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Abstract
We discuss the free-electron laser physics in high-gain regime in 1D regime,
which contains the most important aspects of the free-electron laser dynamics.
The high-gain regime is particularly important when mirrors are not available
to build oscillators, and has been used as the most straightforward way to
produce intense X-rays from FELs.
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1. Introduction

A free-electron laser (FEL) can act as a high-gain amplifier, in which case the energy exchange during a
single pass through the undulator is large and the field amplitude cannot be regarded as a constant.
Therefore, it is necessary to consider the field evolution, so that we must study the pendulum equations
for the electron motion and Maxwell equation for the radiation. We will derive these equations, limit
them to 1D case. An approximate solution of the coupled Maxwell-pendulum equations are obtained to
exhibit the basic characteristics.

1 Maxwell equation
An FEL is a natural extension of spontaneous undulator radiation once we include the self-consistent
electron motion in the radiation field. Thus we may begin our FEL derivation starting from the paraxial
approximation of Maxwell equation [1] for ܰe electrons arbitrarily distributed:
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Here, we have rewritten the angular dependence of the current so that we can replace the point-like
electron source with a constant charge density in the transverse plane by making the replacement ࢞)ߜ −
(݆࢞ 	→ 	ࣛtr

−1, where ࣛtr	 is the transverse area. Then, in the one-dimensional (1D) limit we have
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and the source is directed entirely in the forward direction. We complete the 1D limit by defining the 1D
electric fieldܧ෨ఠ(ݖ) via
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ℰሚఠ(ࣘ; (ݖ = (3)																																																													.(ࣘ)ߜ(ݖ)෨ఠܧ

The enforces the field to be in the forward direction only, which also implies that (ࣘ)ߜ the spatial
representation of the electric field is independent of x. We insert the field Eq. (3) and the transverse
electron velocity ௫,௝ߚ = ൫ߛ/ܭ௝൯ cos(݇௨ݖ) into Eq. (1), and then integrate over angles to find the 1D field
equation
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Here ߥ = ఠ
ఠభ

= ௞
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	is the dimensionless frequency. We have assumed that the field describes a (ݖ)෨ఔܧ

slowly varying envelope, so that consistency requires that we also identify the slowly varying current
in  Eq.  (4).  As discussed previously, we can do this by introducing the average particle time ௝̅ݐ =
௝ݐ − (ଶߛଶ/8݇௨ܭ) sin(2݇௨ݖ) that subtracts off the oscillatory figure-eight component from t. In terms of
the slowly varying ponderomotive phase, we have

(ݖ)௝ݐܿൣ݇ − ൧ݖ = (ݖ)௝̅ݐଵ߱ൣߥ − (݇ଵ + ݇௨)ݖ൧ + ݖ௨݇ߥ +
ଶܭߥ

4 + ଶܭ2 sin(2݇௨ݖ)

= (ݖ)௝ߠߥ− + ݖ௨݇ߥ∆ + ℎ݇௨ݖ + ߦߥ sin(2݇௨ݖ) 	,																																							(5)

where we recall that h is an odd integer identifying the harmonic number, the normalized frequency
difference ߥ∆ ≡ ߥ − ℎ ≡ ݇ ݇ଵ⁄ − ℎ	, and we have introduced the shorthand notation ߦ ≡ ଶ/(4ܭ + .(ଶܭ2
Then, the wave equation Eq. (4) becomes
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The envelope energy ,(ݖ)෨ఔܧ ௝, and phaseߛ all vary slowly over one undulator (ݖ)݆ߠ period, as
does e୧∆ఔ௞ೠ௭	if we restrict our attention to small frequency detunings, |ߥ∆| ≪ 1. We can extract the slowly
varying terms from the second line of Eq. (6) by averaging over an undulator period ݑߣ as follows:
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where we have used the Jacobi–Anger identity to evaluate the integral, from  which  we  find  the
harmonic Bessel function factor [JJ]௛.

We are now in a position to write the frequency domain wave equation for the 1D FEL. However,
there are a few notational issues that we would like to simplify. First, we will find it convenient to have
the temporal and frequency representations of the field be related by a Fourier transform with respect
to the scaled frequency To do this, we .ߥ write

,࢞)௫ܧ ;ݐ (ݖ = න d߱dࣘ	eି୧(ఠି௞ࣘ∙࢞)e୧௞ݖℰሚఠ(ࣘ; (ݖ = න d߱	eି୧(ఠି௞ݖ)ܧ෨ఠ(ݖ)

= eି୧௛(ఠభି௞భ௭) නdߥ	e୧∆ఔఏܿ݇ଵeି୧∆ఔ௞ೠ௭ܧ෨ఠ(z)	.																																															(8)
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The integrand contains the slowly varying field, and we can both simplify this and eliminate the
phase e୧∆ఔ௞ೠ௭ from the source current in Eq. (6) by defining the phase-shifted electric field amplitude

(ݖ)ఔܧ = ܿ݇ଵe୧∆ఔ௞ೠ௭ܧ෨ఠ(ݖ)	.																																																						(9)

Note that this phase shift must be retained even though ߥ∆ ≪ 1, since we may also have ݖݑ݇ ≫ 1.
Finally, the field equation for is (ݖ)ఔܧ
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Here, Nλ is the number of electrons in one wavelength, and the harmonic coupling and electron volume
density are, respectively,
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Note that while approximating ௝ byߛ ௥ߛ in ݇௛ is a very good approximation, such a replacement in
the particle phase would eliminate the FEL interaction entirely.

Equation (10) is in frequency domain, and is the most convenient to analytically study the FEL
dynamics [1]. There are situations in which the time domain approach is more useful. The time domain
equations are also well-suited for efficient numerical simulation codes. In the rest of this paper we will
use the time domain formulation to obtain some basic understanding of the high-gain behaviour and its
scalings.

The time domain wave equation basically follows from the inverse Fourier transform of Eq. (10).
To make this connection explicit, we use the definitions Eq. (8) and Eq. (9) to find that 1D slowly
varying envelopes are related by the Fourier transforms

;ߠ)ܧ (ݖ = න dߥ	e୧∆ఔఏܧఔ(ݖ)	,																	ܧఔ(ݖ) =
1
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Therefore, multiplying Eq. (10) by e୧∆ఔఏ and integrating over ߥ yields
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at the fundamental frequency ω1.

It may appear that our work is done, but the transverse current in Eq. (13) is composed of a  sum
of delta functions that is unfortunately both difficult to treat and apparently in violation of our
assumption that E varies slowly. To establish a well-defined, slowly varying current, we average
Eq. (13) over some number of periods in θ. This ‘slice-averaging’ has the same physical significance
as our previous assumption that |ߥ∆| ≪ 1, and is valid provided the averaging time is much shorter than
the characteristic time over which the field amplitude changes. For a high-gain FEL we require the
averaging time ,to be much less than the coherence time	ݐ∆ ݐ∆ = ௛߱/ߠ∆ ≪ ୡ୭୦, whichݐ at the
fundamental frequency reduces to ݐ∆ ≪ or (ߩܿߨ4)/1ߣ ߠ∆ ≪ The time .ߩ1/2 window over which the
beam average is taken is sometimes referred to as an FEL slice.

We average Eq. (13) over an FEL slice by applying
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to both sides. Averaging the left-hand side of Eq. (13) leaves it unchanged since it is slowly varying,
while applying Eq. (14) to the right-hand side picks out those electrons whose ponderomotive phase ௝ߠ
is within the interval ߠ − and 	2/ߠ∆ ߠ + In .	2/ߠ∆ other words, the source for includes the (ߠ)ܧ ∆ܰ =
electrons that satisfy (ߨ2/ߠ∆)ߣܰ หߠ௝ − หߠ ≤ when they arrive at location 2/ߠ∆ Then, we find that the .ݖ

wave equation in the time domain is

൤
߲
ݖ߲

+ ݇௨
߲
ߠ߲
൨ ;ߠ)ܧ (ݖ = ଵ݊௘ߢ−

1
∆ܰ
෍ eି୧ఏೕ(௭)

௝ఢ∆

																																			(15)

= (16)																																										.	ଵ݊௘〈eି୧ఏೕ(௭)〉∆ߢ−

The notation in Eq. (15) denotes that we are to sum over the ୼ܰ particles within the FEL slice at
position ݖ and phaseθ. Hence, the average 〈eି୧ఏೕ〉∆, which is often referred to as the local bunching factor
(or just bunching factor), is a function of both ݖ and θ . For any given the bunching factor quantifies ,ݖ
the spectral content of the current near the fundamental frequency by a complex number whose
magnitude is between 0 and 12. Finally, we note while that the Maxwell equation in the time and frequency
domain look quite similar, they differ as follows: the driving current in Fourier version Eq. (10) is a sum
over all electrons with the phase eି୧ఔఏೕ , while the time domain Eq. (15) sums only over those electrons
within the FEL time slice using the phase	eି୧ఏ.

2 FEL equations and energy conservation
All equations governing the 1D FEL in the time domain are as follows:
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Equations  (17)  is  Maxwell  equation  (the  same  as  Eq.  (16))  and  Eqs.  (18)  and  (19)  are  the
pendulum equations describing the electron motion [1]. These equations conserve total (particle + field)
energy. To show this, we first integrate the electromagnetic energy density ୉୑ over length and multiplyݑ
the result by the transverse area ࣛ୲୰ to obtain the field energy
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2 Harmonic generalizations of the bunching factor can also be defined as ܾ௛ ≡ 〈eି୧௛ఏೕ〉∆.
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නdߠ	2߳଴|ܧ|ଶ 	.																																													(21)

Hence, an equation for the electromagnetic field energy can be obtained by multiplying (Eq. (17)) by
(ࣛ୲୰ߨ/1ߣ)߳ܧ0∗, adding the complex conjugate, and integrating over θ; we find that
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where in the last line we assumed that is constant over the length (ߠ)ܧ this assumption is required ;ߠ∆
because of our slice averaging, but is not necessary if one uses the frequency representation (Eq. (10))
or the unaveraged Eq. (13). The change in the total kinetic energy is obtained by multiplying (Eq. (19))
by 2ܿ݉	ݎߛ and summing over all electrons,
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Adding Eqs. (22) and (23) shows that energy is conserved:
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3 Dimensionless FEL scaling parameter ࣋
By expressing the governing equations of physical systems in terms of dimensionless quantities, one
can identify important time and length scales and characterize the relevant magnitudes of the physical
variables. In this section we cast the FEL equations into dimensionless form and find the fundamental
scaling parameter ρ. We will subsequently see that ρ, which is also called the Pierce parameter,
characterizes most properties of a high-gain FEL, while the dimensionless beam and radiation variables
will give us some sense of the dynamics without any additional computation.

We introduce the as-yet-unspecified parameter ρ by defining the scaled longitudinal coordinate
ݖ̂ 	 ≡ ݖߩݑ2݇	 that leads to the phase equation

dߠ௝
d̂ݖ

= ௝ߟ̂ 	for	̂ߟ௝ ≡
௝ߟ
ߩ
						(the	new	‘momentum’	variable).																						(25)

To simplify the energy equation for ௝ߟ̂ , we define the dimensionless complex field amplitude

ܽ =
߯ଵ

2݇௨ߩଶ
(26)																																																																								,	ܧ

in terms of which the energy equation reduces to
d̂ߟ௝
d̂ݖ

= ܽ൫ߠ௝, ൯e୧ఏೕݖ̂ + ܽ൫ߠ௝, ൯ݖ̂
∗
eି୧ఏೕ 	.																																																	(27)

Writing the field Eq. (17) in terms of and ݖ̂ a, we have
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To simplify the field equation, we choose to set the coefficient on the right-hand side of Eq. (28) to unity.
Thus, the dimensionless Pierce parameter ρ must be [1]
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	,																																											(29)

where ୅ܫ = ௘ݎ/ܿ݁ = ݁/଴݉ܿଷ߳ߨ4 ≈ 17045 A is the Alfvén current and we have set the cross-sectional
area of the electron beam ࣛ୲୰ → .௫ଶ assuming a Gaussian transverse profileߪߨ2

The scaled FEL equations have all coefficients unity, so that the dimensionless form allows one
to make a number of order-of-magnitude estimates regarding the dynamics. First, one may a priori
expect that the scaled variation d/d̂ݖ ≲ 	1. Thus, in the exponential growth regime we may anticipate
the 1D gain length ଵ. Additionally, since resonant energy exchange proceeds if theି(ߩ2݇௨)~଴ீܮ
ponderomotive phase is nearly constant, this implies that saturation of the FEL interaction occurs when
the scaled energy deviation 1 (or	~	௝ߟ̂ ௝ߟ At this point we expect that the bunching will approach .(ߩ	~	
its maximum value ห〈eି୧ఏೕ〉∆ห → 1, which in turn implies that the maximum scaled amplitude of the
radiation |ܽ|	~	1. Furthermore, if we had included the transverse derivatives in the wave equation we
would expect

1
4݇௨݇ଵߩ

સୄଶ → 1	.																																																																					(30)

Identifying the transverse Laplacian with the radiation size via સୄଶ	~	1/ߪ௥ଶ we find that the RMS mode
size of the laser is roughly given by

ඨ	~	௥ߪ
ଵߣ
ߨ4

௨ߣ
ߩߨ4

	.																																																																				(31)

While these arguments are heuristic, they give useful predictions of FEL performance. Besides
the observation that the gain length is approximately we use the definition Eq. (26) to translate ,ߩߨ௨/4ߣ
the scaled radiation amplitude |ܽ| 	→ 	1 at saturation to |ܧ| → 	2݇௨ߩଶ/߯ଵ, so that the maximum field
energy density

2߳଴|ܧ|ଶ	~	2߳଴ߩ
4݇௨ߩଷ

߯ଵଶ
= 2߳଴ߩ

ଵߢ
߯ଵ

= (32)																																			.	௥݉ܿଶߛ௘݊ߩ

Because 	ݎߛ2ܿ݉݁݊ is the electron energy density, we see that ρ also gives the FEL efficiency at
saturation:

ߩ =
field	energy	generated
e-beam	kinetic	energy

	.																																																						(33)

To determine the distance at which the FEL gain saturates and ܲ	 ∼ beam, weܲߩ	 consider the
motion of the electron in the pendulum potential. The period of motion is characterized by the synchrotron
wavenumber

Ω௦ ≡ ඨ
[JJ]ܭ଴݇௨ܧ݁
ଶ݉ܿଶߛ

= ௨|2ܽ଴|ଵ݇ߩ2 ଶ⁄ 	,																																										(34)
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and that the radiation field gains or loses energy depending on the oscillation phase of the particles.
Since the energy exchange to the radiation ends when most of the particles make one-half oscillation in
the ponderomotive bucket, we have 〈Ω௦〉ݖୱୟ୲ ≈ where ,ߨ 〈Ω௦〉 is the average value of the synchrotron
wavenumber over the FEL length sat. Takingݖ 〈Ω௦〉 to be one-quarter of its maximum value at saturation
where |ܽ0| 	∼ 	1, we have sat/√2ݖݑ݇ߩ 	∼ ߨ	 , or 		satݖ ∼ .ߩ/ݑߣ	  It  is  interesting  to  note  that  the  power
saturates when the synchrotron wavenumber is roughly equal to the exponential growth rate,

ܲ	 ∼ ୠୣୟ୫ܲߩ	 		⇔ 		Ω௦ 	∼ ௨݇ߩ2	 	.																																									(35)

This is to be expected, since when Ωݏ	 ∼ ݑ݇ߩ2	 the particles can rotate to the accelerating phase of the
potential during one growth length, in which case they then extract energy from the field.

Therefore, the FEL (or Pierce) parameter ߩ determines the main characteristics of high-gain
FEL systems, including the following.

1. Gain length ∼ .ߩߨ4/ݑߣ	

2. Saturation power ∼ ρ× (e-beam power).

3. Saturation length sat 	∼ ݑߣ ൗߩ  .

4. Transverse mode size ௥ߪ 	 ∼ 	ඥߣଵߣ௨/16ߨଶߩ .

In the following sections we will analyse the FEL equations and demonstrate that the dynamics indeed
exhibit these simple scalings.

4 1D solution using collective variables
In this section, we illustrate the essentials of FEL gain by neglecting the θ dependence of the
electromagnetic field. This ignores the propagation (slippage) of the radiation, and is equivalent to
assuming that a has only one frequency component. This model will be useful to illustrate the basic
physics of the electron beam and radiation field in a high-gain device, but will be insufficient to fully
understand the spectral properties of self-amplified spontaneous emission (SASE). A more rigorous
discussion of SASE can be found in literature [1]. The 1D FEL equations ignoring radiation slippage are
as follows

dߠ௝
d̂ݖ

= (36)																																																																																						௝,ߟ̂

d̂ߟ௝
d̂ݖ

= ܽe୧ఏೕ + ܽ∗eି୧ఏೕ ,																																																													(37)

dܽ
d̂ݖ

= −〈eି୧ఏೕ〉∆	.																																																																						(38)

These are 2 ∆ܰ 	+ 	2 coupled first-order ordinary differential equations, 2 ∆ܰ for the particles, and 2 for
the complex amplitude a. In general, these can only be solved via computer simulation. However, the
system can be linearized in terms of three collective variables as in Ref. [2]:

ܽ																																																									(field	amplitude);	
ܾ	 = 	 〈eି୧ఏೕ〉∆																																	(bunching	factor);
ܲ	 = 	 ௝eି୧ఏೕߟ̂〉 〉∆																														(collective	momentum) .

The equations of motion for the bunching b and the field amplitude a follow directly from Eqs. (36)
and (38). Differentiating the collective momentum yields
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dܲ
d̂ݖ

= ൽ
d̂ߟ௝
d̂ݖ

eି୧ఏೕඁ − i〈̂ߟ௝ଶeି୧ఏೕ 〉 = ܽ + ܽ∗〈eିଶ୧ఏೕ〉 − i〈̂ߟ௝ଶeି୧ఏೕ〉	.																		(39)

Note that Eq. (39) contains additional field variables, and the resulting system of equations is not closed.
Nevertheless, these other terms are nonlinear, which we therefore expect to result in negligible higher-
order corrections when a, b, and P are much smaller than unity before saturation. Thus, linearizing
Eq. (39) and including the equations for b and a from Eqs. (36) and (38) yields the following closed
system in the small-signal regime:

dܽ
d̂ݖ

= −ܾ							bunching	produces	coherent	radiation	,																															(40a)

dܾ
d̂ݖ

= −iܲ					energy	modulation	becomes	density	bunching,																(40b)

dܲ
d̂ݖ

= ܽ										coherent	radiation	drives	energy	modulation	.																		(40c)

These are three coupled first-order equations, which can be reduced to a single third- order equation
for a as

dଷܽ
d̂ݖଷ

= iܽ	.																																																																									(41)

We solve the linear equation by assuming that the field dependence is ∼ eି୧ఓ௭̂, which results in the
following dispersion relation for μ:

ଷߤ = 1	.																																																																								(42)

This is the well-known cubic equation, whose three roots are given by

ଵߤ = ଶߤ														,		1 =
−1 − √3i

2
ଷߤ															,	 =

−1 + √3i
2

	.																							(43)

The root 1ߤ is  real  and gives rise  to  an oscillatory solution,  while 2ߤ and 3ߤ are complex conjugates
that lead to exponentially decaying and growing modes, respectively. Furthermore, the roots obey

෍ߤℓ = 0
ଷ

ℓୀଵ

,																				෍
1
ℓߤ

= ෍ߤℓ∗ = ෍ߤℓଶ = 0
ଷ

ℓୀଵ

ଷ

ℓୀଵ

ଷ

ℓୀଵ

	,																									(44)

and the general solution to Eq. (41) is composed of a linear combination of the exponential solutions:

(ݖ̂)ܽ = ෍ܥℓeି୧ஜℓ௭̂
ଷ

ℓୀଵ

	.																																																													(45)

The three constants ℓܥ are determined from the initial conditions a(0), b(0), and P(0). By differentiating
the expression for a and using Eq. (40), we find

ܽ(0) = ଵܥ + ଶܥ + (46)																																																								,	ଷܥ

dܽ
d̂ݖ
ฬ
଴
= −ܾ(0) = −i[ߤଵܥଵ + ଶܥଶߤ + (47)																																						,	ଷ]ܥଷߤ

dଶܽ
d̂ݖଶ

ቤ
଴

= ݅ܲ(0) = ଵܥଵଶߤ]− + ଶܥଶଶߤ + (48)																																		.	ଷ]ܥଷଶߤ

Using Eq. (44), this yields the electromagnetic field evolution as
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(ݖ̂)ܽ =
1
3
෍ቈܽ(0) − i

ܾ(0)
ℓߤ

− iߤℓܲ(0)቉ eି୧ఓℓ௭̂
ଷ

ℓୀଵ

	.																												(49)

The general solution for the radiation requires all three roots of μ. For long propagation distances,
however, the relative importance of the oscillating root μ1 and decaying root μ2 becomes insignificant
in comparison with the growing solution associated with μ3. Thus, the radiation field is completely
characterized by μ3 in the exponential growth regime where ݖ̂ ≫ 1, so that

(ݖ̂)ܽ ≈
1
3
ቈܽ(0) − i

ܾ(0)
ଷߤ

− iߤଷܲ(0)቉ eି୧ఓయ௭̂	.																																		(50)

The first term in the bracket describes the coherent amplification of an external radiation signal, while
the second and the third term show how modulations in the electron beam density and energy may lead
to FEL output. When the source of these modulations is the electron beam shot noise then the exponential
growth is considered to be SASE.

5 Qualitative description of SASE
SASE results from the FEL amplification of the initially incoherent spontaneous undulator radiation,
Refs. [2, 3, 4]. It is of primary importance for FEL applications in wavelength regions where mirrors
(and, hence, oscillator configurations) are unavailable.

For  our  first  look  at  SASE,  we  use  the  formula  for  the  radiation  in  the  high-gain regime
Eq. (50) assuming that there is no external field a(0) = 0 and that the beam has vanishing energy
spread with P(0) = 0. In this case, the radiation intensity in the exponential growth regime is

〈ଶ|(ݖ̂)ܽ|〉 ≈
1
9
〈|ܾ(0)|ଶ〉e√ଷ௭̂	.																																																									(51)

Here, the scaled propagation distance ݖ3̂√ = √3(2݇௨ߩݖ) = ,଴ீܮ/ݖ  and  the  ideal  1D power gain length
is

଴ீܮ ≡
௨ߣ

ߩ3√ߨ4
	.																																																																							(52)

The bunching factor at the undulator entrance 〈|ܾ(0)|2〉 derives from the initial shot noise of the beam,
which  is  subsequently  amplified  by  the  FEL  process.  This  level  of shot noise is determined by the
number of particles in the radiation coherence length, and it can be shown that

〈|ܾ(0)|2〉 = ൾ
1

௟ܰౙ౥౞
ଶ ቮ ෍ eି୧ఏೕ

௝ఢ௟ౙ౥౞

ቮ

ଶ

ං ≈
1
௟ܰౙ౥౞

	,																																										(53)

where ݈ܰcoh is the number of electrons in a coherence length ݈coh. It turns out that the normalized
bandwidth of SASE is so that the ,ߩ~߱/߱∆ coherence time 	cohݐ ∼ ߩܿ/1ߣ	 and the coherence length
݈coh	 ∼ Alternatively, one can recognize .[2] ߩ/1ߣ	 the coherence length as the amount the radiation
slips  ahead  of  the  electron  beam  in  a few gain lengths. Hence, the start-up noise of a SASE FEL is
characterized by

௟ܰౙ౥౞	~ 	
ܫ
݁ܿ
ଵߣ
ߩ
	.																																																																			(54)

Figure 1 is a schematic plot that illustrates the initial start-up, exponential growth, and saturation
of a  SASE FEL. As is  clear  from the figure and from the previous discussion, ρ plays a fundamental
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role in the high-gain FEL physics for SASE. While we have not yet derived all the radiation properties,
some of the important ones include:

1. saturation length 	atݏܮ ∼ ; ߩ/ݑߣ	

2. output power ∼ ߩ × ܲbeam ;

3. frequency bandwidth ; ߩ	~	߱/߱∆

4. 1D power gain length 	0ܩܮ = ; (ߩ3√ߨ4)/ݑߣ	

5. transverse coherence: radiation emittance 	ݎߝ = ߨ4/ߣ	 ;

6. transverse mode size: 	rߪ ∼ ; 0ܩܮ	ݎߝ	√

7. for the SASE power ܲ = ܲin 	exp(ܩܮ/ݖ), the effective noise ܲin ∼ coh݈ܰ/2ܿ݉ߛߩ  .

Fig. 1: Illustration of basic SASE processes. Adapted from Ref. [5]

While these basic scalings and the plot of Fig. 1 describes the ensemble averaged SASE properties,
we should keep in mind that any individual SASE pulse is essentially amplified undulator radiation,
and therefore has the same basic  power and spectral fluctuations as the chaotic light discussed in
“Temporal Coherence of Radiation Beam from a collection of Electrons” (previous lecture from these
proceedings). We can understand the connection of SASE to amplified undulator radiation by
considering the undulator energy as computed from the 1D power spectral density,

ܷ୳୬ୢ = ܶනd߱	dࣘ
dܲ

d߱	dࣘ
ଵୈ
ሱሮܶන 	݀߱

ଶߣ

ࣛ୲୰

dܲ
d߱	dࣘ

ฬ
ࣘୀ૙

	,																											(55)

where the quantity tr can be understood as the characteristic angular spread from aࣛ/2ߣ source of area
ࣛtr:	∆߶௫∆߶௬ tr. In the 1D limit this tends to zero and we identifyࣛ/2ߣ	~	 (ࣘ)ߜ 	= 	ࣛtr/2ߣ, so that

dܲ
d߱

ฬ
ଵୈ

=
ଶߣ

ࣛ୲୰
(ࣘ)ߜ

dܲ
d߱

=
ଶߣ

ࣛ୲୰

dܲ
d߱ࣘ

ฬ
ࣘୀ૙

	.																																									(56)

The same factor trࣛ/2ߣ appeared for the 1D limit in Eq. (2). Inserting the power density in the forward
direction [1], we find that

ܷ୳୬ୢ = ܶ ൥
ଵଶߣ

ࣛ୲୰

ܫ
஺ܫ
ቆ

[JJ]ܭ
1 + ଶ/2ܭ

ቇ
ଶ

௥ଶ݉ܿଶߛ ௨ܰ
ଶ൩

߱ଵ
ߨ ௨ܰ

න 	dݔ ൬
sinݔ
ݔ

൰
ଶ
	

= ௥݉ܿଶߛଵܶ߱ߨ8 ௨ܰߩଶ 	→ (57)																																																						ଶߩ௥݉ܿଶߛଵܶ߱ߨ8
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at the FEL saturation distance 	ݑܰ ≈ Now, we use Eq. (57) to rewrite the FEL energy .ߩ/1	 at saturation
as

ܷ୊୉୐ = ௥݉ܿଶߛߩܰୣ = ୣܰ

ଵܶ߱ߩ
ܷ୳୬ୢ
ߨ8

~
ୡ୭୦ݐ ୣܰ

ܶ
ܷ୳୬ୢ = ௟ܰౙ౥౞ܷ୳୬ୢ																											(58)

=
ܶ
ୡ୭୦ݐ ௟ܰౙ౥౞

ଶ ܷ୳୬ୢ
ୣܰ
	.															(59)

The first line Eq. (58) shows that in the forward direction the FEL output at saturation is larger
than that of the undulator radiation by the number of particles in a coherence time ௟ܰౙ౥౞ ≳ 10ହ. The
second result Eq. (59) interprets the FEL energy as being proportional to the undulator field energy
due to a single electron times the square of the number of electrons in a coherence length times the
number of coherent regions .cohݐ/ܶ

Finally, we would like to emphasize that X-ray FELs based on SASE would not have been realized
without incredible improvements in the production, transport, and manipulation of electron beams, since
very high brightness electron beams are essential for X-ray FELs. In particular, SASE FELs have been
made possible through recent advances in photocathode gun design (see Ref. [6] and a review in
Ref. [7]), and tremendous improvements of radiofrequency linac and undulator technology. These
advances have made it possible to produce sufficient gain in the undulator for transversely coherent
radiation, meaning that the electron beam meets the following criteria:

1. energy spread ߛ/ߛ∆ < ;ߩ

2. emittance ௫ߝ ≲ ;(ߨ4)/ߣ

3. beam sizeߪ௫ ≳ ௥~ටߪ ఒ
ସగ

ఒೠ
ସగఘ

to have 1D scalings approximately apply;

4. high peak current to achieve 10ିଷ	~	ߩ and, hence, a reasonable saturation length and power
efficiency.
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