

2
+ O

✓
1

M4

◆
. (38)

The irrelevant interaction c� is proportional to the leading-order equations of motion and can be elimi-
nated, up to higher order effects in the 1/M2 expansion (which here plays the ✏ role). From a practical
point of view, such redundancy can be thought (together with integration by parts) as the freedom of
choosing different forms of the Lagrangian (similarly to gauge invariance), to highlight different proper-
ties of the theory under scrutiny.

So, under the above assumptions, and focussing on non-redundant sets of operators, there is only a
handful of operators that can modify Higgs physics. These are summarized in Table 2 where we exploit
the above-mentioned freedom to write them in three different bases, corresponding to SILH [35, 36],
Warsaw [37], and BSM primaries/Higgs basis [33,38,39]. Integration by parts and field redefinitions al-
low to swap the blue operators in the SILH basis with the red ones in the Warsaw basis (plus a redefinition
of other Wilson coefficients).

It is sometimes useful to classify these effects according to their transformation properties under
the SM SU(2)L ⇥ SU(2)R accidental symmetry, which derive from

SU(2)L ⇥ SU(2)R Higgs only Higgs and Derivative
(1L,1R) tr (⌃†⌃) = H†H tr (⌃†Dµ⌃) = Dµ(H†H)/2

(1L,3R)Y =0 tr (⌃†⌃�b) = 0 tr (⌃†Dµ⌃�b)
b=3��! �H† $

DµH/2

(3L,1R) tr (⌃†�a⌃) = 0 tr (⌃†�aDµ⌃) = H†�a
$
DµH/2

(3L,3R)Y =0 tr (⌃†�a⌃�b)
b=3��! �(H†�aH) tr (⌃†�aDµ⌃�b)

b=3��! �Dµ(H†�aH)
(39)

where the 3R is broken down to its components, since SU(2)R is not necessarily a BSM symmetry.7 For
instance, in the SILH basis, the operator OT is (1L,3R) ⌦ (1L,3R) � 5R and is indeed associated with
maximal custodial symmetry breaking. Similarly, OH R and OH L are ⇠ 3R and also break custodial.
On the other hand, using the spurious transformation properties of g0 from Eq. (25), OB is a singlet, in
the sense that it doesn’t introduce further custodial symmetry breaking than the SM. All other operators
are singlets too. This classification is important because SU(2)c in the SM implies some relations (see
section 3.1) that are well preserved at loop level (as discussed below Eq. (25)); departures from these
relations can be well measured and constitute accurate BSM probes.

Clearly each individual operator contributes to different physical processes; for instance OHQ

modifies the Z couplings to left-handed quarks, but also contributes directly to h ! ZQ̄Q decays,
etc. This fact complicates a global fit, but also makes its results difficult to present and to interpret, as
marginalized constraints are often dominated by the poorest observables.8 For this reason it is useful to
identify the most relevant experiments that can test the operators of Table 2 and organize them according
to their precision, and the operators they are sensitive to.

7In Eq. (39) we have kept the third one b = 3 that is associated with vanishing hypercharge Y = 0, but keep in mind that
operators, like Oud

R in the caption of Table 2, can be formed also with the ± components that give H̃†�aH with hypercharge
Y = ±1

8In principle the n ⇥ n correlation matrix relating measurements of n Wilson coefficients carries all the necessary infor-
mation. In practice, however, results are often presented as marginalized over n � 1 parameters so that, when the correlation
matrix has large off-diagonal components, constraints are dominated by the least sensitive measurements and appear, therefore,
artificially weak. These are sometimes called "blind directions".
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SILH Warsaw BSM Primaries
LH

C
H

ig
gs

10
% O6 = �|H|6 O6 �L3h

OBB = g02|H|2Bµ⌫Bµ⌫ OBB �Lh
��

OGG = g2
s |H|2GA

µ⌫G
Aµ⌫ OGG �Lh

GG
Oy = ye|H|2( ̄LH R) =u,d,e Oy �Lh

  

OH = 1
2(@µ|H|2)2 OH �Lh

V V
OHB = ig0(DµH)†(D⌫H)Bµ⌫ OWW = g2|H|2W a

µ⌫W
µ⌫ a �Lh

Z�

LE
PI

I% OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ OWB = g0gH†�aHW a

µ⌫B
µ⌫ �L�

OW = ig
2

✓
H†�a

$
DµH

◆
D⌫W a

µ⌫ OHL = (iH† $
DµH)(L̄L�µLL) �LgZ

1

OB = ig0

2

✓
H† $

DµH

◆
@⌫Bµ⌫ O0

HL = (iH†�a
$
DµH)(L̄L�a�µLL) �LZ

eL

LE
PI

h OT = 1
2

✓
H†$

DµH

◆2

OT �LZ
⌫

OH R = (iH† $
DµH)( ̄R�µ R) =u,d,e OH R �LZ

uR,dR,eR

OHQ = (iH† $
DµH)(Q̄L�µQL) OHQ �LZ

uL

O0
HQ = (iH†�a

$
DµH)(Q̄L�a�µQL) O0

HQ �LZ
dL

Table 2: CP-even dimension-6 operators that affects Higgs physics. We omit dipole operators for fermions and

Oud
R = y†

uyd(iH̃†
$
DµH)(ūR�µdR) since they are suppressed by light fermion Yukawas under the MFV assump-

tion. A complete set of operators can be found in Refs. [16, 37].

Higgs Physics. In principle Higgs physics can test all effects induced by the above operators. However,
the sensitivity of present measurements of Higgs properties at the LHC is generally smaller than that of
EW tests at LEP. For this reason it is useful to identify Higgs-only operators that do not contribute to EW
precision observables and are therefore the genuine target of the LHC Higgs program, unconstrained
by other experiments. Operators of the form |H|2OSM , with OSM a SM operator, only contribute to
Higgs physics since, according to the classification Eq. (39), |H|2 is an EW singlet that does not induce
EW breaking effects. It is instructive to see why: the operator OGG for instance appears in the effective
Lagrangian (with G in non-canonical normalization) as

� 1

4g2
s
GA

µ⌫G
Aµ⌫ +

cGG

M2
|H|2GA

µ⌫G
Aµ⌫ = �1

4

✓
1

g2
s

� 2
v2

M2

◆
GA

µ⌫G
Aµ⌫ +

cGG

2M2
(2vh + h2)GA

µ⌫G
Aµ⌫ .

The piece proportional to v2 can be reabsorbed into a redefinition of gs, which is an input parameter for
the SM and has therefore no physical meaning until measured. In our flavor-universal framework we can
think of the SM as having 8 input parameters, e.g. g0, g, gs, mW , mu,d,e and mh, implying the existence
of 8 Higgs-only operators

Higgs-only: {OBB, OWW , OGG, OH , Oyu,d,e , O6} (40)

that are explicitly manifest in the Warsaw basis (upper-center box in Table 2). These can be tested at the
LHC principally through the following rates

h ! ��, h ! Z�, gg ! h h ! ZZ, WW, gg ! t̄th, h ! b̄b, h ! ⌧̄ ⌧, gg ! hh
(41)

which contribute to the results from the right panel of Fig. 5, in addition with constraints from the
h ! Z� channel [40] and pp ! hh processes (the latter will test the Higgs cubic interaction that is
affected uniquely by O6, experimental results in this channel are not available yet, see Ref. [41] and
references therein).
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Notice that Higgs physics has in principle many more observables than the free parameters implied
by the EFT, meaning that at this level in the 1/M expansion the EFT is in fact predictive and provides
relations that can be tested. For instance, the EFT operators Eq. (40) imply that only one operator OH

modifies both the hZµZµ and hW+
µ W�µ couplings. Similarly, two operators OBB, OWW affect the

four hZµ⌫Zµ⌫ , hW+
µ⌫W

�µ⌫ , hZµ⌫Aµ⌫ and hAµ⌫Aµ⌫ structures. These, and many more, are accidental
relations that will be broken by the dimension-8 Lagrangian and they can be thought as the defining
features of our assumptions on page 14. These relations can be made more explicit in the mass eigenbasis,
writing combination of the 8 operators Eq. (40) as

�Lh
�� = ��

✓
h

v
+

h2

2v2

◆"
Aµ⌫A

µ⌫ + Zµ⌫Z
µ⌫ + 2W+

µ⌫W
�µ⌫

#
,

�Lh
Z� = Z�

✓
h

v
+

h2

2v2

◆"
t✓W Aµ⌫Z

µ⌫ +
c2✓W

2c2
✓W

Zµ⌫Z
µ⌫ + W+

µ⌫W
�µ⌫

#
,

�Lh
GG = GG

✓
h

v
+

h2

2v2

◆
GA

µ⌫G
A µ⌫ , (42)

�Lh
ff = �gh

ff

⇣
hf̄LfR + h.c.

⌘✓
1 +

3h

2v
+

h2

2v2

◆
,

�L3h = �g3h h3

✓
1 +

3h

2v
+

3h2

4v2
+

h3

8v3

◆
,

�Lh
V V = �gh

V V 2mW

"
h

 
W+µW�

µ +
ZµZµ

2c2
✓W

!
+ �h

#
,

with �h contributing to processes with at least two physical Higgses. Here we have mede sure that,
for instance, only �Lh

�� contributes to the h ! �� rate and that only �L3h modifies the Higgs cubic.
Then, these relations imply predictions: for instance the hZµ⌫Zµ⌫ structure receives contributions that
are proportional to Z� and �� that are both well constrained.

This way of writing the EFT operators has the unique purpose of making manifest the relations
between modification to different observables that persist in the dimension-6 Lagrangian. It is a way of
writing observables in terms of observables that is analogous to defining the SM through the relation be-
tween W and Z masses Eq. (27), or the relations between Higgs couplings and masses Eqs. (28-30) that
are accidental to the dimension-4 Lagrangian. In practice, these BSM Primaries [38], provide a useful
way to express the results of a global fit in terms of parameters that are as close as possible to experi-
ments, but at the same time maintain the information about the accidental relations of the dimension-6
Lagrangian. A global fit to Run-1 Higgs data reads [42] (see also [43–49])

�gh
V V = 1.04 ± 0.03, �gh

tt = 1.1+0.9
�3.0 �gh

bb = 1.06+0.30
�0.23, �gh

⌧⌧ = 1.04 ± 0.22 (43)

gg = 0.0005 ± 0.008, �� = �0.0003+0.0005
�0.0007, Z� = 0.000+0.035

�0.019 . (44)

This can be written in terms of constraints on the above operators, implying that (cH , cyu,d,e)
v2

M2 ⇠ 10�1,

cG
m2

W
M2 ⇠ 10�3, while (cWW , cBB) v2

M2 ⇠ 10�2 (notice that cWW cBB affect both �� and the poorer Z�;
it is the latter that dominates this marginalized constraint); see also Fig. 6.

LEPI Electroweak Precision Tests (EWPT). A peculiarity of the Higgs field is that it acquires an ex-
pectation value that modifies the symmetry of the vacuum and the propagation of the EW bosons. Physics
that modifies the Higgs sector can therefore also contribute to observables in EW physics, through the
operators of Table 2 with hHi ! v/

p
2.

LEP-I, operating on the Z-pole, provides the most precise measurements in this context, reaching
the permille level. From an experimental point of view, we can think of these measurements of e+e� !
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Z ! fermions as testing the couplings of Z to all the 7 SM (left and right) fermions ⌫, eL, eR, uL, uR,
dL, dR (the Z couplings to these define a set of 7 pseudo-observables for LEP-I). Using (↵em, mW , mZ)
as EW input parameters, it is easy to get convinced that there is no additional experimental information
that can be extracted from LEP-I on flavor universal theories; in particular, information on custodial
symmetry breaking (often presented as T parameter, that measures departures from the mZ/mW mass
difference of Eq. (27)) or effects from Z � B mixing (the S parameter [50, 51]) is contained in the
Z-coupling measurements.

In the SILH basis, there turn out to be 7 operators contributing to these observables9, reported
in the bottom-left block of Table 2 - more precisely, only the combination OW + OB affects this type
physics, while the orthogonal combination OW � OB does not,

LEP-I : {OW + OB, OT , OHQ, O0
HQ, OHu, OHd, OHe} (45)

There could have been more operators (as in the Warsaw basis, where there naively appear to be 8
operators contributing), implying that one combination will necessarily remain unconstrained and it will
affect the results of global fits with marginalized coefficients (see footnote 8). In this sense, the SILH
basis appears as a favorable choice for EWPT. The result of a global fit, restricted to these operators
and to LEP-I data [17], implies that the coefficients ci of the operators of Eq. (45) are constrained at the
permille level [52–54],

ci
m2

W

M2
⇠ few ⇥ 10�3 (46)

as illustrated in Fig. 6.
LEP-II vs LHC. We have seen that out of the 17 operators that involve H , Table 2, 7 are constrained by
LEP-I measurements and are well described in the SILH basis, while other 8 can be tested with Higgs
physics only, and are well described in the Warsaw basis. Two (combinations of) operators remain yet
unconstrained. To understand what effects they induce, it is useful to think of the 17 operators in Table 2
as a 17-dimensional sub-manifold in the 1-dimensional space of all possible observables and single out
the 2-dimensional plane that belongs to this 17-dimensional manifold, but does not contribute to any
observables measured at LEP-I or to the Higgs-only measurements of the Right panel of Fig. 5. The
result of this exercise is a continuation of what we began in Eq. (42), expressing the EFT in the mass
eigenstate basis and unitary gauge. We find that [38]

�LV
ee = �gZ

eR

ĥ2

v2
ZµēR�µeR + �gZ

eL

ĥ2

v2


ZµēL�µeL � c✓Wp

2
(W+µ⌫̄L�µeL + h.c.)

�

+�gZ
⌫L

ĥ2

v2


Zµ⌫̄L�µ⌫L +

c✓Wp
2

(W+µ⌫̄L�µeL + h.c.)
�

, (47)

�LV
qq = �gZ

uR

ĥ2

v2
ZµūR�µuR + �gZ

dR

ĥ2

v2
Zµd̄R�µdR

+�gZ
dL

ĥ2

v2


Zµd̄L�µdL � c✓Wp

2
(W+µūL�µdL + h.c.)

�

+�gZ
uL

ĥ2

v2


ZµūL�µuL +

c✓Wp
2

(W+µūL�µdL + h.c.)
�

(48)

�LgZ
1

= �gZ
1

"
igc✓W

⇣
Zµ(W+⌫W�

µ⌫ �h.c.)+Zµ⌫W+
µ W�

⌫

⌘
(49)

9This is true when performing EW fits using (↵em, mW , mZ ) as EW input parameters; if instead one uses (↵em, GF , mZ )
there is an additional non-Higgs operator (L̄L�a�µLL) (L̄L�a�µLL) that enters the fit at dimension-6 level, but also has an
additional measurement that constrains it: the muon lifetime is used to extract GF .
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Fig. 6: 95% confidence intervals from a global fit, from Ref. [54]. The green lines denote fits with one coefficient
only, while red bars denote fits with multi coefficients, marginalized (in our notation c R,L is cH ).
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, (50)

complete Eq. (42) to spam the entire space of dimension-6 operators, in a way that aligns with EW and
Higgs observables. Here h corresponds to the physical Higgs and �h2 includes interactions with at least
two h that are irrelevant for experiments in the near future.

From Eqs. (49,50) we can read that the two remaining directions modify the trilinear gauge cou-
plings (TGCs) between ZW+W� and �W+W�, as well as the hV  ̄ (V = W, Z) amplitude. The
reason that both these observables appear simultaneously modified can be traced to the fact that Higgs
and the eaten Goldstones belong to the same multiplet, so that some BSM deformations in the Higgs
sector can modify also processes with longitudinal W, Z bosons, at least at a fixed order in the 1/M ex-
pansion. TGCs can be tested in diboson processes at LEP-II or at the LHC, while deformation in hV  ̄ 
are tested in pp ! V H associated production at the LHC.10 The constraints from these two search modes

10In principle the same amplitude can be tested in h ! V  ̄ decays [55] but, as shown in Fig. 7, constraints from LEP-II
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are at present comparable, although the latter are typically extracted from the high-energy regime [56],
so that certain conditions regarding the validity of our EFT assumption limit their interpretability [57].
From LEP-II data [58] we read

�g1,Z = �0.05+0.05
�0.07, �� = 0.05+0.04

�0.04 . (51)

These directions Eqs. (49,50) can be translated into combinations of operators in the SILH or War-
saw basis (see Ref. [39] for a gauge-invariant formulation in terms of the above operators), where
�g1,Z , �� ⇠ c m2

W /M2, for c a combination of Wilson coefficients, and are included in Fig. 6.

To conclude, let me reiterate the arguments of this section. Global fits are useful to explore the
impact of experimental data on broad BSM hypotheses, that in our case we have defined with the as-
sumptions in page 14 that we hope are able to capture large classes of BSM theories. If the theoretical
parameters are not aligned with the experimental observables, the results of a global fit with n parameters,
n � 1 of which are normalized, will be dominated by the poorest experiment. For this reason we have
divided experiments with different sensitivity in correlated blocks (LEP-I, LEP-II and Higgs physics)
and identified the operators they constrain. In fact, the best way to do this is to align the theoretical
parameters to the most precise experiments, as in the BSM primaries/Higgs basis.

The outcome of this discussion is two-fold. First of all, it allowed us to identify the relations
that persist in the effective Lagrangian at the level of dimension-6 operators, relations that can be tested
or used as a check, if a deviation is found, or can be used to better constraint a given parameter. An
example of such relation is reported in Fig. 7, which shows the differential distribution of Higgs decay-
ing to a vector and a pair of fermions, such as in the golden channel. This distribution is affected by
many dimension-6 operators, but all of them are bounded by other experiments, either at LEP-I, LEP-II
or in Higgs physics; therefore this distribution cannot be arbitrarily modified, and a prediction of the
dimension-6 EFT analysis is that, if any deviations are found there, they must be within the blue band,
or violate some of our assumptions.

200 400 600 800 1000
p2

0.0002

0.0004

0.0006

0.0008

0.0010

1
Γ
dΓ
dp2

h➙Vff differential distribution

SM prediction

BSM prediction
from a global fit

(GeV )2

Fig. 7: Normalized differential distribution for Higgs decays in the golden channel. The black line corresponds to
the SM prediction, while the blue bands correspond to the (1,2-� contours) of the BSM-deformation, as allowed
by constraints from a global fit on possible dimension-6 modifications, that includes LEP-I and LEP-II data, as
well as constraints on h ! Z�. From the data in [52] (see also [59]).

are stronger than what can currently be measured in that channel
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Secondly, this discussion, shows the most that we can get, in terms of experimental constraints,
out of the most conservative hypotheses that all operators are democratically generated, and that they can
even cancel each other in their contribution to a given observable. Even in this limiting hypothesis we
could identify classes of operators that are already very well tested and constrained.

4.2 BSM Perspective
In realistic set-ups, based on physical microscopic hypotheses, only subsets of operators are typically
generated, thus providing concrete scenarios that can be tested more precisely, and from which something
can be learned. There is no limit in how specific and complicated a BSM model can be, but there is
instead a limit in how simple it can be. Here we want to identify the minimal set of ingredients that
can characterize a microscopic model and that can, at the same time, represent broad features of more
generic BSM scenarios. These ingredients are,

One New Mass Scale M , One New Coupling g⇤, Symmetries and Selection Rules11

where we assume that the UV completion admits some perturbative expansion in its couplings. These
microscopic properties will be imprinted into the Wilson coefficients of the operators of Table 2. In lack
of a specific model in which to compute this UV!IR matching, we can still estimate them through a
procedure known as power-counting or Naive Dimensional Analysis [60].

The idea is simple. Symmetries or properties of the underlying theory determine if an operator
is generated or not. In weakly coupled theories this can simply boil down to whether or not the field
mediating an interaction is present at the scale M (an example of this will be given below for SUSY), and
can make the difference between large (tree-level) and small (loop-level) effects [61], while in strongly
coupled theories a symmetry is typically necessary to generate a selection rule in the IR (for instance
in composite Higgs models the Higgs is a psuedo-Goldstone boson with non-linearly realized global
symmetry that generates mostly interactions with derivatives @H).

The dimension of the operator D determines that its coefficient will scale ⇠ 1/MD�4, in order
to make the action dimensionless, as we already know. What is perhaps more exotic is the fact that,
counting powers of ~ 6= 1 in the Lagrangian can tell us how many powers of couplings an operator might
carry. Indeed, couplings, as well as fields, carry ~ dimensions [35] (see also Refs. [9, 10]). It is easy to
see that, since [S] = ~, fields have [�] = ~1/2, while couplings have [g] = ~�1/2. Any operator in the
Lagrangian must have dimension [ciOi] = ~, and we find that for an operator with ni fields,

ci ⇠ (coupling)ni�2 (52)

In what follows we clarify the importance of power-counting through two examples ins SUSY and CH
models, the most studied extensions of the Higgs sector that solve the hierarchy problem. Keep in mind
that the selection rules discussed here, apply at the matching scale M , but the coefficients will run as they
evolve towards lower energy. These effects can be computed entirely within the EFT, see [16, 62–66],
and can have some important implications, in particular in situations where a poorly measured Wilson
coefficient mixes through renormalization group flow into a very-well measure one.

4.2.1 SUSY
SUSY provides a great example of symmetries and selection rules in action. Superymmetry is compatible
only with holomorphic interactions, thus forbidding the up-quark Yukawa / eH = ✏H† in the SM
Lagrangian Eq. (23). Up-quark masses require therefore the presence of an additional Higgs doublet

11Selection rules follow from microscopic symmetries that might or might not be realized (linearly or not) in the IR. Here I
tend to refer to selection rules, as those that cannot be identified with symmetries from the low-energy point of view.
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with opposite hypercharge H2 2 (1,2, 1/2), which can appear in the Lagrangian without complex
conjugation. 12

Moreover, the symmetry implies that the SM fields are part of super-multiplets containing fields
of different spin. Some of these fields can potentially mediate proton decay, so that many SUSY incar-
nations invoke an accidental symmetry, R-parity, to forbid the relevant interactions responsible for this.
Under R, the SM fields that we know, together with the scalar component of H2, are even, while all
other states appearing in the SUSY multiplets are odd. This last observation is uniquely responsible for
the EFT structure of SUSY models with R-parity. Indeed, any process between SM (R-even) states, can
not be mediated at tree-level by an R-odd resonance, so that the only tree-level BSM effects are those
associated with H2, the only R-even BSM particle. We show the relevant diagram in Fig. 8, where we
identify h with the linear combination of H1, H2 that is closer to the SM one, and call H the heaviest
combination (see Ref. [68]).

SUSY:

f

f̄

hhihhi

h
H

g2
⇤

CHM:

G

H

Aµ

 ̄

 

Fig. 8: LEFT: a modification of the Higgs couplings to SM fermion is the largest effect from integrating out BSM
physics in SUSY models with R-parity. RIGHT: in CHM a strong sector brakes a global symmetry G ! H, while
the gauge and Yukawa couplings break the symmetries explicitly, but weakly.

So, from the EFT perspective, R-symmetry translates in the selection rule that only a very special
subset of new interactions is generated sizably at low energy: Oyu , Oyd , Oye . What else can we say about
this ‘New Physics’ sector? Flavor symmetry U(3)5, is broken in the SM by the Yukawa couplings; the
stringent constraints from flavor physics favor the possibility that the Yukawas be the only source of flavor
symmetry breaking also in TeV-scale BSM: a possibility that is known as Minimal Flavor Violation [69]
and is indeed realized in these SUSY models (the H ̄ couplings are aligned with the SM Yukawas).
Finally, we can identify the microscopic coupling

LSUSY
UV � g2

⇤
4

h3H (53)

with the generic g⇤ introduced on page 21, and mH with M .
Now that we have identified the relevant13 features of SUSY models, in the generic language of

page 21, we can estimate the low-energy EFT:

SUSY ⇠

8>><
>>:

Selection rule from R-symmetry
Flavor symmetry, broken by y 
New coupling: g2

⇤
Mass scale: mH

9>>=
>>; ) LSUSY

eff = c̃u
g2
⇤

m2
H

Oyu + c̃d
g2
⇤

m2
H

Oyd + c̃e
g2
⇤

m2
H

Oye

(54)
where we have used the fact that the operators Oy contain 5 fields so we expect their coefficient ⇠
coupling3; since they brake flavor symmetries they must involve y (they are already weighted by one

12One of my favorite possibilities is that instead up-type quark Yukawas arise as SUSY breaking effects, while the Higgs
doublet, which has quantum numbers H2 2 (1,2, �1/2) be the scalar supersymmetric partner of one of the leptons L, which
has the same quantum numbers. In this case h would be the sneutrino [67], implying that we would have already discovered
SUSY!

13On the most technical meaning of the word: features that are important at low-energy.
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power of the Yukawas in Table 2), thus Eq. (52) reads here coupling3 ⇠ y g2
⇤ . An explicit computation

reproduces Eq. (54), with
c̃u = � cot� , c̃d = c̃e = tan� . (55)

This example show the impressive power of EFTs: 3 parameters are enough to capture the low-
energy signatures of all SUSY models with R symmetry and minimal field content. It also shows the
importance of being able to identify the relevant microscopic features that shape the Wilson coefficients at
the matching scale, as in Eq. (54), for two reasons. Certainly, these power-counting rules provide a useful
short-cut for the BSM ! SM EFT matching. Most importantly, however, they allow us to identify
which are the relevant hypotheses that we are actually testing when we use the EFT to parametrize SM
precision tests; all other features of specific BSM models being de facto irrelevant. For this reason, we
can refer to the assumptions in Eq. (54), as broad, in the sense that they are not specific to a single model.

4.2.2 Composite Higgs Models
Models of Composite Higgs solve the hierarchy problem in two steps. First of all they postulate a
compositeness scale M ⇠ few ⇥ TeV ⌧ MP lanck that is naturally generated, e.g., by dimensional
transmutation, like the QCD scale. As explained before, above M , |H|2 is an irrelevant operator and
hence small. A more physical picture is simply that the Higgs H is a composite particle that exists only
in the low-energy EFT: the contribution to m2

h from loops of high virtuality is tamed when the particles
in the loop probe Higgs compositeness. This would still imply mh ⇠ M naturally. As we will see below,
EWPT constrain M & 3 TeV, thus creating a little hierarchy problem, that is solved if the H is also an
approximate Nambu Goldstone boson of a spontaneously broken global symmetry G/H. Of course this
is natural, as it mimics the pions of QCD, which have been observed in nature.

There are many explicit realizations of these models, but the gross picture is common to all of
them. A strong sector confines at the scale M and brakes a symmetry G ! H, delivering at least 4
massless NGBs at low energy, and nothing else.14 The G/H symmetry is broken explicitly by how this
sector couples to the SM: the EW gauge couplings g, g0 are associated to the gauging of only a subgroup
SU(2)L ⇥ U(1) ⇢ H (therefore breaking H explicitly), and the SM Yukawas always break G when the
SM fermions are coupled to the strong sector. A pictorial representation is given in Fig. 8.

These ingredients are enough to estimate the low-energy EFT of composite Higgs models:

CHM ⇠

8<
:

G/H symmetry, broken by g, g0, y
New coupling in H-sector: g⇤
Resonances mass scale: M

9=
; ) LCHM

eff =
M4

g2
⇤

L

✓
g⇤H

M
,
Dµ

M
,
gFµ⌫

M2
,
�  

M3/2

◆

(56)
where G/H-preserving Higgs interactions must be compatible with the goldstone symmetry and be func-
tions of the CCWZ building blocks [72], that at the leading order read the same for all compact cosets,15

dµ = @µH + · · · , ✏µ = H
$
DµH + · · · (57)

More precisely, the Lagrangian for a Strongly Interacting Light Higgs reads [35],

LSILH =
c̃Hg2

⇤
M2

OH +
c̃T g2

⇤
M2

OT � c̃6g2
⇤

M2
O6 +

✓
c̃yg2

⇤
M2

Oy + h.c.

◆
+

c̃W

M2
OW +

c̃B

M2
OB

+
c̃HW

M2
OHW +

c̃HB

M2
OHB +

c̃BB

M2
OBB +

c̃g

M2
OGG. (58)

14Non-minimal models with extended cosets predict more states in the IR, SO(6)/SO(5) for instance includes an additional
singlet in the light spectrum, that can in principle play important phenomenological rôles, such as being DM [70, 71].

15An interesting limiting case is that of ISO(4)/SO(4): here the coset manifold is flat and ✏µ = 0, so that the first strong
interactions involving H arise at dimension-8 [30].
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This defines the basis the SILH basis previously introduced and explains the normalization of operators
OB, OHB ⇠ g0, OW , OHW ⇠ g, while OBB ⇠ g02 and OGG ⇠ gs

2, appearing in Table 2. Also, O6

shares the same symmetry as the Higgs quartic �|H|2: this is why we expect O6 ⇠ �.
Further UV hypotheses can be easily translated into selection rules for SILH Wilson coefficients.

For instance, both coset structures SU(3)/SU(2) ⇥ U(1) and SO(5)/SO(4) are minimal, in the sense
they only have 4 NGB degrees of freedom that can be identified with H . Yet they differ in that the
latter case H = SO(4) ' SU(2)L ⇥ SU(2)R contains custodial symmetry, implying that operators that
transform non-trivially underSU(2)c must be suppressed. In the SILH basis we find,

Custodial symmetry ) c̃T = 0 . (59)

In many known theories (including weakly coupled 5D theories, and their holographic strongly coupled
duals), the dominant effects come from integrating out particles of spin 1 at tree-level, while other
effects only arise at loop-level. This hypothesis, called Minimal Coupling, implies a further suppression

Minimal Coupling ) c̃HW , c̃HB ⇠ g2
⇤

16⇡2
c̃BB, c̃GG ⇠ g2

SM

16⇡2
(60)

where we have taken into account that, for OBB, OGG the couplings to such particles must also break
the shift-symmetry and are therefore typically suppressed by a symmetry breaking SM coupling gSM =
g0, yt, · · · .

It is interesting to compare the power-counting of Eqs. (58,59,60) with the experimental observa-
tions from the previous section. From Fig. 6 we see that the best constraints are on cBB and cGG, that are
predicted suppressed by several powers of the weak couplings, and on cW + cB that are instead expected
O(1), implying

M & 2.5 TeV . (61)

Despite these stringent constraints, we notice that many Higgs-only operators are g⇤ enhanced allowing
for seizable effects in Higgs physics.16 A careful study of the Higgs properties will tell us more about
these types of models.

We have seen the example of a weakly coupled BSM scenario, where loop-effects were sup-
pressed, so that the dynamical field content and interactions (in this case dictated by R-parity) have an
important impact on the low-energy EFT (also the minimal coupling assumption Eq. (60) relied on such
weakly coupled picture). In other words, the EFT for weakly coupled BSM models is rather model-
dependent.

On the other hand, in strongly coupled BSM scenarios, everything that is not forbidden is com-
pulsory, as it might be generated by unsuppressed loop effects involving the strong coupling. In these
scenarios, our power-counting rules that identify weak and strong couplings and symmetries, are not
only useful, but rather necessary, as the underlying theory is incalculable. In these conditions, broad
assumptions about the UV are enough to determine the resulting EFT, independently of the microscopic
details.

There are many, more or less specific, assumptions that can characterize physics BSM and that can
be captured by power-counting rules like those mentioned above. For instance, New physics can couple
to the SM bosons only (this is sometimes called universal) [73] or only to the top quark [74], that plays
the most important rôle in terms of loop effects to the Higgs mass parameter, or only to the transverse
components of vector-bosons [30]. It is important to keep in mind that, when testing a specific property
of the Higgs boson, we are specifically looking towards one of these specific BSM directions.

16This is in fact a chicken-egg situation: these models were thought in the LEP era with knowledge of EW constraints.
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4.2.3 EFT Validity
Our complete discussion so far was based on the existence of a scale separation

E ⌧ M . (62)

An experiment operating at energy Eexp, can provide a constraint (or measurement) on the combination

ci

M2
<

�exp

E2
exp

(63)

on the effects of an operator Oi, with precision �exp. From this we can say that our original assumption
Eq. (62) is indeed satisfied if the experimental precision �exp = ciE2

exp/M
2 ⌧ ci. Vice versa, we can

say that our measurement can be consistently interpreted in the EFT context, only in theories with

ci � �exp . (64)

We have seen in the above examples that the Wilson coefficients ci can vary enormously depending from
the UV structure: they can be enhanced by a strong coupling or reduced by loop factors, and even vanish.
Therefore, it is fair to say that:

There is no model-independent discussion about the EFT validity.

In this context, the power-counting arguments outlined above become particularly useful, because they
allow us to identify the broadest features that can make a Wilson coefficient large or small, so that the
question of whether the EFT provides a consistent interpretation of our measurement, can be answered
in the most generic (less model-dependent) terms.

At the LHC, some experiments (e.g 2 ! 2 scattering processes) are testing a large range of
energies, and the question of whether Eq. (62) is satisfied becomes more subtle, as Eexp is in principle
unknown. This can be obviated in a number of ways. The most systematic is to perform an additional
cut

p
s < Mcut at the level of the analysis on the center-of mass energy of the system.17 This procedure

provides the necessary information on Eexp that is now bounded from above by Mcut and allows to
discuss the EFT validity [57, 77].

In these high-E processes, EFT effects have the common property that they grow with some power
of the energy, relatively to the SM. On the other hand, the precision of measurements of deviations from
the SM, decreases with energy, principally due to the rapid fall-off in number of events at high-energy
(since parton distribution functions decrease exponentially fast). In some instances this implies that the
constraint is dominated by an energy region with little sensitivity, implying that only departures from the
SM that exceed the SM itself can be tested,

�exp =
��

�SM
& 1 . (65)

This is often considered a limitation to test EFTs at hadronic colliders in high-energy processes, as
it implies from Eq. (64) that such experiments can not be interpreted in theories with ci . 1. This
corresponds to weakly coupled theories that fill a special place in BSM model-building, as they are
calculable and well under control. In this sense �exp . 1 can be thought as a target for experiments, that
opens the door to interpret their results in a wider and well-motivated context [77]. Yet this doesn’t mean
that high-energy low-resolution experiments that test EFT are necessarily inconsistent: they provide
useful information about strongly coupled theories, where, e.g. ci ⇠ g2

⇤ � 1.
17In some systems, this might not be known, but a consistent analysis can still be performed along the lines of Refs. [75,76].
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5 Conclusions
I like Higgs physics because it is at the frontier of our exploration of the universe at small distances. As
such, it can potentially hide information about structure beyond the SM. The hierarchy problem suggests
the existence of such structure, that would imply modification of the Higgs properties. These can be
studied in the formalism of EFTs and their power-counting, a dictionary that allows to recognize the
relevant ingredients in microscopic theories and read their effects at low-energy.

EFTs can be thought as a structured and well motivated context to perform SM precision tests, the
result of which gives us quantitative information on how well we know the SM, in terms of how strong
are the constraints on certain classes of theories beyond the SM.

At the same time, EFTs, accompanied with their BSM perspective, provide an important search
tool that extends the reach of the LHC beyond its direct reach. This is particularly true for strongly
coupled BSM scenarios, that might induce large effects in low-energy processes, despite the scale of
new physics being beyond kinematic reach.
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