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Abstract
The transverse emittance is a critical parameter for the performance of syn-
chrotron light sources, linear and circular colliders, and many other applica-
tions. The best performance is often achieved with the smallest emittances.
Many effects lead however to emittance growth. In this lecture emittance
growth from mismatch at injection into circular machines will be discussed.
The concept of emittance and how to calculate it will be introduced and the
formulae for emittance blow-up for the most common injection errors will be
derived.
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1 Introduction
One of the key figures of merit in circular and linear colliders is the collider luminosity. It is defined as

L =
N+N�f

2⇡⌃x⌃y

, (1)

where ⌃x,y =
q
�⇤2
x,y+ + �⇤2

x,y� describes the convolution of the colliding particle distributions with
horizontal and vertical beam sizes �⇤

x,y at the interaction point, N+, N� the number of particles in
the two beams, and f the revolution frequency. In the case of round Gaussian beams and the same
distribution for both beams, the formula for luminosity simplifies to

L =
N+N�f

4⇡�⇤"
, (2)

where �⇤ is the � function at the collision point and " is the emittance of the beam. The luminosity thus
depends directly on the emittance in the vertical and the horizontal plane. The smaller the emittance, the
higher the luminosity and the higher is the collision rate at the experiment.

As long as the dynamics of the particle beams is governed by conservative forces, the area occupied
by the beam in phase space remains constant. We will see later that the area in phase space that is
occupied by the beam is related to the emittance of the beam. Many effects exist nevertheless that
alter the distribution in phase space. Synchrotron radiation, for example, will lead to a decrease of the
emittance. Various beam cooling mechanisms, such as stochastic and electron cooling, are also available
in specific circumstances to decrease the beam emittance in a controlled manner. A big class of effects,
however, leads to an uncontrolled increase of the emittance. Intra-beam scattering, power supply noise,
crossing resonances, beam instabilities, alignment errors, and dispersion for e� linacs are examples of
these issues; another category of emittance growth is due to errors at injection into synchrotrons or
linacs, where we typically speak of mismatch of various parameters. In this lecture we will discuss
how mismatch at injection can introduce emittance blow-up. We will start with a general definition and
discussion of emittance and how to calculate it for a given particle distribution. This will then be input
to calculate emittances for altered particle distributions due to mismatch. The effects will be explained
mostly referring to the horizontal plane. The same considerations can be applied to the vertical plane.
The material used for the preparation of these lectures is mainly from Refs. [1–3].
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2 Emittance
For many calculations and applications, the canonical conjugate variable pair called action-angle vari-
ables (J,�) prove to be a practical concept. The relation between Cartesian (x and x0) and action-angle
variables in the horizontal plane is given in Fig. 1. It shows the well-known elliptic particle trajectory in
horizontal phase space. The area A of the phase-space ellipse is proportional to action Jx via A = 2⇡Jx.

Fig. 1: Phase-space in the horizontal plane. The area of the ellipse defines the action Jx, with A = 2⇡Jx

The transformation between action-angle variables and Cartesian variables is summarised in Eqs.
(3) and (4). The action Jx is a measure of the particle amplitude of motion, see Eq. (4).

2Jx = �xx2 + 2↵xx0x+ �xx0
2

tan�x = ��xx
x

x0 � ↵x

(3)

x =
p
2�xJx cos�x

x0 = �

q
2Jx
�x

(sin�x + ↵x cos�x) .
(4)

The advantage of action-angle variables becomes apparent when observing them under symplectic
transformations as for example under transfer matrices. Symplectic operations M are defined as

MT
· S ·M = S (5)

where S is defined as

S =

0

BBBBBB@

0 1 0 0 0 0
�1 0 0 0 0 0
0 0 0 1 0 0
0 0 �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

1

CCCCCCA
. (6)

Symplectic operations are phase-space area-preserving, and thus action-preserving, operations. The con-
cept of action-angle variables is also useful for our discussion as it allows to define the emittance in very
simple terms. The emittance is defined as the mean action of all particles in the beam:

"x = hJxi . (7)

It is related to the width of the transverse distribution and can hence also be calculated from the second-
order moments of the distribution in phase space with the �-matrix

� =

✓
hx2i hxx0i
hxx0i hx02i

◆
(8)
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and the emittance as
"x =

p
|�| =

p
hx2ihx02i � hxx0i2 . (9)

We refer to this definition as rms-emittance. For phase-space distributions that are centred around 0 in x
and x0, both definitions, (7) and (9), are equivalent.

3 Mismatch at injection
Injection into a circular accelerator is a delicate process. Imprecise delivery of the beam for instance or
mismatch in the optics parameters lead to emittance blow-up and possibly to losses. In the following,
the methodology to calculate the emittance blow-up due to injection errors will be introduced for the
most important and most typical imperfections. The treatment can then be applied to other problems.
Most illustrations and calculations make use of normalised coordinates, another practical concept. In
normalised phase space the elliptical trajectories from real phase space become circles, see Fig. 2. The
transformation from real phase-space coordinates x, x0 to the normalised coordinates x, x0 is given in Eq.
(10) ✓

x
x0

◆
= N ·

✓
x
x0

◆
=

r
1

�x
·

✓
1 0
↵x �x

◆
·

✓
x
x0

◆
. (10)

Whereas the equation of the ellipse for real phase space is,

Fig. 2: In normalised phase space the trajectories are circles. The area stays the same and is linked to the action of
the particle.

2Jx = �xx
2 + 2↵xpx + �xp

2
x , (11)

it becomes the equation of a circle in normalised phase space

2Jx = x2 + x02 . (12)

The area enclosed by the trajectory in real as well as normalised phase space is A = 2⇡Jx.

3.1 Steering (dipole) error
If the beam is not injected on the closed orbit as indicated in Fig. 3, i.e., x 6= xCO and/or x0 6= x0

CO
,

the injected beam will perform so-called injection oscillations around the closed orbit for several turns
until the beam has filamented and the emittance has effectively grown. In phase space at the location of
the injection point, a steering error will lead to a particle distribution that is off-centred with respect to
the matched distribution as indicated in Fig. 4. In Fig. 5 snapshots of the evolution of the mismatched
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Fig. 3: The injected beam arrives with an offset in position and angle at the injection point. This will result in
injection oscillations.

Fig. 4: The blue particle distribution is beam injected without steering error, whereas the red one arrives with an
injection angle error. The mean action for both distributions is also indicated.

distribution (red distribution in figure) turn after turn are shown. In this example the particles experience
only linear fields and the centroid of the red particle distribution will move on a circular trajectory. The
centroid of the distribution is performing injection oscillations, as it can be measured turn-by-turn by a
single beam position monitor, Fig. 6, while the width of the distribution remains constant, Fig. 7. Figure
8 finally shows the evolution of the emittance turn-by-turn. Injection is supposed to happen at turn 20 in
that figure. Both definitions (7) and (9) are applied to the red particle distribution and shown in Fig. 8.
Whereas the rms-emittance corresponds to what we see in Fig. 7, the width of the distribution remains
constant, the usefulness of the emittance via mean action does not seem apparent. This will be different
in the presence of non-linear fields in the circular accelerator, where the particles’ tune will depend on
their amplitude.

In case of non-linear fields, the area occupied by the particle distribution in phase space will
change, Fig. 9. Filamentation will take place until the distribution will cover again all phases, see Fig.
10. The projection into the horizontal plane after many turns, as it can be measured by a profile monitor,
is shown in Fig. 11. It is no longer Gaussian. Smaller injection errors than in the example just lead
to the creation of non-Gaussian tails, a phenomenon which is frequently seen in day-to-day accelerator
operation. At the same time as the filamentation occurs, the oscillation amplitude of the centroid will
reduce. In fact the oscillation amplitude will decay exponentially following A(t) = A0 · e

� t
⌧ , where

⌧ is the filamentation time. The damped motion of the centroid under the influence of non-linear fields
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Fig. 5: The centroid of the particle distribution will move on a circular trajectory in normalised phase space turn
after turn.

Fig. 6: Turn-by-turn beam position measurements with a beam position monitor reveal injection oscillations in
case of injection with steering error.

is shown in Fig.12. As before, we can plot the evolution of the emittance using the mean action of the
particle distribution and the rms-emittance as defined in (9), see Fig. 13. The important conclusion from
the short phenomenological introduction of the effect on the emittance growth from an injection steering
error is that the emittance from mean action corresponds to the rms-emittance after full filamentation. Or
as said earlier the emittance definition from mean action is equivalent to the rms-emittance in case of a
particle distribution where mean angle and position are zero.

This input will now be used to derive the formula to calculate the emittance blow-up for a given
injection steering error. A collection of particles is injected with an error in position and angle as indi-
cated in Fig. 14. For an injection error �a[�] in units of � =

p
�", the misinjected beam is offset in

normalised phase space by L = �a
p
". The particle coordinates of the misinjected beam with respect
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Fig. 7: Horizontal distributions for different turns as could be measured by a turn-by-turn profile monitor. The
width of the distribution stays the same, but the mean is changing form turn to turn.

Fig. 8: Evolution of mean action and rms emittance as a function of turn. The injection occurs at the time turn =
20.

to the matched distribution are
xnew = x0 + L cos ✓
x0new = x00 + L sin ✓

(13)

and the action for one particular particle becomes

2Jnew = x2new + x02new = (x0 + L cos ✓)2 + (x00 + L sin ✓)2

= x20 + x020 + 2L(x0 cos ✓ + x00 sin ✓) + L2 .
(14)
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Fig. 9: Particle distribution with injection error in red after 100 turns in the presence of non-linear fields in the
circular accelerator. The distribution is filamenting.

For the emittance we need the mean action of all particles:

2hJnewi = hx20i+ hx020 i+ h2L(x0 cos ✓ + x00 sin ✓)i+ L2

= 2"0 + 2L(hx0 cos ✓i+ hx00 sin ✓i) + L2

= 2"0 + L2
(15)

using hcos ✓i = 0 and hsin ✓i = 0. And the emittance increase is hence

"new = hJnewi = "0 + L2/2
= "0(1 +�a2/2) .

(16)

Equation (16) can also be written for real phase-space coordinates, where �x and �x0 are the errors at
injection with respect to the horizontal closed orbit at injection:

"

"0
= 1 +

1

2

�x2 + (��x0 + ↵�x)2

�"0
. (17)

As we have seen now, injection oscillations are detrimental for emittance preservation and there-
fore need to be corrected. Frequently the input for the correction algorithm is not the oscillation measured
at a single pick up over many turns, but rather the difference of the first turn trajectory from the injection
closed orbit measured with many pick ups. In Fig. 15 an example of the injection oscillation display in
the LHC control room is shown. It contains the trajectory reading in the transfer line between the LHC
pre-injector and the LHC as well as the injection oscillations in the first 3 km long part of the LHC. The
usual trajectory correction algorithms are used to find the best dipole correctors in the transfer line to min-
imise the injection oscillation amplitudes in the LHC. The horizontal injection oscillation amplitude in
the example is 2 mm, corresponding roughly to 2 �. Let’s apply Eq. (16) to calculate the emittance blow-
up for �a = 2�. According to Eq. (16) the emittance blow-up will be "new = "0(1 +�a2/2) = 3"0.
For comparison, the allowed emittance growth budget in the LHC is only 10%. Clearly, these injection
oscillations would need to be corrected.
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Fig. 10: After filamentation the beam covers all phases in phase space and the area is larger than initially

Fig. 11: Filamentation leads to a larger beam size measured at a profile monitor. The distribution has also become
non-Gaussian. The mean of the distribution remains constant after filamentation.

The kind of injection oscillation correction discussed so far will however only remove the static
contributions to the steering errors. Small variations of the injected trajectory might also occur on a shot-
by-shot basis or if the injected beam consists of several bunches, the equipment involved in the transfer
might introduce slightly different trajectories and hence different injection oscillations for the different
bunches. These injection errors can only be corrected by the transverse feedback system in the receiving
circular machine. The feedback damping time needs to be faster than the filamentation time to avoid
emittance blow-up.
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Fig. 12: In the presence of non-linear fields, damping of the centroid motion occurs after an injection error. The
decay of the oscillation amplitudes can be fitted with A(t) = A0 · e�

t
⌧ , where ⌧ is the filamentation time.

Fig. 13: The evolution of the emittance versus turn using the definition of mean action as well as rms-emittance
for an injection steering error in the presence of non-linear fields where the beam distribution is filamenting.

The principal behind a transverse feedback is illustrated in Fig. 16. The trajectory excursion
is measured with one or more beam position monitor(s) at a certain position along the ring and the
required correction is calculated in a processing unit and sent to a fast transverse kicker that will correct
the trajectory error with respect to the orbit. Depending on the bandwidth of the system even bunch-
by-bunch up to intra-bunch oscillations can be damped in this manner. The result of the action of a
transverse feedback on the injection error and the resulting injection oscillations is shown in Fig. 17
and the effect on the emittance in Fig. 18. The emittance will nevertheless grow in the presence of a
transverse damper as it can only correct the oscillations with limited gain. The reduction in growth with
respect to the situation without damper depends on the ratio of filamentation time ⌧DC and damping time
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Fig. 14: The misinjected beam is offset in normalised phase space by L = �a
p
" with respect to the matched

distribution.

Fig. 15: A screen shot of the injection oscillation display for LHC beam 1. It shows the transfer line trajectory in
the horizontal and vertical plane for the transfer between the LHC injector and the LHC itself, as well as the first
turn at the pick ups of the first 3 km in the LHC minus the closed orbit at injection energy. The plot spans 6 km.

⌧d of the feedback system. The emittance blow-up for injection error �x and �x0 in the presence of a
transverse feedback is [4]

"

"0
= 1 +

1

2

�x2 + (��x0 + ↵�x)2

�"0
(

1

1 + ⌧DC/⌧d
)2 . (18)

3.2 Emittance blow-up from betatron mismatch
Optical errors can occur in the transfer line and the ring, such that the beam can be injected with a
mismatch. The shape of the injected beam then corresponds to different twiss parameters ↵ and � than
the closed solution of the ring at the injection point. At the moment of injection the area of the particle
distribution in phase space might be the same as for the desired matched distribution, see Fig. 19, only
the orientation is different. Filamentation will introduce an emittance increase. The coordinates of the
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Fig. 16: The principle of the transverse feedback system: the trajectory excursion is measured with one or more
beam position monitor(s) at a certain position along the ring and the required correction is calculated in a processing
unit and sent to a fast transverse kicker that will correct the trajectory error with respect to the orbit.

Fig. 17: The result of the action of a transverse feedback on the injection error and the resulting injection oscilla-
tions: the left plot shows the injection oscillations without transverse feedback and the left plot with. The damping
time is faster than the filamentation time.

particles on the injected ellipse are

x2 =
p
2�2Jx cos�

x02 = �

q
2Jx
�2

(sin�+ ↵2 cos�) .
(19)

Transforming the coordinates in Eq. (19) to the normalised phase space defined by the matched twiss
parameters ↵1, �1 results in an ellipse in normalised phase space and not a circle.

✓
x2
x20

◆
=

r
1

�1
·

✓
1 0
↵1 �1

◆
·

✓
x2
x02

◆
. (20)

The ellipse is defined by

2Jx = x22[
�1
�2

+
�2
�1

(↵1 � ↵2
�1
�2

)2] + x0
2
2
�2
�1

� 2x2x
0
2[
�2
�1

(↵1 � ↵2
�1
�2

)] , (21)
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Fig. 18: The evolution of the emittance versus turn for an injection steering error using the definition of mean
action as well as rms-emittance in the presence of non-linear fields and transverse feedback system. The final
emittance blow-up depends on the ratio of filamentation time versus damping time ⌧DC/⌧d.

Fig. 19: Betatron mismatch illustrated in real phase space. The blue ellipse represents the matched twiss param-
eters (↵1,�1), the injected beam (red curve) arrives however on an ellipses describing different twiss parameters
(↵2,�2).

which can be characterised by �new, �new and ↵new following Eq. (11):

↵new = �
�2
�1
(↵1 � ↵2

�1
�2
)

�new = �2
�1

�new = �1
�2

+ �2
�1
(↵1 � ↵2

�1
�2
)2 .

(22)

From the general ellipse properties [5], the parameters a, b and � can be introduced (Fig. 20), where a
and b are the half axes of the ellipse which are related to the radius of the matched circle A =

p
2J via

a = A/�
b = A · �

(23)
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Fig. 20: Betatron mismatch in normalised phase space: The mismatched beam is enclosed by an ellipse. The half
axes of the ellipse are related to the matched circle of same area with a = A/� and b = A · �.

and
a = Ap

2
(
p
H + 1 +

p
H � 1)

b = Ap
2
(
p
H + 1�

p
H � 1)

(24)

where
H =

1

2
(�new + �new) =

1

2
(
�1
�2

+
�2
�1

(↵1 � ↵2
�1
�2

)2 +
�2
�1

) (25)

such that
� = 1p

2
(
p
H + 1 +

p
H � 1)

1
�

= 1p
2
(
p
H + 1�

p
H � 1) .

(26)

The coordinates of the mismatched distribution in normalised phase space at the injection point can then
be written simply as

xnew = � ·A sin(�+ �1)
x0new = 1

�
·A cos(�+ �1) .

(27)

After filamentation the particles’ trajectories will be circles concentric to the circle of the matched dis-
tribution. The equation of the circle for one particular particle with the new coordinates is

2Jnew = x2new + x02new = �2
· 2J0 sin

2(�+ �1) +
1

�2
2J0 cos

2(�+ �1) . (28)

The emittance after filamentation is again the average over all phases, where we use that hsin2(�+�1)i =
hcos2(�+ �1)i = 1/2

"new = hJnewi = 1
2(�

2
h2J0 sin2(�+ �1)i+

1
�2 h2J0 cos2(�+ �1)i)

= hJ0i(�2
hsin2(�+ �1)i+

1
�2 hcos2(�+ �1)i)

= 1
2"0(�

2 + 1
�2 ) .

(29)

For the final result � can be substituted with the twiss parameters of the matched and the mismatched
distribution:

"new =
1

2
"0(�

2 +
1

�2
) = H · "0 =

1

2
"0(

�1
�2

+
�2
�1

(↵1 � ↵2
�1
�2

)2 +
�2
�1

) (30)

where subscript 1 refers to the matched ellipse and 2 to the mismatched one.
An example of a turn-by-turn profile measurement with betatron mismatch is shown in Fig. 21.

Before the beam has fully filamented, the beam size measured by the instrument is oscillating indicating
mismatch.
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Fig. 21: Measurement of beam size versus turn after injection in the horizontal plane measured with a turn-by-turn
profile monitor. The oscillation of the beam size indicates mismatch. The slope of the curve is due to emittance
growth from the scattering in the foil [6].

3.3 Emittance blow-up from thin scatterer
It is sometimes necessary to have thin scatterers in the beam as thin beam screens of Al2O3 or T i used
to generate beam profile measurements, metal windows used to separate vacuum of transfer lines from
vacuum in circular machines or foils to strip electrons to change charge state. The emittance of the
beam that passes through will increase due to multiple Coulomb scattering. The rms angle increase from

Fig. 22: The emittance of the beam that passes through a thin foil will increase due to multiple Coulomb scattering

multiple Coulomb scattering is

p
h⇥2

si[mrad] =
14.1

�cp[MeV/c]
Zinc

r
L

Lrad

(1 + 0.11 · log10
L

Lrad

) , (31)

where �c = v/c, p is the momentum, Zinc is the particle charge, L the target length, and Lrad the
radiation length of the target. Each particle gets a random change in angle ⇥s, but there is no effect
on the positions at the scatterer, Fig. 23. So, the coordinates in normalised phase space at the scatterer
location will transform to

xnew = x0
x0new = x00 +

p
�⇥s .

(32)

And after filamentation the particles will have an emittance " = hJnewi as illustrated in Fig. 24.
The action for one of the scattered particles will be
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Fig. 23: Each particle gets a random angle change ⇥s, but there is no effect on the positions at the scatterer

Fig. 24: Filamentation further increases the area in phase space the beam is occupying, after the increase in the
angular distribution at the scatterer.

2Jnew = x2new + x02new
= x20 + (x00 +

p
�⇥s)2

= x20 + x020 + 2
p
�(x00⇥s) + �⇥2

s

(33)

and the mean action therefore, where we use that the initial angle and scattering angle are uncorrelated
and the average angle hx00i = 0,

2hJnewi = hx20i+ hx020 i+ 2
p
�hx00⇥si+ �h⇥2

si

= 2"0 + 2
p
�hx00ih⇥si+ �h⇥2

si

= 2"0 + �h⇥2
si .

(34)

15

EMITTANCE PRESERVATION

359



The new emittance after filamentation and after having traversed a thin scatterer will be

"new = "0 +
�

2
h⇥2

si . (35)

In order to reduce the blow-up from stripping foils and other thin scatterers, they have to be placed at
locations with small �-function. A small �-function means a large spread in angles, so the additional
scattering angle has a small effect on the distribution. An example for the optics design of the insertion
in a transfer line with a stripper foil for LHC ion transfer between the PS and SPS accelerator is shown
in Fig. 25. For LHC heavy ions, Pb54+ is stripped to Pb82+ at 4.25 GeV/u using a 0.8 mm thick Al

Fig. 25: This figure shows the optics in the transfer line between the accelerators PS and SPS at CERN for the
LHC heavy ions. The stripper foil is located at a location with �x,y ⇡ 5 m.

foil, in the PS to SPS line. The emittance blow-up is minimised with a low-� insertion (�x,y ⇡ 5 m) in
the transfer line. Using the formulae from above, the expected emittance blow-up is nevertheless 8%.

3.4 Emittance blow-up from other effects
The techniques that were introduced in the previous sections can be applied to various other effects and
errors at injection to calculate the emittance blow-up. In the following results of some of these derivations
are summarised.

3.4.1 Dispersion mismatch

In case of a dispersion mismatch by �D and �D0 and a momentum spread of �p

p
of the beam, the

emittance blow-up will be

"

"0
= 1 +

1

2

�D2 + (��D0 + ↵�D)2

�"0
(
�p

p
)2 . (36)

3.4.2 Energy mismatch

With dispersion at the injection point and a momentum offset of the beam of �p/p, the emittance blow-
up will amount to

"

"0
= 1 +

1

2

D2

�"0
(
�p

p
)2 . (37)

3.4.3 Geometrical mismatch

In case there is a tilt angle ⇥ between the beam reference systems of the injected beam and the ring at
the injection point, cross-plane coupling will occur and through filamentation emittance blow-up. The
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following formula gives the result in the horizontal plane [7, 8]

"x = "0x cos
2⇥+

1

2
"0y sin

2⇥ ·

✓
�y
�x

(1 + ↵2
x) +

�x
�y

(1 + ↵2
y)� 2↵x↵y

◆
. (38)

3.5 Summary
In this lecture the generic method to calculate emittance growth from mismatch at injection was intro-
duced. The method was applied for the most prominent injection errors and important formulae were
derived. At the end of the lecture a collection of formulae for various other typical injection errors was
given.
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