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Abstract

These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELs
and ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic Hamburg
Emporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductory
lectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators and
the process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamics
and controls issues.
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Preface

The aim of the CERN Accelerator School (CAS) is to collect, preserve and disseminate the knowledge accumu-
lated in the world’s accelerator laboratories over the years. This applies not only to general accelerator physics,
but also to related sub-systems and associated technologies, and to the development of novel, dedicated facilities.
These wider aims are achieved by means of specialized courses currently held twice per year. The topic of the
first 2016 specialized course was Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs) and was
held at the Hotel Scandic Hamburg Emporio, Hamburg, Germany from 31 May to 10 June 2016.

The course was made possible through the fruitful collaboration with DESY, in particular through the efforts
of Ruth Mundt, Christel Oevermann and Kay Wittenburg.

A full day visit to DESY and the European XFEL in Hamburg Bahrenfeld provided a practical insight into the
field. Participants also had the opportunity to work on realistic case studies as an integral part of the programme.
For the organisation and execution of the latter we are indebted to Sven Reiche from PSI. The backing of the
CERN management and the guidance of the CAS Advisory and Programme Committees enabled the course to
take place, while the attention to detail of the Local Organising Committee and the management and staff of the
Hotel Scandic Hamburg Emporio ensured that the school was held under optimum conditions.

Special thanks must go to the lecturers for the preparation and presentation of the lectures, even more so to
those who have written a manuscript for these proceedings.

For the production of the proceedings we are indebted to the efforts of Barbara Strasser and to the CERN
Publishing Service, especially Valeria Brancolini for her very positive and efficient collaboration.

These proceedings have been published in paper (black and white) and electronic form. The electronic version,
with full colour figures, can be found at https://e-publishing.cern.ch/index.php/CYRSP/issue/view/47.

Roger Bailey, Editor
CERN Accelerator School
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Classical Electrodynamics and Applications to Particle Accelerators

W. Herr
CERN, Geneva, Switzerland

Abstract
Classical electrodynamic theory is required theoretical training for physicists
and engineers working with particle accelerators. Basic and empirical phenom-
ena are reviewed and lead to Maxwell’s equations, which form the framework
for any calculations involving electromagnetic fields. Some necessary math-
ematical background is included in the appendices so the reader can follow
the work and the conventions used in this text. Plane waves in vacuum and in
different media, radio frequency cavities, and propagation in a waveguide are
presented.

Keywords
Electrodynamics; Maxwell’s equations; electromagnetic waves; cavities; polar-
ization.

1 Introduction and motivation
Together with classical mechanics, quantum theory, and thermodynamics, the theory of classical electro-
dynamics forms the framework for the introduction to theoretical physics. Classical electrodynamics can
be applied where the length scale does not required a treatment on the quantum level. Although both
electricity and magnetism can exert forces on other objects, they were for a long time treated as distinct
effects. The empirical laws were unified in a single theory by Maxwell and culminated in the prediction
of electromagnetic waves. Although very successful in describing most phenomena, it is not possible
to reconcile the theory with the concepts of classical mechanics. This was solved by the introduction
of special relativity by Einstein, in studying the effects of moving charges. This reformulation not only
explained the origin of such effects as the Lorentz force, but also showed that electricity and magnetism
are two different aspects of the same underlying physics. Since in accelerator physics we are mainly
concerned about moving charges, the topic of special relativity is treated in a separate lecture at this
school [1].

This paper touches on many different areas of electromagnetic theory, with a strong focus on
applications to accelerator physics [2]. It covers the field of electrostatics and the equations of Gauss and
Poisson, magnetic fields generated by linear and circular currents, and electromagnetic effects in vacuum
and different media, and leads to Maxwell’s equations [3–5].

Electromagnetic waves and their behaviour at boundaries and in waveguides and cavity resonators
are treated in some detail. Because of their importance, such phenomena as polarization and propagation
in perfect and resistive conductors are presented.

The paper is intended as a recapitulation for physicists and engineers and mathematical subtleties
are avoided where it is acceptable.

This paper cannot replace a full course on electromagnetic theory. This is, in particular, true for
students less familiar with this subject. Although they will not be able to understand everything in this
lecture, it is attempted to provide access to the core material and the direct features relevant for accelerator
physics.

The background required is a knowledge of calculus and differential equations; some more ad-
vanced concepts, such as vector calculus are summarized in the appendices.
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Fig. 1: Charges enclosed within a closed surface

2 Electrostatics
Electrostatics deals with phenomena related to time-independent charges. It was found empirically that
charged bodies exert a force on each other, attracting in the case of unlike charges or repelling for charges
of equal sign. This is described by the introduction of electric fields and the Coulomb force acting on the
particles. Charges are the origin of electric fields, which form a vector field.

2.1 Gauss’s theorem
The fields of a distribution of charges add to form the overall field and the latter can be computed when
the distribution of charge is known. This treatment is based on the mathematical framework worked out
by Gauss and others and is summarized in Gauss’s theorem. Gauss’s theorem in its simplest form is
illustrated in Fig. 1.

We assume a surface S enclosing a volume V , within which are charges: q1, q . . . , producing
electromagnetic fields ~E originating from the charges and passing through the surface (Fig. 1).

Summing the normal component of the fields passing through the surface, we obtain the flux φ:

φ =

∫

S

~E · ~ndA =
∑

i

qi
ε0

=
Q

ε0
, (1)

where ~n is the normal unit vector and ~E the electric field at an area element dA of the surface. The
surface integral of ~E equals the total charges Q inside the enclosed volume.

This holds for any arbitrary (closed) surface S and is:

– independent of how the particles are distributed inside the volume;
– independent of whether the particles are moving or at rest;
– independent of whether the particles are in vacuum or material.

Using Gauss’s formula (see Appendix B), we can formulate the theorem as:
∫
S
~E · d ~A =

∫
V

ρ

ε0
· dV =

Q

ε0
= φE∫

S

~E · d ~A =

∫

V
∇ ~E · dV =

∫

V
div ~E · dV

︸ ︷︷ ︸
Gauss′s formula

(relates surface and volume integrals) (2)

It follows that from Eq. (2):

div ~E = ∇ · ~E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

=
ρ

ε0
, (3)
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Fig. 2: Flux through a surface element created by a single point charge

which is Maxwell’s first equation.

As a physical picture, the divergence ‘measures’ outward flux φE of the field. The simplest pos-
sible example is the flux from a single charge q, shown in Fig. 2. A charge q generates a field ~E according
to (Coulombs law):

~E =
q

4πε0

~r

r3
. (4)

It is enclosed by a sphere and obviously ~E = const. on a sphere (area, 4π · r2):
∫ ∫

sphere

~E · d ~A =
q

4πε0

∫ ∫

sphere

dA

r2
=

q

ε0
. (5)

The surface integral through the sphere A equals the charge inside the sphere (for any radius of the
sphere), consistent with Eq. (1).

2.2 Electrostatic potential and Poisson’s equation
We can derive the field ~E from a scalar electrostatic potential φ(x, y, z), i.e.,

~E = −grad φ = −∇φ = −
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (6)

then we have

∇ ~E = −∇2φ = −
(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
=
ρ(x, y, z)

ε0

This is Poisson’s equation.

Once we can compute φ for a given distribution of the charge density ρ, we can derive the fields.
As an example, the simplest possible charge distribution is an isolated point charge with the potential:

φ(r) =
q

4πε0r

~E = −∇φ(r) =
q

4πε0
· ~r
r3

As a realistic case, we assume a distribution ρ(x, y, z) that is Gaussian in all three dimensions:

ρ(x, y, z) =
Q

σxσyσz
√

2π3
exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

(σx, σy, σz are the r.m.s. sizes).

The potential φ(x, y, z, σx, σy, σz) becomes (see e.g., Ref. [6]):

φ(x, y, z, σx, σy, σz) =
Q

4πε0

∫ ∞

0

exp
(
− x2

2σ2
x+t
− y2

2σ2
y+t
− z2

2σ2
z+t

)

√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)
dt . (7)
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Fig. 3: Field lines between magnetic dipoles

In many realistic cases, the charge distribution shows a strong symmetry, Then we can rewrite the
Poisson equation and obtain some very important formulae in practice.

Poisson’s equation in polar co-ordinates (r, ϕ):

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
= − ρ

ε0
; (8)

Poisson’s equation in cylindrical co-ordinates (r, ϕ, z):

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= − ρ

ε0
; (9)

Poisson’s equation in spherical co-ordinates (r, θ, ϕ):

1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin θ

∂2φ

∂ϕ2
= − ρ

ε0
. (10)

Examples for solutions of these equations are found in Ref. [3].

3 Magnetostatics
In the treatment of magnetostatic phenomena, we follow the strategy developed for electrostatics. The
striking difference is the absence of magnetic charges, i.e., magnetic ‘charges’ occur only in combination
with opposite ‘charges’, i.e., in the form of a magnetic dipole.

The field lines between magnetic poles for a magnet and the Earth’s magnetic field are shown
in Fig. 3.

We start with some basic definitions and properties.

– Magnetic field lines always run from north to south.
– They are described as vector fields by the magnetic flux density ~B.
– All field lines are closed lines from the north to the south pole.

3.1 Gauss’s theorem
We follow the same procedure as for electrostatic charges and enclose a magnetic dipole within a closed
surface Fig. 4.

From very simple considerations, it is rather obvious that field lines passing outwards through the
surface also return through this surface, i.e., the overall flux is zero. This is formally described by Gauss’s
second theorem, for magnetic fields:

∫

S

~Bd ~A =

∫

V
∇ ~BdV = 0 . (11)
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Fig. 4: Closed surface around magnetic dipole

Fig. 5: Static electric current inducing an encircling (curling) magnetic field

This leads to Maxwell’s second equation:

∇ ~B = 0 . (12)

The physical significance of this equation is that magnetic charges (monopoles) do not exist (although
Maxwell’s equations could easily be modified if necessary).

3.2 Ampère’s law
Static currents produce a magnetic field described by Ampère’s law (Fig. 5).

Assuming a current density ~j, we can compute the magnetic field:

curl ~B = ∇× ~B = µ0
~j , (13)

or in integral form, where the current density becomes the current I ,
∫ ∫

A
∇× ~Bd ~A =

∫ ∫

A
µ0
~jd ~A = µ0

~I . (14)

For a static electric current I in a single wire (Fig. 6), we get the Biot–Savart law (we have used
Stoke’s theorem and the area of a circle, A = r2 · π):

~B =
µ0

4π

∮
~I · ~r × d~s

r3

~B =
µ0

2π

~I

r
(15)

4 Time-varying electromagnetic fields
Extending the subject of static electric and magnetic fields opens a large range of new phenomena.
Furthermore it shows a close connection between electricity and magnetism.
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Fig. 6: Induced magnetic fields by static current

Fig. 7: Maxwell’s displacement current, e.g., charging capacitor

4.1 Maxwell and time-varying electric fields
We need to address the question of whether we need an electric current to produce magnetic fields. This
was addressed by Maxwell, which led him to the introduction of the displacement current ~jd.

We define this displacement current by:

~Id =
dq

dt
= ε0 ·

dφ

dt
= ε0

d

dt

∫ ∫

area

~E · d ~A . (16)

It must be understood that this is not a current from moving charges but from time-varying electric fields.

The displacement current Id produces magnetic fields, just like ‘actual currents’ do. An example
for a displacement current is a charging capacitor (Fig. 7).

Time-varying electric fields induce magnetic fields (using the current density ~jd). We can formu-
late this as:

∇× ~B = µ0
~jd = ε0µ0

∂ ~E

∂t
. (17)

The bottom line of this result is that magnetic fields ~B can be generated in two ways:

∇× ~B = µ0
~j (18)

are the magnetic fields produced by an electric current (Ampère), while

∇× ~B = µ0
~jd = ε0µ0

∂ ~E

∂t
(19)

are the magnetic fields produced by a changing electric field (Maxwell).

Putting them together we obtain Maxwell’s third law:

∇× ~B = µ0(~j + ~jd) = µ0
~j + ε0µ0

∂ ~E

∂t
. (20)

Using Stoke’s formula, this can be rewritten in integral form:
∮

C

~B · d~s =

∫

A
∇× ~B · d ~A

︸ ︷︷ ︸
Stoke′s formula

=

∫

A

(
µ0
~j + ε0µ0

∂ ~E

∂t

)
· d ~A . (21)
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Fig. 8: Electromotive force (EMF) produced by changing magnetic flux Ω

4.2 Faraday’s law and varying magnetic fields
Assuming a conducting coil in a static magnetic field ~B (Fig. 8). The area enclosed by the coil should be
A. Changing the magnetic flux Ω through the area A produces an electromotive force (EMF) in the coil
resulting in a current I:

flux = Ω =

∫

A

~Bd ~A, EMF =

∮

C

~E · d~s , (22)

−∂Ω

∂t
= − ∂

∂t

∫

A

~Bd ~A

︸ ︷︷ ︸
fluxΩ

=

∮

C

~E · d~s , (23)

−∂Ω

∂t
= −

∫

A

∂

∂t
~Bd ~A =

∮

C

~E · d~s . (24)

The magnetic flux can be changed by:

– moving the magnet relative to the conducting coil;
– moving the coil relative to the magnet.

4.3 Ampère and Maxwell’s law
In a more general form, this can be written using Stoke’s formula, which relates line integrals and surface
integrals. It is then rewritten as:

−
∫

A

∂ ~B

∂t
d ~A =

∫

A
∇× ~Ed ~A =

∮

C

~E · d~s
︸ ︷︷ ︸

Stoke’s formula

, (25)

and we arrive at the well-known formulation:

∇× ~E = −∂
~B

∂t
. (26)

A changing magnetic field through any closed area induces electric fields in the (arbitrary) bound-
ary. A sketch demonstrating Stoke’s formula is shown in Fig. 9. This formulation is known as the
Maxwell–Faraday law.

5 Maxwell’s equations
The empirical concepts and experimental findings can be put together in a set of differential equations,
usually referred to as Maxwell’s equations.
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Fig. 9: Stoke’s formula

5.1 Maxwell’s equations in vacuum
Putting together Eqs. (3), (12), (20), and (26), Maxwell’s equations in vacuum (so-called microscopic
equations) read:

∇ ~E =
ρ

ε0
= −∆φ , (I)

∇ ~B = 0 , (II)

∇× ~E = −d ~B

dt
, (III)

∇× ~B = µ0

(
~j + ε0

d ~E

dt

)
, (IV) (27)

or, written in integral form (using Gauss’s and Stoke’s theorems):

∫

A

~E · d ~A =
Q

ε0
,

∫

A

~B · d ~A = 0 ,

∮

C

~E · d~s = −
∫

A

(
d ~B

dt

)
· d ~A ,

∮

C

~B · d~s = µ0

∫

A

(
~j + ε0

d ~E

dt

)
· d ~A . (28)

5.2 Maxwell’s equations in material
In material, we have to modify the electromagnetic fields ~E and ~H and relate those to the magnetic
induction ~B and electric displacement ~D. In vacuum, we had:

~D = ε0 · ~E, ~B = µ0 · ~H . (29)

In a material, the relations read:

~D = εr · ε0 · ~E = ε0 ~E + ~P , (30)
~B = µr · µ0 · ~H = µ0

~H + ~M . (31)

The origin of these additional contributions are ~Polarization and ~Magnetization in material.

We can summarize:

εr( ~E,~r, ω)⇒ εr is relative permittivity ≈ [1–105] ;
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µr( ~H,~r, ω)⇒ µr is relative permeability ≈ [0–106] .

If ~D and ~B do not depend on the fields ~E and ~H , they are linear; if they do not depend on the
direction (~r) or frequency (ω), they are isotropic and non-dispersive.

The so-called macroscopic Maxwell’s equations become:

∇ ~D = ρ ,

∇ ~B = 0 ,

∇× ~E = −d ~B

dt
,

∇× ~H = ~j +
d ~D

dt
. (32)

6 Electromagnetic potentials
It was shown that electric fields can be derived from a scalar potential φ:

~E = −~∇φ . (33)

Since div ~B = 0, we can write ~B using a vector potential ~A:

~B = ~∇× ~A = curl ~A , (34)

combining Maxwell (I) and Maxwell (III):

~E = −~∇φ− ∂ ~A

∂t
. (35)

Fields can be written as derivatives of scalar and vector potentials φ(x, y, z) and ~A(x, y, z). Knowledge
of the potentials allows computation of the fields.

6.1 Gauge invariance
The equations for the potentials can be directly derived from Maxwell’s equations:

∆φ =
1

c

∂(∇ · ~A)

∂t
= −4πρ , (36)

and

∆ ~A− 1

c2

∂2 ~A

∂2t
−∇

(
∇ · ~A+

1

c

∂φ

∂t

)
=

4π

c
~j . (37)

We have two coupled differential equations for the potentials, which may be difficult to solve for
general charge densities and current densities. We shall try to decouple these equations using a particular
property of the potentials. While the absolute values of the electric and magnetic fields can be measured,
the absolute values of the potentials are not defined. The electromagnetic potentials are merely aux-
iliary ‘constructions’, although very important ones, in particular, for the relativistic formulation of the
electromagnetic theory.

Without going into the details, the theory should be invariant under a change of scale (‘gauge’).
The most commonly used is the Lorentz gauge, which yields a condition between the potentials:

~Ag = ~A+∇f , (38)
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φg = φ+
1

c

∂f

∂t
, (39)

1

c

∂φg

∂t
+∇ ~Ag = 0 , (40)

where f is an arbitrary function of position and time. These equations lead to the same (measurable)
fields and do therefore satisfy Maxwell’s equations. This ‘gauge’ transformation decouples Eq. (36) and
Eq. (37) and leads to:

∆φ(~r, t) =
1

c2

∂2

∂t2
φ(~r, t) = −4π · ρ(~r, t) , (41)

∆ ~A(~r, t) =
1

c2

∂2

∂t2
~A(~r, t) = −4π

c
·~j(~r, t) . (42)

We observe two consequences: first, the equations for the potentials are decoupled and depend only on
the charge density and current density. Second, without charges or current, the equations have the form of
a wave equation. The relevance becomes clear later, in particular, when Maxwell’s equations are written
in a relativistically invariant form [1].

Another very useful gauge is the Coulomb gauge:

∇ · ~A = 0 . (43)

This leads us to a particularly simple expression for the electric potential:

∆φ(~r, t) = −4πρ(~r, t) . (44)

The name ‘Coulomb gauge’ becomes obvious.

A formal solution can now be written as:

φ =

∫
ρ(~r′, t)

| ~r − ~r′ |
dV . (45)

6.2 Example: Coulomb potential
Equation (45) can immediately be applied to compute the Coulomb potential of a static charge q:

φ(~r) =
1

4πε0
· q

|~r − ~rq|
, (46)

where ~r is the observation point and ~rq the location of the charge.

7 Powering and self-induction
There are also induction effects in a single coil. A varying current (e.g., in a transformer or power line)
produces a varying magnetic field inside itself and the flux of this field is continually changing, leading
to a self-induced electromotive force (Fig.10). This electromotive force (EMF) is acting on any current
when it is building up a magnetic field or when the field is changing in any way. This effect is called self-
inductance. According to Lenz’s rule, this EMF is opposing any flux change. The direction of an induced
EMF is always such that it produces a flux of ~B that opposes the change of the flux that produces the
EMF. It tries to keep the current constant: it is opposite to the current when the current is increasing and
in the direction of the current when it is decreasing.

This effect is particularly important for particle accelerators. A large electromagnet will have a
large self-inductance. To change the current I in such a magnet requires a minimum voltage U to over-
come this effect. This voltage is computed as:

U = −L∂I
∂t
. (47)
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Fig. 10: Self-induction by a changing electric current

The self-inductance L is measured in henrys (H).

The necessary voltage is determined by this self-inductance and the rate of change of the current
(Eq. (47)).

As a numerical example, we use the Large Hadron Collider parameters:

– required ramp rate, 10 A/s;
– self-inductance, L = 15.1 H per powering sector;
– required voltage to ramp at this rate, ≈150 V .

7.1 Lorentz force
A charge experiences forces in the presence of electromagnetic fields. This force depends not only on
where it is (which determines the electromagnetic fields), but also on how it is moving. Moving (~v)
charged (q) particles in electric ( ~E) and magnetic ( ~B) fields experience the force ~f (Lorentz force):

~f = q · ( ~E + ~v × ~B) . (48)

The electric force q · ~E is always in the direction of the field ~E and proportional to the magnitude of the
field and the charge.

The magnitude of the magnetic force q · ~v × ~B is proportional to the velocity perpendicular to the
direction of the field ~B.

The Lorentz force is often treated as an ad-hoc plug-in to Maxwell’s equation, but it is a relativistic
effect (shown in Ref. [1]).

8 Electromagnetic waves in vacuum
A remarkable success of Maxwell’s equations was the prediction of electromagnetic waves. Their exist-
ence was proven experimentally for very different wavelengths; in all cases, they were found to satisfy
Maxwell’s equations.

Starting from ∇× ~E = −∂ ~B/∂t, we can apply several mathematical transformations in steps:

=⇒ ∇× (∇× ~E) = −∇×
(
∂ ~B

∂t

)

=⇒ −(∇2 ~E) = − ∂

∂t
(∇× ~B)

=⇒ −(∇2 ~E) = −µ0ε0
∂2 ~E

∂t2
(49)

The last equation has the form of a plane wave.
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Fig. 11: Propagating electric and magnetic fields

This wave happens to be

µ0 · ε0 =
1

c2
,

and we rewrite:

∇2 ~E =
1

c2

∂2 ~E

∂t2
= µ0 · ε0 ·

∂2 ~E

∂t2

and

∇2 ~B =
1

c2

∂2 ~B

∂t2
= µ0 · ε0 ·

∂2 ~B

∂t2
(50)

This is a general form of a wave equation.

As a solution of these equations, we can write:

~E = ~E0ei(~k·~r−ωt) ,

~B = ~B0ei(~k·~r−ωt) , (51)

where we use the following definitions:

propagation vector : |~k| = 2π

λ
=

ω

c
,

wavelength, 1 cycle : λ ,
frequency · 2π : ω ,

wave velocity : c =
ω

k
.

(52)

Magnetic and electric fields are transverse to the direction of propagation (Fig. 11):

~E ⊥ ~B ⊥ ~k ⇒ ~k × ~E0 = ω ~B0 .

The speed of the wave in vacuum is exactly the speed of light: c = 299792458 m/s. Examples of
the spectrum of electromagnetic waves are shown in Fig. 12 and Table 1.

The frequencies and, therefore, energies of existing waves span about 20 orders of magnitude.

9 Polarization of electromagnetic waves
9.1 General features
The solutions of the wave equations imply monochromatic plane waves. The solutions for electric and
magnetic fields are:

~E = ~E0ei(~k·~r−ωt) , (53)
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Fig. 12: Electromagnetic spectrum

Table 1: Properties of parts of the electromagnetic spectrum

Type Frequency Energy per photon
Radio as low as 40 Hz ( .10−13 eV )
Cosmic Microwave Background .3 · 1011 Hz ( .10−3 eV )
Yellow light ≈5 · 1014 Hz ( ≈2 eV )
X rays ≤1 · 1018 Hz ( ≈4 keV )
γ rays ≤3 · 1021 Hz ( ≤12 MeV )
π0 → γγ ≥2 · 1022 Hz ( ≥70 MeV )

~B = ~B0ei(~k·~r−ωt) . (54)

These equations can be rewritten using unit vectors in the plane transverse to propagation. For example,
for the electric component:

~ε1 ⊥ ~ε2 ⊥ ~k .
The two orthogonal components are:

~E1 = ~ε1E1ei(~k·~r−ωt) ,

~E2 = ~ε2E2ei(~k·~r−ωt) .

The general field is a superposition of the two components:

⇒ ~E = ( ~E1 + ~E2) = (~ε1E1 + ~ε2E2)ei(~k·~r−ωt) . (55)

For the propagation, we can allow for a phase shift φ between the two directions as well as different
amplitudes:

~E = ~ε1E1ei(~k·~r−ωt) + ~ε2E2ei(~k·~r−ωt+φ) .

Depending on the amplitudes E1 and E2 and the relative phase φ, we get different types of polar-
ized light:

φ = 0 : linearly polarized light ;
φ 6= 0 and E1 6= E2 : elliptically polarized light ;

φ = ±π
2

and E1 = E2 : circularly polarized light .
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9.2 Polarized light in accelerators
Polarized light is rather important in accelerators and is produced (amongst others) in synchrotron light
machines (linearly and circularly polarized light, adjustable).

Typical applications and phenomena of polarized light are:

– polarized light reacts differently with charged particles;
– material science;
– beam diagnostics, medical diagnostics (blood sugar, . . . );
– inverse free electron lasers;
– 3-D motion pictures, LCD display, outdoor activities, cameras (glare), . . .

10 Energy of electromagnetic waves
We define the Poynting vector (SI units):

~S =
1

µ0

~E × ~B . (56)

The vector ~S points in the direction of propagation and describes the ‘energy flux’, i.e., energy crossing
a unit area, per second [J / m2 s].

In free space, the energy in a plane is shared between the electric and magnetic fields The energy
densityH would be:

H =
1

2

(
ε0E

2 +
1

µ0
B2

)
. (57)

11 Electromagnetic waves in material
We start now with the macroscopic Maxwell’s equations (Eq. (32)), using µ0

~H = ~B and ε0 ~E = ~D:

∇× ~E = −µ0
d ~H

dt
,

∇× ~H = ~j + ε0
d ~E

dt
. (58)

We assume a material with relative permittivity ε and permeability µ, as well as a finite conductivity σ,
and get:

∇× ~E = −µ · µ0 ·
d ~H

dt
,

∇× ~H = σ ~E + ε · ε0 ·
d ~E

dt
, (59)

where the current density~j is replaced by σ ~E (Ohm’s law). Following the same procedure as before, we
obtain for the wave equation (electric field only):

∇2 ~E = σ · ε · ε0 ·
∂ ~E

∂t
+ µ · µ0 · ε · ε0 ·

∂2 ~E

∂t2
(60)

For non-conducting media, we can set σ = 0 and obtain the previous equations.

As a direct consequence of Eq. (60) we see that the speed of this wave in the medium is now:

v =
1√

ε0 · µ0 · ε · µ
, (61)
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Fig. 13: Boundary conditions for electric fields
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Fig. 14: Boundary conditions for magnetic fields

or, if rewritten using n =
√
ε · µ,

v =
c

n
. (62)

The speed of electromagnetic waves in vacuum is c, but reduced by the factor n in a medium with relative
permittivity ε and permeability µ.

11.1 Boundary conditions
When electromagnetic waves pass through the boundary between two media with different ε and µ,
we must fulfil some boundary conditions. The results are presented here without proof. For details see
Refs. [3, 7]. Assuming no surface charges and, from curl ~E = 0 we can derive that the tangential ~E-
field is continuous across a boundary (E1

t = E2
t ) (shown schematically in Fig. 13). Similarly, since

we have div ~D = ρ, the normal ~D-field must be continuous across the boundary (D1
n = D2

n) (shown
schematically in Fig.13).

We follow the same line of reasoning for the boundary conditions for magnetic fields. Assuming
no surface currents (for a proof, see, e.g., Refs. [3, 7]), we find (see Fig. 14):

From curl ~H = ~j,
⇒ tangential ~H-field continuous across boundary (H1

t = H2
t ) .

From div ~B = 0,
⇒ normal ~B-field continuous across boundary (B1

n = B2
n) .

A short summary for the electromagnetic fields at boundaries between different materials with
different permittivity and permeability (ε1, ε2, µ1, µ2) is:

(E1
t = E2

t ) (E1
n 6= E2

n) ,

(D1
t 6= D2

t ) (D1
n = D2

n) ,

(H1
t = H2

t ) (H1
n 6= H2

n) ,

(B1
t 6= B2

t ) (B1
n = B2

n) . (63)

These conditions lead to reflection and refraction of the waves at the surface; the angles are related to the
refraction index n =

√
ε1µ1 and n′ =

√
ε2µ2.
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Fig. 15: Reflected and refracted components of an incident wave

The connection between the refraction indices and the scattering and refraction angles shown in
Fig. 15 are:

sinα

sinβ
=
n′

n
= tanαB . (64)

If ε and µ depend on the wave frequency ω, the medium is dispersive and we have to write:

dn

dλ
6= 0 , (65)

i.e., the refraction index and therefore the angles depend on the wavelength.

If light is incident under the special angle αB (the Brewster angle) [3], the reflected light is linearly
polarized perpendicular to the plane of incidence.

A popular application is used when fishing, since air–water gives a comfortable angle αB ≈ 53◦

and reflections can be avoided using polarization glasses.

12 Cavities and waveguides
Of particular interest in accelerator physics and technology is the behaviour and propagation of electro-
magnetic waves in cavities and waveguides. This behaviour is determined by the boundary conditions
and we have to distinguish between material with infinite and finite conductivity. The case of perfectly
conducting cavities and wave guides is treated first.

12.1 Rectangular cavities and waveguides
Cavities can be seen as a three-dimensional storage for electromagnetic waves, i.e., photons. The wave
functions are contained inside and therefore the dimensions determine the maximum wavelength that can
fit inside. This is due to the boundary conditions at the cavity walls.

If the fields are only constrained in two dimensions and allowed to move freely in the third dimen-
sion, the fields propagate as waves. The waves are guided through these ‘wave guides’. Both are sketched
in Fig. 16.

12.2 Cavities and modes
We assume a rectangular RF cavity with dimensions (a, b, c), and as an ideal conductor.

Without derivations (e.g., Refs. [3, 7, 8]), the components of the electric fields are:

Ex = Ex0 · cos(kxx) · sin(kyy) · sin(kzz) · e−iωt ,

Ey = Ey0 · sin(kxx) · cos(kyy) · sin(kzz) · e−iωt ,
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Fig. 16: Boundary conditions for electromagnetic fields. Fields are fully enclosed in a cavity (left-hand side) and
can move freely in one dimension in waveguides (right-hand side).
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Fig. 17: Boundary conditions for electromagnetic fields

Ez = Ez0 · sin(kxx) · sin(kyy) · cos(kzz) · e−iωt . (66)

For the magnetic fields we get immediately, with∇× ~E = −∂ ~B/∂t:

Bx =
i

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · cos(kzz) · e−iωt ,

By =
i

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · cos(kzz) · e−iωt ,

Bz =
i

ω
(Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · sin(kzz) · e−iωt . (67)

12.3 Consequences for cavities
The fields must be zero at the conductor boundary, as shown before. This is possible only with the
condition:

k2
x + k2

y + k2
z =

ω2

c2
, (68)

and for kx, ky, kz we can write:

kx =
mxπ

a
, ky =

myπ

b
, kz =

mzπ

c
. (69)

The integer numbers mx,my,mz are called the mode numbers of the wave and are directly related to the
dimensions of the cavity.

Equations (68) and (69) imply that a half wavelength λ/2 must always fit exactly the size of the
cavity. This is shown in Fig. 17 for different wavelengths compared with the cavity dimensions. Only
modes that ‘fit’ into the cavity are allowed.
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We can examine three cases:
λ

2
=
a

4
,

λ

2
=
a

1
,

λ

2
=

a

0.8
.

No electric field at the boundaries requires that the wave must have ‘nodes’ at the boundaries. Only the
first two wavelengths fulfil this condition; the third form cannot exist.

12.4 Waveguide modes
Similar considerations lead to (propagating) solutions in (rectangular) waveguides:

Ex = Ex0 · cos(kxx) · sin(kyy) · ei(kzz−ωt) ,

Ey = Ey0 · sin(kxx) · cos(kyy) · ei(kzz−ωt) ,

Ez = i · Ez0 · sin(kxx) · sin(kyy) · ei(kzz−ωt) , (70)

Bx =
1

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · ei(kzz−ωt) ,

By =
1

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · ei(kzz−ωt) ,

Bz =
1

i · ω (Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · ei(kzz−ωt) . (71)

12.5 Consequences for waveguides
To have no field at the boundary, we must again satisfy the condition:

k2
x + k2

y + k2
z =

ω2

c2
. (72)

This leads to modes like (no boundaries in direction of propagation z):

kx =
mxπ

a
, ky =

myπ

b
, (73)

The numbers mx,my are called the mode numbers for planar waves in waveguides.

12.6 Cut-off frequency
One can rewrite Eq. (72) as:

k2
z =

ω2

c2
− k2

x − k2
y (74)

and

kz =

√
ω2

c2
− k2

x − k2
y . (75)

A propagation without losses requires kz to be real, i.e.,

ω2

c2
> k2

x + k2
y =

(mxπ

a

)2
+
(myπ

b

)2
. (76)

This defines a cut-off frequency ωc:
ωc =

π · c
a

. (77)

For frequencies above this cut-off frequency, we have propagation without losses. At the cut-off fre-
quency, we obtain a standing wave and an attenuated wave for lower frequencies, i.e., kz becomes com-
plex.

The cut-off frequencies are different for different modes and no modes can propagate below the
lowest frequency. The mode of Eq. (77) is assumed to be this lowest frequency mode.
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12.7 Circular cavities
Waveguides and cavities used in accelerators are more likely to be circular.

Derivation involves using the Laplace equation in cylindrical co-ordinates; for the derivation see
e.g., Refs. [7, 8]:

Er = E0
kz
kr
J ′n(kr) · cos(nθ) · sin(kzz) · e−iωt ,

Eθ = E0
nkz
k2
rr
Jn(kr) · sin(nθ) · sin(kzz) · e−iωt ,

Ez = E0Jn(krr) · cos(nθ) · sin(kzz) · e−iωt ,

Br = iE0
ω

c2k2
rr
Jn(krr) · sin(nθ) · cos(kzz) · e−iωt ,

Bθ = iE0
ω

c2krr
J ′n(krr) · cos(nθ) · cos(kzz) · e−iωt ,

Bz = 0 . (78)

12.8 Accelerating circular cavities
For accelerating cavities, we need a longitudinal electric field component Ez 6= 0 and purely transverse
magnetic fields:

Er = 0 ,

Eθ = 0 ,

Ez = E0J0

(
p01

r

R

)
· e−iωt ,

Br = 0 ,

Bθ = −i
E0

c
J1

(
p01

r

R

)
· e−iωt ,

Bz = 0 . (79)

(pnm is the mth zero of Jn, e.g., p01 ≈ 2.405.)

This would be a cavity with a TM010 mode: ω010 = p01 · c/R.

13 Case of finite conductivity
Starting from Maxwell’s equation,

∇× ~H = ~j +
d ~D

dt
=

~j︷ ︸︸ ︷
σ · ~E︸ ︷︷ ︸

Ohm’s law

+ε
d ~E

dt
, (80)

and the solutions of the wave equations,

~E = ~E0ei(~k·~r−ωt), ~H = ~H0ei(~k·~r−ωt) , (81)

we want to know k; applying the calculus to the wave equations we have:

d ~E

dt
= −iω · ~E, d ~H

dt
= −iω · ~H, ∇× ~E = i~k × ~E, ∇× ~H = i~k × ~H . (82)

Put these together, using Eqs. (80) and (82):

~k × ~H = iσ · ~E − ωε · ~E = (−iσ + ωε) · ~E . (83)
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Fig. 18: Flow of current and induced magnetic fields and eddy currents

With ~B = µ ~H:

∇× ~E = i~k × ~E = −∂
~B

∂t
= −µ∂

~H

∂t
= iωµ ~H . (84)

Multiplication with ~k and using Eq. (83):

~k × (~k × ~E) = ωµ(~k × ~H) = ωµ(−iσ + ωε) · ~E . (85)

After some calculus and using the property ~E ⊥ ~H ⊥ ~k:

k2 = ωµ(iσ + ωε) . (86)

The propagation vector k now differs from the equation in vacuum by the contributions from the medium
and the finite conductivity. This has consequences for the propagation and penetration of waves in ma-
terial.

13.1 Skin and penetration depth
For a good conductor, σ � ωε (e.g., for Cu we have σ ≈ 5.7 · 107 S/m, this value for Cu is also valid for
for very high ω):

k2 ≈ −iωµσ ⇒ k ≈
√
ωµσ

2
(1− i) =

1

δ
(1− i) . (87)

We define the parameter δ:

δ =

√
2

ωµσ
. (88)

The parameter δ is called the skin depth.

From Eq. (88), we deduce that high frequency waves ‘avoid’ penetrating a conductor, and mainly
flow near the surface. One can understand this effect using Fig. 18.

A changing ~H-field induces eddy currents in the conductor. These cancel the current flow in the
centre of the conductor but enforce current flow at the skin (surface).

13.2 Attenuated waves
Waves incident on conducting material are attenuated. It is basically skin depth, (attenuation to 1/e). The
wave form becomes:

ei(kz−ωt) = ei((1+i)z/δ−ωt) = e
−z
δ · ei( z

δ
−ωt) . (89)

Some numerical examples:

– Skin depth of copper:
1 GHz : δ ≈ 2.1 µm; 1 kHz : δ ≈ 2.1 mm, 50 Hz : δ ≈ 10 mm.
This has important consequences for the design of conducting cables since the high frequency
currents propagate at a very thin layer at the surface of the conductor.
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– Penetration depth into seawater (σ typically 4 S/m):
To get δ ≈ 25 m, one needs ≈76 Hz.
Because of the long wavelength and low frequency, communication is very inefficient and has a
very low bandwidth (0.03 bps).

14 Summary
Without any attempt to be rigorous or complete, electromagnetic effects most important for the design
and operation of particle accelerators have been presented, such as:

– basic concepts;
– Maxwell’s equations;
– fields and potentials from charge and current distributions;
– electromagnetic waves in vacuum and media;
– electromagnetic waves in waveguides and cavities;
– polarization of electromagnetic waves and skin effects.
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Appendices
A Electromagnetic units
Formulae use SI units throughout.

~E(~r, t) electric field [V/m]
~H(~r, t) magnetic field [A/m]
~D(~r, t) electric displacement [C/m2]
~B(~r, t) magnetic flux density [T]
q electric charge [C]
ρ(~r, t) electric charge density [C/m3]
~I,~j(~r, t) current [A], current density [A/m2]
µ0 permeability of vacuum, 4 π · 10−7 [H/m or N/A2]
ε0 permittivity of vacuum, 8.854 ·10−12 [F/m]

To save typing and space where possible (e.g., equal arguments):
~E(~r, t) =⇒ ~E and the same for other variables.

B Refresher on vector calculus
B.1 Vector operators
We can define a special vector∇ (sometimes written as ~∇):

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (B.1)

It is called the ‘gradient’ and invokes ‘partial derivatives’.

It can operate on a scalar function φ(x, y, z):

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= ~G = (Gx, Gy, Gz) , (B.2)

and we get a vector ~G. It is a kind of ‘slope’ (steepness) in the three directions.

Example:

φ(x, y, z) = C · ln(r2) with r =
√
x2 + y2 + z2

∇φ = (Gx, Gy, Gz) =

(
2C · x
r2

,
2C · y
r2

,
2C · z
r2

)

B.1.1 Physical interpretation of the gradient operator
The gradient applied to a scalar field measures the local slope, as shown in Fig. B.1:

– lines of pressure (isobars);
– gradient is large (steep) where lines are close (fast change of pressure).

B.2 Operation on vectors and scalar fields
The gradient ∇ can be used in a scalar or a vector product with a vector ~F , sometimes written as ~∇ and
these are used as:

∇ · ~F or ∇× ~F . (B.3)

The definition for products is the same as before; ∇ is treated like a ‘normal’ vector, but the results
depend on how they are applied:
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Fig. B.1: Gradient of a scalar field (here air pressure)

– ∇φ is a vector;
– ∇ · ~F is a scalar;
– ∇× ~F is a pseudo-vector.

B.3 Divergence and curl
Two operations of∇ have special names.

B.3.1 Divergence (scalar product of gradient with a vector):

div(~F ) = ∇ · ~F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
. (B.4)

Physical significance: ‘amount of density’ (see later).

B.3.2 Curl (vector product of gradient with a vector):

curl(~F ) = ∇× ~F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
. (B.5)

Physical significance: ‘amount of rotation’ (see later).

B.3.3 Meaning of divergence
Figure B.2 shows the field lines of a vector field ~F seen from some origin.

The divergence (scalar, a single number) characterizes what comes from (or goes to) the origin.
How much comes out is measured by the surface integral. For the integrated field vectors passing (per-
pendicularly) through a surface area A, we obtain the flux:

∫ ∫

A

~F · d ~A . (B.6)

It has the meaning of the density of field lines through the surface (Fig. B.3).

For closed surfaces, we can rewrite the integral using Gauss’s theorem: the integral through a
closed surface (flux) is the integral of the divergence in the enclosed volume

∫ ∫

A

~F · d ~A =

∫ ∫ ∫

V
∇ · ~F · dV . (B.7)

This relates surface integral to volume integrals (Fig. B.4) and is often easier to evaluate.
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∇~F < 0 ∇~F > 0 ∇~F = 0
(sink) (source) (fluid)

Fig. B.2: Field lines of a vector field ~F seen from some origin

Fig. B.3: Flux

dA

F

enclosed volume (V)

closed surface (A)

Fig. B.4: Gauss’s theorem relates surface integrals to volume integrals

B.3.4 Meaning of curl
The curl quantifies a rotation of vectors: it is the integration of (vector-) fields. For two vector fields, we
perform a line integral along a (closed) line C:

∮

C

~F · d~r =

∫ ∫

A
∇× ~F · d ~A (B.8)

i.e., we ‘sum up’ vectors (length) in the direction of the line C

The line integral for the second vector field in Fig. B.5 vanishes because the field lines are or-
thogonal to the direction of the integration path along the curve C. The physical significance of this line
integral is the work performed along a path.

We can formulate this integral more generally:
Stokes’ theorem: Integral along a closed line is integral of curl in the enclosed area.

∮

C

~F · d~s =

∫ ∫

A
∇× ~F · d ~A . (B.9)
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Fig. B.5: Two types of vector field, arbitrary units. For the left field we have:∇~F = 0 ∇× ~F 6= 0. For the right
field: ∇~F 6= 0 ∇× ~F = 0.

enclosed area (A)

.

closed curve (C)

E  ds

Fig. B.6: Stoke’s theorem

B.4 Scalar product
We define a scalar product for (usual) vectors as: ~a ·~b,

~a = (xa, ya, za) ,

~b = (xb, yb, zb) ,

~a ·~b = (xa, ya, za) · (xb, yb, zb) = (xa · xb + ya · yb + za · zb) .

This product of two vectors is a scalar (number), not a vector.

Example:
(−2, 2, 1) · (2, 4, 3) = −2 · 2 + 2 · 4 + 1 · 3 = 7 .

B.5 Vector product (sometimes referred to as cross product)
Define a vector product for (usual) vectors as: ~a×~b,

~a = (xa, ya, za) ,

~b = (xb, yb, zb) ,

~a×~b = (xa, ya, za) × (xb, yb, zb)

= (ya · zb − za · yb︸ ︷︷ ︸
xab

, za · xb − xa · zb︸ ︷︷ ︸
yab

, xa · yb − ya · xb︸ ︷︷ ︸
zab

) .

This product of two vectors is a vector, not a scalar (number), (on this account: vector product).
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Example 1:
(−2, 2, 1)× (2, 4, 3) = (2, 8,−12) .

Example 2 (two components only in the x–y plane):

(−2, 2, 0)× (2, 4, 0) = (0, 0,−12) .
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Short Overview of Special Relativity and Invariant Formulation of
Electrodynamics

W. Herr
CERN, Geneva, Switzerland

Abstract
The basic concepts of special relativity are presented in this paper. Con-
sequences for the design and operation of particle accelerators are discussed,
along with applications. Although all branches of physics must fulfil the prin-
ciples of special relativity, the focus of this paper is the application to electro-
magnetism. The formulation of physics laws in the form of four-vectors allows
a fully invariant formulation of electromagnetic theory and a reformulation
of Maxwell’s equations. This significantly simplifies the treatment of moving
charges in electromagnetic fields and can explain some open questions.

Keywords
Special relativity; electrodynamics; four-vectors.

1 Introduction and motivation
As a principle in physics, the laws of physics should take the same form in all frames of reference, i.e.,
they describe a symmetry, a very basic concept in modern physics. This concept of relativity was intro-
duced by Galileo and Newton in the framework of classical mechanics. Classical electromagnetic theory
as formulated by Maxwell’s equations leads to asymmetries when applied to moving charges [1,2]. In this
context, classical mechanics and classical electromagnetism do not fulfil the same principles of relativity.
The theory of special relativity is a generalization of the Galilean and Newtonian concepts of relativity.
It also paved the way to a consistent theory of quantum mechanics. It considerably simplifies the form
of physics because the unity of space and time as formulated by Minkowski also applies to force and
power, time and energy, and last, but not least, to electric current and charge densities. The formulation
of electromagnetic theory in this framework leads to a consistent picture and explains such concepts
as the Lorentz force in a natural way. Starting from basic considerations and the postulates for special
relativity, we develop the necessary mathematical formalism and discuss consequences, such as length
contraction, time dilation, and the relativistic Doppler effect, to mention some of the most relevant. The
introduction of four-vectors automatically leads to a relativistically invariant formulation of Maxwell’s
equations, together with the laws of classical mechanics.

Unlike other papers on relativity, this paper concentrates on aspects of electromagnetism; other
popular phenomena, such as paradoxes, are left out.

2 Concepts of relativity
The concept of relativity was introduced by Galileo and Newton and applied to classical mechanics. It
was proposed by Einstein that a similar concept should be applicable when electromagnetic fields are
involved. We shall move from the classical principles to electrodynamics and assess the consequences.

2.1 Relativity in classical mechanics
In the following, the terminology and definitions used are:

– co-ordinates for the formulation of physics laws:

Proceedings of the CAS–CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May–10
June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol. 1/2018, CERN-2018-001-SP (CERN, Geneva, 2018)
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v = 0

v = v’

Fig. 1: Two different frames: a resting and a moving observer

– space co-ordinates: ~x = (x, y, z) (not necessarily Cartesian);
– time: t

(side note: it might be better practice to use ~r = (x, y, z) instead of ~x as the position vector
to avoid confusion with the x-component but we maintain this convention to be compatible
with other textbooks and the conventions used later);

– definition of a frame:

– where we observe physical phenomena and properties as functions of their position ~x and
time t;

– an inertial frame is a frame moving at a constant velocity;
– in different frames, ~x and t are usually different;

– definition of an event:

– something happening at ~x at time t is an ‘event’, given by four numbers: (x, y, z), t.

An example for two frames is shown in Fig. 1: one observer is moving at a constant relative velocity v′

and another is observing from a resting frame.

2.2 Galileo transformation
How do we relate observations, e.g., the falling object in the two frames shown in Fig. 2?

– We have observed and described an event in rest frame F using co-ordinates (x, y, z) and time t,
i.e., have formulated the physics laws using these co-ordinates and time.

– To describe the event in another frame F ′ moving at a constant velocity in the x-direction vx, we
describe it using co-ordinates (x′, y′, z′) and t′.

– We need a transformation for:
(x, y, z) and t⇒ (x′, y′, z′) and t′.

The laws of classical mechanics are invariant, i.e., have the same form with the transformation:

x′ = x− vxt ,
y′ = y ,

z′ = z ,

t′ = t . (1)

The transformation (Eq. (1)) is known as the Galileo transformation. Only the position in the direction
of the moving frame is transformed; time remains an absolute quantity.
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h

Fig. 2: Observing a falling object from a moving and from a resting frame

2.3 Example of an accelerated object
An object falling with an acceleration g in the moving frame (Fig. 2, left) falls in a straight line observed
within this frame.

Equation of motion in a moving frame x′(t′) and y′(t′):

x′(t′) = 0 ,

v′y(t
′) = −g · t′ ,

y′(t′) =

∫
v′y(t

′)dt′ = −1

2
gt′2 . (2)

To get the equation of motion in the rest frame x(t) and y(t), the Galileo transform is applied:

y(t) = y′(t′) ,

t = t′ ,

x(t) = x′ + vx · t = vx · t , (3)

and one obtains for the trajectories y(t) and y(x) in the rest frame:

y(t) = −1

2
gt2 , y(x) = −1

2
g
x2

v2x
. (4)

From the resting frame, y(x) describes a parabola (Fig. 2, right-hand side).

2.4 Addition of velocities
An immediate consequence of the Galileo transformation (Eq. (1)) is that the velocities of the moving
object and the moving frame must be added to get the observed velocity in the rest frame:

v = v′ + v′′ , (5)

because (e.g., moving with the speed vx in the x-direction):

dx′

dt
=

dx

dt
− vx . (6)

As a very simple example (Fig. 3), the total speed of the object is 191 m/s.

2.5 Problems with Galileo transformation applied to electromagnetism
Applied to electromagnetic phenomena, the Galileo transformation exhibits some asymmetries. Assume
a magnetic field and a conducting coil moving relative to the magnetic field. An induced current will be
measured in the coil (Fig. 4). Depending on the frame of the observer, the interpretation of the observation
is different.
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v’’ = 31.33  m/s

v’  =  159.67  m/s

Fig. 3: Measured velocities of an object as observed from the co-moving and rest frames

NS

I

I

NS

I

I

Fig. 4: Effect of relative motion of a magnetic field and a conducting coil, observed from a co-moving and the rest
frame.

– If you sit on the coil, you observe a changing magnetic field, leading to a circulating electric field
inducing a current in the coil:

d ~B

dt
⇒ ~∇× ~E ⇒ ~F = q · ~E ⇒ current in coil . (7)

– If you sit on the magnet, you observe a moving charge in a magnetic field, leading to a force on
the charges in the coil:

~B = const., moving charge⇒ ~F = q · ~v × ~B ⇒ current in coil . (8)

The observed results are identical but seemingly caused by very different mechanisms! One may ask
whether the physics laws are different, depending on the frame of observation.

A quantitative form can be obtained by applying the Galileo transformation to the description of
an electromagnetic wave. Maxwell describes light as waves; the wave equation reads:

(
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
− 1

c2
∂2

∂t′2

)
Ψ = 0 . (9)

Applying the Galileo transformation (x = x′ − vt, y′ = y, z′ = z, t′ = t), we get the wave equation in
the moving frame:

([
1− v2

c2

]
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

2v

c2
∂2

∂x∂t
− 1

c2
∂2

∂t2

)
Ψ = 0 . (10)

The form of the transformed equation is rather different in the two frames.

The Maxwell equations are not compatible with the Galileo transformation.

3 Special relativity
To solve this riddle, one can consider three possible options.

1. Maxwell’s equations are wrong and should be modified to be invariant with Galileo’s relativity
(unlikely).
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2. Galilean relativity applies to classical mechanics, but not to electromagnetic effects and light has
a reference frame (ether). Was defended by many people, sometimes with obscure concepts. . .

3. A relativity principle different from Galileo for both classical mechanics and electrodynamics
(requires modification of the laws of classical mechanics).

Against all odds and with the disbelief of his colleagues, Einstein chose the last option.

3.1 Postulate for special relativity
To arrive at the new formulation of relativity, Einstein introduced three postulates.

– All physical laws in inertial frames must have equivalent forms.
– The speed of light in a vacuum c must be the same in all frames.
– It requires a transformations (not Galilean) that makes all physics laws look the same.

3.2 Lorentz transformation
The transformation requires that the co-ordinates must be transformed differently, satisfying the three
postulates.

Writing the equations for the front of a moving light wave in F and F ′:

F : x2 + y2 + z2 − c2t2 = 0 , (11)

F ′ : x′2 + y′2 + z′2 − c′2t′2 = 0 . (12)

The constant speed of light requires c = c′ in both equations. This leads to a set of equations known as
the Lorentz transformation (Eq. (13)).

x′ =
x− vt√(
1− v2

c2

) = γ · (x− vt) ,

y′ = y ,

z′ = z ,

t′ =
t−v · x

c2√(
1− v2

c2

) = γ ·
(
t−v · x

c2

)
. (13)

The main difference from the Galileo transformation is that it requires a transformation of the time t. It
is a direct consequence of the required constancy of the speed of light. This tightly couples the position
and time and they have to be treated on equal footing.

It is common practice to introduce the relativistic variables γ and βr:

γ =
1√(

1− v2

c2

) =
1√

(1− β2r )
, (14)

where βr is:
βr =

v

c
. (15)
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Fig. 5: The Lorentz transformation between frame F and F ′. This representation is known as a Minkowski dia-
gram.

3.3 Minkowski diagram—pictorial representation of the Lorentz transformation
An illustration of the Lorentz transformation is shown in Fig. 5. Starting from the orthogonal reference
frame and using the transformation of position and time, both axes of the new reference system appear
tilted, where the tilt angle depends on the velocity of the moving frame:

tan θ =
v

c
= β . (16)

The position and time in the two reference frames can easily be obtained by the projection of an event
onto the axes of the two frames (Fig. 5, right-hand side).

Contrary to normal (i.e., circular) rotation, where the axes remain perpendicular to each other, this
type of rotation is also known as hyperbolic rotation. To quantify such a rotation, another angle ψ is
introduced as:

tanhψ =
v

c
= β . (17)

This angle ψ is also known as the rapidity. As a consequence we have:

coshψ = γ (18)

and
sinhψ = γβ . (19)

Some applications become easier using this formulation.

3.4 Transformation of velocities
We assume a frame F ′ moving with constant speed of ~v = (v, 0, 0) relative to frame F . An object inside
the moving frame is assumed to move with ~v′ = (v′x, v

′
y, v
′
z).

The velocity ~v = (vx, vy, vz) of the object in the frame F is computed using the Lorentz transform-
ation (Eq. (13))

vx =
v′x + v

1 +
v′xv
c2

, vy =
v′y

γ

(
1 +

v′xv
c2

) , vz =
v′z

γ

(
1 +

v′xv
c2

) . (20)

Adding two speeds v1 and v2:

v = v1 + v2 ⇒ v =
v1 + v2

1 +
v1v2
c2

. (21)
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Fig. 6: Flash of light emitted in a resting frame, observed by two observers within and outside the frame

From (Eq. (21)) it can easily be seen that the speed of light can never be exceeded, in agreement with the
second postulate.

An interesting result can be observed using the rapidity for this calculation. Since we have
tanhψ = β = v/c, we can reformulate Eq. (21) as:

tanhψ =
tanhψ1 + tanhψ2

1 + tanhψ1 tanhψ2
= tanh(ψ1 + ψ2) , (22)

i.e., the rapidities can be added.

4 Consequences of special relativity
The use of the Lorentz transformation between two inertial frames and the required transformation of
position and time has very significant consequences, which are rather counterintuitive.

– Space and time are not independent quantities.
– There is no absolute time and space, no absolute motion.
– Relativistic phenomena (with relevance for accelerators):

– no speed of moving objects can exceed the speed of light;
– (non-)simultaneity of events in independent frames;
– Lorentz contraction;
– time dilation;
– relativistic Doppler effect;
– Lorentz force.

– A formalism with four-vectors is introduced.
– Electrodynamics becomes very simple and consistent.

4.1 Simultaneity in special relativity
Assume that two events in frame F at (different) positions x1 and x2 happen simultaneously at times
t1 = t2.

The times t′1 and t′2 in F ′ are obtained from the Lorentz transformation and

t′1 = γ ·
(
t1 −

v · x1
c2

)
and t′2 = γ ·

(
t2 −

v · x2
c2

)
. (23)

One finds the surprising result that two events that are simultaneous at different positions x1 and
x2 in F are not simultaneous in F ′: x1 6= x2 in F implies that t′1 6= t′2 in frame F ′!

Assume the sequence of events depicted in Figs. 6–8. In a resting frame, a flash of light is emitted
in the centre of the frame towards two detectors. An observer within the frame and another outside the
frame observe the flash of light arriving simultaneously at detectors 1 and 2.

If the frame is moving, the detectors are reached at different times for the observer outside the
frame.
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Fig. 7: For both observers, the flash of light reaches detectors 1 and 2 simultaneously

Fig. 8: Emitted in a moving frame, the flash reaches the detectors at different times for the outside observer

x’

v

y’

21
x’ x’

L’

v = 0

F

F’

Fig. 9: Measuring the length of an object in a moving and a rest frame

Why should we bother about simultaneity?

– Simultaneity is not frame independent.
– It plays a pivotal role in special relativity.
– Almost all paradoxes are explained by it!
– Different observers see a different reality; in particular, the sequence of events can change!

For t1 < t2, we may find (not always!) a frame where t1 > t2 (the concept of before and after depends
on the observer).

4.2 Length contraction
To measure the length of an object (Fig. 9), the procedure is to measure the position at both ends simul-
taneously!

The measured length of a rod in F ′ is the difference between the two positions L′ = x′2 − x′1,
measured simultaneously at a fixed time t′ in frame F ′.

From the frame F , we follow the same procedure, i.e., we have to measure simultaneously (!) the
ends of the rod at a fixed time t in frame F , i.e.,:

L = x2 − x1 .

We therefore make a Lorentz transformation of the ‘rod co-ordinates’ into the rest frame:

x′1 = γ · (x1 − vt) and x′2 = γ · (x2 − vt) , (24)
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v v

Fig. 10: Path of light between two mirrors in (left) a moving frame and (right) a rest frame

L′ = x′2 − x′1 = γ · (x2 − x1) = γ · L . (25)

We obtain
L = L′/γ . (26)

The length appears contracted in the rest frame (Eq. (26)), depending on the relative velocity, i.e.,
the relativistic γ.

In accelerators, this has consequences, as objects in the frame of the particle and the frame of the
accelerator appear to have different lengths. This is of particular importance for bunch length, electro-
magnetic fields, magnets, and the distances between magnets and other objects in the accelerator.

4.3 Time dilation
Applying the Lorentz transformation, we have to transform the time t as well as the position.

We assume a moving frame where a flash of light is moving upwards and reflected downwards by
a mirror (Fig. 10).

We assume that the frame moves with velocity v. Seen from outside, the flash arrives at the mirror,
but at a different position. This means that the apparent total path is longer, but c must be the same. The
geometry of this process is shown in Fig. 11.

In frame F ′: light travels distance L in time ∆t′.
In frame F : light travels distance D in time ∆t′;

the entire system moves distance d in time ∆t.

We look at the trajectories in the two frames and simple calculation leads to the result that the time
needed by the flash is longer by the factor γ when it is observed from the outside. After a round trip, the
full distance observed in the moving frame is 2 · L; measured from the outside, it is 2 ·D.

L = c ·∆t′ , D = c ·∆t , d = v ·∆t ,
(c ·∆t)2 = (c ·∆t′)2 + (v ·∆t)2 .

We obtain:
→ ∆t = γ ·∆t′ . (27)

4.4 Proper time and proper length
This derivation can lead to some confusion.
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L
D

d

v

Fig. 11: Path of light between two mirrors, as observed from a rest frame

v v

τ γ τ.

Fig. 12: Time measured within the moving frame (left-hand side) and from the rest frame (right-hand side). In the
moving frame, the measured time is always the proper time τ , independent of the velocity of the moving frame.

– The car is moving: ∆t = γ ·∆t′.
– The observer is moving: ∆t′ = γ ·∆t.

This seems like a contradiction. This paradox is solved by introducing the concept of proper time τ . The
proper time τ is the time measured by the observer at rest relative to the process.

Or: the proper time for a given observer is measured by the clock that travels with the observer:

c2∆τ2 = c2∆t2 −∆x2 −∆y2 −∆z2 . (28)

Equation (28) defines the proper time τ .

A similar argument holds for the Lorentz contraction and we define the ‘proper length’ in the same
way.

We illustrate this in Fig. 12, where the time is measured within the frame as the proper time τ .
From outside, the measured time is γ · τ .

To summarize, it is found that time and distances are relative.

– τ is a fundamental time: the proper time τ .
– The proper time is the time measured by an observer in its own frame.
– From frames moving relative to it, the time appears longer.
– L is a fundamental length: the proper length L.
– The proper length is the length measured by an observer in its own frame.
– From frames moving relative to it, the length appears shorter.
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4.5 Proper acceleration
Although not very much used in accelerator physics, one has a proper acceleration. It can be computed
as the derivative of the rapidity with respect to the proper time:

α =
dψ

dτ
.

4.6 Relativistic space travel
The formula for time dilation also holds for an accelerated system! Assuming a spaceship starting from
Earth and moving with a constant acceleration, g = 9.81 m/ s2. We denote the time on Earth t and the
proper time in the spaceship tp. For β, we then have:

β = tanh
(v
c

)
= tanh

(
g · tp
c

)
, (29)

and therefore for γ:

γ = cosh

(
g · tp
c

)
=

√
1 +

(
g · tp
c

)2

. (30)

Finally, for the distance to the start (e.g., Earth), we obtain:

d =

(
c2

g

)
·
[
cosh

(
g · tp
c

)
− 1

]
. (31)

When 12 years have passed for the passenger of the spaceship, the distance to Earth is d ≈ 120 000 light
years! This is approximately the diameter of the Milky Way!

4.7 Muon lifetime
A popular example is the lifetime of a µ particle moving at high speed. We can compute the (observed)
lifetime of the muon.

In the frame of the muon, the lifetime is τ ≈ 2 · 10−6 s. Measured from the laboratory frame, the
time γ · τ is observed. The muon appears to have a longer lifetime, in contradiction with the postulates.

A clock in the muon frame shows the proper time and the muon decays in≈2 ·10−6 s, independent
of the muon’s speed.

Seen from the lab frame, the muon lives γ times longer. In the muon storage ring at CERN, the
lifetime of muons circulating with γ = 29.327 was found to be dilated to 64.378 µs, confirming time
dilation.

4.8 Moving electron
Important effects are experienced by a fast-moving electron in an accelerator. We assume: v ≈ c.
Bunch length:
In lab frame: σz , In frame of electron: γ · σz .
Length of an object (e.g., magnet, distance between magnets!):
In lab frame: L, In frame of electron: L/γ.

4.9 Relativistic Doppler effect
A rather important relativistic effect is the Doppler shift of the frequency of a fast-moving particle. In
light sources, this effect is most significant. Unlike sound, light does not have a medium of propagation
and the nature of this effect is purely relativistic.
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The frequency observed ν depends on the velocity γ and the observation angle θ. The frequency of
the light to an observer looking against the direction of motion is increased by a factor γ; at high speeds,
this is a very significant effect:

ν = ν0 · γ · (1− βr · cos(θ)) . (32)

4.10 Everyday effects
Although the speeds we experience in everyday life are small compared with the speed of light, time
dilation has to be taken into account for some applications.

4.10.1 Intercontinental flights
As the time for moving objects is passing more slowly with respect to a reference on Earth, one ex-
pects that during an eastward intercontinental flight the passengers age more slowly. This was tested and
confirmed experimentally with atomic clocks in 1971 and 1977 [3].

For a 6 hour flight eastwards with a regular aeroplane cruising at ≈900 km/h, one computes a
difference of 25–30 ns. This can easily be measured [3] but has little effect in everyday life. Taking into
account the effects of general relativity, the effect is very different (in the opposite direction, but still
small). General relativity is not the topic of this lecture, but the relevant equations are given in Appendix
A for the gifted reader.

4.10.2 GPS
Contrary to flights with an aeroplane, other everyday effects experience very strong relativistic effects. A
prominent example is the global positioning system (GPS). The flight parameters of the satellites of the
system and the effects are:

– Orbital speed, i.e., relative to a reference on Earth is 14000 km/h ≈ 3.9 km/s

⇒ β ≈ 1.3 · 10−5 , γ ≈ 1.000000000084 .

– This is very small, but it accumulates 7 µs during one day compared with the reference time on
Earth!

– After one day, the position is wrong by ≈2 km!
– Including general relativity, the error is as large as 10 km per day; the computation is given in

Appendix A.

Without corrections for the effects of special and general relativity, the satellite navigation cannot work.
Countermeasures:

– A minimum of four satellites is used (avoid reference time on Earth);
– The data transmission frequency is reduced from 1.023 MHz to 1.022999999543 MHz prior to

launch.

5 Relativistic mass and momentum
After one has established the relativistic corrections for position and time, it is necessary to evaluate the
consequences for momentum, energy, and mass of a moving particle.
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5.1 Consequences of momentum conservation
To simplify the computation, we assume that an object moves in frame F ′ with ~u′ = (0, u′y, 0). To have
an invariant form, one requires that the expression

~F = m · ~a = m · d~v

dt
(33)

has the same form in all frames.

The transverse momentum must be conserved; this demands:

py = p′y ,

muy = m′u′y ,

mu′y/γ = m′u′y . (34)

This implies that
m = γm′ . (35)

As a consequence of momentum conservation, mass must also be transformed! Using the expres-
sion for the mass m (using m′ = m0):

m = m0

√
1−

(v
c

)2
= γ ·m0 , (36)

and expand it for small speeds:

m ∼= m0 +
1

2
m0v

2

(
1

c2

)
; (37)

multiplied by c2:

mc2 ∼= m0c
2 +

1

2
m0v

2 = m0c
2 + T . (38)

The second term is the kinetic energy T :

E = mc2 = m0c
2 + T . (39)

5.2 Interpretation of relativistic mass and energy
– The total energy E is E = mc2 .
– It is the sum of the kinetic energy and the rest energy.
– The energy of a particle in its rest frame is E0 = m0c

2 .

Using the definition of the relativistic mass m = γm0, we can write:

E = m · c2 = γm0 · c2 . (40)

For any object, m · c2 is the total energy, and this follows directly from momentum conservation.
We can say that m is the mass (energy) of the object ‘in motion’, while m0 is the mass (energy) of
the object ‘at rest’. The mass m is not the same in all inertial systems; the rest mass m0 is. Following
previous arguments, m0 is the ‘proper mass’.
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5.3 Relativistic relations
Starting from

p = mv , (41)

with m = γm0:
p = γ ·m0v = γ · β · c ·m0 . (42)

We rewrite:
E2 = m2c4 = γ2m2

0c
4 = (1 + γ2β2)m2

0c
4 , (43)

and finally get:

E2 = (m0c
2)2 + (pc)2 ⇒ E

c
=
√

(m0c)2 + p2 . (44)

This is a rather important formula in practice, e.g., for kinematics in accelerators.

5.4 Units used in special relativity and particle physics
Standard SI units are not very convenient; other units are much easier to use and have become a standard
in accelerator and particle physics:

[E] = eV , [p] = eV/c , [m] = eV/c2 .

Then one can use a very convenient form for Eq. (44):

E2 = m2
0 + p2m. (45)

Examples for elementary particles (proton):
Mass of a proton: mp = 1.672 · 10−27 kg,
Energy(at rest): mpc

2 = 938 MeV = 0.15 nJ.

We can take an everyday object like a ping-pong ball:
Ping-pong ball: mpp = 2.7 · 10−3 kg (≈ 1.6 · 1024 protons),
Energy (at rest): mppc

2 = 1.5 · 1027 MeV = 2.4 · 1014 J.
This corresponds to an energy of:

– ≈750 000 times the full LHC beam;
– ≈60 kilotons of TNT.

The typical kinetic energy of a ping-pong ball is completely negligible.

5.5 Mass of a moving particle in a particle accelerator
The mass of a fast-moving particle increases as:

m = γm0 =
m0√
1− v2

c2

. (46)

When we accelerate:

– for v � c:

– E, m, p, v increase. . .

– for v ≈ c:
– E, m, p increase, but v (almost) does not!
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Table 1: Relations between relativistic parameters

cp T E γ

β 1√(
E0
cp

)2
+1

√
1− 1(

1+ T
E0

)2

√
1−

(
E0
E

)2 √
1− γ−2

cp cp
√
T (2E0 + T )

√
E2 − E2

0 E0

√
γ2 − 1

E0
cp√
γ2 − 1

T/(γ − 1)
√
E2 − c2p2 E/γ

T cp

√
γ − 1

γ + 1
T E − E0 E0(γ − 1)

γ cp/E0β 1 + T/E0 E/E0 γ

Table 2: Logarithmic relations between relativistic parameters

dβ

β

dp

p

dT

T

dE

E
=

dγ

γ

dβ

β

dβ

β

1

γ2
dp

p

1

γ(γ + 1)

dT

T

1

(βγ)2
dγ

γ

dp

p
γ2

dβ

β

dp

p
[γ/(γ + 1)]

dT

T

1

β2
dγ

γ

dT

T
γ(γ + 1)

dβ

β

(
1 +

1

γ

)
dp

p

dT

T

γ

(γ − 1)

dγ

γ

dE

E
(βγ)2

dβ

β
β2

dp

p

(
1− 1

γ

)
dT

T

dγ

γ

dγ

γ
(γ2 − 1)

dβ

β

dp

p
− dβ

β

(
1− 1

γ

)
dT

T

dγ

γ

β =
v

c
≈
√

1− m2
0c

4

T 2
. (47)

A consequence of this effect is that, in a synchrotron, a particle with higher speed takes longer to complete
a turn than a particle with lower speed. This leads to the effect of transition in synchrotrons.

For small rest masses (e.g., electrons), this effect is very small; the effect is only relevant for
hadrons.

5.6 Kinematic relations
A summary of kinematic relations between the relativistic variables is shown in Tables 1 and 2.

As an example, one can compute the relative spread of particle velocities from the momentum
spread:

LHC (7 TeV):
∆p

p
= 10−4 ,

∆β

β
= 10−12 ,

LEP (100 GeV):
∆p

p
= 10−4 ,

∆β

β
= 10−15 .

The reason for the much smaller velocity spread in the LEP is, of course, the larger γ factor.

15

SHORT OVERVIEW OF SPECIAL RELATIVITY AND INVARIANT FORMULATION OF ELECTRODYNAMICS

41



6 First summary
The theory of special relativity is derived from two postulates.

– Physics laws are the same in all inertial frames.
– The speed of light in vacuum c is the same in all frames and requires Lorentz transformation.

Consequences of special relativity are:

– simultaneity is not independent of the frame of observation;
– moving objects appear shorter;
– moving clocks appear to go slower;
– the mass is not independent of motion (m = γ ·m0) and the total energy is E = m · c2;
– absolute space or time do not exist: where it happens and when it happens are not independent.

In the following, it is demonstrated how to simplify calculations using the concept of four-vectors.

7 Space–time and four-vectors
Since space and time are not independent, we must reformulate the physics laws, taking both into account
on an equal footing:

t, ~x = (x, y, z) ⇒ Replace by one vector including the time. (48)

All four-vectors are constructed from a temporal and a spatial part, where the temporal part (e.g., time t)
is multiplied by c to get the same units.

We need two types of four-vector (here position four-vector):

Xµ = (ct,x, y, z) and Xµ = (ct,−x,−y,−z) . (49)

This is due to the ‘skewed’ reference system; for details see the bibliography.

Four-vectors of the type Xµ are called contravariant vectors; Xµ are called covariant vectors.
It is common practice to use capital letters for four-vectors to distinguish from the 3D vectors. Using
four-vectors, the Lorentz transformation can easily be written in matrix form:

X ′µ =




ct′

x′

y′

z′


 =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 = Xµ , (50)

X ′µ = Λ ◦Xµ (Λ for ‘Lorentz’) , (51)

but note:

X ′µ =




ct′

−x′
−y′
−z′


 =




γ +γβ 0 0
+γβ γ 0 0

0 0 1 0
0 0 0 1







ct
−x
−y
−z


 = Xµ . (52)

It can be verified that the transformation for covariant vectors is the inverse of Λ and:

X ′µ = Λ−1 ◦Xµ . (53)
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7.1 Hyperbolic transformation
Using the definitions from Eq. (17), the transformation becomes:

X ′µ =




ct′

x′

y′

z′


 =




cosh(ψ) − sinh(ψ) 0 0
− sinh(ψ) cosh(ψ) 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 = Xµ . (54)

This takes the form of a rotation.

7.2 Vector operations
Having introduced four-vectors, we have to look at operations on and with four-vectors, in particular
scalar products, because they play a key role in special relativity.

7.3 Scalar product
The well-known scalar product using Cartesian co-ordinates and the Euclidean metric is:

~x · ~y = (xa, ya, za) · (xb, yb, zb) = (xa · xb + ya · yb + za · zb) . (55)

Space–time four-vectors are of the form:

Aµ = (cta, xa, ya, za) , Bµ = (ctb,−xb,−yb,−zb) .

The four-vector scalar product is:

AµBµ =

3∑

µ=0

AµBµ

︸ ︷︷ ︸
Einstein convention

= (cta · ctb − xa · xb − ya · yb − za · zb) . (56)

In Eq. (56), we have used the so-called Einstein convention to write the equations in a more compact
form: when an index appears more than once in an equation (here: µ) it implies summation over this
index.

For many applications, a simplified rule can be used:

AB = (cta · ctb − xa · xb − ya · yb − za · zb) . (57)

7.4 Four-vectors
We have important four-vectors:

Co-ordinates: Xµ = (ct, x, y, z) = (ct, ~x) ,

Velocities: Uµ =
dXµ

dτ
= γ(c, ~̇x) = γ(c, ~u) ,

Momenta: Pµ = mUµ = mγ(c, ~u) = γ(mc, ~p) ,

Force: Fµ =
dPµ

dτ
= γ

d

dτ
(mc, ~p) ,

Wave propagation vector: Kµ =
(ω
c
,~k
)
,

We define the gradient operator as a four-vector: ∂µ =

(
1

c

∂

∂t
,−~∇

)
=

(
1

c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
.

It is a key element in this analysis that all four-vectors Aµ transform as:

A′µ = Λ ◦Aµ . (58)
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7.5 Invariant forms
The main objective of the principle of special relativity is to arrive at invariant laws of physics in different
frames.

– The solution: write the laws of physics in terms of four-vectors and use Lorentz transformations
between the frames.

– Without proof (it is rather straightforward using Eqs. (51) and (52)): any four-vector (scalar) prod-
uct ZµZµ has the same value in all inertial frames:

ZµZµ = Z ′µZ ′µ . (59)

All scalar products of any four-vectors are invariant!

but: ZµZµ and Z ′µZ
′
µ are not!

– Note: the four-vectors in the scalar product do not have to be of the same type.
– PµXµ is also an invariant four-vector product.

One should look at two particularly important invariants.

7.5.1 A special invariant—invariant velocity
From the velocity four-vector Uµ:

Uµ = γ(c, ~u) , (60)

we get the scalar product:
UµUµ = γ2(c2 − ~u2) = c2 . (61)

We find that the invariant of the velocity has the same value in all inertial frames and is the speed of light.
The speed of light c is the same in all frames.

7.5.2 Invariant momentum
Starting from the four-momentum Pµ:

Pµ = m0U
µ = m0γ(c, ~u) = (mc, ~p) =

(
E

c
, ~p

)
, (62)

P ′µ = m0U
′µ = m0γ(c, ~u′) = (mc, ~p′) =

(
E′

c
, ~p′
)
. (63)

We can get another important invariant:

PµPµ = P ′µP ′µ = m2
0c

2 . (64)

The invariant of the four-momentum vector is the mass m0. It follows that the rest mass is the same in
all frames (it has to be, otherwise we could not tell whether we are moving or not!)

7.6 Four-vectors and kinematics
The use of four-vectors enables a very straightforward and simple procedure to compute the kinematics
of moving particles.
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Fig. 13: Schematic illustration of particle collisions. Left: for the case of a colliding beam facility; right: when one
particle is at rest (fixed-target collisions).

Table 3: Centre of mass energies for fixed-target collisions and colliding beams for different energies and particle
types.

Collision E beam energy Ecm (collider) Ecm (fixed target)
pp 315 (GeV) 630 (GeV) 24.3 (GeV)
pp 6500 (GeV) 13000 (GeV) 110.4 (GeV)
pp 90 (PeV) 180 (PeV) 13000 (GeV)
e+e− 100 (GeV) 200 (GeV) 0.320 (GeV)

7.6.1 Particle collisions
For collisions of particles in high energy physics experiments, the available centre of mass energy Ecm

is the relevant parameter.

We distinguish two types of collision: when a particle hits a particle at rest and when two high
energy particles collide, either head on or at an angle. This is shown in Fig. 13.

The computation of Ecm is rather straightforward when four-vectors are used. The centre of mass
energy must be an invariant of the collision process and is therefore the scalar product of two four-vectors.

It was shown before that the relevant four-vector is the momentum four-vector. Taking the scalar
product of the sum of the four-momentum of the colliding particles gives the centre of mass energy.

Pµ1 = (E, ~p) , Pµ2 = (E,−~p) , Pµ1 = (E, ~p) , Pµ2 = (m0, 0) ,

Pµ = Pµ1 + Pµ2 = (2E, 0) , Pµ = Pµ1 + Pµ2 = (E +m0, ~p) ,

Ecm =
√
PµPµ = 2 · E , Ecm =

√
PµPµ =

√
2m0E . (65)

This procedure also works for more than two colliding particles: Pµ = Pµ1 + Pµ2 + Pµ3 + . . . It works
for any configuration; also, for particle decay.

In Table 3, a comparison is made of the centre of mass energies for fixed-target collisions and
colliding beams for different energies and particle types. The differences are very significant; centre of
mass energies as provided by the LHC cannot be reached by fixed-target collisions.

7.6.2 Particle decay
We consider a particle P0 decaying into two (or more) particles (Fig. 14): P0 ⇒ P1 + P2.

We can measure the properties of the decay products, (i.e., ~p2, ~p1, m1, m2, E1, E2). The par-
ameters (in particular the mass m0) of the original particle are unknown.

For every decay product, we construct the corresponding four-momentum from the measured val-
ues:

Pµ1 = (E1 , ~p1), E1 =

√
m2

1 + ~p21 ,

Pµ2 = (E2 , ~p2), E2 =

√
m2

2 + ~p22 . (66)
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Fig. 14: A particle decaying into two particles

Fig. 15: Invariant mass of a γγ decay, showing an enhancement at the Higgs mass

The centre of mass of the decaying particle is an invariant: the rest mass m0 of the particle.

We obtain the sum of the four-momenta, which is the four-momentum of the original particle:

Pµ0 = (Pµ1 + Pµ2 ) = (E1 + E2, ~p1 + ~p2) . (67)

The particle mass we get from the scalar product and, since we know P 2
0 = m2

0c
4:

m0c
2 =

√
(E1 + E2)2 − (~p1c+ ~p2c)2 . (68)

When we drawm0 for every observed decay, we obtain a histogram with the mass of the original particle
(Fig. 15).

As an example, Fig. 15 shows the invariant mass of two photons, an expected channel for the decay
of the Higgs particle. At the mass of the Higgs particle, we see an enhancement above the background.
This procedure works for any number of decay products.

7.6.3 Particle scattering and four-vectors
In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, mo-
mentum, and angles of particles in a scattering process in a Lorentz-invariant fashion. They are used for
scattering processes of two incoming particles and two outgoing particles.

Assume that there are two particles (P1 and P2) in the initial state of an interaction and two
particles (P3 and P4) after the interaction. The two most important relations are described by the variables
s and t, defined as:

s = (P1 + P2)
2 = (P3 + P4)

2 , (69)

t = (P1 − P3)
2 = (P2 − P4)

2 . (70)

The physical interpretation of these variables is rather straightforward. Compared with earlier
results, the variable s = (P1 + P2)

2 is the square of the centre of mass energy in the collision process
(Fig. 16).
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Fig. 16: Invariant variable s for colliding particles

x

t

P2

P1 P3

P4

t

Fig. 17: Invariant variable t for colliding particles

The variable t = (P1−P3)
2 describes an interaction where an incoming particle is scattered from

another particle (Fig. 17), exchanging momentum t, typically through the exchange of an intermediate
particle (vector boson).

7.6.4 Cross-sections and luminosity
The probability for a collision process between particles is characterized by the corresponding cross-
section for this process.

According to the postulates, the cross-section must be an invariant in all frames. This requires the
correction term from Eq. (71):

K =
√

(~v1 − ~v2)2 − (~v1 × ~v2)2/c2 . (71)

It is easily verified that in the case of two colliding beams with the same energy, this factor becomes
K = 2.

Since the luminosity [4] must also be an invariant, the same correction factor must be used in the
calculation of the luminosity.

8 Special relativity and electrodynamics
We come back to the original starting point and derive a relativistic formulation of Maxwell’s equations.

8.1 Four-vector formulation of electromagnetic quantities
According to the rules for four-vectors, one can write the potentials and currents as four-vectors:

φ, ~A⇒ Aµ =

(
φ

c
, ~A

)
, (72)

ρ,~j ⇒ Jµ = (ρ · c,~j) . (73)
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What about the transformation of current and potentials? Since we have formulated the potentials and
currents as four-vectors, we transform the four-current as:




ρ′c
j′x
j′y
j′z


 =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1







ρc
jx
jy
jz


 .

It transforms via: J ′µ = ΛJµ and the potential is transformed correspondingly:A′µ = ΛAµ. Since scalar
products of four-vectors are invariant, one writes:

∂µJ
µ =

∂ρ

∂t
+ ~∇~j = 0 . (74)

Equation (74) implies the conservation (invariance) of charge.

8.2 Electromagnetic quantities and field tensor
Having written the currents and potentials as four-vectors [1], we derive a formulation for the fields. The
Magnetic field is derived from the potential:

~B = ∇× ~A ,

e.g., written explicitly for the x-component:

Bx =
∂A3

∂y
− ∂A2

∂z
=
∂Az
∂y
− ∂Ay

∂z
.

The scalar potential provides the electric field:

~E = −∇φ− ∂ ~A

∂t
,

e.g. written explicitly for the x-component:

Ex = −∂A0

∂x
− ∂A1

∂t
= −∂At

∂x
− ∂Ax

∂t
.

These operations can be performed for all components of the fields. Then the electromagnetic fields can
be condensed to form a field tensor Fµν :

Fµν := ∂µAν − ∂νAµ =




0
−Ex
c

−Ey
c

−Ez
c

Ex
c

0 −Bz By

Ey
c

Bz 0 −Bx
Ez
c
−By Bx 0




. (75)

It transforms via: F ′µν = ΛFµνΛT (using the same transformation Λ as before). This corresponds
to the transformation of the components of the fields into a moving frame.

Using the Lorentz transformation for Fµν , and writing the components explicitly, one gets easily:

E′x = Ex , B′x = Bx ,

E′y = γ(Ey − v ·Bz) , B′y = γ
(
By +

v

c2
· Ez

)
,

E′z = γ(Ez + v ·By)z , B′z = γ
(
Bz −

v

c2
· Ey

)
z . (76)

For the example of a Coulomb field (a charge moving with constant speed, Fig. 18):
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γ = 1 γ >> 1

Fig. 18: Transformation of a Coulomb field to a moving frame

– in the rest frame, one has only electrostatic forces;
– in the moving frame, ~E is transformed and a magnetic field ~B appears.

When we rewrite the second component of Eq. (76):

B′y = γ · v
c2
· Ez . (77)

For small velocities v, this corresponds to the component of the Biot–Savart law. The Lorentz transform-
ation automatically yields this law, including relativistic corrections for larger v.

8.3 An important consequence for moving charges in an accelerator

E′x = Ex , B′x = Bx ,

E′y = γ(Ey − v ·Bz) , B′y = γ
(
By +

v

c2
· Ez

)
,

E′z = γ(Ez + v ·By) , B′z = γ
(
Bz −

v

c2
· Ey

)
. (78)

Assuming that ~B′ = 0, we get for the transverse forces:

~Fmag = −β2 · ~Fel . (79)

For particles close to the speed of light, β = 1, and electric and magnetic forces cancel.

This has many important consequences, (e.g., space charge effects) because transverse fields
generated by the charges vanish as the beam is accelerated.

This is most important for the stability of beams and (for β � 1) it cannot be ignored.

8.4 Retarded potentials
To compute these fields of moving charges, one can start with the four-potential of the charges at rest
and apply the transformation.

For the static charge, we have the Coulomb potential [1] and ~A = 0. The transformation into the
new frame (moving in the x-direction) gives, for the new potentials:

φ′

c
= γ

(
φ

c
−Ax

)
= γ

φ

c
, (80)

A′x = γ

(
Ax −

vφ

c2

)
= −γ v

c2
φ = − v

c2
φ′ . (81)

i.e., all that is needed to compute the fields is the new scalar potential φ′:

φ′(~x) = γφ(~x) = γ · 1

4πε0
· q

|~x− ~xq|
. (82)
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After transformation of the co-ordinates, e.g., x = γ(x′ − vt′), the resulting potentials can be used to
compute the fields, as observed in the system at rest. However, one has to take care of causality.

The field observed at a position ~x at time t was caused at an earlier time tx < t at the location
~x0(tr) and the potentials have to be written as:

φ(~x, t) =
qc

| ~X|c− ~X~v
, ~A(~x, t) =

q~v

| ~X|c− ~X~v
. (83)

The potentials φ(~x, t) and ~A(~x, t) depend on the state at the retarded time tr, not t. Here ,~v is the velocity
at time tr and ~X = ~x− ~x0(tr) relates the retarded position to the observation point.

8.5 Invariant formulation of Maxwell’s equations
One can now rewrite Maxwell’s equations using four-vectors and Fµν :

∇ ~E =
ρ

ε0
and ∇× ~B − 1

c2
∂ ~E

∂t
= µ0 ~J ,

1+3⇒ ∂µF
µν = µ0J

ν (inhomogeneous Maxwell equation) ; (84)

∇ ~B = 0 and ∇× ~E +
∂ ~B

∂t
= 0 ,

1+3⇒ ∂γF
µν + ∂µF

νλ + ∂νF
λµ = 0 (homogeneous Maxwell equation) . (85)

We have Maxwell’s equations in a very compact form; transformation between moving systems
is now very easy. The equivalent formulation in matter (macroscopic Maxwell’s equation) is shown in
Appendix B.

8.5.1 Derivation of Gauss’ law
Starting from Eq. (84):

∂µF
µν = µ0J

ν . (86)

Written explicitly (Einstein convention, sum over µ):

∂µF
µν =

3∑

µ=0

∂µF
µν = ∂0F

0ν + ∂1F
1ν + ∂2F

2ν + ∂3F
3ν = µ0J

ν . (87)

As an example, one can choose ν = 0 and replace Fµν with the corresponding elements:

∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 = µ0J
0 ,

0 + ∂x
Ex
c

+ ∂y
Ey
c

+ ∂z
Ez
c

= µ0J
0 = µ0cρ . (88)

This corresponds exactly to:
~∇ · ~E =

ρ

ε0
(c2 = ε0µ0) . (89)

8.5.2 Derivation of Ampère’s law
For ν = 1, 2, 3, one obtains Ampère’s law.

For example in the x-plane (ν = 1) and the F frame:

∂yBz − ∂zBy − ∂t
Ex
c

= µ0J
x . (90)
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After transforming ∂γ and Fµν to the F ′ frame:

∂′yB
′
z − ∂′zB′y − ∂′t

E′x
c

= µ0J
′x . (91)

It should be mentioned that now Maxwell’s equations have the identical form in F and F ′.

8.5.3 Combining the equations
Finally: since we have Fµν = ∂µAν − ∂νAµ,

∂µF
µν = µ0J

ν , (92)

∂γF
µν + ∂µF

νλ + ∂νF
λµ = 0 . (93)

We can rewrite them two-in-one in a new form:

∂2Aµ

∂xν∂xν
= µ0J

µ . (94)

This expression contains all four Maxwell’s equations, and it is the only one that stays the same in all
frames!

One can conclude that there are no separate electric and magnetic fields; they are just a frame-
dependent manifestation of a single electromagnetic field.

8.6 Electromagnetic forces in the framework of relativity
Starting with the four-force as the time derivative of the four-momentum:

FµL =
∂Pµ
∂τ

. (95)

We get the four-vector for the Lorentz force, where the spatial part is the well-known expression:

FµL = γq

(
~E · ~u
c

, ~E + ~u× ~B

)
= q · FµνUν . (96)

8.7 Interpretation
To quote Einstein [2]:

For a charge moving in an electromagnetic field, the force experienced by the charge is equal
to the electric force, transformed into the rest frame of the charge.

Therefore, the Lorentz force is not an add-on to Maxwell’s equations but just a consequence of
two reference frames.

9 Summary
9.1 Summary—relativity basics

– Special relativity is very simple; there are a few basic principles.

– Physics laws are the same in all inertial systems.
– The speed of light in vacuum is the same in all inertial systems.

– Everyday phenomena lose their meaning (do not ask what is ‘real’).

– Only the union of space and time preserve an independent reality: space–time.
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– Electric and magnetic fields do not exist!
– They are simply different aspects of a single electromagnetic field.
– The manifestation of the electromagnetic field, i.e., division into electric ~E and magnetic ~B

components, depends on the chosen reference frame.

9.2 Summary—consequences for particle accelerators
Write everything as four-vectors, blindly follow the rules and you get it all easily, in particular, transform-
ation of fields, etc.

– Relativistic effects in accelerators (used in later lectures):

– Lorentz contraction and time dilation (e.g., free-electron laser, . . . );
– relativistic Doppler effect (e.g., free-electron laser, . . . );
– invariants!
– relativistic mass effects and dynamics;
– new interpretation of electric and magnetic fields, in particular ‘Lorentz force’.

– If you do not take relativity into account, you are sunk. . .
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Fig. A.1: Schematic view of the GPS

Appendices
A Time dilation and general relativity
The time dilation due to the difference of height between two systems can be calculated as:

dτ

dt
=

√
1− 2GM

Rc2
, (A.1)

dτ

dt
≈ 1− GM

Rc2
. (A.2)

where G is the gravitational constant and R the distance from the centre of the Earth, and

∆τ =
GM

c2
·
(

1

REarth
− 1

RGPS

)
. (A.3)

With the following parameters for the GPS (Fig. A.1):

REarth = 6357000 m , RGPS = 26541000 m ,

G = 6.674 · 10−11 N m2/ kg2 , M = 5.974 · 1024 kg ,

we have:
∆τ ≈ 5.3 · 10−10 s . (A.4)

B Tensors and macroscopic Maxwell’s equations
It was mentioned in a previous lecture [1] that electric displacement ~D and magnetic field ~H are linked
to the electric field ~E and induction ~B as:

~D = ε0 ~E + ~P ,

~H =
1

µ0
~B ~M , (B.1)

where ~P and ~M are the polarization and magnetization, respectively.

Each can be represented as a covariant tensor:

Mµν :=




0 Pxc Pyc Pzc −Pxc 0 −Mz My

−Pyc Mz 0 −Mx

−Pzc −My Mx 0


 , (B.2)

Dµν :=




0 −Dxc −Dyc −Dzc
Dxc 0 −Hz Hy

Dyc Hz 0 −Hx

Dzc −Hy Hx 0


 . (B.3)
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The tensors are linked as:
Dµν =

1

µ0
Fµν −Mµν . (B.4)

It can easily be verified that Eq. (B.4) is equivalent to Eq. (B.1).

The Gauss–Ampère law (Eq. (84)) becomes:

∂µDµν = Jν . (B.5)
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Undulator Technology 

J. Pflueger 
European XFEL GmbH, Schenefeld, Germany 

Abstract  
Since the 1970s undulators are used in storage rings and free-electron lasers 
as sources of intense radiation. This tutorial gives an elementary introduction 
and describes the principles as well as electromagnetic, superconducting and 
permanent magnet technologies, which are used in practice. Special emphasis 
is put on permanent magnet technology, which is most developed and used in 
most practical applications. An overview illustrated by many examples of the 
state of the art is given. 

Keywords 
Undulators; free-electron lasers; permanent magnets.  

1 Introduction 
The word ‘undulator’ originates from the Latin word for wave, ‘unda’. Its meaning is thus ‘wave maker’. 
By using a series of magnet poles with the same lengths and strengths but alternating field directions an 
ultra-relativistic electron beam is forced on a wave like, wiggling but overall straight orbit as shown 
schematically in Fig. 1. 

 
Fig. 1: Schematic of an undulator 

Common and often used synonyms are ‘insertion device’ or ‘wiggler’. There are three 
technologies to create the periodic magnetic field: permanent magnet (PM), electromagnetic (EM) and 
superconducting (SC) technologies. They will be treated in this report. Typical device lengths are in the 
range of about 0.5 to 5 m. The development and use of undulators as intense sources of synchrotron 
radiation began in the late 1970s when first devices were developed for use in storage rings at the Budker 
Institute for Nuclear Physics (BINP) in Novosibirsk and the Lawrence Berkeley National Laboratory 
(LBNL) in co-operation with Stanford Synchrotron Radiation Laboratory (SSRL). 
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In a storage ring an undulator requires a straight section of an appropriate length. Such straight 
sections were very rare at that time. Therefore since the 1990s, dedicated third-generation storage rings 
were developed, which were optimized to accommodate a large number of straight sections and provide 
space for many insertion devices. Nowadays large facilities like the European Synchrotron Radiation 
Facility, (ESRF), the Advanced Photon Source (APS), the Super Photon Ring-8 GeV, (Spring8) or the 
reconstructed Positron Electron Tandem Ring Anlage, (PETRA III) accommodate dozens of such 
devices with lengths up to 5 m. An early historic insertion device built at Deutsches Elektronen 
Synchrotron (DESY) in 1983 is shown in Fig. 2. It is the 2.3 m long W1 wiggler. It occupied the only 
straight section available at that time in the storage ring “Doppelringspeicher”, (DORIS). 

 
Fig. 2: The W1 wiggler in use at DESY/HASYLAB in the DORIS storage ring from 1983 to 2012 

In the last 15 years X-ray free-electron lasers (XFELs) using the principle of self-amplified 
spontaneous emission (SASE) were developed. They require very long systems of undulators and 
generate soft and hard X-ray beams with extreme properties allowing for revolutionary new 
experimental techniques. Examples are the Free Electron Laser in Hamburg, (FLASH) at DESY, 
Germany, the Linac Coherent Light Source, (LCLS) in Stanford, USA or the Spring8 Angstroem 
Compact Free Electron Laser (SACLA) at Spring8 in Harima, Japan. All are already in operation since 
several years. New projects with even more improved properties are in construction at the European 
XFEL/DESY (EXFEL) in Schenefeld/Hamburg, Germany, SwissFEL at Paul Scherrer Institute (PSI) 
in Villingen, Switzerland and XFEL at the Pohang Accelerator Laboratory (PAL-XFEL) in Pohang, 
Korea. 

Depending on beam parameters and radiation properties the lengths of undulator systems vary 
from 30 m for FLASH to about 220 m for EXFEL. Although the requirements and specifications are 
different, the undulator technology has a lot in common. 

This contribution will give a basic understanding of undulator properties and evaluation criteria. 
For a deeper insight the books by Onuki/Elleaume [1], Clarke [2] and the Handbook of Synchrotron 
Radiation [3] treat many theoretical as well as practical aspects, which were omitted on purpose in this 
contribution on technology: calculation of emission properties, magnetic measurement techniques of 
insertion devices, magnet design and special insertion devices. The state of the art of undulator 
technology is illustrated by a number of examples. 
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2 Basics 

2.1 Equations of motion 

In this section some fundamental relations for commonly used key parameters are derived. The motion 
of an electron in a periodic field of an undulator is sketched in Fig. 3. 

 
Fig. 3: Electron motion in an undulator 

This figure also defines the coordinate system used in this contribution. The motion of a single 
electron in a magnetic field is controlled by the Lorentz equations:  

�⃗�𝐹 = d𝑝𝑝��⃗
d𝑡𝑡=𝑚𝑚0𝛾𝛾

d
d𝑡𝑡𝑣𝑣�⃗ = 𝑚𝑚0𝛾𝛾 �

�̈�𝑥
�̈�𝑦
�̈�𝑧
� = 𝑒𝑒��⃗�𝑣 × 𝐵𝐵�⃗ � = 𝑒𝑒 ∙ �

𝑣𝑣𝑦𝑦𝐵𝐵𝑧𝑧 − 𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦
𝑣𝑣𝑧𝑧𝐵𝐵𝑥𝑥 − 𝑣𝑣𝑥𝑥𝐵𝐵𝑧𝑧
𝑣𝑣𝑥𝑥𝐵𝐵𝑦𝑦 − 𝑣𝑣𝑦𝑦𝐵𝐵𝑥𝑥

� .                                  (1) 

Here �⃗�𝐹 is the force acting on an electron, 𝑝𝑝 its momentum and �⃗�𝑣 its velocity vector. 𝑚𝑚0 is the electron 
rest mass, 𝛾𝛾is the kinetic energy in units of the rest mass and 𝑒𝑒 its charge. 𝐵𝐵�⃗  is the vector of the magnetic 
field. 

2.2 Transverse motion 

For the motion in a planar undulator Eq. (1) is solved by making the assumption for a planar field: 

 𝐵𝐵�⃗ = �
0

𝐵𝐵0 sin �2πλ0𝑧𝑧�
0

� ,  (2) 

where 𝜆𝜆0 is the period length of the field and 𝐵𝐵0 its amplitude.  𝐵𝐵𝑥𝑥 ,  𝐵𝐵𝑧𝑧 = 0 . 𝐵𝐵�⃗  is a purely transverse 
field which varies along z, the direction of propagation. The initial conditions are  
 𝑣𝑣𝑥𝑥,  𝑣𝑣𝑦𝑦 = 0;  𝑣𝑣𝑧𝑧 = β𝑐𝑐 ,  (3) 

where c is the speed of light and the following relations are used:  

𝛽𝛽 = �1 − 1
𝛾𝛾2
≅ 1 − 1

2𝛾𝛾2
;     𝛾𝛾 = 𝐸𝐸Kin

𝑚𝑚0𝑐𝑐
≫ 1 .                                  (4) 

For multi-GeV beams this condition is very well satisfied and 𝛾𝛾 is in the order of many times 103. 
In practice for most undulators the period length, 𝜆𝜆0, is in the range of 10 to 400 mm and 𝐵𝐵0 of the order 
of 1–2 T. As will be shown quantitatively below, transverse velocities are small enough so that the 
small-angle approximation can be made: 

 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦
β𝑐𝑐

= 𝑥𝑥′,𝑦𝑦′ <<  1 .  (5) 
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Then Eq. (1) can be simplified: 

�̈�𝑥 = − 𝑒𝑒
𝛾𝛾𝑚𝑚0

𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦 , 

�̈�𝑦 = 0 ,                                                                               (6) 

�̈�𝑧 = 𝑒𝑒
𝛾𝛾𝑚𝑚0

𝑣𝑣𝑥𝑥𝐵𝐵𝑦𝑦≅0 . 

For the deflection angle x’ it can be solved by integration: 

𝑥𝑥′(𝑧𝑧) = 𝑣𝑣𝑧𝑧(𝑧𝑧)
β𝑐𝑐

= − 𝑒𝑒
γ𝑚𝑚0𝑐𝑐

∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′)d𝑧𝑧′ .𝑧𝑧
−∞                                      (7) 

The integral 

∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′)d𝑧𝑧′𝑧𝑧
−∞ = 𝑰𝑰1(𝑧𝑧)                                                     (8) 

is called the first field integral and can be calculated using measured field data, if available.  

For the sinusoidal field as assumed in Eq. (2), 

𝑥𝑥′(𝑧𝑧) =
  𝑒𝑒𝐵𝐵0𝜆𝜆0 

𝛾𝛾  𝑚𝑚0𝑐𝑐2𝜋𝜋
cos �2𝜋𝜋𝜆𝜆0 𝑧𝑧� = 𝐾𝐾

𝛾𝛾
cos �2𝜋𝜋𝜆𝜆0 𝑧𝑧�                                         (9) 

is obtained, where 

𝐾𝐾 =
  𝑒𝑒𝐵𝐵0λ0 

 𝑚𝑚0𝑐𝑐2𝜋𝜋
= 0.0934 𝐵𝐵0[T] ∙ λ0[mm]                                           (10) 

defines the undulator K-parameter for a purely sinusoidal field as assumed in Eq. (2). The maximum 
excursion angle of the electron beam is given by 𝐾𝐾 𝛾𝛾� . For non-sinusoidal but periodic 𝐵𝐵𝑦𝑦 fields it is 
given by 

 𝐾𝐾Def =  Max �  𝑒𝑒
𝑚𝑚0𝑐𝑐

𝑰𝑰1(𝑧𝑧) � ,                                                (11) 

where the suffix ‘Def’ marks the definition using the deflection criterion. Real fields of undulators are 
periodic, but in general contain higher harmonics and therefore the K-parameter differs from the 
definition given in Eq. (10). 

The electron trajectory in the X–Z plane is obtained by a second integration of Eq. (9):  

𝑥𝑥(𝑧𝑧) = − 𝑒𝑒
𝛾𝛾𝑚𝑚0𝑐𝑐

∫ �∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′′)d𝑧𝑧′′𝑧𝑧′

−∞ �d𝑧𝑧′ .𝑧𝑧
−∞                                  (12) 

Here the second field integral is defined as 

𝑰𝑰2(𝑧𝑧) = ∫ �∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′′)d𝑧𝑧′′𝑧𝑧′

−∞ �d𝑧𝑧′ .𝑧𝑧
−∞                                  (13) 

For the sinusoidal field of Eq. (2), the result is 

𝑥𝑥(𝑧𝑧) = − 𝑒𝑒𝐵𝐵0𝜆𝜆02

𝛾𝛾𝑚𝑚0𝑐𝑐 4𝜋𝜋2
∙ sin �2𝜋𝜋𝜆𝜆0 𝑧𝑧� = −𝐾𝐾

𝛾𝛾
 𝜆𝜆0
2𝜋𝜋
∙ sin �2𝜋𝜋𝜆𝜆0 𝑧𝑧� ,                           (14) 

so that the amplitude of the trajectory oscillation, A, is given by 

𝐴𝐴 = 𝐾𝐾
𝛾𝛾

 𝜆𝜆0
2𝜋𝜋

 .                                                              (15)  

A short comment on non-monochromatic field contributions: Eqs. (10) and (15) are commonly 
used and give estimates better than 10–15%. Details, however, depend on the presence of higher field 
harmonics, which in turn depend on technological details such as the minimum gap and the period length 
𝜆𝜆0 as well as on dimensions of the magnetic active parts. It therefore needs a careful analysis if higher 
precision is required. 
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2.3 Longitudinal motion 

In a magnetic field the total velocity of an electron is constant. This connects the longitudinal and 
transverse motions:  
 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2 = (𝛽𝛽𝑐𝑐)2 .  (16) 

Using Eqs. (7) and (9), the evolution of the longitudinal speed can be written: 

𝑣𝑣𝑧𝑧 = �(𝛽𝛽𝑐𝑐)2 −  𝑣𝑣𝑥𝑥2  ≅ 𝛽𝛽𝑐𝑐(1 − 𝑣𝑣𝑥𝑥2

2∙(𝛽𝛽𝑐𝑐)2) = 𝑐𝑐𝛽𝛽 �1− 𝐾𝐾2

4𝛾𝛾2
− 𝐾𝐾2

4𝛾𝛾2
cos �4𝜋𝜋

𝜆𝜆0
𝑧𝑧�� .                (17) 

This result shows two consequences: 

1. The average longitudinal speed is reduced since the oscillations in the undulator increase the 
path length. This can be accounted for using �̅�𝛽 defined as  

�̅�𝛽=𝛽𝛽 �1 − 𝐾𝐾2

4𝛾𝛾2
� .                                                                    (18) 

2. In addition, the longitudinal speed is modulated by the factor 𝐾𝐾2

4𝛾𝛾2
cos �4𝜋𝜋

𝜆𝜆0
𝑧𝑧� with two 

oscillations per period 𝜆𝜆0. As compared to Eq. (9), the longitudinal amplitude is reduced by 𝐾𝐾
4𝛾𝛾

. 

Equation (17) can be rewritten: 

𝑣𝑣𝑧𝑧 = c ��̅�𝛽 − 𝐾𝐾2

4𝛾𝛾2
cos�2 ∙ 2𝜋𝜋

𝜆𝜆0
𝑧𝑧�� .                                          (19) 

2.4 Slippage, optical phase and phase errors 

Light travels at light speed 𝑐𝑐. An electron in an undulator travels at lower average speed given by �̅�𝛽𝑐𝑐. 
This gives rise to an effect called ‘slippage’, which is explained in Fig. 4. The black full line sketches 
the oscillating trajectory of an electron in an undulator. The time for light to travel the distance from A 
to B, one period length, 𝜆𝜆0, is given by 𝑡𝑡𝑐𝑐 = 𝜆𝜆0

𝑐𝑐  . In that time the electron travels only the distance 𝜆𝜆0
𝑐𝑐
�̅�𝛽𝑐𝑐. 

The difference is called ‘slippage’. Using Eqs. (4) and (18) and neglecting the term proportional to 1
𝛾𝛾4

 the 
slippage of one period is given by 

Δ = 𝜆𝜆0�1− �̅�𝛽� = 𝜆𝜆0
2𝛾𝛾2

(1 + 𝐾𝐾2

2
) .                                                    (20) 

 
Fig. 4: Slippage in an undulator 

Since the slippage in all periods of an ideal undulator is the same, the light emitted by different 
periods constructively interferes at the wavelength given by Eq. (20). It is therefore more common to 
rewrite Eq. (20) using the radiation wavelength, 𝜆𝜆Rad: 

𝜆𝜆Rad = 𝜆𝜆0
2𝛾𝛾2

�1 + 𝐾𝐾2

2
� ,                                                   (21) 

which is the well-known resonance condition for the first harmonic of an undulator. 

UNDULATOR TECHNOLOGY

59



2.5 Optical phase  

The accumulated slippage in a magnetic field extending from 𝑧𝑧0 to 𝑧𝑧 is given by 

Δ(𝑧𝑧) = ∫ �𝑐𝑐 − 𝑣𝑣𝑧𝑧(𝑧𝑧′)�d𝑧𝑧′𝑧𝑧
𝑧𝑧0

.                                                 (22) 

The optical phase is the total slippage normalized to 𝜆𝜆Rad
2𝜋𝜋

 and defined as  

𝜑𝜑(𝑧𝑧) = 2𝜋𝜋 Δ(𝑧𝑧)
𝜆𝜆Rad

 .                                                         (23) 

Combining Eqs. (7), (17), (21) and (22), one obtains the optical phase for 𝐵𝐵𝑦𝑦(𝑧𝑧) 

𝜑𝜑(𝑧𝑧) = 2𝜋𝜋 Δ(𝑧𝑧)
𝜆𝜆Rad

= 2𝜋𝜋

𝜆𝜆0(1+𝐾𝐾
2
2 )

 �𝑧𝑧 + � 𝑒𝑒
𝑚𝑚0
�
2
∫ �∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′)d𝑧𝑧′𝑧𝑧′′

−∞ �
2

d𝑧𝑧′′𝑧𝑧
−∞ � .                (24) 

This result can again be applied to measured magnetic field data 𝐵𝐵𝑦𝑦(𝑧𝑧). The normalization to λRad, the 
first harmonic, eliminates 𝛾𝛾 and leads to an energy-independent form.  

The double integral 

PI(𝑧𝑧) = ∫ �∫ 𝐵𝐵𝑦𝑦(𝑧𝑧′)d𝑧𝑧′𝑧𝑧′′

−∞ �
2

d𝑧𝑧′′𝑧𝑧
−∞                                               (25) 

is commonly called ‘Phase Integral’. 

2.6 Phase errors 

The optical phase is very important for evaluating the quality of an undulator in terms of its emission 
properties. This is understood by a qualitative argument: field errors lead to changes in the transverse 
velocity and thus result in changes of the longitudinal velocity as seen by Eq. (17). This will perturb the 
phase advance per period of 2𝜋𝜋 and lead to a phase mismatch of the radiation emitted by different 
periods and the quality of the produced radiation will be degraded. The criterion which controls this 
degradation is the phase jitter, also called phase error. It is defined as the RMS difference between the 
ideal and the actual phases on the poles of an undulator as determined by Eq. (24).  

This can be written as  
PJ =  1

𝑁𝑁
∑ (𝑖𝑖 ∙ 𝜋𝜋 − 𝜑𝜑(𝑧𝑧𝑖𝑖))2 .𝑁𝑁
𝑖𝑖=1                                                 (26) 

Here 𝑖𝑖 labels the poles and 𝑧𝑧𝑖𝑖 are the corresponding positions. The nominal phase advance per pole is 𝜋𝜋. 
Phase errors are a reliable quality criterion for the evaluation of emission properties of an undulator. For 
spontaneous emission of undulators in synchroton radiation (SR) sources this was established by 
Walker; see Ref. [4]. For undulators in SASE-FELs, Li et al. [5] have made a thorough investigation. 
Today magnetic measurement and tuning techniques allow for RMS phase jitters of 1° or 0.0175 rad or 
even less. However, this should not be overstressed. Such a small PJ is only needed if an undulator will 
be operated at a high harmonic, which is often the case in SR sources, see Ref. [4]. In contrast, SASE-
FELs are operated on the first harmonic only. Here a PJ of 11° or 0.192 rad is sufficient. It should be 
mentioned that the phase-error criterion avoids the unnecessary over specification of very small peak 
field errors, which is sometimes found. As shown in Ref. [5] some errors at the proper location are 
tolerable. 

2.7 Demonstration and example 

The relations derived in the previous sections are illustrated by two examples in Fig. 5. A short model 
of 20 periods of a XFEL U40 undulator with 𝜆𝜆0 = 40 mm and 𝐵𝐵0 = 1 T is shown. The K-parameter is 
3.72. For simplicity and explanation this short model field rather than that of a real 5 m long undulator 
with 120 full periods was selected.  
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Fig. 5: Field, first, second field integrals and phase integral for a short model with 20 periods  

Figure 5(a) shows the field with an amplitude of ±1 T. The first field integral with an amplitude 
of ±6.3 T mm calculated using Eqs. (7) and (9) is shown in Fig. 5(b). The amplitude of the second field 
integral, Eqs. (12) and (13), is ±40.5 T mm2 and shown by Fig. 5(c). Finally, Fig. 5(d) shows the phase 
advance and illustrates Eq. (24). On both ends, outside the undulator, there is zero field and the phase 
evolution is that in free space represented by a straight line with a slope given by 360°

λ0(1+0.5K2) = 1.4°/mm. 

Inside the undulator, the phase advance is 360° per period or a slope of  360°
λ0

= 9°/mm. It is seen that 
over the 20 periods the phase advance is about 7200°.  

The measured phase errors of a typical XFEL U40 are shown in Fig. 6. The phase error on each 
pole 𝑖𝑖 is calculated using Eqs. (24) and (26). There are about 240 poles.  The phase errors on all these 
poles were measured at six different gaps and their RMS values are shown in Fig. 6. 

It is seen that there is some systematic variation along the undulator. Its amplitude changes with 
gap. The smallest value is at 14 mm gap leading to an RMS error of 1.77°. The results show that the 
phase error of this undulator is well within the XFEL specifications, which require an RMS phase error 
of less than 8°.  
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Fig. 6: Phase errors of a XFEL U40 measured at different gaps 

3 Hardware technology  

3.1 Technological limitations 

EM, SC and PM technologies are used for the technical realization of periodic fields in undulators. In 
this section their Pros and Cons as well as technological limits will be discussed. 

The first two, EM and SC technologies, are magnet systems excited by currents in conductors. 
Apart from the much higher currents and current densities in SC systems there is no fundamental 
difference between an EM and a SC system. In an EM system it is the current in a copper conductor, in 
a SC system a typical wire material is NbTi. Both need a sufficiently large cross-section to carry the 
total excitation current. This marks a difference to PM systems, where PM material based on SmCo or 
NdFeB with a remanent field of 0.9–1.25 T is used. Homogeneous PM material can be described by a 
surface current given by 
 𝑗𝑗Surface = 𝑀𝑀

𝜇𝜇0
  ,  (27) 

where M is the magnetization and 𝜇𝜇0 = 1.256 × 10−6 V s/A m the vacuum permeability. For a 
remanent field of 1.25 T a surface current of about 106 A/m results. This results in a fundamental 
difference in the scaling properties of EM and PM systems, which is explained in Fig. 7. Here the scaling 
properties of a simple EM and a PM dipole system using an iron yoke are investigated if all dimensions 
are scaled down, i.e. divided by a factor a, and the scaled down systems are required to have the same 
field in the gap.  

For the original EM system the field in the gap is obtained by integrating the magnetic field 
strength, H, around a closed path containing the enclosed current as indicated in Fig. 7. The iron 
contribution is negligible due to its very large permeability and only the field in the gap contributes. 
 

∮ 𝐻𝐻d𝑠𝑠 = 𝐵𝐵Gap∙Gap
𝜇𝜇0

= 𝑗𝑗Area𝐴𝐴 = 𝐼𝐼   →   𝐵𝐵Gap = 𝑗𝑗Area𝐴𝐴
Gap

𝜇𝜇0  .                                (28) 

A is the cross-section of the conductor, 𝑗𝑗Area is the current density and I is the total enclosed 
current. For the scaled down system the linear dimensions are divided by the scaling factor a,  
GapScaled = 𝐺𝐺𝐺𝐺𝑝𝑝/𝐺𝐺 and 𝐴𝐴Scaled = 𝐴𝐴/𝐺𝐺2. This leads to the requirement for the current density:  
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 𝑗𝑗Area,Scaled = 𝑗𝑗Area ∙ 𝐺𝐺  (29) 

if the requirement 𝐵𝐵Gap = 𝐵𝐵Gap,Scaled needs to be fulfilled. So, for the system scaled down by 𝐺𝐺 > 1, 
the current density needs to increase proportional to 𝐺𝐺. There are, however, technical limits for current 
densities, as will be shown below. 

A PM system behaves differently. Integration of H along a closed path results in 
 ∮ 𝐻𝐻d𝑠𝑠 = 𝐵𝐵GapGap+𝑙𝑙m𝐵𝐵m

𝜇𝜇0
= 𝑗𝑗Surface𝑙𝑙m = 𝑀𝑀

𝜇𝜇0
𝑙𝑙m = 𝐼𝐼 .  (30) 

The magnet is treated like an infinitely thin air coil of length 𝑙𝑙m and the surface current density is 
given by Eq. (27). Since the flux in the gap and magnet, i.e. the number of field lines, is preserved, 
𝐵𝐵m = 𝐵𝐵Gap, 
 𝐵𝐵Gap = 𝑀𝑀𝑙𝑙m

Gap+𝑙𝑙m
= 𝑀𝑀

Gap
𝑙𝑙m

+1
 .  (31) 

In this result only the geometric ratio Gap/𝑙𝑙m determines the field, not the absolute coordinates. 
So, the fields of PM structures are invariant under a change of scale. The consequence of this scaling 
property is seen when the geometries are miniaturized: EM structures are limited by the current density 
for copper of ≲ 10 A

mm2  ; for superconductors it may exceed 1500 A
mm2 but the basic principle of 

limitation is the same. For a PM system such a limitation does not exist.  

 
Fig. 7: Scaling properties of EM and PM systems 
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Fig. 8: Comparison of EM, SC and PM technologies 

For illustration and without going into any design details, Fig. 8 shows a comparison of the peak 
field of undulators using EM, SC and PM technologies. The figure is taken from Ref. [6]. The scaling 
is gap/period, which is appropriate for PM. For EM and SC the comparison is made at gap = 12 mm. It 
is seen that EM shows the lowest values. A peak field of 0.8 T is only possible if the period length is 
about 200 mm. This is of practical use only for special cases. 

SC offers the highest fields. At a gap of 12 mm a period length of about 50 mm would result in 
almost 4 T and at a period length of 17 mm still about 0.5 T is possible. For PM technology several 
curves are shown for different magnet designs, which will be explained below. They are somewhere in 
between EM and PM. 

In summary, EM technology may be useful for undulators with long or even very long period 
lengths, 𝜆𝜆0 > 200 mm, and for very special applications. Its technology is well established and has 
much in common with classical EM magnets for accelerator applications. 

SC has two regions: at periods larger than about 40 mm, fields of several Teslas may be reached. 
Wavelength shifters are such extreme applications, as will be shown below. There are numerous such 
long-period, high-field devices in operation in various laboratories. Typically, they have very few 
periods, sometimes only one. This technology is well established. 

In contrast, the technology for short-period SC undulators is much more demanding, still under 
development and far away from being ‘state of the art’. At present there are only very few laboratories 
world-wide working on short-period SC undulators. There are, however, promising technological 
developments, which need time to get established. At period lengths down to 10–15 mm  SC 
outperforms the other technologies but with decreasing difference the smaller the periods are.  

PM technology is well established and is the workhorse technology for insertion devices. An 
estimated 90–95% of all devices are built in this way. Very large systems have been built in co-operation 
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with industrial suppliers. For example, the European XFEL requires 91 5 m long undulators with a total 
magnetic length of 455 m. Typical period lengths for PM undulators are 10–250 mm. In contrast to EM 
and SC undulators, PM technology has one important and obvious advantage: since a PM system is 
permanently excited there are no operation costs for electric power or cryogenics as for EM and SC 
systems and maintenance costs are low.  

3.2 EM examples 

Two examples for EM undulators will be explained. The first is shown in Fig. 9. It is the infrared/THz 
undulator for FLASH. It is a planar device with a very large period length of 400 mm. Water-cooled 
coils are wound around the poles, as can be seen schematically in the RADIA model in the upper left. 
The device has a gap of 40 mm, which is needed to guide the infrared radiation without losses. The 
maximum field at full excitation is 1.2 T. For FLASH operated at 1.2 GeV very intense coherent infrared 
radiation with wavelengths as long as 4.2 µm can be generated with this device. Operation cost should 
not be neglected: its power consumption at full excitation is 80 kW. At current electricity prices and 
100% operation this amounts to around 400 €/day or 140 k€/year.  

The second example is the EM helical undulator built for the APS and is shown in Fig. 10. It is a 
more sophisticated and rather exotic device. The cross-section is shown in the upper left part. There is 
a vertical structure for the By field similar to that in Fig. 9 but there is a second structure for the horizontal 
Bx field, which is displaced by a quarter period. The overall geometry is such that it allows for the 
insertion of a vacuum chamber with a very large horizontal aperture as required in storage rings and as 
shown in the upper left part of Fig. 10. Therefore, the Bx coils are split into an upper and a lower part. 
The period length is 125 mm, which is short for an EM undulator but the resulting field at 10.5 mm gap 
is only 0.3 T resulting in a K-parameter of 3.5. At the APS with 7 GeV this structure will create soft 
X-ray radiation around 500 eV. There is another speciality: the iron core of this device is laminated. 
This allows for operation of the coils with AC at 10 Hz rather than DC. So, the helicity of the field can 
be reversed quickly, which is important for studying magnetic phenomena.  

 
Fig. 9: The THz undulator for FLASH 
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Fig. 10: EM helical undulator for the APS 

3.3 SC devices 

The technological advantages of SC devices were already described in Section 3.1. As an example of 
long-period/high-field devices Fig. 11 shows the wavelength shifter built for Spring8. It has a magnetic 
length of about 1 m only and accommodates just three poles. The central pole is designed for highest 
field and reaches up to 10.2 T. It is surrounded by two side poles with lower field and longer length, 
which balance and control the first and second field integrals. The field distribution is seen in the lower 
left of Fig. 11. At 8 GeV this device is used to create ultra-hard X-rays with a critical energy of 440 
keV, which should be compared with about 64 keV from a conventional bending magnet at 1.5 T. In 
general wavelength shifters are good choices if the spectrum of X-rays emitted by bending magnets is 
too soft. An example: in a typical soft X-ray storage ring with 2 GeV the critical photon energy of a 
conventional 1.5 T bending magnet is about 4 keV only. This is much too low for special X-ray 
techniques such as protein crystallography, which requires photon energies of about 24 keV (0.5 Å). 
With a 10.2 T wavelength shifter as described above the critical energy is shifted to 27 keV. 

The technology for these devices is well established and used in many storage rings throughout 
the world. 
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Fig. 11: The SC wavelength shifter built by BINP for Spring8  

For short-period SC undulators the situation is quite different. Two examples are shown in 
Fig. 12. The upper one was built for the Anstroemquelle Karlsruhe (ANKA) at the Karlsruhe Institute 
of Technology (KIT) and is in operation since 2005. The lower one is a short prototype under 
development for the APS upgrade. It has only 20 periods and a magnetic length of about 300 mm but is 
inserted in a full-size 2 m cryostat, the planned final length of the device. 

This device is part of a systematic development at the APS. The plan is to use a large number of 
SC devices for the planned upgrade of the APS storage ring expected to start in 2020. It will be the first 
large-scale use of SC undulators. 

Some of the technological challenges which need to be solved are briefly mentioned. 

i) Proper radiation shielding is required to prevent heat load from SR originating from upstream 
magnets especially in long small-gap devices. 

ii) A vacuum chamber is needed to separate the accelerator vacuum from the cryogenic part, which 
reduces the usable gap. 

iii) Magnetic measurements in such a device require substantial effort.  

iv) There is no compensation scheme for field errors. Field quality can only be guaranteed by perfect 
manufacturing. 

v) The production technology needs to be further developed. At present (2016) it is not yet mature 
enough to be used for a large number of devices.  
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The target parameters for the final APS device are: 𝜆𝜆0 = 15 mm; 𝐵𝐵Peak ≤ 1.5 T; K ≤ 2.1; magnetic 
gap = 7.3 mm; vacuum gap = 5.0 mm. This should be compared to an in-vacuum hybrid PM device 
where magnetic and vacuum gaps are the same, that is, 5.0 mm: 𝜆𝜆0 = 15 mm; gap = 5.0 mm: 
𝐵𝐵Peak = 0.82 T; K = 1.15. So peak field and K-parameter of a SC device are significantly larger in spite 
of the larger magnetic gap of the SC undulator. This demonstrates the advantage of SC technology.  

 
Fig. 12: SC undulator development at ANKA and APS 

3.4 PM undulators 

3.4.1 Magnet design  

New PM materials based on sintered SmCo and NdFeB compounds were developed in the 1970s and 
1980s. They offer much higher energy products resulting in higher remanent and coercive fields and 
therefore much increased magnetic performance as compared to traditional ferrite or AlNiCo materials, 
which were used before. This development revolutionized many applications using PM technology. 

The use of these materials for insertion devices was pioneered by Klaus Halbach, who proposed 
the two different magnet configurations, which are still used without modification for planar undulators 
worldwide [7, 8]. The pure permanent magnet (PPM) structure is shown in Fig. 13, left. The structure 
is assembled from parallelepipeds arranged in two rows and magnetized as shown in the figure. The 
space between the upper and lower rows is called the ‘gap’. By changing the gap mechanically, the field 
strength in the gap can be accurately controlled. The field of a homogenously magnetized parallelepiped 
with 𝜇𝜇r = 1.0  can be calculated analytically using the current-sheet method. The field of a complete 
structure is obtained by superposition of the fields. This is good for many calculations. For precise data, 
however, the finite permeability 𝜇𝜇r needs to be taken into account; 𝜇𝜇r ≈ 1.05–1.07 for NdFeB and 1.02–
1.03 for SmCo.  

Obviously the field of a PPM undulator is fully determined by the PM material, its quality, 
homogeneity, magnetic orientation, mechanical dimensions and manufacturing accuracy. These are 
important quality criteria and depend on many details of the production process. There might be large 
variations for commercially available materials. 
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Fig. 13: Left-hand side: PPM array. Right-hand side: hybrid array 

An alternative is the hybrid configuration, Fig. 13, right, which avoids some of the drawbacks of 
the PPM design but requires more effort. It uses a combination of soft iron poles and PM material 
arranged again in a bottom and a top array with a gap in between. The iron poles concentrate the flux of 
the magnets and conduct it to the gap. The fields in general are higher than for PPM. In contrast to PPM 
undulators the field is dominated by the geometry of the poles and only to a lesser extent by material 
quality. This allows a better and more direct control of field errors as well as eventually some 
compromises on material quality. 

For field calculations of hybrid undulators there are no analytic methods and numeric codes need 
to be used. Since these codes generally allow for 𝜇𝜇r > 1 they are often used for PPM structures as well. 
A very popular code in the insertion device community is RADIA developed at the ESRF [9]. 
Today for most undulator applications NdFeB magnet material is used because it offers the highest 
energy product. Only for special applications requiring high temperatures or extremely high coercive 
fields SmCo material is an alternative. 

For design work and parameter determination it is very useful to have an analytic formula which 
describes the peak field as a function of the gap. A convenient form was already given in Ref. [8], see 
also Ref. [6]:  

 𝐵𝐵 � 𝑔𝑔
𝜆𝜆0
� [T] = 𝐺𝐺 e𝑏𝑏

𝑔𝑔
𝜆𝜆0

+𝑐𝑐� 𝑔𝑔𝜆𝜆0
�
2

  (32) 

The normalization to 𝜆𝜆0visualizes the scaling properties described in Section 3.1. The constants 
a, b and c are determined by fitting using either calculated or measured data of a specific design and 
geometry. Using scaling the same magnet design can in principle be scaled to different 𝜆𝜆0. 

Figure 14 shows a selection of normalized gap dependencies fitted using Eq. (32). They are taken 
from the literature as well as from results obtained at DESY and the European XFEL. The coefficients 
a, b and c are shown in Table 1 for some of the curves shown in Fig. 14. Here are some remarks 

1. As expected, the PPM curve is well below the hybrid curve.   

2. The majority of the curves are close together. They all use hybrid magnet designs optimized for 
relatively small period lengths, 𝜆𝜆0 < 48 mm. 

3. In contrast, the curve for BW5 was optimized for a large-period device with 𝜆𝜆0 = 230 mm. The 
objective was a high field of about 1.98 T and a gap of 20 mm, gap/𝜆𝜆0 = 0.087. 
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Fig. 14: Examples of gap dependences normalized to 𝝀𝝀𝟎𝟎 

Limits to scaling are only set by physical dimensions. Applying scaling from a small to a large 
period length requires increasing the volume of magnets and poles proportional to the third power. At 
material cost of 200 to 500 €/kg for magnet material this sets an economic limit for large-period devices, 
which therefore always are a compromise between magnet volume/cost and achievable field. An 
example for scaling is given for the DORIS BW5 wiggler: with 𝜆𝜆0 = 230 mm the weight of one magnet 
block was ≈15 kg. Using the SASE2 design, which would allow for slightly higher fields and scaling, 
its weight would have to be about 57 kg.  

Table 1: Examples for fitting the parameters a, b, c in Eq. (32) 

Magnet structure a b c 

Hybrid FeCo polesa  3.694 –5.068 1.52 

XFEL  SASE2 measuredb 3.10487 –4.24914 0.80266 

XFEL SASE3 measuredc 3.2143 –4.62305 0.92541 

DORIS III BW5d 3.1852 –5.6036 1.6891 

PPMa  2.076 –3.24 0 
a See Ref. [6]. 
b Measured data of EXFEL U40; λ0 = 40 mm. 
c Measured data of EXFEL U68; λ0 = 68 mm. 
d  Measured data of DORIS III 2 T wiggler BW5; λ0 = 230 mm. 

For the design of the mechanics of PM undulators, no matter whether they use PPM or hybrid 
technology, two points are important:  

1. The magnets of the top and bottom structures need to be mounted on girders. In the case of the 
European XFEL the length is 5 m. There are significant attractive magnetic forces between 
these girders, which need an accordingly massive and stiff support in order to guarantee 
homogeneous field properties. The sinusoidal magnetic field applies an attractive magnetic 
‘pressure’ between the upper and lower structures, which can be estimated by 
 

 𝐹𝐹[N/m2] = 𝐵𝐵02[T]
4𝜇𝜇0

  (33) 
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As a rule of thumb, a field of 0.5 T corresponds to about 0.5 bar, which for a 5 m long and 
70 mm wide structure amounts to an attractive force of 17500 N. For 1.7 T, which applies to 
the worst case for the SASE3 undulator for the European XFEL at 10mm gap, it amounts to 
about 200 kN. Girder stiffness and the supports need to be designed in such a way that under a 
dynamic load change with these forces the dynamic girder deformation is typically such that the 
resulting peak to peak homogeneity does not significantly exceed Δ𝐵𝐵

𝐵𝐵 ≤10−3.  
2. The K-parameter of a PM undulator is tuned by the mechanical adjustment of the gap. For  

X-ray FELs a typical requirement on adjustment accuracy is Δ𝐾𝐾
𝐾𝐾 ≤10−4. As a result a typical 

specification on the mechanics, the drive motors, measurement systems and the motion control 
system is to allow for a gap-adjustment accuracy better than ±1 µm. 

3.4.2 Some examples 

3.4.2.1 Open C-frame  

Figure 15 shows some examples of the C-frame geometry. It is a very common way to arrange the 
magnet structures. The principle is shown in Fig. 15(a). There is a stiff frame which is a good support 
for the guide rails, to which the girders are connected to. The gap is adjusted via spindles. Nowadays 
usually gears are avoided and axes are coupled and synchronized electronically by the control system 
rather than by hardware such as shafts and gears. There might be four motors, one for each spindle, as 
seen in the two examples for LCLS II, Fig. 15(b) and the European XFEL, Fig. 15(d) or alternatively 
two motors in combination with two right/left spindles, as seen in Fig. 15(c), which shows a standard 
carriage of the ESRF. This device in addition is equipped with four spring systems, which are used for 
partial compensation of the magnetic forces. The great advantage of the C-geometry is its good access 
from the open side. This is seen in Fig. 15(d), which shows a 5 m long undulator segment aligned on 
the magnetic bench. Magnetic measurements and tuning can be done in an alternating fashion. The C-
bracket with the hand-off sign seen in the foreground on the end of the girder is part of the gap-
measurement system with a verified accuracy of ±1 µm. 

 
Fig. 15: Undulators with C-frame geometry. (a) Principle; (b) 2.3m LCLS II prototype; (c) 1.6m ESRF standard 
carriage; (d) A 5m U40 undulator for the European XFEL aligned on the magnetic bench. 
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3.4.2.2 Revolver undulators 

A special case of C-frame devices are revolver undulators. They allow for the use of different 
magnet structures which are mounted on rotatable drums or girders so they can be changed rapidly. The 
principle is shown in Fig. 16(a). Different magnet structures are arranged on drums. Different ones can 
be selected by proper rotation of the upper and lower drums. Figure 16(b) shows the 4 m long 
BW3 undulator used in DORIS III from 1990 to 2012. It provides four positions. The bearings for the 
drum rotation need to be at the ends and allow for four positions and continuous rotation.  

 
Fig. 16: Revolver undulator. (a) Principle; (b) DORIS III BW3 revolver with four positions; (c) APS revolver with 
cradle support with two positions. 

However, but their locations are non-optimum for mechanical deformation under attractive 
forces. Enforced drums as well some extra length of about 0.3 m for the bearings on either end are 
required. Deformation properties can be improved by shifting the support to the Bessel points using 
cradle-type circular guide rails as seen in Fig. 16(c). But in this case only two structures can be 
accommodated and continuous rotation is not possible. Revolvers are used in many laboratories to 
extend the scan range of undulators. 

3.4.2.3 H-frame geometry 

The H-frame geometry is shown schematically in Fig. 17(a). It uses a symmetric and closed frame and 
therefore in contrast to the C-frame it is more compact and less prone to deformation. Figure 17(b) 
shows an early example built in 1987: it is the hard X-ray wiggler (HARWI) used in DORIS III during 
1987–2004 for coronary angiography. For highest performance requiring smallest gaps in dedicated SR 
runs it was equipped with a variable vacuum chamber. Lateral access in H-frame devices is very 
restricted. Only limited magnetic measurements can be performed. High-precision systems as shown in 
Fig. 15(d) cannot be used. For these reasons compact H-frame devices as shown in Fig. 17 are rare.  

Recently a very slim measurement system was reported, which can be used under such spatial 
conditions. Although it was built for in situ measurements in in-vacuum undulators, which encounter 
the same problem, see also next section, it might be a perfect system for the magnetic measurement of 
H-frame devices as well. 

J. PFLUEGER

72



 
 

 
Fig. 17: (a) H-Frame geometry; (b) 2.4 m long Hard X-ray Wiggler (HARWI) used at DORIS III for coronary 
angiography 1987–2004. 

3.4.2.4 In-vacuum undulators (IVUs) 

The relativistic electron beam, which is passed through an undulator in order to generate light, needs a 
vacuum chamber. This aspect has not been treated so far. There exist two alternatives, which are 
illustrated in Fig. 18. In most undulators a separate vacuum chamber with an aperture as small as 
possible is used; see Fig. 18(a). Such an out of vacuum chamber requires space for the vacuum chamber 
wall thickness plus some tolerances. This limits the usable magnetic gap. An example is given in 
Fig. 18(c). It shows the dimensions of the vacuum chamber for the undulator segments of the European 
XFEL. It is made of an extruded AlMg alloy, which has been machined to exact final dimensions. The 
minimum magnetic gap of the undulator is 10.000 mm, the vertical beam stay clear is 8.6 mm and the 
vertical outside dimension of the vacuum chamber is 9.5 mm. This results in a wall thickness of 0.45 mm 
only. There is a 0.5 mm tolerance for the chamber to fit in the undulator. However, in this optimized 
example the usable gap is reduced by 1.4 mm. 

 
Fig. 18: (a) Conventional out of vacuum chamber; (b) in-vacuum undulator; (c) vacuum chamber of the European 
XFEL: magnetic gap: 10mm, chamber outside dimension: 9.5mm, alignment tolerance: 0.5mm, beam stay clear: 
8.6mm. The resulting wall thickness is 0.45mm only. 
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An alternative is to place the magnet structure inside the vacuum, Fig. 18(b). In an IVU the magnet 
structure is completely inside the vacuum chamber and there is no loss in usable gap. There are several 
problems which should be mentioned.  

1. The complete magnet structure needs to be compatible with the ultra-high-vacuum (UHV) 
conditions of the accelerator.  

2. All magnets need special coating in order to prevent outgassing of the sintered magnet material. 

3. The whole structure must be designed to avoid virtual leaks.  

4. Compatibility with bake out requires selection of adequate magnet material with high 𝐻𝐻c. 

5. In order to keep the diameter of the vacuum chamber small the magnet structure is supported by 
a number of link rods. They are connected to a massive external girder using feedthroughs. The 
assembly of the magnet structures inside the vacuum vessel implies problems with alignment and 
reproducibility. 

6. Magnetic measurements and magnetic tuning are special challenges. 

As an example the assembly of an IVU at SACLA is demonstrated in Fig. 19. On the left the pre- 
assembled IVU is aligned on the magnetic bench without vacuum chamber to provide lateral access for 
magnetic measurements and tuning. Some of the details already mentioned above are seen: there are the 
massive external magenta support girders, 12 pairs of link rods with their feedthroughs protected by 
aluminium foil and there is the very slim magnet structure, which will go inside the vacuum chamber. 
After measurement and tuning the magnet structure needs to be completely detached from the 2 × 12 
link rods, transferred inside the vacuum chamber and re-attached. Obviously there is only finite 
reproducibility of the re-attachment of the link rods to the girders. This may induce errors in the 
magnetic field, which would stay undetected if no further steps are made. The final assembled IVU is 
seen on the right of Fig. 19. The endcap of the vacuum vessel is still opened. Most IVUs in use today 
use the techniques described above and end at this point. 

A big step forward was the development of the self-aligned field analyser with laser 
instrumentation, (SAFALI) system which allows in situ magnetic measurements; see Ref. [10]. In this 
way the re-attachment errors can be measured and compensated. Its principle is shown in Fig. 20, left. 
There is a very slim guide system, which carries the field probe and is supported by three adjustable 
posts. Their supports go through three flanges in the vacuum vessel. During measurements the probes 
are kept on axis using two laser positioning systems and feedback loops to adjust the posts in such a 
way as to keep the probe on axis. This system in operation is seen in Fig. 20, right. 

 
Fig. 19: Magnetic measurement and final assembly of an in-vacuum undulator 
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Figure 21 shows one of the SACLA IVU systems. It consists of 18 undulator segments of 5 m 
length. The period length is 18 mm. The minimum operational gap is as small as 3.7 mm and the 
maximum K-parameter is 2.1. At 8 GeV X-rays with a wavelength as short as 1 Å can be produced. 

 
Fig. 20: SAFALI system. Left-hand side: principle; right-hand side: measurement on an IVU 

 
Fig. 21: One of the SACLA IVU systems 

3.4.2.5 APPLE undulators 

For PPM structures the superposition principle allows the combination of fields produced by different 
magnet structures. This gave rise to a number of different types of insertion devices, which have been 
proposed over the years. A full treatment and explanation is beyond the scope of these proceedings. 
However, one example, the advanced polarized light emitter, APPLE, undulator [11] became popular 
for spectroscopic applications and is briefly explained. It allows the creation of light with any 
polarization state: planar, right/left circular, elliptical and planar with arbitrary plane of polarization. 
The principle is shown in Fig. 22. An APPLE undulator consists of a PPM structure, in which each half 
is subdivided into two rows. Each row can be moved individually. This is shown schematically in 
Fig. 22(a). If all rows have the same shift the geometry is equivalent to a PPM undulator and there is 
only a By field component. If the rows are shifted diagonally as indicated in Fig. 22(a) a horizontal field 
component is generated resulting in elliptical polarization. If the shift is ±𝜆𝜆0/4 helical radiation with 
right/left helicity is generated. Planar fields can be generated by mutually shifting the diagonal pairs. 
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An APPLE undulator provides a planar gap and therefore is ideal for storage rings, which require a large 
horizontal aperture. Its total field is controlled by the gap. The horizontal gap together with the C-frame 
geometry allows good access for magnetic measurements. However, depending on the shift of the rows 
there might be large forces, which are not present in planar undulators. Therefore they require 
substantially enforced massive frames. Figure 22(b) gives an impression. It shows the 5 m long APPLE 
undulator built for upgraded Positron Electron Tandem Ring Accelerator PETRA III. 

 
Fig. 22: APPLE undulator 

4 Summary and outlook 
Undulators are indispensable components in storage rings and in SASE FELs, where they are used in 
very long systems. In this contribution an overview of the current status of undulator technology is 
given. The most important parameters such as period length, 𝜆𝜆0, the K-parameter, radiation wavelength 
𝜆𝜆Rad , first and second field integrals, the optical phase and the RMS phase errors were explained. 

The three different technologies for building undulators were introduced: EM, SC and PM 
technologies. Their domains and pros and cons were discussed. Special emphasis was put on PM 
technology, which is used in the majority of applications.  

Stimulated by new accelerator developments, which allow smaller emittances and beam sizes, 
there is a trend to reduce the undulator gaps to less than 4 mm as in the case of SACLA and SwissFEL. 
Together with short-period IVUs and beam energies of 5.8 GeV, radiation in the Angström regime and 
below can be produced. However, a severe limitation for small-gap PM undulators is radiation damage, 
which is caused by halo electrons and secondary particles colliding with residual gas and vacuum-
chamber atoms. Such radiation damage has been observed already in conventional warm accelerators 
based on copper technology with repetition rates of typically 50–120 Hz but will become much more 
important for projects using SC accelerators such as the European XFEL or LCLS II, where repetition 
rates up to the MHz range will be used. Obviously the protection of undulators from radiation damage 
will be an important challenge for these new projects. It will require elaborate countermeasures such as 
collimators, doglegs, loss detectors and active protection systems to prepare a well-collimated beam 
without any contamination from particles outside an allowed, well-defined phase space which may hit 
the vacuum chamber. Here the minimum gap is a critical parameter. 

Once the technology is mature enough SC undulators might be a good choice: at given gap and 
𝜆𝜆0 they offer higher fields or alternatively they offer the same field at a significantly larger gap than PM 
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devices. In addition, the superconductor material NbTi is believed to be much less sensitive to radiation 
damage than PM material. There are, however, no direct comparative measurements yet.  

At present, autumn 2016, PM technology is the method of choice for all applications requiring 
short period length. This may change once SC technology is mature enough to be used routinely on 
large-scale systems for SASE FELs. This will require time and stimulation by the requirements of new 
projects such as the APS upgrade or future LCLS II extensions. 
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Linear Accelerator Technology

D. Alesini
Laboratori Nazionali di Frascati dell’INFN, Frascati, Italy

Abstract
The expression ‘linear accelerator technology’ usually addresses all
technological topics related to linear accelerators’ (linac) realization. These
topics comprise, for instance, accelerating structures, Radio Frequency (RF)
sources, magnets, diagnostics systems, controllers, power supplies, vacuum
systems, particle sources, etc. Obviously, the extent of all these subjects is too
wide to be covered in a single one-hour lecture and, therefore, this paper will
only present an overview of the RF structures (including their fabrication
technology) with a few examples of particle sources, RF sources and
waveguide components. Moreover, the focus will be on linac technology for
Free-Electron Lasers (FELs) and Energy Recovery Lasers (ERLs), which are
electron accelerators. Electrons, in fact, even at very low energies (a few
MeV) travel very close to the speed of light, and this fact has a direct
consequence in the accelerating structures design, since they can be identical
all along the linac.

Keywords:
Radio Frequency; particle accelerators; cavity; electromagnetic field;
superconductivity; linac.

1 Accelerating structures
To accelerate charged particles, Electromagnetic (EM) fields are used. This method is effective only

if, however, there is a component of the electric field along the direction of propagation of the particles.
In common practice, this particular configuration is obtained with two different solutions, schematically
represented in Fig. 1.

i) Using Standing Wave (SW) TM010-like modes in a resonant cavity (or multiple resonant cavities),
in which the beam’s passage in the cavities is synchronous with the resonating field. The electric
field oscillates in each cell at a given frequency (from hundreds of megahertz to several gigahertz)
and it is synchronous with the bunches’ passage in each cell, so that the beam will experience a
net accelerating gradient. A single coupler feeds the structure, as will be described below.

ii) Using Travelling Wave (TW) TM01-like modes in a disk-loaded structure, in which the RF wave
co-propagates with the beam with a phase velocity equal to the beam velocity (~c for relativistic
electrons). The power flows into the structure through an input coupler, and is collected and
dissipated at the end of the section by an output coupler connected to an RF load, to avoid
reflections that can strongly affect the beam dynamics and might damage the RF power source,
as will be described below.

The structures can be made of different materials: copper (Cu) for Normal Conducting (NC) cavities
and niobium (Nb) for Superconducting (SC) cavities; and are powered by RF generators (e.g. klystrons,
solid-state amplifiers). The choice between the NC and the SC technologies depends on the machine’s
required performance:
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i) Average accelerating field.

ii) RF pulse length, which is directly related to the bunch train length that it is possible to accelerate:
from a few ms to hundreds of ms up to a continuous wave (CW) operation.

iii) Repetition rate (i.e. the number of RF pulses that feed the structures in one second). In this regard,
it is useful to define the Duty Cycle (DC) as the ratio between the RF pulse length and its period.
Low DC accelerators (DC=10−3 to 10−5) operate in a pulsed regime with very short RF pulses
(~ms) and a relatively low repetition rate (10 Hz to 100 Hz). On the contrary, high DC machines
(DC>10−3) operate with long RF pulses (>ms) up to CW operation (i.e. DC=1).

iv) Average beam current (from mA to hundreds of mA).

v) Available space, etc.

Typically, NC structures are employed in pulsed low DC Free-Electron Laser (FEL) linacs while
SC structures are used for long RF pulses and high DC FEL linacs or Energy Recovery Lasers (ERLs).

Fig. 1: Acceleration principle using (a) SW or (b) TW structures. In a SW cavity the cell length has to be equal to
half the wavelength of the RF field (for p-mode structures). In this way, the bunch in each cell is always
synchronous with the electric field positive half-wave. In a TW structure the EM field travels together with the
bunch, continuously transferring its energy to the particles. If the bunch velocity matches the EM wave velocity
this transfer is obviously maximized.

2 Standing wave cavities
Before comparing different accelerating technologies, it is necessary to define a set of parameters useful
for characterizing the various structures. Let us start with SW cavities.

These are metallic, closed volumes where the EM field has very well-defined spatial
configurations (resonant modes) whose components, including the accelerating field on axis (Ez) rigidly
oscillates at a specific frequency called the resonant frequency (fres). The modes are excited coupling RF
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generators to the cavity through waveguides or coaxial cables. The resonant modes are called SW modes
because they have a spatial configuration that is fixed, and oscillate in time. For a SW cavity the
accelerating field on the axis can be written as

( ) ( ) ( ) RF
z RF RF z

RF

, cos 2  Real j tE z t E z f t E z e wp j
w

æ ö
ç ÷ é ù= + = ë ûç ÷
ç ÷
è ø

%
1442443

(1)

where fRF is the excitation frequency of the generator equal to (or close to) the resonant frequency of the
cavity, wRF is the angular excitation frequency, ( )zERF  (or the phasor z

~E ) is a real (complex) function
related to the spatial configuration of the mode.

For a pure cylindrical structure (usually called a ‘pillbox cavity’) the first accelerating mode (i.e.
the mode with non-zero longitudinal electric field on the axis) is the TM010 mode. It has a well-known
analytical solution from Maxwell’s equations, and its spatial configuration is given in Fig. 2. For this
mode the electric field has a longitudinal component only, while the magnetic one is purely azimuthal.
The corresponding complex phasors are given by [1, 2]
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where a is the cavity radius, A is the mode amplitude and p01 (= 2.405) is the first zero of the Bessel

function J0(x). The resonant frequency of this mode is given by:
a
cpf

p2
01

res = .

Fig. 2: TM010 accelerating mode of a pillbox cavity

The geometry of real cylindrical cavities is somewhat different to that of a pillbox. In fact, one
has to also consider the perturbation introduced by the beam pipe, the power couplers to RF generators
and any antenna or pick-up used to monitor the accelerating field inside the cavity. For this reason, the
actual accelerating mode is called the TM010-like mode.

LINEAR ACCELERATOR TECHNOLOGY

81



Nowadays, real cavities and their couplers to the RF generators are designed using numerical
codes that solve the Maxwell equations with the proper boundary.

A sketch of a cavity fed through a loop or a coaxial probe to an external generator is given in
Fig. 3, where there are also reported the electric and magnetic field lines and the longitudinal electric
field profile on the axis. Details of the coupler design can be found in [3].

Fig. 3: Sketch of a real cavity operating on the TM010-like mode with two type of coaxial couplers

2.1 Standing wave cavity parameters

To define the cavity parameters, we suppose that it is excited with a pure sinusoidal tone at fRF. The
maximum energy gain per unit charge (i.e. the accelerating voltage Vacc) of a particle crossing the cavity
at a velocity v is obtained by integrating the time-varying accelerating field sampled by the charge along
the trajectory

RF

acc z
cavity

 ( )
zj
vV E z e dz

w
= ò % (3)

Real cavities have losses. Surface currents experience a surface resistance Rs and dissipate energy,
so that a certain amount of RF power must be provided from outside to keep the accelerating field at the
desired level. The total average dissipated power Pdiss is given by

power density

2

diss s tan
cavity
wall

1
2

P R H dS= ò
64444744448

% (4)

where tan
~H  is the tangential magnetic field components on the surface. The value of the surface

resistance depends on several factors, such as frequency and cavity material. As an example, at 1 GHz
for a NC cavity in copper Rs @ 8 mW while, for a SC cavity made in niobium at 2 K, Rs @ 10 nW.

For a SW cavity the first figure of merit is the shunt impedance defined by

[ ]
2

acc

diss

VR Ω
P

= (5)
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This parameter qualifies the efficiency of the cavity: the higher its value, the larger is the achievable
accelerating voltage for a given dissipated power. Traditionally, it is the quantity to optimize in order to
maximize the accelerating field for a given dissipated power. As an example, at 1 GHz for a NC single
cell cavity a typical shunt impedance is of the order of 2 MW, while a SC single cell cavity at the same
frequency is of the order of 1 TW, due to the extremely lower dissipated power.

The total energy (W) stored in the cavity is given by
energy density

2 2

cavity
volume

1 1
4 4

W E H dVe mæ ö= +ç ÷
è øò
6444444447444444448

r r (6)

The quality factor of the accelerating mode is then defined by the ratio of the cavity stored energy
and the dissipated power on the cavity walls

0 RF
diss

WQ
P

w= (7)

For a NC cavity operating at 1 GHz the quality factor is of the order of 104 while, for an SC cavity,
values of the order 109 to 1010 can be achieved.

It can be easily demonstrated that the ratio R/Q is a pure geometric factor and it does not depend
upon the cavity wall conductivity or operating frequency. This is the reason why it is always taken as a
geometric design qualification parameter. The R/Q of a single cell is of the order of 100.

2.2 Standing wave cavity equivalent circuit

The quantities described above play crucial roles in the evaluation of the cavity performances. Let us
consider a cavity powered by a source (klystron) at a constant frequency fRF in CW and at a fixed power
(Pin) as shown in Fig. 4. It can be demonstrated that the equivalent circuit of this system is that of a
parallel RLC resonant circuit, as reported in Fig. 4. In the equivalent circuit the resistance R is exactly
the shunt impedance of the cavity, and the quality factor is the quality factor of the RLC circuit. The
transformer models the coupling between the waveguide and the cavity. With simple calculations, it is
easy to demonstrate that the maximum accelerating voltage Vacc for a given input power Pin is given by

( )
( )

acc in2
L

2
1

1
V RP

Q

b
b

d

+
=

+
(8)

where b is the generator–cavity coupling coefficient [3], ( )b+= 10L QQ  is the loaded quality factor and
( )RFresresRF ffff -=d .
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Fig. 4: Equivalent circuit of a cavity fed by a generator

The dissipated power into the cavity is given by:

( )
( )

2

diss in2
L

4
1

1
P P

Q

b
b

d

+
=

+
(9)

The plot of the accelerating voltage as a function of the excitation frequency is given in Fig. 5 for
three different values of the cavity quality factor supposing Pin = 1 MW, R/Q = 100 and b = 1 (critical
coupling), and fres = 1 GHz.

From previous formulas we easily see that, at the resonant frequency and in the case b = 1, we
have

acc in 0 in
RV RP Q P
Q

æ ö
= = ç ÷

è ø
(10)

This means that, for a given cavity, the accelerating voltage is proportional to 0Q .
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Fig. 5: Accelerating voltage as a function of the excitation frequency for a cavity with R/Q = 100, b = 1,
fres = 1 GHz, supposing that Pin = 1 MW.

On the other hand, the bandwidth of the resonance, defined as the d-frequency interval
corresponding to the points with an average dissipated power in the cavity of a factor of two lower than
the dissipated power at resonance, is inversely proportional to the cavity quality factor according to the
formula

RF 3dBRF 3dB NC

res RF 3dB SC

1001

1L

f kHzf

f Q f Hz

ìD @D ï= Þ í
D <ï

î

(11)

The bandwidth of the cavity is, also, labeled 3 dB bandwidth because, usually, we refer to the
normalized quantity ( ) ( )[ ]resdissdiss10log10 fPfP : the bandwidth correspond to the frequency interval
related to the −3 dB points below the peak. In other words, the dissipations and the external coupling
cause the cavity to oscillate in a band of frequencies ( LRF3dB

Qff =D ) whose width is a function of
the loaded quality factor.

Let us now consider a cavity powered by a source (klystron) in pulsed mode at a frequency
fRF = fres. If we suppose that the generator is switched on at time t = 0 with a peak power Pin we obtain
the following expressions for the accelerating voltage, and dissipated and reflected powers [4]
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where we define the filling time resL2 wt Q= .
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Fig. 6: Accelerating voltage and dissipated and reflected powers as a function of time for two different values of
the cavity quality factors, R/Q = 100, b = 1, fres = 1 GHz and an accelerating voltage in the regime Vacc = 1 MV.

The behaviour for a 1 GHz NC cavity with a quality factor Q0 = 3 × 104 is given in Fig. 6, where
the accelerating voltage and the dissipated and reflected powers are given as a function of time, assuming
b = 1. In the plot we fixed the accelerating voltage at a regime equal to Vacc = 1 MV and we have
calculated from Eqs. (9) and (12) the needed input power to reach this value. In the same plot we also
reported, for reference, a quality factor 3 × 105 that is still, at least, four orders of magnitude lower than
the Q-factor of a typical superconducting structure. The plots and the previous formulas clearly show
the following important results:

i) The input power we need to reach the desired voltage is inversely proportional to the quality factor
of the cavity according to

2
acc

in
0 0

1 1VP
Q QR

Q

= µ
æ ö
ç ÷
è ø

(13)

and the dissipated power into the structure follows the same scaling. This means that, as example,
to reach a 1 MV accelerating voltage with a NC cavity at 1 GHz we need an input power of the
order of a few hundreds of kilowatts, while for a superconducting cell it scales to a few watts.

ii) There is a peak of reflected power back to the generator at the beginning (and at the end) of the
input pulse that requires protection for the generator itself to avoid damage.

iii) The voltage in the cavity grows with a filling time proportional to the quality factor of the cavity
resL2 wt Q= .

Typical filling times for NC cavities are of the order of a microsecond while for a SC cavity they
are hundreds of milliseconds. This is also the reason why it is difficult to represent, in the same plot, a
NC cavity and an SC one; and we have chosen a value of Q = 3 × 105 instead of 109 to 1010.

2.3 Multi-cell standing wave cavities

In a multi-cell structure, there is one RF input coupler that feeds a system of coupled cavities as sketched
in Fig. 1(a). The field of adjacent cells is coupled through the cell irises (and/or through properly
designed coupling slots). It is quite easy to demonstrate that the shunt impedance is N times the
impedance of a single cavity; moreover, with one source, it is possible to feed a set of cavities with a
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simplification of the power distribution system and layout. On the other hand, the fabrication of multi-
cell structures is more complicated than single-cell cavities.

The N-cell structure behaves like a system of N coupled oscillators with N coupled multi-cell
resonant modes. As an example, the field configuration of a two-cell resonator is shown in Fig. 7. The
mode in which the two cells oscillate with the same phase is called 0 mode, while the one with 180°
phase shift is called p-mode. It is possible to demonstrate that the most efficient configuration (generally
used for acceleration) is the p-mode, which has been shown in Fig. 1(a) for a system of five cells.

Fig. 7: Resonant mode in a system of two coupled cavities. The mode typically used for acceleration is the p-
mode.

In order to have a synchronous acceleration in each cell, the distance (d) between the centre of
two adjacent cells has to be d = v/(2fRF) where v is the particle velocity.

Field amplitude variation from cell to cell should be also small, to maximize the acceleration
efficiency. This requires a careful realization procedure, which is sometimes not sufficient to reach field
flatness below a few percent, and thus requires a tuning process after fabrication.

It is possible to demonstrate that, over a certain number of coupled cavities, the overlap between
adjacent modes can introduce problems for field equalization, and this limits the maximum number of
multi-cell structures to around 10. It is possible to overcome this limit, for example working in the p/2
mode, but typically these types of structures are not used in FELs or ERLs and their description is
beyond the purpose of this paper (further details can be found in the literature, for example in [4]).

For multi-cell structures, it is also useful to introduce another parameter r, the shunt impedance
per unit length, simply given by

( )2
2

acc acc

diss diss

V L ER Ωr
L P L p m

é ù= = = ê úë û
(14)

where L is the total structure length, Eacc is the average accelerating field and pdiss is the dissipated
power per unit length.

As an example, the SC cavities of the European X-FEL operate with modules of nine cells, as
sketched in Fig. 8. The parameters of these cavities are given in Table 1. More details can be found
in [5, 6].
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Fig. 8: Multi-cell superconducting cavity of the European X-FEL (courtesy [6])

Table 1: XFel SC cavity parameters

Parameter Value
Frequency of operation 1.3 GHz
Mode of operation p
R/Q 1036 [W]
Q0 1010

QL 4.6 × 106

Number of cells 9
Active length 1.038 [m]
Accelerating gradient 23.6 [MV/m]
RF pulse length 1.4 [ms]
Repetition rate 10 [Hz]
Iris diameter 70 [mm]
Epeak/Eacc 2
Bpeak/Eacc 4.26 [mT/(MV/m)]

2.4 Beam structure

The discussion so far allows a better understanding of the relation between the beam structure and the
type of accelerating sections. RF structures are, in general, fed by pulses, and each pulse includes several
RF periods as reported in Fig. 9(a). As already remarked, the duty cycle is defined as the ratio between
the pulse width and the period. The corresponding accelerating voltage in the cavity is sketched in
Fig. 9(b). To avoid energy modulation along the bunch train, the electrons can be accelerated only in
the flat part of the voltage pulse (in the case of high beam currents, injection during the voltage slope,
or RF gymnastics, is also possible to compensate for the so-called beam loading effects, but the
discussion of these techniques is beyond the scope of the present paper).

From consideration of the paragraphs above, it is straightforward to see that high DC operation
(up to CW operation) is feasible only with SC structures, while low DC operation (DC < 10−3) is also
feasible with NC structures. The reasons are clearly due to the power available from RF sources, power
dissipation and filling times of the structures. In the case of SC, in fact, long RF pulses are required to
fill the cavities (the higher the quality factor, the higher the filling time), but relatively low average
power is required from the RF source to reach a given gradient, since a small amount of power is
dissipated into the structures. In the second case, instead, short RF pulses (~ms) with high peak power
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are used but, in order to limit the average power required from the RF generator and dissipated into the
structure, the overall DC has to be kept small. This implies that the maximum number of pulses per
second has to be lower than a few hundred.

From what has been highlighted in the paragraphs above it follows that multi bunch operation
(from hundreds of bunches up to CW) is preferred with SC structures, because of the long pulses used.

Fig. 9: (a) Sketch of the input power into RF structures and (b) related beam structure

3 Travelling wave structures
As pointed out in the first paragraph, there is another possibility for accelerating particles: using a
travelling wave (TW) section. The RF wave is co-propagating with the beam with a phase velocity equal
to the beam velocity (c).

In other words, a TW structure is a special waveguide in which the phase velocity of the wave
matches the particle velocity. Only in this case, the beam can efficiently absorb energy from the EM
wave, and results in continuous acceleration. The solutions of Maxwell’s equations for an EM wave
propagating into a constant cross-section waveguide, however, give a phase velocity that is always larger
than the speed of light. Thus, such an EM wave will never be synchronous with a particle beam. For
instance, if we consider a circular waveguide (Fig. 10(a)), it turns out that the first propagating mode
with Ez ¹ 0 is the TM01 mode whose longitudinal electric field can be expressed by the well know
formula [7]

( )
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*01
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cospE E J r t k z
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è ø

(15)

where a is the radius of the waveguide and *
zk  is the propagation constant given by

* 2 2
RF cut

1
zk

c
w w= - (16)

where wcut cut-off angular frequency of the waveguide equal to acp01cut =w .
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The corresponding phase velocity is given by
RF

ph * 2 2
cut RF1z

cv
k

w

w w
= =

-
(17)

which is always larger than c.

The behaviour of the propagation constant as a function of frequency is the well-known dispersion
curve, and is sketched in Fig. 10(a). It is important to remark that the phase velocity is not the velocity
of the energy propagation into the structure, which, instead, is given by the group velocity (vg):

2 2
g cut RF1

RF
z

dv c
dk w w

w w w
=

= = - (18)

and is always smaller than c.

Fig. 10: Typical dispersion curve for (a) a circular waveguide and (b) an iris-loaded structure

In order to slow down the wave phase velocity, the structure through which the wave is travelling
is periodically loaded with irises. A sketch of an iris-loaded structure is given in Fig 10(b). The field in
this type of structure is that of a special wave travelling within a spatial periodic profile (TM01-like
mode). The structure can be designed to have the phase velocity equal to the speed of the particles: this
allows a net acceleration over large distances.

In particular, the accelerating field can be expressed by Floquet’s theorem [4, 7]

( ) ( )
01 like

*
RF

periodic  function
with period D

, cosz P zTM
E E r z t k zw

-
= -144424443 (19)

The dispersion curve for this type of structure is given in Fig. 10(b) and shows that, at a given
frequency, the phase velocity can be equal to (or even slower than) c.
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In a TW structure, the RF power enters into the cavity through an input coupler and flows (travels)
through the cavity in the same beam direction; and an output coupler, at the end of the structure,
connected to a matched power load, absorbs the non-dissipated power avoiding reflections, as sketched
in Fig. 1(b). If there is no beam, the input power simply dissipates on the cavity walls and the remainder
is finally dissipated into the power load. In the presence of a beam current a fraction of this power is,
indeed, transferred to the beam.

Fig. 11: Sketch of a single cell of a TW structure

3.1 Travelling wave structure parameters

Similarly to what has been done for SW cavities, it is possible to define some figures of merit of TW
structures as well. Referring to the single cell sketched in Fig. 11, we can consider the following
quantities:
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The shunt impedance per unit length r is defined in Eq. (14) as
2
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The higher the value of r, the higher the available accelerating field for a given RF power. Typical values
for a 3 GHz structure are ~60 MW/m.

In a purely periodic structure, made by a sequence of identical cells (also called a ‘constant
impedance structure’), the RF power flux and the intensity of the accelerating field decay exponentially
along the structure. The process of power filling is represented in Fig. 12. When the RF generator is
switched on, the power starts flowing into the structure with a velocity equal to the group velocity, which
is typically a small fraction of the velocity of light (a few percent). The time necessary to propagate the
RF wavefront from the input coupler to the end of a section of length L, referred to as the filling time,
is given by

[ ]F
g

      sL
v

t = (21)

where the group velocity can be calculated by

in
g

mPv
w s

é ù= ê úë û
(22)

Fig. 12: Sketch of the power filling of a TW structure

After one filling time the structure is completely full of energy.

Increasing the group velocity allows reduction of the duration of the RF pulse powering the
structure. Since w µ E2, however, a low group velocity is preferable to increase the effective accelerating
field for a given power flowing in the structure. It is possible to demonstrate that the group velocity
scales as a3 where a is the iris’s aperture.

Due to the power attenuation along the structure, after one filling time the accelerating field can
be expressed as
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where the attenuation constant is given by
diss
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a é ù= ê úë û
(24)

The field sampled by a particle entering the structure after one filling time is simply given by
( ) ( ) z

z PE z E z e a-= (25)

Due to the periodicity of the structure, this field has an amplitude modulation with period D (in
the term EP(z)). Also, for TW structures it is possible to define the quality factor

RF
diss

wQ
p

w= (26)

which can, from Eqs. (22) and (24), be related to the attenuation constant a
RF

g2
Q

v
w

a
= (27)

Each structure is identified by a field phase advance per cell given by: D*
zk=Dj . For several

reasons well-illustrated in [8], one of the most common modes used for acceleration is 2p/3.

As an example, we can consider a 2 m long C-band (fRF = 5.712 GHz) accelerating section made
of copper. Using an iris aperture 2a = 14 mm, we obtain for the 2p/3 mode typical values of the
abovementioned parameters: r = 82 [MW/m], a = 0.36 [1/m], vg/c = 1.7%. This gives a filling time
tF = 150 ns, which is much lower than typical values obtainable with SW structures working at the same
frequency. In Fig. 13(a) is shown the power flow along the structure, and the corresponding accelerating
field, assuming a pulsed input power of 50 MW. The power dissipated into the structure and the total
accelerating voltage integrated by a particle entering into the section at different times are shown in
Fig. 13(b). From the figure, it is possible to observe that after one filling time the structure is full of
energy, and the integrated voltage sampled by a particle does not change.

Fig. 13: (a) Accelerating field and power flow; (b) input power, cavity dissipated power and accelerating voltage,
for a C-band constant impedance structure working on the 2p/3 mode.

At the end of the structure, the remaining power has to be dissipated into an external load to avoid
reflections. These, in fact, can travel back to the RF power unit (causing possible damage), locally
increase the peak fields (causing possible discharges) or can produce undesirable perturbations to the
beam dynamics.
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Typically, TW structures have very short filling time values (<1 ms) and allow operation in pulsed
mode at low repetition rate (10 Hz to 100 Hz) with high peak power (tens of MW) and relatively high
accelerating field (up to 50 MV/m). Typical DC are very low (10−4 to 10−5). For instance, assuming the
previously mentioned TW structure being fed by 400 ns RF pulses of 50 MW (Pin) at 100 Hz, the
resulting DC is 4 × 10−5 with a total average power from the RF generator of 2 kW (Pin × DC). The use
of short RF pulses, however, gives the possibility of accelerating just a few bunches per RF bucket.

In conclusion, note the following important remarks.

i) Due to the power dissipation and the consequent reduction of the accelerating field, increasing
the TW cavity length too much makes the acceleration process very inefficient. Typically in the
S-band (3 GHz) the cavity length is limited to 3 m, in the C-band (6 GHz) to 2 m.

ii) There is no benefit preferring SC materials for TW structure fabrication. This is a direct
consequence of the TW working principle, where there is no accelerating field build-up effect
limited by ohmic losses, and thus the obtainable gain using SC materials is not relevant. It would
be, theoretically, only using a very long TW structure, but this would imply very long RF pulses
at high peak voltage (not feasible) together with a dramatic complication of the realization
process.

iii) Since the structure is basically a waveguide with irises, at the input port there are no significant
power reflections towards the generator, and thus it is possible to connect the power unit directly
to the section without circulators/isolators to protect the source.

3.2 Travelling wave constant gradient structures

An example of constant impedance TW structures has been presented in the previous section. Irises of
equal dimensions cause the accelerating field to decay exponentially along the section. It is possible to
demonstrate that, in order to keep the accelerating field constant in the whole structure, the iris aperture
has to be correctly shrunk along the structure [4, 8]. In this way, the field attenuation is compensated for
by the increase of the stored energy per unit length, due to the lower group velocity. For instance, in Fig.
14 the iris dimensions and the section parameters for a 100-cell C-band constant gradient and constant
impedance structure have been reported as a function of the cell number. In both cases the average
accelerating field is the same and equal to 40 MV/m for 50 MW input power. Because of the different
iris dimensions, the group velocity and shunt impedance also change along the structure.

In general, constant gradient structures are more efficient than constant impedance structures,
because of the more uniform distribution of RF power in the longitudinal direction, but they require a
more complicated mechanical realization due to the irises’ profile modulation.

As a reference, the parameters of the TW accelerating structures of the SLAC linac [8] (used for
the LCLS FEL), the PSI SwissFEL [9–12] and Spring 8 XFEL linac [13, 14] are reported in Table 2.
The former operates in the S-band, while the others are in the C-band.
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Fig. 14: Iris dimensions and structure parameters for 100-cell C-band constant gradient (red line) and constant
impedance (blue line) structures.

Table 2: Parameters of the TW structures of the SLAC linac [8] (used for the LCLS FEL), PSI SwissFEL [9–12]
and Spring 8 linacs [13, 14].

Parameter LCLS TW structures PSI SwissFEL
structures

Spring 8

Operating frequency [GHz] 2.856 5.712 5.712
Operating mode 2p/3 2p/3 3p/4
Structure length [m] 3 2 1.8
Type of structures CG CG Quasi-CG, damped
Number of cells 86 113 91
Accelerating gradient [MV/m] 22 28 38
Filling time [ms] 0.83 0.32 0.3
Cell iris diameter [mm] 26.2 to 19.1 14.4 to 10.9 13.6 to 17.3
Shunt impedance [MW/m] 53 to 60 74 to 88 49 to 59
Group velocity [vg/c] 2.04% to 0.65% 3.08% to 1.21% 2% (av.)
Repetition rate [Hz] 120 100 10 to 60

4 Materials for accelerating structure fabrication
In the previous sections the main characteristics of the accelerating structures with their main figures of
merit, properties and geometries have been illustrated. We will now go into the details of linac
technology, starting with the material generally used for the structure’s realization. As already pointed
out the most common alternatives are oxygen-free high conductivity (OFHC) copper for NC cavities,
and niobium for the SC ones.
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4.1 Oxygen-free high conductivity copper

OFHC copper is the most common material used for NC structures for several reasons:

i) it has a very good electrical (and thermal) conductivity;

ii) it has a low Secondary Emission Yield (SEY) that allows the avoidance of multiple impact
electron amplification (multipacting) phenomena [15] during structure power up, conditioning
and operation;

iii) it shows good performance at a high accelerating gradient;

iv) it is easy to machine, and a very good roughness (up to the level of a few nm) can be achieved;

v) it can be brazed or welded.

The microwave surface resistance of the copper (as for all metals) is expressed by
RF 0 1

s
fR p m
s sd

= = (28)

where s is the conductivity (~5.8 × 107 S/m for Cu at 20°C) and d is the skin depth, which represents
the penetration of the EM field and surface currents inside the metal, as sketched in Fig. 15(a), given by

RF 0

1
f

d
p m s

= (29)

The behaviour of the surface resistance and skin depth as a function of frequency is shown in Fig.
15(b). The conductivity increases reducing the temperature. In the DC regime, for instance, it can be
more than a factor of 100 higher (depending on the copper purity) at cryogenic temperatures with respect
to room temperature. At cryogenic temperatures (<40 K) and in the RF regime, however, a mechanism
called the ‘anomalous skin effect’ [16] takes place. This reduces the gain to a factor of about 20
(depending on the working frequency and copper purity). This also translates into a reduction of the gain
in the quality factor, which makes the use of copper at cryogenic temperatures neither practical nor
convenient.

Fig. 15: (a) Sketch of the penetration of RF EM fields and surface currents inside metal; behaviour of (b) copper
surface resistance and (c) skin depth as a function of frequency.

4.2 Niobium

Superconductivity was discovered in 1911. For a SC material below its critical temperature Tc, in the
DC regime, resistance is zero. In the RF regime, however, the surface resistance is always larger than
zero (even if orders of magnitude lower than NC materials), because not all the electrons are in the
superconducting state. The residual ones are not completely shielded by the superconducting currents
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and thus experience a residual electric field, dissipating power. At frequencies below 10 GHz (and
temperatures below Tc/2), the experimental data available for several materials are well described by the
empirical relation [17–21]

2
RF

res

BCS

cT
T

sR A e R
T
R

aw -
= +
14243

(30)

The first term, resistance (RBCS), is well explained by a theoretical model of the superconductor.
In this term the coefficients A and a depend on the material. The second term is a residual term due to
impurities in the material.

The SC state can be destroyed by an external magnetic field larger than a critical field Hc that
depends on the material used. In practice, this effect fixes the maximum theoretical field that a SC cavity
can sustain.

The most common material for the fabrication of SC cavities is niobium for several reasons [21–
23]:

i) it has a relatively high transition temperature (Tc = 9.25 K);

ii) it has a relatively high critical magnetic field, Hc = 170 mT to 180 mT;

iii) it is chemically inert;

iv) it can be machined and deep drawn;

v) it is available either as bulk or sheet in any size, fabricated by forging and rolling;

vi) large grain sizes (often favoured) can be obtained by e-beam melting;

vii) it can also be used as a coating (e.g. by sputtering) on NC materials like Cu;

viii) it has good thermal stability and is of relatively low cost.

The RBCS resistance for Nb is given by
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f
R e

T
--= ´ W (31)

while the residual resistance can vary between 5 nW and 20 nW.

The behaviour of niobium resistance as a function of temperature at 700 MHz is shown in Fig. 16.

Fig. 16: Surface resistance of Nb at 700 MHz (courtesy [19])
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5 Cavity parameters’ scaling with frequency
The material properties, described in the previous section, allow understanding the frequency scaling
laws of cavity parameters, which have been summarized in Table 3. For the sake of completeness, in
the bottom rows of the table the scaling of the wakefield intensities have also been reported. These have
an important impact on beam dynamics, and their description is beyond the scope of this paper. For our
purposes, it is only important to remark that, the higher the wakefield intensity, the higher is the possible
perturbation in single-bunch and multi-bunch beam dynamics.

Table 3: Scaling laws for cavity parameters with frequency

Parameter NC SC
Surface resistance (Rs) µ f 1/2 µ f 2

Quality factor (Q) µ f -1/2 µ f -2

Shunt impedance per unit length (r) µ f 1/2 µ f -1

r/Q µ f
Longitudinal wakefield (w//) µ f 2

Transverse wakefield (w
┴
) µ f 3

r/Q increases at high frequency. For NC structures, r also increases and this push to adopt higher
frequencies. For SC structures, since the power losses increases with f 2, r scales with 1/f and this push
to adopt, in principle, lower frequencies. On the other hand, at higher frequencies the beam–cavity
interaction due to wakefields becomes more critical (wz µ f 2, w^ µ f 3) and commercial power sources
(above 6 GHz) are less commonly available. Cavity fabrication at very high frequency requires higher
precision and critical alignment but, on the other hand, at very low frequencies one needs more material
and larger machines for the fabrication of components.

These points clearly show that a compromise is required, and for conventional FEL and ERL this
basically fixes the operational frequency for SW SC cavities between 500 MHz and 1500 MHz, for TW
NC structures between 3 GHz and 6 GHz and for SW NC structures between 0.5 GHz and 3 GHz.

Fig. 17: Mechanical drawing of a small prototype of a C-band TW structure with a reduced number of accelerating
cells.

6 Linac technology issues for normally conducting travelling wave structures
TW NC structures are usually a few metres long. They are made of hundreds of cells, and an input and
an output coupler (the latter connected to an RF load). As an example, the mechanical drawing of a
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small prototype of a C-band TW structure with a few accelerating cells is given in Fig. 17. As has already
been pointed out, these structures typically operate with short RF pulses (between 0.5 ms and 1.5 ms) in
a single bunch or with a few bunches, with high peak power RF pulses (~50 MW). The accelerating
field inside such structures is relatively high (ranging from 20 MV/m to 50 MV/m), and the mode of
operation is, generally, the 2p/3 mode. The typical frequency bands of operation are S or C (3 GHz and
6 GHz, respectively). TW cells’ geometries and, in particular, the irises’ dimensions and profiles are
optimized to reach a good compromise between a high shunt impedance (which favours small irises)
and a short filling time (which favours large irises). As an example, Fig. 18 shows the cell parameters
as a function of the iris dimensions for a C-band structure. Peak surface electric fields occur on the irises
separating adjacent cells, as shown in Fig. 19(a), where we report the magnitude of the electric field in
a C-band accelerating cell with 30 MV/m average accelerating field. Peak field values are typically a
factor of 2–2.5 larger than the accelerating one. The magnetic field distribution, for the same average
accelerating field, is given in Fig. 19(b). It occurs on the outer walls of the cells (as for TM01 mode).
Cooling pipes are inserted or brazed around the cells to guarantee temperature stability of the structures,
thus avoiding detuning under high power feeding, as shown in Fig. 24(c) below, where we report
pictures of a fabricated cell.

Fig. 18: Cell parameter as a function of the iris dimensions for a C-band structure
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Fig. 19: (a) Electric field and (b) magnetic field intensity for a C-band accelerating cell with 30 MV/m average
accelerating field on the axis.

The structures are fed by waveguides coupled by means of slots in a so-called ‘coupling cell’ that
matches the TE10 mode of the waveguide with the travelling wave mode (TM01-like), as shown in Fig. 20
[3, 24]. Either J-type couplers [13], or couplers with integrated splitters, allow a symmetric feed that
compensates for the dipole kicks in the coupling cell, which are present if there is only a single slot, as
shown in Fig. 21. In the coupling slot between the waveguides and the cavity we can have a high
magnetic field and, as a consequence, high pulsed heating that can increase breakdown phenomena [3].
For this reason, rounded shapes are frequently used (as sketched in Fig. 22). Moreover, racetrack profiles
allow for compensation of the quadrupole distortions of the field in the coupling cells introduced by the
coupling holes for the waveguides. The typical magnitude and phase of the accelerating field in a short
C-band TW structure are plotted, as an example, in Fig. 23. In the plot we can recognize the 2p/3 phase
advance from cell to cell and the periodic profile of the accelerating field (where the maximum field
occurs in the centre of each cell).

Fig. 20: (a) Coupling of the waveguide network to a TW structure; (b) in the input coupler the TE10 mode of the
waveguide is matched to the travelling wave mode (TM01-like).
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Fig. 21: Example of couplers with symmetric feeding to avoid dipole kicks: (a) J-type couplers (b) couplers with
splitters.

Fig. 22: Magnetic field in the coupler region

Fig. 23: Accelerating field in magnitude (blue) and phase (green) in a short C-band TW structure with 20 MV/m
average accelerating field.
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The whole fabrication process sequence is reported in Fig. 24. Cells and couplers are typically
realized starting from OFHC forged or laminated copper (Fig. 24(a)) using milling machines and lathes
(Fig. 24 (b)), with a precision that can be of the order of a few micrometres and a surface roughness that
can reach values below 50 nm. The cells are then cleaned, piled up (Fig. 24(c) and (d)) and brazed
together in vacuum or hydrogen furnaces (Fig. 24(e)), using different alloys at different temperatures
(700°C to 1000°C).

Fig. 24: Sequence of the fabrication process of a TW structure: (a) OFHC forged copper; (b) realization of cells
by lathes; (c) single cells machined and ready to be stacked; (d) cells piled up before brazing; (e) the structure in
a vacuum or hydrogen furnace; (f) the brazed structure.

To compensate for deformations and imperfections that can occur during the brazing process,
tuning of TW structures is often necessary. The standard method is to measure the field inside the
structure using a perturbation technique (the Steele method [25]), and adjusting the phase advance per
cell to the correct value by deforming the outer volume of the cells with ‘deformation tuners’. A structure
during a tuning procedure is shown in Fig. 25, while Fig. 26(a) represents the section of one cell, where
deformation tuners have been designed to reduce the thickness of the walls in three points, and allow
plastic deformations of the internal surface (shown in Fig. 26(b)). An example of the measured field
before and after a tuning procedure is given in Fig. 27 for a 70-cell C-band structure [26]. The same plot
also reports the relative phase advance per cell. Tuning algorithms must be used to calculate from the
complex field measurements the deformation to be applied to the cells [27]. The final goal of a cell-to-
cell phase error is typically ±2°, with a cumulative phase advance in the overall structure within ±5° [28].
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Fig. 25: TW structure during low-power RF measurements and tuning: (a) schematic layout; (b) picture of the
cavity.

Fig. 26: (a) Section of one cell with deformation tuners reducing the thickness of the walls at three points; (b)
deformation of the internal surface after tuning.

Fig. 27: (a) Measured accelerating field before and after the tuning procedure; (b) phase advance per cell before
and after tuning.
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TW structures require pulsed sources with a high peak power. For this purpose, klystron and RF
compression systems (SLAC Energy Doubler, SLED) are usually adopted. As an example, we report in
Fig. 28 a schematic of the RF network of the XFEL at Spring 8 [13]. The TW structures are quasi-
constant gradient, working in the C-band with 3/4p phase advance. Their main parameters are reported
in Table 2 [13]. They are fed by klystrons whose 2.5 ms RF pulse is compressed down to 0.5 ms with the
use of SLED-type (SLED-SLAC Energy Doubler) cavities. In this way, an accelerating field
of 38 MV/m can be reached.

Fig. 28: Schematic of the RF network of the XFEL at Spring 8 (courtesy [13, 14])

7 Linac technology issues for superconducting standing wave structures
SC SW structures are typically multi-cell structures (up to 10 cells) working in the p mode. The cell
irises are designed with an elliptical shape to minimize the ratio between the surface electric field and
the accelerating one, Esurf/Eacc. The surface electric field, in fact, has to be minimized to avoid electron
field emission processes that can limit cavity performance at a high gradient. The elliptical shape of the
cell is chosen to minimize the ratio between the surface magnetic field and the accelerating one, Bsurf/Eacc.
As already pointed out, the ultimate limit for the maximum achievable gradient in SC structures is due
to the critical magnetic field that for Nb is ~170 mT to 180 mT. For the TESLA cavities [6, 29, 30],
since this ratio is mMVmT2.4accsurf @EB  the maximum theoretical achievable accelerating field is
about 50 MV/m.

The elliptical shape is also useful for suppressing multipacting phenomena that can limit cavity
performance at a high gradient, while large irises also increase the machinability and cleanability of the
cavities. The sketch of the cell profile of the TESLA cavities is shown in Fig. 29, while the r/Q and
surface field are plotted as a function of the irises radius in Fig. 30 [29, 30].

D. ALESINI

104



Fig. 29: Sketch of the cell profile of the TESLA cavities (courtesy [6, 29, 30])

Fig. 30: r/Q, Esurf/Eacc and Bsurf/Eacc as a function of the irises’ radius (TESLA cavities, courtesy [29, 30])

SW SC cavities are typically powered by coaxial-type couplers [3, 31]. Magnetic coupling with
waveguides or loops is also possible, but it can create hot spots in the cavities with additional
complications in the design. The inner conductor of the coaxial is coupled to the electric field at the end
of the structure. Coaxial couplers allow variation of the coupling strength by changing the penetration
of the couplers into the cavity itself. For instance, this is necessary for accelerators that operate at
different beam currents. The couplers also have vacuum barriers (windows) to prevent contamination of
the SC structure. Obviously these barriers are also necessary in normally conducting accelerators, but
the demands on the quality of the vacuum and reliability of the windows are less stringent than for SC
cavities. The failure of a window in a superconducting accelerator could imply very expensive and time-
consuming repairs. These windows are generally made from Al2O3. Ceramic material has also a high
SEY that stimulates multipacting activity, and to reduce this phenomena Ti coatings on the surface of
the ceramic are frequently used. Finally, the couplers must constitute a thermal barrier since they are at
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the boundary between room temperature and the cryogenic temperature environment. The final drawing
of a SC coupler is therefore very complex, as shown in Fig. 31, where the TESLA coupler is
presented [6].

Fig. 31: Mechanical drawing of the TESLA coupler

As already pointed out, SC cavities are suitable for the acceleration of trains of bunches. As a
bunch traverses a cavity, however, it deposits EM energy on Higher Order Modes (HOM), described in
terms of long-range wakefields. Subsequent bunches (or the same bunch in several turns, as in ERLs)
may be affected by these fields, causing beam instabilities and additional heating of accelerator
components. As an example, the sketch of the field excited by one bunch passage into a TESLA cavity
is reported in Fig. 32. To absorb the excited EM field several approaches can be used, such as loop
couplers, waveguide dampers or beam pipe absorbers [31]. In all the above mentioned options, only the
fields excited by the beam are absorbed, while the accelerating mode is rejected by EM filters and
remains unperturbed. For instance, for a waveguide absorber the cutoff frequency of the waveguide is
higher than the working frequency of the operating mode, thus it cannot propagate into the waveguide
itself. When loops are used, notch filters are inserted to decouple the working mode from the coaxial.
Pictures and drawings of different kind of such devices are shown in Fig. 33.

Fig. 32: Sketch of the field excited by the bunch passage into the cells of a TESLA cavity (courtesy [21])
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Fig. 33: Pictures and drawings of different types of HOM damping systems: (a) loop couplers, (b) waveguide
dampers; (c) beam pipe absorbers (courtesy [21]).

Niobium is available as a bulk and sheet material in any size, fabricated by forging and rolling.
High purity Niobium is made by electron beam melting under a good vacuum. The most common
fabrication techniques for the cavities are deep drawing or spinning half-cells [21–23]. These processes
are schematically represented in Fig. 34.

Fig. 34: Most common fabrication techniques for SC cavities: (a) deep drawing; and (b) spinning half-cells
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Typically, the cells of the cavity are electron-beam welded and they undergo a long, and very
delicate, process of polishing and cleaning [22, 23, 32, 33]. The cavity treatment requires several steps
in between, such as buffered chemical polishing (BCP), electro-polishing and etching, which allows the
removal of surface damaged layers of the order of ~100 mm. The cavities are rinsed with ultraclean
water at high pressure (~100 bar) for several hours to remove the residual acid used for treatment. They
also undergo a thermal treatment (with temperatures higher than 1000°C) to diffuse H2 out of the
material, increasing the purity of the niobium. During and after these treatments the cavities have to be
maintained in a very clean environment, to avoid contamination that can limit their performances during
high-power operation. Before the final cleaning process, the cavities are also characterized and tuned
with low power RF. A picture of some cavities during the assembly process in a clean room is shown in
Fig. 35. In general, the process of fabrication is not unique, and companies, industries or laboratories
adopt their own developed techniques.

Fig. 35: Cavities during the assembly process in a clean room

After their construction and assembly, the cavities under vacuum, or in a controlled N2

atmosphere, are inserted and assembled into the cryomodules. In the cryomodules the cavity is immersed
in a liquid helium bath, which is pumped to remove helium vapour boil-off, as well as to reduce the bath
temperature.

The cold portions of the cryomodule need to be extremely well insulated, which is best
accomplished by a vacuum vessel surrounding the helium vessel and all ancillary cold components.

A schematic of a cryomodule is given in Fig. 36, while a picture of an XFEL cryomodule is shown
in Fig. 37 with its mechanical cross-section. A single cryomodule can incorporate several cavities, as in
the XFEL in Fig. 38, where eight cavities are integrated with bellows beam position monitors (BPMs)
and quadrupoles.
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Fig. 36: Schematic of a cryomodule

Fig. 37: (a) Picture of the XFEL cryomodule; (b) mechanical cross-section

Fig. 38: XFEL cryomodule integrating eight cavities, bellows BPMs and quadrupoles

The requirements for the stability of the accelerating field in a superconducting structure are
comparable to those of a normal conducting cavity. The nature and magnitude of the perturbations to be
controlled, however, are rather different. Superconducting cavities have a very narrow bandwidth and
are, therefore, highly sensitive to mechanical perturbations. Therefore, significant phase and amplitude
errors may be induced by frequency variations. Perturbations can be excited by mechanical vibrations
(microphonics), changes in helium pressure and level, or Lorentz forces. Slow changes in frequency, on
a timescale of minutes or longer, can be corrected by a frequency tuner, while faster changes must be
counteracted by an amplitude and phase modulation of the incident RF power. A schematic drawing of
the RF system feeding a SC cavity is given in Fig. 39. The signals are measured from the pickup and
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are the inputs of the low level RF (LLRF) system, which allows the input to be kept linked to the resonant
frequency of the cavity. Circulators are also needed to prevent damage to the klystron due to the reflected
power from the cavities, as pointed out above.

Fig. 39: Schematic drawing of the RF system feeding a SC cavity (courtesy [6])

8 Performances of different type of structures at a high accelerating field
If properly cleaned and fabricated, TW NC cavities can quite easily reach a relatively high gradient
(>40 MV/m) without particular limitations. After less than one hundred million pulses (a few hundred
hours at 100 Hz repetition rate) of conditioning, in which the power and pulse length are progressively
increased, they can usually reach their nominal performance. The main limitation comes from
breakdown phenomena, whose physics interpretation and modelling is still under study and is not yet
completely understood. The goal of the conditioning process is to expose the internal surface of the
component to ramped RF power in order to clean it. Several effects contribute to surface cleaning:
induced out-gassing due to RF heating, arcing and multipacting (which enhance local heating) and
desorption. To avoid damage to the structure, RF conditioning must be carried out gradually and in a
controlled way. Generally, during the process different parameters are monitored, such as vacuum level,
and forward, reflected and transmitted RF power. These parameters are used to verify the conditioning
progress and to generate interlocks, in order to protect the machine components in case of breakdown.

At full performance, S-band cavities can operate without breakdowns at gradients of up to
25 MV/m to 30 MV/m, while C-band cavities can even reach higher gradients. So far, high gradient
tests on C-band structures have been successfully carried out at up to 50 MV/m. In the X-band (12 GHz)
higher gradients can be reached (>100 MV/m). Nevertheless, at present, FEL linacs do not operate at
these frequencies due to the higher cost of power sources and more critical issues related to fabrication,
tolerances, alignments, pumping systems, etc. In principle, a very high gradient (up to the level of the
X-band structures) can be reached at lower frequencies (S- or C-band) as well. In these cases, however,
the main limitation is the lower shunt impedance, which requires a higher power per unit length to
sustain such gradients. A typical behaviour of the conditioning process for a TW structure (Extreme
Light Infrastructure-Nuclear Physics, ELI-NP, C-band) is shown in Fig. 40, where the pulse length, the
structure input power and the repetition rate are reported as a function of time (hours). As can be noted
from Fig. 40, after about 150 hours of conditioning the structure reached its final level of
performance [34].
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Fig. 40: An example of typical behaviour during the conditioning process for a TW structure (ELI-NP C-band)

SC cavities also need to be conditioned and, their performance is usually analysed by plotting the
behaviour of the quality factor as a function of the accelerating field [35]. A typical plot is reported in
Fig. 41, where the dots represent the measured points with respect to the ideal case (solid line). There
are several phenomena responsible for additional losses under high power, which causes the quality
factor to be lower than expected.

First, as already pointed out, the measured surface resistivity is typically larger than that predicted
by Bardeen–Cooper–Schrieffer (BCS) theory. This is due to magnetic flux trapped in the cool-down
process, dielectric surface contaminations (chemical residues, dust…), defects and inclusions, surface
imperfections and hydrogen precipitates. This increase in losses can be limited by very clean and careful
cavity fabrication, e.g. using ultra-pure Nb, cleaning processes and thermal cavity treatments.

At an intermediate level of field, multipacting phenomena can occur [15]. Multipacting is a
resonant process that occurs when a large number of electrons build up under the influence of an RF
field. It can occur either in the regions of input couplers or in cavity cells. Basically, it starts from a
process of electron field emission. The emitted electrons start to hit the surfaces, emitting more electrons,
and so on. Two main conditions are needed to activate the electron build-up: electron synchronization
with the RF field and electron multiplication via secondary emission (SEY). Multipacting was an early
limitation of SC cavities performance and it was overcome by adopting spherical or elliptical cell shapes.
These allow modification of the electrons’ trajectories, reducing surface collisions and the synchronicity
with the RF field. RF conditioning can also reduce multipacting. Figure 42(a) shows typical electron
trajectories when RF fields are applied, while Fig. 42(b) reports the SEY as a function of the impact
energies of electrons for a cavity with several different treatments.
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Fig. 41: Typical behaviour of the quality factor of a SC cavity as a function of the accelerating field (courtesy [35])

Fig. 42: (a) Typical electron trajectories under RF field that causes hitting of the surface by emitted electrons; (b)
SEY as a function of the impact energies of electrons for a cavity with several different treatments (courtesy [35]).

At high fields, thermal breakdown can also occur when the heat generated in one hotspot (e.g.
due to impurities or defects) is larger than can be transferred to the helium bath. This causes an increase
of the temperature above the critical temperature (Tc) and, consequently, a ‘quench’ of the
superconducting state. The mechanism is schematically illustrated in Fig. 43.

The last phenomenon we want to mention is the exponential increase of losses due to the
acceleration of field-emitted (FE) electrons, which is also associated with the production of X-rays and
dark current. This mechanism is illustrated in Fig. 44. The main cause of FE is particulate contamination.
FE can be prevented by proper surface preparation and contamination control. It is possible to reduce it
also using High-power Pulsed Processing (HPP) and/or helium processing.
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Fig. 43: Thermal breakdown schematic representation (courtesy [35])

Fig. 44: FE process: (a) the emission of electrons is enhanced by the presence of surface defects of spikes; (b)
emitted electrons hit the surface causing X-rays emission and heating (courtesy [21]).

9 Electron sources
There are different types of electron sources. A complete treatment can be found in [36]. Here we want
to mention only a couple that may be used for different applications in FEL and ERL.

9.1 Radio frequency photo-guns

Radio frequency photo-guns are used as electron sources and for the first acceleration stages in FEL.
They are multi-cell structures, typically made from one to three cells. The geometry of a 1.6 cell RF gun
with its electric field lines is given in Fig. 45. The device is powered by a waveguide and a coupling
hole on the full cell. These structures typically operate in the p mode, and the electrons are emitted by a
cathode, whose surface is hit by a laser (working usually in the UV, e.g. at 240 nm to 260 nm). Electrons
are extracted by means of the photo-electric effect, and then accelerated by an electric field that is
designed to have a longitudinal component on the gun’s axis. They enter the full cell, where they are
further accelerated. RF guns can operate in the L- or S-band (i.e. from ~1 GHz to ~3 GHz) at repetition
rates upto 100 Hz and above. The cathode peak field is typically of the order of 60 MV/m to 120 MV/m.
The RF pulse length can be a few microseconds (S-band) up to hundreds of milliseconds (L-band). The
number of emitted electrons is proportional to the laser power and quantum efficiency (QE) of the
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cathode material [36]. QE is given by the ratio between the number of emitted electrons and the number
of incident photons (QE of copper cathodes is in the range 10−5 to 10−4). The cathodes can be of different
type: copper (as is the bulk of the gun) or other materials with a higher QE (for instance GaAs). The
mechanical design of the gun has to allow for the possibility of substituting the cathode itself in case of
deterioration or damage.

Fig. 45: (a) Geometry of a 1.6 cell RF gun with electric field lines; (b) profile along the longitudinal axis

The mechanical drawing of the ELI-NP RF gun [37] is given in Fig. 46(a) with a picture of the
main components before assembly and brazing (Fig. 46(b)). Figure 47 shows the RF gun installed with
the solenoid immediately after the accelerating cells for emittance compensation and control. The
conceptual scheme of the laser system and photo gun is given in Fig. 48. Figure 49(b) shows a picture
of the LCLS photo-gun together with the power splitter, which is needed to symmetrize the power feed
to avoid dipole kicks due to the coupler holes. The main LCLS gun parameters are summarized in Table
4 [38–40].

Fig. 46: (a) Mechanical drawing of an RF gun; (b) pictures of the main components before assembly
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Fig. 47: RF gun installed with the solenoid immediately after the accelerating cells for emittance compensation

Fig. 48: Conceptual scheme of the laser system and photo-gun

Figure 49(a) shows the PITS L-band gun of the XFEL [5, 41, 42]. Two solenoids are foreseen to
completely cancel the magnetic field on the cathode, which can increase the beam emittance. The main
parameters are given in Table 4.

Table 4: Main LCLS and PITZ gun parameters

Parameter LCLS gun PITZ gun
Frequency [GHz] 2.856 1.3
Number of cells 1.6 1.5
Cathode peak field [MV/m] 120 60
Photocathode type Cu Cs2Te
Repetition rate [Hz] 120 10
Number of bunches per RF pulse 1 <2700
RF pulse length ~2 ms <700 ms
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Fig. 49: (a) PITS L-band gun of the XFEL; (b) picture of the LCLS photo-gun with the big splitter to symmetrize
the feeding avoiding dipole kick.

9.2 Direct Current photo-guns

Direct current (DC) photo-guns can be used as electron sources for high average current accelerators
(CW operation, high Duty Cycle linac, typically ERL). The cathode must have a high QE (as example
for GaAs QE is a few percent) and is illuminated by a continuous train of laser pulses. Average currents
up to 100 mA can be achieved with this kind of source. A mechanical drawing of the Cornell DC gun
[43] is given in Fig. 50, with the main parameters reported in Table 5. DC photo-guns are characterized
by an electron energy that is lower than that of RF photo-guns. This is due to the lower accelerating
gradient that is possible to achieve in the DC regime; post-acceleration and beam manipulation are then
required to reach the desired beam energy and performance. As an example, Fig. 50(b) shows the line
after the Cornell DC gun, made from two emittance compensation solenoids and a 1.3 GHz normal
conducting bunching cavity. These elements are used to compensate the initial emittance blowup near
the cathode, and to compress the bunch longitudinally before further acceleration. The bunches are then
accelerated using five superconducting niobium cavities. This multi-cell cavity allows the partial
freezing of the emittance, to increase the energy and to perform further emittance compensation and
longitudinal compression via time-dependent transverse and longitudinal focusing.
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Fig. 50: (a) Mechanical drawing of the Cornell DC gun; (b) layout of the complete Cornell injector

Table 5: Main Cornell injector design parameters

Parameter Value
Beam energy [MeV] 5 to 15
Normalized emittance [mm] £0.3
Bunch length [ps] £3 ps
Photocathode type GaAs
DC accelerating voltage [kV] 500 to 600
Average current [mA] 100
Bunch charge [pC] 77
Bunch frequency [GHz] 1.3

10 Power sources and power distribution systems
RF power sources would require a dedicated treatment. A comprehensive description can be found, for
example, in [44–46]. In this paper, for sake of completeness, we report some useful information.

10.1 Klystron, inductive output tube and solid-state amplifiers

The most common RF power sources are klystrons. They allow pulsed or CW operation and can work
from hundreds of megahertz up to tens of gigahertz, generating peak power, in the low DC pulsed
regime, up to several tens of MW. A sketch of a klystron is given in Fig. 51(a). A high DC voltage
(hundreds of kV) is applied between a cathode and an anode through special devices called modulators.
The DC current (up to more than 100 A) emitted by the cathode filament is then accelerated by the DC
voltage and is bunched through a system of cavities. The first input cavity is fed with a driver signal that
starts this bunching process, while the last output cavity is excited by the bunched beam and is coupled
to a waveguide that collects the produced RF power. Finally, the collector absorbs the beam. The signal
from the RF driver is, in conclusion, amplified more than 40 dB.
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Fig. 51: (a) Sketch of a klystron; (b) schematic of an IOT; (c) schematic principle of a solid-state amplifier

At lower power (up to hundreds of kilowatts) the Inductive Output Tube (IOT) can also be used.
A schematic of an IOT is given in Fig. 51(b). The intensity modulation of the DC beam is realized by a
control grid. These devices can typically operate at up to 2 GHz and, in general, their efficiency is larger
than that of klystrons.

Finally, solid-state amplifiers can also be used at frequencies lower than 2 GHz. A schematic of
the principle of such devices is shown in Fig. 51(c). The power of many transistors is combined. The
advantage of this system, with respect to vacuum tubes, is the compactness and the possibility to operate
even if a single module fails. In fact, we have a reduction just of the output power. Concerning their
efficiency, they can also exceed that of vacuum tubes. On the other hand, they allow operation at
moderate power. Finally, Fig. 52 gives an overview of the maximum power and frequency for the
different types of source.

Fig. 52: Overview of the maximum power and frequency for the different type of sources (courtesy [45])

10.2 Pulse compressor systems: SLAC Energy Doubler (SLED)

As pointed out above, TW structures have to be fed by short, high peak power pulses. One way to
achieve this is the energy doubler that was invented and implemented for the first time in the SLAC
linac [47]. The principle of operation is given in Fig. 53. Basically, the power from the klystron is stored
in special cavities and then abruptly released to the accelerator. More precisely, the waveguide system
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is connected through a 3 dB coupler to a pair of two cavities with a high quality factor (>105). At the
beginning of the RF pulse, part of the klystron power goes into the cavities, building them up, while the
remainder is reflected and through the 3 dB coupler is sent to the accelerator. As the stored cavity fields
increase they radiate power in counter-phase with the incident power so that the mean power transmitted
to the accelerator decreases. The cavities are over-coupled so that the peak reflected power rises to a
level greater than the transmitted power. At a certain time (tswitch) the phase of the klystron drive is
abruptly reversed and the reflected and transmitted signals are then in phase, causing a fast increase of
the actual power transmitted to the accelerator, at the expense of pulse duration. A picture of the C-band
SLED implemented in the Spring-8 FEL is given in Fig. 54.

Fig. 53: Schematic layout of a SLED system

Fig. 54: Picture of the C-band SLED system implemented at Spring 8 [13, 14]

10.3 Waveguide power distribution systems

A treatment on linac technology cannot exclude a very quick overview on waveguide components that
allow the transport and distribution of RF power from the source to the accelerator devices. A few of
these components are shown in Fig. 55. Amongst others, we can mention the following [46].

i) Circulator (or isolator) that allows protection of the RF source from reflections due to the
powering of SW structures. The circulator is a passive non-reciprocal device with three ports, and
protects (isolates) the RF power sources from microwave power reflected back from non-ideal
loads. This is possible due to the unique magnetic properties of ferrites that, when properly
magnetized, introduce different phase shift for EM waves travelling in opposite directions.
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ii) Attenuator and phase shifters that allow changes, at high power, to the phase or the power level.

iii) Directional couplers that allow the measurement of the power flowing into the waveguide in both
directions (forward and reflected).

iv) Pumping ports to evacuate the waveguide and reach a vacuum level of the order of 10−8 mbar.

v) Ceramic windows that allow separation of the vacuum of the linac from that of the waveguides
(which are generally at a higher pressure than that of the linac). Moreover, in the case of an
intervention, one has to vent only a limited part of the accelerator. Several components like phase
shifters, attenuators and circulators have to operate in a controlled atmosphere with gases with a
high dielectric rigidity (like SF6). Ceramic windows allow the separation of the vacuum of the
linac or waveguides from these regions.

vi) Bends and splitters that allow distribution of power from the source.

Fig. 55: Pictures of waveguide components
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Wakefields—An Overview
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Abstract
In this paper, we will report on the basic concepts of ultra-relativistic wake-
fields and their effects on particles while focusing; in this context, particularly
on particle accelerators. We will introduce the commonly used terminology,
and will derive and explain important quantities, such as the wake potential and
wake function, the impedance as the Fourier transform of the wake potential,
and loss parameters. To deepen knowledge on wake functions and potentials
further, we will illustrate the derived quantities using, as examples, the cylin-
drical cavity and a rectangular waveguide lined with dielectrics.

Keywords
Wakefields; Green’s functions; loss parameters; impedances.

1 Introduction
1.1 The term ‘wakefield’
Outside of accelerator physics, the term ‘wake’ is mostly known from fluid dynamics, referring to the
wave pattern behind an object moving in a liquid (e.g., a ship moving in water). This also comes to mind
first if the term is used in everyday language.

In accelerator physics, the word ‘wakefield’ has a different meaning, as it describes an electro-
magnetic effect created by charged particles (see next paragraph). However, it is not completely wrong
to think of the wakefield as a certain field pattern that follows a charged particle, as water waves follow
a ship.

Wakefields, in the context of accelerator physics, are generated by a charged particle that travels
through a metallic vacuum chamber. The self-field of an ultra-relativistic particle ends perpendicular to
the highly conductive walls. On the surface of the walls, image charges are created (electric polarization),
which turn into the sources of new fields and act back on the particle. In a metallic vacuum chamber
without any geometric variation, the image charges travel together with the ultra-relativistic particle.
Any geometric variation forces the field lines to bend, since they still need to stay perpendicular to
the conductive walls. Then, some parts of the fields (and the energy stored therein) stay behind and
consequently trail behind the particle. These fields are denoted wakefields. If a second particle follows
the first closely enough, it will still see the wakefields of the first particle and interact with them. In
a bunch of charged particles, the trailing particles of the bunch will see the wakefields of the leading
particles and interact with them.

Figure 1 illustrates this process. A Gaussian pulse enters a so-called pillbox cavity. A pillbox
cavity consists of a cylindrical cavity resonator with round openings that are attached to the beam pipe.
The beam axis equals the symmetry axis of the pillbox cavity. At the transitions between the cylindrical
cavity and the beam pipes, the diameter of the vacuum chamber changes so that a wakefield can be
generated—a figurative description would say that part of the self-field of the bunch is ‘stripped off’ by
the geometric changes in the structure. The wakefield remains in the structure and oscillates for some
time after the bunch has left. A second particle bunch that traverses the structure would consequently be
influenced by the generated wakefield. The pillbox cavity used in Fig. 1 has a radius of R = 5 cm and a
length of R = 10 cm and will be used in examples throughout this paper as a model pillbox.
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Fig. 1: Electric field lines of a Gaussian pulse travelling through the model pillbox cavity (R = 5 cm, g = 10 cm),
calculated using the CST STUDIO SUITE® [1]: (a) while entering the structure; (b) leaving the cavity; (c) leaving
the structure; (d) after leaving. It can be seen that a part of the electric field remains in the structure even after the
bunch has left.

The word ‘wakefield’ is usually understood as a general term. More specifically, we speak about
‘wake potentials’, when considering the wakefield behind a particle bunch, and ‘wake functions’, when
the wakefield behind a point charge is considered. These expressions will be explained in more detail in
subsequent sections.

This report follows the lines of Ref. [2]. For further reading on wakefields and linear accelerators,
please refer to Refs. [3–5].

1.2 Basic concepts of ultra-relativistic wakefields
To understand the underlying principles of wakefields, we first need to understand what happens to a
point charge q that moves in free space with a velocity close to the speed of light, v ≈ c.

Owing to the Lorentz contraction, the electromagnetic field of the electron will be shrunk to a thin
disk perpendicular to its moving direction. The opening angle of the field travelling with the particle
is given by 1/

√
1− β2 = 1/γ with the factor β = v/c. If the velocity approaches the speed of light,

the thickness of the disk shrinks further, to a δ-distribution (see Fig. 2). This field is strictly radial, i.e.,
there are no components of the field behind or in front of the charge, which is also a consequence of the
principle of causality. Accordingly, in this case, there can be no wakefield behind the electron in free
space.

To actually achieve a field and a force behind the field-generating charge, additional mechanisms
are required. For example, the image charges and fields created on the waveguide walls are only
synchronous with the fields generating them if the walls are perfectly conducting. In resistive or im-
perfectly conducting walls, the image fields will trail behind the field-generating charge. Other possi-
bilities include obstacles in the beam pipe, e.g., geometric variations (cf. Fig. 1), from which the fields
are scattered. Another possibility is to introduce dielectric walls because the speed of light will be lower
here than in a vacuum. This means that the fields are ‘slowed down’, in the sense that travelling waves
in these media will have a lower phase velocity and thus trail behind the generating fields.

2 Basic definitions
In the following, we will consider a field-generating charge q1, which is located at the three-dimensional
coordinate r. First, we want to examine the electromagnetic force that this field-generating charge exerts
on a test charge q2 that moves at the speed of light along the z-axis, v = cez . This force is simply the
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Lorentz force,
F (r, t) = q2 (E (r, t) + cez ×B (r, t)) . (1)

We introduce a new variable for the distance between q2 and q1 (see Fig. 3), so that

s = ct− z ,

and
F (s, t) = F (x, y, z = ct− s, t) .

The net momentum change δp of the test charge due to the Lorentz force will then be

δp ∼
∫

F (s, t) dt . (2)

Fig. 2: Radial electric field of an electron
moving at the speed of light, contracted
to a disc.

Fig. 3: Field-generating and test charges in a pillbox cavity. The
grey dots represent the possibility of a particle bunch generating
the wakefield instead of a single charge.

2.1 The wake potential
The concept of wake potentials is related to the concept of the momentum change on a test charge,
described before. Consider the situation described in Fig. 3: a pillbox cavity with its transitions between
the cylindrical cavity and the beam pipes introduces a radial change of the vacuum chamber and thus
wakefields can be generated. Additionally, both charges are assumed to have a transverse offset r1 from
the centre of the beam pipe, while the movement is still parallel to the z-axis. In cylindrical coordinates,
the described situation is as shown in Fig. 3. For this case, the three-dimensional wake potential is
defined as

W (r1, s) =
1

q1

∞∫

−∞

[E (r1, z, t) + cez ×B (r1, z, t)]t=(z+s)/c dz , (3)

which is basically an integral over the Lorentz force evaluated on the beam axis and normalized to the
field-generating charge. Additionally, time is substituted with t = z + s/c. The momentum change of
the test charge is related to this via

δp = q1q2W(s) . (4)

Usually, the wake potential is separated into the longitudinal wake potential and the transverse wake
potential.

For the longitudinal wake potential, the projection of the Lorentz force onto the z-axis is used:

W (r1, s) · ez =
1

q1

∞∫

−∞

[E (r1, z, t) · ez + c (ez ×B (r1, z, t)) · ez]t=(z+s)/c dz .
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Here, the second term vanishes because ez · (ez ×B (r1, z, t)) = 0. The longitudinal component of the
wake potential is thus only dependent on the electric field:

W|| (r1, s) =
1

q1

∞∫

−∞

Ez

(
r1, z,

z + s

c

)
dz . (5)

Consequently, the transverse wake potential is only dependent on the transverse components of
the electric and magnetic field:

W⊥ (r1, s) =
1

q1

∞∫

−∞

[E⊥ (r1, z, t) + cez ×B⊥ (r1, z, t)]t=(z+s)/c dz . (6)

Both wake potentials are dependent on the distance s between the field-generating charges and the test
charge. This distance is measured in the negative longitudinal direction (see Fig. 3). This means that
a negative distance s corresponds to the case in which the test charge is in front of the field-generating
charges. Owing to the principle of causality, in this case there can be no wake potential. Consequently,
this means that:

W|| (r1, s) = 0 for s < 0, and (7)

W⊥ (r1, s) = 0 for s < 0 . (8)

Example wake potentials of Gaussian pulses inside a pillbox cavity are shown in Figs. 4 and 5.

Fig. 4: Longitudinal wake potentials of Gaussian pulses
with different pulse width σ inside the model pillbox
cavity, computed using CST STUDIO SUITE ® [1].

Fig. 5: Transverse wake potential of a Gaussian pulse
of width σ = 2.5 cm inside the model pillbox cavity,
computed using CST STUDIO SUITE ®. Note that the
transverse wake potential is several orders of magnitude
weaker than the longitudinal wake potential of the same
pulse, displayed in Fig. 4.

2.2 The Panofsky–Wenzel theorem
The Panofsky–Wenzel theorem connects the longitudinal and transverse wake potentials via

W⊥ (x, y, s) = −∇⊥
s∫

−∞

W||
(
x, y, s

′
)

ds
′
. (9)
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Therefore, in principle, knowledge of only the longitudinal component of the wake potential is enough,
since the transverse component can be constructed from it.

In the following, we want to briefly sketch the proof of this theorem.

We start with the transverse wake potential from Eq. (6). Its derivative with respect to s is

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞



∂

c∂t
E⊥ (r1, z, t)

︸ ︷︷ ︸
T1

+ ez ×
∂

∂t
B⊥ (r1, z, t)

︸ ︷︷ ︸
T2



t=(z+s)/c

dz , (10)

where we used s = ct− z and ∂s = c∂t.

Now we want to replace T1 and T2 with more convenient expressions. For term T1, we need the
total derivative of the transverse electric field with respect to z. Using s = ct− z this reads as

d

dz
E⊥

(
r1, z,

z + s

c

)
=

(
∂

∂z
+

1

c

∂

∂t

)
E⊥

(
r1, z,

z + s

c

)
,

where d/dz is the total differential with respect to z. We reformulate T1 in Eq. (10) as

1

c

∂

∂t
E⊥

(
r1, z,

z + s

c

)
=

(
d

dz
− ∂

∂z

)
E⊥

(
r1, z,

z + s

c

)
. (11)

For term T2, we start with Faraday’s law of induction,

∇×E (r, t) = − ∂

∂t
B (r, t) .

Computing the cross product of this equation with the beam axis leads to

ez ×
∂

∂t
B (r, t) = −ez × (∇×E (r, t)) =

∂

∂z
E⊥(r, t)−∇⊥Ez (r, t) . (12)

Inserting Eqs. (11) and (12) into Eq. (10) results in

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞

(
d

dz
− ∂

∂z

)
E⊥

(
r1, z,

z + s

c

)

+

(
∂

∂z
E⊥

(
r1, z,

z + s

c

)
−∇⊥Ez

(
r1, z,

z + s

c

))
dz .

We reformulate this as

∂

∂s
W⊥ (r1, s) =

1

q1

∞∫

−∞

d

dz
E⊥

(
r1, z,

z + s

c

)
−∇⊥Ez

(
r1, z,

z + s

c

)
dz .

We assume perfect electric conductor boundary conditions at the waveguide walls so that the tangential
electric field vanishes there. This simplifies Eq. (10) to

∂

∂s
W⊥ (r1, s) = − 1

q1

∞∫

−∞

∇⊥Ez
(
r1, z,

z + s

c

)
dz ,

which is equivalent to
∂

∂s
W⊥ (r1, s) = −∇⊥W|| (r1, s) .

Integrating the last statement over s leads to Eq. (9).
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2.3 The fundamental theorem of beam loading
This section follows the lines of Ref. [5].

Up to this point, we only defined wakefields for s > 0. For s < 0, we concluded from the principle
of causality that there can be no wakefield, and thus W (r1, s) = 0.

We now want to consider the case of s = 0, which we had excluded before. For this, we will
first look at a different example situation: two particles with equal charge q and a distance of a half
wavelength, λ/2, between them are moving along the same axis, at the same speed. The first charge
enters a previously empty cavity with no internal electric fields or stored energy (see Fig. 6). The charge
will induce surface charges, electric fields, and voltages in the cavity,

Vi = −
∫

C
Edl ,

where the voltage is defined as a line integral over the electric field along a closed path C.

We will refer to this induced voltage as −Vi. This induced voltage is left in the cavity, even after
the first charge left. From the law of energy conservation, we also infer that energy must be left behind
in the cavity. However, the first charge will also ‘see’ a fraction a of its own induced voltage while in the
cavity,

V1 = −aVi .
This corresponds to an energy loss of the first particle,

∆W1 = qV1 = −qaVi .
Thus, with the first particle in the cavity, the net cavity voltage is Vc = −Vi, while the stored energy U
will be proportional to this voltage squared, U ∝ V 2

i . This situation is shown in Fig. 7.

When the second particle arrives in the cavity, the voltage induced by the first particle will have
changed phase by π, owing to the distance between the two particles. Thus, the induced voltage from
particle 1 is now +Vi. The second particle, however, will also induce a voltage in the cavity of −Vi. The
net cavity voltage will be

Vc = +Vi − Vi = 0 .

Particle 2 will also lose energy according to

∆W2 = qVi︸︷︷︸
from particle 1

− qaVi︸︷︷︸
from own induced voltage

.

Since the net energy of the cavity must remain 0, the energy changes of particle 1 and 2 have to compen-
sate each other (see Fig. 8),

∆W1 + ∆W2 = 0 ,

qVi − qaVi − qaVi = 0 .

This leads directly to

a =
1

2
.

From this, we can directly derive the fundamental theorem of beam loading: a moving charge will
experience (or ‘see’) half of its own induced voltage.

For the case of the wake potential, this implies that, for s = 0, when the field-generating and test
charges are virtually at the same place, the wake potential must be multiplied by 1/2. Thus, the final
definition of the longitudinal wake potential is:

W|| (r1, s) =
1

q1

∞∫

−∞

Ez

(
r1, z,

z + s

c

)
dz





0 for s < 0
1
2 for s = 0

1 for s > 0

. (13)
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Fig. 6: Two charges separated by
a distance λ/2 travelling along the
same beam axis at the same speed
are about to enter a previously
empty elliptic cavity.

Fig. 7: The first charge has tra-
versed the cavity and induced an
image voltage of−Vi in the cavity.

Fig. 8: Both charges have left the
cavity. The total energy change in
the cavity is 0, while both charges
have lost energy, owing to the im-
age fields they experienced. From
this, the proportionality factor a
can be calculated.

3 Impedances and loss parameters
3.1 Wakefields and impedances
The impedance is a physical quantity closely related to the wake potential by the Fourier transform:

Z|| (x, y, ω) =
1

c

∞∫

−∞

W|| (x, y, s) exp
(
−i
ω

c
s
)

ds . (14)

Physically, the impedance and the wake potential describe one and the same effect; namely, the coupling
between the beam and its environment. In contrast with the wake potential, which is described in the time
domain, the impedance is described in the frequency domain. The impedance corresponds to a frequency
spectrum that shows which of the structure’s eigenmodes couple with the beam. The amplitude of the
impedance in the frequency spectrum can also indicate the mode’s coupling strength.

For more information on impedances, see Ref. [2].

3.2 Loss parameters
In the following, we want to have a closer look at the coupling strength of eigenmodes.

In general, it is possible to expand any physical quantity into a complete set of orthonormal func-
tions. While in theory, any complete set of orthonormal functions will suffice, the choice of a suitable set
of functions will usually decrease the effort for such an expansion while simultaneously increasing the
numerical accuracy. For waveguide structures, the eigenmodes of the structure represent a suitable set of
functions into which other fields can be expanded, e.g., the electric and magnetic field. This is often done
if a straightforward solution of Maxwell’s equation to obtain these fields directly is either very difficult
or outright impossible.

In this case, let us assume that we expand the electric field inside an arbitrary cavity or waveguide
into a set of this structure’s spatial eigenmodes En (r),

E (r, t) =

∞∑

n=0

χn (t)En (r) . (15)

This expansion is analytically correct as long as the upper limit of the summation is infinity. Of course,
this is not feasible for practical use. For the moment, however, it shall be sufficient to note that if the
summation is ceased after a finite number of terms, the expansion will be a mere approximation of the
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analytically correct result, and that the quality of the approximation strongly depends on the number of
expansion functions used.

From the spatial electric fields, the energy stored in each of these eigenmodes can be computed
according to

Un =
ε0
2

∫
|En (r)|2 d3r . (16)

A point charge moving at c along the beam axis will experience a voltage drop (per mode) of

Vn =

∞∫

−∞

Ez,n (z) exp
(

i
ωnz

c

)
dz, (17)

where ωn is the eigenfrequency of the mode.

The loss parameter kn of an eigenmode is defined using these two quantities,

kn =
|Vn|2
4Un

. (18)

It is independent of the phase and frequency of the eigenmode and represents the eigenmode’s coupling
strength to the beam and thus its contribution to the wakefield. Moreover, it describes how much energy
a point charge loses into a mode n by

∆Wn = q21kn .

Another useful aspect of the loss parameters is that they are closely related to the wakefield of a point
charge (called the wake function),

W||,0 =
∞∑

n=0

2kn cos
(ωns
c

)




0 for s < 0
1
2 for s = 0

1 for s > 0

. (19)

The wake function is a sum of the contributions from all modes, and can be calculated from just the
knowledge of the loss parameters and the eigenfrequencies of the modes. Its main merit is that it serves
as a Green’s function, i.e., the wake potentials of any arbitrary bunch shape can be derived from it by
convolution.

We assume a bunch with the shape function ψ (s), i.e., a normalized distribution of particles
measured relative to the field-generating particle. This bunch’s wake potential can be obtained from the
wake function via a convolution with the bunch shape function,

W||(s) =

∞∫

0

ψ
(
s− s′

)
W||,0

(
s
′
)

ds
′
. (20)

This relation makes the wake function a very versatile quantity. For simple geometries, it is possible
to calculate the eigenmodes, and thus the wake function, analytically. In general, there exist several
error sources, owing to the different kinds of approximation needed. First, there is truncation error in
the series expansion. Second, for customary accelerating cavities, it is usually necessary to compute the
eigenmodes numerically, thus introducing a numerical error. This can render the numerical determination
of the wake function infeasible in a number of cases. However, numerical software, as e.g., CST STUDIO
SUITE®, is able to compute the wake potential but not the wake function, as this would require modelling
of the idealized point charge. Such software directly computes the wake potential of the studied bunch
shape. Should the wake function be needed and not be available analytically, it is then often replaced
with the wake potential of a very short Gaussian bunch (since an infinitesimally short Gaussian pulse
would represent a point charge). Again, this is an approximation and can lead to systematic errors.
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Another quantity related to the wake potential and the bunch shape function is the total loss para-
meter of the bunch,

ktot =

∞∫

−∞

ψ (s)W|| (s) ds . (21)

The total loss parameter can give information about the total power lost due to wake potential, Ptot via

Ptot = Iqktot , (22)

where I denotes the electric current.

4 Example 1: cylindrical cavity
4.1 The eigenmodes
In this section, we want to examine the longitudinal wake potential inside a cylindrical cavity. We assume
that the cavity has a radius of R and a width of g, and that all the cavity walls are perfectly conducting.
For the sake of simplicity, we also assume that the point charge traverses the cavity on the z-axis so that
r1 = 0.

A pillbox cavity with beam pipes, as shown in Fig. 3, could also be regarded as such a cylindrical
structure below the cut-off frequencies of the interesting eigenmodes (a length of the beam pipes above
the attenuation length of these modes). For the rest of this subsection, though, we will restrict our
considerations to the ideal cylindrical cavity.

First, we regard the eigenmodes of the evacuated cavity. For this example, it is possible to obtain
an analytical expression for the eigenmodes by solving Maxwell’s equations inside the cavity (for a
harmonic time dependence, ρ = 0 and j = 0):

∇ ·E (r) = 0 , (23)

∇ ·B (r) = 0 , (24)

∇×E (r) = −iωB (r) , (25)

∇×B (r) = i
ω

c2
E (r) . (26)

Generally, two types of eigenmode can exist in cavities. Transverse electric (TE) modes do not exhibit an
electric field component in the longitudinal direction (in most cases, this means Ez = 0); for transverse
magnetic (TM) modes the magnetic field is zero in the longitudinal direction (Bz = 0). (The third
type, the transverse electromagnetic (TEM) mode, cannot exist in a cylindrical cavity. Its occurrences
are limited to geometries in which two isolated conductors exist, such as in coaxial cables, or to mode
considerations in structures that are not electrically conducting.) Since we want to determine the longi-
tudinal wakefield, which is an integral over the longitudinal electric field according to Eq. (5), we do not
need to consider TE modes for this purpose, since their electric field along the z-axis is zero. Therefore,
we will restrict our consideration to TM modes.

Choosing a vector potential A(r) and defining the magnetic field as its rotation,

B(r) = ∇×A(r) , (27)

automatically fulfils Eq. (24), since ∇ · B = ∇ · (∇×A) = 0. Additionally, since for all TM modes
Bz = 0, it is convenient to choose the vector potential parallel to the z-axis:

A(r) = A(r) ez . (28)

In this way, Eq. (27) automatically results in a magnetic field with Bz = 0.
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The dependence of the electric field on the vector potential can be determined by plugging Eq. (27)
into Eq. (25),

∇×E (r) = −iω∇×A (r) .

This means that, up to the gradient of a scalar potential φ, the electric field and the vector potential are
equivalent,

E (r) = −iω (A (r) +∇φ) . (29)

Inserting Eq. (27) into Eq. (26), and using fundamental vector algebra, yields:

∇×∇×A (r) = ∇ · (∇ ·A (r))−∇2A (r) = i
ω

c2
E (r) .

After we insert Eq. (29) into this equation, we can choose the gauge φ = c2

ω2∇ ·A,

∇ · (∇ ·A (r))−∇2A (r) =
ω2

c2
(A (r) +∇φ)

=
ω2

c2
A (r)− ω2

c2
∇ ·
(
c2

ω2
∇ ·A (r)

)
,

and eliminate two terms.

Introducing the wavenumber k2 = ω2/c2, this leads to the Helmholtz equation for the vector
potential,

∇2A (r) + k2A (r) = 0 . (30)

Since we chose the vector potential to be parallel to the z-axis and the Laplacian is a scalar operator, we
can simplify this equation to

∇2A (r) + k2A (r) = 0 .

It is convenient to work in cylindrical coordinates in this case. In cylindrical coordinates, the Helmholtz
equation reads

1

r

∂

∂r

(
r
∂

∂r

)
A (r, ϕ, z) +

1

r2
∂2

∂ϕ2
A (r, ϕ, z) +

∂2

∂z2
A (r, ϕ, z) = −k2A (r, ϕ, z) . (31)

To solve this equation, we employ a separation ansatz for A. We assume that A (r, ϕ, z) =
Ar (r)Aϕ (ϕ)Az (z). Using this ansatz and dividing by A (r, ϕ, z) leads to three separate equations:

1

r

∂

∂r

(
r
∂

∂r

)
Ar (r) = −k2rAr (r) , (32)

1

r2
∂2

∂ϕ2
Aϕ (ϕ) = −k2ϕAϕ (ϕ) , (33)

∂2

∂z2
Az (z) = −k2zAz (z) , (34)

together with the separation equation k2 = k2r + k2ϕ + k2z .

The solution of Eq. (34) can be expressed generally as a linear combination of sine and cosine
functions,

Az (z) = Cz,1 sin (kzz) + Cz,2 cos (kzz) . (35)

For the solution of Eq. (33), we want to reformulate the equation first,

∂2

∂ϕ2
Aϕ (ϕ) = − k2ϕr2︸︷︷︸

=m2

Aϕ (ϕ) .

10

F. REIMANN AND U. VAN RIENEN

134



The solution of this equation, like the solution of Az , can be expressed as a linear combination of sine
and cosine functions. Moreover, because of the periodicity of the structure regarding the angle ϕ, the
condition Aϕ (ϕ) = Aϕ (ϕ+ 2π) must be met. From this, we can deduce that m has to be an integer.
Without any loss of generality, the origin can always be set such that either a sine or a cosine function is
sufficient to express Aϕ. Since the sine function would be zero for m = 0, we choose the cosine, so that

Aϕ (ϕ) = Cϕ cos (mϕ) , with m = 0, 1, 2, 3 . . . (36)

With these two solutions at hand, we now examine the radial equation, Eq. (32). Using the separation
equation to replace kr, it can be reformulated as

1

r

∂

∂r
Ar (r) +

∂2

∂r2
Ar (r) = −

(
k2 − k2z − k2ϕ

)
Ar (r) .

We now multiply the whole equation with r2 and substitute k2ϕ = m2/r2, so that

r2
∂2

∂r2
Ar (r) + r

∂

∂r
Ar (r) = −r2

(
k2 − k2z −

m2

r2

)
Ar (r) . (37)

The solutions of this equation are the so-called Bessel functions Zm. Accordingly, the solution can be
written as

Ar (r) = Zm

(
r
√
k2 − k2z

)
.

For a restricted area, like the cylindrical cavity, only the Bessel functions of the first kind, Jm, and the
Bessel functions of the second kind, Ym, must be considered. Since the functions of the second kind
diverge for r → 0, we can restrict the solution to the functions of the first kind,

Ar (r) = Jm (Kr) , (38)

where we introduce K =
√
k2 − k2z .

The complete solution for the vector potential A (r) is a product of Eqs. (38), (36), and (35):

A (r, ϕ, z) = CϕJm (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ez . (39)

The resulting components of the electric and magnetic field can be determined by employing the curl in
cylindrical coordinates and using Eqs. (27), (26), and (29):

Br (r, ϕ, z) =
1

r

∂

∂ϕ
A = −Cϕ

m

r
Jm (Kr) sin (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

Bϕ (r, ϕ, z) = − ∂

∂r
A = −CϕKJ

′
m (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

Er (r, ϕ, z) = i
c2

ω

∂

∂z
Bϕ = iCϕ

kzc
2

ω
KJ

′
m (Kr) cos (mϕ) (Cz,1 cos (kzz)− Cz,2 sin (kzz)) ,

Eϕ (r, ϕ, z) = −i
c2

ω

∂

∂z
Br = −iCϕ

kzc
2

ω

m

r
Jm (Kr) sin (mϕ) (Cz,1 cos (kzz)− Cz,2 sin (kzz)) ,

Ez (r, ϕ, z) = −i
c2

ω
K2A = −iCϕ

c2

ω
K2Jm (Kr) cos (mϕ) (Cz,1 sin (kzz) + Cz,2 cos (kzz)) ,

where we introduce the derivative of the Bessel function,

J
′
m =

d

d (Kr)
Jm (Kr) .
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To specify this intermediate solution, we also need to employ boundary conditions. We assumed that
the cavity is made of perfect electric conductor material, so that the tangential electric field components
vanish at the boundaries. In the radial direction, this means that Ez and Eϕ must be zero at the boundary
at r = R. Both components are proportional to Jm, so that we can deduce

Jm (Kr) = 0 , at r = R .

From this we can determine the eigenvalue K with

K =
jm,n
R

, (40)

with jm,n referring to the nth zero of the Bessel function Jm.

In the longitudinal direction, the perfect electric conductor condition means that Er and Eϕ must
be zero at the boundaries at z = 0 and z = g. Both components are proportional to the derivative of Az .
From this, we can deduce that:

d

dz
Az (z)

∣∣∣∣
z=0,z=g

= kz (Cz,1 cos (kzz)− Cz,2 sin (kzz))|z=0,z=g = 0 .

For z = 0, the sine term always vanishes. To meet the boundary condition, the cosine term must also
vanish, which can only be fulfilled if Cz,1 = 0. The second condition thus simplifies to

−kzCz,2 sin (kzg) = 0 ,

which is fulfilled for kz = pπ/g and integer mode numbers p.

With these specifications the field components can be finalized as:

Bm,n,p
r (r, ϕ, z) = −Cm

r
Jm

(
jm,n

r

R

)
sin (mϕ) cos

(
pπ
z

g

)
,

Bm,n,p
ϕ (r, ϕ, z) = −C jm,n

R
J

′
m

(
jm,n

r

R

)
cos (mϕ) cos

(
pπ
z

g

)
,

Em,n,pr (r, ϕ, z) = −iC
pπ

g

c2

ωm,n,p

jm,n
R

J
′
m

(
jm,n

r

R

)
cos (mϕ) sin

(
pπ
z

g

)
,

Em,n,pϕ (r, ϕ, z) = iC
pπ

g

c2

ωm,n,p

m

r
Jm

(
jm,n

r

R

)
sin (mϕ) sin

(
pπ
z

g

)
,

Em,n,pz (r, ϕ, z) = −iC
c2

ωm,n,p

(
jm,n
R

)2

Jm

(
jm,n

r

R

)
cos (mϕ) cos

(
pπ
z

g

)
, (41)

with the integer mode numbers m, n, and p and the normalization constant C = CϕCz,2. The eigen-
frequency of the modes is

ωm,n,p =

√(
jm,n
R

)2

+

(
pπ

g

)2

. (42)

For more information on the eigenmodes of cylindrical structures, see Ref. [6].

4.2 The loss parameters and the monopole wake function
We want to further limit our considerations to the so-called monopole modes, and the subsequent
monopole wake function. In the monopole case, the azimuthal mode number is zero, m = 0. The
resultant time-dependent field components of the TM modes are:

B0,n,p
r (r, ϕ, z, t) = 0 ,
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B0,n,p
ϕ (r, ϕ, z, t) = −C j0,n

R
J

′
0

(
j0,n

r

R

)
cos

(
pπ
z

g

)
exp (iω0,n,pt) ,

E0,n,p
r (r, ϕ, z, t) = −iC

pπ

g

c2

ω0,n,p

j0,n
R
J

′
0

(
j0,n

r

R

)
sin

(
pπ
z

g

)
exp (iω0,n,pt) ,

E0,n,p
ϕ (r, ϕ, z, t) = 0,

E0,n,p
z (r, ϕ, z, t) = −iC

c2

ω0,n,p

(
j0,n
R

)2

J0

(
j0,n

r

R

)
cos

(
pπ
z

g

)
exp (iω0,n,pt) , (43)

employing a harmonic time dependence.

To calculate the loss parameters, we first need to compute the voltage drop per mode,

V0,n,p =

g∫

0

E0,n,p
z

(
r = 0, z, t =

z

c

)
dz .

Inserting E0,n,p
z and evaluating the integral yields:

V0,n,p = Cc

(
1− (−1)p exp

(
iω0,n,pg

c

))
. (44)

We also need to know about the energy stored in each mode,

Un,p =
1

2µ0

R∫

0

2π∫

0

g∫

0

r
(
B0,n,p
ϕ

) (
B0,n,p
ϕ

)∗
dzdϕdr ,

which is equivalent to Eq. (16), since ε0
2

∫
|En (r)|2 d3r = 1

2µ0

∫
|Bn (r)|2 d3r. We useBϕ from Eq. (43)

and solve the integral to get

U0,n,p = C2
j20,nπg

4
J2
1 (j0,n) (1 + δ0,p) . (45)

Here, we made use of the properties of the Bessel function to substitute J
′
0 (x) = −J1 (x), and introduced

the Kronecker symbol, δ0,p, i.e., δ0,p = 1 if p = 0 and δ0,p = 0 otherwise.

With this, the loss parameters can be calculated via Eq. (18). For the cylindrical cavity, the loss
parameters of the monopole eigenmode identified by the radial and axial mode numbers n and p are:

k0,n,p =
1

πε0g

2

1 + δ0,p

1− (−1)p cos
(ω0,n,pg

c

)

j20,nJ
2
1 (j0,n)

. (46)

Figure 9 demonstrates the loss parameters of eigenmodes inside the given cylindrical cavity. The modes
are first distinguished by their radial mode number n and then plotted against their axial mode number
p. The graph shows that the loss parameters, and therefore the contribution strength of each mode to the
wake potential, strongly vary. The mode with the strongest contribution is the TM0,1,1-mode, visible in
the sharp peak displayed in the graph. It can be generally assumed that if we were to increase n even
further, the contributions of the modes (the so-called higher order modes) would further decrease.

From the loss parameters, the wake function can be calculated similarly to Eq. (19),

W||,0 (s) =
∞∑

n=1

∞∑

p=0

2k0,n,p cos
(ω0,n,ps

c

)
. (47)
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Fig. 9: Loss parameters of different monopole
modes, discriminated by their radial mode num-
ber n and plotted against their axial mode num-
ber p. It is clearly visible that the strengths of the
loss parameters, and thus their contributions to the
wake potential, vary. The TM0,1,1 mode shows
the strongest contribution of the displayed modes.

Fig. 10: Wake potential of a Gaussian pulse with
σ = 2.5 cm inside the exemplary pillbox cavity.
The dash-dotted line denotes the analytical result
for 110 considered modes; the dashed line for
420 modes. The solid line represents a numer-
ical approximation of the wake potential com-
puted with the software ECHO. All wake poten-
tials are in very good agreement. The bunch shape
function is plotted in red as a reference.

We now want to compute the wake potential of a Gaussian pulse. The bunch shape function of such a
pulse is:

ψ (s) =
1√

2πσ2
exp

(
−s− s0

2σ2

)
. (48)

Here, we assume that the Gaussian is centred on s0 = 0, and that the width is σ = 2.5 cm. We will test
the accuracy of the expansion for two different numbers of expansion functions, 110 (i.e., 1 ≤ n ≤ 10
and 0 ≤ p ≤ 10) and 420 modes (i.e., 1 ≤ n ≤ 20 and 0 ≤ p ≤ 20). The analytical results are compared
with a numerical result obtained using the software ECHO [7]; the comparison is shown in Fig. 10. The
results are in very good agreement; the difference in the accuracy of the analytical wake potentials is very
small. From this, we can conclude that the influence of the higher-order modes on the wake potential is,
indeed, comparatively small in this case, though still necessary to increase the accuracy of the analytical
approximation of the wake potential.

5 The effects of wakefields
5.1 Ultra-relativistic wakefields
As described before, wakefields that remain in cavities can have large effects on trailing particles and
bunches. Effectively, they represent energy modulations of the trailing particles—which can already hold
true for particles of the same bunch as the wakefield-generating particle. Generally, this phenomenon is
hardly predictable in complicated structures. These energy modulations can lead to an increase the
emittance of the particle bunch. Usually, this is unwanted since—as soon as the beam has reached its
design parameters—it might lead to beam instabilities if no measures are undertaken.

Nevertheless, there are certain cases in which the energy modulating effect of wake potentials
can be useful. Devices called wakefield dechirpers or wakefield silencers are simple, passive acceler-
ator components that are used to counteract the energy spreads of particle beams. Figure 11 compares
the effect of a wakefield on a beam with a strong energy spread with that on a beam with no energy
spread. In both cases, the modulation of the dechirper is represented by a linear energy gradient over
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the coordinate s (red line). One beam has a low initial energy spread (dashed line), and so, adding the
modulation of the wake potential, the resulting energy width after the wakefield is larger. The second
beam, however, has a strong initial energy spread opposing the modulation of the dechirper (solid line).
Here, applying the wake potential will effectively lower the total energy spread. This effect is currently
studied at accelerators all over the world. Section 6 describes the wake potentials in a suitable structure
in more detail.

Fig. 11: The energy modulation induced by a wakefield (red) acts on two different beams, one with initial energy
spread that is opposed to the modulation (black, solid line), one without (black, dashed line). Effectively, the
modulation is added to the phase space of the beams, so that, after the dechirper, the energy width of the initially
unchirped beam is increased, while the energy width of the chirped beam is reduced, owing to the interaction with
the wake potential.

5.2 Space charge wakefields
So far, we have only dealt with ultra-relativistic wakefields, which are limited to the case v ' c. For
v < c, space charge effects also play a role.

The reason for space charge effects are the Coulomb interactions of the charged particles, which
play a role for non-ultra-relativistic beams and need to be taken into account there for every type of
simulation or analytical consideration. Usually, these effects have an even larger influence on the trailing
particles than the wakefields themselves. The effects of space charges can include the deflection of
charged particles, the causing of beam instabilities, the generation of high (unwanted) field intensities,
which in turn can lead to material breakdown, etc.

However, space charge effects are not the subject of these considerations. Thus, the reader is
referred to Refs. [8] or [9] for more information.

6 Example 2: rectangular waveguide with dielectric linings
6.1 The eigenmodes
Figure 12 shows a rectangular waveguide with dielectric linings, which can be used as a wakefield
dechirper ( [10], [11]). The outer waveguide is made of a highly conductive material, e.g., copper or
aluminium. As discussed before, the phase velocity of electromagnetic waves is smaller in the dielectric
regions, which effectively slows down the image fields responsible for wake potentials, so that they can
act on trailing particles as well. For this section, we will assume an exemplary waveguide with the par-
ameters a = 5 cm, b = 1.3 cm, L = 30 cm; and dielectric coatings of a thickness b− d = 1.5 mm and a
relative permittivity, εr = 4.8.

As for the pillbox cavity considered before, the wake function is now analysed. First, it is required
to take a look at the eigenmodes of these structures. We will consider three-dimensional eigenmodes
here. In reality, this would be equivalent to the examination of a structure that is closed in all three
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dimensions. This is of course unrealistic—for the dechirper to work, it must be passed by a particle beam,
and consequently, the structure needs to be open in the z-direction. In this special case, however, owing
to the properties of the structure, the wake function resulting from the three-dimensional eigenmodes of
the close structure is identical to the wake function of the open structure.

Fig. 12: A rectangular waveguide lined with two dielectric plates (shaded), which can be used as a dechirper. The
outer waveguide is made of a highly conductive material. One or both plates (only the upper plate in the case
shown) can be left unconnected to the remaining waveguide, so that the distance between the dielectrics can be
adjusted.

The similarities between this dielectrically lined waveguide and an empty rectangular waveguide
without dielectrics become obvious when the structure is considered for the first time. It would make
sense if the eigenmodes reflect these similarities, i.e., if the eigenmodes are similar to TE and TM modes,
which are the eigenmodes of conventional empty rectangular waveguides. Indeed, the eigenmodes of the
lined waveguide are related to TE and TM modes and can be viewed as a superposition of them. This
new set of eigenmodes, however, needs to reflect the dielectrics, which can be effectively described as
a change in permittivity in one direction (the y-direction in this case). As a consequence, none of the
longitudinal components of the eigenmodes’ electric or magnetic fields is zero, as in the case of TE and
TM modes but one of the transverse components is (the y-component, in this case). These kinds of mode
are called longitudinal-section electric (LSE) modes (where Ey = 0) and longitudinal-section magnetic
(LSM) modes (where By = 0) [6].

Their electric and magnetic fields can be derived from Maxwell’s equations (assuming a harmonic
time dependence and ρ = 0,J = 0). However, the changing relative permittivity εr must be taken into
account, so that:

∇ ·D (r) = ε0∇ · (εr(y)E (r)) = 0 , (49)

∇ ·B (r) = 0 , (50)

∇×E (r) = −iωB (r) , (51)

∇×B (r) = i
ω

c20
εr(y)E (r) . (52)

Under the given circumstances, solution of these equations is analytically possible. In the x- and z-
directions, the solution procedure follows a similar line as the derivation of the eigenmodes in an empty
waveguide, since the phase velocity is the same everywhere in these directions. In the y- direction,
the changing permittivity makes a straightforward solution like this impossible, though. To obtain an
analytical expression for the eigenmodes, a Fourier expansion can be used to describe the unknown
behaviour in the y- direction. Reference [6] provides a detailed example of the solution procedure for
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the case of only one dielectric lining. The resulting electric fields (for two dielectric slabs) are

ELSE (r) = ωLSE




kz cos(kxx)
N∑
m=1

bm sin(kymy) sin(kzz)

0

−kx sin(kxx)
N∑
m=1

bm sin(kymy) cos(kzz)



,

for LSE modes and

ELSE (r) =
1

εr(y)




−kx cos(kxx)
N∑
m=0

bmkym sin(kymy) sin(kzz)

(
k2x + k2z

)
sin(kxx)

N∑
m=0

bm cos(kymy) sin(kzz)

−kz sin(kxx)
N∑
m=0

bmkym sin(kymy) cos(kzz)



,

for LSM modes. Here, kx, kym, and kz represent the eigenvalues in the x-, y-, and z- directions. Just as in
the case of the empty rectangular waveguide, all eigenvalues indicate the number of nodes or antinodes
of the sine and cosine functions in the fields, e.g., kx = nπ/a, with a being the structure’s width.
Consequently, kym = mπ/b and kz = lπ/L, with b being the structure’s height and L the structure’s
length. The index m also indicates the Fourier expansion; the expansion coefficients are qm. Note that
the summation is ceased after N terms, which makes the analytical expression an approximation of the
real result. N is usually determined in a convergence study.

6.2 The electric field and longitudinal wake potential
As a next step, we want to determine the longitudinal wake potential inside a dielectrically lined rect-
angular waveguide. To achieve this, we first compute the wake function, and subsequently the loss
parameters.

Until this point, we have determined the loss parameters using a relation between the stored energy
and voltage drop per mode. This time, we want to calculate the wake function by a straightforward
integration over the electric field. We still expand the electric field into a series of eigenmodes as shown
in Eq. (15). We carry out this summation over both LSE and LSM modes. The time-dependent expansion
coefficients are determined by solving Maxwell’s equations for a point charge moving along the beam
axis in the z-direction:

∇ ·D (r) = ε0∇ · (εr(y)E (r)) = ρ (r) , (53)

∇ ·B (r) = 0 , (54)

∇×E (r) = − ∂

∂t
B (r) , (55)

∇×B (r) = µ0j (r) + µ0εr(y)ε0
∂

∂t
E (r) . (56)

The beam axis goes straight through the centre of the waveguide, so through the point
(xbeam, ybeam) = (a/2, b/2).

Once the coefficients have been determined, the longitudinal component of the electric field on
the beam axis is integrated following Eq. (5). The process of the integration is tedious but analytically
possible. We want to skip it here; Ref. [12] provides a more detailed solution of the wake function
integral.

Within the scope of this paper, it is sufficient to discuss the final result of the integration. The
integration automatically leads to a description of the wake function similar to Eq. (19). The cosine
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dependence is a direct result of the integration; the summation is a remnant of the eigenmode expansion
of the electric field. From this direct integration, the loss parameters can be read out as:

Kn,m,l,LSE = − 4

ε0aL

k2xk
2
z

k2x + k2z

( ∑

even m

qm sin
(mπ

2

))2 (
2− 2eilπ cos (k0,λL)

)
(
k20,λ − k2z

)2 ,

Kn,m,l,LSM = − 4

ε0aL

k4z
k0,µ (k2x + k2z)

(∑

evenm

qmky,m sin
(mπ

2

))2 (
2− 2eilπ cos (k0,µL)

)
(
k20,µ − k2z

)2 .

To avoid confusing the loss parameters with the eigenvalues, we refer to them as Kn,m,l in this
case. The expressions of the loss parameters appear very lengthy and complicated; on a closer inspection,
however, we see that they only depend on the mode characteristics and geometrical properties of the
structure and thus can be determined without previous knowledge of the electric field. The electric field
expansion is merely an intermediate analytical step to determine the formula for the loss parameters
once. After this is done, it does not have to be repeated for every structure; rather the expressions for the
loss parameters can be used straight from the formula at hand.

Fig. 13: Loss parameters of LSM modes with
different n and m plotted over their longitudinal
eigenvalue kz . It can be seen that several modes
exhibit much higher loss parameters than others,
resulting in the observed peak structure.

Fig. 14: Wake function in the exemplary di-
electrically lined rectangular waveguide.

In Fig. 13, the loss parameters (of LSM modes of an arbitrary rectangular waveguide with an arbi-
trary dielectric lining) are again sorted (according to the numbers of nodes or antinodes in the transverse
direction, n and m) and plotted against their longitudinal eigenvalue. As in the exemplary cylindrical
cavity in Fig. 9, we observe several distinguished peaks. These eigenmodes obviously have the largest
contribution to the wake function, while the loss parameters of other modes can be so small that their
contributions to the wake function are negligible.

Following Eq. (19), the wake function can be calculated from the loss parameters. The wake
function resulting from the modes displayed in Fig. 13 is displayed in Fig. 14.

At this point, we want to have a closer look at the influence of the bunch shape function on the
resulting wake potential. According to Eq. (20), all that is needed to obtain the wake potential from
the wake function is a convolution with the bunch shape function. This can be carried out easily, either
numerically or analytically.

Figure 15 compares the short range wake potentials (i.e., the wake potentials in the vicinity of the
bunch) of a Gaussian bunch (cf. Eq. (48)) and a so-called flat top pulse, i.e., a pulse with a constant
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Fig. 15: Wake potentials of a Gaussian pulse (solid line, σ = 0.3 mm) and a flat top pulse (dashed line, pulse
length 1.8 mm) inside the exemplary rectangular waveguide with dielectric linings. The bunch shape functions are
displayed in red for comparison.

particle distribution over the bunch length. Both bunches are designed to have the same length and both
bunch shape functions are normalized to 1. It can be seen that the wake potentials over both bunch shapes
refer to an overall energy loss. The maximum loss over the bunch shape is similar in both cases. This
results from the normalization of the pulses: the convolution can generally be imagined as ‘moving’ the
bunch shape function over the wake function and measuring the area enclosed by both. If the area under
both used bunches is the same, owing to the normalization, it follows that the maximum energy loss
should be nearly equal for both bunches. The gradient of the energy loss, however, shows significant
differences when comparing both bunch shapes. The gradient for the flat top pulse is perfectly linear
with sharp edges, while the gradient for the Gaussian pulse is steeper in the middle section and shows
softened edges. This is a direct result of the different bunch shapes: the gradient for the flat top pulse
is linear because of the equal distribution of particles over the bunch length and the gradient for the
Gaussian pulse shows softened edges, owing to the Gaussian pulse’s smooth behaviour.

For the total energy loss due to the wake potential, the bunch shape thus plays only a minor role,
i.e., Fig. 15 clearly shows that the maximum energy loss over the particle bunch is nearly identical, and
only dependent on the normalization of the bunch shape function (which should be 1 in any case). For
the phase space of the bunch, however, the bunch shape function can have a significant influence. Here,
it plays a role in determining ‘how many’ particles are subjected to a certain energy reduction. The
dechirper can significantly alter the phase space of the bunch, depending on its bunch shape.

7 Summary and conclusions
In this paper, we introduced the basic quantities that are necessary to understand the concept of wake-
fields. We discussed the basic structural requirements for the generation of wakefields. We derived the
longitudinal and transverse wake potential from the Lorentz force and introduced the Panofsky–Wenzel
theorem, which links both quantities to each other. In addition, we briefly discussed the impedance as
the Fourier transform of the wake potential.

When the eigenmodes of a structure are known, it is possible to derive the wake function, the
wakefield of a point charge as a sum over each eigenmode’s contribution. These contributions are called
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loss factors. The wake function then serves as the Green’s function for the calculation of the wake
potential of an arbitrary bunch shape, and the total loss factor can give an insight into the total power loss
due to the wakefield.

The effects of wakefields represent energy modulations, which consequently result in a modulation
of the longitudinal and possibly also transverse phase space of a particle bunch. This is why wakefields, at
least most of the time, are considered unwanted effects that have to be taken into consideration during the
design process of accelerators, to mitigate their negative influence on the functionality of the accelerator.
However, special structures called ‘wakefield dechirper’ can be used to utilize the energy modulating
effect of wakefields to reduce the energy spread of particle beams.

Further reading
As complementary further reading, the following article for beginners on the topic might be helpful: P.
Tenenbaum, Fields in Waveguides—A Guide for Pedestrians, 2003, available at http://www.desy.de/
~njwalker/uspas/coursemat/notes/unit_2_notes.pdf.
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Transverse Beam Dynamics
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Abstract
This paper gives an overview of the transverse dynamics in particle acceler-
ators. The main emphasis is on giving an introduction to the basic concepts,
described in linear approximation, and allowing the reader to deduce the main
parameters of a machine, based on some simple scaling laws.

Keywords
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1 Introduction
We would like to start this little essay with some kind of definition of ‘what we are talking about’ when
we mention transverse beam dynamics. While the middle term, beam, might be clear enough, transverse
and dynamics deserve some clarification. So in a desperate attempt to summarize in a few lines the key
issues of this paper, we formulate the following questions. What do the particles do, while they are
travelling along a linac or while we accelerate them in a circular machine? How do we manage to keep
them on – or close to – a trajectory in a linear accelerator (even a linear collider in some cases) with
deviations from this ideal path of only a fraction of a millimetre? How do we manage to convince our
particle ensemble to travel distances that, in a storage ring, turn after turn, easily sum up to many millions
of kilometres, without being lost?

Before we start to answer these questions, we would like to emphasize that we have to act with
caution. We will use a language that has been developed for ‘periodic structures’, i.e. where the situation
seen by the particle repeats itself after a certain time or distance. The reason lies at the bottom of the
mathematics involved. Now, while this is easily fulfilled in a circular accelerator, namely in the case of a
synchrotron, a linear accelerator does not have such a built-in periodicity: the particles pass through the
machine only once and that’s it. However, we like to make use of the expressions derived for the periodic
machines, as they present a powerful and elegant tool to design the accelerator as well as to express the
most relevant beam parameters. But in doing so we have to exercise due care. In the following sections,
we will therefore describe this language and – wherever needed – make a clear point when we have to be
careful and make a distinction between linacs and circular machines.

For the time being, let us state that an accelerator usually needs:

– a system of magnetic fields that create focusing forces to keep the particles together, and that
ultimately lead to a well-defined beam size;

– in the case of a circular machine, magnetic bending fields to keep the particles on a closed, more
or less circular orbit;

– a mechanism to lock these B-fields to the changing particle energy and thus keep the particles on,
or close to, this design orbit over the complete energy range of the machine;

– if the particles are successfully kept in both transverse planes, we need a radio frequency (RF)
structure to accelerate the particles and create the necessary energy gain via longitudinal electric
fields.

By definition of the title, we will neglect the last item in this paper. Here we just assume that
our colleagues from the RF systems will do a good job. Those who are interested in the longitudinal
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Fig. 1: Annelli de Accumulatione; the first electron–positron collider ring

Fig. 2: The tunnel of the LHC proton–proton collider at CERN, Geneva

dynamics are cordially invited to have a look at two brilliant papers, [1], [2]. For the time being we can
concentrate on the issues related with the focusing properties of our accelerator.

So much for the definition. As the basic tools and so the language were developed for circular
machines – synchrotrons in most cases – we will follow for a moment this concept, and further along the
line we will include in our contemplations linear accelerators and transfer lines.

Two examples of synchrotrons to start with: the Annelli de Accumulatione (Fig. 1), as far as we
know, the very first particle collider and certainly one of the smallest synchrotrons, built in Frascati by
Bruno Touschek in 1944 [3]; and the large hadron collider (LHC) [4], at present the largest storage ring
ever built, running at the highest achievable particle energies at CERN (Figs. 2 and 3).

2 Transverse beam dynamics
The transverse beam dynamics of charged particles in an accelerator describes the movement of single
particles under the influence of the external transverse bending and focusing fields. It includes the detailed
arrangement (for example, their positions in the machine and their strength) of the accelerator magnets
used to obtain well-defined, predictable parameters of the stored particle beam, and it describes methods
to optimize the trajectories of single particles, as well as the dimensions of the beam, considered as
an ensemble of many particles. A treatment of this field in full mathematical detail, including sophisti-
cated lattice optimizations, such as the right choice of the basic lattice cells and the design of dispersion
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Fig. 3: The LHC proton–proton collider

suppressors or chromaticity compensation schemes, is beyond of the scope of this overview. For further
reading and for more detailed descriptions, we therefore refer to the more complete explanations in
Refs. [5–7]. For the time being, we will just give a basic introduction into the topic and explain – more
or less hand-waving – how the trick goes.

2.1 Geometry of the ring
In general, magnetic fields are used in circular accelerators to provide the bending force and to focus the
particle beam. In principle, the use of electrostatic fields would also be possible, but at high momenta
(i.e., if the particle velocity is close to the speed of light), magnetic fields are much more efficient. The
force acting on the particles, the Lorentz force, is given by

F = q · (E + v ×B) . (1)

For high-energy particle beams, the velocity v is close to the speed of light and so represents a nice
amplification factor whenever we apply a magnetic field. As a consequence, it is much more convenient
to use magnetic fields for bending and focusing the particles.

Therefore, neglecting electric fields for the moment, we write the Lorentz force and the centrifugal
force on the particle on its circular path as

FLorentz = e · v ·B , (2)

Fcentrifugal =
γm0v

2

ρ
. (3)

Assuming an idealized homogeneous dipole magnet along the particle orbit, having pure vertical field
lines, we define the condition for a perfect circular orbit as equality between these two forces. This yields
the following condition for the idealized ring:

p

e
= B · ρ , (4)

where we are referring to protons and have accordingly set q = e. This condition relates the so-called
beam rigidity Bρ to the momentum of a particle that can be carried in the storage ring, and it ultimately
defines, for a given magnetic field of the dipole magnets, the size of the storage ring.
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Fig. 4: Field map of a storage ring dipole magnet, and schematic path of a particle

In reality, instead of having a continuous dipole field, the storage ring will be built with several
dipole magnets, powered in series to define the geometry of the ring. For a single magnet, the trajectory
of a particle is shown schematically in Fig. 4. In the free space outside the dipole magnet, the particle
trajectory follows a straight line. As soon as the particle enters the magnet, it is bent onto a circular path
until it leaves the magnet at the other side.

The overall effect of the main bending (or ‘dipole’) magnets in the ring is to define this more or
less circular path, which we call the ‘design orbit’. By definition, this design orbit has to be a closed loop,
and so the main dipole magnets in the ring have to define a full bending angle of exactly 2π. If α denotes
the bending angle of a single magnet, then

α =
ds

ρ
=
B ds

B · ρ . (5)

We therefore require that integrating over all dipole magnets we get
∫
B ds

B · ρ = 2π . (6)

Thus, a storage ring or synchrotron is not a ‘ring’ in the true sense of the word but more a polygon, where
‘poly’ means the discrete number of dipole magnets installed in the ‘ring’.

In the case of the LHC, the dipole field has been pushed to the highest achievable values: 1232
superconducting dipole magnets, each 15 m long, define the geometry of the ring (or better 1232-gon,
whatever the Greek expression for that might be) and thus, via Eq. (6), the maximum momentum for
the stored proton beam. Using these equations, for a maximum momentum p = 7 TeV/c, we obtain a
required magnetic field of

B =
2π · 7000 · 109 eV

1232 · 14.3 m · 2.99792 · 108 m s−1
, (7)

or
B = 8.33 T, (8)

to bend the LHC beams. For convenience, we have expressed the particle momentum in units of GeV/c
here. Figure 5 shows a photograph of one of the LHC dipole magnets, built with superconducting NbTi
filaments, which are operated at a temperature T = 1.9 K.
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Fig. 5: Superconducting dipole magnet in the LHC storage ring

2.2 Focusing properties
In addition to the main bending magnets that guide the beam onto a closed orbit, focusing fields are
needed to keep the particles close together. In modern storage rings and light sources, we have to keep
more than 1012 particles in the machine, distributed over a number of bunches, and these particles have
to be focused to keep their trajectories close to the design orbit. Furthermore, these particles are stored
in the machine for many hours, and a carefully designed focusing structure is needed to maintain the
necessary beam size at different locations in the ring and to guarantee stability of the transverse motion.

Following classical mechanics, linear restoring forces are used, just as in the case of a harmonic
pendulum. Quadrupole magnets provide the corresponding field property: they create a magnetic field
that depends linearly on the amplitude of the particle, i.e., the distance of the particle from the design
orbit:

Bx = −g · y , By = −g · x . (9)

The constant g is called the gradient of the magnetic field and characterizes the focusing strength of the
quadrupole lens in both transverse planes. The minus sign is a convention that follows the fact that for
a positive amplitude, the field configuration of a focusing quadrupole will lead to a Lorentz force that
reduces this amplitude, according to Fig. 6. As in the case of the dipole field, the quadrupole gradient
is usually normalized to the particle momentum to obtain expressions that are valid for any particle
momentum or energy. This normalized gradient is denoted by k and defined as

k =
g

p/e
=

g

Bρ
. (10)

The technical layout of such a quadrupole is depicted in Fig. 7. As in the case of the dipoles, the LHC
quadrupole magnets were built using superconducting technology to achieve the highest possible focus-
ing forces.

Now that we have defined the two basic building blocks of a storage ring, we need to arrange them
in a so-called magnet lattice and optimize the field strengths in such a way as to obtain the required beam
parameters. An example of such a magnet lattice is shown in Fig. 8. This photograph shows the dipole
(orange) and quadrupole (red) magnets in the TSR storage ring in Heidelberg [8]. Eight dipoles are used
to bend the beam into a ‘circle’, and the quadrupole lenses between them provide the focusing to keep
the particles within the aperture limits of the vacuum chamber.

A general design principle of modern synchrotrons and storage rings should be pointed out here.
In general, these machines are built following a so-called separate-function scheme: every magnet is
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Fig. 6: Co-ordinate system used in particle beam dynamics: the longitudinal co-ordinate s moves around the ring
with the particle considered.

Fig. 7: Superconducting quadrupole magnet in the LHC storage ring

Fig. 8: The TSR storage ring, Heidelberg, is a typical example of a separate-function strong focusing storage
ring [8].
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designed and optimized for a certain task, such as bending, focusing, or chromatic correction. We separ-
ate the magnets in the design according to the job they are supposed to do; only in rare cases is a
combined-function scheme chosen nowadays, where different magnet properties are combined in one
piece of hardware. To express this principle mathematically, we use the general Taylor expansion of the
normalized magnetic field,

B(x)

p/e
=

1

ρ
+ k · x+

1

2!
mx2 +

1

3!
nx3 + · · · . (11)

Following these arguments, for the moment we take only constant (dipole-) or linear (quadrupole-) terms
into account. The higher-order contributions to the field will be treated later as (hopefully) small pertur-
bations.

Under these assumptions, we can derive – in linear approximation – the equation of motion of the
transverse particle movement. We start with a general expression for the radial acceleration, known from
classical mechanics (see, e.g., Ref. [9]):

ar =
d2ρ

dt2
− ρ

(
dθ

dt

)2

. (12)

The first term refers to an explicit change in the bending radius, and the second to the centrifugal acceler-
ation. Referring to our co-ordinate system, and replacing the ideal radius ρwith ρ+x for the general case
(Fig. 6), we obtain the relation for the balance between the radial force and the counteracting Lorentz
force:

F = m
d2

dt2
(x+ ρ)− mv2

x+ ρ
= evB . (13)

On the right-hand side of the equation, we take only linear terms of the magnetic field into account,

By = B0 + x
dBy
dx

, (14)

and for convenience we replace the independent variable t with the co-ordinate s,

x′ =
dx

ds
=

dx

dt

dt

ds
, (15)

‘Convenience’ in this context means that we are more interested in the amplitude x and angle x′ of
the particle trajectory and therefore prefer the derivative of x with respect to s. Thus, we obtain an
expression for the particle trajectories under the influence of the focusing properties of the quadrupole
and dipole fields in the ring, described by a differential equation. This equation is derived in its full
beauty elsewhere [7], so we shall just state it here:

x′′ − x ·
(
k − 1

ρ2

)
= 0 , (16)

where k is the normalized gradient introduced above and the 1/ρ2 term represents the so-called weak
focusing, which is a property of the bending magnets. Depending on the actual sign of k, the quadrupole
will focus (negative sign) or de-focus (positive sign) the beam in the corresponding plane. The situation
is shown schematically in Fig. 6. An ideal particle will follow the design orbit represented by the circle
in the diagram. Any other particle will perform transverse oscillations under the influence of the external
focusing fields, and the amplitude of these oscillations will ultimately define the beam size. To be brief,
and referring to the horizontal plane for a moment, we can make the statement that under the influence
of the focusing fields from the quadrupoles k and dipoles 1/ρ2, the transverse movement of the particles
inside the single lattice elements looks like a harmonic oscillation.
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Fig. 9: Field configuration in a quadrupole magnet and the direction of the focusing and defocusing forces in the
horizontal and vertical planes.

Unlike the case of a classical harmonic oscillator, however, the equations of motion in the hori-
zontal and vertical planes differ somewhat. Assuming a horizontal focusing magnet, the equation of
motion is as shown in Eq. (16). In the vertical plane, however, because of the orientation of the field lines
and thus – in the end – by Maxwell’s equations, the forces instead have a defocusing effect. Also, the
weak focusing term disappears in general:

y′′ + y · k = 0 . (17)

The principal problem arising from the different directions of the Lorentz force in the two transverse
planes of a quadrupole field is sketched in Fig. 9. As a consequence, to overcome this uncomfortable
situation, we have to explicitly introduce quadrupole lenses that focus the beam in the horizontal and
vertical directions in some alternating order. It is the task of the machine designer to find an adequate
solution to this problem and to define a magnet pattern that will provide an overall focusing effect in
both transverse planes. The rest is easy, in the sense of A. Wolski’s statement: “...in principle, there are
only two steps in the analysis of any dynamical system. The first step is to write down the equations of
motion; and the second step is to solve them ” [10].

Now, closely following the example of the classical harmonic oscillator, we can write down the
solutions of the equations of motion. For simplicity, we focus on the horizontal plane; a ‘focusing’ magnet
is therefore focusing in this horizontal plane and at the same time defocusing in the vertical plane. Starting
with the initial conditions for the particle amplitude x0 and angle x′0 in front of the magnet element, we
obtain the following relations for the trajectory inside the magnet:

x(s) = x0 · cos
(√
|K| s

)
+ x′0 ·

1√
|K|

sin
(√
|K| s

)
, (18)

x′(s) = −x0 ·
√
|K| sin

(√
|K| s

)
+ x′0 · cos

(√
|K| s

)
. (19)

Here, the parameterK combines the quadrupole gradient and the weak focusing effect:K := (1/ρ2)−k.
Usually, these two equations are combined into a more elegant and convenient matrix form,

(
x

x′

)

s

= Mfoc

(
x

x′

)

0

, (20)

where the matrix Mfoc contains all the relevant information about the magnet element:

Mfoc =

(
cos(

√
|K| s) 1√

|K|
sin(

√
|K| s)

−
√
|K| sin(

√
|K| s) cos(

√
|K| s)

)
. (21)
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s = s0 s = s1 

Fig. 10: Schematic illustration of the effect of a focusing quadrupole magnet

s = s0 s = s1 

Fig. 11: Effect of a defocusing quadrupole magnet

The situation is illustrated in Fig. 10.

In the case of a defocusing magnet (or to be quite clear, also, in the case of the vertical plane, of a
horizontal focusing magnet), we obtain analogously that

(
x

x′

)

s

= Mdefoc

(
x

x′

)

0

, (22)

with

Mdefoc =

(
cosh(

√
|K| s) 1√

|K|
sinh(

√
|K| s)

√
|K| sinh(

√
|K| s) cosh(

√
|K| s)

)
; (23)

see Fig. 11.

For completeness, we also include the situation of field-free drift. In this trivial case with K = 0
we obtain

Mdrift =

(
1 s
0 1

)
. (24)

This matrix formalism allows us to combine the elements of a storage ring in an elegant way, and so
it is straightforward to calculate particle trajectories. In this context, we would like to emphasize a few
issues:

– a certain quadrupole lens will always have two opposing effects: focusing in one plane and de-
focusing in the other;

– et vice versa (and the other way round, for the non-Latin-speaking community);
– in linear approximation and without explicit coupling fields, such as roll angles of the quadrupoles

or solenoids, the motion in the two transverse planes is uncoupled. An amplitude in the horizontal
direction, e.g., will not have any influence on the vertical motion and therefore the corresponding
non-diagonal elements of the matrix M1,3, M1,4, etc., are zero.

– It is therefore convenient to describe this simultaneous effect in the two planes in a single 4 × 4
matrix and define a vector for both transverse amplitudes and angles.
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Fig. 12: A simple periodic chain of bending magnets (B) and focusing (QF) or defocusing (QD) quadrupoles
forming the basic structure of a storage ring (court. [5]).

x(s) 

s 

Fig. 13: Calculated particle trajectory in a simple storage ring




x
x′

y
y′




s

=




cos(
√
|K| s) 1√

|K|
sin(

√
|K| s) 0 0

−
√
|K| sin(

√
|K| s) cos(

√
|K| s) 0 0

0 0 cosh(
√
|K| s) 1√

|K|
sinh(

√
|K| s)

0 0
√
|K| sinh(

√
|K| s) cosh(

√
|K| s)



·




x
x′

y
y′




0

.

(25)

As an example of a larger structure, we consider the simple case of an alternating focusing and
defocusing lattice, a so-called FODO lattice [5]; see Fig. 12.

As we know the properties of each and every element in the accelerator, we can construct the
corresponding matrices and calculate, step by step, the amplitude and angle of a single-particle trajectory
around the ring. Even more conveniently, we can multiply out the different matrices and, given initial
conditions x0 and x′0 at a certain position in the storage ring, directly obtain the trajectory at any location
in the ring:

Mtotal = Mfoc ·Mdrift ·Mdipole ·Mdrift ·Mdefoc · · · . (26)

The trajectory thus obtained is shown schematically in Fig. 13.

We have to point out the following facts in this context.

– At each moment, which means inside each lattice element, the trajectory is a part of a harmonic
oscillation.
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Fig. 14: Beam position measured in LHC on the first turn around the machine, during one of the very first beam
injections into the LHC storage ring.

– However, because of the different restoring or defocusing forces, the solution will look different at
each location.

– In the linear approximation that we have used in this context, all particles experience the same
external fields, and their trajectories will differ only because of their different initial conditions.

– There seems to be an overall oscillation in both transverse planes while the particle is travelling
around the ring. Its amplitude stays well within the boundaries set by the vacuum chamber, and
its frequency in the example of Fig. 13 is roughly 1.4 transverse oscillations per revolution, which
corresponds to the eigenfrequency of the particle under the influence of the external fields.

Coming closer to a real, existing machine, we see in Fig. 14 an orbit, measured during one of the
first injections into the LHC storage ring. The horizontal oscillations are plotted in the upper half of the
figure and the vertical oscillations in the lower half, on a scale of ±10 mm. Each histogram bar indicates
the value recorded during the first turn of the beam by a beam position monitor at a certain location in
the ring; the orbit oscillations are clearly visible. During these first injections, a beam screen had been
introduced right after the injection point. In Fig. 15, the spot of the injected beam on this screen is clearly
visible as well as the one after the first turn. In both transverse planes, these spots are not yet lying on
top of each other and so the orbit is not yet closed. However, this can be achieved after a straightforward
orbit correction and we finally obtain what we call a ‘closed orbit’.

By counting (or, better, fitting) the number of oscillations in both transverse planes, we obtain, in
the case of the LHC, values of

Qx = 64.31 , Qy = 59.32 . (27)

These values, which describe the eigenfrequencies of the particles, are called the horizontal and vertical
tunes, respectively. Knowing the revolution frequency, we can easily calculate the corresponding trans-
verse oscillation frequencies, which for this type of machine usually lie in the range of several hundred
kilohertz.

As the tune characterizes the particle oscillations under the influence of all external fields, it is one
of the most important parameters of a storage ring. Therefore, it is usually displayed and controlled at
all times by the control system of such a machine. As an example, Fig. 16 shows the tune diagram of the
HERA proton ring [11]; this was obtained via a Fourier analysis of a spectrum measured from the signal
of the complete particle ensemble. The peaks indicate the two tunes in the horizontal and vertical planes
of the machine; in a sufficiently linear machine, a fairly narrow spectrum is obtained.

Briefly referring back to Fig. 13, the question is what the trajectory of the particle will look like in
the second turn, or the third, or after an arbitrary number of turns. Now, as we are dealing with a circular
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Fig. 15: Measured position of the first turn in LHC during the commissioning of the machine. The beam screen is
located immediately after the injection septum and shows the spot at injection and after one full turn around the
machine.

Fig. 16: Tune signal of a proton storage ring (HERA-p)

machine, the amplitude x and angle x′ at the end of the first turn will be the initial conditions for the
second turn, and so on. After many turns, the overlapping trajectories begin to form a pattern, such as
that shown in Fig. 17, which indeed looks like a beam that here and there has a larger and a smaller size
but still remains well defined in its amplitude by the external focusing forces.

3 The Twiss parameters α, β, and γ
As explained in the last section, repeating the calculations that lead to the orbit of the first turn will result
in a large number of single-particle trajectories that overlap in some way and form the beam envelope.
Figure 17 shows the result for 50 turns. Clearly, as soon as we are talking about many turns or many
particles, the use of the single-trajectory approach is quite limited and we need a description of the beam
as an ensemble of many particles. Fortunately, in the case of periodic conditions in the accelerator, there
is another way to describe the particle trajectories and, in many cases, it is more convenient than the
aforementioned formalism. It is important to note that, in a circular accelerator, the focusing elements
are necessarily periodic in the orbit co-ordinate s after one revolution. Furthermore, storage ring lattices
have an internal periodicity in most cases: they are often constructed, at least partly, from sequences in
which identical magnetic structures, the lattice cells, are repeated several times in the ring and lead to
periodically repeated focusing properties. In this case, the equation of motion can now be written in a
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Fig. 17: Many single-particle trajectories together form a pattern that corresponds to the beam size in the ring

slightly different form:
x′′(s)− k(s) · x(s) = 0 , (28)

where, for simplicity, we refer to a pure quadrupole magnet and so the 1/ρ2 term does not appear. The
main issue, however, is that unlike the previous treatment, the focusing parameters (or restoring forces)
are no longer constant but are functions of the co-ordinate s. However, they are periodic in the sense that,
at least after one full turn, they repeat themselves, i.e., k(s + L) = k(s), leading to the so-called Hill
differential equation. Following Floquet’s theorem [6], the solution of this equation can be written in its
general form as

x(s) =
√
ε
√
β(s) cos(ψ(s)− φ) , (29)

where ψ is the phase of the oscillation, φ is its initial condition, and ε is a characteristic parameter of
a single particle or, if we are considering a complete beam, of the ensemble of particles. Taking the
derivative with respect to s, we get the trajectory angle x′:

x′(s) =

√
ε

β(s)

(
1

2
β′(s) cos (ψ(s)− φ)− sin(ψ(s)− φ)

)
. (30)

The position and angle of the transverse oscillation of a particle at a point s are given by the value
of a special amplitude function, the β-function, at that location; ε and φ are constants of the particular
trajectory. The β-function depends in a rather complicated manner on the overall focusing properties of
the storage ring. It cannot be calculated directly by an analytical approach, but instead must be either
determined numerically or deduced from properties of the single-element matrices (see, e.g., Ref. [7]).
In any case, like the lattice itself, it must fulfil the periodicity condition

β(s+ L) = β(s) . (31)

Inserting the solution (Eq. (29)) into the Hill equation and rearranging slightly, we get

ψ(s) =

∫ s

0

ds

β(s)
, (32)

which describes the phase advance of the oscillation. It should be emphasized that ψ depends on the
particle’s oscillation amplitude. At locations where β reaches large values, i.e., the beam has a large
transverse dimension, the corresponding phase advance is small; conversely, at locations where we create
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Fig. 18: Transverse beam shape inside a quadrupole magnet: plotted are 7σ of a Gaussian particle density distri-
bution inside the vacuum chamber and magnet aperture.

a small β in the lattice, we obtain a large phase advance. In the context of Fig. 13, we introduced the
tune as the number of oscillations per turn, which is nothing else than the overall phase advance of the
transverse oscillation per revolution in units of 2π. So, by integrating Eq. (32) around the ring, we get,
for the tune, the expression

Q =
1

2π

∮
ds

β(s)
. (33)

The practical significance of the β-function is shown in Figs. 17 and 18. Whereas in Fig. 17 the
single-particle trajectories are plotted turn by turn, Fig. 18 shows schematically a section through the
transverse shape of the beam and indicates the beam size inside the vacuum chamber. The hyperbolic
profile of the pole shoes of the quadrupole lens is sketched as a yellow dashed line, and the envelope of
the overlapping trajectories, given by x̂ =

√
εβ(s), is marked in red and is used to define the beam size

in the sense of a Gaussian density distribution.

3.1 β, ε, and the phase space ellipses
Although the β-function is a somewhat abstract parameter that results from all focusing and defocusing
elements in the ring, the integration constant ε has a well-defined physical interpretation. Given the
solution of Hill’s equation, Eq. (29), and its derivative, Eq. (30), we can transform the first equation to

cos (ψ(s)) =
x(s)√
εβ(s)

(34)

and insert the expression into Eq. (30) to get an expression for the integration constant ε:

ε = γ(s)x2(s) + 2αx(s)x′(s) + β(s)x′2(s) . (35)

Here, we have followed the usual convention in the literature and introduced the two parameters

α(s) = −1

2
β′(s) (36)

and

γ(s) =
1 + α2(s)

β(s)
. (37)
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Fig. 19: Ellipse in (x, x′) phase space

We obtain for ε a parametric representation of an ellipse in the (x, x′) ‘phase space’. The math-
ematical integration constant thus gains physical meaning. In fact, ε describes the space occupied by
the particle in the transverse (x, x′) phase space (simplified here to a two-dimensional space). More
specifically, the area in the (x, x′) space that is covered by the particle is given by

A = π · ε , (38)

and, as long as we consider only conservative forces acting on the particle, this area is constant accord-
ing to Liouville’s theorem. Here we take these facts as given, but we should point out that, as a direct
consequence, the so-called emittance ε cannot be influenced by any external fields; it is a property of the
beam, and we have to take it as given and handle it with care.

To be more precise, and following the usual textbook treatment of accelerators, we can draw the
ellipse of the particle’s transverse motion in phase space; see, for example, Fig. 19. Although the shape
and orientation are determined by the optics function β and its derivative, α = −1

2β
′, and so change as

a function of the position s, the area covered in phase space is constant.

In Fig. 19, expressions for the dependence of the beam size and divergence and, as a consequence,
the shape and orientation of the phase space ellipse are included. For the sake of simplicity, we shall not
derive these expressions here; instead, see Ref. [7].

Referring again to the single-particle trajectory (see Fig. 13), but now plotting the co-ordinates x
and x′ for a given position s in the ring, turn by turn, we obtain the phase space co-ordinates of the particle
as shown in Fig. 19 (marked as dots in the figure). These co-ordinates follow the form of an ellipse, whose
shape and orientation are defined by the optical parameters at the reference position s in the ring. Each
point in Fig. 19 represents the transverse co-ordinates for a certain turn at that position in the ring, and
the particle performs, from one turn to the next, a number of revolutions in phase space that corresponds
to its tune. We have already emphasized that, as long as only conservative forces are considered (i.e., no
interaction between the particles in a bunch, no collisions with remaining gas molecules, no radiation
effects, etc.), the size of the ellipse in (x, x′) space is constant and can be considered as a quality factor
of a single particle. Large areas in (x, x′) space mean large amplitudes and angles of transverse particle
motion, and we would consider this as indicating a low particle ‘quality’.

Let us now talk a little more about the beam as an ensemble of many (typically 1011) particles.
Referring to Eq. (29), at a given position in the ring the single particle amplitude is defined by the
emittance ε and the function β. Thus, at a certain moment in time, the cosine term in Eq. (29) will be
equal to one and the amplitude of the trajectory will reach its maximum value. Now, if we consider
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Fig. 20: Transverse particle distribution in a storage ring. The dots correspond to the measurement, the line is a
Gaussian fit. A particle at 1σ from the beam centre is used to represent the beam size.
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Fig. 21: LHC injection beam optics: owing to the larger beam emittance at low energy, the β-function has to be
limited to values of about 600 m.

a particle at one standard deviation (sigma) of the transverse density distribution, then by using the
emittance of this reference particle we can calculate the size of the complete beam, in the sense that the
complete area (within one sigma) of all particles in the (x, x′) phase space is surrounded (and so defined)
by our one-sigma candidate. Thus, the value

√
ε · β(s) defines the one-sigma beam size in the transverse

plane.

An example of such a particle density distribution is shown in Fig. 20. The dots correspond to the
measured values of the particle distribution at the collision point and the blue curve represents a Gaussian
fit. The emittance (usually referred to as ‘Courant – Snyder invariant’) of the single particle at 1σ from
the centre can be used as representative emittance of the beam ensemble.

It is the task of the lattice designer to establish a beam optics that guarantees – for a given emittance
– values of the β-function that lead to tolerable beam sizes at every location in the machine. As an ex-
ample, we shall use the values for the LHC proton beam (Fig. 21). In the periodic pattern of the arc, the
β-function is equal to 180 m and the emittance ε at the flat-top energy is roughly 5 × 10−10 rad m. The
resulting typical beam size is, therefore, 0.3 mm. Now, clearly, we would not design a vacuum aperture
for the machine based on a one-sigma beam size; typically, an aperture requirement corresponding to
12σ is a good rule to guarantee a sufficient beam lifetime, allowing for tolerances arising from magnet
misalignment, optics errors, orbit fluctuations, and operational flexibility. In Fig. 22, part of the LHC
vacuum chamber is shown, including the beam screen used to protect the cold bore from synchrotron
radiation; this corresponds to a minimum beam size of 18σ.
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Fig. 22: LHC vacuum chamber with beam screen to shield the bore of the superconducting magnet from synchro-
tron radiation.

3.2 Adiabatic shrinking
The definition of the beam emittance described in the previous section bears a certain problem. Strictly
speaking, Liouville’s theorem states that – given conservative forces – the particle density in the phase
space x, px is constant. Now in accelerator physics we are talking about particle amplitudes and angles,
x, x′ and a co-ordinate system defined by these variables is sometimes called the trace space to make a
clear distinction from the phase space.

The main issue is related to the particle acceleration. The angle x′ of a particle is given by the ratio
between longitudinal and transverse momentum:

x′ =
dx

ds
=

dx

dt

dt

ds
=
px
ps
∝ 1

m0cβγ
, (39)

where we express the relativistic momentum as a function of the rest mass m0, and the relativistic par-
ameters β = v/c and the Lorentz factor γ = {1/√(1− β2)}. ps describes the longitudinal component
of the particle’s momentum; and it is this longitudinal component that increases during the acceleration.
Now, Liouville’s theorem states that for the canonical conjugate variables x and px the phase space area
is constant: ∫

pxdx = constant , (40)

and we will not argue about that.

However, in the rather sloppy interpretation that we have used until now, we refer to a co-ordinate
system x, x′ and so in reality we get ∫

x′dx =

∫
px
ps

dx (41)

and as, during acceleration, the longitudinal momentum is obviously increasing, our x–x′ ellipse will
shrink proportionally to 1/βγ. We conclude, therefore, that the beam emittance and, as a consequence,
the beam dimension in both transverse planes will shrink during acceleration and this is indeed what we
observe. As a consequence, a proton beam in a synchrotron or an electron beam in a linac will have the
largest emittance at injection energy and it is here, where the beam optics – expressed as a β-function
– will have to be optimized for sufficient free aperture. The effect can be quite impressive: in Figs. 23
and 24, the 7σ envelope of a proton beam is shown inside the vacuum chamber (dashed line) of a mini-
beta quadrupole magnet. Figure 23 shows the situation at 40 GeV injection energy. Figure 24 – for the
same beam optics, and at the same location again – shows the 7σ envelope, but now at flat-top energy
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Fig. 23: Beam envelope of HERA proton ring at 40 GeV injection energy. The plot refers to 7σ at the mini-beta
quadrupoles.

Fig. 24: Beam envelope of the HERA proton ring at 920 GeV flat-top energy. The plot refers to 7σ at the mini-beta
quadrupoles.

of 920 GeV. Owing to the much higher energy, the beam size is smaller by a factor of
√

920/40 and the
beam lifetime was considerably increased on the energy ramp of this machine.

As a direct consequence, we conclude that beam optics that lead to large beta functions in the ring
only can be applied at highest energy, where, due to the reduced emittance, the overall beam size still can
be limited. As an example, we refer again to the LHC situation. In direct comparison with the low-energy
optics shown in Fig. 21, we now present the optics applied for high-energy collisions, Fig. 25. Here we
can afford values of β of up to 4.5 km.

For completeness, we have to mention that as soon as synchrotron light effects must be con-
sidered, the situation changes drastically. In electron synchrotrons, the beam dynamics is determined by
the equilibrium between synchrotron radiation damping and excitation due to the emitted photon quanta.
Therefore, in those cases, we observe a quadratic increase of the emittance with energy [14]

4 Errors in field and gradient
So far, we have treated the beam and the equation of motion as a mono-energetic problem. Unfortunately,
in the case of a realistic beam, we have to deal with a considerable distribution of the particles with respect
to energy or momentum. A typical value is

∆p

p
≈ 1.0 · 10−3 . (42)

This momentum spread leads to several effects concerning the bending of the dipole magnets and the
focusing strength of the quadrupoles. It turns out that the equation of motion, which has been a homo-
geneous differential equation until now, acquires a non-vanishing term on the right-hand side.
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Fig. 25: LHC beam optics at high energy: Due to the small beam emittance at high energy, large values of the
amplitude function β can be accepted; to be compared with the situation at injection energy, Fig.21.

4.1 Dispersive effects
Replacing the ideal momentum p in Eq. (10) with p0 + ∆p, we obtain in approximation of small ∆p,
instead of Eq. (16):

x′′ + x ·
(

1

ρ2
− k
)

=
∆p

p0
· 1

ρ
. (43)

The general solution of our now inhomogeneous differential equation is, therefore, the sum of the solution
of the homogeneous equation of motion and a particular solution of the inhomogeneous equation:

x(s) = xβ(s) + xi(s) . (44)

Here, xβ is the solution that we have discussed up to now and xi is an additional contribution that still has
to be determined. For convenience, we usually normalize this second term and define a special function,
the so-called dispersion:

D(s) =
xi(s)

∆p/p0
. (45)

This describes the dependence of the additional amplitude of the transverse oscillation on the momentum
error of the particle. In other words, it fulfils the condition

x′′i (s) +K(s) · xi(s) =
1

ρ
· ∆p

p0
. (46)

As before, we have combined the weak and strong focusing effects in the parameter K := (1/ρ2) − k.
The dispersion function is defined by the magnet lattice and is usually calculated by optics programs
in the context of the calculation of the usual optical parameters. Analytically, it can be determined for
single elements via the expression

D(s) = S(s) ·
∫

1

ρ(s̄)
C(s̄) ds̄− C(s) ·

∫
1

ρ(s̄)
S(s̄) ds̄ , (47)

where S(s) and C(s) correspond to the sine-like and cosine-like elements of the single-element matrices
or of the corresponding product matrix if there are several elements considered in the lattice.
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Fig. 26: β-function (top) and dispersion (bottom) of a typical high-energy collider ring

Although this all sounds somewhat theoretical, we would like to stress that typical values for the
beam size and dispersive effect in the case of a high-energy storage ring are

xβ ≈ 1–2 mm , D(s) ≈ 1–2 m . (48)

Thus, for a typical momentum spread of ∆p/p = 1 · 10−3, we obtain an additional contribution to the
beam size from the dispersion function that is of the same order as that from the betatron oscillations, xβ .
An example of a high-energy beam optics system including the dispersion function is shown in Fig. 26. It
should be pointed out that the dispersion describes the special orbit that an ideal particle would have in the
absence of betatron oscillations (xβ = x′β = 0) for a momentum deviation of ∆p/p = 1. Nevertheless,
it describes ‘just another particle orbit’ and so it is subject to the focusing forces of the lattice elements,
as seen in the figure.

4.2 Chromaticity
Whereas dispersion is a problem that describes the non-ideal bending effect of dipoles for the case of
a momentum error (or spread) in the particles, the careful reader will not be surprised to learn that a
similar effect exists for the quadrupole focusing. We call this chromaticity. The chromaticityQ′ describes
an optical error of a quadrupole lens in an accelerator: for a given magnetic field, i.e., gradient of the
quadrupole magnet, particles with a smaller momentum will feel a stronger focusing force, and particles
with a larger momentum will feel a weaker force. The situation is shown schematically in Fig. 27. As a
consequence, the tune of an individual particle will change, and the chromaticity Q′ relates the resulting
tune shift to the relative momentum error of the particle. In linear approximation, we write

∆Q = Q′ · ∆p

p0
. (49)

Q′ is a consequence of the focusing properties of the quadrupole magnets and is thus given by the
characteristics of the lattice. For small momentum errors ∆p/p0, the focusing parameter k can be written
as

k(p) =
g

p/e
=

ge

p0 + ∆p
, (50)

where g denotes the gradient of the quadrupole lens, p0 the design momentum, and the term ∆p refers to
the momentum error. If ∆p is small, as we have assumed, we can write in a first-order approximation,

k(p) ≈ ge

p0

(
1− ∆p

p0

)
. (51)
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Fig. 27: Chromaticity effect in a quadrupole lens

Fig. 28: Tune spectrum of a proton beam with a well-corrected chromaticity Q′ ≈ 1

This describes a quadrupole error

∆k = −k0 ·
∆p

p
, (52)

and so

∆Q =
1

4π

∫
∆k β(s) ds , (53)

∆Q = − 1

4π

∆p

p

∫
k0β(s) ds . (54)

The negative sign indicates that a positive momentum deviation leads to a weaker focusing strength and,
accordingly, to a lower tune. By definition, the linear chromaticity Q′ of a lattice is therefore given by

Q′ = − 1

4π

∫
k(s)β(s) ds . (55)

Now, unfortunately, although the dispersion created in the dipole magnets requires nothing more
than some bigger aperture in the vacuum chamber, the chromaticity of the quadrupoles has an influence
on the tune of the particles and so can lead to dangerous resonance conditions. Particles with a particular
momentum error will be pushed into resonances and will be lost within a very short time. A look at the
tune spectrum visualizes the problem. Whereas an ideal situation leads to a well-compensated chroma-
ticity and the particles oscillate with basically the same frequency (Fig. 28), a non-corrected chromaticity
(Q′ = 20 units in the case of Fig. 29) broadens the tune spectrum and a number of particles are pushed
towards dangerous resonance lines.

In large synchrotrons, and storage rings in particular, this problem is crucial and represents one
of the major factors that limit machine performance: because of the strong focusing of the quadrupoles
and the large values of the β−function obtained, the chromaticity can reach considerable values. A
chromaticity correction scheme is therefore indispensable. The trick goes in three steps.

– We sort the particles in the horizontal plane according to their momentum. This is done whenever
we have a non-vanishing dispersion, for example, close to the focusing quadrupoles in the arc,
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Fig. 29: Tune spectrum of a proton beam with a poorly matched chromaticity Q′ ≈ 20

where both the dispersion and the β-function reach high values and the particle trajectories are
determined by the well-known relation xd(s) = D(s) ·∆p/p.

– At these places, we create magnetic fields that have a position-dependent focusing strength, in
other words, fields that represent a position-dependent gradient. Sextupole magnets have exactly
this property: if g′ describes the strength of the sextupole field, we get

Bx = g′ · xy (56)

for the actual horizontal field component and

By = g′
1

2
· (x2 − y2) (57)

for the vertical component. The resulting effective gradient in both planes is obtained as

dBx
dy

=
dBy

dx
= g′ · x . (58)

– We now only have to adjust the strengths of two sextupole families (one each to compensate the
horizontal and vertical chromaticities, respectively) to get an overall correction in both planes.

In a little more detail, and referring again to normalized gradients, we can write for the normalized
quadrupole gradient of an off-centre particle in a sextupole magnet

ksext =
e

p
g′ · xd = m · xd , (59)

Here we have explicitly written xd to point out that it is the dispersive amplitude that is creating the
position dependent quadrupole effect and so leads, for a given particle amplitude

xd = D · ∆p

p
, (60)

to the momentum-dependent focusing strength of the sextupole magnet:

ksext = m ·D∆p

p
. (61)

The combined effect of the so-called natural chromaticity created by the quadrupole lenses (Eq. (55))
and the compensation by the sextupoles leads to an overall chromaticity

Q′ = − 1

4π

∮
(K(s)−m(s) ·D(s))β(s) ds (62)

and needs to be compensated to zero in both transverse planes.
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To summarize and make things as crystal clear as possible, the focusing properties of the magnet
lattice lead to restoring forces in both transverse planes. The transverse motion of a particle is therefore
a quasi-harmonic oscillation as the particle moves through the synchrotron, and the tune describes the
frequency of these oscillations. As we cannot assume that all particles have exactly the same momentum,
we have to take into account the effect of the momentum spread in the beam: the restoring forces are a
function of the momentum of each individual particle and so the tune of each particle is different. We
have to correct for this effect, and we do so by applying sextupole fields in regions where a non-vanishing
dispersion distributes the off-momentum particles in the horizontal plane.

As easy as that!

5 Transformation of the Twiss parameters α, β, γ
“Once more unto the breach, dear friends,” [12].

While it is straightforward to develop the rules for transformation of the trajectory amplitudes and angles
via the single-element matrices of the lattice elements, a similar formulation can be deduced for the
optical functions α, β, and γ. The derivation is closely related to the fact that – for a given energy – the
beam emittance ε is constant.

Starting from the usual transformation of a trajectory amplitude x and angle x′ between two lo-
cations in the lattice (

x

x′

)

s2

= M

(
x

x′

)

s1

, (63)

where the matrix M describes the focusing properties of a single lattice element, or in case of several lat-
tice elements, it represents the product matrix, as described in Eq. (26). In the general case of a sequence
of lattice elements we write

M =

(
C S

C ′ S′

)
. (64)

where the matrix elements C, S, . . . refer to the elements of the product matrix and in the trivial case of,
e.g., a single focusing quadrupole are the usual descriptions that we introduced before:

Mfoc =

(
C S

C ′ S′

)
=

(
cos(

√
|K| s) 1√

|K|
sin(

√
|K| s)

−
√
|K| sin(

√
|K| s) cos(

√
|K| s)

)
. (65)

Now we consider two locations s1 and s2 in the storage ring, as shown schematically in Fig. 30. At
both positions, the emittance can be expressed as a function of the Twiss parameters at these positions:

ε = γ1x
2(s1) + 2α1x(s1)x′(s1) + β1x

′2(s1) ,

ε = γ2x
2(s2) + 2α2x(s2)x′(s2) + β2x

′2(s2) , (66)

keeping in mind that the numerical value of the emittance at both positions has to be the same, as long
as Mr. Liouville is fulfilled.

Knowing the amplitude and angle of the trajectory at position s2, we can deduce these values at
position s1: (

x

x′

)

s1

= M−1
(
x

x′

)

s2

, (67)

where the matrix from s2 to s1 is the inverse transformation matrix,

M−1 =

(
S′ −S
−C ′ C

)
(68)
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Fig. 30: The optical functions at two positions in a ring are related to each other via the constant beam emittance

and we used the fact that, for all matrices in a storage ring, the determinant has to be equal to one:

det(M) = CS′ − SC ′ = 1 . (69)

Thus, we can write for our trajectory co-ordinates:

x1 = S′x2 − Sx′2 , (70)

x′1 = −C ′x2 + Cx′2 . (71)

Inserting these into Eq. (66), we express the emittance at position s1 as a function of the trajectory
co-ordinates at position s2:

ε = β1(Cx
′
2 − C ′x2)2 + 2α1(S

′x2 − Sx′2)(Cx′2 − C ′x2) + γ1(S
′x2 − Sx′2)2 . (72)

Sorting via x, x′ and comparing the coefficients, we can finally relate the Twiss functions between the
two locations in the ring:

β(s2) = C2β(s1)− 2SCα(s1) + S2γ(s1) (73)

α(s2) = −CC ′β(s1) + (SC ′ + S′C)α(s1)− SS′γ(s1) , (74)

γ(s2) = C ′2β(s1)− 2S′C ′α(s1) + S′2γ(s1) . (75)

Once more – for the sake of elegance in our notation – we prefer to combine these relations in
matrix form and get



β
α
γ



s2

=




C2 −2SC S2

−CC ′ SC ′ + CS′ −SS′
C ′2 −2S′C ′ S′2


 ·



β
α
γ



s1

. (76)

So if we know by calculation or measurement the optical functions at one position in the ring, we
can determine them via the single-element matrices in the lattice at any other location.

Now it is high time to handle the things with care: There is something special for transfer lines
and linear accelerators that we have to mention and unfortunately it is a quite uncomfortable item: un-
like rings, be they synchrotrons or storage rings, the optical functions α, β, and γ are not defined in
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Fig. 31: Optics of the transfer line between the SPS and the HC

�
�

�

s0 s2
s1

Fig. 32: The beam size must be measured at three locations in the transfer line

a non-periodic structure. Hill’s equation requires a periodic system and so does its solution. Still, this
description is very powerful and so our colleagues from the non-periodic world love to use our language.
However, we should be aware of this issue. In Eq. (76) we have learnt how to transform the optical
functions from one position in the lattice to another, knowing the focusing elements in between. This
means that if we know, e.g., the Twiss functions at the beginning of a transfer line, we can calculate them
through the complete linear structure. An example is given in Fig. 31.

In the case of the example in Fig. 31, the optical functions at the beginning of the structure are
defined, i.e., uniquely determined by the periodicity of the SPS synchrotron. At the beginning and the
end of the transfer line, special matching sections have been introduced to transform the periodic β-
functions from the SPS lattice onto the transfer line structure and from here to the LHC cells. Usually,
such a matching section leads for a moment to a somehow increased beam amplitude (due to the distorted
β-functions) and we have to take care to limit the aperture needs to reasonable values.

More complicated, however, is the case, where a circular pre-accelerator does not exist. In such a
case we have to ‘guess’ the initial values of α, β, and γ, or, better, we have to measure them at the initial
position before we can apply Eq. (76). To do so, we must perform three measurements at three different
locations in the line (see Fig. 32) and obtain three values for the beam size:

σ1 =
√

(εβ1)

σ2 =
√

(εβ2)

σ3 =
√

(εβ3)

And this is the way the trick goes [13]:

Assume that we measure the particle distribution, which might look like the example in Fig. 33.
Fitting a reasonable ellipse to the distribution, we can deduce the standard deviation of the, hopefully,
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Fig. 33: Example of the transverse beam size measured in a transfer line

nicely Gaussian distributed particle density. (OK, for other than Gauss-distributions it will also work,
more or less). So we obtain

σ =
√
εβ (77)

and as the beam emittance is constant, we can write – referring to each of the three positions s0, s1, and
s2 –

ε =
σ20
β0

=
σ21
β1

=
σ22
β2
. (78)

Now, from Eq. (76) we know how the β-functions transform through the lattice and so we can
express β1 and β2 as a function of the initial value β0:

β1 = C2
1β0 − 2C1S1α0 +

S2
1

β0

(
1 + α2

0

)
(79)

β2 = C2
2β0 − 2C2S2α0 +

S2
2

β0

(
1 + α2

0

)
. (80)

Using this information, we can determine both α0 and β0:

α0 =
1

2
β0Γ , (81)

β0 =
1√(

σ1
σ0

)2
/S2

1 − (C1/S1)
2 + (C1/S1)Γ− Γ2/4

, (82)

where we introduced the parameter

Γ =
(σ2/σ0)

2/S2
2 − (σ1/σ0)

2/S2
1 − (C2/S2)

2 + (C1/S1)
2

C1/S1 − C2/S2
.

6 Dipole errors and quadrupole misalignment
The design orbit, and thus the geometry of the ring or transfer line, is defined by the strength and arrange-
ment of the dipole magnets. Under the influence of imperfections in the dipole field and (transverse)
misalignment of the quadrupole magnets, unwanted deflection fields (‘kicks’) are created that influence
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Fig. 34: Effect of a misaligned quadrupole in a transfer line

this orbit. If these distortions are small enough (and hopefully they are), we will still obtain an orbit that
is not too far away from the design. It is this ‘closed orbit’ that acts as a reference for the single-particle
trajectories and we have to take care that it does not differ too much from the design.

A special issue, however, arises from the fact that in a ring this reference orbit has, by definition,
to be closed. While in a transfer line the effect of external distortions is somehow straightforward, in a
periodic situation we have to be a bit more careful. A small field error δB will result in a sudden change
of the particle’s angle x′ and so we describe the effect of a dipole error as

∆θ = ∆x′ =
dl

ρ
=

∫
∆Bdl

Bρ
, (83)

where we have again normalized the field error by the beam rigidity to obtain the deflection angle x′.

In a misaligned quadrupole, we get exactly the same problem. An offset ∆x in the presence of a
field gradient g leads to an effective dipole field that deflects the beam:

∆θ =

∫
∆Bdl

Bρ
=

∫
∆xgdl

Bρ
. (84)

For a transfer line, the resulting effect is trivial. Assuming a short deflection, the amplitude x of
the particle is not affected by the field, but the angle x′ is and so we can write:

xf = xi = 0 , (85)

x′f = x′i + ∆x′ = x′i +

∫
∆Bdl

Bρ
. (86)

From this moment on, the originally ideal trajectory will be transformed through the lattice elements in
the usual way: (

x

x′

)

s

= M

(
x

x′

)

0

, (87)

which is shown qualitatively for a transfer line in Fig. 34.

In a circular machine, things get a bit more complicated. As we talk about a ring, the periodic
boundary conditions after one turn have to be taken into account. Mathematically we express this fact
by:

x(s+ L) = x(s), x′(s+ L) + ∆x′ = x′(s) . (88)

While the orbit amplitude remains unchanged and the trajectory has to close upon itself, the angle x′

after one turn has to take the distortion dx′ into account (Fig. 35). Starting from the general solution of
Hill’s equation, and using the periodicity condition we write for the amplitude

x(s) = a
√
β(s) cos(ψ(s)− φ) , (89)

x(s+ L) = x(s) , (90)

a
√
β(s+ L) cos(ψ(s) + 2πQ− φ) = a

√
β(s) cos(ψ(s)− φ) . (91)
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Fig. 35: Effect of a misaligned quadrupole in a ring: Following the periodicity condition, the orbit must close upon
itself.

The amplitude factor a will be determined later by the periodicity conditions and, clearly enough,
the phase advance per turn increases by

ψ(s+ L) = 2πQ .

As the amplitude function β is periodic, by definition we obtain as first condition

cos(2πQ− φ) = cos(−φ) = cos(φ) , (92)

φ = πQ . (93)

The boundary condition set by the amplitude fixes the initial condition for the phase φ.

Following the same arguments, but now for the angle x′, we get

x(s) = a
√
β(s) cos(ψ(s)− φ) , (94)

x′(s) = a
√
β(s) (− sin(ψ(s)− φ))ψ′ +

β′(s)
2
√
β
a cos(ψ(s)− φ) , (95)

and writing ∆x′ for the local kick due to the field distortion

x′(s+ L) + ∆x′ = x′(s) (96)

we get

− a 1√
β(s̃+ L)

sin(2πQ− φ) +
β′(s̃+ L)

2β(s̃+ L)

√
β(s̃+ L)a cos(2πQ− φ) + δx′ =

− a 1√
β(s̃)

sin(−φ) +
β′(s̃)
2β(s̃)

√
β(s̃)a cos(−φ) . (97)

Here we have explicitly written s̃ for the position of the dipole field error, to emphasize, that, e.g.,
the optical functions are to be taken at this position. Knowing that, from the periodicity condition we
derived,

β(s+ L) = β(s), φ = πQ , (98)

we can solve for the amplitude a and get

a = δx′
√
β(s̃)

1

2 sin(πQ)
. (99)

Inserting this equation into Eq. (89), we get the final result that the amplitude of the closed orbit under
the influence of a dipole distortion (or quadrupole misalignment) is given by

x(s) = δx′
√
β(s̃)

√
β(s)

cos(ψ(s)− φ)

2 sin(πQ)
. (100)

We conclude that the distorted orbit depends on the kick strength, the local β-function at the location s̃ of
the distortion, and the β-function at the observation point s. In addition, there is a resonance denominator,
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Fig. 36: Measured closed orbit in LHC during commissioning of the machine

Fig. 37: Measured orbit in a beam transfer line, including the effect of a quadrupole lens that is misaligned in both
planes. At the location of the misaligned magnet a sudden increase of the trajectory amplitude is observed .

which will amplify any external orbit distortion, if the tune in the corresponding plane is on, or close to
an integer value. In such a case, the particle amplitude will grow ad infinitum and lead very quickly to
particle losses; so better watch your tune!

For completeness: if we do not refer to a special starting point and express the orbit distortion as
normalized dipole strength ρ(s̃), we get the general expression

x(s) =

√
β(s)

2 sin(πQ)

∮ √
β(s̃)

1

ρ(s̃)
cos(|ψ(s̃)− ψ(s)| − πQ)ds̃ . (101)

We would not like to close this section without showing a real example of orbits for both cases, a
closed orbit in a storage ring and a real beam trajectory in transfer lines or linacs. We have seen an ex-
ample of the first case already in Fig. 14, and we plot it here once more, for simplicity (Fig. 36). It shows
the closed orbit of the LHC storage ring during the start-up phase of the machine, where considerable
amplitudes in both planes were observed. The tune of the machine was set to Qx = 64.31, so sufficiently
away from resonance conditions. Still, the alignment tolerances of the magnets of ∆x ≈ ∆y ≈ 150 µm
caused a considerable orbit distortion of up to 10 mm.

Figure 37 refers to the situation in a transfer line (observed at the HERA collider at DESY). While
in the first part of the structure the oscillations are well corrected and small, suddenly a strong orbit
fluctuation is created due to a misaligned quadrupole lens in the middle of the lattice. As the transfer line
is, by definition, not closed upon itself, the observed orbit develops according to Eqs. (86) and (87).

6.1 Emittance in electron rings or linacs
There is a special issue about electron beams, that should not be forgotten: after all, they told us that
this is an Accelerator School on electron machines. In Professor L. Rivkin’s lecture [14], we heard that,
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whenever we bend an electron beam, synchrotron radiation is emitted that has a strong influence on the
beam dynamics. Summarizing briefly what we learnt there, we can state:

– The power of the radiated synchrotron light depends on the energy of the particle and the bending
radius of the trajectory under the influence of the field acting on it,

∆P =
e2c

6πε0

γ4

ρ2
. (102)

– The energy loss per turn in a circular machine is given by

∆E =
e2

3ε0

γ4

ρ
. (103)

– The critical energy of the emitted radiation is given by

ωc =
3c

2

γ3

ρ
. (104)

The damping effect of the light emission and the quantum effect of the emitted photons lead to an
equilibrium emittance of the beam that is given by

εx0 =
CqE

2

J0

〈H〉mag

ρ
, (105)

where Jx is the so-called damping partition number, which is determined by the lattice and usually
close to Jx = 1. The H-function describes the influence of the optical parameters α, β, and γ and the
dispersion D.

〈H〉 = γD2 + 2αDD′ + βD′2 ; (106)

Cq is a constant that we usually introduce to make our equations more compact. It is given by

Cq =
55

32
√

3

~c
(mec

2)3
, (107)

and for electrons it has the numerical value

Cq = 1.46810−6
[

m

GeV2

]
, (108)

Now, while this all well known and clear and has a strong impact on the magnet strength and
design of the lattice, it also affects the orbit correction scheme. Any (!) external field, including off-
centre quadrupoles, and including the effect of orbit corrector dipoles, will influence the beam emittance.
In the quest for smallest possible beam emittances, therefore, these effects must be taken into account.

Any deflecting field will change (i.e., create) additional beam emittance and we have to be careful
when it comes to orbit corrections. Assume the two extreme cases, which are shown schematically in
Figs. 38 and 39.

In the case of Fig. 38, the quadrupole magnets are slightly misaligned, leading to the orbit oscilla-
tions described above. The BPMs are assumed to be perfect and so they will show us how the real orbit
looks like. Thus an orbit correction algorithm will calculate the most effective settings and tell us how
to power our orbit correctors in a way to obtain a close-to-ideal orbit. Each misaligned quadrupole will
lead to a orbit defection, which can and should be corrected by the corrector dipole next to it. The result
will be a nearly perfect compensation of the quadrupole offsets and a nicely small beam emittance.

30

B.J. HOLZER

174



Fig. 38: Lattice with misaligned quadrupoles and perfect beam position monitors (BPMs)

Fig. 39: Lattice with perfectly aligned quadrupoles but offsets in the reading of the beam position monitors (BPM).
While the actual orbit is perfect, the beam position monitor readings simulate an orbit distortion.

Consider, however, the case of Fig. 39. Here the quadrupoles are exactly aligned, the orbit is
perfect and it is the beam position monitor system that causes the trouble. Nobody is perfect and so
even beam position monitors can have some reading errors that lead to artificial beam position offsets. A
straightforward orbit correction approach, as explained, will reduce the beam position monitor readings,
but in reality lead to a distorted orbit and so create additional dispersion in the machine and lead to
increased emittances. In particular, in the vertical plane, this effect is most serious, as vertical bending
fields will usually not be present in the machine and the emittance in this plane should be minimized.
Special techniques are needed and have been developed to avoid such a problem. Dispersion-free steering
methods are widely used [15, 16]; instead of naively correcting the orbit (i.e., the beam position monitor
readings) we concentrate directly on the dispersion that can be measured in the machine and power our
corrector magnets in such a way that the dispersion is minimized around the storage ring.
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Abstract 
In this paper we introduce, from basic principles, the main concepts of beam 
focusing and transport of space charge dominated beams in high brightness 
accelerators using the beam envelope equation as a convenient mathematical 
tool. Matching conditions suitable for preserving beam quality are derived 
from the model for significant beam dynamics regimes. 

Keywords 
Beam matching; rms emittance; laminar beam; space charge effects; rms 
envelope equations. 

1 Introduction 
Light sources based on high-gain free electron lasers or future high-energy linear colliders require the 
production, acceleration, and transport up to the interaction point of low divergence, high charge-density 
electron bunches [1]. Many effects contribute in general to degradation of the final beam quality, 
including chromatic effects, wake fields, emission of coherent radiation, and accelerator misalignments. 
Space charge effects and mismatch with focusing and accelerating devices typically contribute to 
emittance degradation of high charge-density beams [2]; hence, control of beam transport and 
acceleration is the leading edge for high-quality beam production. 

Space charge effects represent a very critical issue and a fundamental challenge for high-quality 
beam production and its applications. Without proper matching, significant emittance growth may occur 
when the beam is propagating through different stages and components owing to the large differences 
of transverse focusing strength. This unwanted effect is even more serious in the presence of finite 
energy spread. 

In this paper we introduce, from basic principles, the main concepts of beam focusing and 
transport in modern accelerators using the beam envelope equation as a convenient mathematical tool. 
Matching conditions suitable for preserving beam quality are derived from the model for significant 
beam dynamics regimes. A more detailed discussion of the previous topics can be found in the many 
classical textbooks on this subject, as listed in Refs. [3–6]. 

2 Laminar and non-laminar beams 
An ideal high-charge particle beam has orbits that flow in layers that never intersect, as occurs in a 
laminar fluid. Such a beam is often called a laminar beam. More precisely, a laminar beam satisfies the 
following two conditions [6]: 

i) all particles at a given position have identical transverse velocities. On the contrary, the orbits 
of two particles that start at the same position could separate and later cross each other; 

ii) assuming that the beam propagates along the z axis, the magnitudes of the slopes of the 
trajectories in the transverse directions x and y, given by  and , 
are linearly proportional to the displacement from the z axis of beam propagation. 

( ) d / dx z x z¢ = ( ) d / dy z y z¢ =
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Trajectories of interest in beam physics are always confined to the inside of small, near-axis regions, 
and the transverse momentum is much smaller than the longitudinal momentum, px,y << pz ≈ p. As a 
consequence, it is possible in most cases to use the small angle, or paraxial, approximation, which 
allows us to write the useful approximate expressions x′ = px/pz ≈ px/p and y′ = py/pz ≈ px/p. 

To help understand the features and advantages of a laminar beam propagation, the following 
figures compare the typical behaviour of a laminar and a non-laminar (or thermal) beam. 

Figure 1 illustrates an example of orbit evolution of a laminar mono-energetic beam with half 
width x0 along a simple beam line with an ideal focusing element (solenoid, magnetic quadrupoles, or 
electrostatic transverse fields are usually adopted to this end), represented by a thin lens located at the 
longitudinal coordinate z = 0. In an ideal lens, focusing (defocusing) forces are linearly proportional to 
the displacement from the symmetry axis z, so that the lens maintains the laminar flow of the beam. 

 
Fig. 1: Particle trajectories and phase space evolution of a laminar beam [7] 

The beam shown in Fig. 1 starts propagating completely parallel to the symmetry axis z; in this 
particular case, the particles all have zero transverse velocity. There are no orbits that cross each other 
in such a beam. Ignoring collisions and inner forces, such as Coulomb forces, a parallel beam could 
propagate an infinite distance with no change in its transverse width. When the beam crosses the ideal 
lens, it is transformed into a converging laminar beam. Because the transverse velocities after the linear 
lens are proportional to the displacement off axis, particle orbits define similar triangles that converge 
to a single point. After passing through the singularity at the focal point, the particles follow diverging 
orbits. We can always transform a diverging (or converging) beam into a parallel beam by using a lens 
of the proper focal length, as can be seen by reversing the propagation axis of Fig. 1. 

The small boxes in the lower part of the figure depict the particle distributions in the trace space 
(x, x′), equivalent to the canonical phase space (x, px ≈ x′p) when p is constant, i.e., without beam 
acceleration. The phase space area occupied by an ideal laminar beam is a straight segment of zero 
thickness. As can be easily verified, the condition that the particle distribution has zero thickness 
proceeds from condition 1; the segment straightness is a consequence of condition 2. The distribution 
of a laminar beam propagating through a transport system with ideal linear focusing elements is thus a 
straight segment with variable slope. 

Particles in a non-laminar beam have a random distribution of transverse velocities at the same 
location and a spread in directions, as shown in Fig. 2. Because of the disorder of a non-laminar beam, 

M. FERRARIO

178



it is impossible to focus all particles from a location in the beam toward a common point. Lenses can 
influence only the average motion of particles. Focal spot limitations are a major concern for a wide 
variety of applications, from electron microscopy to free electron lasers and linear colliders. The phase 
space plot of a non-laminar beam is no longer a straight line: the beam, as shown in the lower boxes of 
Fig. 2, occupies a wider area of the phase space. 

 
Fig. 2: Particle trajectories and phase space evolution of a non-laminar beam [7] 

3 The emittance concept 
The phase space surface A occupied by a beam is a convenient figure of merit for designating the quality 
of a beam. This quantity is the emittance εx and is usually represented by an ellipse that contains the 
whole particle distribution in the phase space (x, x′), such that A = πεx. An analogous definition holds 
for the (y, y′) and (z, z′) planes. The original choice of an elliptical shape comes from the fact that when 
linear focusing forces are applied to a beam, the trajectory of each particle in phase space lies on an 
ellipse, which may be called the trajectory ellipse. Being the area of the phase space, the emittance is 
measured in metres radians. More often is expressed in millimetres milliradians or, equivalently, in 
micrometres. 

The ellipse equation is written as 
  , (1) 

where x and x′ are the particle coordinates in the phase space and the coefficients αx(z), βx(z), and γx(z) 
are called Twiss parameters, which are related by the geometrical condition: 
  . (2) 

As shown in Fig. 3, the beam envelope boundary Xmax, its derivative (Xmax)′, and the maximum 
beam divergence X′max, i.e., the projection on the axes x and x′ of the ellipse edges, can be expressed as 
a function of the ellipse parameters: 

2 22x x x xx xx xg a b e¢ ¢+ + =

2 1x x xb g a- =
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. (3)

 

 
Fig. 3: Phase space distribution in a skewed elliptical boundary, showing the relationship of Twiss parameters to 
the ellipse geometry [6]. 

According to Liouville’s theorem, the six-dimensional (x, px, y, py, z, pz) phase space volume 
occupied by a beam is constant, provided that there are no dissipative forces, no particles lost or created, 
and no Coulomb scattering among particles. Moreover, if the forces in the three orthogonal directions 
are uncoupled, Liouville’s theorem also holds for each reduced phase space surface, (x, px), (y, py), 
(z, pz), and hence emittance also remains constant in each plane [3]. 

Although the net phase space surface occupied by a beam is constant, non-linear field components 
can stretch and distort the particle distribution in the phase space, and the beam will lose its laminar 
behaviour. A realistic phase space distribution is often very different from a regular ellipse, as shown in 
Fig. 4. 

 
Fig. 4: Typical evolution of phase space distribution (black dots) under the effects of non-linear forces with the 
equivalent ellipse superimposed (red line). 

We introduce, therefore, a definition of emittance that measures the beam quality rather than the 
phase space area. It is often more convenient to associate a statistical definition of emittance with a 
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generic distribution function f(x, x′, z) in the phase space; this is the so-called root mean square (rms) 
emittance: 
  . (4) 

The rms emittance is defined such that the equivalent-ellipse projections on the x and x′ axes are equal 
to the rms values of the distribution, implying the following conditions: 

  , (5) 

where 

  (6) 

are the second moments of the distribution function f(x, x′, z). Another important quantity that accounts 
for the degree of (x, x′) correlations is defined as 

  . (7) 

From Eq. (3) it also holds that 

   

see also Eq. (16), which allows us to link the correlation moment, Eq. (7), to the Twiss parameter as 
  . (8) 

One can easily see from Eqs. (3) and (5) that 

  

also holds. 

By substituting the Twiss parameter defined by Eqs. (5) and (8) into condition 2 we obtain [5] 

 
 .
 (9) 

Reordering the terms in Eq. (8) we obtain the definition of rms emittance in terms of the second moments 
of the distribution: 

  , (10) 
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where we omit, from now on, the subscript x in the emittance notation: εrms = εx,rms. The rms emittance 
tells us some important information about phase space distributions under the effect of linear or non-
linear forces acting on the beam. Consider, for example, an idealized particle distribution in phase space 
that lies on some line that passes through the origin, as illustrated in Fig. 5. 

 
 (a) (b) 

Fig. 5: Phase space distributions under the effect of (a) linear or (b) non-linear forces acting on the beam 

Assuming a generic correlation of the type x′ = Cxn and computing the rms emittance according 
to Eq. (10) we have 

  . (11) 

When n = 1, the line is straight and the rms emittance is εrms = 0. When n > 1 the relationship is non-
linear, the line in phase space is curved, and the rms emittance is, in general, not zero. Both distributions 
have zero area. Therefore, we conclude that even when the phase space area is zero, if the distribution 
is lying on a curved line, its rms emittance is not zero. The rms emittance depends not only on the area 
occupied by the beam in phase space, but also on distortions produced by non-linear forces. 

If the beam is subject to acceleration, it is more convenient to use the rms normalized emittance, 
for which the transverse momentum  is used instead of the divergence: 

 . (12) 

The reason for introducing a normalized emittance is that the divergences of the particles x′ = px/p are 
reduced during acceleration as p increases. Thus, acceleration reduces the un-normalized emittance, but 
does not affect the normalized emittance.  

It is interesting to estimate the fundamental limit of the beam emittance that is set by quantum 
mechanics on the knowledge of the two conjugate variables (x, px). The state of a particle is actually not 
exactly represented by a point, but by a small uncertainty volume of the order of  in the 6D phase 

space. According to the Heisenberg uncertainty relation  one gets from Eq. (12)

, where  is the reduced Compton wavelength. For electrons it gives:

.  

In the classical limit we see also from Eq. (12) that the single particle emittance is zero. 
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Assuming a small energy spread within the beam, the normalized and un-normalized emittances 
can be related by the approximated relation 〈𝛽𝛾〉𝜀&'( . This approximation, which is often used in 
conventional accelerators, may be strongly misleading when adopted for describing beams with 
significant energy spread, like those currently produced by plasma accelerators. A more careful analysis 
is reported next [8]. 

When the correlations between the energy and transverse positions are negligible (as in a drift 
without collective effects), Eq. (12) can be written as 

  . (13) 

Consider now the definition of relative energy spread 

  

which can be inserted into Eq. (13) to give 

 
 . (14) 

Assuming relativistic particles (β = 1), we get 
 

 . (15) 

If the first term in the parentheses is negligible, we find the conventional approximation of the 
normalized emittance as . For a conventional accelerator, this might generally be the case. 
Considering, for example, beam parameters for the SPARC_LAB photoinjector [9]: at 5 MeV the ratio 
between the first and the second term is ~10−3; while at 150 MeV it is ~10−5. Conversely, using typical 
beam parameters at the plasma–vacuum interface, the first term is of the same order of magnitude as for 
conventional accelerators at low energies; however, owing to the rapid increase of the bunch size outside 
the plasma (σx′ ~ mrad) and the large energy spread (σγ > 1%), it becomes predominant compared with 
the second term after a drift of a few millimetres. Therefore, the use of approximated formulas when 
measuring the normalized emittance of plasma accelerated particle beams is inappropriate [10]. 

4 The root mean square envelope equation 
We are now interested in following the evolution of the particle distribution during beam transport and 
acceleration. One can use the collective variable defined in Eq. (6), the second moment of the 
distribution termed the rms beam envelope, to derive a differential equation suitable for describing the 
rms beam envelope dynamics [11]. To this end, let us compute the first and second derivative of σx [4]: 

  . (16) 

Rearranging the second derivative in Eq. (16), we obtain a second-order non-linear differential equation 
for the beam envelope evolution, 

2 22 2 2 2 2
,rmsn x x xxe b g bg¢ ¢= -

σγ
2 =

β 2γ 2 − βγ
2

βγ
2

( )2 22 2 2 2 2 2 2 2
,rmsn x x x x xxge b g s bg¢ ¢ ¢= + -

( )2 2 2 2 2 2
,rms rmsn x xge g s s s e¢= +

rmsg e

( )

2 2

22 2 2 2
2

2 3 3 3

d d 1 d 1 2
d d 2 d 2

d d 1 d 1
d d d

x xx

x x x

xx xx xx xx xx xx

x x x x x x x

x x xx
z z z

xx
x xx

z z z

s s
s s s

ss s s s s s
s s s s s s s

¢

¢¢ ¢ ¢ ¢ ¢

¢= = = =

¢¢+
¢ ¢= = - = + - = -

SPACE CHARGE MITIGATION

183



  , (17) 

or, in a more convenient form, using the rms emittance definition Eq. (10), 

 
 . (18)

 

In Eq. (18), the emittance term can be interpreted physically as an outward pressure on the beam 
envelope produced by the rms spread in trajectory angle, which is parameterized by the rms emittance. 

Let us now consider, for example, the simple case with , describing a beam drifting in 
free space. The envelope equation reduces to 

  . (19) 

With initial conditions σ0, σ′0 at z0, depending on the upstream transport channel, Eq. (19) has a 
hyperbolic solution: 

  . (20) 

Considering the case of a beam at waist ( ) with σ′0 = 0, using Eq. (5), the solution Eq. (20) is 
often written in terms of the β function as 

  . (21) 

This relation indicates that without any external focusing element the beam envelope increases from the 
beam waist by a factor √2 with a characteristic length , as shown in Fig. 6. 

 
Fig. 6: Schematic representation of the beam envelope behaviour near the beam waist 

At the waist, the relation ε2rms = σ2
0,xσ2

0,x′ also holds, which can be inserted into Eq. (20) to give 
σ2

x(z) = σ2
0x′(z − z0)2. Under this condition, Eq. (15) can be written as 
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,
 

showing that beams with large energy spread and divergence undergo a significant normalized emittance 
growth even in a drift of length (z − z0) [8, 12]. 

Notice also that the solution Eq. (21) is exactly analogous to that of a Gaussian light beam for 
which the beam width w = 2σph increases away from its minimum value at the waist w0 with 
characteristic length  (Rayleigh length) [4]. This analogy suggests that we can identify an 

effective emittance of a photon beam as . 

For the effective transport of a beam with finite emittance, it is mandatory to make use of some 
external force providing beam confinement in the transport or accelerating line. The term  accounts 
for external forces when we know x″, given by the single particle equation of motion: 

 
 . (22) 

Under the paraxial approximation px << p = βγmc, the transverse momentum px can be written as px = 
px′ = βγm0cx′, so that 

  , (23) 

and the transverse acceleration results in 

  
.
 (24) 

It follows that 

 
 .

 (25) 

Inserting Eq. (25) into Eq. (18) and recalling Eq. (16), , the complete rms envelope 
equation is: 

  , (26) 

where we have included the normalized emittance εn,rms = γεrms. Notice that the effect of longitudinal 
accelerations appears in the rms envelope equation as an oscillation damping term, called ‘adiabatic 
damping’, proportional to p′/p. The term  represents the moment of any external transverse force 
acting on the beam, such as that produced by a focusing magnetic channel. 

5 External forces 

Let’s now consider the case of an external linear force acting on the beam in the form . It can 
be focusing or defocusing, according to the sign. The moment of the force is 
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  (27) 

and the envelope equation becomes 

  , (28) 

where we have explicitly used the momentum definition p = γmc for a relativistic particle with β ≈ 1 and 
defined the wavenumber 

  . 

Typical focusing elements are quadrupoles and solenoids [3]. The magnetic quadrupole field is 
given in Cartesian coordinates by 

  , (29) 

where d is the pole distance and  is the field gradient. The force acting on the beam is 

 and, when B0 is positive, is focusing in the x direction and defocusing in the y 

direction. The focusing strength is 

  . 

In a solenoid the focusing strength is given by 

  . 

Notice that the solenoid is always focusing in both directions, an important property when the cylindrical 
symmetry of the beam must be preserved. However, being a second-order quantity in γ, it is more 
effective at low energy. 

It is interesting to consider the case of a uniform focusing channel without acceleration described 
by the rms envelope equation 

 
 .
 (30) 

By substituting  into Eq. (30) one obtains an equation for the ‘betatron function’ βx(z) 
that is independent of the emittance term: 

 
 .
 (31) 

xFx = ∓k x2 = ∓kσ x
2

!!σ x +
!γ
γ

!σ x ∓ kext
2 σ x =

εn,rms
2

γ 2σ x
3

2
ext 2

0

kk
m cg

=

0 0

0 0

x

y

yB B B y
d
xB B B x
d

ì ¢= =ïï
í
ï ¢= =
ïî

0B¢
!
F⊥ = qvz "B0 yĵ − xî( )
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Equation (31) contains just the transport channel focusing strength and, being independent of the 
beam parameters, suggests that the meaning of the betatron function is to account for the transport line 
characteristic. The betatron function reflects exterior forces from focusing magnets and is highly 
dependent on the particular arrangement of the quadrupole magnets. The equilibrium, or matched, 

solution of Eq. (31) is given by  , as can be easily verified. This result shows that the 

matched βx function is simply the inverse of the focusing wavenumber or, equivalently, is proportional 
to the ‘betatron wavelength’ λβ. The corresponding envelope equilibrium condition, i.e., a stationary 

solution of Eq. (30), is given by: . 

In analogy with the kinetic theory of gases we can define the beam temperature in a transverse 
direction at equilibrium and without correlations as 

, 

where kB is the Boltzmann constant and we have used Eq. (12), showing that the conditions for a cold 
beam are typically: low emittance, low energy, high betatron function.   

By means of the beam temperature concept one can also define the beam emittance at the source 
called the thermal emittance. Assuming that electrons are in equilibrium with the cathode temperature 

Tc = Tbeam and g=1, the thermal emittance is given by  which, per unit rms spot size at 

the cathode, is  = 0.3 µm/mm at Tc = 2500 K. For comparison, in a photocathode illuminated by a 
laser pulse with photon energy  the expression for the variance of the transverse momentum of the 

emitted electrons is given by , where ,  being the material work 

function and  the Schottky work function [19]. The corresponding thermal emittance is 

 that, with the typical parameters of a Copper photocathode illuminated by a UV 

laser, gives a thermal emittance per unit spot size of about 0.5 µm/mm. 

6 Space charge forces 
Another important force acting on the beam is the one produced by the beam itself due to the internal 
Coulomb forces. The net effect of the Coulomb interaction in a multiparticle system can be classified 
into two regimes [3]: 

i) collisional regime, dominated by binary collisions caused by close particle encounters; 

ii) collective regime or space charge regime, dominated by the self-field produced by the 
particles’ distribution, which varies appreciably only over large distances compared with the 
average separation of the particles. 

A measure for the relative importance of collisional versus collective effects in a beam with particle 
density n is the relativistic Debye length, 

  . (32) 
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As long as the Debye length remains small compared with the particle bunch transverse size, the beam 
is in the space charge dominated regime and is not sensitive to binary collisions. Smooth functions for 
the charge and field distributions can be used in this case, and the space charge force can be treated as 
an external applied force. The space charge field can be separated into linear and non-linear terms as a 
function of displacement from the beam axis. The linear space charge term defocuses the beam and 
leads to an increase in beam size. The non-linear space charge terms also increase the rms emittance by 
distorting the phase space distribution. Under the paraxial approximation of particle motion, we can 
consider the linear component alone. We shall see next that the linear component of the space charge 
field can also induce emittance growth when correlations along the bunch are taken into account. 

For a bunched beam of uniform charge distribution in a cylinder of radius R and length L, carrying 
a current Ȋ and moving with longitudinal velocity vz = βc, the linear component of the longitudinal and 
transverse space charge field are given approximately by [13] 

 
 , (33) 

 
 . (34) 

The field form factor is described by the functions: 

  (35) 

  , (36)
 

where ζ = z/L is the normalized longitudinal coordinate along the bunch, ζ = 0 being the bunch tail, and 
A = R/γL is the beam aspect ratio. The field form factors account for the variation of the fields along the 
bunch and outside the bunch for ζ<0 and ζ>L. As γ increases,  and , thus showing 
that space charge fields mainly affect transverse beam dynamics. It shows also that an energy increase 
corresponds to a bunch lengthening in the moving frame L′ = γL, leading to a vanishing longitudinal 
field component, as in the case of a continuous beam in the laboratory frame. 

To evaluate the force acting on the beam, one must also account for the azimuthal magnetic field 
associated with the beam current, which, in cylindrical symmetry, is given by 

  . 

Thus, the Lorentz force acting on each single particle is given by 

 
 .

 (37) 

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the 
repulsive electric force. Therefore, space charge defocusing is primarily a non-relativistic effect and 
decreases as γ−2. 

To include space charge forces in the envelope equation, let us start by writing the space charge 
forces produced by the previous fields in Cartesian coordinates: 
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 .

 (38) 

Then, computing the moment of the force, we need 

  (39)
 

where we have introduced the generalized beam perveance, 

  (40)
 

where IA = 4πε0m0c3/e = 17 kA is the Alfvén current for electrons. Notice that in this case the perveance 
in Eq. (40) explicitly depends on the slice coordinate ζ. We can now calculate the term that enters the 
envelope equation for a relativistic beam, 

  , (41) 

leading to the complete envelope equation 

 
 .
 (42)

 

From the envelope equation Eq. (42), we can identify two regimes of beam propagation: space 
charge dominated and emittance dominated. A beam is space charge dominated as long as the space 
charge collective forces are largely dominant over the emittance pressure. In this regime, the linear 
component of the space charge force produces a quasi-laminar propagation of the beam, as one can see 
by integrating one time Eq. (39) under the paraxial ray approximation x′ 1.   

A measure of the relative importance of space charge effects versus emittance pressure is given 
by the laminarity parameter, defined as the ratio between the space charge term and the emittance term: 

 
 . (43) 

When ρ greatly exceeds unity, the beam behaves as a laminar flow (all beam particles move on 
trajectories that do not cross), and transport and acceleration require a careful tuning of focusing and 
accelerating elements to keep laminarity. Correlated emittance growth is typical in this regime, which 
can be made reversible if proper beam matching conditions are fulfilled, as discussed next. When ρ < 1, 
the beam is emittance dominated (thermal regime) and space charge effects can be neglected. The 
transition to the thermal regime occurs when ρ ≈ 1, corresponding to the transition energy 

 
 . (44) 

For example, a beam with Ȋ = 100 A, εn = 1 µm, and σ = 300 µm is leaving the space charge dominated 
regime and is entering the thermal regime at the transition energy of 131 MeV. From this example, one 
may conclude that the space charge dominated regime is typical of low-energy beams. Actually, for 
such applications as linac-driven free electron lasers, peak currents exceeding kA are required. Space 
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charge effects may recur if bunch compressors are active at higher energies and a new energy threshold 
with higher Ȋ must be considered. 

7 Correlated emittance oscillations 
When longitudinal correlations within the bunch are important, like that induced by space charge effects, 
beam envelope evolution is generally dependent also on the coordinate along the bunch ζ. In this case, 
the bunch should be considered as an ensemble of n longitudinal slices of envelope , whose 
evolution can be computed from n slice envelope equations equivalent to Eq. (42), provided that the 
bunch parameters refer to each single slice: γs, γ′s, ksc,s = kscg(ζ). Correlations within the bunch may cause 
emittance oscillations that can be evaluated, once an analytical or numerical solution [13] of the slice 
envelope equation is known, by using the following correlated emittance definition: 
  , (45) 

where the average is performed over the entire slice ensemble, assuming uniform charge distribution 
within each slice. In the simplest case of a two-slice model, the previous definition reduces to 
  , (46) 

which represents a simple and useful formula for an estimation of the emittance scaling [14]. 

The total normalized rms emittance is given by the superposition of the correlated and 
uncorrelated terms as 

  . (47) 

An interesting example to consider here, showing the consequences of non-perfect beam 
matching, is the propagation of a beam in the space charge dominated regime nearly matched to an 
external focusing channel, as illustrated in Fig. 7. To simplify our computations, we can neglect 
acceleration, as in the case of a simple beam transport line made by a long solenoid (k2

ext = ksol). The 
envelope equation for each slice, indicated as σs, reduces to 

  . (48) 

 
Fig. 7: Schematic representation of a nearly matched beam in a long solenoid. The dashed line represents the 
reference slice envelope matched to the Brillouin flow condition. The other slice envelopes are oscillating around 
the equilibrium solution. 

A stationary solution corresponding to slice propagation with constant envelope, called Brillouin 
flow, is given by 
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 , (49) 

where the local dependence of the current Ȋs = Ȋg(ζ) within the bunch has been explicitly indicated. This 
solution represents the matching conditions for which the external focusing completely balances the 
internal space charge force. Unfortunately, since kext has a slice-independent constant value, the Brillouin 
matching condition is different for each slice and usually cannot be achieved at the same time for all of 
the bunch slices. Assuming that there is a reference slice perfectly matched (49) with an envelope σr,B 

and negligible beam energy spread, the matching condition for the other slices can be written as: 

  , (50) 

with respect to the reference slice. Considering a slice with a small perturbation δs with respect to its 
own equilibrium Eq. (50) in the form 
  , (51) 

and substituting into Eq. (48), we can obtain a linearized equation for the slice offset 
  , (52) 

which has a solution given by 
  , (53) 

where δ0 = σso − σsB is the amplitude of the initial slice mismatch, which we assume, for convenience, is 
the same for all slices. Inserting Eq. (53) into Eq. (51) we get the perturbed solution: 
 

 . (54) 

Equation (54) shows that slice envelopes oscillate together around the equilibrium solution with 
the same frequency for all slices (√2kext, often called the plasma frequency) dependent only on the 
external focusing forces. This solution represents a collective behaviour of the bunch, similar to that of 
the electrons subject to the restoring force of ions in a plasma. Using the two-slice model and Eq. (54), 
the emittance evolution Eq. (46) results in 

 , (55)
 

where ∆I= Ȋ1 − Ȋ2. Notice that, in this simple case, envelope oscillations of the mismatched slices induce 
correlated emittance oscillations that periodically return to zero, showing the reversible nature of the 
correlated emittance growth. It is, in fact, the coupling between transverse and longitudinal motion 
induced by the space charge fields that allows reversibility. With proper tuning of the transport line 
length or of the focusing field, one can compensate for the transverse emittance growth. 

At first, it may seem surprising that a beam with a single charge species can exhibit plasma 
oscillations, which are characteristic of plasmas composed of two-charge species. However, the effect 
of the external focusing force can play the role of the other charge species, providing the necessary 
restoring force that is the cause of such collective oscillations, as shown in Fig. 8. The beam can actually 
be considered as a single-component, relativistic, cold plasma. 
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Fig. 8: The restoring force produced by the ions (green dots) in a plasma may cause electron (red dots) oscillations 
around the equilibrium distribution. In a similar way, the restoring force produced by a magnetic field may cause 
beam envelope oscillations around the matched envelope equilibrium. 

It is important to bear in mind that beams in linacs are also different from plasmas in some 
important respects [5]. One is that beam transit time through a linac is too short for the beam to reach 
thermal equilibrium. Also, unlike a plasma, the Debye length of the beam may be larger than, or 
comparable to, the beam radius, so shielding effects may be incomplete. 

8 Matching conditions in a radiofrequency linac 
In order to prevent space charge induced emittance growth in a radiofrequency (rf) linac, as in the case 
of a high brightness photoinjector, and to drive a smooth transition from the space charge to the thermal 
regime, space charge induced emittance oscillations have to be damped along the linac in such a way 
that an emittance minimum is obtained at the transition energy Eq. (44). To this end the beam has to be 
properly matched to the accelerating sections with a Brillouin like flow in order to keep under control 
emittance oscillations that in this case are provided by the ponderomotive rf focusing force [2] acting in 
the rf structures. In some case rf focusing is too weak to provide sufficient beam containment. A long 
solenoid around the accelerating structure is a convenient replacement to provide the necessary focusing.  

The matching conditions for a beam subject to acceleration (assuming  and  
) can be obtained following the previous example (Brillouin flow). This process can be described 

using the envelope equation (42) for a generic slice with external focusing provided by 

where  and . The quantity  is a measure of the higher spatial harmonic 

amplitudes of the rf wave and it is generally quite close to unity in standing wave (SW) structures and 
close to 0 in travelling wave (TW) structures [15].  

Being now g(z) a time-dependent function, a stationary solution of Eq. (42) cannot be found by 
simply looking for a constant envelope solution. A possible way to find an 'equilibrium' solution is 
described hereafter. By substituting the reduced variable  [16] in the envelope equation (42) 
we obtain  

                                                                (56) 
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with the scaled parameters and . Eq. (56) is 

equivalent to Eq. (42) but the damping term has disappeared and the and  parameters have the 
same  dependence. In the space charge regime the emittance term can be neglected in Eq. (56) and 
an equilibrium solutions in the reduced variables (called the ‘invariant envelope’ in the literature [2]) is 

given by , corresponding to the matching conditions for the beam envelope: 

     for                                               (57)  

where . 

The expression for the emittance oscillation in the space charge dominated regime, i.e. when 
, can be obtained from Eq. (55) using reduced variables and results: 

        .                                     (58) 

Before the transition energy is achieved the emittance performs damped oscillations with 
wavelength depending on the external fields and with amplitude depending on the current profile. A 
careful tuning of the external fields and bunch charge profile can minimize the value of the emittance at 
the injector extraction. A successful application of the emittance compensation technique can be seen 
in [17, 18].  

When the beam enters in the thermal regime an equilibrium solution can be found directly from 
Eq. (42) neglecting the space charge term. The result is 

 

     

     

for                                               (59) 

and no correlated emittance oscillations are expected. Note also that Eq. (57) scales like  while 
Eq. (59) is independent of .  
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Historical Survey of Free Electron Lasers

M. E. Couprie
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Abstract

Free electron lasers are presently unique tuneable powerful lasers ranging from
the infrared to the X-ray, serving for the exploration of light–matter interaction.
They make use of a simple and elegant gain medium. The coherent radiation
is generated using free electrons in a periodic permanent magnetic field gener-
ated by a so-called undulator as an amplification medium. The light–electron
interaction in the undulator leads to a bunching process, setting in phase the
electron emitters and establishing a longitudinal coherence. The amplifica-
tion of the light wave takes place to the detriment of the kinetic energy of the
electrons. First, the origins of the free electron laser, starting from the photon–
matter interaction, the early times of synchrotron radiation and the undulator,
the development of vacuum tubes, masers, and lasers are introduced. Then,
motivated by the search of an exotic laser, the invention of the free electron
conceptual idea laser is discussed, with a quantum approach followed by a
classical one. The first low gain free electron laser experiments are then pre-
sented. Finally, some insight is given in the case of the high gain free electron
lasers.

Keywords
Free electron laser; laser; undulator.

1 Introduction
In the early times, free electron lasers (FELs) appeared as exotic lasers. In 1990, C. Brau (ninth FEL
Prize in 1996) introduced them as such: They “represent an altogether new and exciting class of coherent
optical sources. Making use of a simple and elegant gain medium—an electron beam in a magnetic
field—they have already demonstrated broad wavelength tuneability and excellent optical-beam quality.
For the future they offer the possibility of generating the greatest focused power ever achieved by a laser.
But even before this is achieved, the unique advantages of free electron lasers, especially their tuneability,
will make them useful for a variety of important applications in science and medicine” [1]. Indeed,
nowadays, they provide the most powerful lasers in the X-ray range, with ultra-short pulse duration. The
present advent of tuneable X FELs with unpreceded intensities enables new investigation of matter with
ultra-high intensities, ultra-short pulses, etc. It could be considered as a second revolution, following the
invention of the laser, which led to the development of optical lasers which has changed our current life.

The FEL spontaneous emission corresponds to the undulator radiation emitted by the relativistic
electrons. The electrons are not bound to nuclei in atoms and molecules, and vibrate at specific fre-
quencies. In contrast, the FEL vibration frequency can be adjusted by changing the magnetic field or
the energy of the electrons, resulting in a broad wavelength tuneability. Indeed, “The electrons in a free
electron laser have the form of an electron beam in a vacuum, much like the beam in the picture tube
of a television set except that the electrons have much higher energy and intensity. Electrons bound in
atoms and molecules vibrate only at specific frequencies. Thus the laser light from conventional lasers,
which make use of bound electrons, appears only at these specific frequencies. On the other hand, the
electrons in a free electron laser are forced to vibrate by their passage through alternating magnetic field.
Thus, the vibration frequency can be adjusted by altering the construction of the magnetic field or by
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Synchrotron radiation Vacuum tubes Lasers

Free Electron Laser

Fig. 1: Schematic presentation of the origins of the free electron laser

changing the speed of the electrons passing through the magnetic field. This changes the laser frequency
or, equivalently, the wavelength”. The gain process results from the energy exchange between the light
and the electrons. The optical beam presents an excellent optical beam quality and can achieve high
power.

This historical survey on the free electron laser aims at describing how the new ideas have emerged
and how the field progressed. Some citations are taken from the original papers, to show how the under-
standing at a given time was. This report gathers also the main results which define major steps to my
own understanding and personal experience. The work of the FEL Prize winners, listed in the Appendix,
is mentioned. The progress of the FEL field is also closely related to technological advances, which can-
not be discussed in detail but which are underlined when crucial. Drawing a history survey [2,3] on FEL
implies some choices in the discussed items, which are necessarily subjective. I apologize in advance for
all the important works which have not been cited.

First, the scientific context enabling the emergence of the FEL concept is explained: the develop-
ment of vacuum tubes in the twentieth century, together with the invention of the laser in 1958 [4] and
the first laser operation in 1960 [5]. Then, the discovery of the FEL [6] by J. M. J. Madey (1943–2016,
first FEL Prize, 1988) which took place in such a context is reported. FELs combine specificities of syn-
chrotron radiation, vacuum tubes, and lasers, as indicated in Fig. 1. The FEL was treated with a quantum
approach, as stimulated Compton Back Scattering.

Then the first applied classical treatments to FELs are reported. A section describing the first ex-
perimental results follows, with some newly proposed concepts. The last section deals with high gain
developments, including high gain FEL theory and the proposed concept of Self-Amplified Spontaneous
Emission (SASE), the major experimental steps for SASE operation and some hints on further develop-
ments (seeding, echo).

2 The origins of the free electron laser
The scientific context favourable for the emergence of the free electron laser concept is hereafter de-
scribed. The understanding of the interaction between light and matter was established at the beginning
of the twentieth century. Then, the century knew an intense development of vacuum tubes accompanied
by the discovery of the laser in the sixties. The emergence of the free electron laser concept benefited
from the interplay between these two domains.

2.1 The photon–matter interaction processes
The laser concept relies on the prediction of energy enhancement by atom de-excitation by Albert Ein-
stein (1879–1955, Nobel Prize in 1921) in 1917 [7] in the analysis of the black-body radiation, while
absorption and spontaneous emission were the known light matter interactions at that time. The process
was called later stimulated emission by J. Van Vleck in 1924 [8, 9]. In the absorption case, a photon is
absorbed and drives an atom to an excited state. The excited atom being unstable, it emits a spontaneous
photon after a duration depending on the lifetime of the excited level. In the stimulated emission case,
a photon is absorbed by an excited atom, which results in the emission of two photons with identical
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wavelength, direction, phase, polarization, while the atom returns to its fundamental state. Einstein was
mainly interested by thermal radiation and exchanges of momentum in different process, but not specifi-
cally by the production of light by matter. Stimulated emission was seen as addition of photons to already
existing photons, and not as the amplification of a monochromatic wave with conservation of its phase.
The notion of light coherence, related to its undulatory properties, was not considered at that time.

2.2 The early times of synchrotron radiation
Synchrotron radiation, the electromagnetic radiation emitted by accelerated charged particles, is gener-
ally produced artificially in particle accelerators, but it can be also observed in astrophysics [10,11], such
as in the Sun where hydrogen submitted to loops of magnetic fields emits visible light in the centre and
on the edges in the X-ray domain.

Let’s introduce some notations. Let’s consider a laboratory region, without current, with a labora-
tory referential (0, x, z, s) with the frame (x, z, s) [12], as shown in Fig. 2 where s is the longitudinal, x
the horizontal, and z the vertical direction.

S

x

ZZ

Fig. 2: Axis coordinates

Consider then a relativistic electron of energy E and velocity v with respect to the laboratory
frame. Its relativistic factor γ is given by γ = E

moc2
(with mo the electron mass, e the particle charge,

and c the speed of light). It can be expressed as :

γ =
1√

1 − β2
(1)

with �β the normalized velocity of the electron, expressed as :

�β =
�v

c
. (2)

Theoretical foundations of synchrotron radiation were established at the end of the 19th century
by J. Larmor [13], who first proposed a specific prediction of time dilation: “... individual electrons
describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio, as given by√

1 − v2/c2”.

Then, A. M. Liénard [14] provided the first correct calculation of the power emitted by an acceler-
ated charged particle, as proportional to (E/mc2)4/R2 with m the particle mass, R the orbit radius. The
angular and spectral distribution and polarization properties were then described by G. A. Schott [15,16].
Radiation is emitted in a narrow cone of aperture 1/γ.

In 1944, D. D. Ivanenko and I. Y. Pomeranchuk estimated a calculated limit on the energy obtain-
able in a betatron (of the order of 0.5 GeV) due to energy losses from radiating electrons [17]. Particles
slow down and lose synchronism. Because of the spread in revolution frequency with energy, the fre-
quency cannot simply be reduced to maintain synchronism [18] but the particle bunch should be injected
in the radiofrequency (RF) at a proper phase (phase stability), as proposed by E. M. McMillan [19]
and V. I. Veksler [20] in a ‘synchrotron’-type accelerator, which was then built [21]. Julian Seymour
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Schwinger (1918–1994, Nobel Prize in 1965) described the peaked spectrum and predicted that higher
photon energies should be observed [22, 23].

After the construction of first accelerators, J.-P. Blewett measured the particle energy loss on the
100 MeV betatron and he found it to be in good agreement with the theoretical expectation, but failed
to observe synchrotron radiation in the microwaves [24, 25]. The first synchrotron radiation was then
observed in the visible tangent to the electron orbit one year later on the 70 MeV General Electric
synchrotron, of 29.3 m radius and 0.8 T peak magnetic field [26]. The rapid increase of the intensity
with the electron beam energy was measured (fourth power of the energy). The emitted light was found
to be polarized with an electron vector parallel to the plane of the electron orbit.

2.3 The undulator
2.3.1 Invention of the undulator
After considering the synchrotron radiation emitted in bending magnets, it is of interest to analyse what
happens with a succession of alternated dipoles, as mentioned by V. L. Ginzburg (1916–2009, Nobel
Prize in 2003) who first pointed out the radiation emitted by relativistic electrons performing transverse
oscillations [27].

H. Motz calculated the field created by a relativistic particle in a magnetic sinusoidal field (i.e.
such as produced by undulators) [28, 29], as shown in Fig. 3. He also examined the influence of the
bunching of the electrons on the coherence of the radiation. He then observed the polarized visible
radiation from an undulator installed on the 100 MeV Stanford accelerator [30]. A buncher set-up after
a 3.5 MeV accelerator achieved 1 W peak power at 1.9 mm thanks to the bunching of the electrons.
In parallel, the emission of the radiation spectrum produced from an undulator installed on a 2.3 MeV
accelerator was investigated by R. Combe and T. Frelot [31]. For the following, it is useful to recall
the electron trajectory when it is submitted to the undulator magnetic field and the basics of undulator
radiation.

Fig. 3: Planar undulator scheme, creating a periodic magnetic field created by two arrays of permanent magnets
arranged in the Halbach configuration [32]. Vertical magnetic field in green, electron trajectory in blue.

2.3.2 Electron movement in an undulator
Let’s consider a relativistic electron travelling in an undulator of total length Lu and spatial period λu.
Let’s suppose that the relativistic electron of energy E and velocity v with respect to the laboratory
frame is introduced along the s direction. For a relativistic factor γ � 1, 1

γ � 1 and the reduced velocity
β2 = 1− 1

γ2
can be approximated as β ≈ 1− 1

2γ2
.

2.3.2.1 Electron movement in a planar undulator

In the case of a planar undulator, creating a field along the vertical direction expressed in the [0, Lu]
interval as
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~Bu = Bu cos

(
2π

λu
s

)
~z = Bu cos(kus)~z (3)

with the undulator wavenumber ku given by ku = 2π
λu

. The undulator deflection parameter Ku expressed
as Ku = eBuλu

2πmoc
is given in practical units as Ku = 0.934Bu(T )λu (cm).

The integration of the fundamental equation of the dynamics applying the Lorentz force leads to

~β




Ku
γ sin (kus)

0

1− 1
2γ2
− K2

u
2γ2

sin2(kus)


 (4)

and on average over one undulator period:

~〈β〉




0
0

1− 1
2γ2

(1 + K2
u

2 )


 . (5)

Since the velocity in the vertical direction is zero, the movement takes place in the horizontal
plane (x, s). Introducing kus = ωut with ωu = kuc, a further integration without taking into account the
integration constants (there are indeed termination magnets enabling the electron to enter at the origin
position) leads to





x = Kuc
γ

∫
sin (ωut)dt = Kuc

γωu
cos (ωut),

z = 0,

s = c
(

1− 1
2γ2
− K2

u
4γ2

)
t+ K2

uλu
16 πγ2

sin (2ωut) = 〈vs〉ct+ K2
uλu

16 πγ2
sin (2ωut).

(6)

The maximum amplitude of the transverse motion is Ku
γ
λu
2π . In the longitudinal direction, oscil-

lations occur at twice the frequency, with a maximum amplitude of K2
uλu

16 πγ2
generally of much smaller

amplitude than in the transverse direction.

2.3.2.2 Electron movement in a helical undulator

In the case of a helical undulator creating a magnetic field in both horizontal and vertical directions given
by





~Bux = Bux sin(2π
λu
s)~x = Bu sin(kus)~x,

~Buz = Buz cos
(

2π
λu
s
)
~z = Bu cos(kus)~z,

~Bus = 0,

(7)

a first integration of the Lorentz equation leads to

~β




−Ku
γ sin (kus)

−Ku
γ cos (kus)

1− 1
2γ2
− K2

u
2γ2



. (8)

Taking integration constants equal to zero, a further integration leads to
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x = −Kuc
γ

∫
sin (ωut)dt = Kuc

γωu
cos (ωut),

z = Kuc
γ

∫
cos (ωut)dt = −Kuc

γωu
sin (ωut),

s = c
(

1− 1
2γ2
− K2

u
4γ2

)
t = 〈vs〉ct.

(9)

The electron trajectory on axis is helical. There is no oscillatory movement in the longitudinal direction
at twice the frequency.

2.3.3 Undulator radiation
Let’s now consider the specific features of the undulator radiation.

2.3.3.1 Resonance

Electrons wiggling inside the undulator emit synchrotron radiation, as in a succession of bending mag-
nets. They emit synchrotron radiation due to their acceleration in the transverse plane. For each period,
the radiation is emitted in a narrow cone of aperture 1/γ in the forward direction.

The radiation emitted along the undulator interferes constructively depending on the phase lag
between the electron and the front of the emitted wave train. One can then introduce the resonance
condition: when the electron progresses by λu, the wave has travelled by (λu + λ) or more generally by
(λu +nλ) with n an integer, the radiation of one electron from the different periods interfere and can add
constructively for these wavelengths λn, as shown in Fig. 4.

uλ
θ

Fig. 4: Undulator resonance condition: when the electron progresses by λu, the wave has travelled by λu + λ, to
being the time origin, vs being longitudinal velocity of the electrons.

In introducing the path difference between the two rays: nλn, one has cλu/vs−λu cos θ/c = nλn

leading to

nλn = λu(1− βs cos θ)/βs. (10)

Synchrotron radiation being emitted ahead for small angles, one can approximate cos θ by (1 −
θ2/2), and using βs = 〈βs〉 = 1 − 1/2γ2 − K2

u/4γ
2 for a planar undulator, the resoanant wavelength

becomes

λn =
λu

2nγ2

(
1 +

K2
u

2
+ γ2θ2

)
. (11)

In the case of a helical undulator (with βs = 〈βs〉 = 1−1/2γ2−K2
u/2γ

2), the resonant wavelength
is given by

λn =
λu

2nγ2
(1 +K2

u + γ2θ2). (12)

This is the so-called ‘undulator resonance’ wavelength, setting the undulator radiation as a series
of harmonics, of order n. The wavelength λn of the emitted radiation can be varied by changing the
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electron beam energy or by a modification of the undulator magnetic field (by changing the gap for
permanent magnet insertion devices or the power supply current for electromagnetic insertion devices).
The infrared spectral range can be reached with reasonable beam energies. The X-ray regime requires
the use of high electron beam energies. Larger wavelengths are obtained for off-axis radiation.

2.3.3.2 Radiated spectrum

The wave packet emitted by each electron contains only a finite number Nu of oscillations as shown in
Fig. 5. Thus, in the time domain, the observer receives a train of Nu magnetic periods. The frequency
is imperfectly defined. The radiation spectrum corresponds to the Fourier transform of the wave packet
emitted by the electron.

Fig. 5: Radiation train emitted from the undulator of periodNu periods λu. The electron moves along the undulator
length with a speed v (vt = Nuλu) and emits a wave packet whose length is (c − v)t = Nuλ. The wave packet
contains the same number of periods as the undulator, i.e. Nu.

The electron radiates uniformly from the undulator entrance to its end, so the wave packet has a
square envelope. For the optical wave central wavelength λl = 2πc

ωl
, the intensity is given by

I(ω) ∝
∣∣∣∣∣

∫ Nuλu/c

0
exp [−i(ω − ωl)t]dt

∣∣∣∣∣

2

∝
{

sinc
2πNu(ω − ωl)

2ωl

}2
(13)

with n the harmonic number. The on axis radiation spectrum, square of the Fourier transform of this
train, is then composed of a series of square sinus cardinals, centred on odd harmonics. The radiation
spectrum in the forward direction is thus nearly monochromatic, i.e. it is composed of narrow spectral
lines at a well-defined wavelength λn. The linewidth of the radiation, called per analogy to conventional
lasers the ‘homogeneous linewidth’ is of the order of

(∆λ

λn

)
hom
≈ 1

nNu
. (14)

This so-called ‘homogeneous linewidth’ refers to the case of a single electron. The emission
presents then a narrowband in the frequency domain. In other words, the emitted field interferes between
different points of the trajectory, leading to sharp spectral peak emission. The higher the number of
undulator periods, the smaller the radiated bandwidth. In the case of a single electron, the undulator
intensity then scales as N2

u .

An example of spectrum is given in Fig. 6 with an ideal and real electron beam. For the one
electron emission (or ideal electron beam, i.e. filament mono-energetic electron beam) shown in Fig. 6
(a), the radiated line width is ruled by the homogeneous width. However, a real electron beam is not
mono-energetic (it has intrinsic energy spread) and presents a transverse size and divergence (emittance
contribution).

When adding the emittance term in Fig. 6(b), a satellite peak appears on the red side of the line,
and the even harmonics are growing. The linewidth broadening can be interpreted with the contributions
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Fig. 6: Spectral flux in the case of a U20 undulator (0.97 T peak field) with 2.75 GeV electrons on the 11th and
13th harmonics: (a) case of a filament monoenergetic electron beam, (b) emittance of 3.9 nm mrad in horizontal
and 39 pm mrad in vertical direction, (c) energy spread of 0.1% energy spread, (d) with the contribution of the
emittance of (b) and energy spread of (c).

given by the electron beam emittance (with the beam size σ and divergence θ) through the electron beam
divergence and size as

(∆λ

λn

)
div

≈ γ2θ2

1 + K2
u
2

, (15)

(∆λ

λn

)
σ

≈ 2π2K2
u

(1 + K2
u/2)

σ2
z

λ2
u

. (16)

When adding the energy spread Fig. 6 (c), the line widens symmetrically. This energy spread (σγ

γ )
induced spectral broadening contribution is modelled as

(∆λ

λn

)
σγ

≈ 2σγ

γ
(17)

The two contributions are added in (Fig. 6d): the lines are damped and widened. The modification
of the undulator line can be interpreted as ‘inhomogeneous’ broadening, which results from different
contributions: the electron beam energy spread, size, and divergence. Analytically, one can make the
quadratic sum of the different contributions as a first approximation.

When inhomogeneous bandwidth becomes dominant, the intensity is proportional to Nu, i.e. I ∝
Nu. Such a linewidth provides a certain longitudinal coherence length, but is far from the Fourier limit.

2.3.3.3 Undulator emission angle

Because of the wiggling trajectory in the transverse plane (i.e. horizontal for a vertical field), the opening
angle is given by the excursion of the reduced velocity, i.e. Ku/γ. For the planar undulator (vertical field
case), the vertical opening angle is given by 1/γ as for the usual synchrotron radiation case. For a helical
undulator, the angles are given by the velocity excursions in both planes. The radiation is well collimated
and presents some transverse coherence, depending on the considered wavelength and on the electron
beam contribution.
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2.3.4 Temporally coherent emission
Let’s discuss further the temporal properties of the radiation. In general, the radiation from the different
electrons adds incoherently, and the radiated intensity is proportional to the number of electrons Ne.
Longitudinal coherence occurs if the different electrons emit in phase, leading to a radiated intensity
scaling asN2

e . Electrons being in phase can occur either if the electron bunch length is small with respect
to the considered wavelength of emission, or if a modulation is imprinted on the electron bunch [33], such
as in the free electron laser process. Figure 7 illustrates the three cases of incoherent beam in (a), a bunch
short than the wavelength in (b), and of a bunched beam in (c). The bunched case was already considered
by Motz [28]. Intermediate case can occur also with abrupt changes in the electronic density, such as
with edge radiation from bending magnets.

a b c

Fig. 7: Distribution of electrons: (a) random distribution leading to incoherent emission, (b) short electron bunch
with respect to the radiated wavelength, (c) case of the bunched electron beam.

The normalized longitudinal distribution n(s) can be expressed as n(s) = NeS(s) with S(s)
being the form factor. The corresponding electric field is then expressed by E(ω) = Eo(ω)Nef(ω) with
Eo(ω) the electric field of one electron and f(ω) the form factor in the frequency domain, given by

f(ω) =

∫ ∞

−∞
S(s) exp

(
i
ωs

c

)
ds. (18)

The electric field results from the sum of the fields emitted by each electron, according to

I(ω) = Io(ω)[Ne(Ne − 1)f(ω)2 +Ne]. (19)

The intensity expression comports two terms, one scaling as the square of the number of electrons
(for the coherent emission) and another scaling (for the incoherent synchrotron radiation). The coherent
term involves the form factor. In case of short Gaussian electron bunches, one gains typically several
orders of magnitude on the radiated intensity.

In the case of a bunched beam, one has

S(s) =
M∑

m=1

S(s−mλn). (20)

When a form factor is introduced, the undulator emission can become longitudinally coherent
emission for λn. The form factor resulting from the bunching efficiency is similar to the form factor in
Bragg diffraction. The first observation was achieved in 1989 [34].

2.4 The development of vacuum tubes
Let’s consider now the domain of vacuum tubes, when bunched electrons are currently generated. The
electron beam in vacuum tubes witnessed a rapid and spectacular development at the beginning of the
twentieth century for the current amplifier applications such as radiodiffusion and radar detection for
icebergs or military use, where high frequency oscillations are needed. Electron beams in vacuum tubes
rely on the interaction of a free electron of relativistic factor γ given by γ = E

moc2
(with E its energy,
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Fig. 8: Klystron principle: (a) klystron scheme, (b) electron bunching by energy modulation in the klystron drift
space, electrons accumulate in bunches, (c) phased electron in the second klystron cavity, electric field in red.

mo the electron mass, e the particle charge, and c the speed of light), ~β the normalised electron velocity
and an electromagnetic wave of electric field ~E with ~E = ~E sin (ks− ω.t) with k the wavenumber and
ω the pulsation according to :

dγ

dt
=
e~β. ~E

mc
. (21)

A first example of the high-power electron vacuum tube is given by the magnetron, now used
for microwave ovens. Electron bunches passing through open cavities excite RF wave oscillations by
interaction with the magnetic field, the frequency being determined by the geometry of the cavity. The
magnetron can act only as an oscillator for the generation of the microwave signal from the direct current
supplied to the tube.

The second example is given by the klystron, invented by the Russel and Sigurd Varian brothers
[35]. It consists of two cavities (metal boxes along the tube), as shown in Fig. 8(a) [36].

In the first cavity, an electric field oscillates on a length ∆s at a frequency ν = 2πf ranging
between 1 and 10 GHz (i.e. with corresponding wavelengths of 30–33 cm). The electrons, generated at
the cathode, enter in the first cavity where the input RF signal is applied. They can gain energy according
to

∆W1 =

∫ ∆s

0
ec~β. ~Edt ' ecE.β cos (ωt).

∆s

β
= ecE.∆s. cos (ωt). (22)

The sign of ∆W1 depends on the moment t when the electron arrives inside the cavity. ∆W1

is modulated in time at a temporal period T = 2π
ω or spatial period λβ. On average for the electrons,

∆W1 = 0 since the electrons have different phases.

Then, the electrons enter into the drift space (see Fig. 8(b)), and they accumulate in bunches. The
drift space length is adjusted to enable an optimal electron bunching.

In the second cavity, the electrons have the same phase with respect to the electromagnetic wave,
since they have been bunched (see in Fig. 8c). The second energy exchange is given by

∆W2 =
∑

electrons

∫ l2

0
ec~β. ~ERFdt = NeecEL2 cos (ωt) (23)
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with L2 the interaction region in the second cavity, ERF the electric field. The phase of the electrons
in the second cavity is ruled by the electrons themselves. The gain in electric field can be very high
(practically, 103–106).

Schematically, the klystron can be understood as a block for the bunching, with another one for the
phased interaction with the field. In such a case, a high intensity electron beam excites the RF wave in
the second cavity (see Fig. 9). The klystron can be operated in the oscillator mode with a feedback loop
on the radiation, where the cavity and the waveguides should be of the order of the wavelength. While
looking for larger values of the frequency, i.e. for short wavelengths, the manufacturing of the cavities
and waveguides thus limits the operation of the klystron to the microwave region. Another system should
be realized for the micrometre and submicrometre spectral ranges.

Fig. 9: Bloc diagram of the klystron: amplifier and oscillator cases

More generally, an electron bunch can be accelerated or decelerated by a wave for which the period
is longer than the electron bunch one. The linear accelerator relies on such a principle, as seen in Fig. 10.
The electrons are produced in an electron gun: a thermo-ionic gun or a photoinjector where the electrons
are then generated in trains. With the conventional thermo-ionic gun, the electrons travel into the so-
called buncher (a sub-harmonic or harmonic cavity) on the edge of the RF wave, for acquiring energy
spread and being bunched by the velocity modulation, as in the klystron case. Then, the electron beam
is accelerated by an intense RF wave produced by a klystron and sent in the cavities of the accelerating
sections, which can be considered as a series of coupled cavities or as a waveguide where irises slow
down the phase of the RF wave to become equal to that of the electrons. In the accelerating sections, the
electrons should have the same phase with respect to the RF wave. To be so, they are arranged in small
bunches (‘bunching’). For example, for a RF frequency of 1.3 GHz, the period is of 0.77 ns, 1◦ phase
corresponds to 2.1 ps.

Fig. 10: Scheme of the linear accelerator: electron gun, buncher, accelerating sections
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Vacuum tubes such as klystrons, magnetrons, and more generally electronics, discovered at the
end of the thirties, underwent a wide development during the second World War with applications such
as radiodiffusion and radar detection, where oscillators with high frequencies are needed. The sources
generally use electron beams submitted to electric or magnetic fields, where the ‘bunching’ is the key
concept for the wave amplification. The use of resonant cavities at the frequency of the emitted wave-
length can efficiently insure the retroaction needed for the production of a coherent wavelength.

This field of electronics enabled us to understand that in setting a loop on a wide band amplifier (in
connecting one part of its output to its entry), one can transform it into a very monochromatic oscillator.
This concept will be used later for the maser and laser inventions.

2.5 The ubitron: undulating beam interaction
FEL precursor works considered whether wave amplification [37] was possible. Then, the ubitron, for
‘undulating beam interaction’ was invented by R. M. Phillips (FEL Prize in 1992 at General Electric
Microwave Laboratory), who reports on its discovery [38] in the following terms: “The ubitron (acronym
for undulating beam interaction) is a FEL which was setting records for RF power generation 15 years
before the term ‘free electron laser’ was coined. As is often the case, the invention of the ubitron was
accidental. The year was 1957 and I was searching, at the GE Microwave Lab, for an interaction which
would explain why an X-band periodically focussed coupled cavity TWT oscillated when a solenoid
focused version did not. The most apparent difference between the two was the behaviour of the electron
beam; one wiggled while the other simply spiralled. Out of a paper study of ways of coupling an RF
wave to an undulating axially symmetric electron beam came the idea of coupling to the TE01 mode by
allowing the wave to slip through the beam such that the electric field would reverse direction at the same
instant the electron velocity is reversed.”

The ubitron is a high-power travelling wave tube which makes use of the interaction between a
magnetically undulated periodic electron beam and the TE01 mode in an unloaded waveguide [39]. The
scheme is illustrated in Fig. 11. The basic idea is to couple the TE01 mode by allowing the wave to slip
through the beam such that the electric field reverses direction at the same instant the electron velocity
is reversed. Several beam guide ubitron configurations (planar, coaxial, circular) can be considered, and
they can provide 100 times the interaction area of a TWT (Travelling Wave Tube). The electron–wave
interaction exhibits the same type of first-order axial beam bunching characteristic of the conventional
slow wave travelling wave tube. In consequence, the ubitron can be used in extended interaction klystrons
and electron accelerators, as well as travelling wave tubes.
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Fig. 11: Scheme of the ubitron: an electron beam from an electron gun, wiggling with axial symmetry, can couple
to an RF wave. Alternated magnetic poles provide the axial symmetry.

First experiments used an undulated pencil beam in a rectangular waveguide [40]. They presented
unique features such as a very broad interaction bandwidth which results from the absence of a disper-
sive slow wave circuit, a variable interaction phase velocity, and hence, variable saturation power level.
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Among the physical embodiments of the ubitron are a number of higher-order mode waveguides and
beam configurations. They opened at that time interesting prospects for high-power millimetre wave
amplification. As reports C. Brau [1], “the ubitron uses the same configuration of electron beam and
magnetic field as proposed by Motz, but at a high enough electron density that space-charge waves are
excited by the electron beam”. High power (>1 MW) and high efficiency (>10%) were obtained at
wavelengths from 10 cm to 5 mm. However, other devices developed at about the same time, such as the
travelling-wave tube, offered higher gain and other advantages, and the ubitron was not actively pursued.

Studies were extended to the interaction of relativistic particles and waves in the presence of a
static alternated magnetic field [41]. The possibility of achieving stimulated emission [42] was also
considered.

2.6 The maser discovery
After the second World War, RF sources and detectors developed for radar and transmission were
also used for fundamental research, in particular Hertzian spectroscopy of atoms and molecules, radio-
astronomy, and magnetic nuclear resonance. In the early fifties (1953), Charles Townes (1905–2015,
Nobel Prize in 1964) [43] in the USA (Columbia University, New York), Nicolay Gennadiyevich Basov
(1922–2001, Nobel Prize in 1964) in 1952), and Aleksandr Mikhailovich Prokhorov (1916–2002, Nobel
Prize in 1964) in the Soviet Union (Lebedev Institute, Moscow) independently aimed at creating new
microwave sources in replacing the amplification by an electron beam amplification with the help of the
stimulated emission process in molecules. In order to make a ‘quantum’ microwave oscillator, they in-
troduced excited molecules into a microwave cavity which was resonant to the frequency of the molecule
transition. They met for the first time in 1959 in the USA at the first Quantum Electronics Conference.
Some physicists were sceptical, including N. Bohr (1885–1962, Nobel Prize in 1922), who was not very
familiar with recent advances in electronics and could hardly admit that the phase coherence of the oscil-
lator could last longer than the excited state lifetime. To perform the population inversion required for the
stimulated emission, Townes, Basov, and Prokhorov had the idea to use the spatial separation of excited
molecules (Stern–Gerlach type), which is efficient but not very practical. The population inversion can
also be performed in an easier manner by a proper excitation of the radiation of the atoms and molecules.
In 1949, Alfred Kastler (1902–1984, Nobel Prize in 1966) and Jean Brossel proposed and developed
‘optical pumping’, based on the use of circularly polarized light for selectively filling some Zeeman sub-
levels of atoms. In 1951, E. Purcell and R. Pound, working on nuclear magnetic resonance, showed that
RF radiation enables us to create samples of ‘negative temperature’, i.e. a population inversion. Inspired
by the resonators of vacuum tubes, the light feedback is ensured by a cavity resonant on its fundamental
mode.

In 1954, the first maser (microwave amplification by stimulated emission of radiation) was oper-
ated in the microwave region by Charles Townes [43] at Columbia University with the NH3 molecule.
In 1954, N. Bloembergen (Nobel Prize 1981 on laser spectroscopy and non-linear optics), Basov, and
Prokhorov proposed the 3-level maser concept: with a proper illumination of a solid such as a ruby crys-
tal, population inversion takes place. It is easier to operate than the equivalent gas-based maser. It has
been used in particular as a very low noise amplifier.

Masers also exist naturally in stars.

The new domain of ‘quantum electronics’ has emerged from the interplay between the scientific
fields of electronic vacuum tubes and quantum properties of matter and it has seen an extraordinary
spread and has raised a lot of interest. The question was then of the extension of the maser to the optical
wavelengths.
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2.7 The laser discovery
In order to achieve an optical maser, the maser cavity resonant on its fundamental mode must become
extremely small (of the order of 1 micrometre) and this was not possible at that time. Nowadays, these
cavities are manufactured using nanotechnologies (for VCSEL (vertical cavity surface emitting laser)
semi-conductor lasers). Charles Townes and Arthur L. Schawlow (1921–1999, Nobel Prize in 1981 on
laser spectroscopy and non-linear optics) at Bell Labs, G. Gould (1920–2005) at Columbia [44], and A.
Prokhorov at the Lebedev Institute proposed feedback with an open resonant cavity (Fabry–Perot-type
used in spectroscopy). These ‘optical lasers’ were named lasers for light amplification by stimulated
emission of radiation.

In a Fabry–Perot cavity of length Lc, the light makes round trips between the two mirrors on which
it is reflected. C. Townes and A. Schawlow said, in their reference paper [4]:

“The extension of maser techniques to the infrared and optical region is considered. It is shown
that by using a resonant cavity of centimetre dimensions, having many resonant modes, maser oscilla-
tion at these wavelengths can be achieved by pumping with reasonable amounts of incoherent light. For
wavelengths much shorter than those of the ultraviolet region, maser-type amplification appears to be
quite impractical. Although using of a multimode cavity is suggested, a single mode may be selected
by making only the end walls highly reflecting, and defining a suitably small angular aperture. Then ex-
tremely monochromatic and coherent light is produced. The design principles are illustrated by reference
to a system using potassium vapor”.

A scheme of such an optical cavity is shown in Fig. 12.

I  - FEL 

z0 w0 λ

z0
2 w0

2

w0

wo

Rayleigh length Zo : the longitudinal distance for which the cross section 
of the mode is twice that of the waist’s

The optical mode reaches its minimum size  at the position of the waist

w0 = ( /2π)1/2 [Lc(Lc-2Rc)]1/4

s

Lc

Rc

mode diameter w(s) and divergence θ at a distance s: 

w2(s) = wo2(s) (1+ (s/wo)2 )

Fig. 12: Scheme of an optical resonator

For the light to interact at each pass with the amplifier medium, and to get larger, it should be in
phase with the one from the previous pass. In other words, the optical path for one round trip should
be equal to an integer number p of wavelengths λ, i.e. 2Lc = pλ. For a fixed cavity length Lc, only
the wavelengths verifying λ = 2Lc

p can be present in the ‘optical maser’ light, defining the longitudinal
modes of the cavity associated with different values of p. The shift in frequency between two modes is
given by ν = c

λ = c
2Lc

.

In practice, in order to focus the light transversally and to avoid diffraction losses, one of the
mirrors should be concave. The light circulating in the optical resonator is not a plane wave, and the
radius of the light changes along its propagation direction [45,46]. In case of a cavity with two concentric
mirrors, the light radius is minimum at the waist w0 and diverges according to w(s) = w0

√
1 + s2

Z2
R

with ZR the Rayleigh length, i.e. the distance from the waist for which the radius of the light beam is
increased by a factor

√
2, given by ZR =

πw2
0

λ . This corresponds to the diffraction of light by an aperture
of diameter 2w0. The radiation at the entry and at the exit of the cavity have the same characteristics.
The divergence of the light beam θr can be expressed as θr = λ

πw0
. The higher the focus, the smaller the

waist and the higher the beam divergence. The beam is very directional, it can be adapted (focused or
expanded) to the users need with the help of mirrors and lenses. In the case of a He–Ne laser at 633 nm
with a waist of 600 µm, the Rayleigh length is of the order of 2 m. Over 2 m propagation length, the
light beam diameter remains practically constant.
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Following the publication of the theoretical paper by Arthur L. Schawlow and C. Townes on ‘Infra-
red and Optical masers’ in 1958 [4], different laboratories entered the race to demonstrate experimentally
the ‘optical maser’. It was won by an outsider in 1960, Theodore Maiman (1927–2007), who had the
idea to realize a pulsed and not a CW (continuous) source, for which the oscillation conditions take place
transiently. On May 6 1960, Maiman achieved the first working laser by generating pulses of coherent
light from a fingertip-sized lump of ruby (chromium in corundum) illuminated by a flash lamp [5, 47] in
Malibu (USA). The device was extremely simple. Several ‘optical masers’ followed [48]. The calcium
fluoride laser was achieved by Mirek Stevenson and Peter Sorokin at General Electric in 1960. The He–
Ne laser was operated by Ali Javan (1926–2016), Bill Bennett, and Don Herriott in 1961 [49], with the
population inversion achieved with a discharge on the Ne atoms bringing a fraction of the He atoms to
metastable states, the He atoms being relaxed by collision with Ne atoms in transmitting to them their
energy excess. Then, in 1962 followed the semi-conductor AsGa laser (diode laser) where a p–n junction
of the gallium arsenide semiconductor through which a current was passed and it emitted near-infrared
light from recombination processes with very high efficiency, first operated by R. Hall (1919– ) [50] and
others [51].

3 The invention of the free electron laser concept
3.1 The FEL concept emergence: motivations for an exotic laser
Early work on stimulated bremsstrahlung was conducted at the beginning of the twentieth century [52,53]
and later [54].

Following the discovery of the laser, much less interest was devoted to the electron tube based
systems. The Gaussian eigenmodes of free space provided an alternative to the coupled slow wave
structures of the prior electron devices. In addition, the laser radiation is independent of phase.

In the original paper from A. Schawlow and C. Townes [4], it was written that “As one attempts
to extend maser operation towards very short wavelengths, a number of new aspects and problems arise,
which require a quantitative reorientation of theoretical discussions and considerable modification of the
experimental techniques used” and “These figures show that maser systems can be expected to operate
successfully in the infrared, optical, and perhaps in the ultraviolet regions, but that, unless some radically
new approach is found, they cannot be pushed to wavelengths much shorter than those in the ultraviolet
region”.

J. M. J. Madey (1943–2016, first FEL Prize in 1988) [55], from Stanford University, thought that
“A. Schawlow and C. Townes descriptions of masers and lasers coupled with the new understanding of
the Gaussian eigenmodes of free space offered a new approach to high frequency operation that was not
constrained by the established limits to the capabilities of electron tubes” [56] and he wondered whether
there was “a Free Electron Radiation Mechanism that Could Fulfill these Conditions” and considered
the different possible radiation processes. He first examined Compton scattering, as shown in Fig. 13,
which appeared as the most promising candidate. Indeed, stimulated Compton backscattering has been
analysed by Dreicer in the cosmic blackbody radiation [57].

First analysis of the stimulated Compton backscattering was carried out by Pantell (eighth FEL
Prize in 1995, shared with G. Befeki (1925–1995)) [42]. Precursor works include the study of stimulated
emission of bremsstrahlung [58], and of the possibility of frequency multiplication, and wave amplifica-
tion by means of some relativistic effects [37], radiation transfer and investigations into whether negative
absorption (i.e. amplification) could be possible in radio astronomy [59].

The Compton backscattering (CBS) process between a laser pulse and a bunch of relativistic parti-
cles (electrons, positrons, etc.) leads to the production of high-energy radiation coming from the head-on
collision between the photons and the particles. In order to reduce the divergence of the scattered radia-
tion, it is better to use a relativistic electron beam, which radiation cone is reduced to 1/γ. For relativistic
particles (i.e. γ � 1), the energy of the produced photons ECBS is given by
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Fig. 13: Compton backscattering scheme

ECBS =
4γ2Eph

1 + (γθ)2
(24)

with Eph the energy of the initial photon beam, θ the angle between the CBS photons and the electron
beam trajectory. The energy of the relativistic electrons can easily be changed, so the CBS radiation
could be tuneable.

J. M. J. Madey had the idea to make the phenomenon more efficient by using the magnetic field of
an undulator [6]. He was aware of the theoretical [28] and experimental [30] work of Motz, where radia-
tion from bunched beams has been observed. He considered that “Relativistic electrons can also not tell
the difference between real and virtual incident photons, permitting the substitution of a strong, periodic
transverse magnetic field for the usual counter-propagating real photon beam” [56]. The proposed FEL
scheme is shown in Fig. 14.

!

"

1

2  

!

"

Fig. 14: Scheme of the FEL oscillator with the gain medium consisting of relativistic electrons in the undulator

3.2 The FEL quantum approach
J. M. J. Madey then calculated in the frame of quantum mechanics the gain due to the induced emission
of radiation into a single electromagnetic mode parallel to the motion of a relativistic electron through
a periodic transverse dc magnetic field [6]. He found that finite gain is available from the far-infrared
through the visible region, raising the possibility of continuously tuneable amplifiers and oscillators in
such a spectral range, and he envisioned further the possibility of partially coherent radiation sources
in the ultraviolet and X-ray regions to beyond 10 keV. He introduced the notion of the ‘free electron
laser’ [6].

According to the Weisächer–Williams approximation, the undulator field of period λu can be
assumed to be a planar wave of virtual photons. It enables an easier way to relate the transition rates
to more easily calculable Compton scattering rates. By Lorentz transformation, the wavelength λ′ of a
planar wave in the moving frame of the electrons in the undulator is given by
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λ′ =
λu

γs
(25)

with γs the Lorentz factor of the scattered electron. Photon emission and absorption are forbidden by
conservation of energy and momentum. For free electrons, one can then consider a two photon process,
such as Compton scattering, as shown in Fig. 15.

Fig. 15: Feynman diagrams of Compton scattering

The emission is then again given by the Doppler effect, according to

λ =
λ′

(1 + βs)γs
=

λ2
u

2γ2
s

≈ λ2
u

2γ2
. (26)

For stimulated Compton scattering, the diffusion transition rate τd should be larger than the ab-
sorption one τa. One can define the gain g as

g = τd − τa. (27)

The original calculation, performed in [6, 60], is not reproduced here. It was also found that the
gain expression does not depend on Planck’s constant h. Further developments followed [61].

The ubitron can also be considered as another precursor of the FEL [39].

3.3 The FEL regimes
Different regimes can be considered [62]. The FEL can thus be described as a stimulated Compton
scattering device, as shown in Fig. 16. If the electronic density is large enough, a plasma wave can
develop.

3.3.1 The Compton FEL regime
In the Compton regime, the scattered wavenumber k′s equals the incident wavenumber k′i:

k′s = k′i. (28)

3.3.2 The Raman FEL regime
In the Raman regime, the scattered wavenumber k′s is the sum/difference of the incident wavenumber k′i
and of the plasma wavenumber k′p, leading to the Stokes and anti-Stokes lines.

k′s = k′i ± k′p. (29)
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14

Fig. 7 Feymann diagrams of Compton Scattering

Photon emission and absorption are forbidden by conservation of energy and momentum. For free electrons,
one can then consider a two photon process, such as Compton scattering, as shown in Fig. 7. The emission is then
again given by the Doppler effect, according to :

λ =
λ �

(1+βs)γs
=

λu

2γ2
s

2

≈ λu

2γ2

2

(47)

For Stimulated Compton scattering, the diffusion transition rate τd should be larger than the absorption one τa.
One can define the gain g as :

g = τd− τa (48)

The original calculation, performed in [48], is not reproduced here. It was also found that the gain expression
does not depend on the Planck’s constant. Indeed, the FEL theory can be described classically [50, 51, 18, 52, 2,
53, 54, 55, 3, 56, 57]. One prefers nowadays to use a classical approach, which is simpler and which can explain
the FEL in the majority of cases.

1.3.3 The FEL regimes

The FEL can thus be described as a Stimulated Compton Scattering, as shown in Fig. 8. If the electronic density is
large enough, a plasma wave can develop.

Fig. 8 Stimulated Compton Scattering scheme in the electron frame, with ωp the plasma pulsation, ωr the resonant pulsation, and ωs
the scattered pulsation

The Compton FEL regime

In the Compton regime, the scattered wavenumber k�s equals the incident wavenumber k�i:

Fig. 16: Stimulated Compton scattering scheme in the electron frame, with ωp the plasma pulsation, ωr the
resonant pulsation, and ωs the scattered pulsation.

In the laboratory frame, it comes to ωs = ωi ± ωp where the plasma pulsation ωp is given by

ωp =
√

nee2

εomoγ3
=
√

Jee
εomocγ3

with ne the electronic density, εo the vacuum permeability, and Je the
current density Je = neec.

Practically, one considers that the FEL is in the plasma regime if the number of plasma oscillations
Np done by the electron while it travels into the undulator is at least one:

Np =
Nuλu

λp
=
Nuλuωp

2πc
=
Nuλu

2πc

√
Jee

εomocγ3
.

Thus Np > 1 if Je <
4π2εomoc3γ3

eN2
uλ

2
u

.

The regimes of FEL are recapitulated in Fig. 17.

Fig. 17: Comparison between Compton and Raman FELs

4 The FEL classical approach (low gain regime)
4.1 Stimulated scattering in a plasma fluid type approach
P. Sprangle (fourth FEL Prize, in 1991) continued the exploration of stimulated Compton scattering of an
electromagnetic wave from relativistic electrons [42,61] using a plasma approach. Sprangle and Granat-
stein examined the stimulated cyclotron resonance scattering and production of powerful submillimetre
radiation [63] and stimulated collective scattering from a magnetized relativistic electron beam [64]
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where the pump satisfies the dispersion relation associated with the beam in the magnetic field and the
scattered waves consist of collective plasma oscillations as well as right- and left-polarized electromag-
netic waves, travelling parallel and antiparallel to the beam. The frequency of the forward-scattered
electromagnetic wave is Doppler shifted. Conditions for enhanced stimulated scattering and growth
rates were found [64]. An original following work on noise excitation analysis [65] can be mentioned.
Variants of FEL were considered, such as the gyrotron with a uniform magnetic field [66]. Saturation
and phase (wave refractive index) were analysed [67]. The Raman-type theoretical developments are not
detailed here [68, 69].

4.2 The FEL classical approach using the Weizsäcker–Williams approximation and electronic
distribution function

F. A. Hopf et al. [70] continued the investigation of stimulated emission of radiation in a transverse
magnetic field. He pointed out that the theories explored so far [6, 42, 57, 60, 61] were all “quantum
mechanical in nature. They give impression that they have to be so, since it is argued that it is the
electron recoil ∆p = h/λc where λc is the Compton wavelength, which is the source of the finite gain.
Furthermore, quantum approaches, while agreeing on the structure of the gain formula, differ from one
another by orders of magnitude in numerical coefficients” [70]. He then shows that “this problem is
completely classical, and that the gain is produced by a bunching of the electron density in the presence
of a field”.

He works directly in the laboratory frame. Considering the Weizsäcker–Williams approximation
and in the case of the extreme relativistic limit, the static undulator field of period λu can be replaced by
a pure electromagnetic field of wavelength λi = (1 + βs)λu ≈ 2λu. The electron motion is treated via
the collisionless relativistic Boltzmann equation, according to

df

dt
=
∂f

∂t
+ ẋi

∂f

∂xi
+ Ṗi

∂f

∂Pi
= 0, (30)

with P the canonical momentum, x the position and dot the total derivative with respect to time.

The total number of electrons N(t) is given by N(t) =
∫

d3x
∫
f(x,P, t)d3P .

The Boltzmann equation is coupled to the transverse current Jt via the Maxwell equation, and is
given by

Jt = e

∫
vTf(x,P, t)d3P, (31)

with vT the transverse velocity. The scheme is sketched in Fig. 18.

Fig. 18: Diagram of the low gain FEL classical theory using the Boltzmann equation for the movement of the
electrons in the undulator and the scattering process.
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By assuming that:

– the electromagnetic field is transverse and depends on s and t;
– the transverse velocity spread of the electronic distribution is neglected since the electrons propa-

gate with a relativistic velocity along the direction s;
– the mass shift for electric fields smaller than 1012 V/m,

the problem is reduced to a one-dimensional one. The interaction term of the reduced Boltzmann equa-
tion is similar to the one in the Klein–Gordon Hamiltonian, and the source term of the reduced Maxwell
equation is “proportional to a density times an electric field. This is exactly the same as in usual scatter-
ing problems, where the d’Alembertian of the electric field is proportional to the second derivative of the
polarization, which is in turn proportional to a density times the electric field. Hence, we see at this point
that the problem at hand is nothing else than a usual classical scattering problem, complicated only by the
fact that we deal here with relativistic particles” [70]. Then, the reduced distribution is developed in per-
turbation series, the first order giving the small-signal theory. In this case, only two modes of the field are
kept, the incident one (i.e. the static periodic magnetic field in the Weizsäcker–Williams approximation),
and the scattered one. The relevant scattered mode in the up-conversion scheme is the backscattered
radiation, which propagates in the direction of the electron beam. Its wavelength is Doppler shifted, as
seen previously. New assumptions are made:

– the amplitude and phase are slowly varying;
– the depletion of the incident field is neglected since it is assumed to be very intense;

enabling us to find the first-order term of the reduced electron distribution function h(1)(s, Ps, t), ex-
pressed as

h(1)(s, Ps, t) = −e
2(ks + ki)neA

∗
i As

Ps

dF

dPs

exp (−iµs)− 1

µ
exp (−i∆ω(t− s/vs)) + c.c. (32)

where ki (respectively ks) is the wavenumber of the incident (scattered) field, Ai (respectively As) is
the vector potential of the incident (scattered) field, F (Ps) the initial electron momentum distribution,
∆ω = ωs − ωi with ωi (respectively ωs) the pulsation of the incident (scattered) field, and µ = ∆ω −
(ks + ki). “h(1)(s, Ps, t) describes electron density fluctuations [70] (bunching) which are responsible
for the scattering”. Here, Hopf is pointing out that the bunching is a key process for the FEL interaction.
Introducing the reduced electron distribution into the Maxwell equations, one finds the small-signal low
gain expression. In the case of the small cavity limit (where the initial electron momentum distribution
function F (Ps) can be taken as a δ function, i.e. to the limit of a homogeneously broadened medium),
the total small-signal gain is given by

g ∼= 64π2r2
oFf

ne

mc2

k
1/2
i

k
3/2
s

L2
cIi

d(sin ηc/ηc)
2

dηc
(33)

with ηc = µLc/2, ro the classical radius of the electron, Ff the filling factor term representing the
transverse overlap (ratio of the electron beam transverse to the section of the optical beam in the cavity),
Ii the incident flux. Different cases occur.

– If ηc = 0 there is exact conservation of momentum, and no net gain.
– If ηc < 0 (i.e. for electrons with a velocity v > vo), the net result is a gain. It is the equivalent of

the Stokes line in Raman scattering.
– If ηc > 0 (i.e. for electrons with a velocity v < vo), the net result is an absorption. It is the

equivalent of the anti-Stokes line in Raman scattering.
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The maximum gain is found for ηc = −π/2 in agreement with the Madey result derived in the
quantum mechanics frame within a factor 0.8. It is worth citing part of the conclusion “that the free-
electron laser is a completely classical device. The stimulated scattering producing amplification is
due to electron bunching, rather than to the Compton recoil, as argued previously. This result not only
is important from an academic viewpoint, but also greatly simplifies the analysis of the strong-signal
regime and of the saturation of this new laser” [70]. The major step here is the understanding that the
gain results from a bunching of the electronic density in the presence of a field.

Two months later, Hopf continued with the strong-signal case “In order to assess the potential
of any practical laser device, it is necessary to complement the small-signal theory by an analysis of
the mechanism of saturation” [71]. In the strong signal case (i.e. for ‘long’ undulator, ‘high’ current),
the change of electric field in one pass cannot be neglected anymore. The undulator is still treated in
the frame of the Weizsäcker–Williams approximation. The coupled Maxwell–Boltzmann equations are
reduced differently from the small-signal case where the longitudinal part of the Boltzmann distribution
function h was expanded in powers of |AiAs| limited to the first order. Here, h is then expressed as a
harmonic expansion (previous expansion to higher orders would diverge), leading to a set of generalized
Bloch equations in keeping the first term of the expansion. These generalized Bloch equations have “a
striking resemblance to the optical Bloch equations” involving an equivalent “population inversion” and
“polarization” term. “However, it differs from them in two respects”. “This difference in structure lies
in the fact that in a free electron laser, the gain is not proportional to the electron distribution function. It
is its derivative with respect to ps, (rather than the gain itself) which plays the role of an inversion.” By
supposing that the saturation mechanism corresponds to “deceleration of the electrons through the gain
line to the point of zero gain”, one can express a saturation flux and find the “maximum field extractable
from a free-electron laser (i.e. the output field when the laser is in the saturation regime)” [71] as

Asat,max
∼=
[
λs
Lc

]2 M2c2γ4

e2
Ai. (34)

He then computed the efficiency in the case of the Stanford experiment, and found it to be of the
order of 5 × 10−3. He deduces that “This implies that free electron lasers have the potential to work at
high power, but they must be operated in a pulsed mode, with small per shot efficiency.” He just pointed
out that the previously described analysis is very simplified: “In reality, a more detailed analysis shows
that a major contribution to the saturation is a strong alteration of the electron distribution such that the
laser eventually reaches the large- cavity limit”. Hopf et al. had shown here that FELs “have the potential
to work at high power”.

The expansion of the Boltzmann distribution function was then not limited to the first term, and
the problem reduces to the Klein–Gordon equation [72]. A theory including Raman scattering has also
been developed [62, 73, 74].

In Madey’s and Hopf’s approaches, the FEL has been explained in terms of collective phenomena.
Single particle theory can also be applied, as described below.

4.3 The classical approach considering the relativistic motion of the electrons in the undulator
W. B. Colson (Second FEL prize, 1989) aimed at a broader theoretical framework. He analysed the ra-
diation from electrons travelling through a static transverse periodic magnetic field with classical, semi-
classical, and quantum field theories. He considered the radiation characteristics of the electrons in the
undulator and developed stimulated emission rates and laser evolution equations describing exponential
gain and saturation [75]. His paper was published the same month as the second publication by F. A.
Hopf [71]. He insisted on the importance of including the filling factor term, representing the overlap
between the electron beam and the optical wave. W. B. Colson received the Second FEL Prize after
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J. M. J. Madey, in 1989 “Bill laid the foundation for the classical theory of Free Electron Laser, enabling
a wide audience to understand the operating principles of FEL”. He gave “an outstanding contribution to
the understanding of free electron laser mechanisms”.

4.3.1 Resolution of the one-body classical Lorentz equation in the presence of a periodic magnetic
field and a plane electromagnetic wave

W. B. Colson looked for a more appropriate magnetic field description and by “solving the one-body
classical Lorentz force equation in presence of periodic magnetic field and a plane electromagnetic wave”
[76,77]. He found that “the non-linear electron dynamics to the phase space paths of a simple pendulum
in the limit of small gain. The position and energy of a single electron are simply expressed as a function
of time”. He was able to determine the gain and to link it to the derivative of the sinc-like function
describing the spontaneous emission [75], the electron modulation, and the saturation for strong laser
fields corresponding to closed phase space paths, where the electron beams becomes resonant and the
gain drops. He insisted on the “importance of the electron beam produced by the FEL device. The
combined magnet and radiation fields conspire in a controlled way to yield a coherently modulated
relativistic electron beam”. It is found that the evolution of the system follows the pendulum equation
which has been widely adopted and will be presented below. The FEL Prize recipient receives a clock,
symbolizing the FEL pendulum equations! Phase space paths are illustrated in Fig. 19. The electrons
that are initially resonant and on a phase equal to an integer p times π, corresponding to points in phase
space located at (pπ, 0), do not contribute to work. Electrons near these points evolve very slowly in
time, with motion at ‘even-p’ points being stable and ‘odd-p’ unstable. In analogy, a simple pendulum
would be at the bottom (p-even) or top (p-odd) of its arc. If an electron is not at a critical point, the
radiation field alters its energy and position. A shift in relative position, proportional to the square of the
pendulum frequency, occurs and redistributes electrons along the beam axis. For an initially uniform,
mono-energetic beam, half the electrons within a given λr are positioned such that work is done on them;
they gain energy and move ahead of the average flow. The rest of the electrons loose energy to the
radiation field and move back. This causes the ‘bunching’ of the beam. Electrons can undergo closed
and open orbits.

Fig. 19: Electron phase space paths in the case of the pendulum for a helical undulator (low gain regime), from [78]

Then, the electron motion is depicted with a Hamiltonian approach, while the phase space repre-
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sentation of the pendulum is deepened and the influence of the detuning (delay between the electrons in
the undulator and optical pulses in the optical cavity) is studied [79]. The importance of the ‘bunched’
beam is emphasized and the use of an external laser with a static periodic field to create the modulation
at optical wavelengths is considered.

The model is then described self-consistently, using single particle dynamics and Maxwell’s equa-
tions. The optical wave evolution is governed by Maxwell’s equation in the presence of an electron
current. Assuming that the amplitude and phase are slowly varying, two differential equations describ-
ing the amplitude and the phase of the wave are found. The dynamics of the electrons is ruled by the
Lorentz equations in the presence of the combined static and radiated fields. The total current results
from the sum of all individual particle currents. The two sets of equations are then combined. It is found
that the microscopic electron bunching drives the amplitude and phase of the optical wave [80] as shown
in Fig. 20. The saturation is well described within the frame of the self-consistent pendulum equation:
“When the radiation field becomes large, the electron becomes trapped in closed orbits of the pendulum
phase space. In the beam frame, the bunching electrons will have moved on the order of an optical
wavelength: at this point, the gains tops and the laser saturates” [80].

The model is then applied to study the operation on higher harmonics [81–83], as developed later.

Fig. 20: Diagram of the low gain FEL classical theory using the movement of the electrons in the undulator and
the interaction with the electromagnetic wave.

This approach using the description of the electron motion in the undulator, energy exchange,
properly described with the pendulum equation enables us to explain the laser gain, saturation, and
coherent electron beam modulation. It is described, complete with informative phase space plots, in the
textbook [84]. A tutorial is also available [85].

4.3.2 Ponderomotive phase
Let’s consider a plane wave travelling in the same direction as the electron, with its electric field in the
trajectory plane. This wave can be the stored spontaneous emission in the optical cavity. The electrons
in a vertical magnetic field of a planar undulator are submitted to the electric field

−→
El given by

−→
El =

El cos (ks− ωt+ φ)−→es propagating along the direction s, with φ the phase of the monochromatic plane
wave with respect to each single electron. The work ∆W between the times t1 and t2 is given by

∆W = e

∫ t2

t1

c
−→
β .
−→
Eldt. (35)

The energy exchange only takes place via the transverse component of the velocity, so the vertical
magnetic field efficiently couples the electrons and the radiation. Using βx = Ku

γ sin(kus):

∆W =

∫ t2

t1

eKuEl

γ
sin (kus) cos (ks− ωt+ φ)dt. (36)

Using s = cβst, kus = ωuβst, ks = ωβst, and defining ∆Ω1 = (ωuβs + ω(1 − βs)) and
∆Ω2 = (ωuβs − ω(1 − βs)), after some trigonometry we have: ∆W =

∫ t2
t1

eKuEl
2γ (sin (∆Ω1t+ φ) +

sin (∆Ω2t− φ))dt. A wave beating with two frequencies ωuβs ± ω(1− βs) takes place.
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The so-called ponderomotive phase ψ, i.e. the phase of the nth harmonic of the electron wiggles
with respect to the wave, is introduced as

ψ = (nku + k)s− ωt. (37)

The energy exchange due to the ponderomotive phase ψ is developed at first order, resulting in
∆W = −

∫ t2
t1

eKuEl
2γ (sin (ψ + φ− (n− 1)kus)− sin (ψ + φ− (n+ 1)kus)dt.

Provided that the energy changes slowly compared with the period of an undulator, the longitudinal
motion can be expressed as the sum of the fast term along the s direction at twice the pulsation and the
slow evolution s̃ caused by the FEL interaction, according to s = s̃+sw where the mean motion satisfies
〈βs〉 = 1− 1

2γ2
(1 + K2

u
2 ) in which the energy γ varies along the length of the undulator. To first order in

1
γ2

, the longitudinal oscillation can be written as sw = K2
uλu

16πγ2
sin (2ωut) = K2

u
8γ2ku

sin (2kus̃). The phase
can be expressed as

ψ = ζ + ψw, (38)

with ψw = K2
uk

8γ2ku
sin (2kus̃) and ζ = (nku + k)s̃− ωt. The ponderomotive phase evolves as

dζ

dt
= (nku + k)

ds̃

dt
− ω = (nku + k)

(
1− 1 + K2

u
2

2γ2

)
c− kc = nku − nku

(
1 + K2

u
2

2γ2

)
c− k1 + K2

u
2

2γ2
c.

Since nku � k, it becomes
dζ

dt
= nkuc− k

1 + K2
u

2

2γ2
c.

Then ψ given by ψ = ζ + ψw is inserted into the energy exchange expression, leading to

∆W = −
∫ t2

t1

eKuEl

2γ
(sin (ζ + ψw + φ− (n− 1)kus̃)− sin (ζ + ψw + φ− (n+ 1)kus̃)dt. (39)

4.3.3 FEL resonance
The plane wave travelling in the same direction as the electron is shown in Fig. 21. The electron is
resonant with the light wave of wavelength λr if, when the electron progresses by λu, the wave has
travelled λu + λr or more generally, with n being an integer, by λu + nλr.

The travel times of the electron and the photon can be written as λu
vs

= λu+nλr
c , so

λr =
λu

n

(
1

βs
− 1

)
=
λu

n

(1− βs

βs

)
= λu

1− β2
s

βs(1 + βs)
.

In the planar undulator case, with βs ≈ 1 and 1− β2
s = 1

γ2
+ K2

u
γ2

, the resonant wavelength becomes

λr =
λu

2nγ2
(1 +

K2
u

2
) (40)

and in the helical undulator case

λr =
λu

2nγ2
(1 +K2

u). (41)

The infrared spectral range can be reached with reasonable beam energies. The resonance can
also be scanned either by changing the electron beam energy or by modifying the magnetic field of the
undulator.
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+ λ   /vu s
to

λ

uλ

Fig. 21: Undulator resonance condition: when the electron progresses by λu, the wave has travelled by λu + λ, to
is the time origin, vs is the longitudinal velocity of the electrons.

The resonance is generalized for the electron phase to be stationary dζ
dt = 0, it leads to the expres-

sion of the resonant energy given by the undulator γr,

γ2
r =

1

2n

(
1 +

K2
u

2

)
λu

λ
=

1

2n

(
1 +

K2
u

2

)
k

ku
. (42)

One considers electrons with a relative energy difference with respect to the resonance given by

η =
γ − γr

γ
. (43)

4.3.4 Pendulum equations
Let us consider now the phase given by

ζ = (nku + k)s̃− ωt. (44)

It evolves as

dζ

dt
= (nku + k)

ds̃

dt
− ω = (nku + k)

(
1− 1 + K2

u
2

2γ2

)
c− kc = nku − nku

(
1 + K2

u
2

2γ2

)
c− k1 + K2

u
2

2γ2
c.

Since nku � k, it becomes dζ
dt = nkuc− k 1+

K2
u
2

2γ2
c. Then, using 1 + K2

u
2 = γ2

r 2nkukr , one finds

dζ

dt
= nkuc− nkuc

γ2
r

γ2
= nkuc

(
1− γ2

r

γ2

)
= nkuc

(γ − γr)(γ + γr)

γ2
= 2nkuc

(γ − γr)

γ
.

It then becomes
dζ

dt
= 2nkucη. (45)
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With the Lorentz equation dγ
dt = e

−→
E .−→v
moc2

, one gets

dγ

dt
= −eElKu

2γmoc

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

sin (ζ + φ).

So
dη

dt
= − eElKu

2γ2moc
[JJ ] sin (ζ + φ). (46)

Combining the two equations:

d2ζ

dt2
= 2nkuc

dη

dt
= −2nkuceElKu

2γ2moc
[JJ ] sin (ζ + φ) =

ne2ElBu

γ2m2
oc

[JJ ] sin (ζ + φ).

Noting that

Ω =
e

γmo

√√√√nElBu

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

c
(47)

we find that
d2ζ

dt2
= −Ω2 sin (ζ + φ). (48)

There is a close analogy with the pendulum equation d2θ
dt2

+ g
` sin θ = 0, where g is acceleration

due to gravity, ` is the length of the pendulum, and θ is the displacement angle. The analogy of θ is ψ, the
phase of an electron with respect to the superposition of the optical and undulator fields. The pendulum
equation is a non-linear differential equation, with an analytic solution using time-dependent elliptical
Jacobi functions.

The electrons are submitted to the free electron laser sinusoidal ponderomotive potential given
by −Ω cosψ. It has the form of the potential of a pendulum, in which ψ is the angle of the pendulum
at its equilibrium position. One usually represents the energy evolution in the energy phase space, as
illustrated in Fig. 22.

Fig. 22: Electron trajectories in energy phase space representation. The vertical axis represents the deviation with
respect to resonance, the horizontal axis the electron phase with respect to the ponderomotive potential. Green:
open trajectories with energy oscillations. Orange: closed trajectories of particles by the ponderomotive potential.
Maximum kinetic energy is given to/taken from the optical wave for half a rotation, i.e. for highest and lowest
positions.

The initial phase of the electron is simply given by its position along the electron bunch, this
determines its energy variation and thus its bunching. The electrons enter the undulator with a specific
phase. On resonance γ = γr, i.e. η = 0, there is no energy transfer. Near resonance, the optical
wave and the electrons exchange energy, the electrons gather around positions for which the energy
variation δγmoc

2 keeps a constant sign. The modulation depends on the electric field of the wave.
Above resonance (γ > γr), there is a net positive energy transfer from the electron beam to the optical
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wave. Positive energy exchange (gain) or negative one (absorption) occurs η 6= 0 depending on the sign
of η.

At small amplitudes, with the approximation sinψ = ψ, one gets the harmonic oscillator case. The
equation can be analytically solved only assuming Ω small, i.e. for low amplification since Ω ∝ √El.
With increasing angular momentum, the motion becomes unharmonic. The trajectories are closed, inside
the ‘bucket’. The closed motions correspond to oscillations of the pendulum. When trapped in the
ponderomotive field −Ω2 cosφ, the particles bounce back and forth on the borders of the potential, and
rotate in phase space. Trapped particles undergo oscillations in the buckets of the potential. The closed
trajectories in phase space correspond to those of an oscillating pendulum around its equilibrium position.

Above the peaks of the potential, at very large angular momentum, the motion becomes un-
bounded, the trajectories are open (green), and the movement corresponds to a complete rotation of the
pendulum around its pivot. The particles can follow open trajectories from one potential well to another:
they present oscillations in energy and an evolving phase. They can also be trapped in the ponderomotive
field −Ω2 cosφ, and rotate in phase space.

4.3.5 First-order energy exchange and bunching
4.3.5.1 First-order energy exchange

In the case of the optical wave resonant to the undulator wavelength, i.e. if the pulsation of the incident
wave is equal to the resonant wavelength, which means for ω = βsωu

1−βs , ∆Ω2 = 2ωuβs and ∆Ω1 = 0.
The work integrated over one undulator period, i.e. between t1 = 0 and t2 = λu

βsc
is

∆W = −
∫ t2= λu

βsc

t1=0

eKuEo

2γ
(sin (φ) + sin (2βsωut− φ))dt = 0.

The work due to the force applied by the electric field averaged over one undulator period is zero. For
λ = λr, there is no average energy exchange at first order: half of the electrons gain energy, half of them
loose energy.

In the case of an optical wave slightly detuned with respect to the undulator wavelength, using
k
kr

= 4nγ2
r

1
2+K2

u
, the oscillatory term of the phase becomes

ψw =
K2

u

8γ2
4nγ2

r

1

2 +K2
u

sin (2kus̃) = n

(
γr

γ

)2 K2
u

4 + 2K2
u

sin (2kus̃) = nξ sin (2kus̃),

where ξ is defined by

ξ =
K2

u

2(2 +K2
u)

(
γr

γ

)2

. (49)

The phase then becomes
ψ = ζ + nξ sin (2kus̃). (50)

The electron phase ζ contains only the slowly varying part of the s motion s̃, the second term
corresponds to the rapidly oscillatory term. In replacing this new expression of the phase in the energy
exchange expression, the corresponding energy exchange term can be written as

∆W = −
∫ s2

s1

eKuEl

2γ
sin (ζ + φ− (n− 1)kus̃+ nξ sin (2kus̃))

− sin (ζ + φ− (n+ 1)kus̃+ nξ sin (2kus̃))dt.
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On expanding the sines, it becomes




sin (ζ + φ− (n− 1)kus+ nξ sin (2kus̃))

= sin (ζ + φ) cos (nξ sin (2kus̃)− (n− 1)kus̃) + cos (ζ + φ) sin (nξ sin (2kus̃)− (n− 1)kus̃)

− sin (ζ + φ− (n+ 1)kus+ nξ sin (2kus̃))

= − sin (ζ + φ) cos (nξ sin (2kus̃)− (n+ 1)kus̃)− cos (ζ + φ) sin (nξ sin (2kus̃)− (n+ 1)kus̃).

Assuming that the energy γ and the light wave electric field El change slowly, one can average the
oscillating terms over one undulator period. The second and fourth terms then vanish by symmetry. The
average of the first and third terms is performed using the integral representation of the Bessel functions
of order m and of variable z [86] given by

Jk(z) =
1

2π

∫ 2π

0
cos (z sin θ − kθ)dθ. (51)

For k equal to half an integer, the integral vanishes by symmetry. Using θ = 2kus̃, z = nξ, and
m = n−1

2 or m = n+1
2 , it becomes

∆γ = −eElKuNuλu

2γmoc2

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

sin (ζ + φ). (52)

This expression gives zero for even m values. This recalls the vanishing of the even harmonics of
the spontaneous emission on the axis, while considering that the electron beam average over one period
is parallel to the undulator axis. In the slow varying phase φ and electric field El approximation, these
functions can be estimated in using their values for s̃.

Besides, the homogeneous width of the spontaneous emission is given by 1
nNu

. This spontaneous
emission width provides also the non-linear interaction region in the frequency space. By differentiating
the resonance equation, one gets

δγ

γ
=

1

2

δλ

λ
= 0

(
1

2nNu

)
. (53)

Only energies within a relative difference 1
2nNu

can play a role. At a low-order derivation, the
energy exchange can be written as

∆γ = −eElKuNuλu

2γrmoc2

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

sinc(πNuη) sin (ζ + φ), (54)

with η the relative energy difference and ξ given by ξ = K2
u

2(2+K2
u)

.

The sign of the ∆γ depends on the phase ζ + φ between the electron and the optical wave. If
one electron is accelerated, i.e. for ∆γ > 0, another electron located longitudinally one-half wavelength
ahead or behind is decelerated by the same amount ∆γ < 0. The longitudinal distribution of the elec-
trons being much wider than the wavelength, the phase φ is uniformly distributed between 0 and 2π.
In consequence, the first-order net energy exchange 〈∆γ1〉electrons between the electron bunch and the
optical wave is zero over the electron bunch:

〈∆γ1〉electrons = 0. (55)

For the interaction to occur, λ should be slightly different from λr: for λ > λr amplification occurs
(gain and beam deceleration) whereas for λ < λr the optical wave is absorbed (the beam is accelerated).
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4.3.5.2 Root-mean-square energy variation

The root-mean-square (RMS) energy variation, averaged over the electrons, can be expressed as

〈∆γ2〉 =
1

2

(
eKuNuλu

2γrmoc2

)2

〈El〉2
[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]2

sinc2(πNuη) (56)

where 〈El〉2 is the average of the square of the electric field over the electron beam. The electrons,
after propagation, are then accelerated or decelerated by energy enhancement or loss. This leads to a
longitudinal spatial modulation, known as ‘electron bunching’ or ‘electron microbunching’. Electrons
are bunched around a phase ψ+φ, multiple of 2π. The electronic density is then modulated with a period
equal to the resonant wavelength. The electrons are put in phase, the elementary oscillators are set in
coherence. This bunching is similar to the one taking place in the klystron, as introduced earlier. On a
planar undulator, the bunching also occurs at the odd harmonics of the resonant wavelength. This is the
basic concept for ‘coherent harmonic generation’ [81–83].

4.3.5.3 Ponderomotive field

Considering the energy exchange given by dγ
dt = − eElKu

2γmoc

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

sin (ζ + φ) and in con-

sidering the analogy with the interaction of an electron with an axial electric field according to dγ
dt =

− e
moc

βsEp with Ep the so-called ponderomotive field, one gets

〈Ep〉 = −ElKu[JJ ]

2γ
sin (ζ + φ) with [JJ ] =

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]
. (57)

The corresponding electron potential is Vp = e
∫ t

0 〈Ep〉ds′. The electrons behave as though they
were particles in a sinusoidal potential given by −Ω cosψ, or the so-called ponderomotive potential of
the free electron laser. When in the potential the particles bounce back and forth on the borders of the
potential. Particles undergo trapped oscillations in the buckets of the potential, as shown in Fig. 23.
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< ∆γ1 >electrons= 0 (88)

2.1.5 RMS energy variation

However, the RMS energy variation, averaged over the electrons, can be expressed as :

< ∆γ2 >=
1
2

�
eKuNuλu

2γrmoc2

�2

< El >2
�
Jn−1

2
(ξ )− Jn+1

2
(ξ )
�2

sinc2 (πNuη) (89)

where < El >2 is the average of the square of the electric field over the electron beam. The electrons after
propagation are then accelerated or deccelerated by energy enhancement or loss. It leads to a longitudinal spatial
modulation, known as "electron bunching" or "electron microbunching". Electrons are bunched around a phase
ψ + φ , multiple of 2π . The electronic density is then modulated with a period equal to the resonant wavelength.
The electrons are put in phase, the elementary oscillators are set in coherence. This bunching is similar to the
one taking place in the klystron, as introduced earlier. On a planar undulator, the bunching also occurs at the odd
harmonics of the resonant wavelength. This is the basic concept for "Coherent harmonic Generation"[64].

2.1.6 Ponderomotive field

The energy exchange expression is given by :

dγ
dt

=− eElKu

2γmoc

�
Jn−1

2
(ξ )− Jn+1

2
(ξ )
�

sin(ζ +φ) (90)

One notes :

[JJ] =
�
Jn−1

2
(ξ )− Jn+1

2
(ξ )
�

(91)

In making the analogy with the interaction of an electron with an axial electric field according to dγ
dt =− e

moc βsEp
with Ep the so-called ponderomotive field, one gets :

< Ep >=−ElKu[JJ]

2γ
sin(ζ +φ) (92)

The corresponding electron potential is Vp = e
� t

0 < Ep > ds�.
The electrons behave as though they were particles in a sinusoidal potential given by−Ω cosψ , or the so-called

ponderomotive potential of the free electron laser. When in the potential, the particles bounce back and forth on
the borders of the potential. Particles undergo trapped oscillations in the buckets of the potential (see in Fig. 13).

Fig. 13: Ponderomotive potential
Fig. 23: Ponderomotive potential

4.3.5.4 Bunching process

Some electrons gain energy, others loose energy. The average longitudinal velocity is changing along the

propagation in the undulator. From β̃s
2

= 1− 1+
K2

u
2

γ2
, one gets ∆βs ≈ (1 + K2

u
2 )∆γ

γ3
.

The energy variation averaged over the phases is zero at first order in El. An individual electron
with a phase φ gains or loses energy, so its position relative to the unperturbed s = ṽt position is advanced
or retarded. Because the amplitude of the interaction only depends on the longitudinal position of the
electron in the electron bunch with periodicity λr, the electrons tend to bunch along given positions,
separated by λr. This bunching (λr separation) takes place by velocity modulation (electrons set in
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phase). As for the klystron, the electrons tend to gather around preferred positions separated by the
resonant wavelength λr.

One first replaces the energy exchange in the longitudinal velocity variation for n = 1, and we get

∆βs = −D(cos (∆Ω2s/ṽs + φ)− cosφ) with D =
(1 + K2

u
2 )

γ4

eElKu[JJ ]

2 moc∆Ω2
(58)

with ∆Ω2 = ωuβs − ω(1− βs). Then one evaluates the longitudinal position as

s(t) =

∫ t

0
vs(t

′)dt′ =
∫ t

0
(ṽs + c∆βs)dt

′ = ṽst− cD
∫ t

0
(cos (∆Ω2t

′ + φ)− cosφ)dt′

s(t) =

∫ t

0
vs(t

′)dt′ = ṽst− cD
[

(sin (∆Ω2t+ φ)− sinφ)

∆Ω2
− t cosφ

]
. (59)

One finds here the longitudinal bunching, as seen in the klystron case. It is illustrated in Fig. 24.
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2.2 Bunching process

Some electrons gain energy, some other loose energy. The average longitudinal velocity is changing along the

propagation in the undulator. From β̃s
2
= 1− 1+

K2
u
2

γ2 , one gets :

2βs∆βs = (1+
K2

u

2
)

2∆γ
γ3

∆βs ≈ (1+
K2

u

2
)

∆γ
γ3 (93)

Using [JJ] =
�
Jn−1

2
(ξ )− Jn+1

2
(ξ )
�
, the energy exchange expression is given by :

dγ
dt

=−eElKu[JJ]

2γmoc
sin(ζ +φ) (94)

∆γ(s,φ) =−eElKu[JJ]

2γmoc

� s/ṽs

0
sinξ �dξ � =

eElKu[JJ]

2γmoc∆Ω2
(cos(∆Ω2s/ṽs +φ)− cosφ) (95)

The energy variation averaged over the phases is zero at first order in El . An individual electron with a phase
φ gains or looses energy, so its position relative to the unperturbed s = ṽt position is advanced or retarded. A
bunching of the electrons takes place.

One first replaces the energy exchange in the longitudinal velocity variation for n = 1, as follows :

∆βs =−(1+
K2

u

2
)

1
γ4

eElKu[JJ]

2 moc

� s/ṽs

0
sinξ �dξ � =

(1+ K2
u

2 )

γ4
eElKu[JJ]

2 mocΩ2
(cos(∆Ω2s/ṽs +φ)− cosφ)

∆βs =−D(cos(∆Ω2s/ṽs +φ)− cosφ) with D =
(1+ K2

u
2 )

γ4
eElKu[JJ]

2 moc∆Ω2
(96)

Then one evaluates the longitudinal position as :

s(t) =
� t

0
vs(t �)dt � =

� t

0
(ṽs + c∆βs)dt � = ṽst− cD

� t

0
(cos(∆Ω2t �+φ)− cosφ)dt �

s(t) =
� t

0
vs(t �)dt � = ṽst− cD[

(sin(∆Ω2t +φ)− sinφ)

∆Ω2
− t cosφ ] (97)

One finds here the longitudinal bunching, as seen in the klystron case. It is illustrated in Fig. 14.

Fig. 14: Electron bunching due to the electron / optical wave interactionFig. 24: Electron bunching due to the electron/optical wave interaction

One uses now the expression of the longitudinal position of the electron in the electric field ex-
pression. It becomes

El(t) = El cos (ks− ωt+ φ) = El cos

(
kṽst−

kcD

∆Ω2
[sin (∆Ω2t+ φ)− sinφ−∆Ω2t cosφ]− ωt+ φ

)
.

(60)

One defines the phase slippage ∆φ as

∆φ = − ωD

∆Ω2
[sin (∆Ω2t+ φ)− sinφ−∆Ω2t cosφ] (61)

∆Ω2 is given by ∆Ω2 = ωuβs − ω(1 − βs) . Using 1 − 〈βs〉 = 1
2γ2

(1 + K2
u

2 ) = λr
λu

= ωu
ωr

, i.e.
ωu = ωr(1− βs), it becomes ∆Ω2 = ωuβs − ω ωu

ωr
. With βs ≈ 1

∆Ω2 = ωu

(
1− ω

ωr

)
. (62)

Considering this electron bunching will enable us to evaluate the second-order energy exchange.

4.3.6 Second-order energy exchange
The second-order energy exchange is calculated using in the energy exchange expression the electric
field expression taking into account the density modulation of the electron beam.

For a low electric fieldEl and low gain, ∆φ is close to 0, and one develops sin (∆Ω2t− φ−∆φ) =
sin (∆Ω2t− φ)−∆φ cos (∆Ω2t− φ). One then averages over all phases φ and it remains as
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〈dγ
dt
〉φ =

b

2
(− sin (∆Ω2t) + ∆Ω2t cos (∆Ω2t)) with b = −eElKu[JJ ]ωD

2γmoc∆Ω2
. (63)

In integrating over the electron transit time through the undulator τ = Lu/ṽs, one obtains the
second-order energy change per electron:

〈∆γ2〉φ =

∫ τ=Lu/ṽs

0
〈dγ

dt
〉φdt =

b

2∆Ω2
(2− 2 cos ∆Ω2τ −∆Ω2t sin (∆Ω2τ)).

By multiplying by τ3, replacing (1 +K2
u/2) = 2γ2λ/λu, b, and D, one gets

〈∆γ2〉φ =
e2π

2m2
oc

4

K2
u

λu
[JJ ]2E2

l

L3
u

γ3

(2− 2 cos ∆Ω2τ −∆Ω2τ sin (∆Ω2τ))

(∆Ω2τ)3
. (64)

Let us define the function g(x) by g(x) = 2−2 cosx−x sinx
x3

. The function g(x) is antisymmetric in
x and has a maximum of 0.135 at x = 2.6.

Multiplying by τ3, replacing (1 +K2
u/2) = 2γ2λ/λu, b, and D, one gets

〈∆γ2〉φ =
e2π

2m2
oc

4

K2
u

λu
[JJ ]2E2

l

L3
u

γ3

(2− 2 cos ∆Ω2τ −∆Ω2τ sin (∆Ω2τ))

(∆Ω2τ)3
. (65)

4.3.7 Gain
4.3.7.1 Gain expression in the low gain regime

The optical wave is the FEL spontaneous emission given by the synchrotron radiation emitted by the elec-
trons passing through Nu periods of the undulator and stored in an optical cavity, as shown in Fig. 25,
where the electron bunching is indicated. The mirrors of the optical resonator perform the optical feed-
back, such that the light pulse performs multiple passes in the cavity. The gain is evaluated for small
variations of the optical field.

!

"

1

2  

!

"

Fig. 25: FEL configuration with an optical cavity: the energy exchange between the optical light (initially the
spontaneous emission stored in the optical cavity) and the electrons is then transformed into density modulation
while the electron progress is due to velocity bunching. This results in a microbunching of the electrons which can
then emit coherently in phase with the optical wave that gets amplified.

The first-order energy exchange averaged over the electrons is zero. The second-order energy
exchange 〈∆γ2〉 averaged over phases with the bunched electron distribution has been calculated. The
change in electromagnetic power ∆P is given by
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∆P = −I
e
moc

2〈∆γ2〉. (66)

For a small variation of the optical field, the gain G per pass can be expressed as the second-order
energy exchange divided by the incident field energy, according to

G =
mocI〈∆γ2〉
eεo
∫
E2

l dS
=
moc

2ρe〈∆γ2〉
1
2εoE

2
l

(67)

where εo is the vacuum permeability, ρe the electronic density in the volume, the radiation field being
integrated over the longitudinal coordinates. The small signal gain is given by

G =
2πe2

εomoc2
ρe
K2

u

λu

(
Lu

γ

)3 [
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]2 ∂

∂γ

(
sin (πNuη)

(πNuη)

)2

. (68)

For the interaction to occur, λ should be slightly different from λr. For λ > λr amplification
occurs (gain and beam deceleration) whereas for λ < λr the optical wave is absorbed and the beam is
accelerated. Depending on the sign of (λ − λr), the optical wave is either absorbed to the benefit of
a gain of kinetic energy of the electrons, or is amplified to the detriment of the kinetic energy of the
electrons. The electrons are bunched and are in phase with the incident electric field. The emission from
the bunched beam then adds coherently to the incident wave that gets amplified.

The small signal gain varies as 1/γ3. The higher the energy, the lower the gain. Since short wave-
length operation requires the use of high electron beam energies (because of the resonance condition),
for the same undulator length, the gain is smaller at short wavelengths than at longer ones. The gain is
proportional to the electronic density (thus to the beam current I). The more electrons interact, the larger
the gain. For short wavelength FELs where the gain is naturally small, one should employ beams with
high electronic densities.

The gain is also proportional to the third power of the undulator length. The longer the undulator,
the higher the gain up to certain limits that are given by the gain bandwidth (1/nNu, because of the
interference nature of the interaction), and by the slippage (temporally, the light pulse should remain
in the longitudinal bunch distribution for the interaction to occur). So the number of undulator periods
cannot be excessively large. Similarly, both the optical light and electron bunch should overlap properly
all long the undulator propagation.

4.3.7.2 Madey’s theorems

Remarkably, the gain is the derivative of the spontaneous emission, as understood thanks to the Madey
theorems [60, 87]. They are given by

dΦ

dΩ
(θ = 0) =

2αm2
oc

4I〈∆γ2〉
e2λ2〈E2

l 〉
, (69)

〈∆γ2〉 =
1

2

∂〈∆γ2〉
∂γ

, (70)

with α the fine structure constant, I the beam current, dΦ
dΩ(θ = 0) the angular spectral flux on axis of

the undulator spontaneous emission. The first theorem relates the energy spread 〈E2
l 〉 introduced by

the optical wave to the spontaneous emission of the undulator. According to the second theorem, the
second-order energy exchange 〈∆γ2〉 is proportional to the derivative of the spontaneous emission of the
undulator. Due to the resonance relationship linking the particles energy to the emission wavelength, the
spectral ‘gain’ distribution is close to the wavelength derivative of the spontaneous emission spectrum
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versus λ. The Madey theorem is valid for a gain smaller than 0.2. The gain can be expressed as the
derivative of the undulator spontaneous emission.

4.3.7.3 Gain correction terms

Gain corrections terms should be introduced.

The transverse filling factor Ff accounts for a non-perfect transverse overlap between the laser
transverse modes and the transverse dimensions of the electron beam σx and σz. For a laser of TEM00

mode of waist wo, it is given by Ff = 1√
1+( wo

2σx
)2
√

1+( wo
2σz

)2
. The filling factor has been calculated using

Gaussian spherical wavefronts of the optical wave, leading to a deviation from the Madey’s theorems,
and a new optimization of the energy extraction [88], as shown in Fig. 26.

D. NutareNi et al. / Nucl. Instr. and Meih. in Phys. Res. A 393 (19971 64-69 65 

Table I 
Storage ring and optical resonator features for several SRFEL 
facilities 

Super-AC0 VEPP3 UVSOR NIJ14 

Storage ring and spontaneous emission 
E (MeV) 800 350 500 311 
X.Y 0.5 0.35 1.21 0.45 
z1 0.5 0.35 0.18 0.45 
0SE.x, 530 300 511 4.10 
BSEy (p rad) 530 300 681 - 
h (nm) 350 250 455 352 
W,.X. 289 265 283 273 
KS’,~ (Gun) 193 265 212 213 
Y,,, (%I I 3.8 2.5 0.75 - 
<1/, I “‘5 1 2.1 1.7 0.55 -. 

Optical resonator 

L(m) 18 18.7 13.3 14.8 
R Mb frOnt 10 10 8 8.5 
R,,,, (m) 10 10 6 8.5 
Losses (RX) I 0.8 0.3 - 
HTEM,O (prad) 193 179 308 198 
%TEh& (pm) 578 446 470 565 

1 
Note: Here fJsE = ,, (1 + K’/Z)/N, with y the Lorenz parameter 

of the electron beim, K the strengh of the undulator and N the 
number of undulator periods, is the divergence of the SE and 
u’,..,,~ = j,‘nO,, is the initial x, y transversal dimension of the SE. 

3. The filling-factor for the super-AC0 FEL 

Using a simple model, Ff can be expressed as [63 

Ff=fi_-L_ 
;T=y y’l + (IV/2aJ” 

(1) 

with ~1~ and gi respectively. the optical mode waist and 
the electron-beam tranverse size. Nevertheless, the 
Colson-Elleaume model [l] shows that this relation is 
not correct when w/a ---) 0. Fig. 1 shows how Ff varies 
with the dimensionless parameters Wi = Wi ,,/G 
and Ci = 0; ,J”%, and it can be expressed by the 
empirical formula 

) 

Ff=urI Jw, 
i =h( l  +bW~) JGTJZ$'  

(2) 

the coefficients a, b and c being reported in Table 2 for 
several values of C. Eq. (2) can be further normalized with 
respect to the parameters which depends on u (because it 
is constant for our treatment): 

0.8 

0.6 

ii 
0.4 

0.2 

Filling-factor VB W --b %024 

0 0.5 I 1.5 2 2.5 3 3.5 4 
W 

Fig. 1. Filling-factor variation depending on dimensionless 
parameters X and W, for a round transversal shape of the 
electron beam. deduced from the Colson- Elleaume model. 

Table 2 
Values of the fitting parameters, used in the empirical formula of 
Ff depending on W. corresponding IO a several values of the 
dimensionless parameter C. The Super-AC0 case correspond to 
X = 0.5 and the parameters have been obtained with an interpo- 
lation between Z = 0.35 and Z = 0.71 

z 

0.071 3.0197 1.303 0.1560 
0.14 3.0062 1.272 0.1532 
0.24 2.6920 1.123 0.1524 
0.35 2.6358 0.9472 0.1528 
*0.5 2.1689 0.5900 0.1845 
0.71 2.0402 0.5064 0.1930 
1.41 I.6681 0.2578 0.3983 
2.35 1.5264 0.1757 0.948 1 

u h I’ Correlation 
coefficient 

0.99779 
0.99844 
0.99866 
0.99825 

0.99354 
0.92394 
0.9 I290 

so the gain can be expressed by g = goFfN with q,, the 
normalized maximum gain which is reported in Table 1. 

4. Propagation in the optical cavity and dynamical 
Filling-factor 

The evolution of the transverse profile of the spontan- 
eous emission stored in the optical cavity has been nu- 
merically simulated (C code) using Gaussian beam 
propagation [7]. The evolution of the complex radius of 
the Gaussian beams, 4 = z + in,, with z the position with 
respect to the beam waist position and zR the Rayleigh 
length, is described by 

Ff,=ufi 8 
,:,(l + hW:)’ 

(3) q(n) = 
Aq(n - 1) -t B 
Cq(n-l)+D' (4) 

II. STORAGE RING FELs 

Fig. 26: Filling factor in the case for Gaussian optical beams for different values of the normalized waist Wi =

wi
√

π
λLu

and electron beam transverse sizes Σi = σi
√

π
λLu

. from [89].

Besides, according to the Madey’s theorem, spontaneous emission inhomogeneous broadening
(presented in 2.3.3.2) due to energy spread and emittance affect directly the gain. The inhomogeneous
reduction factor Finh is

Finh =
[
1 +

(∆λ
λn

)2
σγ

(∆λ
λn

)2
hom

]−1
.
[
1 +

(∆λ
λn

)2
div

(∆λ
λn

)2
hom

]−1
.
[
1 +

(∆λ
λn

)2
σ

(∆λ
λn

)2
hom

]−1
.

The longitudinal overlap between the electron bunch of RMS length σl and the optical wave should
be maintained. The light wave is in advance by Nuλ with respect to the electrons, and for short electron

bunch distributions, it could escape. The corresponding correction factor Fg is Fg =
[
1 + Nuλ

σl

]−1
.

The small signal gain can be expressed as

G =
2πe2

εomoc2
ρeFfFinhFg

K2
u

λu
(
Lu

γ
)3
[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]2 ∂

∂γ
sinc2(πNuη), (71)

G = n
π2roλ

2
uN

3
uK

2
u

γ3
FfFinhFgρe

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]2 ∂

∂γ
sinc2(πNuη), (72)

with ro = 1
4πεo

e2

moc2
the classical radius of the electron (2.82× 10−15).
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4.4 The classical approach in the moving frame
In such an approach, developed in Italy [90, 91] in particular by Alberto Renieri (seventh FEL Prize
in 1994) and Guiseppe Datttoli (seventh FEL Prize in 1994), the Weizsäcker–Williams approximation,
still valid for ultra-relativistic electrons, is used. The FEL corresponds to a stimulated scattering process
from the so-called ‘pseudo-radiation field’ into a true radiation field travelling in the same direction as
the electron beam. The FEL modelled by a stimulated Thomson scattering process is described using the
Hamiltonian formalism [90].

The selected frame is a moving one [91], “chosen in such a way that the periodic structure trans-
forms into a (pseudo) radiation field whose frequency coincides with the frequency of the stimulating
field”. This frame choice presents different advantages.

– “The physical processes of scattering from one field to the other and vice versa become apparent.
Indeed, in that frame, the two fields are treated on the same step, although they are quite different
in the laboratory frame.”

– “Relativistic calculations can be avoided. In fact, in that frame, the electrons have non relativistic
velocity, and the momentum exchanged with the fields is not sufficient to give the electrons a
relativistic velocity.”

– “In the limit in which the laser operation can be described in terms of ensemble averages over
independent single particles, it becomes possible to follow the history for each electron in the field
with simple equations of motion.” [91]

This FEL description in the moving frame reduces to the pendulum equations, which are not
Lorentz invariant and are valid in that frame only. A quantum mechanical density matrix description of
the system is able to conciliate this approach with the one proposed by Hopf. A Hamiltonian completes
the overall description of the process.

Under the approximation that the electrons do not contribute much to the laser intensity and fol-
low adiabatically the field, the FEL evolution can be described by the pendulum equations. Figure 27
shows the phase space plots, with W scale momentum, Ω interaction frequency, ψ interaction phase,
“essentially the position coordinate canonical to W ” [91].

A. BAMBINI, A. RKNIERI, AND S. STKNHOLM

p(g„W ) =(1/2m) 5(W, -'W ). (4.6)
The gain is determined by the shift of the average
momentum from W, after the interaction time,
namely,

Q= — d odSoP oyW'0 W ~ oyW'0 -Wo

harmonically with frequency Q. From (4.4) follows
that this basic rate of change depends on the laser
amplitude as Q ~E~ ' which provides the mechan-
ism for saturation.
Figure 2 shows the well-known phase-space

trajectories of the pendulum. T%'o types of motion
occur, the closed paths with periodic motion in
both W and g (region I) and those where W is still
periodic but g increases steadily with time (region
II). The two regions are separated by a separatrix
on which the motion is aperiodic in both W and )I).
This depends on the value of.the laser intensity
through the parameter 0'eE~; when this increases
the region I grows and occupies a larger area in
the phase plane. Given an initial distribution of the
electron ensemble over the phase plane, the behav-
ior of the laser operation will change when this is
transferred from region II into region I.
We assume a sharp initial momentum distribution

for the electrons centered around +;= 8'0 but a. to-
tally unspecified initial phase go. Then the proper-
ly normalized initial distribution of the assembly
of electrons is given by

assembly after the interaction has taken place.
This can be obtained by summing the measure of
all those values |()o which lead to a, given momen-
tum W'. This is achieved by writing

p(w, w„, .) = f n(w-w) ',
where

(4.8)

(4.9)
is the final momentum of the electron having the
initial coordinates go and W, . Inverting this re-
lation to give

to=to(& Wo W} (4.10)

and changing the variable of integration in (4.8) we
find

P(W, Wo, v) = — 5(W -W) o dW

2~ dT d, (4.11)

where the initial phase is eliminated by the use of
(4.10) with W =W to give the distribution function
in W with W, and o as parameters. Relation (4.11)
has already been used to evaluate the distribution
numerically'; the perturbation treatment of Sec. V
allows us to obtain analytical expressions for these
quantities of interest for the FEL.

'W» OWO-&0- (4. I) V. UNSATURATED MOMENTUM DISTRIBUTION

RE EGION I

PARATRlX

Another quantity worth evaluating is the dis-
tribution of the final momentum over the electron

The adiabatic equations for the FEL describe the
laser operation as a pendulum motion, which pro-
vides gain until the laser amplitude grows large
enough to smear the electron distribution into a
region where the losses cou'nteract the gain and-
the operating point is stabilized.
When saturation effects are neglected we can

obtain analytical expressions, which partly have
been obtained earlier. ' ~ In this section we re-
derive these results partly to prove the consist-
ency with earlier treatments but mainly because
we can display how the ensemble average over the
initial phase is carried out explicitly. It is also
possible to see why the unsaturated gain remains
much smaller than the momentum spread. The
ensuing explicit expression for the momentum
distribution has not been published earlier.
By introducing the initial phase go explicitly into

Eqs. (4.5}, we write
dW =0' sin(g —(I)o),

F&G. 2. Pendulum phase-space trajectories.
dP
dtFig. 27: Phase space plot of the FEL modelled using the pendulum equation, from [91]: W scale momentum, Ω

interaction frequency, ψ interaction phase, “essentially the position coordinate canonical to W ”.
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It shows two zones.

– Zone I with closed paths for W and ψ.
– Zone II with W with periodic trajectories while ψ increases steadily with time.
– Separatrix with both aperiodic motions of W and ψ, depending on the value of laser intensity

through Ω and its evolution.

The electron motion can then be solved using the Jacobi elliptical functions.

The dimensionless laser intensity is introduced “it measures the ratio of the small-signal oscillation
frequency (Rabi flipping) against the Doppler shift determined by the initial electron momentum” [91]
and enables us to follow the evolution of the gain towards saturation. After this single particle classical
theory, where amplification is due to the single electron stimulated Thomson scattering, the Hamilto-
nian description has been further examined [92] in considering the multiple electron effects [93, 94],
gain-spread expressions [95], and in accounting for self-consistency. FEL pulse propagation and syn-
chronization of the pulses in the optical resonator and the electron bunches in the resonator are examined:
it is found that the ‘lethargy’, i.e. “the slowing down of the laser oscillation in the cavity owing to the
interaction with the electrons” leads to the presence of “supermodes” [96, 97]. An equivalent refractive
index can be defined. The FEL evolution has been described with the logistic function [98].

Different lectures are gathered in textbooks [99, 100].

4.5 Early FEL developments in the former Soviet Union
In Russia, which was quite isolated at that time, development took also place on the FEL. FEL progress
was made independently in Russia and outside.

A meeting was held in December 1980 in the frame of the Academy of Science to discuss the
development of free electron lasers [101]. Different work progress was reported: M. V. Fedorov (Lebedev
Institute) on the different types of FELs, M. I. Petelin, A. A. Kolomenskii, A. A. Ruxadz (Institute of
Applied Physics, Nijni-Novgorod) on the possibility of a mm range FEL on Sinus-4, A. N. Didenko
(Institute of Nuclear Physics in Tomsk) on an undulator experiment on an induction linac and on the use
of ‘Sirius’ synchrotron (500–900 MeV), N. A. Vinokurov (Institute of Nuclear Physics in Novosibirsk)
on the use of the optical klystron on the VEPP3 storage ring, A. A. Varfolomeev and D. F. Zaretskii,
S. P. Kapitsa (Institute of problems of Physics) on a proposition of FEL on a microtron, N. V. Karkov
(Lebedev Institute in Karkhov) on the use of FEL for isotope separation at 16 µm. Prospects for short
wavelength operation and high efficiency FEL were given.

In Novossibirsk, at the Institute of Nuclear Physics (presently called the Budker Institute), the
team was working both on the theory and was also thinking of a test experiment for a storage ring FEL.
In order to enhance the gain, N. A. Vinokurov (fourth FEL Prize in 1991) and A. N. Skrinsky proposed
the optical klystron, a device to artificially enhance the gain. They investigated the maximum power that
could be extracted.

4.5.1 The optical klystron
The optical klystron proposed by N. A. Vinokurov [102–105], represented in Fig. 28, is made of a first
undulator creating the electron energy modulation, a dispersive section of length Ld and peak field Bd

creating a wide wiggler of magnetic field enabling the energy modulation to be transformed into density
modulation, and a second undulator where bunched electrons radiate. Assuming that the undulator seg-
ments and the dispersive section are well compensated, the electrons do not suffer velocity and position
shifts during their travel in the device. The dispersive section acts as a magnetic chicane: the electrons
are more or less deviated in the strong magnetic field according to their energy and become bunched
thanks to a velocity modulation process. The concept of the optical klystron was then explored further
around the world [106–108].
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Fig. 28: Scheme of the optical klystron

The radiation emitted in the two undulator segments interfere, as in the Young slit experiment.
The spectrum is contained in an envelope which corresponds to the spectral line of one single undulator
emission, with an internal fine structure resulting from the interference [107,109]. It can be expressed as

( d2I

dΩdω

)
optical klystron

≈
( d2I

dΩdω

)
one undulator

(1 + f cosαoptical klystron) (73)

with

αoptical klystron = 2π(Nu +Nd)
λr

λ

γ2
r

γ2
. (74)

Here

Nd =
ωLd

4γ2
r c

[
1 +

e2

Ldm2c2

∫

0
Ld

[∫ u

0
Bd(s)ds

]2

du

]
(75)

is the equivalent number of periods of the dispersive section, and scales its strength. (Nu+Nd) represents
the number of optical wavelengths which pass the electron during its travel in the dispersive section.
The fringe contrast, called the modulation rate f , results from different contributions (magnetic field
inhomogeneity, width of energy distribution of the electrons, transverse position of the electron beam),
the main one coming from the electron beam energy spread, as

fγ = exp (−8π2(Nu +Nd)2(σγ/γ)2). (76)

An example of an optical klystron spectrum is shown in Fig. 29.
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Fig. 29: Measured spectrum in the case of the Super-ACO optical klystron (Orsay, France)
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The optical klystron provides a very easy means to measure the energy spread on an electron
beam. Besides, the variation of the intensity in the spectra being much faster than in the single undulator
case, the derivative of the spontaneous emission (proportional to the gain according to Madey’s theorem)
reaches much larger values than for a single undulator of total length Ld.

The gain enhancement for an optical klystron of length Lok is

Goptical klystron =
fL2

ok(Nu +Nd)

N3
uλu

Gone undulator. (77)

The gain enhancement takes place to the detriment of the total saturated power [104–106].

The concept of the multiple optical klystron was further developed [110–112].

4.5.2 The FEL evolution
Independently to Colson’s approach, V. N. Baier and A. I. Milstein investigated the FEL theory in con-
sidering the motion of relativistic particles in the superposition of a transverse magnetic field and a plane
electromagnetic wave propagating along the direction of motion. They could find the small signal gain,
its maximum, and then considered the case of a strong signal in the optical cavity configuration. They
distinguished the case of the initially uniform phase distribution to the bunched one, where phase oscilla-
tions can occur and limit the output power [113,114]. Coherent radiation close to the cyclotron resonance
was also discussed [115]. A. N. Kondratenko and A. I. Saldin (19th FEL Prize in 2006) considered very
early the possibility of production of coherent radiation from a self-instability, without the use of an
optical resonator [116–118]. This pioneering work will be discussed in the high gain section. They also
developed a linear theory of free electron lasers with Fabry–Perot cavities [119].

4.6 Saturation and efficiency
4.6.1 Saturation
Different phenomena contribute to the gain reduction leading to the saturation of the output power.

4.6.1.1 Electron energy loss

If too much energy is taken by the light wave, the resonant condition is no longer fulfilled since the
electron energy is reduced, the electrons consequently slow down. When the optical wave power grows,
an increasing number of electrons are trapped in the ponderomotive potential. When going down in
phase space, the electrons loose kinetic energy to the advantage of the light wave. When they reach
the bottom of the accessible space and cannot give any more energy, the laser saturates. Indeed, the
electrons can even undergo several rotations in phase space before escaping the undulator because of
slippage, while alternately providing to or taking energy from the optical wave. These oscillations are
called ‘synchrotron oscillations’ [120–122]. They induce sidebands in the radiation spectrum. Strategies
for sideband suppression have been examined [123]. While the laser intensity saturates, the gain is
reduced. The electron energy decreases due to the kinetic energy loss enabling FEL amplification [124],
the electron beam energy can also be reduced by the accumulated effects of spontaneous emission along
the undulator, given by ∆γSR

γo
= −1

3reγoK
2
uk

2
uLu, with re the classical electron radius.

4.6.1.2 Increase of energy spread

The electron bunching and interaction via an energy exchange with the optical wave leads to an increase
of the energy spread of the beam, reducing in consequence the gain via the contribution of Finh that
becomes more important. Intuitively, the gain bandwidth (related to the spontaneous emission bandwidth
proportional to the inverse of the number of undulator periods) gets larger because of the inhomogeneous
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contribution and the gain distribution flattens. In consequence, the gain bandwidth and the limits set by
the energy spread, provide a maximum undulator length.

4.6.1.3 Slippage

The slippage can stop the interaction: the electrons travel slightly slower than the photons, and once
at the exit of the undulator, the time difference becomes typically Nuλ

c . For the radiation to not escape
from an electron bunch of duration σl, one can even consider that the radiation advance should remain
in the peak of the distribution: Nuλ

c < σl
10 or Nu <

σlc
10λ . This gives 300 periods for 1 nm radiation, 10 fs

electron bunch, 300 periods, or for 1 µm, 10 ps electron bunch. Slippage thus sets another limit in terms
of undulator length, the electron bunch duration should be larger than Nuλu.

4.6.2 Efficiency
4.6.2.1 Efficiency increase by undulator tapering

Electrons travelling on half the width of the gain curve of 1/2Nu can deliver a relative energy of ∆γ
γ =

1
2

∆λ
λ = 1

4Nu
) of their kinetic energy, the efficiency r becomes

r =
1

4Nu
. (78)

The maximum efficiency is found by considering the total width of the gain curve, which would
lead to r = 1

2Nu
. It is however less realistic because the energy spread effect can limit the process. For

example, for 50 undulator periods, the efficiency is of the order of 0.5%.

If too much energy is taken by the light wave, the resonant condition is no longer fulfilled since
the electron energy is reduced, the electrons consequently slow down. A way to enhance the efficiency
is to control the push further the saturation, i.e. electron trapping in the slow space charge wave. Indeed,
“the nonlinearity of the oscillations of the trapped particle in the potential well of the wave leads to phase
scrambling and finally the particle phase distribution becomes uniform (no bunching). The space-charge
Coulomb forces in the electron bunches and the ripple magnetic field strength can also contribute to beam
thermalization. The wave growth vanishes if the electron distribution is uniform at the phase velocity of
the wave” [125], so it was proposed to increase the intensity of the magnetic field (an exponential profile
was chosen) just before the space charge wave saturates, enabling an increase in the radiation rate [125].

One can delay saturation and let the intensity grow further by adjusting the undulator magnetic
field so that the resonance condition remains fulfilled. Such a configuration of undulator is called a
‘tapered undulator’ either by changing the period [126], proposed by P. Sprangle et al. (fourth FEL Prize
in 1991), or by changing the amplitude of the magnetic field proposed by Kroll [120]. One introduces
a magnetic field dependent on the longitudinal position, as Buz(s), as shown in Fig. 30. Technically,
the change of magnetic field can be done by setting an angle between the girders of the magnetic arrays
on which are located the undulator magnets, or by adopting a variable period [127]. The spontaneous
emission properties of a tapered undulator have been calculated [128].

For a tapered undulator provides a varying magnetic field along the longitudinal direction Buz(s),
the resonance condition can be maintained according to

λ =
λu

2γ2
s

[
1 +

1

2

[eBz(s)λu(s)

2πmoc2

]2
]
. (79)

The efficiency then depends on the number of electrons trapped in the potential well (bucket) and
on the average energy loss of the resonant electrons.
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Fig. 30: Tapered undulator: the magnetic field amplitude depends on the longitudinal position. In the example
here, an angle is set between the two girders supporting the magnet arrays.

4.6.2.2 Efficiency increase by energy recovery on the accelerator

There was also a strong interest to use recirculating accelerators for driving a FEL to recover the electron
from one pass to another, and in particular of storage rings which exhibited good beam quality. The
FEL theory was thus developed by the Italian team in particular, in considering both amplifier [129,
130] and oscillator [131] configurations. The electron beam distribution is modelled using the Fokker–
Planck distribution. The energy spread enhancement and associated bunch lengthening due to the FEL
interaction is kept on several turns. The competition with the anomalous bunch lengthening has also to
be considered [132]. in the case of a storage ring FEL, the average power scales as

P ∝
(

∆σγ
γ

)2

Psync with Psync ∝ IE4. (80)

It provides the limit which can be achieved on a storage ring FEL. It results from the radiative
heating of the energy spread in electrons circulating in the storage ring. It is known as the ‘Renieri’s
limit’. It has been independently found in Novosibirsk by N. A. Vinokurov [104].

4.7 FEL properties
The laser tuneability, one of the major advantages of FEL sources, is obtained by merely modifying the
magnetic field of the undulator in a given spectral range set by the electron beam energy. The polarization
depends on the undulator configuration.

The multimode theory was developed [133, 134] and the super-mode, defined “as the configura-
tion of spatial modes, which reproduces itself after one passage throughout the interaction region” is
introduced [135]. The evolution of the modes in the optical resonator was also used to evaluate the
filling factor [88] and the multimode theory was examined considering the three-dimensional parabolic
wave equation coupled to the Lorentz force equation [80,136], enabling us to obtain different transverse
mode patterns and dynamics [137]. FEL spatial and temporal behaviours were also examined as a co-
herent superposition of the exact Lienard–Wiechert fields produced by each electron in the beam [138].
The evolution of the free electron laser oscillator was further modelled using a Lagrangian formalism to
follow the dynamics of the interaction between the electron beam and optical wave in a single pass [139].

After having a description of the gain and the saturation, theoreticians started to investigate coher-
ence properties. R. Bonifacio [140] introduced the description in terms of electron field coherent quasi-
classical states, where both the photon number and the electron momentum follow a Poisson distribution
centred on the classical trajectories. G. Dattoli [141] examined the case of a given initial classical state,
using a quantum description and looking at the coherent states of angular momentum and he found that
“both the laser and wiggler fields are in the Glauber [142, 143] coherent state in the many mode case”.
The study was then continued in the classical conditions [144] and quantum analysis [94, 145] showing
that in fact, strictly speaking, FEL does not exhibit Glauber coherence [145].
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4.8 Low gain FEL configurations
So far we have discussed mainly the oscillator configuration where the synchrotron radiation from the
undulator (spontaneous emission) is stored in an optical resonator. The electron light interaction leads to
bunched electrons which emit in phase with the incident wave which gets amplified.

An external laser tuned on the undulator resonant wavelength λ can be sent in the undulator,
synchronized with the electron arrival. The light wave and the electrons can interact in the undulator,
leading to the external light amplification. This configuration is called the ‘master amplifier’. Radiation
is achieved on the same wavelength as the incident wave.

Using an external light wave tuned on the undulator resonance, the light wave interacts with the
electron bunch in the undulator, inducing an energy modulation of the electrons; which is gradually
transformed into density modulation at λ and leads to a coherent radiation emission at λ and λ/n, n
being an integer (fundamental and harmonics) [81–83, 146–149].

Figure 31 presents the scheme of coherent harmonic generation: an external laser tuned on the
fundamental of the undulator is used to modulate in energy, setting the emitters in phase for the radiation
on the harmonics to emit coherently.

!
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Fig. 31: Coherent harmonic generation scheme: an external laser tuned on the resonant wavelength of the undulator
enables us to perform efficiently the energy exchange leading further to the density modulation and coherent
emission on the harmonics.

4.9 Classical and quantum approaches: unification and quantum effects
Started with a first FEL theory discussed with quantum mechanics, FEL classical theory appeared to be
very useful and applicable to the majority of the cases. While new theoretical approaches were investi-
gated, unified models were searched. The formalism of the quasi-Bloch equations enables us to unify the
quantum and classical approaches [144,150]. Further, a unified theory of magnetic bremsstrahlung, elec-
trostatic bremsstrahlung, Compton–Raman scattering, and Cerenkov–Smith–Purcell free electron lasers,
are also proposed by A. Gover (18th FEL Prize in 2005) [151]. Quantum features and in particular co-
herence were also analysed using a non-linear quantum model [152,153]. The limits of classical models
were found when quantum effects start to influence the FEL process [124]. Quantum FELs have been
actively studied in the R. Bonifacio’s group [154–158].

4.9.1 Quantum recoil
When an electron emits a photon ~ωph, its energy is reduced by such an amount due to the quantum
recoil. If the energy change due to the recoil is of the order or larger than the FEL gain bandwidth,

i.e. given by the spontaneous emission width ∆ω
ω ≈

√
(∆ω
ω )2

h + (∆ω
ω )2

inh, then the quantum recoil may
significantly affect the FEL gain. Consider a typical gain bandwidth of 10−3, for a short wavelength FEL,
the fraction of the energy change ~ωph

E is more than 10−6, the quantum electron recoil is then negligible.
It can then start to play a role with low energy electron beams and high energy emitted photons (for
example in the X-ray range), such as in using an optical undulator (created by an optical wave).
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4.9.2 Quantum diffusion
The emission of spontaneous emission radiation, if not affecting the electron energy by a significant
amount, introduces an energy loss. In addition, the discrete nature of photon emission (over a wide
energy spectrum) increases the uncorrelated energy spread, as for quantum excitation in a storage ring.
The diffusion rate of the energy spread is given by [124]: d〈(∆γ)〉2

ds = − 7
15reλ̄Comptonγ

4
oK

2
uk

3
uF (Ku)

with F (Ku) = 1.2Ku + 1
1+1.33Ku+0.40K2

u
and λ̄Compton = ~/moc ≈ 3.86×10−13 the reduced Compton

wavelength [159].

5 The first FEL experimental results
5.1 The first FEL in Stanford (USA) in the infrared in 1977
5.1.1 The first FEL amplification in the infrared in 1976
After the theoretical prediction of the FEL concept in 1971, J. M. M. Madey searched how to set-up
an experiment to test his idea of a FEL a [55]. Indeed, the High Energy Physics Laboratory on the
Stanford campus concentrated a high knowledge on accelerator physics, both for normal conducting and
superconducting devices. S-band accelerators had been developed by William W. Hansen (1909–1949)
and Edward Ginzton (1915–1998) after the second World War, which led to the construction of the
Stanford Linear Accelerator Laboratory (SLAC), a three kilometre S-band linac with upgraded klystrons
under the direction of Wolfgang K. H. Panofsky (1919–2007). First superconducting linear accelerators
were developed by William Fairbank (1917–1989) and Alan Schwettman (15th FEL Prize in 2002) [160],
in order to exploit higher gradients and reduced power consumption of superconducting niobium cavities.
High stability and sufficiently low energy spread beams for the low gain free electron laser exploration
could be achieved on the superconducting linear accelerator.

J. M. J. Madey obtained financial support from the Air Force Office of Scientific Research (AFOSR)
in 1972 in two steps: a first one to demonstrate gain, and a second one to achieve the FEL oscillation
provided the first was a success. A team was gathered with J.M. J. Madey for laser physics, electronic
instrumentation, cryogenic systems, superconducting undulator, Luis Elias (third FEL prier in 1990) for
the optics, optical instrumentation, and conventional laser sources, superconducting undulator, and Todd
Smith (third FEL Prize in 1990) for the accelerator. The composition of this new research team logically
balanced the expertise between accelerators and electron tubes, and optics and lasers.

The first experimental demonstration of the FEL amplification was performed in Stanford in 1976
[161]. The electron beam has been produced by a 24 MeV electron beam generated by a superconducting
undulator at 1.3 GHz. A 5.2 m long 3.2 cm period NbTi superconducting helical undulator was built (see
Fig. 32) with a very high mechanical precision for the coil winding. It provided an undulator field of
0.24 T. A CO2 laser at 10.6 µm with variable intensity and polarization was focused inside the undulator
to a waist of 3.3 mm. The wavelength of the CO2 laser being fixed, tuning was performed by changing
the energy of the electrons around 24 MeV. The signal was detected with a high speed helium-cooled
CuGe detector, synchronized with 1.3 GHz from the accelerator.

The CO2 has been amplified, demonstrating a single pass gain of 7%, as shown in Fig. 33. Good
agreement was found on the theoretical expectations regarding the gain. One notices that the gain is the
derivative of the spontaneous emission, as understood by Madey [60, 87].

This FEL amplifier first experiment was a major step for the validation of the FEL concept with
its gain medium using relativistic electrons in periodic magnetic fields.

5.1.2 The first FEL oscillator in the infrared in 1977
Because of the low value of the gain (7%), a high finesse optical resonator was necessary for attempting
the oscillator experiment in order to insure cavity losses smaller than gain. An intermediate wavelength
of (3.4 µm) was selected despite the small gain reduction, enabling the propagation of the desired funda-
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Fig. 32: Picture of the superconducting undulator used for the Madey’s experiment

Fig. 33: (a) Spontaneous undulator emission and (b) measured gain which corresponds to the derivative of the
spontaneous emission, from the first FEL amplification measurement by the Madey’s group [161]. Undulator field
of 0.24 T, peak current of 70 mA.

mental Gaussian resonator mode through the undulator vacuum chamber with minimal diffraction losses
and to pre-align the optical resonator mirrors with an intracavity He–Ne plasma tube. Two new members
joined the team: David Deacon as a PhD student, and G. Ramian for the accelerator injector since a
higher peak current electron gun was required. Thanks to a gridded dispenser cathode (Eimac) driven
by microwave triode amplifiers, 4 ps long electron macro-pulses with 2.6 A peak current at 11.8 MHz
were achieved. Under such conditions, the expected gain reaching typically 100% appeared sufficient to
overcome the cavity losses of 3% at 3.4 µm. The undulator having being damaged by an unanticipated
surge in the voltage provided by its high current power supply, a second superconducting undulator had
been also built but it happened that a failure of the insulation of the wire drastically limited the rate at
which the magnet could be ramped up or down during operation.

The experiment was finally ready for operation in December 1976, and the FEL oscillation was
rapidly observed, in January 1977 after optimizing the electron beam steering and focusing and optical
cavity tuning. Figure 34 shows the FEL line, as compared to the spontaneous emission: the FEL line is
sharper (relative bandwidth of 0.23% Full Width Half Maximum FWHM), and much more intense. The
FEL provided a 360 mW average power, corresponding to an estimated 7 kW peak power and 500 kW
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intracavity peak power [162]. The output power reached nearly twice the power extracted from the
electron beam in the amplifier experiment.

It can be pointed out that this first FEL result owes thanks to the quality of the electron beam
delivered by the linear accelerator, together with its ability to provide rather long trains of electrons,
enabling sufficient passes in the optical resonator to achieve the FEL saturation, (thanks to the high
number of micro-pulses). Saturation was reached typically after 100 µs. Cryogenic operation being
rather heavy, the next experiments took place in 1981 [163, 164], enabling further analysis of the FEL
properties, to be compared with theoretical expectations.
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TABLE I. Laser characteristics.

Laser characteristics Above threshold Below threshold

Wavelength (p m)
W'idth (full width of half-maximum)
Average Power (W)
Peak power (Ref. 7)
Mirror transmission

3.417
0.008
0.36
7x 10

1.5%

3.407
0.031
10 8

10 '

Our apparatus is shown schematically in Fig. 1.
A superconducting helix generates a periodic
transverse magnetic field of 2.4 kG. A 43-MeV
electron beam from the superconducting accelera-
tor is fired along the axis of the helix. Radiation
passing through the helix with the electron beam
is amplified and a pair of mirrors at the ends of
the interaction region provide feedback.
The characteristics of the oscillator are listed

in Tables I and II. The wavelength was 3.417 p m
and the average power output was 0.36 W. Fac-
toring out the duty cycle of the machine, ' this
translates to a peak power of the order of V kW.
With a mirror transmission of 1.5% the intracav-
ity power was 500 kW. The total energy collected
on the detector was 0.01% of the electron beam
energy.
The laser spectrum is shown in the upper half

of Fig. 2 and the spontaneous spectrum in the low-
er half. Note the difference in the radiated power:
Above threshold, the oscillator power increases
by a factor of 10' over the spontaneous radiation.
The oscillator linewidth was 8 nm (200 6Hz).
The electron energy in the experiment was cho-

sen to satisfy the wavelength equation'

A. 1 A. q raB
2 4g2 C2

width observed in the experiment is by no means
the limiting linewidth. As established by the ear-
lier experiments, ' a homogeneously broadened
gain profile is attainable and the laser linewidth
can be improved by means of intracavity disper-
sive elements. The efficiency of the present las-
er is limited by the fraction of the electrons' en-
ergy which can be converted to radiation in a sin-
gle pass through the interaction region. This lim-
itation would not apply to devices in which the
electron beam was reaccelerated and recirculated
through the interaction region as in an electron
storage ring, where efficiency above 20% should
be possible. ' The nanosecond electron bunch

ABOVE
THRESHOLD

0.7m p.

INSTRUMENT
Wl DT H

where X, is the magnet period, y~c2 the electron
energy, r, the classical electron radius, and B
the magnetic field strength. The wavelength var-
ies inversely as the square of the electron energy.
The experiment demonstrates the capability of

a free-electron laser to operate at high power at
an arbitrary wavelength. We note that the line- TH

3.4l 7p,

TABLE II. Electron beam characteristics.

Energy (Ref. 8)
Width (full width at half-maximum):
Average current
Peak current (Ref. 7)
Emittance (at 43.5 MeV):

43.5 MeV
0.05%
130 pA
2.6 A
0.06 mm mrad

I

3.4lOp
FIG. 2. Emission spectrum of the laser oscillator

above threshold (top) and of the spontaneous radiation
emitted by the electron beam {bottom).

893

Fig. 34: First FEL: (a) FEL line at 3.4 µm. (b) Spontaneous undulator emission [162]. Electron beam from the
MARK-III superconducting accelerator at Stanford, superconducting helical undulator.

This infrared FEL oscillator achieved in 1977 on the superconducting linear accelerator (Stanford,
USA) established the first experimental demonstration of the FEL concept as a new laser type. It had
thus evidenced that this new type of laser based on stimulated Compton backscattering could effectively
work and opened bright perspectives in terms of average and peak power outputs. It indeed paved the way
towards the further advent of X-ray tuneable FELs as unique sources of radiation for matter investigation.
It was also the first laboratory experiment of stimulated Compton backscattering.

5.1.3 New directions after the first results
The first FEL paper terminates with the following “Because the gain falls at short wavelengths, a higher
electron current will be required to support laser operation in the visible and the ultra-violet. Based on
the small-signal gain equations sufficient current has been stored in existing electron storage rings to
sustain laser operation at wavelengths as short as 1200 A” [162]. It thus gave directions of evolution.
The first one dealt with the required improvement of electron beam parameters. The second concerned
the attractiveness of the storage rings as an accelerator to drive the FEL, even in the isochronous op-
eration [165]. Besides improvements on the electron characteristics, ways of increasing the undulator
gain were investigated, such as the optical klystron [102] proposed by N. Vinokurov and Skrinsky, or the
transverse gradient undulator enabling to handle a rather high level of energy spread [166]. “The trans-
port system is designed to resolve the energy spread of the incident electrons into a transverse position
and/or momentum spread at the entrance to the laser magnet. The magnet is designed to take advantage
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of the different trajectories followed by electrons of different energies, with the result that the optical
wavelength at which gain is a maximum is far less sensitive to the electron energy than it would be in a
conventional system” [166, 167].

5.1.3.1 Towards a better efficiency using storage rings or electrostatic accelerators

From the very beginning, great hope was put in recirculating accelerators, since “the RF accelerating
field for the ring would have to supply only the energy actually transformed to radiation in the periodic
field. The overall efficiency of such a system thus would not be limited to the fraction of the electrons’
energy convertible to radiation in a single pass through the interaction region” [161]. In particular, free
electron lasers on storage rings, as illustrated in Fig. 35, are considered in detail.

Specificities regarding the energy spread evolution due to the recirculation of the electrons in the
storage ring after their heating by the FEL interaction have been investigated from a theoretical point of
view. The energy spread can be enhanced via the FEL process but it can then be relaxed via the natural
damping which takes place in the storage ring [129, 131].

One constraint comes nevertheless from the fact that the length of the straight section is limited.

Fig. 35: Scheme of the storage ring free electron laser

J. M. J. Madey then searched for a storage ring to implement a storage ring FEL test experiment.
Yves Petroff and Yves Farge, the director of LURE (Laboratoire d’Utilisation du Rayonnement Electro-
magnétique) in France were quite positive on the idea of using the ACO (Anneau de Collisions d’ Orsay)
storage ring for FEL investigations. ACO was initially build for high energy physics, and it turned to a
parasitic use of synchrotron radiation in the beginning of the eighties. J. M. J. Madey came with some
collaborators (D. Deacon, K. Robinson) while Y. Farge and Y. Petroff settled some team on the French
side, with Michel Billardon (14th FEL Prize in 2001), Jean-Michel Ortéga (14th FEL Prize in 2001).
M. E. Couprie (14th FEL Prize in 2001) and R. Prazeres joined the team later. An experiment was also
set up on VEPP-3, in Novosibirsk [168], on Adone (Frascati, Italy) [169], and Brookhaven National
Laboratory [170].

Besides the storage ring type of accelerator, L. Elias (Third FEL Prize in 1991) did consider the use
of a DC electrostatic accelerator such as Van der Graff for the operation of high power efficient tuneable
FEL [171] with low energy electron beams. Indeed, “Wall power to laser power efficiencies greater than
10% are possible” and should be compared to the 0.2% value in the case of the first Stanford experiment.
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Analysis are carried out for a 9.38 MeV for 400 nm, and 3.55 MeV for 16 µm. Further analysis confirmed
the possibility of highly efficient energy recovery [172] with DC electrostatic accelerators enabling to
reach the required high average currents in the long pulse and CW operation modes for a FEL application
[173].

5.1.3.2 Towards lower emittances and higher electron beam current

Besides the storage rings and electrostatic accelerators, realizable FELs on linear accelerators were con-
sidered [174], especially in terms of emittance, current density, electron bunch length, and stability. J. M.
J. Madey nevertheless states that “As satisfying as it was to have completed two key proof of principal
experiments, it was also clear that the development of useful devices based on this new gain mechanism
would require both further theoretical and technical efforts. Although the experiments had established
the capability of the new mechanism to operate at respectable signal levels, some significant questions
remained as to the physical basis of these results. Higher electron currents and lower e-beam emittances
would also clearly be required for operation of shorter wavelength and more compact systems” [55].

5.1.3.3 Following years of expectations

The great enthusiasm due to the success of the first FEL demonstration led to several experimental ini-
tiatives around the world, to extend the FEL achievements. It was followed by six years of expectations,
as reported by C. A. Brau [1] as follows “Unfortunately, none of the electron-beam sources available at
that time had enough electron-beam current and satisfactory electron-beam quality to make lasing easy.
Although gain was measured in several experiments, it was not until six years later, in 1983, that the
second free-electron laser was operated in the optical part of the spectrum. In that year, three devices
began to lase”.

The first was at Laboratoire pour l’ Utilisation du Rayonnement Electromagnétique (LURE), in
Orsay, France, where the electron beam in the storage ring ACO was used to achieve lasing in the
visible [175, 176].

The second was at Stanford, a team from TRW (Thompson Ramo Wooldridge (Northrop Grum-
man since 2002)) used the superconducting accelerator previously used by Madey to achieve lasing in
the near infrared [177].

The third was Los Alamos, where a newly constructed electron accelerator was used to achieve
lasing in the mid-infrared [178].

During the same period, development of ubitron-type devices began at several laboratories. Be-
cause the threshold electron beam current at which the space charge wave can be excited increases as
the third power of the electron energy, these devices were limited to low electron energy (no more than
a few megaelectronvolts), and long wavelength. Nevertheless, Marshall and his co-workers at Columbia
and Naval Research Laboratory achieved lasing at 400 µm with an electron beam having an energy of
1.2 MeV and a peak current of 25 kA [179]. “These devices are limited to wavelengths in the submil-
limetre region and beyond, where the optical radiation is transmitted through a waveguide’, and “the
physics in this regime involves collective oscillations (space charge waves) in the electron beam”, the
development of ubitron-type devices is not developed in this FEL history [69].

At the end of 1982 (September 26–October 1) the ‘Bendor Free Electron Laser” conference was
held in France, whose subject matter was limited to the FEL in the Compton regime. It gathered 62
participants. The atmosphere was particular, since a lot of efforts devoted towards the operation of new
free electron lasers started to provide preliminary results. In the foreword of the proceeding by D. A. D.
Deacon and M. Billardon, it is said: “The most striking aspect of the collection of papers contributed
to this volume is the amount of experimental progresses which have been made in the 12 months since
the last summary of progress of the field. Four new undulators have been brought into operation, and
measurements have been made on the spontaneous emission spectra, gain, electron trapping in the linac
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and bunch lengthening in the storage ring, sub-threshold effects and mirror degradation, time dependent
short pulse phenomena; and laser-induced harmonic generation. This sudden (and exhausting) blooming
of experimental results has in fact been in the making for two or three years. The perseverance of the
authors of these works during this long preparation time deserves recognition and applause.

In the short wavelength λ < 1 µm range, where the storage ring is the universally favoured device
because of its current density and duty factor, four projects are underway at Brookhavven, Frascati,
Orsay, and Novosibirsk. The Frascati and Orsay groups have contributed to the proceedings two valuable
papers which summarized a wide variety of measurements and FEL diagnostics. These two groups (along
with the Novosibirsk physicists who were unable to attend the conference) have been able to probe and
verify the theory of the FEL to a level of precision and complexity which is unthinkable in the linear
accelerator machines.

In the long wavelength λ > 1 µm range, a lower current density is required to drive the interac-
tion, and a wide variety of electron beam sources are now being put into use at 11 experimental centres.
There are two induction linac sources, two microtrons, six RF linacs, one storage ring, and one van de
Graaf sources being set up or used for FEL work at the following respective centre, Lawrence Liver-
more Laboratory, Naval Research Labs., Bell Labs., Frascati (ENEA), Los Alamos national Laboratory,
Math. Sciences Northwest, NRL, Stanford (H. E. L. P.), TRW, the UK Collaboration, Berlin, and Santa-
Barbara. At present, all the experimental work in this wavelength region has been done with the RF
linacs. As is the case for short wavelength work, in the previous 12 months an unprecedented flow of
new research results have been produced in the infrared devices. During the conference, these results
were described by the Stanford group, who had succeeded in measuring the time structure of their pi-
cosecond laser pulses, and by the Los Alamos, the MSNW (Mathematical Sciences NorthWest), and the
TRW groups, who have been able to measure the electron trapping in tapered wigglers.”

Next we discuss the three new FEL operations achieved in 1983.

5.2 The second FEL in Orsay (France) in 1983
5.2.1 The second FEL oscillator in Orsay (France) in the visible in 1983
At that time, storage rings appeared as suitable accelerators because of the electron beam performance.
A picture of the ACO (Anneau de Collisions d’ Orsay) storage ring (LURE, Orsay, France) is shown in
Fig. 36.

Fig. 36: ACO storage ring used for the second world wide FEL in Orsay (France), dipoles in blue
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First measurements started with a superconducting undulator (23 ×40 mm periods, maximum field
of 0.45 T, K = 1.68 T) with an inverse T-shape vacuum chamber [180,181], enabling to observe visible
radiation between 140 and 240 MeV. The gain has been measured [182] and found to be very small, it
thus required mirrors of extremely low losses. It appeared that significant imperfections in the magnetic
field led to a broadening of the line and a gain reduction of 50%.

It was followed by the construction of a SmCo5 permanent magnet-based undulator [183,184] (17
mm ×78 mm), using the configuration proposed by Halbach [32] with magnets rotated by π/2 from one
position to another. The radiation produced by such an undulator was observed in the Vacuum Ultra
Violet (VUV) for the first time using the ACO electron beam at 536 MeV. However, the straight section
length being limited to 1.3 m, the gain was limited to a few 10−4 [185] and made the laser oscillation
impossible despite the efforts concerning high reflectivity mirrors [186]. The gain could be enhanced by
a factor of 2 up to 7 by turning the undulator to the optical klystron configuration by replacing the three
central periods by a three pole wiggler [187]. The radiation has been measured and analysed, as shown
in Fig. 37 [184].

Fig. 37: ACO optical klystron spontaneous emission for different undulator gaps

Because of the mirror reflectivity degradation induced by the harmonic content of the undulator,
the electron beam energy has been set between 160 and 166 MeV to minimize the undulator harmonic
content. The optical cavity has a length of 5.5 m with round trip cavity losses of 7 × 10−4. ACO (Orsay,
France) [175] provided the second worldwide FEL (first visible radiation) in 1983. Figure 38 shows the
laser tuneabllity achieved on ACO by changing the optical klystron gap. Getting the level of the cavity
losses smaller than the gain was at time very challenging, and issues with mirror degradation induced by
synchrotron radiation and mirror measurements were investigated [186].

Lasing was occurring on different lines of the optical klystron spectrum, as shown in Fig. 39.
When the electron bunches circulating in the ring are not synchronized with the optical pulses bouncing
between the mirrors, i.e. in the optical cavity detuned configuration, the energy exchange could not
take place, and the measured spectrum corresponds to that of the spontaneous emission. When the
cavity is properly tuned and the gain is larger than the cavity losses, then the optical klystron lines are
growing and lead to the laser effect. Because of the fringe structure of the optical klystron, three lines
are simultaneously lasing with the most intense one at 647.6 µm, each wavelength being located at a
maximum of the gain versus wavelength curve, fulfilling properly the Madey theorem. This ACO FEL
can be considered as the first multi-colour FEL.

Various studies were carried out after the first laser oscillation on ACO [185, 188, 189]. The FEL
dynamics involves an interplay between the electron energy heating induced by the FEL interaction
and the synchrotron damping. The FEL was exhibiting a naturally pulsed macro-temporal structure
for perfect synchronism (synchronization between the electron circulating in the storage ring and the
optical pulses bouncing around the mirrors of the optical resonator) [190], as shown in Fig. 40. Due

47

HISTORICAL SURVEY OF FREE ELECTRON LASERS

241



Fig. 38: First visible FEL on ACO storage ring in France in 1983. Left : Laser oscillation with red central
wavelength, right : free electron laser tuneability in the visible

Fig. 39: First visible FEL on ACO storage ring in France in 1983 Spectra of the cavity output radiation under two
conditions: a) cavity detuned without amplification and b) cavity tuned (laser on), from [175]. Insert: zoom on one
laser line.

to the electron beam recirculation, the electron bunch heating induced by the FEL interaction leads
to an electron bunch lengthening [191] and even to a modification of the shape of the electron bunch
longitudinal distribution [192]. The FEL was operated in the Q-switching mode, in cancelling the optical
gain by a small variation of the RF frequency, trigged by an external pulsed low frequency generator or
by applying a modulation of the transverse position of the electron beam with the electric field of a pick
up electrode. During a few milliseconds, the optical resonator being tuned, the FEL pulse can develop.
Then, the pulse naturally decays, and afterwards, the cavity is detuned enabling the electron beam to be
cooled down, and the FEL pulse to restart with the maximum power starting from non-heated electron
beam.

5.2.2 Coherent harmonic generation in the VUV on the ACO storage ring Orsay (France) in the UV
and VUV

Coherent harmonic generation [193] was achieved in the UV and VUV on the ACO storage ring. a Nd–
Yag laser (1.06 µm wavelength, 20 Hz repetition rate, 15 MW peak power, 12 ns pulse duration) was
tuned on the optical klystron first harmonic. The coherent third and the fifth harmonic of Nd–Yag laser
were observed, with a spectral ration of 6000 for the third one, and 100 for the fifth one. It was then
followed by further measurements in the VUV [194, 195].
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Fig. 40: Temporal structure at perfect synchronism on the ACO storage ring FEL, from [175]

5.3 The next two FEL oscillators in 1983
5.3.1 The new developments on the Stanford HEPL FEL
Led by a team of TRW, Space and Technology Group, the Stanford FEL has been operated with a
tapered undulator in order to enhance the efficiency [177]. The FEL has been operated above threshold
at the wavelength of 1.57 pm. The employed undulator is a permanent magnet one in the Halbach
configuration [196] using SmCo5 magnets with a period of 36 mm reaching up to 0.29 T. The peak
field is varied longitudinally by controlling the spacing between the magnet planes. Inspired from the
optical klystron, the undulator consisted of different segments: a prebuncher with a constant undulator
field providing energy modulator of the electron beam, a dispersive section, a tapered section to improve
trapping and higher extraction efficiency, and a radiator with constant undulator field. The laser was
operated with 0%, 1%, and 2% tapers in energy, achieving laser efficiency of 0.4%, 1.1%, and 1.2%,
respectively. The efficiency of the 2% taper was three times the untapered case. T. Smith converted the
FEL to a user facility.

5.3.2 The Los Alamos FEL
Los Alamos National Laboratory had set up a FEL programme, aiming at demonstrating high power at
10.6 µm.

A first objective was to demonstrate the advantages offered by permanent magnet-based undula-
tors, by developing a permanent magnet undulator in the Halbach configuration [196]. An undulator of
1 m long, 27.3 mm period, 8.8 mm gap, 0.31 T peak field, thanks to a funding from the Department of
Energy, was built by R. Warren (sixth FEL Prize in 1993). It was decided to set the magnets directly in a
vacuum in order to reach a higher magnetic field. Three fluorescent targets were installed on the electron
path, for a proper alignment of the vacuum chamber and overlap of the electron / photon beams [197].

A linear accelerator of 20 MeV energy at 1.3 GHz was built on purpose for the experiment. It
provided a peak current of 20 A, with an emittance of 2 mm mrad, an energy spread of ±1%, and a
total length of 10 m. It is the first FEL experiment with a dedicated accelerator, whereas the competing
experiments are sharing the use of the electron beam.

The FEL operation by itself required the use of highly reflecting dielectric mirrors placed directly
in vacuum and with a good resistance to high laser power. Besides, the electron beam macro-pulse
should be sufficiently long to enable the growth of the FEL power. The optical resonator had a length of
9.92 m, matching the electron micro-pulse separation of 46.15 ns and cavity losses of 3%. Mirrors were
compatible with an alignment with a He–Ne laser.
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The FEL gain using a CO2 laser was measured. FEL oscillation was obtained in 1983 in the 9–11
µm spectral range, with an intra-cavity peak power of 20 MW and an average output power of 1 kW in 70
µs macro-pulses [178,198]. Nine orders of magnitude of power growth were observed with a net growth
of 17%. A Germanium detector was used for the analysis of the optical signal. Harmonic lasing was
observed on the second and third harmonics and characterized by different decays in the optical cavity.
The FEL was then studied in details [199, 200]. The dependence of gain and saturation on cavity length,
alignment, beam parameters, and other critical variables were compared with theory.

The Los Alamos team was eager to improve the FEL efficiency and first demonstrated an extraction
efficiency larger than 3% [201] in the amplifier configuration with a tapered undulator. An efficiency
larger than 4% [202] in an oscillator configuration was then obtained, as shown in Fig. 41.

Fig. 41: Efficiency in the case of a tapered undulator in the Los Alamos oscillator experiment from [200]

5.3.3 The Santa Barbara FEL
Besides the interest of storage rings for electron beam recirculation, the use of energy recovery on an
electrostatic accelerator was studied [171]. An experiment was thus set at the University of California,
Santa Barbara, using an electrostatic accelerator [173], as shown in Fig. 42.

The electron beam is produced in an electron gun, then goes through a pelletron charging chain
so that it is charged to a negative high voltage with respect to the ground, and it is accelerated in the
accelerator column. It is transported and matched to the FEL line with the undulator and the optical
cavity thanks to a set of achromatic bends and quadrupoles, and then sent back to the electrostatic tube
entrance where it is captured by the low voltage multistage collector and restored the lost energy by
FEL interaction. Energy recovery is of interest for FEL since only typically one percent of electron
beam energy is converted to the FEL. It can also lead to a more stable electron beam. The FEL was
operated with a permanent magnet Halbach type undulator (36 mm period, 38 mm gap, 0.46 T peak
field) with a waveguide resonator [203] using electrons of 2.98 MeV providing a peak current of 1.25 A,
with macro-pulses of 50 µm long and a 90% recovery efficiency. The optical beam was produced in the
far infrared at 750 GHz with 30% gain per cycle for 11% losses per cycle, with 10 kW estimated peak
power. The saturation was reached in 4 µs [204]. Single-mode operation in a free electron laser was then
observed [205].
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Fig. 42: Picture of the Santa Barbara (USA) FEL

5.4 Following developments on low gain FELs
Following these new FEL operations, the field was in rapid expansion, and FEL experiments were in-
stalled on various types of accelerators. There was a quest for wavelengths of operation, which depended
on the electron beam, the mirror performance for the oscillator configuration and the ways to increase the
gain. In addition, coherent harmonic generation using an external laser was continued. However, not all
the projects have been successful as states C. Brau in his book in 1990: “It should be pointed out that of
the free electron lasers which have been constructed thus far, considering only those built to operate in the
optical regime, only a few have worked. The reason for failure, in most cases, has been that the available
electron accelerator was not satisfactory for free-electron laser experiments and could not, within time
and budget restrictions, be suitably modified. One or two of the lasers which have not yet worked may
yet be brought into operation, but free-electron lasers remain subtle, expensive devices” [1]. Ten years
after the first Stanford demonstration, there were still less than 10 Compton FEL under operations [2] but
there was already a great interest for user application. Are given below examples of FEL launched in the
continuity of the first FELs and which contributed significantly to the FEL field growth. These examples
are not intended to be exhaustive. W. B. Colson was, during FEL conference, collecting the information
on the different FELs under operation and progress [206, 206–208]. In the report of the FEL conference
held in 1994 a national research Council FEL Committee report [209] is mentioned, chaired by D. Levy,
recommending building infrared FELs as user facilities, developing the technology for UV FELs, and
research and development for X-ray FEL.

5.4.1 FEL oscillators
In the early years of FELs, the type of accelerator, especially because of electron beam performance,
defined somehow the reachable spectral range, as illustrated in Fig. 43. The main progress on the FELs
built after the results of 1983 are described below, classified per accelerator type.

5.4.1.1 Storage ring based FELs

The activity continued on storage rings [210, 211] especially for the quest towards short wavelength of
operation, since high quality electron beams were still produced. In addition, the interplay between the
beam dynamics in the ring and the FEL interaction was of great interest.

VEPP-3 FEL IN RUSSIA

The second storage ring FEL following the one on ACO was achieved on VEPP3 (Novosibirsk, USSR)
[212–215] in 1988. The team led by N. Vinokurov (fourth FEL Prize in 1991) included in particular
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Fig. 43: Accelerator type used for FEL and corresponding spectral range. Examples of FELs

V. Litvinenko (17th FEL Prize, in 2004), I. Pinaiev, V. Popik, N. G. Garvilov, A. S. Sokolov, as younger
scientists at that time, and senior ones with A. N. Skrinski and G. N. Kulipanov. Mutual coherence of
spontaneous radiation from two undulators separated by an achromatic bend was observed [216, 217].
The experiment was renewed, with an electromagnetic optical klystron implemented [218] on a bypass
[219], as shown in Fig. 44.

Fig. 44: Picture of the VEPP3 FEL optical klystron (the FEL was installed on the ceiling)

Because of the very low gain, despite the enhancement close to the optical klystron, the cavity
losses were very critical. A method of mirror measurement with a reflectivity close to unit was proposed
[220]. The confocal configuration for the optical cavity was studied [221]. The laser covered from the
visible to the UV down to 240 nm with three sets of mirrors. Linewidth narrowing was achieved with a
Fabry–Perot etalon [222–224], reaching a relative band width of 10−5, as shown in Fig. 44.

Fig. 45: Linewidth narrowing on the VEPP3 FEL with an etalon installed inside the optical resonator, from [223]
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VEPP3 FEL kept for a while the record of the shortest FEL wavelength at 200 nm. Measurements
of FEL spectra and temporal structures were compared to the theory [225].

SUPER-ACO FEL IN FRANCE

Then, the third storage ring FEL was obtained on the Super-ACO (Orsay, France) [226–228] following
the successful results achieved on ACO. Super-ACO was a storage ring built on purpose for synchrotron
radiation use. Super-ACO FEL was operated at 600 MeV, and then 800 MeV, which was the highest
electron beam energy for a storage ring FEL. The Super-ACO optical klystron spectrum and associated
gain are shown in Fig. 46. The gain is the derivative of the spontaneous emission, as given by the Madey’s
theorem.

Fig. 46: Super-ACO optical klystron spontaneous emission for different undulator gaps

The undulator synchrotron radiation led to even more drastic conditions of degradation of the
multilayer mirrors in the optical cavity [229] requiring specific mirror characterizations [230]. The FEL
was then obtained in the UV [231, 232]. The FEL was fully characterized. Transverse modes can be
controlled via the optical resonator [233] as shown in Fig. 47.

Fig. 47: Super-ACO transverse mode resulting from a misalignment of the optical cavity axis with respect to the
magnetic axis of the undulator.

The temporal profile was studied [234, 235]. The zero detuning regime with CW operation of the
FEL was stabilized using longitudinal feedback [236]. Extensive studies on longitudinal dynamics were
carried out [237]: the coupled dynamics of the electrons in the storage ring [238], mutual influence of
the coherent synchrotron oscillations [239], local energy exchange between the FEL and the electron
beam [240], FEL-induced suppression of the sawtooth instability [241], control of the pulsed zones
versus detuning [242], and advection-induced spectro-temporal defects [243]. The super-ACO ring was
shut down in 2003.

TERAS (TSUKUBA ELECTRON RING FOR ACCELERATING AND STORAGE) AND NIJI-IV FEL IN

JAPAN

Storage ring FEL oscillation was then obtained on TERAS (Tsukuba, Japan) [244], NIJI-IV (Tsukuba,
Japan) (Niji is the Japanses word for "rainbow") [245].
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UVSOR (ULTRAVIOLET SYNCHROTRON ORBITAL RADIATION) FEL IN JAPAN

A storage ring FEL was developed on UVSOR (Okazaki, Japan) [246]. The first developments of the
UVSOR FEL were led by H. Hama (17th FEL Prize in 2004). One of its specificities is the use of an
helical optical klystron [247]. Temporal dynamics was studied [248, 249], longitudinal feedback was
developed to stabilize the temporal position of the FEL micropulse [250].

DUKE FEL IN THE USA

The DUKE (Duke, North Carolina, USA) FEL, shown in Fig. 48, was first operated in the visible [251],
and then in the UV–deep UV [252] below 200 nm [253] with a distributed optical klystron implanted on
a long straight section, enabling a reasonable gain. The DUKE FEL conducted also various dynamical
studies [254], such as the observation of giant pulses [255], self-induced harmonic generation [256], time
structure [257], and output power limitations [258]. Micropulses are Fourier limited [259]. The DUKE
FEL was first developed by V. Litvnenko (17th FEL Prize in 2004).

(a) (b)

Fig. 48: DUKE FEL pictures: (a) the ring, (b) the multiple optical klystron

The DUKE storage ring is a dedicated accelerator for FEL operation and it is still under operation.

DELTA (DORTMUND ELECTRON ACCELERATOR) FEL IN GERMANY

The FEL was also achieved on the DELTA (Dortmund, Germany) storage ring in the visible and UV
[260].

ELETTRA FEL IN ITALY

The FEL on the ELETTRA (Trieste, Italy), using a helical optical klystron, could provide sufficient gain
as well [261]. After its first operation [262], it enabled operation at shorter wavelengths [263, 264] in
the VUV at 190 nm, setting the record of the shortest wavelength achieved on a FEL oscillator. For
short wavelengths, mirror degradation due to undulator synchrotron radiation appeared to be critical
[265–268].

Even though the ELETTRA FEL was quite successful, it had to be operated in dedicated shifts
[269]. A storage ring FEL is usually operated at a lower beam energy than the one employed for conven-
tional synchrotron radiation users, setting a limit in the development of the storage rings FELs. This was
also the main reason for the withdrawal of the SOLEIL FEL [270].

5.4.1.2 Linac based FELs

MARK III FEL STANFORD AND THEN DUKE UNIVERSITY, USA

The MARK III FEL (started in 1986 at Stanford University and then moved to Duke University, USA)
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used a normal conducting linear accelerator (26–45 MeV, 10π mm mrad emittance, 0.7% energy spread,
20–40 A peak current) operated in the infrared (1.4–8 µm) and enabled different FEL studies such as
harmonic lasing [271], coherent harmonic emission [272], pulse compression using energy chirp [273,
274], and master oscillator power amplifier (MOPA) configuration [275]. User applications were then
developed.

Dedicated linac-based FELs were then built for user applications.

VANDERBILT UNIVERSITY FEL, USA

The Vanderbilt University FEL (Nashville, USA), led by C. Brau (ninth FEL Prize in 1996) used a
MARK III-type linear accelerator and a 1.08 m length, 23 mm period, 0.4 T field undulator [276] and
was established to serve the medicine and material science fields [276, 277]. It operated in the infrared
(2–10 µm).

FELIX, THE NETHERLAND

FELIX (The Netherland), led by A. Van der Meer (12th FEL Prize, 2002), uses a normal conducting
linear accelerator (15–45 MeV, 50π mm mrad emittance, 0.25% energy spread) 38 × 65 mm period,
0.22 T field undulator first operated in the 6–100 µm spectral range [278]. Various studies have been
carried out, such as phase locking [279], limit-cycle operation [280], and single mode selection [281].
FELIX has been operating for 25 years.

CLIO (CENTRE LASER INFRAROUGE D’ORSAY), FRANCE.

CLIO (Orsay, France), led by Jean-Michel Ortéga (11th FEL Prize, 2001), uses a normal conducting
linear accelerator (30–70 MeV, 50π mm mrad emittance, 0.2% energy spread, 100 A peak current) 1.08
m length, 48 mm × 23 mm period, 0.4 T field undulator [282] first operated in the 2–17 µm [283] and
then 3–120 µm [284] spectral range for users. Various operating modes were investigated, such as two
colour operation [285], efficiency improvement [286], sub-picosecond pulse regimes [287]. CLIO has
been in operation for 25 years.

ELSA (ETUDE D’UN LASER ACCORDABLE, STUDY OF A TUNEABLE LASER), FRANCE

Another infrared FEL was built and operated in France, on the linear accelerator ELSA, enabling lasing
[288] and studies on high efficiency [289].

FELBE, GERMANY

FELBE (FEL at the Electron Linear Accelerator with High Brilliance and Low Emittance) (Forschungszen-
trum Dresden-Rossendorf, Germany) [290], uses a superconducting linear accelerator consisting of two
20 MV superconducting units operating in CW mode with a pulse repetition rate of 13 MHz, with 1
mA average current. It serves two free electron lasers (U27-FEL (until end of 2016) and U100-FEL),
produces coherent electromagnetic radiation in the mid and far infrared (4–250 µm). Pulse energies are
in the few 100 nJ range with pulse durations of a few picoseconds. The typical operation mode offers a
13 MHz micropulse repetition rate in macropulses of a few 100 µs at up to 25 Hz or, alternatively, FEL
operation in a continuous 13 MHz mode.

FELI (FREE ELECTRON LASER RESEARCH INSTITUTE), JAPAN

FELI (Japan) was built in Japan and serves different user beamlines [291–293].
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5.4.1.3 Induction linac based FELs

High power FELs were developed both at Livermore (USA) [294] and at CESTA (France) [295]. These
results will be described further in the high gain section.

5.4.1.4 Microtron based FELs

A Cherenkov FEL was built in ENEA (Frascati, Italy). The electron beam at 5.3 MeV with a 200 mA
current, with emittances of 6π mm mrad in the vertical, 18π mm mrad in the horizontal, and a 0.5%
energy spread is focused to travel close and parallel to the dielectric (polyethylene). A quasi-optical
resonator using a mirror and an output coupler provides feedback to the radiation. The FEL was emitted
at 1660 µ.mrad [296, 297].

A FEL in the mm wavelength range was achieved on the Pahra microtron in the Lebedev Phys-
ical Institute (Moscow, Russia) with an electron beam of at 7 MeV, 50 mA current, 40π mm mrad
(6π mm mrad) radial (vertical) emittances, a 0.1% energy spread, an undulator (6 × 168 mm periods,
0.26 T) and a waveguide, mylar mirrors [298, 299].

KAERI (Korea) has developed a compact far infrared (FIR) FEL driven by a 7 MeV microtron
[300].

5.4.1.5 Energy recovery accelerator based FELs

Besides electrostatic accelerators, energy recovery can also be performed using linear accelerators. In
energy recovery linacs (ERL), the electron beam is recirculated in a loop so that is enters again the
accelerating sections, but dephased by π, so that the beam energy is given back to the accelerating
sections [301]. It thus provides a high electron beam efficiency and reduces the radiation hazard by
setting the beam dump at low energy. ERL-based FELs are suitable for high average power output [302].

JEFFERSON LABORATORY FEL, USA

An ERL-based FEL was first operated in the infrared at Jefferson Laboratory (Virginia, USA) by the
team of G. Neil (13th FEL Prize in 2000) and S. Benson (13th FEL Prize in 2000). The superconducting
energy recovery linac provides an electron beam at 18.7 MHz of 48 MeV with a 5 mA current, 80 pC
charge, 60 A peak current, 7.5π mm mrad emittance, and transforms 75% of the beam power back to
RF power. The FEL has been operated at 3.1 µm [303] with an undulator of 40 ×27 mm period, 1.4
deflection parameter and an 8 m long optical cavity with infrared mirrors of reflectivity of 99.85%. Laser
damage could be an issue [304]. The average power reached 1 kW [305]. The FEL was operated in
the tapered configuration [306] In July 2004, 10 kW of CW operation was achieved at a wavelength of
6µm [307], and then extended in 2006 to 14.2 kW at 1.6µm in a CW mode of operation [308]. After a
machine modification, the spectral range has been extended to the UV in 2010 down to 363 nm with 100
W average power level [308].

JAERI FEL, JAPAN

E.J. Minehara (13th FEL Prize in 2000) led the team of the JAERI FEL installed on the superconducting
energy recovery linac in JAEA in Japan [309, 310]. Superradiance [311] sustained saturation [312] was
studied. A 1.7 kW operation was achieved [313].

NOVOSIBIRSK ENERGY RECOVERY FEL, RUSSIA

The only FEL room temperature energy recovery linac is located in the Budker Institute (Novosibirsk,
Russia) [314, 315].
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KAERI ENERGY RECOVERY FELS, KOREA

KAERI has developed three types of FELs since 1992: a millimetre wave driven by a 0.4 MeV elec-
trostatic accelerator [316], a compact FIR FEL driven by a 7 MeV microtron, and an infrared FEL with
average power of 1 kW driven by a 40 MeV superconducting accelerator [317]. The research is led by
Y. U. Jeong (24th FEL Prize in 2013).

5.4.1.6 FEL oscillator performance and limits

Figure 49 reports on the spectral range covered by several FEL oscillators in the visible and UV–VUV.
Reaching shorter and shorter wavelengths was getting difficult since the gain, that had to overcome
the mirror losses, was typically decreasing for equivalent beam parameters. Some new developments
were carried out for the UV dielectric multilayer mirrors [266–268] whereas the conditions of mirror
degradation became even worse [265]. The shortest wavelength was obtained on the ELETTRA FEL at
190 nm. The figure shows as well the output power, which is of course, larger for larger electron beam
energies, but which makes the obtention of a sufficient gain more difficult.

Fig. 49: Short wavelength FEL oscillators

Because of the oscillator configuration, the multi-pass in the optical resonator enables us to in-
crease the coherence of the FEL. Figure 50 displays the pulse duration versus wavelength for different
FEL oscillators. They are all operating close to the Fourier limit.

Fig. 50: Pulse duration versus wavelength for several FEL oscillators

Presently, thanks to the performance of Bragg reflectors such as diamond crystals in the X-ray,
X-ray FEL Oscillators (XFELO) driven by a CW superconducting linac or an Energy Recovery Linac
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(ERL) are under study [318–320]. Such an XFELO will be fully coherent, providing spectrally pure
X-ray pulses.

5.4.2 Coherent harmonic generation
Following the VUV radiation obtained on the ACO storage ring, coherent harmonic generation was
successfully continued on the Super-ACO storage ring FEL [321, 322]. At DUKE, the storage ring FEL
in OK-4 with its sufficiently powerful super-pulses enabled us to generate second, third, fourth, fifth,
and seventh coherent harmonics in the range from 37 to 135 nm [323]. The tuneability of the FEL
wavelength provided for natural wavelength tuneability of the harmonic radiation. Coherent harmonics
were also generated in ELETTRA [324]. At the UVSOR storage ring FEL, various features of the
coherent harmonics [325] were studied, such as the influence of the synchrotron sidebands [326], the
undulator, and injected laser helicity [327]. A test experiment was set-up in Sweden [328]. It used
a photoinjector, with two accelerating sections, in which the beam is recirculated to reach 375 MeV
and compressed in a dog-leg. The generation of circularly polarized coherent light pulses at 66 nm
by seeding at 263 nm in a first modulator (planar undulator of 30 × 48 mm, 13.2 mm gap, deflection
parameter of 3.52) and an APPLE-II type elliptical radiator (30 × 56 mm, 15.2 mm gap, deflection
parameters for horizontal, circular, and vertical polarizations of 4.20, 3.44, and 2.98). Coherent pulses
at higher harmonics in linear polarization have been produced up to the sixth order (44 nm), with 200 fs
pulse duration [329].

Self-induced coherent harmonic generation was also produced in MARK-III [272], and enabled us
to achieve radiation down to 36.5 nm [256]. The FEL was obtained simultaneously on the fundamental
and third harmonic at Los Alamos [330]. Harmonic lasing was also performed at the Jefferson Laboratory
FEL [331].

5.5 Exotic FELS
Variants of the FEL concept can be proposed by modifying the gain medium.

In the case of a gas-loaded FEL [332–334] with a gas of refractive index ng, the resonance condi-
tion is modified according to

±λr =
λu

2nγ2

(
1 +

K2
u

2

)
− λu(ng − 1). (81)

In such a case, tuneability can then be also adjusted with the gas pressure. For a given wavelength,
the required electron beam energy is smaller than in the case of a conventional FEL. Experiments were
carried out [335–338].

Radiation observed from electrons skimming over a diffraction grating was observed [339].

Cherenkov radiation can also be produced in dielectric loaded waveguides: a relativistic electron
beam passes at grazing incidence above the surface of a dielectric loaded waveguide and excites TM-like
surface waves. The longitudinal component of the evanescent electric field induced electron bunching,
leading to coherent emission [340, 341]. The synchronism condition for a single-slab geometry is given
by

λr =
2πdγ(ε− 1)

ε
(82)

with d the film thickness and ε the dielectric constant.

Cherenkov-based FEL radiation has been observed using a 2.5 MeV electron beam [297].

In a Smith–Purcell FEL [342–345] proposed by J. E. Walsh (1939–2000, 11th FEL Prize in 1998),
the radiation is emitted when an electron passes close to the surface of a grating of period λu. The
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wavelength of the emitted radiation depends on the radiation observed at the angle θ from the normal is:

λr = λu

(
1

β
− sin θ

)
. (83)

With a sufficiently high current, the electrons interact with the fields above the grating and get
bunched, so the Smith–Purcell radiation is enhanced [345]. This has been experimentally demonstrated
[346–348].

5.5.1 First user applications
First user applications were started [2, 349, 350] slightly more than 10 years after the first FEL oscil-
lation, so in fact rather rapidly. First FEL applications were conducted in the infrared on the Stanford
Superconducting Linear Accelerator [337, 351–354] with a strong impulse given by A. Schwettmann,
on MARK III FEL [355]. Human surgery had even started, thanks to the possibility to get the required
wavelength [356]. Different user activities were developed on CLIO [357–359], on FELIX [360], on
FELI [361], and on FELBE [362,363]. The Jefferson Lab. infrared FEL carried out various types of user
applications, such as vibrational modes in myoglobin [364], clusters [365] and industrial applications of
kW UV [366]. Imaging is carried out with mm range FEL in Russia [367] and Korea [368].

In the UV, user applications started on the Super-ACO FEL in France [369], first in biology
[356,370] in 1993 for the study of the time-resolved fluorescence of the coenzyne NADH (nicotinamide
adenine dinucleotide). Then, the FEL was coupled to the VUV synchrotron radiation produced in a beam
line to perform a pump-probe two-colour experiments [371], enabling us to excite the system with the
UV FEL and to probe the excited state with synchrotron radiation. It was first applied to surface photo-
voltage effects studies [372, 373]. User experiments were also carried out on various storage ring FELs,
such as DUKE [374], UVSOR [375, 376], ELETTRA [377].

Generation of short wavelength radiation on small accelerators coupled to a laser by Compton
backscattering is becoming attracting again nowadays in order to deliver X-rays in a compact installation.
Indeed, radiation generated by Compton backscattering was easily produced with the electron beam at
the origin of the FEL and the FEL itself. The two beams are already transversally overlapped and
synchronized, for the FEL generation (indeed, the FEL being itself a stimulated Compton backscattering
process). X-rays were generated on CLIO [378], then gamma-rays on UVSOR FEL [379], on the Super-
ACO FEL [232, 380, 381], and on the DUKE FEL [382, 383] which developed a unique gamma-ray
facility [384, 385].

These encouraging results in the early days of FELs let the community envision prospects for XUV
(Xray Ultra Violet range) FELs [386]. The high gain regime, for which theory was actively developed,
appeared to be quite suitable. First results were achieved in Livermore.

6 The high gain FEL
The study of the high gain FEL started rather early. After the small-signal low gain studies, consid-
erations for the strong-signal case were explored in order to understand saturation. Modelling moved
then towards a self-consistent theory, taking into account the evolution of both the electromagnetic field
and electronic distribution during the interaction [62]. The self-consistent theories were then naturally
applied to the high gain case.

6.1 Plasma type studies
The work by P. Sprangle et al. [64] was continued using a plasma approach in deriving the general FEL
dispersion relation and in applying it to both low and high gain limits [387]. Saturation was analysed
in terms of electron trapping in the space charge and ponderomotive potential and efficiencies were
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deduced. Scaling laws were found. A practical two stage case has been considered: a first radiation
generated in a first undulator (called a ‘magnetic pump’ in the paper) is reflected to act as a seed (called
‘pump’ in the paper) of wavelength 2 cm for the second pass of the electron beam in the undulator leading
to radiation at 190 µm in the second stage, for a 3 MeV energy. Further theoretical developments along
such lines were carried out [151, 388–390] including the role of collective effects of the space charge
[391].“The equations of the free-electron laser amplifier are generalized to include higher order modes.
The density and velocity fluctuations in the entering electron beam cause noise excitation in the amplifier.
The electron beam fluctuations have been studied extensively, both theoretically and experimentally, in
travelling wave tubes, and hence the well-tested formalism developed for this purpose is conveniently
applied to the present problem. It is found that the fluctuations put a severe constraint on the achievable
exponential gain in a proposed Raman-type free-electron laser operating at optical frequencies” [65].
The gain degradation has been investigated [392].

6.2 Instability type studies: emission of coherent radiation from a self-modulated electron beam
in an undulator

In Novosibirsk, at the Institute of Nuclear Physics of the former USSR Academy of Sciences, A. I. Saldin
(19th FEL Prize in 2006) and A. N. Kondratenko considered very early the possibility of producing
coherent radiation from a self-instability, without the use of an optical resonator [116–118]. The work
was first presented at the Russian Academy of Sciences [116], then in 1979 as a preprint of the Institute
of Nuclear Physics [117], and then in an international particle accelerator conference [118].

They considered a situation without an optical cavity and investigated the question of “radiative
instability of the beam in an undulator”. The required initial level of density oscillation for the instability
to occur could result from statistic density fluctuations. They said “For sufficient length of the undulator,
the resonant harmonics of density fluctuations become large enough during a pass that the modulated
beam radiates from a definite section of the undulator. Such a scheme may be used as an independent
source of coherent radiation or as an amplifier”. A first analysis of the self-modulation in the single
pass regime was first discussed by Kroll et al. [62] in a plasma physics context or by using high fre-
quency device models. The instability growth was analysed using methods applied for those of storage
rings, using canonical conjugate variables of the Hamiltonian describing the relative motion of electrons
with radiation, and particle density. It was found that in the case of a wide beam, the amplitude of the
modulation can grow exponentially and coherent power is calculated with Lg the characteristic length in
which the amplitude becomes e times larger. Conditions of applications of the results were examined.
Besides, “To reveal the effect of self-modulation, a knowledge of the initial level of the harmonics of
beam density is necessary. In a realistic situation, if the initial conditions are not prepared in a special
manner, there exists a continuous spectrum of fluctuations of density harmonics that arise from the fact
that there is a finite number of particles in the beam. Hence all the harmonics in a given band width
(∆K/K ∼ λu/(2πLg)) will become unstable and grow by a few times in the length Lg”. The evo-
lution of the width of the harmonics after the pass of a given length is analysed, and its corresponding
correlation length is estimated (of the order of Lg/(2γ‖).

The reduction down to shorter wavelengths has also been analysed [393] using the Russian ap-
proach. The possibility of using a high gain FEL amplifier to start from noise was first considered on
a storage ring to produce X-ray radiation. Examples were given for a 2.8 MeV energy, 100 A current,
50 µm rad emittance electron beam, helical undulator (λu = 20 mm, Bu = 0.3 T) leading to radiation
at 450 µm with a growth length of 14 cm, or for a 10.2 MeV energy, 30 kA current, 50 µm rad emittance
electron beam, helical undulator (λu = 60 mm,Bu = 0.1 T) leading to radiation at 100 µm with a growth
length of 22 cm. Also considered was the case of a 20.4 MeV energy, 14 kA current, 5 nm.rad emittance
electron beam in a storage ring, helical undulator (λu = 70 mm, Bu = 0.2 T, length of 15 m) leading to
radiation at 5 nm with a growth length of 2 m and an output peak power of the order of 1 TW. Conditions
are given for the energy spread (that should be less than 10−3) and angular spread (that should be less
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than 3× 10−5). These parameters are in fact not so different from the ones of the present LCLS (Linac
Coherent Light Source) X-ray FEL, as discussed later. Instead of a storage ring, a linear accelerator is
presently used on LCLS. It took also several decades to achieve, technologically speaking, the required
electron beam parameters.

This pioneering work indeed was considered for the first time to start from the spontaneous emis-
sion to amplify it in the high gain regime until saturation, in the case of an infrared FEL with a 10 MeV
electron beam [117, 118]. It is now usually called self-amplified spontaneous emission, in reference to
the amplified spontaneous emission in conventional lasers. Its sketch is shown in Fig. 51.

!

"

1

2  

!

"Fig. 51: FEL self-amplified spontaneous emission (SASE) configuration: the spontaneous emission emitted in the
beginning of the undulator is amplified in one single pass. Operation at short wavelengths requires high beam
energies for reaching the resonant wavelength, and thus long undulators (0.1–1 km for 0.1 nm) and high electron
beam density (small emittance and short bunches) for ensuring a sufficient gain.

6.3 Hamiltonian-type studies
The Hamiltonian description was also applied to the high gain case [93]. Using the Hamiltonian descrip-
tion in the moving frame [394], R. Bonifacio (1940–2016) et al. investigated cooperative and chaotic
transition (a kind of phase transition from a regime of small gain amplifier to that of a large gain ampli-
fier): “below this threshold value the electrons radiate weakly and almost independently whereas above
threshold the electrons strongly interact via the emitted radiation field. In the latter case the particles ex-
hibit strong self-bunching and give rise to cooperative emission of radiation” [395]. “The exact threshold
value wT of the coupling parameter is analytically obtained by investigating, for any number of electrons
N, the stability property of an initial condition with zero field excitation and totally unbunched electrons
(i.e. electrons uniformly spread over an optical wavelength)”. Results are compared to simulations. It is
pointed out that the transition can be stimulated by noise within the interaction volume.

The analysis was continued by the introduction of the notion of collective instability [396]. The
electrons communicate with each other through the radiation and the space charge field. Thus, they ‘self-
bunch’ on the scale of the radiation wavelength periods. The electrons have nearly the same phase and
emit collectively coherent synchrotron radiation. R. Bonifacio, C. Pellegrini (12th FEL Prize, in 1999)
and L. M. Narducci introduced the plasma frequency and the Pierce parameter. The exponential growth
is found as a solution for the cubic equation which has one real and two complex conjugate roots. The
instability condition could then be derived in terms of Pierce parameter and spectral detuning. The notion
of lethargy, the “time required for the initial pulse to build up” was also discussed. It is also found that
in the high gain case, the maximum growth is found for zero detuning. This regime is called the self-
amplified spontaneous emission (SASE) regime. SASE has been studied in detail [397,398], in particular
with issues regarding the transient behaviour of the system, using the Maxwell–Vlasov equations [399].
Effects of harmonics, space charge, and electron energy spread on the collective instability are discussed
[400]. The model covers both Compton and Raman regimes [401]. The regime of superradiance for a
high gain FEL was analysed [402]. Prospective SASE sources were designed [398]. The diagram block
in the SASE case is shown in Fig. 52. Semi-analytical models were developed [403, 404]. High gain
single-pass free electron laser dynamics and pulse propagation effects were also considered [405].
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Fig. 52: SASE diagram block with the process of collective instability arising from communication from the
neighbouring electrons.

6.4 One-dimensional high gain FEL modelling
6.4.1 The coupled system of equations
With high density electron beams and long undulators, a strong bunching takes place (space charge) and
the change in electric field can no longer be neglected. Thus, the FEL is treated via a set of coupled
equations [396, 398, 401]:

– the coupled pendulum equation, describing the phase space evolution of the particles under the
combined undulator magnetic field and electric field of the optical wave;

– the evolution of the optical field in the presence of an electronic density and current;
– the evolution of the bunching coupled to the longitudinal space charge forces, enabling us to eval-

uate the electronic density and current.

The electronic density and the current resulting from the electrons in the undulator are first evalu-
ated to treat the light wave evolution.

6.4.1.1 Radiation field evolution

The radiated field now depends on the longitudinal coordinate as

Ex(s, t) = Ex(s) exp [−i(ks− ct)]. (84)

Its evolution is ruled by the Maxwell equation

[ ∂2

∂s2
− 1

c2

∂2

∂t2

]
Ex(s, t) = µ0

∂jx
∂t

+
1

εo

∂ρ

∂x

with jx the average over the electron beam cross-section of the transverse electron peak current. In
one-dimensional FEL theory, the electronic density is assumed to be independent of x, so ∂ρ

∂x = 0. The
transverse current is mainly due to the electrons in the wiggler, and to a small extent to the radiation field.

The phase of Ex may vary with s, i.e. the FEL phase velocity, may differ slightly from that of a
plane electromagnetic wave at the speed of light c. Inserting the electric field expression in the Maxwell
equation, it becomes

[
2ikE′x(s) + E′′x(s)

]
exp [−i(ks− ct)] = µ0

∂jx
∂t

+
1

εo

∂ρ

∂x
. (85)

Under the slowly varying envelope approximation (SVEA) the electric field does not change much
over a few undulator periods even though its increase over the whole undulator length is large. The
change in one wavelength is even smaller, so is its first-order derivative. It can be written as |E′x(s)|λ�
|Ex(s)| and |E′x(s)| � k|Ex|. However, one should keep the first-order derivative in order to describe
the FEL growth as a function of the distance in the undulator. One can neglect the change of slope over
one undulator period λu, as |E′′x(s)|λ� |Ex(s)| and |E′′x(s)| � k|Ex|. The second-order derivative can
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be neglected. So, in the paraxial approximation, one has d
dt = c( ∂∂s + 1

ṽs
∂
∂t). The field evolution then

becomes

dEx(s)

dt
= −i

µo
2k

∂jx
∂t

exp [−i(ks− ct)]. (86)

6.4.1.2 Current sources

The current comes first from the displacement of the electron because of the undulator field. Then, a
bunching takes place and, if important, an electron can be affected by the neighbouring electrons due to
space charge forces.

The transverse current source due to the electron movement in the undulator is expressed using
the electron transverse velocity as

−→
j = ρe

−→v so jx = js
vx
vs
' js

Ku

γ
sin (kus) (87)

The field evolution becomes dEx(s)
dt = −iµoKu

2kγ
∂js
∂t exp [−i(ks− ct)] sin (kus). While the electrons and

the light wave interact, periodic density modulation (micro-bunching) is taking place, and the current can
be developed as a function of the ponderomotive phase ψ:

j̃ = j̃o + j̃1 exp (iψ) (88)

where the term exp (iψ) represents the bunching,

∂js
∂t

=
∂js
∂ψ

∂ψ

∂t
= −iωj̃1eiψ = −iωj̃1 exp (ik(s− ct) + ikus).

Combining the expression of the current and the electric field derivative terms, the field evolution
becomes

dEx(s)

dt
= −µocKu

2γ
j̃1 exp [ik(s− ct) + ikus] exp [−i(ks− ct)]e

(ikus) − c.c.
2

= −µocKu

4γ
j̃1[1+exp [i2kus]]

with c.c. meaning complex conjugate. As the complex field amplitude is slowly varying on the scale of
the wavelength λ, it can be driven by a current averaged longitudinally over several wavelengths. One
can thus average the transverse current longitudinally. The phase factor carries out two oscillations per
period and averages to zero. Thus, one gets

dEx(s)

dt
= −µocKu

4γ
j̃1[1 + exp [i2kus]]. (89)

Then, let’s consider the space charge term due to the longitudinal field. The electric field is created
by the modulation ρe of the charge density in the electron bunch, as illustrated in Fig. 53.

Fig. 53: Schematic representation of the slices of length λr along a bunched electron beam
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According to Maxwell’s equation, ∇.−→E = ρe(ψ,s)
εo

. Similarly to the current, one can develop the
electronic density as

ρe(ψ, s) = ρeo + ρ̃1 exp (iψ). (90)

It then becomes dEs
dt = ρ̃1

εo
exp (i[(k + ku)s− ωt]), so, the amplitude of the induced space charge

longitudinal field is

Es = −i
1

εo(k + ku)
ρ̃1 ≈ −i

µoc
2

εoω
j̃1. (91)

6.4.1.3 Energy change due to the field

In the low gain low field case (in neglecting the field variation over one undulator pass), one has

dη

ds
= − eElKu

2γ2moc2

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

sin (ξ + φ).

In the high field case with a bunched beam, one gets

dη

ds
= − eKu

2γ2moc2

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]

Re(Exe(iψ))− e

γrmoc2
Re(Ese

(iψ)).

The first term corresponds to the electron motion and the second one to the space charge contribu-
tion. One has

dη

ds
= − e

moc2γr
Re





Ku

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]
Ex

2γr
+ Es


 e(iψ)


 . (92)

Due to the bunching process, the electrons are grouped periodically in the electron bunch with a
spatial modulation equal to the wavelength λr and its harmonics of order n λrn, and the electron bunch
is described as a series of slices of length λr and number of electrons Nslice, which correspond to slices
of length 2π in the phase ψ representation. The shape function S(ψ) is given by

S(ψ) =
∑

j=1

Nsliceδ(ψ − ψj(t)), (93)

j being the current electron number. By developing in Fourier series, one gets

S(ψ) =
co
2

+ Re
( ∞∑

k=1

ck exp (ikψ)
)
, ck =

∫ 2π

0
S(ψ) exp (ikψ)dψ. (94)

In the case of the first harmonic, the current becomes

j1 = −ecne
2

Nslice

∑

j=1

Nslice exp (iψj). (95)

6.4.1.4 High signal set of equations

The FEL dynamics is now ruled by a set of coupled equations. The source current, depending on the
electron bunching, evolves as j1 = −ecne

2
Nslice

∑
j=1Nslice exp (iψj). The transverse electric field

evolution is ruled by the current source term, depending on the electrons in the undulator, as dEx(s)
dt =

−µocKu

4γ j̃1. The phase evolution is related to the energy exchange as
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dψj
ds

= 2kuηn, j = 1, . . . , Nslice. (96)

The energy exchange is governed by the current term due to the electron movement and to the
space charge induced electric field:

dη

ds
= − e

moc2γr
Re





Ku

[
Jn−1

2
(ξ)− Jn+1

2
(ξ)
]
Ex

2γr
+ Es


 e(iψ)


 . (97)

These equations are usually solved numerically. One can obtain however an analytic solution
under certain approximations.

6.4.2 Evolution of the light wave in the high gain regime of FEL
6.4.2.1 The FEL cubic equation

In the case of a rather ‘small’ periodic density modulation, a normalized particle distribution function,
obeying the Vlasov equation, is defined. After mathematical manipulation [396, 402], one can show that
the radiation amplitude Ex satisfies

˙̈Ex
Γ3

+ 2i
η

ρFEL

Ëx
Γ2

+
[k2

p

Γ2
− η2

ρ2
FEL

]Ėx
Γ
− iEx = 0 (98)

ρFEL is the so-called Pierce parameter, or FEL parameter. It depends on the electron beam density
and energy and on the undulator characteristics (deflection parameter, Bessel function term, undulator
wavenumber):

ρFEL =
[Ku[JJ ]ωp

4ωu

]2/3
=

1

2γku

(µoe
2K2

u[JJ ]2kune

4mo

)1/3
, (99)

where Γ, the gain parameter, is proportional to the Pierce parameter,

Γ = 2kuρFEL, (100)

and kp, the space charge parameter, is given by kp =
ωp

cγ

√
2λ
λu

with ωp the plasma pulsation ωp =
√

4πe2ne
mo

. In the specific case of η = 0 (on resonance) and for kp = 0, i.e. for negligible space charge,
the cubic equation takes its simplest form, as

˙̈Ex
Γ3
− Γ3iEx = 0. (101)

Considering the electric field expressed as ≈ e(iκs), it becomes κ3 = iΓ3 with three solutions:

κ1 = −iΓ, κ2 = (i +
√

3)Γ/2, κ3 = (i−
√

3)Γ/2.

κ2 leads to an exponential growth of the electric field.

6.4.2.2 The FEL power growth and evolution of the light wave in the high gain regime

The power grows as

Ex(s) = Ex0 exp (s/Lgo), Lgo =
1√
3Γ

=
1√
3

( 4moγ
3

µoe2K2
u[JJ ]2kune

)1/3
. (102)
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The bunching factor B evolves similarly. It is noticeable that there is amplification at resonance,
this feature differs from the small signal gain case. At the beginning of the undulator, the three terms
of the cubic equation do contribute to the change in the field intensity and the exponential growth is not
dominant, the bunching takes place. This regime is called the ‘lethargy’. Solving the cubic equation
for a non-zero detuning (slightly off resonance) provides the dependence of the imaginary solution with
detuning, i.e. the gain bandwidth. It has a maximum for zero detuning and decreases for both positive
and negative detunings. From the analysis of the behaviour, one can deduce that the FEL bandwidth is
given by the Pierce parameter:

∆λ

λ
= ρFEL. (103)

Adopting the same type of evaluation as in the small signal gain case, one estimates that the
saturation power of the radiated field is the electron beam power multiplied by the gain bandwidth:

Psat = ρFELEIp, (104)

with E the electron beam energy and Ip the peak current. Since the radiation pulse duration is close to
that of the electron bunch, the Pierce parameter gives the efficiency of the FEL, i.e. the fraction of the
beam energy given to the radiation field. Typically, the saturation power is reached after roughly 20 gain
lengths, at the saturation length Ls.

Ls ≈ 20Lgo ≈
1√
3Γ

=
20λu

4π
√

3ρFEL

=
5λu

π
√

3ρFEL

. (105)

So the saturation can be achieved with Ns, given by

Ns =
Ls

λu
=

5

π
√

3ρFEL

. (106)

The FEL parameter defines the growth rate, measured in undulator periods.

The start-up comes from the spontaneous emission noise. It is followed by an exponential growth
due to a collective instability (self-organization of the electrons from a random initial state). When the
power saturates, there is a cyclic energy exchange between the electrons and the radiated field and a
consequent change of power which corresponds to rotations in phase space. Growth and bunching also
occur on the harmonics of the fundamental wavelength. The number of radiated coherent photons per
electron at saturation Ncoh.ph is given by Ncoh.ph ∼ ρFELE

Eph
, with Eph the photon energy. For photons of

10 keV with a beam of 15 GeV, a Pierce parameter of 0.001, at 10 keV, Ncoh.ph ∼ 1500!

6.4.2.3 The SASE spectral and temporal properties

The uncorrelated trains of radiation, which result from the interaction of electrons progressing jointly
with the previously emitted spontaneous radiation, lead to spiky longitudinal and temporal distributions,
apart from single spike operation for low charge short bunch regime [406, 407]. The emission usually
presents poor longitudinal coherence properties. There is some particularity of the temporal structure
of the SASE pulse. Because the photons move faster than the electrons, the radiation emitted by one
electron moves ahead and slips by one wavelength per undulator period, so for the total undulator length
by Nuλ. The analysis [402] of the effect of slippage for an electron bunch of finite length, when the
slippage effect cannot be neglected, shows that the interaction between the electrons is only effective
over a cooperation length, the slippage in one gain length. In a one-dimensional model the cooperation
length can be written as
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Lcoop =
λ

2
√

3ρFEL

. (107)

Since the initial noise varies along the bunch length, the output radiation pulse consists of a series
of spikes of random intensity separated by a distance proportional to the cooperation length [408]. In
the case of spontaneous radiation, the intensity along the pulse varies randomly in each wavelength. For
SASE at saturation, the interaction between electrons and their emitted radiation generates a number of
spikes of random intensity and duration proportional to the cooperation length. The number of spikes
in a pulse is given by the ratio of the bunch length to the cooperation length. The intensity in each
spike fluctuates from pulse to pulse. There is no correlation between the phases of different spikes. The
statistical distribution of the total intensity, summed over all spikes, is given by a gamma distribution
function [407]. The line width, in a SASE FEL, is inversely proportional to the spike length, and not to
the bunch length. The width is of the order of the FEL parameter. In consequence, a SASE radiation
pulse is not Fourier transform limited, except for the case of an electron bunch length shorter than the
cooperation length, when a single spike is produced. Examples of spikes are shown in Fig. 54.
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FIG. 1. Results of the numerical model: temporal structure
of the radiated pulse, [A[ vs zq, at the first saturation, for
three values of the electron bunch length, at z = 148~ and for
([be[ ) = 10:(a) Eb = 5E„(b) Eb = 208„and (c) lb = 508, .
The temporal scale is in units of zq = (z —vIIt)/E, .

out of the leading edge, (3). An asymptotic evaluation
of El. leads to the following approximated expression:

,s~slv»l"'
12 v 3N„( /2) /

where y = ~Ebz We n. ote that El, does not experience
an exponential growth with respect to S and that the
growth rate depends on the bunch length as ~Eh
In the short bunch limit it is possible to demonstrate

[8] that, at saturation, P~, = pPb, ~ grab/8, oc n,
This can be shown analytically from the superradiant
self-similar solution, described in Ref. [8], and by the
following intuitive argument: The average power can be
approximated by the product of the peak power, [A] oc

(Eb/l, ), and the width, Azq oc (E,/Ib) /, divided by the
scaled bunch length Eb/E„so that Er, —QEb/E, . From
(8), imposing that EL, = P, ,/pPb„/Eb/E, we can
see that the saturation length scales as z, gE,/Ib
In the long bunch case, after the usual steady-state sat-

uration (Ei, 1), Er, continues to increase (see Fig. 2),
due to the growth of the superradiant spikes emitted by
the electron bunch, up to a second saturation value. This
second saturation value scales, as in the short bunch case,
as n, , since the peak intensity of the spikes is propor-3/2

tional to n, and their time duration is proportional to
1/~n, [8].
We have used the 1D time dependent numerical model

previously employed for the study of superradiance in
the free-electron laser (see Ref. [10]), where the proper
slippage between the electron bunch and the radiation
pulse is taken into account. The electron beam is "sam-
pled" at each radiation wavelength, where the shot noise
in the electron phases is generated through a simple al-
gorithm. The simulation electrons are first spaced uni-
formly along the radiation wavelength; then their posi-
tion is perturbed by a small random amount, distributed
with a Gaussian probability of width 6 [11,12]. The pa-
rameter 6 is determined by the requirement on the initial
average bunching along the electron beam, ([be[ ). Im-
posing that ([be[ ) = 1/N~, the parameter 6 turns out
to be 6 = gn/Ng, where n is the number of simulation
electrons in each radiation wavelength.
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FIG. 2. Long bunch case, Eg = 100k, . Average emitted
power as a function of the dimensionless distance along the
wiggler, z = z/Eg, showing the first and second saturation
values.

10
8
L

Hi', ';

e,=5e,
40

30

gl 2o
10

0
0 4

100
(b) =

~60—Al'

20

e,=-5oe,

(c) .j

FIG. 3. Spectrum of the radiated pulses, for the same cases
of Fig. 1; here 2 = A~/2p~.

We consider the long pulse limit. In the time domain,
the noisy pattern of the electron bunching along the beam
leads to a superradiant spiking in the radiation pulse.
The initial irregular spiking, seeded by nonuniformities
on the scale of a radiation wavelength, cleans up and
tends to a more regular pattern, with the occurrence of
one spike every 2' cooperation lengths. Hence, due to
this "intrinsic distance" of the superradiant spikes, no
more than one spike can develop every 2vrf„as shown in
Fig. 1 for three different pulse lengths. The position of
the spikes, however, is random and depends strongly on
the initial noise pattern bo(zq). Each spike exhibits the
superradiant scaling of intensity as the square density of
the electron beam, as has been numerically tested. If the
pulse is shorter than or of the order of 27rE„only one
"clean" spike occurs, as can be seen in Figs. 1 and 3.
For small undulator lengths we have found that the

spectral bandwidth shrinks as 1/N, in agreement with
the undulator radiation spectrum width [13]. In the high-
gain region the envelope reaches the well known band-
width [3,5] Ak/k, = 2p, i.e., Ak = 2k, p = 1/f.„as
one expects from the Fourier transform of the temporal
structure described above. If Eg & 2vrE„ the spectrum is
composed by a single line, as shown in Fig. 3(a).
Only the smooth envelope has been the object of most

of the previous theories (see Refs. [3,5]), even if a prelim-
inary work on the frequency spiking for infinite electron
bunches can be found in Ref. [14). In order to model
correctly this spiking behavior, it is necessary to take
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FIG. 1. Results of the numerical model: temporal structure
of the radiated pulse, [A[ vs zq, at the first saturation, for
three values of the electron bunch length, at z = 148~ and for
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The temporal scale is in units of zq = (z —vIIt)/E, .

out of the leading edge, (3). An asymptotic evaluation
of El. leads to the following approximated expression:

,s~slv»l"'
12 v 3N„( /2) /

where y = ~Ebz We n. ote that El, does not experience
an exponential growth with respect to S and that the
growth rate depends on the bunch length as ~Eh
In the short bunch limit it is possible to demonstrate

[8] that, at saturation, P~, = pPb, ~ grab/8, oc n,
This can be shown analytically from the superradiant
self-similar solution, described in Ref. [8], and by the
following intuitive argument: The average power can be
approximated by the product of the peak power, [A] oc

(Eb/l, ), and the width, Azq oc (E,/Ib) /, divided by the
scaled bunch length Eb/E„so that Er, —QEb/E, . From
(8), imposing that EL, = P, ,/pPb„/Eb/E, we can
see that the saturation length scales as z, gE,/Ib
In the long bunch case, after the usual steady-state sat-

uration (Ei, 1), Er, continues to increase (see Fig. 2),
due to the growth of the superradiant spikes emitted by
the electron bunch, up to a second saturation value. This
second saturation value scales, as in the short bunch case,
as n, , since the peak intensity of the spikes is propor-3/2

tional to n, and their time duration is proportional to
1/~n, [8].
We have used the 1D time dependent numerical model

previously employed for the study of superradiance in
the free-electron laser (see Ref. [10]), where the proper
slippage between the electron bunch and the radiation
pulse is taken into account. The electron beam is "sam-
pled" at each radiation wavelength, where the shot noise
in the electron phases is generated through a simple al-
gorithm. The simulation electrons are first spaced uni-
formly along the radiation wavelength; then their posi-
tion is perturbed by a small random amount, distributed
with a Gaussian probability of width 6 [11,12]. The pa-
rameter 6 is determined by the requirement on the initial
average bunching along the electron beam, ([be[ ). Im-
posing that ([be[ ) = 1/N~, the parameter 6 turns out
to be 6 = gn/Ng, where n is the number of simulation
electrons in each radiation wavelength.
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We consider the long pulse limit. In the time domain,
the noisy pattern of the electron bunching along the beam
leads to a superradiant spiking in the radiation pulse.
The initial irregular spiking, seeded by nonuniformities
on the scale of a radiation wavelength, cleans up and
tends to a more regular pattern, with the occurrence of
one spike every 2' cooperation lengths. Hence, due to
this "intrinsic distance" of the superradiant spikes, no
more than one spike can develop every 2vrf„as shown in
Fig. 1 for three different pulse lengths. The position of
the spikes, however, is random and depends strongly on
the initial noise pattern bo(zq). Each spike exhibits the
superradiant scaling of intensity as the square density of
the electron beam, as has been numerically tested. If the
pulse is shorter than or of the order of 27rE„only one
"clean" spike occurs, as can be seen in Figs. 1 and 3.
For small undulator lengths we have found that the

spectral bandwidth shrinks as 1/N, in agreement with
the undulator radiation spectrum width [13]. In the high-
gain region the envelope reaches the well known band-
width [3,5] Ak/k, = 2p, i.e., Ak = 2k, p = 1/f.„as
one expects from the Fourier transform of the temporal
structure described above. If Eg & 2vrE„ the spectrum is
composed by a single line, as shown in Fig. 3(a).
Only the smooth envelope has been the object of most

of the previous theories (see Refs. [3,5]), even if a prelim-
inary work on the frequency spiking for infinite electron
bunches can be found in Ref. [14). In order to model
correctly this spiking behavior, it is necessary to take

Fig. 54: SASE spikes for different bunch lengths. Temporal (up) and spectral (down) distributions, from [408]

On a single pass FEL, transverse coherence results from the electron beam emittance (which
should be of the order of the emitted wavelength) and from possible optical guiding. The optical guide
can arise from gain guiding (quadratic gain medium [45]) or from the contribution of a refractive in-
dex [409]. As a consequence, the undulator can even be longer than a few Rayleigh lengths!

6.5 Three-dimensional analysis
The role played by diffraction is analysed: exponentially growing modes, which have a profile indepen-
dent of the longitudinal coordinate, exist and a dimensionless parameter, which is proportional to the
radius of the electron beam and independent of the interaction length, determines whether diffraction is
important [410]. Then, the small-signal gain of the fundamental exponentially growing mode of the high
gain free electron laser is calculated, taking both diffraction and electron energy spread into account.
As the electron beam radius is reduced, the gain bandwidth increases by a large amount [411]. A two-
dimensional analysis using the properties of optical fibres shows that optical guiding can take place in a
free electron laser [409, 412, 413].

Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission
in free electron lasers was carried out [414, 415] using the three-dimensional Maxwell–Klimontovich
equation. The Klimotovich distribution function takes into account the discreteness of the electrons.
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The radiation field, represented by a complex amplitude, which is the slowly varying part of the full
amplitude, satisfies Maxwell equation. Slowly varying and high- frequency components of the electronic
distribution are treated separately. It is found that transversally, optical guiding takes place for high
gain FEL [410, 411]. Electron correlation, transverse radiation profiles, spectral features, transverse
coherence, and intensity characteristics are analysed, as shown in Fig. 55. The results, which agree
with recent microwave experiments, are applied to proposed schemes for generation of short-wavelength
coherent radiation. Corrections terms (from the three-dimensional theory) can be introduced [416, 417].VOLUME 57, NUMBER 15 PHYSICAL REVIEW LETTERS 13 OcTQBER 1986

o~ = (9p/2n'J3N)' (8)
For momentum spread much larger than p, the eigen-
value p, is real and there is no exponential growth.
The total SASE power, obtained by integration over
the frequency, is

PSASE p Pbesm gse /Nic (9)
where Pb„ is the kinetic power in the beam (equal
to Eol/e, where I=beam current) and N„= nh. i(2m) ' 2/o. z is the number of electrons in one
coherence length.
From AF one obtains information on electron distri-

bution and correlation. For CA the single-particle dis-
tribution function develops a coherent modulation.
For SASE the modulation occurs in the two-particle
correlation function. The correlation, defined as the
excess probability of finding two particles compared
with the uncorrelated case, is modulated with the
periodicity of the radiation wavelength and extends to
a distance of one coherence length.
The slow variation of f with respect to z is deter-

mined by substitution of the solution of the linear
equations into Eq. (3)—a procedure known as the
quasilinear approximation in plasma physics. '2 From
the resulting nonlinear Fokker-Planck equation, one
finds that the average value of q must decrease so as
to conserve the total energy of the radiation-beam sys-
tem. In addition, the rms spread ~„ofq is found to
increase as o.~ =p2g, e'/Ni, . Since the growth rate be-

Recall that p, is the solution of the eigenvalue equation
(5), and is a function of bi . For the one-dimensional
case with zero momentum spread, the maximum value
of p, l is ( —', ) '~2 at b, i =0. More generally, let the max-
imum p, l of p, l occur at Ai =bi . The growth is
then maximum at a frequency given by cot (21+ I
+b,v~). In general b, v is found to be negative. The
behavior of the p, l about Ai determines the spectral
shape. In this way, one obtains the power spectrum,

dP, dP p Ep=e'S(Aalu/cu ) g„+gs

deal

dQJ 0

where r=8mpPpN, bcu=oi —co~, S(x) =exp( —x/
2o z~), and gz and gs are quantities of order unity. The
first term in Eq. (7) gives the power spectrum for CA,
and one finds the growth of the input power spectrum
(dP/dc')0 to be exponential. The power spectrum for
SASE is given by the second term, which exhibits the
same exponential growth, with the input replaced by
the effective noise power spectrum pE0/2rr, where Eo
is the average beam energy. The function S describes
the frequency dependence of the gain for CA, as well
as the spectral shape of the SASE radiation. In one
dimension, for zero momentum spread, one obtains
gz =gs= —,

' and the bandwidth

Saturation regime
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FIG. 1. Schematic representation of SASE characteristics.

comes negligible when o „&)p, the exponential
growth will stop when the factor gse' becomes about
N„.'3 The power at saturation becomes, in view of Eq.
(9), about pPb„. For parameters considered here,
the saturation occurs at N = 1/p. In view of Eq. (8),
the bandwidth at saturation is cu/b, ru —N, which is the
same as the bandwidth of the spontaneous radiation
from an undulator with the same N
Figure 1 summarizes the characteristics of SASE at

different undulator periods N. For pN &( 1, the radi-
ation is an incoherent superposition of radiation from
individual electrons, and is referred to as the undulator
radiation. It is partially coherent transversely as a
result of finite electron-beam emittances. The band-
width is about 1/N. For larger N but with pN ( 1, the
FEL interaction causes modulation in the correlation
function of electrons, resulting in an enhanced radia-
tion intensity and coherence. Barring certain degen-
erate situations, the radiation amplitude is dominated
by a single mode which is exponentially growing and
fully coherent transversely. The relative bandwidth in
this exponentially growing regime is smaller than the
undulator radiation by a factor (pN)' 2. Finally, the
exponential growth stops when pN —1 as a result of
the increased momentum spread induced by the FEL
interaction.
Experimentally, SASE was measured in the mi-

crowave region at Lawrence Livermore National Lab-
oratory. ' For this experiment, the radiation is con-
fined in a waveguide, and therefore 1D theory is ap-
propriate. The data were compared with the prediction
given by Eq. (9) in the first paper of Ref. 4. The
agreement is encouraging.
A long undulator in a special bypass of an optimized

storage ring is a promising SASE source for broadly
tunable high-power radiation at short wavelengths. 3 In

1S73

Fig. 55: Schematic representation of SASE properties from the three-dimensional analysis by K. J. Kim in [414]

Semi-analytical models of SASE FEL based on the logistic FEL equation [404] are developed.
They include diffraction, beam quality and pulse propagation.

6.6 Conditions for SASE amplification
Conditions for SASE amplification are detailed below.

6.6.1 Emittance requirement
There should be a proper transverse matching (size, divergence) between the electron beam and the
photon beam along the undulator for insuring a proper interaction. It means that the emittance should
not be too large at short wavelength. The FEL gain increases with the beam current provided that

εn
γ
<

λ

4π
. (108)

High power short wavelength FELs require thus low emittance electron beams (much smaller than
100π mm mrad and peak currents of the order of 100 A.

6.6.2 Energy spread requirement
The electron beam should be rather ‘cold’, its energy spread should be smaller than the bandwidth, i.e.

σγ
γ
< ρFEL. (109)

6.6.3 Rayleigh length requirement
The radiation diffraction losses should be smaller than the FEL gain, i.e. the Rayleigh length should be
larger than the gain length:
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Zr > Lgo. (110)

For long undulators, intermediate focusing is then put between undulator segments.

Reviews of the free electron laser theory are presented in [124, 418]. Different numerical codes
can be used for FEL calculations, such as GINGER [419] by W. Fawley (25th FEL Prize in 2014),
GENESIS [420] written by S. Reiche (21st FEL Prize in 2010), PERSEO [421] by L. Giannessi (24th
FEL Prize in 2013), MEDUSA [422] by H. Freund, PUFFIN [423] by B. Mac Neil and L. T. Campbell,
TDA [424] by J. S. Wurtele etc.

6.7 High gain up-frequency conversion
6.7.1 High gain harmonic generation theory
As for the case of the low gain FEL, harmonic generation can take place, as schematized in Fig. 56.

Fig. 56: High gain harmonic generation

Three-dimensional analysis of harmonic generation in high gain free electron lasers has been car-
ried out [425] in the case of a planar undulator using the coupled Maxwell–Klimontovich equations that
take into account non-linear harmonic interactions. “Strong bunching at the fundamental wavelength can
drive substantial bunching and power levels at the harmonic frequencies”. “Each harmonic field is a sum
of a linear amplification term and a term driven by nonlinear harmonic interactions. After a certain stage
of exponential growth, the dominant nonlinear term is determined by interactions of the lower nonlinear
harmonics and the fundamental radiation. As a result, the gain length, transverse profile, and temporal
structure of the first few harmonics are eventually governed by those of the fundamental. Transversely
coherent third-harmonic radiation power is found to approach 1% of the fundamental power level for
current high-gain FEL projects” [425].

Non-linear harmonic generation in high gain free electron lasers [426] can also be treated semi-
analytically using a theoretical ansatz and fitting methods, providing “the most significant aspects of the
high-gain free-electron laser dynamics” [426]. Expressions are found for the growth of the laser power,
of the e-beam-induced energy spread, and of the higher-order non-linearly generated harmonics. They
are applied to treat pulse propagation and non-linear harmonic generation in free electron laser oscillators
[148], two harmonic undulators, and harmonic generation in high gain free electron lasers [427].

Different variants have been considered.

In the high gain harmonic-generation (HGHG) configuration [428–432], a small energy modula-
tion is imposed on the electron beam by its interaction with a seed laser in a first undulator (the modulator)
tuned to the seed frequency, it is then converted into a longitudinal density modulation thanks to a disper-
sive section (chicane) and in a second undulator (the radiator), which is tuned to the nth harmonic of the
seed frequency, the microbunched electron beam emits coherent radiation at the harmonic frequency of
the first one, which is then amplified in the radiator until saturation is reached. By some means, it recalls
the optical klystron scheme. The HGHG configuration is shown in Fig. 57, The seed signal should then
overshot the shot noise from the start-up SASE radiation.

In such a way, the higher-order harmonic components of the density modulation induced by the
FEL process are exploited in a ‘harmonic converter’ configuration, to multiply the frequency, and extend
the original spectral range of operation of the FEL. To be more efficient, it is combined to the ‘fresh
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Fig. 57: High gain harmonic generation: seeding is performed in two stages, the first stage is seeded with an
external laser, where a density modulation of the electron bunch takes place, whereas the second stage is seeded
by the FEL from the first stage while the undulator is set on a harmonic of the radiation from the first stage; and
the electron bunch radiates coherently after passing through a dispersive magnetic chicane.

bunch technique’ [433] where a proper delay is applied on the electron bunch with respect to the optical
path so that a ‘non-heated’ part of the electron bunch is used for the second stage.

The HGHG can be put in cascade with a series of modulator/radiator undulators, enabling poten-
tially effective frequency conversion. L. H. Yu considered that “the cascading of several HGHG stages
(35) can provide a route for x-ray generation using current near-ultraviolet seed laser performance. In
this approach, the output of one HGHG stage provides the input seed to the next undulator. Each stage
is composed of a modulator, dispersion section, and radiator. Within a single stage, the frequency is
multiplied by a factor of 3 to 5. For each stage, the coherent radiation produced by the prebunched beam
in the radiator at the harmonic of the seed is many orders of magnitude higher in intensity than the SASE
generated. In a specific example (35), after cascading five HGHG stages, the frequency of the output is
a factor 5 × 5 × 5 × 4 × 3, i.e. 1500 times the frequency of the input seed to the first stage. Dispersion
sections are placed between stages to shift the radiation to fresh portions (36) of the electron bunch to
avoid the loss of gain due to the energy spread induced in the previous stage” [429]. Shot noise at the
different stages can then become an issue [434]. Schemes for reducing this shot noise are proposed [435].

In the harmonic cascade configuration (see Fig. 58), the wavelength ratio of the two stages is a
ratio of integers [436, 437].

Fig. 58: Harmonic cascade configuration: seeding is performed in two stages, the first stage is seeded with an
external laser, whereas the second stage is seeded by the FEL from the first stage while the undulator is set so that
the wavelength ratio of the two stages is a ratio of integers.

In particular seeding cases, the seeded FEL can become super-radiant [436], leading to further
pulse shortening and intensity increase. Depending on the respective electron bunch and slippage length,
complex spatio-temporal deformation of the amplified pulse can lead ultimately to a FEL pulse splitting
effect [438].

6.7.2 Echo enabled harmonic generation
In the echo enabled harmonic generation (EEHG) [439] scheme (see Fig. 59), two successive laser–
electron interactions are performed, using two undulators, in order to imprint a sheet-like structure in
phase space. As a result, higher-order harmonics can be obtained in an extraordinary efficient way.

Figure 60 shows the imprinted modulation applied in the echo scheme.

Schemes derived from EEHG, such as the triple mode chicane, open perspectives for very high
up-frequncecy conversion for short wavelength (nm) light of short duration at moderate cost [441]. The
echo concept can also be applied to storage ring based light sources [442]. EEHG opens the way to
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Fig. 59: FEL EEHG: a coherent source tuned on the resonant wavelength of the undulator applies a first energy
modulation, electrons move according to their energy in the chicane where a second energy modulation is applied,
imprinting a fine structure in phase space.

Fig. 60: Evolution of the particle phase space along the EEHG stages. Phase space of the beam after the first
modulator (top left), the first chicane (top right), the second modulator (bottom left), and the second chicane
(bottom right). Horizontal axis: phase, vertical axis: relative energy, from [440].

shorter wavelengths when operating on a high-order harmonics of the seed wavelength. Echo has no
equivalent in classical optics.

7 Single-pass short wavelength FEL experimental results
These encouraging results in the early FEL research let the community envision prospects for XUV
FELs [386] and soft X-ray FELs [443–445] to be installed on storage rings, the accelerators providing
the best performance at that time (energy spread of ∼ 0.1%, peak current of a few hundreds of ampere).

The high gain regime, for which theory was actively developed, appeared to be quite suitable. First,
high gain FEL experiments took place on oscillators, then experiments aiming at demonstration of SASE
at intermediate wavelengths were undertaken. However, the decrease in wavelength was accompanied by
an improvement of accelerator technology, enabling us to fulfil the requirements for SASE. The advent
of the photoinjector became really crucial for ensuring the development of FELs at shorter wavelengths.
In addition, the requirements in terms of linear accelerator performance for future colliders met the needs
of X-ray FELs, and the technological developments were fruitfully applied within the FEL community.
In particular, the high electron beam density also suited for getting a short gain length.

7.1 Towards VUV X-ray FELs?
7.1.1 Limits of storage ring driven FEL for short wavelength FELs
The electron beam quality is an essential contribution to the success of a given FEL. Indeed, the energy
spread should be sufficiently small to enable a proper bunching. At the end of the twentieth century,
the shortest FEL wavelength on an oscillator has been achieved on a storage ring FEL [263, 264]. How-
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ever, the electron beam recirculation is limiting the output power according to the Renieri limit, and
compatibility of the use of the storage ring with normal synchrotron radiation use became an issue.

7.1.2 Early development of photoinjectors
With respect to conventional thermoionic guns, photoinjectors [446, 447] in which a laser illuminated
photocathode is located directly in the high gradient accelerating cavity, can enable us to provide a high
quality electron beam. Compared to a thermionic gun, the current density can be very high so that
bunching is not necessary. The time structure can also be controlled by the laser beam, and matched
into the RF accelerators without degrading the emittance. The electrons produced on the photocathode
surface are quickly accelerated in a RF cavity in order to limit the emittance blow-up due to the space
charge force. Several laboratories have initiated the development of photoinjectors.

The first photocathode-driven electron beam enabling FEL was achieved at Stanford on the MARK
III linear accelerator [448]. The gun used a LaB6 cathode, illuminated by a tripled Nd:Yag laser, leading
to an energy spread of 0.8% and an horizontal (vertical) emittance of 8(4)π mm mrad.

At Los Alamos, the facility has been modified to target FEL oscillation in the visible. For this
purpose, the thermoionic gun was replaced by a photoinjector [449–452]. The pioneering work of the
Los Alamos team on photo-injectors was recognised by the FEL prize 2017 awarded to Bruce Carlsten
and Richard Sheffield (27th FEL prize 2017). The photoinjector (26 MeV/m at the CsK2Sb cathode at
1.3 GHz in the π/2 mode) produced 6 MeV, 300 A, 15 ps electron pulses at 22 MHz repetition rate. The
drive laser was a Nd-YLF laser at 527 nm with very low phase (< 1 ps) and amplitude (<1%) jitters.
Changing from the thermoionic gun to the photoinjector enabled to reduce the emittance by a factor of
4 and the energy spread by nearly a factor of two. Typically, the electron phase space density could
be larger by one order of magnitude. B. Carlsten proposed the idea of emittance compensation [453],
leading to a significant reduction of the normalized emittance with respect to usual thermoionic guns.

Another photoinjector was developed at Brookhaven National Laboratory (Center for Accelerator
Physics) [454]. In the frame of a SLAC/BNL, UCLA collaboration, a research and development (R&D)
effort was launched on the development of a photoinjector. A 4.5 MeV 1.5 cell standing wave RF
(2.856 GHz) photoinjector gun based on the Brookhaven design, using a copper cathode, was completed
at UCLA [455]. Driven by sub 2 ps pulses of UV (266 nm) light (up to 200 µJ/pulse) and powered by a
SLAC XK5 type klystron (24 MW, 4 µs), it could generate up to 3 nC charge. Accelerating gradients of
up to 100 MV/m were achieved. A 0.25 kA peak current (with 9 ps duration pulses) could be produced
with emittance in the 1− 10π mm mrad range.

A gun test facility at SLAC was then implemented with a 3 m S-band linac section [456] and the
design was improved. Four copies of the gun were fabricated.

The CANDELA photoinjector was also developed at Orsay [457].

The development of photoinjectors continued, and became crucial for single-pass FELs, because
it permitted to provide electron beams with higher performance.

7.1.3 Considerations for short wavelength single-pass FEL in the SASE regime
Because of the limited performance of mirrors in terms of reflectivity, short wavelength FEL are usually
operated in the so-called SASE set-up, where the spontaneous emission at the input of the FEL amplifier
is amplified, typically up to saturation in a single pass after a regime of exponential growth. In the
beginning of the twentieth century, several authors started to design X-ray FELs in the SASE regime
[458]. A workshop on prospects for a 1 Å FEL in Sag Harbor in 1990 [459] aiming at answering the
questions: “What are the prospects for a 1 Å Free-Electron Laser? Can we obtain electron sources bright
enough to get down to the 1 Å region ?” “To focus the workshop, the initial discussion by R. Palmer
defined three canonical 1 Å FEL cases as possible alternatives, i.e. with 1.6, 5, and 28 GeV electron
beam sources. Each is a loose optimization of conflicting requirements needed to achieve λ = 1 Å on
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the electron beam quality, brightness, peak current focusing properties and its incidence on the wiggler
period and total length.”

L. H. Yu [460] introduced the problematics as such: “The Free Electron Laser (FEL) holds great
promise as a tuneable source of coherent radiation. At the present, the shortest wavelength achieved by
a FEL is 2500 Å. However, as recent progress in the development of laser driven photocathode electron
guns has provided electron beams with lower and lower emittance and higher and higher current, it has
become clear that FEL’s with much shorter wavelength can be achieved. A FEL operating below 1000 Å
will yield important advances in fields such as photochemistry, atomic and molecular physics. A FEL
with wavelength of 30 Å will bring new era to the development of holography of living cells. And,
if a FEL with 1 A wavelength can be developed, its impact on solid physics, molecular biology, and
many other fields can hardly be exaggerated. Is it possible for a FEL to achieve 1 Å? What are the
difficulties and the challenges to the present technology to build a 1 Å FEL? What are the requirements
on electron beam quality and the wiggler magnets required to build a 1 A FEL? To lase at 1 Å, the FEL
must operate in the high gain regime. For oscillator configuration, aside from the difficulties associated
with the requirements on the mirrors which must stand high intensity 1 A radiation, we need high gain
to overcome the loss in the cavity mirrors. The difficulties with the mirrors make the single pass FEL a
more likely solution. For single pass configuration we also need high gain to minimize the total length
of the wiggler. To achieve high gain for 1 Å FEL, the electron beam must have high peak current, low
normalized emittance, and small energy spread. Strong focusing of the electron beam becomes necessary
for such a short wavelength. In order to achieve short gain length, the wiggler should have high magnetic
field on axis and short wiggler period. The requirements for a 1 Å FEL should be determined by the
gain calculation for these various system parameters. It is usually carried out by numerical simulations.
However, to explore the large parameter space for a possible FEL configuration, an analytical tool to
calculate the gain would be much more convenient than the simulation”. C. Pellegrini [461] concluded
with the following words “The FEL in the SASE regime offers an attractive route to an X-ray laser.
To make this laser a reality it is necessary to solve many problems; produce electron beams with very
high quality and refine the understanding of the physics of FELs. We also need to produce long, short-
period undulators with good field quality. To reach these goals we need an extensive experimental and
theoretical effort on electron guns, accelerators and FEL with a number of intermediate steps that will
take us from the present region of 240 nm and 1 W to 0.1–1 nm and 1 GW”. J. C. Golstein [462]
examined more particularly the undulator errors and concluded more generally as “All of the separate,
requirements on the electron beam and the wiggler for this sort of one- Angstrom SASE FEL amplifier
seem to substantially exceed achievements in existing devices. To achieve all of these requirements
simultaneously, as is required for this device, would appear to require many years of development”.
K. J. Kim examined emittance and current density achievable in RF photo-cathode guns, and investigated
the effect of space charge and RF curvature induced emittance growth.

The work in such a direction was continued during discussions held during fourth generation light
source workshops [463, 464].

7.2 Historical observations of high gain single-pass SASE FEL
7.2.1 SASE observations at long wavelength
The activity continued on storage rings [210,211] especially for the quest towards a short wavelength of
operation, since high quality electron beams were still being produced. In addition, the interplay between
the beam dynamics in the ring and the FEL interaction was of great interest.

Following theoretical development on high gain FEL, various experiments were carried out.

LIVERMORE NATIONAL LABORATORY, USA

Saturated high gain amplification has first been observed in the mm waves (34.6 GHz) in the mid eighties
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in a collaboration between Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory
(USA) [294]. The electron beam from the Electron Laser Facility (ELF) (Lawrence Livermore National
Laboratory) provided 6 kA, -3.3–3.8 MeV beam with a normalized emittance of 1500π mm mrad, which
goes through a slit, bringing to beam to a current of approximately 500 A with 15 ns pulses with a
normalized edge emittance of 470π mm mrad. The 3 m long wiggler of 98 mm period was composed of
specifically shaped solenoids with independent power supplies providing a peak field of 0.5 T surrounded
by a stainless-steel waveguide. The experiments were first carried out in the amplifier configuration
where saturation was observed, before moving to the SASE one, for which saturation was also achieved
after 2 or 3 m of undulator, depending on the experimental conditions. The power growth is shown in
Fig. 61.VOLUME 54, NUMBER 9 PHYSICAL REVIEW LETTERS 4 MARCH 1985

nal. A special diagnostic probe was constructed to
travel the length of the waveguide and provide real-
time imaging of the electron beam position. The reso-
lution of this probe is +0.5 cm. When this probe was
inserted into the wiggler, the magnetron was replaced
by a microwave attenuator and crystal detector (con-
figuration A of Fig. 1) so that any amplified noise
which was reflected off the moving probe could be
detected. By measuring the microwave power as a
function of probe position, we could determine the
small-signal gain of the FEL.
Output power of the FEL amplifier was measured ei-

ther by a vacuum laser calorimeter or calibrated crystal
detectors preceded by approximately 100 dB of at-
tenuation. When the calorimeter was used, the micro-
wave pulse shape could be monitored with a crystal
detector. All microwave elements (the magnetron and
the calorimeter or output window) were transit-time
isolated to prevent multiple passes of the microwave
signal through the interaction region.
The signal gain in the super-radiant mode (no

microwave input signal) was measured by means of
the arrangement illustrated in configuration A of Fig.
1, and the results of this experiment are given in Fig.
2. The beam energy was 3.6 MeV (y=8.1) and the
wiggler magnetic field was 4.8 kG. The microwave ra-
diation generated in the interaction region reflected off
the face of the beam probe and was monitored by a
crystal detector. Extracting the probe continuously
lengthened the interaction region. The results (Fig. 2)
indicate that the microwave signal grew at a rate of
13.4 dB/m for a beam current of 450 A.
We studied the amplifier gain by means of config-

uration B of Fig. 1 both as a function of wiggler mag-
netic field intensity and as a function of wiggler length.
In this part of the experiment, the beam energy was
3.3 MeV. The depedence of the gain on wiggler field
strength is shown in Fig. 3 for 1-, 2-, and 3-m-long,
constant-amplitude wigglers. The peak output power
of 80 MW achieved for both the 2- and 3-m-long
wigglers indicates that the amplifier saturated near the
2-m point. The gain curves for the 1- and 2-m
wigglers are relatively symmetric about the peak while
the gain curve for the 3-m-long wiggler shows a
marked asymmetry with a plateau on the long-
wavelength side of the curve. This asymmetry is also
shown in the simulations discussed below.
Near the magnetic field strength corresponding to

the peak output of a 1-m-long wiggler, we examined
the amplification as a function of wiggler length. The
results of this experiment are shown in Fig. 4. It is
clearly seen that the amplifier goes into saturation at
2.2 m; beyond this point, the amplified output power
first decreases and then near 3 m starts to increase
again. The gain as a function of wiggler length shows
an exponential gain of approximately 15.6 dB/m up to
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FIG. 2. Small-signal gain in the super-radiant mode as a

function of wiggler length.

saturation (L =2.2 m). This is in close agreement
with the small-signal gain measurement described
above. (Note that the small-signal gain is proportional
to 8„/y3/2, which is nearly the same in both cases. )
The linear theory best suited to the experiment has

been derived by linearization of the single-particle,
longitudinal (y-Q) equations of motion derived by
Kroll, Morton, and Rosenbluth. 8 The procedure is
identical to that of Bonifacio, Pelligrini, and Narducci,
with the addition of explicit betatron motion (i.e. ,
emittance effects) and an integration over the
waveguide. This version of the linear theory predicts a
very steep dependence of gain on the electron beam
emittance, and hence radius in the wiggler. The ob-
served exponential gain, after we account for fractional
coupling into the growing mode (launching losses),
corresponds to a maximum beam radius of approxi-
mately 8 mm. This beam radius is consistent with the
image seen on the axial probe.
The numerical simulations follow 4096 electrons in

a single ponderomotive potential well. The particles
undergo betatron oscillations in the transverse direc-

Fig. 61: Power growth in the Livermore–Berkeley experiment, figure taken from [294]

The extraction efficiency first reached 5% and then 34% by undulator tapering, leading to an
output signal of 1 GW [465]. This was also an experimental demonstration of the undulator tapering for
improving efficiency and it provided a very important result for the community. However, the radiation
being propagated in a waveguide, it did not provide a full test of the diffraction effects that can affect the
FEL, especially at shorter wavelengths, when the radiation is propagating in vacuum.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), USA

A superradiant emission (18 MW) at 640 µm with a 4% relative bandwidth has been observed with a
2 MeV 1 kA electron beam on the PULSERAD accelerator with a helical undulator (31.4 mm period)
[466]. It would correspond to an efficiency of 7%.

CENTRE D’ ETUDES SCIENTIFIQUES ET TECHNIQUES D’AQUITAINE (CESTA), BORDEAUX, FRANCE

Bunching has been demonstrated at CESTA (France) at 8 mm (35 GHz) with the LELIA induction
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linac [295] delivering a 1 kA electron beam at 2.2 MeV, leading after transport to 800 A [467], as
illustrated in Fig. 62. The 12 cm period 3.12 m long helical undulator was fed by a capacitor discharge
providing a peak field of 1.1 T [468]. Cherenkov radiation was produced and measured with a picosecond
streak camera. A 40 MW SASE has also been observed [469].

VOLUME 76, NUMBER 24 P HY S I CA L REV I EW LE T T ER S 10 JUNE 1996

The frequency f of the radiation being amplified may be
written as

f �
kwyz 2 vp�gzg1�2

2p�1 2 yz�c�
,

where vp , yz , gz , and c denote, respectively, the plasma
frequency, electron axial velocity in the wiggler, axial
Lorentz factor, and speed of light. The axial velocity yz is
given by yz �

p
y2

0 2 y2
� where y0 is the initial electron

velocity and y� is the perpendicular electron velocity
due to the wiggler field. For a helical wiggler in a one-
dimensional model, y� � Kc�g, where K � 93.4lwBw
is the dimensionless wiggler parameter (lw is in meters
and Bw in tesla). For amplification at 35 GHz with our
2.2 MeV electron beam, the appropriate wiggler field is
approximately 1.1 kG. The frequency of the output signal
was measured by mixing with the output of a variable
frequency local oscillator. Both the magnetron and the
FEL signals were observed to have the same frequency,
35.02 6 0.02 GHz.
The FEL gain and saturation length were computed with

the 3D FEL code SOLITUDE [17]. The calculation predicts
that saturation occurs at the seventeenth period. Our
measurements, using a kicker magnet to defect the electron
beam into the wall at different longitudinal positions, show
fair agreement with the code, although the power level
attained is somewhat less. Experimentally, saturation is
reached near the nineteenth period where the peak power
is 15 MW. Beyond this period we enter the nonlinear
regime of FEL operation, where computations suggest that
the quality of bunches will decrease. Since the bunching
parameter b is predicted to reach its maximum value just
before saturation, the wiggler was truncated at period 20.
The addition of four adiabatically decreasing exit periods
allows satisfactory beam extraction.

Given these promising FEL results, it was considered
feasible to perform a direct measurement of bunching.
First, we demonstrated that bunching occurs by carrying
out a simple EM measurement. At a distance of 7 cm
downstream from the wiggler exit, a 120 mm titanium foil
was placed at a 45± angle across the beam tube. This
foil completely deflects the incident microwave power, and
the electron beam, upon passing through the foil, enters a
region of the wave guide where no radiation field exists
from the FEL interaction. A bunched beamwill then create
a new low-power EM wave whose power and frequency
can be measured using the same diagnostic techniques
as explained before. In a preliminary exploration of
bunching carried out with a pulse-line diode to power the
FEL, we had measured the frequency of this signal to be
35 GHz [18]. This method, by virtue of its simplicity,
was extensively used both to optimize the extraction of
the bunched beam by varying the position and field of the
solenoid magnet, and to study the variation of bunching
as a function of axial distance. For the latter, we placed
a tungsten grid 30 cm behind the titanium foil in order to
reflect the signal emitted by the beam between the titanium
foil and the grid. Upon passing through the grid, the
beam regenerates radiation whose power is measured. A
reduction of about 80% of radiated power was observed,
indicating an important debunching. We attribute this to
the space-charge effects, which debunch the beam linearly
with distance.
Although this method is simple, it is not sufficiently

quantitative to characterize the bunched beam. There-
fore we have performed an optical measurement of the
bunching as well. We first used the gated camera to de-
termine the position and size of the beam at the point

FIG. 2. Example of optical bunching measurement for a sweep speed of 25 ps�mm at a position 27.5 cm after the wiggler exit:
(a) streak camera recording; (b) digitized intensity of (a) plotted vs time, and (c) frequency spectrum of (b).

4534
Fig. 62: Bunching observed on Cherenkov radiation observed with a streak camera (ARP) from the CESTA SASE
FEL experiment from [467]. Radiation observed on a narrow rectangular slit 10 mm wide and 0.3 mm high. The
slit was then displaced in time to provide a photographic record of the light intensity. Sweep speed of 25 ps/mm at
a position 27.5 cm after the wiggler exit: (a) streak camera recording; (b) digitized intensity of (a) plotted vs time,
and (c) frequency spectrum of (b).

7.2.2 SASE observation in the near infrared, visible and UV
The progress of the SASE observations is discussed.

INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH (ISIR), OSAKA UNIVERSITY, OSAKA,
JAPAN

An increase of undulator radiation intensity by 5–100 times has been observed using the 38 MeV electron
beam from a L-band linac (28 nC charge, 30 ps pulse length, 0.7 − −2.5% energy spread), a 2 m long
undulator (60 mm period) in the 20–40 µm spectral range, as shown in in Fig. 63 [470].
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Fig. 3. The dependence of the intensity of radiation on the charge of electrons in a bunch for wavelengths of (a) 20 and (b) 40 izm. 

trons takes place in each period of the coherent radia- 
tion, thus forming a bunch train, the total intensity of 
the radiation would be about 108-109 times that of the 
incoherent spontaneous emission at a charge of 28 nC, 
the maximum charge in the present experiments. The 
present results seem to show that bunching has been 
very weak and, accordingly, that the intensity of the 
radiation measured involves the spontaneous emission 
indicated by the dashed line shown in fig. 3 and the 
amplified radiation. 

The intensity of the incoherent spontaneous emis- 
sion can be calculated theoretically [4]. For the present 
experimental conditions the intensities calculated are 
1.1 x 10 -8 and 2.7 x 10 .9 J / (sr  nC) at wavelengths of 
20 and 40 ixm, respectively. From these values the 
powers of the amplified radiation at a charge of 28 nC 
can be evaluated to be 1.2 ! 10 6 and 7.6 x 10 .6 J / s r  
at 20 and 40 Ixm, respectively. The length of the light 
pulse has not been measured. This is expected to be 
narrower than the pulse length of an electron bunch 
because of the deformation of the pulse shape after 
the amplification and the slippage between the pulsed 
light and the electron bunch in the wiggler. Assuming 
the length of the light pulse to be 20 ps, the peak 
powers of the amlified part of the pulsed light obtained 
in the present experiments at a solid angle of detection 
of 10 .5 sr and a charge of 28 nC are estimated to be 
about 0.6 and 4 W at wavelengths of 20 and 40 I~m, 
respectively. 

The parameters for the present experiments have 
not been adopted to obtain the highest intensity of 
radiation. This will be achieved by choosing the param- 
eters of the wiggler and the electron beams. The ampli- 
fication of input lasers is effective to achieve high-power 
FEL amplifiers. 

The output radiation with short pulse-lengths is 
useful to analyze transient phenomena. Especially, the 

pulse-radiolysis method is applicable to such research 
by using the single-bunch electron beams together with 
the radiation. The characteristics of the radiation such 
as the spectrum, the pulse length and coherence should 
be investigated to develop the light sources. 

6. Summary 

Self-amplified spontaneous emission has been ob- 
served with the high-brightness single-bunch beams of 
the ISIR linac at wavelengths of 20 and 40 txm. The 
peak powers of the amplified radiation at a solid angle 
of detection of 10 -5 sr and a charge of electrons in a 
bunch of 28 nC have been estimated to be 0.6 and 4 W 
at wavelengths of 20 and 40 txm, respectively. 
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Fig. 63: Undulator radiation signal versus charge, solid line: spontaneous emission, from [470]
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SUNSHINE, STANFORD UNIVERSITY, STANFORD, JAPAN

Coherent, far-infrared undulator radiation from sub-picosecond electron pulses consistent with SASE
predictions with a gain length of 45.4 cm have been observed using electrons from the 16 MeV SUN-
SHINE S-band linac (350 ps) travelling in a 26 ×77 mm period permanent magnet undulator (K =
0.3–0.2) [471].

CLIO, ORSAY, FRANCE

SASE at start-up in the mid infrared (5–10 µm) has been observed on CLIO (France) [472] at the Labo-
ratoire d’ Utilisation du Rayonnement Electromagnétique as shown in Fig. 64.
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FIG. 1. Influence of the electron peak current (rf phase
tuning) on the spontaneous intensity (top curves) during the
electron macropulse. The bottom curves show the average
electron beam current.

slightly increased by the presence of the second undulator:
In this case the r parameter is maximized by a very
small electron beam size in the center of the first
undulator. Then r becomes almost negligible in the
second undulator, due to the divergence of the beam
following a very small focus.
The spectrum of the SASE has been measured for vari-

ous intensities of SASE, by acting on the rf phase. A
spectrum is displayed on Fig. 3 for the case corresponding
to the beam adjustment of Fig. 2. It is taken at 5 mm, so
that we can use a sensitive InSb detector and measure
both the SE and SASE. The difference between these
two curves represents the amplification experienced by the
SE along the undulator: clearly a moderate amplification

FIG. 2. Intensity of SASE versus electron beam average
current. The curves A and B correspond, respectively, to
2N � 38 and N � 19 periods undulators. Curve C is two
times the curve B.

FIG. 3. Spectra of the emission with and without SASE and
their difference at l � 5 mm, with the FEL adjustment.

appears which is located at a slightly longer wavelength
than the central wavelength of the SE. This wavelength
shift �Dl�l � 1.4%� is close to the theoretical value
of 1

2N expected at moderate FEL gain. In Fig. 4, we
have displayed the spectra obtained with the best beam
adjustment, taken at 10 mm, where the detector (HgCdTe)
is not sensitive enough to measure the SE: When
SASE increases, the spectrum linewidth increases and the
central wavelength shifts toward large values. The larger
spectrum, corresponding to the larger SASE intensity, is
displaced by 15% (at 11.5 mm), and has a linewidth of
23%, much larger than the SE one (its theoretical value is
2.6% but it is measured to be about 7% due to the electron
beam divergence). The resonance wavelength shift would
be explained either by an angular error of 8 mrd or by a

FIG. 4. Spectra of SASE for various SASE intensities (vary-
ing the linac peak current) for the best beam tuning at l �
10 mm.

2126

Fig. 64: Undulator radiation signal for (A) two undulator segments, i.e. 38 periods, (B) one undulator segment,
i.e. 19 periods, (C) twice the intensity for one undulator segment, from [472].

A 50 MeV 3 GHz linear accelerator was providing a peak current of 100 A with an emittance of
150π mm mrad to two planar undulators of 19 × 50.4 mm period. Up to 500% gain has been measured,
with a Pierce parameter of 1.9 × 10−3. The growth in (A) is clearly non-linear, as an evidence of the
SASE regime, and it differs from (B) corresponding to coherent synchrotron radiation for an equivalent
number of undulator periods. SASE spectra were compared to spontaneous emission ones and present “a
noisy intensity from bunch to bunch, with about 100% fluctuations”, corresponding to the “spiky regime
of the SASE which is, intrinsically, not a stable process” [472].

BNL, LONG ISLAND, USA

SASE was then achieved at 1064 and 633 nm, using a 61 8.8 mm period pulsed electromagnet Mas-
sachusetts Institute of Technology (MIT) micro-undulator with a peak field of 0.45 T [473]. The electron
beam is produced at the Accelerator Test Facility at BNL using a photocathode RF gun: a single mi-
cropulse at 34 MeV with a variable charge of 01 nC and less than 5 ps full width at half maximum bunch
length is used. Undulator radiation at 1064 nm is amplified from 2 to 6 times with respect to the sponta-
neous emission. SASE gain at a wavelength of 633 nm at a beam energy of 48 MeV was also observed,
as illustrated in Fig. 65.

Then, SASE high gain and intensity fluctuations have been measured at 16 µm using a photo-
cathode RF gun, a half-cell linear SATURNUS accelerator at Brookhaven National Laboratory with an
emittance of 8–10π mm mrad, an energy spread of 0.08–0.14%, a transport line and an undulator from
the Kurchatov Institute (40 × 15 mm period, 0.75 T field) leading to a Pierce parameter of 1 × 10−2.
One should note at this point the significant reduction of the electron beam emittance thanks to the RF
photoinjector. First statistical analysis of SASE radiation was performed [474].
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high quantum efficiency of the magnesium photocathode
used is also important, although the measured distribution is
not well explained by present theory of pulse evolution in a
rf gun. Several parameters contributing to the high peak cur-
rent are not easily measured directly or controlled; therefore,
day to day variations in current were observed. This made it
necessary to measure the longitudinal pulse distribution at
least once during every run.

B. Optical measurements

The charge dependence of emissions from the wiggler in
a 25 nm bandwidth around 1064 nm and an opening of 1.0
�10�3 rad �half-angle� about the central axis of the wiggler
is shown in Fig. 4. The straight line represents the expected
spontaneous emission dependence, as extrapolated from the
low charge points, if variation of the beam distribution, such
as energy spread and emittance, are not included. A detailed
discussion of such dependence will be presented elsewhere
�16�.
When the beam pulse charge is varied, one may expect

some variation of beam parameters �such as emittance� that
affect the radiation spectrum or directionality. This raises the
possibility that the resulting alteration of line shape could
cause radiation at wavelengths or directions that fall outside
of the bandwidth of the optical filter or the acceptance of the
optical system. The FWHM of the spontaneous wiggler ra-
diation emitted along the axis of the FEL is 1/Nw�1.6%.
The filter linewidth accepts radiation having a somewhat
larger range of wavelengths �2.4%�. Taking the emittance
observed (�N�2.4 mm mrad) at the maximum charge and a
beam radius of 0.3 mm, we find the expected emittance in-
homogeneous broadening of the spontaneous line falls well
within the 1/Nw bandwidth; this is true for the energy spread
(�E/E�0.3%�1/4Nw�0.4%) and variation as well. The
same conclusions apply to radiation that falls within the cone
of light that can be detected by the optical system since the
half-width angle of the radiation cone that can be accepted
corresponds to a bandwidth that is nearly the same as the
actual filter bandwidth. Thus the expected contributions of
the inhomogeneous effects on the radiation linewidth and

angular divergence are less than the 1/Nw bandwidth that the
optical system is designed to accept, for the full range of
bunch charge variation. If the beam charge is reduced, then
the inhomogeneous effects become even less. Line-
narrowing effects with increasing SASE gain will be ac-
cepted by the optical system. Our conclusion is that as the
bunch charge is varied, the optical system records the correct
mixture of axially directed spontaneous and SASE FEL ra-
diation.
Concerning variation of the gain with the slit size, the

increase in both energy spread and horizontal emittance as
the slit opening is increased would only reduce the SASE
gain. Thus a correction attempting to take into account the
beam quality change associated with the slit scan will only
serve to enhance our observed gain. Therefore, the signal
enhancement beyond the �linear� spontaneous emission de-
pendence on charge cannot be attributed to changes in the
beam parameters.
Previous experiments �e.g., Ref. �9�� have seen signals

from coherent spontaneous emission. We have strong evi-
dence that our signal was not due to coherent spontaneous
emission. One test used transition radiation from the pellicle
near the wiggler. The transition radiation charge dependence,
shown in Fig. 5, is measured using the same photodiode and
interference filter as the wiggler emission, but with a collec-
tion angle large enough to include all the transition radiation.
The charge was varied, as in the SASE studies, using the
collimating slit. For transition radiation, the emission de-
pends linearly on charge. The form factor governing the con-
tribution from coherent transition radiation involves the same
Fourier components of the electron beam distribution as does
the form factor for coherent enhancement of spontaneous
emission. Therefore, any coherent enhancement of the wig-
gler emission that scales with the square of the number of
electrons should also be evident in the transition radiation
measurement. The lack of this behavior demonstrates that the
observed enhancement of spontaneous emission is not re-
lated to coherent enhancement. In addition, an electron beam
structure on the micrometer scale is unlikely. This is sup-
ported by slice measurement of the wiggler emission shown
in Fig. 3. Again using the time slice technique and transport-

FIG. 4. Charge dependence of wiggler emission at 1064 nm.
The solid line is a fit to the spontaneous emission at low charge
�optical emission before SASE sets in�. Each point is an indepen-
dent measurement pair of optical energy and beam charge. The
scatter of the points results from the startup mechanism of SASE
�see the text�.

FIG. 5. Charge dependence of transition radiation at 1064 nm.
The transition radiation is linear with charge. This is evidence
against coherent emission due to micro-bunching and for SASE as
the mechanism for the enhancement of optical emission from the
wiggler at high charge at the wavelength of interest.

6096 57M. BABZIEN et al.

Fig. 65: Undulator radiation signal versus charge, solid line: spontaneous emission, from [473]

LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, USA

The Los Alamos high brightness photoinjector integrated into a L-band linac 1.3 GHz at 17 MeV coupled
to a 20 mm period 2 m long undulator generating a 0.7 T magnetic field and tapering [475] enabled high
gain SASE 15 µm [476]. The pionnering work was recognised by the FEL prize award to Bruce Carlsten,
Dinh Nguyen and Richard Sheffield for application of RF photo-injector to first high gain SASE FEL
in 2017, as one of the keys for the success of present X-ray FELs. Then five orders of magnitude of
amplification and saturation in the mid-infrared have been achieved in the frame of a UCLA, L. Alamos,
Stanford, Kurchatov collaboration [474]. The experiment has been performed on the Advanced Free
Electron Laser (AFEL) linac at the Los Alamos National Laboratory with a CsTe2 photocathode at the
Los Alamos National Laboratory (18 MeV, 0.25%) with the Kurchatov undulator. It led to more than
five orders of magnitude amplification at 12 µm [477], as shown in Fig. 66.
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FIG. 2. Electron beam wiggle-plane trajectory through the
undulator as predicted by the pulsed wire measurements.

intensity is plotted versus average micropulse charge in
Fig. 3. The measured gain was critically dependent on the
electron beam alignment, focusing, and drive laser-rf
phase and shows no evidence of the Q2 dependence in-
dicative of coherent spontaneous emission.
For the beam parameters given in Table I, the Rayleigh

range is less than the gain length and the slippage is
comparable to the bunch length, so we must include
slippage [13] and diffraction effects (gain guiding), as
well as the charge dependence of the beam radius and
bunch length. Because no simple analytic model takes all
of these effects into account, we use the code GINGER [14]
to evaluate the theoretical FEL intensity. The GINGER
simulations are done with spot sizes and pulse lengths
obtained from the fits to the data shown in Fig. 1. As
we have measured only the energy spread for a charge of
2 nC, we use this value of 0.25% for all the simulations
shown in Fig. 4. Using the data for spot size and pulse
length, we have evaluated the FEL parameter r and

FIG. 3. Measured average FEL output energy (nJ) per mi-
cropulse for different electron beam micropulse charges (nC).
The data are for single rf macropulses, representing an average
of 780 individual micropulses. The error in the energy mea-
surement is smaller than the data points—about 7%.

verified that it is always larger than 2.5 3 1023. Hence a
smaller value of the energy spread at lower charge should
not substantially modify the results shown in Fig. 4 [8,9].
GINGER simulates SASE, starting the FEL equations from
a noise in the initial longitudinal distribution. To avoid
doing several hundred runs to get average values for the
intensity, and since the gain length is independent of the
initial noise, the GINGER simulations in Fig. 4 have been
normalized to the 167A data point so that the predicted
growth rate can be compared with that observed.
From the GINGER results, we can evaluate the gain length

at any given charge. At 2.2 nC, GINGER gives a value for
the field gain length of 25 cm, much larger than the 1D
gain length, as we expect given the importance of diffrac-
tion. As an additional check, we may evaluate the gain by
comparing the measured value for the output intensity at
2.2 nC with the calculated spontaneous radiation intensity
[15] in one gain length. Evaluating the spontaneous radia-
tion for 2.2 nC within a solid angle Vc and a linewidth
1�Nu we obtain 1.6 pJ for the entire undulator and i0 �
1.6pj 3 �Lg�Lu� for the first gain length. Since in our
case diffraction is strong, it is a good approximation to as-
sume only one transverse mode is amplified. Evaluating
the coupling coefficient C [10] we obtain C � 0.3. Us-
ing the measured intensity i � �i0�9�C exp�2Lu�Lg� �
32 nJ at 2.2 nC and solving for the gain length, we ob-
tain a field gain length of 26 cm, consistent with GINGER.
For a field gain length of 25 cm and an undulator length
of 2 m we obtain a power gain of 3 3 105.
As discussed earlier, the output intensity of an indi-

vidual micropulse is a random quantity proportional to
the spontaneous radiation intensity, which is itself pro-
portional to the initial longitudinal electron bunching at
the output radiation wavelength. By using a high speed
(1 ns response time) liquid helium cooled Cu:Ge detector,
the intensity fluctuations of individual micropulses were

FIG. 4. Measured average FEL output energy (nJ) compared
to GINGER simulations for different electron beam peak currents.
The variation in beam density shown in Fig. 1 was also taken
into account in the simulations. The results of the GINGER
simulations have been normalized to the 167A data to allow
comparison of the predicted growth rate.

4869

Fig. 66: Undulator radiation signal versus current and comparison with theory, from [477]

This result showed that the high gain single-pass FEL potentialities at intermediate wavelengths
opened new perspectives. The electron beam micro-bunching at the exit of the SASE FEL was measured
by observing coherent transition radiation, presenting a narrowband frequency spectrum [478].

LEULT, ARGONNE, USA

SASE saturation was then achieved in 2000 at Argonne National Laboratory in the visible at 530 nm,
385 nm [479, 480]. The electron bunch from the Low-Energy Undulator Test Line (LEUTL) is initially
accelerated to 5 MeV (8π mm mrad emittance), then injected into the linear accelerator, and further
accelerated to the desired energy (up to a maximum of 650 MeV), and compressed to increase the peak
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current. Nine undulators 2.4 m long undulator segments (72 × 33 mm period, 1 T field, deflection
parameter of 3.1) are used. They are separated by 38 cm in order to insure a proper phase matching and
accommodate diagnostics, a quadrupole magnet, and steerers. An effective gain length of about 1.5 m
was first measured [479] while saturation was then observed [480] as shown in Fig. 67.

first undulator. The spread is due to both the
inherent statistical fluctuation of the SASE
process (i.e., the finite number of longitudinal
coherence lengths) and fluctuations in the
beam properties entering the undulator. Sta-
bility of the system was good, as evidenced
by the two indistinguishable measured data
points at 21.6 m. One was measured at the
beginning of the experiment, and the other
was measured at the end. Saturation of the
SASE process following the seventh undula-
tor (16.8 m) is apparent.

To achieve the observed saturation, we
compressed the electron bunch to maximize
the peak current. In this situation, the full
width at half maximum (FWHM) bunch
length (!140 "m) was then shorter than the
distance by which the radiation slips ahead of
the bunch before reaching saturation (!270
"m in seven undulators). Thus, radiation that
slips ahead of the electron bunch stops inter-
acting with the electrons and propagates in
free space. The FEL interaction is also very
nonuniform across the electron bunch length
because the trailing part of the electron bunch
experiences less radiation field than the lead-
ing part. As a result, the strong slippage effect
somewhat reduces the total gain, as well as
the saturation level. We simulated this slip-
page effect with the time-dependent FEL
code GINGER (29), using the beam parame-
ters listed in Table 1 (column A). Fifty inde-
pendent SASE runs were made by starting the
simulation from random shot noise, and the
results were averaged. The simulated radia-
tion pulse energy was normalized to the mea-
sured pulse energy following the second un-
dulator. This choice was made because the
simulated spectral bandwidth (roughly a few
percent and sufficient for SASE) is not suf-
ficient for fully simulating the spontaneous
emission following the first undulator. In this
short-pulse regime, the saturation level is
!2 # 105 times that of the pulse energy
measured after the first undulator. Very good
agreement is found between the experimental
data and the simulation. In particular, the gain
length (slope) and the location of saturation
(at 17 m) are correctly modeled. Table 1
(column A) also lists the calculated gain
length obtained from the theoretical interpo-
lating formula (27) and from the fit to the
experimental data.

To confirm that the energy roll-off seen
in Fig. 3A was due to saturation and not to,
e.g., defects in the undulators’ magnetic
fields or beam trajectory problems, we
deliberately detuned the electron beam (this
was done by increasing the bunch length
while maintaining the same charge and thus
decreasing the peak current) so as to obtain
exponential gain down the entire undulator
line without saturation (Fig. 3B). The rele-
vant beam parameters are found in column
B of Table 1. The longer bunch length

also insured that slippage effects were not
an issue and that a more direct comparison
of the theoretical intensities to those mea-
sured could be made. Stability over time
was checked as in Fig. 3A at the 21.6-m
data point. The two data points are nearly
indistinguishable.

A direct comparison of the experimental
and theoretical saturation power levels is hin-
dered because of the lack of an absolute mea-
surement of the radiation pulse energy and the
pulse length. Nevertheless, one can make an
indirect comparison based on the ratio of the
saturated pulse energy to the pulse energy

following the first undulator. Assuming the
pulse energy at station 1 is mostly spontane-
ous radiation, we find that the energy radiated
into a rms angular cone $%r/(2N1%u) is
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where N1 is the number of periods in one
undulator and *t is the rms bunch duration.
Because the local gain is the largest in re-
gions of highest local beam current, the ef-
fective radiation pulse length is narrowed

Fig. 3. Optical beam ener-
gy (time-integrated pow-
er) as a function of dis-
tance down the undulator,
under various electron
beam conditions. (A) Table
1, column A, 530-nm satu-
rated conditions. (B) Table
1, column B, 530-nm un-
saturated conditions. (C)
Table 1, column C, 385-nm
saturated conditions. For
the data shown, 100 imag-
es were taken at each di-
agnostic station and used
to generate the data
points. Images showing ev-
idence of camera satura-
tion were discarded. Plot-
ted are the 25th, 50th
(central diamond), and
75th integrated intensity
percentiles at each station,
with the 25th and 75th
connected as a solid line.
The solid curves represent
GINGER simulation results.

Table 1. Measured beam parameters, measured gain length, calculated gain lengths, and radiation mode
properties. Column A shows data from 530-nm saturated conditions, column B shows data from 530-nm
unsaturated conditions, and column C shows data from 385-nm saturated conditions.

Parameter A B C

Charge (nC) 0.30+ 0.02 0.33+ 0.007 0.30+ 0.02
rms bunch length (ps) 0.19+ 0.02 0.77+ 0.05 0.65+ 0.05
Peak current (A) 630+ 78 171+ 12 184+ 19
Normalized emittance () mm ! mrad) 8.5+ 0.9 8.5+ 1.1 7.1+ 0.5
rms energy spread (%) 0.4+ 0.1 0.2+ 0.1 0.1+ 0.1
Nominal radiation wavelength (nm) 530 530 385
Measured gain length (m) 0.97 1.4 0.76
Calculated gain length (m) 1.0 1.3 0.80
Calculated FWHM angular
divergence (mrad)

0.74 0.62 0.71

Measured FWHM angular
divergence (mrad)

0.55 to 1.1 0.76 to 1.2 0.71 to 1.2
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first undulator. The spread is due to both the
inherent statistical fluctuation of the SASE
process (i.e., the finite number of longitudinal
coherence lengths) and fluctuations in the
beam properties entering the undulator. Sta-
bility of the system was good, as evidenced
by the two indistinguishable measured data
points at 21.6 m. One was measured at the
beginning of the experiment, and the other
was measured at the end. Saturation of the
SASE process following the seventh undula-
tor (16.8 m) is apparent.

To achieve the observed saturation, we
compressed the electron bunch to maximize
the peak current. In this situation, the full
width at half maximum (FWHM) bunch
length (!140 "m) was then shorter than the
distance by which the radiation slips ahead of
the bunch before reaching saturation (!270
"m in seven undulators). Thus, radiation that
slips ahead of the electron bunch stops inter-
acting with the electrons and propagates in
free space. The FEL interaction is also very
nonuniform across the electron bunch length
because the trailing part of the electron bunch
experiences less radiation field than the lead-
ing part. As a result, the strong slippage effect
somewhat reduces the total gain, as well as
the saturation level. We simulated this slip-
page effect with the time-dependent FEL
code GINGER (29), using the beam parame-
ters listed in Table 1 (column A). Fifty inde-
pendent SASE runs were made by starting the
simulation from random shot noise, and the
results were averaged. The simulated radia-
tion pulse energy was normalized to the mea-
sured pulse energy following the second un-
dulator. This choice was made because the
simulated spectral bandwidth (roughly a few
percent and sufficient for SASE) is not suf-
ficient for fully simulating the spontaneous
emission following the first undulator. In this
short-pulse regime, the saturation level is
!2 # 105 times that of the pulse energy
measured after the first undulator. Very good
agreement is found between the experimental
data and the simulation. In particular, the gain
length (slope) and the location of saturation
(at 17 m) are correctly modeled. Table 1
(column A) also lists the calculated gain
length obtained from the theoretical interpo-
lating formula (27) and from the fit to the
experimental data.

To confirm that the energy roll-off seen
in Fig. 3A was due to saturation and not to,
e.g., defects in the undulators’ magnetic
fields or beam trajectory problems, we
deliberately detuned the electron beam (this
was done by increasing the bunch length
while maintaining the same charge and thus
decreasing the peak current) so as to obtain
exponential gain down the entire undulator
line without saturation (Fig. 3B). The rele-
vant beam parameters are found in column
B of Table 1. The longer bunch length

also insured that slippage effects were not
an issue and that a more direct comparison
of the theoretical intensities to those mea-
sured could be made. Stability over time
was checked as in Fig. 3A at the 21.6-m
data point. The two data points are nearly
indistinguishable.

A direct comparison of the experimental
and theoretical saturation power levels is hin-
dered because of the lack of an absolute mea-
surement of the radiation pulse energy and the
pulse length. Nevertheless, one can make an
indirect comparison based on the ratio of the
saturated pulse energy to the pulse energy

following the first undulator. Assuming the
pulse energy at station 1 is mostly spontane-
ous radiation, we find that the energy radiated
into a rms angular cone $%r/(2N1%u) is

W1 ! !&2mc2
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where N1 is the number of periods in one
undulator and *t is the rms bunch duration.
Because the local gain is the largest in re-
gions of highest local beam current, the ef-
fective radiation pulse length is narrowed

Fig. 3. Optical beam ener-
gy (time-integrated pow-
er) as a function of dis-
tance down the undulator,
under various electron
beam conditions. (A) Table
1, column A, 530-nm satu-
rated conditions. (B) Table
1, column B, 530-nm un-
saturated conditions. (C)
Table 1, column C, 385-nm
saturated conditions. For
the data shown, 100 imag-
es were taken at each di-
agnostic station and used
to generate the data
points. Images showing ev-
idence of camera satura-
tion were discarded. Plot-
ted are the 25th, 50th
(central diamond), and
75th integrated intensity
percentiles at each station,
with the 25th and 75th
connected as a solid line.
The solid curves represent
GINGER simulation results.

Table 1. Measured beam parameters, measured gain length, calculated gain lengths, and radiation mode
properties. Column A shows data from 530-nm saturated conditions, column B shows data from 530-nm
unsaturated conditions, and column C shows data from 385-nm saturated conditions.

Parameter A B C

Charge (nC) 0.30+ 0.02 0.33+ 0.007 0.30+ 0.02
rms bunch length (ps) 0.19+ 0.02 0.77+ 0.05 0.65+ 0.05
Peak current (A) 630+ 78 171+ 12 184+ 19
Normalized emittance () mm ! mrad) 8.5+ 0.9 8.5+ 1.1 7.1+ 0.5
rms energy spread (%) 0.4+ 0.1 0.2+ 0.1 0.1+ 0.1
Nominal radiation wavelength (nm) 530 530 385
Measured gain length (m) 0.97 1.4 0.76
Calculated gain length (m) 1.0 1.3 0.80
Calculated FWHM angular
divergence (mrad)

0.74 0.62 0.71

Measured FWHM angular
divergence (mrad)

0.55 to 1.1 0.76 to 1.2 0.71 to 1.2
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first undulator. The spread is due to both the
inherent statistical fluctuation of the SASE
process (i.e., the finite number of longitudinal
coherence lengths) and fluctuations in the
beam properties entering the undulator. Sta-
bility of the system was good, as evidenced
by the two indistinguishable measured data
points at 21.6 m. One was measured at the
beginning of the experiment, and the other
was measured at the end. Saturation of the
SASE process following the seventh undula-
tor (16.8 m) is apparent.

To achieve the observed saturation, we
compressed the electron bunch to maximize
the peak current. In this situation, the full
width at half maximum (FWHM) bunch
length (!140 "m) was then shorter than the
distance by which the radiation slips ahead of
the bunch before reaching saturation (!270
"m in seven undulators). Thus, radiation that
slips ahead of the electron bunch stops inter-
acting with the electrons and propagates in
free space. The FEL interaction is also very
nonuniform across the electron bunch length
because the trailing part of the electron bunch
experiences less radiation field than the lead-
ing part. As a result, the strong slippage effect
somewhat reduces the total gain, as well as
the saturation level. We simulated this slip-
page effect with the time-dependent FEL
code GINGER (29), using the beam parame-
ters listed in Table 1 (column A). Fifty inde-
pendent SASE runs were made by starting the
simulation from random shot noise, and the
results were averaged. The simulated radia-
tion pulse energy was normalized to the mea-
sured pulse energy following the second un-
dulator. This choice was made because the
simulated spectral bandwidth (roughly a few
percent and sufficient for SASE) is not suf-
ficient for fully simulating the spontaneous
emission following the first undulator. In this
short-pulse regime, the saturation level is
!2 # 105 times that of the pulse energy
measured after the first undulator. Very good
agreement is found between the experimental
data and the simulation. In particular, the gain
length (slope) and the location of saturation
(at 17 m) are correctly modeled. Table 1
(column A) also lists the calculated gain
length obtained from the theoretical interpo-
lating formula (27) and from the fit to the
experimental data.

To confirm that the energy roll-off seen
in Fig. 3A was due to saturation and not to,
e.g., defects in the undulators’ magnetic
fields or beam trajectory problems, we
deliberately detuned the electron beam (this
was done by increasing the bunch length
while maintaining the same charge and thus
decreasing the peak current) so as to obtain
exponential gain down the entire undulator
line without saturation (Fig. 3B). The rele-
vant beam parameters are found in column
B of Table 1. The longer bunch length

also insured that slippage effects were not
an issue and that a more direct comparison
of the theoretical intensities to those mea-
sured could be made. Stability over time
was checked as in Fig. 3A at the 21.6-m
data point. The two data points are nearly
indistinguishable.

A direct comparison of the experimental
and theoretical saturation power levels is hin-
dered because of the lack of an absolute mea-
surement of the radiation pulse energy and the
pulse length. Nevertheless, one can make an
indirect comparison based on the ratio of the
saturated pulse energy to the pulse energy

following the first undulator. Assuming the
pulse energy at station 1 is mostly spontane-
ous radiation, we find that the energy radiated
into a rms angular cone $%r/(2N1%u) is
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where N1 is the number of periods in one
undulator and *t is the rms bunch duration.
Because the local gain is the largest in re-
gions of highest local beam current, the ef-
fective radiation pulse length is narrowed

Fig. 3. Optical beam ener-
gy (time-integrated pow-
er) as a function of dis-
tance down the undulator,
under various electron
beam conditions. (A) Table
1, column A, 530-nm satu-
rated conditions. (B) Table
1, column B, 530-nm un-
saturated conditions. (C)
Table 1, column C, 385-nm
saturated conditions. For
the data shown, 100 imag-
es were taken at each di-
agnostic station and used
to generate the data
points. Images showing ev-
idence of camera satura-
tion were discarded. Plot-
ted are the 25th, 50th
(central diamond), and
75th integrated intensity
percentiles at each station,
with the 25th and 75th
connected as a solid line.
The solid curves represent
GINGER simulation results.

Table 1. Measured beam parameters, measured gain length, calculated gain lengths, and radiation mode
properties. Column A shows data from 530-nm saturated conditions, column B shows data from 530-nm
unsaturated conditions, and column C shows data from 385-nm saturated conditions.

Parameter A B C

Charge (nC) 0.30+ 0.02 0.33+ 0.007 0.30+ 0.02
rms bunch length (ps) 0.19+ 0.02 0.77+ 0.05 0.65+ 0.05
Peak current (A) 630+ 78 171+ 12 184+ 19
Normalized emittance () mm ! mrad) 8.5+ 0.9 8.5+ 1.1 7.1+ 0.5
rms energy spread (%) 0.4+ 0.1 0.2+ 0.1 0.1+ 0.1
Nominal radiation wavelength (nm) 530 530 385
Measured gain length (m) 0.97 1.4 0.76
Calculated gain length (m) 1.0 1.3 0.80
Calculated FWHM angular
divergence (mrad)

0.74 0.62 0.71

Measured FWHM angular
divergence (mrad)

0.55 to 1.1 0.76 to 1.2 0.71 to 1.2
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first undulator. The spread is due to both the
inherent statistical fluctuation of the SASE
process (i.e., the finite number of longitudinal
coherence lengths) and fluctuations in the
beam properties entering the undulator. Sta-
bility of the system was good, as evidenced
by the two indistinguishable measured data
points at 21.6 m. One was measured at the
beginning of the experiment, and the other
was measured at the end. Saturation of the
SASE process following the seventh undula-
tor (16.8 m) is apparent.

To achieve the observed saturation, we
compressed the electron bunch to maximize
the peak current. In this situation, the full
width at half maximum (FWHM) bunch
length (!140 "m) was then shorter than the
distance by which the radiation slips ahead of
the bunch before reaching saturation (!270
"m in seven undulators). Thus, radiation that
slips ahead of the electron bunch stops inter-
acting with the electrons and propagates in
free space. The FEL interaction is also very
nonuniform across the electron bunch length
because the trailing part of the electron bunch
experiences less radiation field than the lead-
ing part. As a result, the strong slippage effect
somewhat reduces the total gain, as well as
the saturation level. We simulated this slip-
page effect with the time-dependent FEL
code GINGER (29), using the beam parame-
ters listed in Table 1 (column A). Fifty inde-
pendent SASE runs were made by starting the
simulation from random shot noise, and the
results were averaged. The simulated radia-
tion pulse energy was normalized to the mea-
sured pulse energy following the second un-
dulator. This choice was made because the
simulated spectral bandwidth (roughly a few
percent and sufficient for SASE) is not suf-
ficient for fully simulating the spontaneous
emission following the first undulator. In this
short-pulse regime, the saturation level is
!2 # 105 times that of the pulse energy
measured after the first undulator. Very good
agreement is found between the experimental
data and the simulation. In particular, the gain
length (slope) and the location of saturation
(at 17 m) are correctly modeled. Table 1
(column A) also lists the calculated gain
length obtained from the theoretical interpo-
lating formula (27) and from the fit to the
experimental data.

To confirm that the energy roll-off seen
in Fig. 3A was due to saturation and not to,
e.g., defects in the undulators’ magnetic
fields or beam trajectory problems, we
deliberately detuned the electron beam (this
was done by increasing the bunch length
while maintaining the same charge and thus
decreasing the peak current) so as to obtain
exponential gain down the entire undulator
line without saturation (Fig. 3B). The rele-
vant beam parameters are found in column
B of Table 1. The longer bunch length

also insured that slippage effects were not
an issue and that a more direct comparison
of the theoretical intensities to those mea-
sured could be made. Stability over time
was checked as in Fig. 3A at the 21.6-m
data point. The two data points are nearly
indistinguishable.

A direct comparison of the experimental
and theoretical saturation power levels is hin-
dered because of the lack of an absolute mea-
surement of the radiation pulse energy and the
pulse length. Nevertheless, one can make an
indirect comparison based on the ratio of the
saturated pulse energy to the pulse energy

following the first undulator. Assuming the
pulse energy at station 1 is mostly spontane-
ous radiation, we find that the energy radiated
into a rms angular cone $%r/(2N1%u) is
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where N1 is the number of periods in one
undulator and *t is the rms bunch duration.
Because the local gain is the largest in re-
gions of highest local beam current, the ef-
fective radiation pulse length is narrowed

Fig. 3. Optical beam ener-
gy (time-integrated pow-
er) as a function of dis-
tance down the undulator,
under various electron
beam conditions. (A) Table
1, column A, 530-nm satu-
rated conditions. (B) Table
1, column B, 530-nm un-
saturated conditions. (C)
Table 1, column C, 385-nm
saturated conditions. For
the data shown, 100 imag-
es were taken at each di-
agnostic station and used
to generate the data
points. Images showing ev-
idence of camera satura-
tion were discarded. Plot-
ted are the 25th, 50th
(central diamond), and
75th integrated intensity
percentiles at each station,
with the 25th and 75th
connected as a solid line.
The solid curves represent
GINGER simulation results.

Table 1. Measured beam parameters, measured gain length, calculated gain lengths, and radiation mode
properties. Column A shows data from 530-nm saturated conditions, column B shows data from 530-nm
unsaturated conditions, and column C shows data from 385-nm saturated conditions.

Parameter A B C

Charge (nC) 0.30+ 0.02 0.33+ 0.007 0.30+ 0.02
rms bunch length (ps) 0.19+ 0.02 0.77+ 0.05 0.65+ 0.05
Peak current (A) 630+ 78 171+ 12 184+ 19
Normalized emittance () mm ! mrad) 8.5+ 0.9 8.5+ 1.1 7.1+ 0.5
rms energy spread (%) 0.4+ 0.1 0.2+ 0.1 0.1+ 0.1
Nominal radiation wavelength (nm) 530 530 385
Measured gain length (m) 0.97 1.4 0.76
Calculated gain length (m) 1.0 1.3 0.80
Calculated FWHM angular
divergence (mrad)

0.74 0.62 0.71

Measured FWHM angular
divergence (mrad)

0.55 to 1.1 0.76 to 1.2 0.71 to 1.2
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530 nm 385 nm

Fig. 67: SASE versus undulator length at 530 and 385 nm, from [480]

VISA, BNL-SLAC-LLNL-UCLA, USA

Saturation has been observed on the VISA (Visible to Infrared SASE Amplifier) experiment on the
Accelerator Test Facility (ATF) at Brookhaven National Laboratory [481, 482]. The electron beam from
an S-band, 1.6 cell photocathode RF gun is accelerated to 72 MeV (200 A peak current, 2π mm mrad
emittance, 0.17% energy spread) and sent into the 4 m long VISA planar undulator (18 mm period,
6 mm gap) [481]. Non-linear harmonic radiation of 845 nm at 423 nm and 281 nm was observed using
the VISA SASE FEL at saturation [481], as shown in Fig. 68. The measured non-linear harmonic gain
lengths decreased with harmonic number, as expected. Both the second and third non-linear harmonics
energies are about 1% of the fundamental energy. This result was the first observation of non-linear
harmonic SASE FEL radiation which demonstrated its potentialities to produce coherent, femtosecond
X-rays.
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expected for future short wavelength SASE FELs driven
by high-brightness electron beams.

The nonlinear harmonics as a function of distance for
the three lowest SASE FEL modes were measured using
factory-calibrated Molectron joulemeters. Two bandpass
filters were placed before the joulemeter for each harmonic
measurement. Each filter attenuates the fundamental signal
by at least a factor of 1000; thus combining two filters leads
to 6 orders of magnitude attenuation outside of the pass-
band. Figure 2 shows a log-linear plot for fundamental,
2nd and 3rd harmonics vs distance along the second half
of the 4-m VISA undulator. The deviation of the last two
points from exponential growth for the fundamental mode
demonstrates SASE saturation. The fundamental satura-
tion length is about 3.8 m.

A fundamental gain length of Lg ! 19 cm is obtained
from Fig. 2. To obtain the harmonic gain lengths, Lg,2
and Lg,3, the data in the linear harmonic region are ex-
cluded. The 2nd harmonic gain length is measured to be
Lg,2 ! 9.8 cm. Because of the limited number of diagnos-
tic pop-ins, only two points for the nonlinear 3rd harmonic
regime could be used to estimate the gain length. Multiple
measurements resulted in a 6-cm average growth rate,
which is consistent with the gain length relation quoted
in Eq. (3) below. Figure 2 shows the nonlinear harmonic
radiation grows faster compared to the fundamental. Our
measurements confirm nonlinear harmonic generation the-
ory [8–10], in which the gain length decreases with the
harmonic number, n.

Lg,n !
Lg

n
. (3)

Finally, the energy for each mode was measured down-
stream of the undulator. Table II shows the nonlinear har-
monic energies measured at the end of the undulator and

FIG. 2. Energy vs distance for the fundamental, 2nd and 3rd
harmonics. The gain lengths for these are 19, 9.8, and 6.0 cm,
respectively.

the harmonic energy as a percentage of the fundamental.
It can be seen from Table II that not only is there signifi-
cant UV (281 nm, 3rd harmonic) energy, but there is also
comparable energy in the green (423 nm, 2nd harmonic).
The relatively large amount of 2nd harmonic energy from
a planar undulator is due to the low electron beam energy
used in this experiment. The 2nd and 3rd nonlinear har-
monic energies are related by [30]

E2 ! E3

µ
K

gkusx

∂2µ
K2

K3

∂2µ
b2

b3

∂2

, (4)

where K ! 1.28 is the undulator parameter, g is the beam
energy, ku is the undulator wave number, sx is the rms
beam size, and bn are the harmonic bunching parameters.
Kn are the coupling coefficients [30]:

Kn ! K"21#"n21#$2%J"n21#$2"nj# 2 J"n11#$2"nj#& ,

n ! 1, 3, 5, . . . , (5)

Kn ! K"21#"n22#$2%JØn$2"nj#&, n ! 2, 4, 6, . . . ,

where j ! K2$"4 1 2K2# and J"nj# is the Bessel
function.

Using the parameters in Table I, GENESIS [31] simula-
tions produce harmonic bunching parameters of b2 ! 0.47
and b3 ! 0.28 near saturation. Inserting the GENESIS re-
sults into Eqs. (4) and (5), NHG theory predicts that the
3rd and 2nd harmonic energies should be 1% and 1.6%
of the fundamental, respectively. The measured 3rd and
2nd harmonics are 0.8% and 1.8% (Table II) of the funda-
mental, with the ratio E2$E3 ! 2.3.

The slight discrepancy between the measured and cal-
culated energy ratio could arise from two sources: First,
for each harmonic measurement, the signal passes through
two narrow band filters. The errors in calibrating the trans-
mission coefficient for such filters is one possible source,
especially for the 3rd harmonic where each filter attenuates
the desired signal by 80%. Second, the VISA beam profile
monitors have a resolution no better than 15 mm. An er-
ror in spot size measurements of this order could account
for the remainder of the discrepancy described above since
the energy ratio given in Eq. (4) strongly depends on the
ratio of the wiggle amplitude to the transverse spot size,
K$gku:sx.

The on-axis radiation is dominated by the odd harmon-
ics for a planar undulator. If the off-axis radiation is col-
lected, the even harmonic is observed to be quite significant
and comparable to the odd harmonic for the VISA FEL.

TABLE II. Measured harmonic energy for fundamental, 2nd
and 3rd harmonics.

Mode n 1 2 3
Wavelength (nm) lf 845 423 281
Energy (mJ) En 52 0.93 0.40
% of fundamental energy En

E1
3 100 1.8 0.77

204801-3 204801-3

Fig. 68: Energy growth on the first, second, and third harmonics on the VISA experiment, from [481]

7.2.3 SASE observation in the VUV-soft X-ray
In the same years, a major step was achieved with the observation of SASE radiation in the VUV spectral
range. The test facilities were then used as a source for scientific applications. Indeed, the pioneering
users had also to learn about these new sources with their high peak power, spiky structure, pulse to pulse
jitter, and short pulses.

78

M. E. COUPRIE

272



FLASH, HAMBURG, GERMANY

B. Wiik, director of DESY (Deutsches Elektronen-Synchrotron), after a sabbatical at SLAC in 1992,
considered, with G. Materlik, the possibility to build a short wavelength FEL using the TESLA accel-
erator, developed for the future collider. Indeed, the electron beam requirements were similar. A first
Review Committee was set in 1995 and gave a positive feedback on the FEL proposal. TTF (TESLA
Test Facility) was built in 1997 to test the superconducting technology for the planned linear collider
TESLA, which has been replaced by the International Linear Collider. J. Schnieder reported about this
time as: “Based on the good experience with superconducting technology at the large hadron lepton
collider HERA at DESY and the need for high luminosity at the linear collider, the challenge was ac-
cepted to realize the accelerator in superconducting RF technology in a large international effort. The
so-called TESLA collaboration was founded, which by the end of 2002 included 50 institutions from
12 countries. The ambitious goal was to increase the gradient of the accelerator by a factor of 5 and to
reduce the cost of the cryomodules by a factor of 5, which has now been achieved” [483]. The FEL on
TESTA-TTF [484, 485] was seen as a test-bench for the technology and physics for a future European
XFEL project. The first design considered a 1 GeV electron beam with an emittance of 2π mm mrad,
a peak current of 2 kA, a relative energy spread of 0.1%, a 25 m effective undulator length (27.3 mm
period, 12 mm gap, 0.5 T field) for generating a FEL at 6.4 nm with a 3 GW saturation power, up to
7200 pulses can be present in the 800 µm long macropulse, at 10 Hz repetition rate thanks to the choice
of a superconducting linear accelerator. Later, the TTF-FEL was renamed FLASH (free electron laser in
Hamburg).

A UV (7 ps pulses) laser-driven 1.5 cell RF gun at 1.3 GHz with a Cs2Te cathode delivers electrons
which are sent in superconducting TESLA-type accelerator modules for reaching a 1 GeV electron beam,
with a compression chicane in between before reaching fixed gap undulator segments (0.46 T magnetic
field). First experiments were carried out with 233 MeV electron beam (emittance of 6π mm mrad, a peak
current of 0.4 kA, a relative energy spread of 0.13%), enabling a gain of 3000 at 109 nm and studies of
statistical properties, as shown in Fig. 69 [486], in 2000 and then saturation [487] in 2001, i.e. 25 years
after the FEL invention. Tuneability in 80–120 nm range was demonstrated, and a very high degree of
photon beam transverse coherence was observed. This result competed the shortest wavelength achieved
on a FEL oscillator (on a storage ring).
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FIG. 3. Wavelength spectrum of the central radiation cone
(collimation angle 60.2 mrad), taken at maximum FEL gain.
The dotted line is the result of numerical simulation. The bunch
charge is 1 nC.

A characteristic feature of SASE FELs is the concen-
tration of radiation power into a cone much narrower than
that of wavelength integrated undulator radiation, whose
opening angle is on the order of 1!g. Measurements done
by moving the 0.5 mm iris horizontally together with the
photodiode confirm this expectation (see Fig. 4). To be
visible on this scale, the spontaneous intensity is amplified
by a factor of 30. The energy flux is 2 nJ!mm2 at the lo-
cation of the detector, and the on-axis flux per unit solid
angle is about 0.3 J!sr (assuming a source position at the
end of the undulator). This value was used as a reference
point for the numerical simulation of the SASE FEL with
the code FAST [26]. The longitudinal profile of the bunch
current was assumed to be Gaussian with an rms length of
0.25 mm. The transverse distribution of the beam current
density was also taken to be Gaussian. Calculations have
been performed for a Gaussian energy spread of 0.1% and
the normalized emittance ´n was varied in the simulations
between 2 and 10p mrad mm. Our calculations show that
in this range of parameters the value of the effective power
of shot noise Pin and coupling factor A " 0.1 [see Eq. (2)]
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FIG. 4. Horizontal intensity profile of SASE FEL and sponta-
neous undulator radiation #330$, measured with a photodiode
behind a 0.5 mm aperture in a distance of 12 m from the end
of the undulator. The dotted line is the result of numerical
simulation.

are nearly constant. A level of energy flux of 0.3 J!sr is
obtained at five field gain lengths Lg. With these parame-
ters the FEL gain can be estimated at G % 3 3 103 with
a factor of 3 uncertainty (i.e., 103 , G , 104) which is
mainly due to the imprecise knowledge of the longitudi-
nal beam profile. If we assume that the entire undulator
contributes to the FEL amplification process, we estimate
the normalized emittance ´n at 8p mrad mm, in reason-
able agreement with the measurements. This value of the
emittance was used for more detailed calculations of the
FEL characteristics. Figures 3 and 4 include typical theo-
retical spectral and angular distributions. In both cases the
experimental curves are wider than the simulation results.
A possible source of the widening is energy and orbit jitter,
since the experimental curves are the results of averaging
over many bunches.

It is essential to realize that the fluctuations seen in
Fig. 2 are not primarily due to unstable operation of the
accelerator but are inherent to the SASE process. Shot
noise in the electron beam causes fluctuations of the beam
density, which are random in time and space [27]. As a
result, the radiation produced by such a beam has random
amplitudes and phases in time and space, and can be de-
scribed in terms of statistical optics. In the linear regime
of a SASE FEL, the radiation pulse energy is expected to
fluctuate according to a gamma distribution p#E$ [28],

p#E$ !
MM

G#M$

µ
E

&E'

∂M21 1
&E'

exp
µ
2M

E
&E'

∂
, (3)

where &E' is the mean energy, G#M$ is the gamma function
with argument M, and M21 ! &&&#E 2 &E'$2'''!&E'2 is the
normalized variance of E. The parameter M corresponds
to the number of optical modes. Note that the same type
of statistics applies for completely chaotic polarized light,
in particular for spontaneous undulator radiation.

For our statistical measurements the signals from 3000
radiation pulses have been recorded, with the small iris
(0.5 mm diam) in front of the photodiode to guarantee that
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FIG. 5. Probability distribution of SASE intensity. The rms
fluctuation yields a number of longitudinal modes M ! 14. The
solid curve is the gamma distribution for M ! 14.4. The bunch
charge is 1 nC.
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Fig. 69: SASE probability distribution, from [486]

With higher peak current, the GW level (close to 1 µJ energy) had been reached in the 95–105 nm
spectral range [488] with a gain length of 67 cm, leading to a cooperation length of 5 µm.

These results constitute a major step in the SASE history. First user experiments were started
quickly afterwards [489] and it became a user facility since summer 2005. Then, with some improve-
ments on the accelerator, the 32 nm wavelength was reached with GW level power, ultra-short pulses
(25 fs FWHM, and a high degree of transverse and longitudinal coherence [490] in 2006, at 13.7 nm
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with up to 170 mJ/pulse, 10 fs pulse duration, leading to peak powers of 10 GW [491]. With 700 pulses
per second, the average power reached 20 mW. Harmonics were also quite intense with one or two orders
of magnitude of power reduction (0.6% for the third (4.6 nm) and 0.03% and the fifth (2.75 nm) harmon-
ics) in the water window of interest for biological samples. With an upgrade of the linac enabling us to
reach 1 GeV, the spectral range was extended down to 6.5 nm [492]. Then a third harmonic RF cavity
for phase space linearization coupled to an energy increase up to 1.25 GeV led to FEL operation down
to 4.1 nm [493], i.e. in the water window on the fundamental wavelength.

Thanks to the high repetition rate of the superconducting linac, two FEL branches can be oper-
ated simultaneously, as shown in Fig. 70, with the development of FLASH-II branch with variable gap
undulators [494].

315 m

5 MeV 150 MeV 1250 MeV

Bunch Compressors

450 MeV

Accelerating StructuresRF Stations

Lasers
RF Gun

Soft X-ray 

UndulatorssFLASH

FEL Experiments

Photon 

DiagnosticsTHz
FLASH1

Fig. 70: Present FLASH layout from https://flash.desy.de/

While electron beam requirements from colliders and FEL met and considering the growing de-
mand of synchrotron radiation, DESY had developed further light sources with respect to high energy
physics after the shutdown of the accelerator HERA in 2007, with third generation light sources (PETRA
III a very low emittance ring, the synchrotron research lab HASYLAB), and FEL-based fourth genera-
tion ones (FLASH, European XFEL). The light sources became the most important facilities of DESY.
E. Saldin (19th FEL Prize in 2006), M. Yurkov (26th FEL Prize in 2015), E. Schneidmiller (26th FEL
Prize in 2015) for the theoretical solid basis of the project and J. Rossbach (19th FEL Prize in 2006)
for project lead brought a significant contribution to the success of FLASH. FLASH results made also
confident the scientific community about the development of even shorter wavelength FELs.

SCSS TEST ACCELERATOR, HARIMA, JAPAN

The idea to combine the high level expertise on high density electron beams generated by linear accel-
erators in C band technology associated with a specific thermoionic gun developed following the work
of T. Shintake (22nd FEL Prize in 2011), on in-vacuum undulators [495, 496] by the H. Kitamura group
and on use of X-ray synchrotron radiation at SPring-8 by T. Ishikawa et al. led to a draft of a compact
and low cost XFEL development concept in April 2000 [497]. R & D was launched on specific hardware
and led to the completion of an in-vacuum undulator with a shorter period and higher magnetic field in
2002, an electron gun and the achievement of a very low emittance in 2003 [498]. After a first RIKEN
symposium held in July 2003, a R&D group for XFEL was established in 2004. The SPring-8 SASE
Source XFEL project was included in January 2005 as an important research objective for future R & D
in the Ministry of Education, Culture, Sports, Science and Technology (MEXT) policy report on promot-
ing science and technology of light and photons. An international Review Committee (M. E. Couprie,
J. Galayda, J. Hastings, S. I. Kurokawa, W. Namkung, J. Schneider, chaired by K. J. Kim) underlined
the specificities of the project: “The SPring-8 Compact SASE Source (SCSS) is an innovative project for
generation and use of intense, coherent, short-pulse X-ray beams. Although its goals are similar to other
X-ray free-electron laser (FEL) projects in the USA and Europe, the SCSS is unique in its compactness
of design and in its co-location with the SPring-8, the world’s leading third-generation X-ray synchrotron
radiation facility” and underlined the more critical components or aspects of the project. Some choices
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were quite original, such as the use of thermo-ionic gun operating at 1450o C with a graphite heater in-
stead of a photoinjector (see Fig. 71), the C-band (5.7 GHz) accelerator technology enabling a 35 MeV/m
with high precision high purity oxygen-free copper structures, short period in-vacuum undulators.

Fig. 71: Thermoionic gun of SCSS Test Accelerator, with T. Shintake

In 2005, the construction of SCSS test accelerator at 250 MeV was launched, recognized by MEXT
as “critical technology of national importance” and a XFEL user group was established and an electron
beam was successfully transported at the end of the year. The key components such as the CeB6 electron
gun [499] with an ultra-low emittance 0.6π mm mrad, the C-band structures and power sources, leading
to an electron beam of 0.3 nC charge (0.3 kA), the in-vacuum undulators (600×15 mm period, maximum
deflection parameter of 1.5 with a 3 mm minimum gap), were successfully developed. In 2006, 49 nm
FEL radiation was obtained and then extended in the 60–40 nm spectral range with an energy of 30 mJ
[500, 501].

7.2.4 SASE observation in the X-ray
Reaching the SASE regime experimentally took one decade after the achievement of the VUV storage
ring FEL oscillator and typically 25 years after the SASE in the far infrared measured on the Livermore
experiment. The FEL in the X-ray in the 0.1 nm spectral region was indeed obtained at Stanford in 2009,
i.e. at the same place where the first FEL was successfully demonstrated in 1977, i.e. 32 years later.
Several X-ray FEL facilities followed.

7.2.4.1 The first observation of SASE radiation in the X-ray domain at Stanford

LCLS, STANFORD, USA

The first considerations to use the SLAC linac combined to a low emittance photoinjector goes back to
the fourth generation workshop held in 1992 [463], the consecutive FEL studies [502], and progress on
high peak current low emittance linear accelerators [503]. A study group was formed in 1992 by H.
Winick at SLAC to study FEL design, performance, and optimization, accelerator (gun, acceleration up
to 70 GeV) and associated beam transport, undulators, lay-out, and scientific applications. The targeted
spectral range was the water window. It lead to the study [502] for a 2–4 nm wavelength FEL using a 10
MeV, S-band photoinjector; part of the SLAC linac to accelerate the beam up to 10 GeV (at 7 GeV with
an emittance of 3π mm mrad, peak current of 2.5 kA, an energy spread of 0.04% (uncorrelated), 0.1%
(correlated); two longitudinal bunch compressors to increase the peak current and reduce the bunch
length to 0.16 ps; and an undulator (83 mm period, 0.78 T field) enabling a 4 nm FEL with 11 mJ
energy per pulse and a 60 m saturation length. The considered photoinjector was consisting of a 3.5 cell
π-mode standing wave 100 MV/m accelerating structure, with a metal photocathode illuminated by a
2 ps laser pulse, providing a 3π mm mrad emittance, 250AA peak current, 1.6 ps RMS pulse duration,
0.15% relative energy spread. “In April 1992, it was considered to submit a proposal for a 2 to 4 nm
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FEL to the US Department of Energy for construction starting in 1995, and development work to be
done between 1992 and 1995. The name LCLS, introduced by Winick, appears for the first time in
a memorandum dated June 13, 1992” [3]. Applications were discussed in the “Scientific applications
of short wavelengths coherent light sources” workshop (chairs: W. Spicer, J. Arthur, H. Winick, Oct.
1992) and concerns were expressed about the sample damage induced by the high intensity of such
a FEL. The working group studies were presented to a review committee (J. Bisognano, L. Elias, J.
Goldstein, B. Newnam, K. Robinson, A. Sessler, R. Sheffield, chair: I. Ben Zvi) that concluded that
“there is no physical principle saying that the device would not work” and R&D was recommended
(electron density via electron source emittance and longitudinal pulse compression, beam alignment in
the undulators at 20 µm). In 1994, the Department of Energy, upon the request for funding, asked for
a review by the National Research Council, which ended up with the recommendation from the ‘FEL
and other Advanced Coherent Light’ Committee [209] to continue the research and development towards
an X-ray FEL in order to improve the technology and thus to reduce the cost. A second workshop on
‘Scientific Applications of Coherent X-rays’ in 1994 (J. Arthur, G. Materlik, H. Winick) [504] pointed
out the advantage to use the SLAC linac and the existing building to limit the cost of X-ray FEL, and the
required R&D to reduce the wavelength from 4 nm to 0.15 nm. It envisioned the new paths that could
be opened by a X-ray FEL: “Such an x-ray laser should in fact lead to the same sort of revolutionary
developments in x-ray studies of matter that was produced in optical studies by the introduction of the
visible/UV laser”. The feasibility of accelerating and compressing electron beams for reaching high peak
currents (several 100 A) while keeping emittance constant was assessed [503]. A Conceptual Design
Report for a XFEL in the 0.15–1.5 nm range was completed [505], it was reviewed in 1997. The Basic
Energy Science of US Department of Energy [506] recognized as top priorities funding for LCLS R& D
in the frame of a national effort and the importance of the first SASE experimental results.

The LCLS design [398] considered the use of the existing SLAC accelerating sections, combined
to a photoinjector and undulators. The photoinjector was developed [507, 508] relying on preliminary
results obtained in the frame of the BNL/UCLA/SLAC collaboration. Funds were given following the
recommendations from a panel chaired by S. Leone, and the work has been distributed between different
laboratories: SLAC, UCLA, Livermore Nat. Lab., Argonne, Brookhaven, Los Alamos. A formal project
management structure has been established, with a Scientific Advisory Committee (co-chaired by J.
Stohr and G. Shenoy). A new Conceptual design report was issued in 2002 [509], and additional funds
were provided. A view of LCLS is shown in Fig. 72.

Fig. 72: View of LCLS, from portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx

LCLS consists in a photoinjector, derived from the one of the BNL/SLAC/UCLA collaboration
(0.4π mm mrad emittance for 0.4 nC charge, or 0.15π mm mrad emittance for 0.02 nC, the SLAC accel-
erating sections leading to an electron beam of 13.6 GeV, 250 pC (respectively 20 pC) for 0.5π mm mrad
(respectively 0.14π mm mrad) normalized emittance, a relative energy spread of 0.01% and a 3 kA peak
current, thanks to two bunch compressors. A view is shown in Fig. 73. A laser heater is also implemented
to cure from microbunching instability [510].
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Fig. 73: View of LCLS, from portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx

The fixed gap undulator 3.4 m long segments (30 mm period, 130 m total length) were built by
Argonne National Lab [511]. Some canting of the magnetic poles (5.5 mrad) was introduced so that the
resonant wavelength can be adjusted by a horizontal translation of the undulator segment. Beam position
monitor and focusing was installed between the undulator modules.

After the commissioning of the injector led by David Dowell (twentieth FEL Prize in 2009), SASE
radiation was achieved in April 2009 at 0.15 nm, very rapidly after sending the electron beam in the
undulators. Saturation was obtained without using the total number of undulator segments [512]. LCLS
was also adjusted with a lows charge and shorter electron bunches [513]. The commissioning of LCLS
was led by Paul Emma (twentieth FEL Prize in 2009), under the project management of John Galayda
(23rd FEL Prize in 2012). Beam based alignment was required [514]. Microbunching instability and
effect of the laser heater were also studied [515]. LCLS now operates in the 0.25–9.5 keV spectral range,
with a 120 Hz repetition rate, with several mJ and pulses as short as 5 fs.

The success of LCLS, the first tuneable X-ray FEL, was a major advance in FEL history. It opened
the way to explore new areas of matter investigation with such a high energy per pulse. There are now
six experimental stations.

7.2.4.2 The second observation of SASE radiation in the X-ray domain in Japan

SACLA, HARIMA, JAPAN

Following the success of the test facility SCSS Test Accelerator in 2006, a review working group con-
cluded that “the XFEL plan should be actively carried forward and the project should be started at an
early date”, and 2.3 billion yen was allocated for construction and research on use of the XFEL facility
by the government at the end of the year. XFEL Project Head Office was established in 2006, and the
project was jointly promoted by RIKEN and Japan Synchrotron Radiation Research Institute (JASRI).
The construction of the XFEL facility in Japan began in July 2009. In 2009, the accelerator and un-
dulator buildings were completed, the thermoionic gun operating at 1450oC with a graphite heater, the
acceleration tubes (see Fig. 74) were installed, undulators started, the experimental building was built in
2011. A fifth XFEL symposium was held in 2009.

The FEL was achieved on June 7, 2011. SASE is operated at SACLA down to 0.08 nm [516]. For
the final adjustments, the undulator segments have been aligned using the photon beam itself [517].

SACLA has also some specificities: it gathers XFEL and SPring-8 in such a way that radiation
from both light sources can be combined on a sample, or the electron beam from the linear accelerator
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Fig. 74: SACLA C-band linac

of SACLA can serve to inject the storage ring for short pulse operation as shown in Fig. 75.

Fig. 75: SACLA FEL top view from http://xfel.riken.jp/eng/. In the long building is installed SACLA with the
different FEL branches, whereas in the rear of the picture, one of the third generation storage ring beamlines, a very
intense laser, and SACLA photon beam can be coupled. The configuration also enables to use the linac electron
beam to inject in the storage ring for very short pulse synchrotron radiation production.

It is the only X-FEL not having a photoinjector, but a thermoionic gun. It is the first X-ray FEL to
have adopted the C-band accelerator technology and in-vacuum undulators (18 mm period).

SACLA now operates with two hard X-ray beamlines. In addition, SCSS Test Accelerator has
been moved, the electron beam energy has been raised and undulators have been added, providing an
additional soft X-ray beamline, presently open to users [518].

7.2.4.3 The next X-ray SASE FELs in the X-ray domain

PAL FEL, POHANG, KOREA

Pohang Accelerator Laboratory launched the study of a XFEL [519] in the beginning of the twentieth
century. Studies were carried out and reviewed. PAL-XFEL uses a 10 GeV S-band linac (0.4π mm mrad
emittance, 60 Hz), two series of undulators (for the hard X-ray line at 10 GeV: 20 segments of 26 mm
period, 0.81 T peak field, 8.3 mm minimum gap; and for the soft-ray beamline at 3.15 GeV: 20 segments
of 35 mm period, 1 T peak field, 9 mm minimum gap) [520] to cover the 0.1–4.5 nm spectral range. The
site of the facility is shown in Fig. 76.
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Fig. 76: PAL FEL site, from http://pal.postech.ac.kr/paleng/Menu.pal?method=menuView-
&pageMode=paleng&top=7&sub=5&sub2=0&sub3=0

The installation of the linac and undulator was completed in January 2016. After approval from
the Radiation Safety Control Agency, commissioning of the accelerator was started from a 135 MeV
injector on April 14, 2016: the first beam from the RF-gun [521] was achieved, and in 11 days, the beam
was accelerated up to 10 GeV and was transported 715 m away from the gun.

The electron beam was then sent at the entrance of the undulator lines, 794 m away from the gun.
The beam was compressed to 3 kA peak current. The first FEL was obtained at 0.5 nm on June 14.
Korea Bizwire made the following announcement on June 30, 2016: “Following the United States and
Japan, Korea became the third country to successfully produce an ‘x-ray free-electron laser’ (XFEL),
often referred to as the ‘dream light’. According to the Ministry of Science, ICT and Future Planning,
the POSTECH (Pohang University of Science and Technology) Pohang Accelerator Laboratory has suc-
ceeded in producing an XFEL with a wavelength of 0.5 nm. The lab started a trial run of the PAL-XFEL
on April 14. The laser was first observed in the early morning of June 14, and the facility was visited on
June 29 by an external verification committee to confirm the laser’s successful production” [522].

Saturation was achieved at 0.144 nm on 27 November 2016, with an energy per pulse of 132 µJ
for a 8 GeV electron beam and an undulator deflection parameter of 1.87, as shown in Fig. 77. The gain
length is 3.43 m. Undulator tapering applied for the last eight undulators led to a further increase of the
FEL intensity [523]. PAL-FEL has two hard X-ray beamlines and one soft X-ray one.

Fig. 77: X-ray FEL at PAL: X-ray spot and power saturation curve, from [523]

SWISSFEL, VILLIGEN, SWITZERLAND

SwissFEL is developed at Paul Scherrer Institute. Following the conceptual design report [525], the
construction started. A special care was dedicated to the preservation of nature, of the site of the Swiss
FEL facility (see lay-out displayed in Fig. 78.
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SwissFEL [526] consists of a very low emittance injector, C-band accelerating sections leading to
5.8 GeV for a 100 Hz repetition rate, and 15 mm period in-vacuum undulators [527], for two different
FEL beamlines: ARAMIS (0.1–0.7 nm) and ATHOS (0.7–7 nm). First, the injector was commissioned
[528]. Then, the full installation was completed. A first lasing was achieved in December 2, 2016 with a
377 MeV electron beam at 24 nm, in May 2017 at 4.1 nm [524] and in October 2017 at 1.2 nm [529].

Fig. 78: SwissFEL layout, from https://www.psi.ch/swissfel/

EUROPEAN FEL, HAMBURG, GERMANY

The European XFEL has a long history. It was already discussed here with the introduction of the
TESLA-TTF FEL. The German Federal Ministry of Education and Research granted permission to build
the XFEL in 2007 at a cost of 850 M euros, under the provision that it should be financed as a European
project. The FEL on TESTA-TTF [484, 485] was seen as a test-bench for the technology and physics of
the future European XFEL project. In 2004–2007 a ‘Science and Technology Issues’ group chaired by
F. Sette was created. In 2007, the European XFEL project was officially launched. The European XFEL
GmbH company, has been founded in 2009 for building and operating the facility has been founded in
2009. It gathers a consortium of different countries: Denmark, France, Germany, Greece, Hungary, Italy,
Poland, Russia, Slovakia, Spain, Sweden, Switzerland, bringing financial and/or in-kind contributions.
The 3.4 km long X-ray free electron laser facility extends from Hamburg to the neighbouring town of
Schenefeld in the German federal state of Schleswig-Holstein. Technically, European XFEL [530] uses a
superconducting linac of extremely good electron beam parameters, enabling operation at high repetition
rate. The electrons will be accelerated up to 17.5 GeV over 2.1 km. There are 101 accelerator modules.
EFEL will provide three different SASE sources for six experimental stations, as shown in Fig. 79.

Fig. 79: Sketch of the European X FEL facility, from [531]
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SASE 1 and SASE 2 cover 0.4–0.05 nm spectral range, with a 175 m undulator length, whereas
SASE 3 covers 4.7–0.4 nm spectral range, with a 105 m undulator length. Pulse duration will be shorter
than 100 fs. The flux reaches 1012 ph/s. The specificity of the EXFEL is its repetition rate of 27 000
pulses per second, leading to a peak brilliance a billion times higher than that of the best synchrotron
X-ray radiation sources (5 × 1033 ph/s/mm2/mrad2/0.1% BW).

Civil construction of the facility started in 2009, and continued with the completion of the 3.4 km
tunnel in 2012, and underground in 2013. The overall cost for the construction and commissioning of the
facility is as of 2015 estimated at 1.22 B euros. First electrons have been guided from the injector into
the first four 2 K superconducting accelerator modules at −271oC and compression chicane in January
2017 [531] in the cooled main accelerator, as presented in Fig. 80. First lasing was achieved on May 2nd
2017 at a moderate energy of 6.4 GeV at 0.9 nm [532], and after beam based alignment and systematic
tuning of the electron beam properties, at 0.2 nm on May 24nd 2017 with a energy of 1 mJ achieved
three days later.The SASE 1 beam was transported to the experimental hutch in June [533].

Fig. 80: View into the accelerator tunnel: electrons guided into the first four superconducting accelerator modules
(yellow) and in a chicane (in front, blue and red), from [531].

European XFEL is the next world’s brightest source of ultrashort X-ray pulses and will open up
new research opportunities for scientists and industrial users. Thanks to its ultrashort X-ray flashes, the
facility will enable scientists to map the atomic details of viruses, decipher the molecular composition
of cells, take three-dimensional images of the nanoworld, film chemical reactions, and study processes
such as those occurring deep inside planets.

LCLS-II, STANFORD, USA

LCLS-II [534] will move to the use of a 4 GeV superconducting accelerator technology, in the CW mode
of operation. It will provide a major jump in capability, moving from 120 pulses per second to 1 million
pulses per second. The electron beam properties will be of high quality: normalized slice emittance
of 0.45π mm mrad, slice energy spread of 0.12 × 10−4. The project will also incorporate variable gap
hybrid undulators to cover soft (0.2–1.3 keV, i.e. 0.95–6.2 nm) and hard (1–5 keV, i.e. 0.25–1.2 nm)
X-ray photons at up to MHz rates; hard X-ray above 25 keV (i.e. below 0.05 nm at 120 Hz), with
performance comparable to or exceeding that of the existing LCLS. The project is conducted in the
frame of a collaboration between SLAC, Fermilab, Jefferson Lab., Argonne, Cornell University.

SHANGHAI XFEL, SHANGHAI, CHINA

The construction on the Shanghai Coherent Light Facility (SCLF) for a high repetition rate X-ray Free
Electron Laser at Shanghai relying on a 8 GeV superconducting accelerator technology has been ap-
proved. The super- conducting electron accelerator, undulators and photon beamlines and endstations
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are all installed in 3.1 km under-ground tunnels. Using 3 phase-I undulator lines, the SCLF aims at
generating X-rays between 0.4 and 25 keV at rates up to 1MHz [535].

7.3 SASE properties
7.3.1 SASE longitudinal properties
The SASE emission starts from of the amplification on spontaneous emission and presents generally
spikes in the temporal and spectral distributions, because of non-correlated trains of pulses, resulting in
a partial longitudinal coherence. The SASE spectra observed on FLASH are shown in Fig. 81. They
illustrate the SASE fluctuations: the number of spikes (wave packets) M is typically 2.5, leading, in
using the value of the cooperation length, to FEL pulses of about 50 fs. It can be understood in terms of
statistical properties [536].VOLUME 88, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 11 MARCH 2002

signal [9]. The latter quantity is roughly a fraction of spon-
taneous radiation emitted by the electron beam at one gain
length into the coherent angle. In our case, angular accep-
tance of the detector is 3 times larger than the coherent
angle. Next, the detector always measures spontaneous
radiation power emitted from the total undulator length.
Finally, only 10% of the bunch charge produces coherent
radiation (see Fig. 1). As a result, we come to the conclu-
sion that a measured gain of 104 corresponds to the FEL
gain of about 107 in terms of effective power of shot noise.

Each point in Fig. 2 represents the average over 100
bunches. The radiation pulse energy fluctuates from bunch
to bunch. The rms spread s is plotted in Fig. 2 versus the
active undulator length. For a length z , 5 m, the rms
fluctuation is on the order of 4% and mainly given by the
radiation detector. When the FEL radiation exceeds the
level of spontaneous emission, the rms energy spread in-
creases rapidly to more than 60%. It is essential to realize
that these fluctuations are inherent to the SASE process,
and not due to unstable operation of the accelerator. During
the experiment, we performed simultaneous measurements
of individual bunch charges and offsets at the undulator en-
trance, the most critical beam parameters influencing the
FEL process. In order to exclude machine fluctuations,
we performed selection of the pulses having fluctuations
of the charge less than 1% (rms) and orbit deviation less
than 50 mm (rms). After such a data selection, the mea-
sured fluctuations of the radiation energy in the bunch are
dominated by the statistical properties of the SASE FEL
radiation originating from shot noise in the electron beam
which causes fluctuations of the beam density, which are
random in time and space. The number of longitudinal
optical modes amplified by the FEL is thus a statistical
quantity [22]. If the average of this number (denoted M
in the following) is small, significant fluctuations of the
output energy are to be expected. Finally, a sharp drop in
the energy fluctuations is observed when the output power
approaches the saturation level. This observation is a clear
confirmation of the FEL saturation.

Spectral measurements are presented in Fig. 3. Single-
shot spectra were taken with a monochromator (0.2 nm
resolution) equipped with an intensified CCD camera [21].
The bold curve represents the spectrum averaged over
100 bunches. Typical single-shot spectra consist of ap-
proximately two spikes corresponding to the value of M
between 2 and 3 which is in agreement with fluctuation
measurements in the high-gain linear regime, giving the
value of M ! 2.5. Figure 4 shows the angular divergence
of the FEL radiation, obtained by scanning a 0.5 mm aper-
ture mounted in front of the detector.

The information contained in Figs. 2 and 3 is sufficient
to determine the SASE FEL parameters. We start with
an analysis of the measured power gain length and fluc-
tuations of the energy in the radiation pulse (see Fig. 2).
From the exponential part of the gain curve, the power
gain length is determined to be Lg ! 67 6 5 cm. For an
FEL amplifier operating in the high-gain linear regime (i.e.,

FIG. 3. Spectrum of the radiation (experimental results). The
thin curves are single-shot spectra. The bold curve represents
an averaged spectrum.

the exponential growth region), a parameter with a direct
physical interpretation can be derived from the rms energy
fluctuation s: M ! 1!s2 represents the number of spikes
(wave packets) in the radiation pulse. The present case
yields M " 2.5 (see Fig. 2). This allows us to estimate
the radiation pulse length as trad " MLc!c where the co-
operation length is Lc " 2lLg!lu " 5 mm. Using these
numbers, the duration of the radiation pulse is found to
be about 50 fs, which implies that the FEL radiation is
not generated by the whole electron bunch but only by its
sharp leading peak.

The FWHM width of the averaged spectrum #Dv$FWHM
is determined by the coherence length of the optical wave
packets. Thus, its combination with the number of modes
M provides an estimate of the radiation pulse length ac-
cording to [9] trad " 2M

p
p!#Dv$FWHM " 50 fs. The

pulse length may be independently obtained from the typi-
cal width Dv of the spikes in the single-shot spectra, using
the relation trad " 2p!Dv " 50 fs. It is well known that
the relative FWHM spectral width, #Dv!v$FWHM, corre-
sponds approximately to 2r, where r is the FEL parameter
[6]. From the averaged spectrum (see Fig. 3), one obtains

FIG. 4. Angular distribution of the radiation intensity at the
undulator exit. Circles: experimental results. Solid curve: nu-
merical simulations with the code FAST.

104802-3 104802-3

Fig. 81: SASE spectra, from [488]

There are particular cases where this spiky spectral and temporal structure of the SASE can be
handled, such as seeding, as developed in the next solution. Alternatively, the FEL can be operated in
a low-charge short electron bunches [537] as demonstrated in LCLS [513], or in combining an electron
beam energy chirp combined with an undulator taper [538], as shown in SPARC (Test facility in Italy)
[539]. Proper combinations of chicanes and undulator segments can enable to phase lock the radiation
[540].

Different schemes have been proposed and/or tested for achieving extremely short pulses [541–
551] with a selective amplification, modulation, phase locking of the radiation from different segments,
superradiance [552]. The partial FEL coherence can be taken into account in the pulse duration measure-
ment [553].

7.3.2 SASE transverse properties
Thanks to the rather low emittance of the electron beam and eventually to gain guiding, SASE FEL
presents generally a good transverse coherence [554] and a proper wavefront [555].

7.3.3 SASE polarization
The polarization of the FEL mainly results in the choice of the undulator. Whereas the majority of
the SASE FEL started with planar undulators leading to linear polarization, there is a recent trend to
provide more polarization flexibility for users. For example, LCLS recently operated with a DELTA
undulator [556] leading to hundreds of microjoules of circulator polarization in the 1–2.5 nm spectral
range [557].
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7.4 Seeding
7.4.1 External laser seeding
Following coherent harmonic generation carried out on low gain FEL, the idea of sending an external
laser tuned on the undulator fundamental wavelength was developed, in the so-called ‘seeding configu-
ration’ as shown in Fig. 82. The seed provides a sufficiently intense input field that generates an efficient
bunching even in a short undulator, leading to coherent emission of undulator radiation and of its higher-
order harmonics. The FEL may then operate as an amplifier of the initial seed, capable of increasing the
peak power of a light source to approximately the same saturation power level as for the SASE case. The
seed should overcome the initial shot noise.

!

"

1

2  

!

"

Fig. 82: FEL seeding: a coherent source tuned on the resonant wavelength of the undulator enables to perform
efficiently the energy exchange leading further to the density modulation

Concerning the temporal properties, seeding could somehow enable to manipulate the FEL prop-
erties. The temporal and spectral distributions of the pulse result from the seed and the FEL intrinsic
dynamics and could be modified by the interaction with an external laser. Seeding offers a good strat-
egy for suppressing the spikes inherent to the SASE process and thus for improving the longitudinal
coherence, and for reducing the intensity fluctuations, and jitter. In addition, since the electron bunch
modulation is controlled by the external laser source, the saturation length can become shorter, the cost
can be reduced [558]. Seeding can be used also to efficiently generate harmonics.

Experimentally, the electron beam and the seed should be synchronized, the radiation should over-
lap transversally and spectrally.

The progress of seeding on high gain single pass FELs is described below, starting with the use of
conventional lasers first in the mid infrared, then with that of high-order harmonics generated in gas for
a seed at shorter wavelength.

7.4.2 External conventional laser seeding

BNL FEL EXPERIMENT/NSLS DUV FEL, BNL, USA

The first experimental demonstration was carried out by L. H. Yu (16th FEL Prize in 2003) at
Brookhaven national Laboratory [429]. The set-up was composed of a 10.6 µm with a 0.5 MW seed
CO2 laser, a 40 MeV electron beam with 120 A peak current (6 ps FWHM, with 5π mm mrad and 0.6%
energy spread); a 0.76 m long first modulator (80 mm period, 0.16 T magnetic field), a 0.3 m long
dispersive section, and a 2 m long radiator (33 mm period, 0.47 T magnetic field). It led to the saturated,
amplified free electron laser second harmonic at 5.3 µm, as shown in Fig. 83.

The experimental results showed that the SASE output was multiplied by six orders of magnitude
in the HGHG spectrum. The measured FWHM HGHG bandwidth was of 20 nm, i.e. six times smaller
than the SASE one. The spectral bandwidth was significantly reduced by seeding, and longitudinal
coherence improved. A single shot HGHG shown in B shows a nice spectral profile, quite different from
the spiky SASE pulse.

Such a result has been a major contribution in 2000 for the FEL community, since the use of a
laser-seeded free electron laser enabled to produce amplified, longitudinally coherent, Fourier transform
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This investigation has experimentally
demonstrated the fundamental principles of
HGHG FEL operation. The HGHG ap-
proach offers an alternative and attractive
FEL scheme that combines the benefits of
the coherence properties of a laser with the
short-wavelength capabilities of an acceler-
ator-based light source. A future x-ray
HGHG FEL could use the best advances in
short-wavelength tabletop lasers as seeds
for amplifying and pushing toward shorter
wavelengths. We are examining a number
of different options for hard x-ray opera-
tion. For example, the cascading of several
HGHG stages (35) can provide a route for
x-ray generation using current near-ultravi-
olet seed laser performance. In this ap-
proach, the output of one HGHG stage
provides the input seed to the next. Each
stage is composed of a modulator, disper-
sion section, and radiator. Within a single
stage, the frequency is multiplied by a fac-
tor of 3 to 5. For each stage, the coherent

radiation produced by the prebunched beam
in the radiator at the harmonic of the seed is
many orders of magnitude higher in inten-
sity than the SASE generated. In a specific
example (35), after cascading five HGHG
stages, the frequency of the output is a
factor of 5 ! 5 ! 5 ! 4 ! 3 " 1500 times
the frequency of the input seed to the first
stage. Dispersion sections are placed be-
tween stages to shift the radiation to fresh
portions (36 ) of the electron bunch to avoid
the loss of gain due to the energy spread
induced in the previous stage.
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Fig. 3. Output spectrum. (A) Scanning multi-
pulse measurements of the output power spec-
trum for HGHG and SASE, on the experimental
apparatus illustrated in Fig. 2. The graph plots
power (in arbitrary units) against wavelength
(in nanometers). The HGHG FEL bandwidth is
one-sixth the SASE bandwidth. The SASE data
are multiplied by a factor of 106 to bring them
onto the same scale as the HGHG results. The
SASE amplifier could achieve the same power
level as the HGHG FEL if the radiator undulator
was made three times longer, but the SASE
bandwidth would still be larger than that of the
HGHG device. The solid line is a fit to the SASE
spectral line, and the dashed line is a fit to the
HGHG spectral line. (B) The HGHG single-shot
spectrum as recorded by a thermal imaging
camera placed at the exit plane of the spec-
trometer. The graph plots power (in arbitrary
units) against wavelength (in nanometers).
FWHM bandwidth is 15 nm.

R E P O R T S

11 AUGUST 2000 VOL 289 SCIENCE www.sciencemag.org934

Fig. 83: High gain harmonic generation demonstration using a 800 nm laser, from [429]. A SASE point: an
average of 10 shots, HGHG points: single shots normalized to the total HGHG pulse energy. B: Single shot
HGHG pulse recorded with a thermal imaging camera at the exit plane of the spectrometer

limited output at the harmonic of the seed laser. “The experiment verifies the theoretical foundation for
the technique and prepares the way for the application of this technique in the vacuum ultraviolet region
of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent
source of hard x-rays” [429]. “The HGHG approach offers an alternative and attractive FEL scheme
that combines the benefits of the coherence properties of a laser with the short-wavelength capabilities
of an accelerator based light source. A future X-ray HGHG FEL could use the best advances in short-
wavelength tabletop lasers as seeds for amplifying and pushing toward shorter wavelengths” [429]. The
measurements were in good agreement with the theoretical expectations.

The next step in shorting the wavelength [559]. The beam (4 ps FWHM, with 4.7π mm mrad)
from the DUV FEL is produced with the BNL photoinjector where the cathode is illuminated at 266 nm,
accelerated with four SLAC accelerating section bringing the energy to 177 MeV, with a chicane between
the second and third accelerator module. The modulator was the same as for the previous experiment,
whereas the radiation was the 10 m long NISIUS undulator with 38.9 mm period, 0.31 T peak field (K =
1.13) with focusing in both planes thanks to canted poles. The seed was taken from the Ti–Sa laser at
800 nm with 30 MW used for the photoinjector. The seeded FEL spectrum is shown in Fig. 84 at 266 nm,
the third harmonic of the laser seed. It exhibits a nice line, of 0.1% bandwidth, as compared to the broad
spiky SASE spectra. The HGHG width is close to one single SASE spike. An estimate of the pulse
length of 0.9 ps was found, close to the 1 ps electron beam duration after compression. These results
provided evidence of the high temporal coherence in the HGHG output and significant improvement due
to the seeding, with respect to the SASE.

Figure 85 shows the output energy measured for different seed levels versus the wiggler length, by
kicking the electron beam at different locations in the undulator. A 0.8 m long gain length was found. The
total length of the NISIUS undulator was not sufficient for getting a saturated SASE whereas saturation
can be reached in the seeded configuration. Saturation was also more rapidly reached than in the SASE
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d =d! ! 8:7, the gain length was found to be 0.8 m.
NISUS was not engineered for DUV FEL operation,
thus its parameters are not ideal for this application. Its
period is longer and the electron transverse focusing is
weaker than optimum. Consequently, the 10 m NISUS
length and the 0.8 m gain length are inadequate to reach
SASE saturation. However, there is sufficient gain to
produce saturation in HGHG.

For Pin ! 30 MW, !! ! 0:5, and d =d! ! 3, the
single shot output spectrum of HGHG presented in
Fig. 3 shows a line width of 0.1% FWHM. The single
shot SASE spectrum with the seed laser turned off is
also presented in Fig. 3. The average spacing between
the SASE spectral spikes can be used to estimate the
SASE pulse length [21] as Tb ! "2=0:64c!" ! 0:9 ps,
which is close to the 1 ps electron bunch length. Notice
that the HGHG spectral width of Fig. 3 is very nearly
equal in width to a single spike in the SASE spectrum.
This is evidence of high temporal coherence in the HGHG
output.

A histogram of the shot-to-shot HGHG output pulse-
energy for a 30 MWseed obtained over a minute is shown
in Fig. 4, for a typical saturated output energy of 100 #J.
The rms energy fluctuation is only 7%, mostly due to shot-
to-shot fluctuations and drift in the electron beam. Since
the slippage of the laser pulse relative to the electron
bunch over the whole NISUS (256 periods long) is 256"
266 nm=c # 200 fs, which is 5 times smaller than the 1 ps
electron pulse length, the SASE fluctuation would be
1=

!!!

5
p

# 44% for an idealized electron beam.
Analysis.—The time-independent approximation as

used by the code TDA is valid, because the slippage is
much smaller than the electron bunch length. Further-
more, as a rough approximation, we neglect the detailed
time structure of the electron bunch.When the seed power
is low, as in the 1.8 MW data of Fig. 2(a), there is a
significant exponential growth along the radiator. From

the measured gain length of 0.8 m, we can analytically
estimate the electron beam parameters. Using a 300 A
current an analytical gain length calculation [22] indi-
cates that the slice emittance is below 3 #m, otherwise
the gain length would be longer than 0.8 m. Since the
measured slice emittance is between 2.5 and 3:5 #m, the
analytical solution also indicates that the local rms en-
ergy spread is smaller than the measured projected value
of 5" 10$4. If we assume the local rms energy spread to
be 1" 10$4 and the emittance to be 2:7 #m, the simula-
tion by a modified TDA code [7] reproduces the measured
gain length of 0.8 m and predicts the observed saturation
at the end of NISUS, as shown in Fig. 2. The Pierce
parameter [23] for this calculation is $ ! 3" 10$3.

The 266 nm HGHG radiation pulse length in the case
of the 1.8 MW seed was measured using an autocorrelator
to be 0.63 ps (FWHM), which is shorter than the 1 ps
electron bunch. The pulse shortening can be qualitatively
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Fig. 84: High gain harmonic generation demonstration using a 800 nm laser, from [559]

case, which makes the system more compact.

d =d! ! 8:7, the gain length was found to be 0.8 m.
NISUS was not engineered for DUV FEL operation,
thus its parameters are not ideal for this application. Its
period is longer and the electron transverse focusing is
weaker than optimum. Consequently, the 10 m NISUS
length and the 0.8 m gain length are inadequate to reach
SASE saturation. However, there is sufficient gain to
produce saturation in HGHG.

For Pin ! 30 MW, !! ! 0:5, and d =d! ! 3, the
single shot output spectrum of HGHG presented in
Fig. 3 shows a line width of 0.1% FWHM. The single
shot SASE spectrum with the seed laser turned off is
also presented in Fig. 3. The average spacing between
the SASE spectral spikes can be used to estimate the
SASE pulse length [21] as Tb ! "2=0:64c!" ! 0:9 ps,
which is close to the 1 ps electron bunch length. Notice
that the HGHG spectral width of Fig. 3 is very nearly
equal in width to a single spike in the SASE spectrum.
This is evidence of high temporal coherence in the HGHG
output.

A histogram of the shot-to-shot HGHG output pulse-
energy for a 30 MWseed obtained over a minute is shown
in Fig. 4, for a typical saturated output energy of 100 #J.
The rms energy fluctuation is only 7%, mostly due to shot-
to-shot fluctuations and drift in the electron beam. Since
the slippage of the laser pulse relative to the electron
bunch over the whole NISUS (256 periods long) is 256"
266 nm=c # 200 fs, which is 5 times smaller than the 1 ps
electron pulse length, the SASE fluctuation would be
1=

!!!

5
p

# 44% for an idealized electron beam.
Analysis.—The time-independent approximation as

used by the code TDA is valid, because the slippage is
much smaller than the electron bunch length. Further-
more, as a rough approximation, we neglect the detailed
time structure of the electron bunch.When the seed power
is low, as in the 1.8 MW data of Fig. 2(a), there is a
significant exponential growth along the radiator. From

the measured gain length of 0.8 m, we can analytically
estimate the electron beam parameters. Using a 300 A
current an analytical gain length calculation [22] indi-
cates that the slice emittance is below 3 #m, otherwise
the gain length would be longer than 0.8 m. Since the
measured slice emittance is between 2.5 and 3:5 #m, the
analytical solution also indicates that the local rms en-
ergy spread is smaller than the measured projected value
of 5" 10$4. If we assume the local rms energy spread to
be 1" 10$4 and the emittance to be 2:7 #m, the simula-
tion by a modified TDA code [7] reproduces the measured
gain length of 0.8 m and predicts the observed saturation
at the end of NISUS, as shown in Fig. 2. The Pierce
parameter [23] for this calculation is $ ! 3" 10$3.

The 266 nm HGHG radiation pulse length in the case
of the 1.8 MW seed was measured using an autocorrelator
to be 0.63 ps (FWHM), which is shorter than the 1 ps
electron bunch. The pulse shortening can be qualitatively
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Fig. 85: High gain harmonic generation demonstration using a 800 nm laser, from [559]

Together with the fundamental radiation at 266 nm (100 µJ), significant signal was found on the
second (0.1 µJ) and third (0.3 µJ) harmonics [560]. The harmonic radiation at 89 nm of the seeded
FEL was successfully used for a first scientific applications in molecular physics [561]. Tuneability is
achieved by applying a chirp on the electron beam [562].

A super-radiant seeded FEL was experimentally demonstrated at BNL [563].

SPARC TEST FACILITY, FRASCATI, ITALY

In Italy, a budget dedicated to FEL research has been implemented. Two proposals have been funded, the
SPARC FEL test facility, and the FERMI@ELETTRA seeded FEL facility. The SPARC FEL amplifier
[539, 564] is driven by a high brightness accelerator providing energies between 80 and 180 MeV and
an undulator composed by six modules of variable gap. A super-radiant seeded FEL was experimentally
demonstrated on SPARC up to the 11th order [565] and in the cascade configuration [566].
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7.4.3 External seeding with high-order harmonics generated in gas
Conventional lasers are limited in terms of the short wavelength they can provide, even though frequency
mixing schemes can be used. However, in the landscape of available light sources in the VUV and soft
X-ray [567, 568], Harmonic generation in gas (HHG) is one of the most promising methods to generate
radiation at short wavelengths in the vacuum and extreme ultraviolet region of the spectrum [569, 570],
and is currently in operation for user applications. The high-order harmonics result from the strong
non-linear polarization induced on rare-gas atoms, such as Ar, Xe, Ne, and He, by the focused intense
electromagnetic field of a pump laser. As the strength of the external electromagnetic field is comparable
to that of the internal static field of the atom in the interaction region close to laser focus, atoms ionize by
tunnelling of the outer electrons. The ejected free electrons, far from the core, are then accelerated in the
external laser field and gain kinetic energy, they can be driven back close to the core and be scattered or
recombine to the ground state emitting a burst of XUV photons every half-optical cycle. Correspondingly
in the spectral domain, the harmonic spectrum includes the odd harmonics of the fundamental laser
frequency. The characteristic distribution of intensities is almost constant for harmonic order in the
‘plateau’ region, where, depending on the generating gas, the conversion efficiency varies in the range
10−4–10−7. For higher orders, the conversion efficiency decreases rapidly, in the ‘cut-off’ region, which
is determined by the gas ionization and the ponderomotive energies. The lighter is the gas (i.e. the
higher is the ionization energy the higher is the cut-off energy). High-order harmonics are linearly
polarized sources from hundreds of nm to nm, of good temporal and spatial coherence, emitting very
short pulses (fs to as), at rather high repetition rate (up to a few kilohertz). The radiation spectrum is
completely tuneable in the VUV–XUV region. The harmonic radiation is emitted on the axis of the laser
propagation with a small divergence (1 to 10 mrad). Fraction of a microjoule of energy can be obtained
at wavelengths down to tens of nm [571]. It was then thought that HHG could suit for being considered
as a seed for a high gain FEL [111] for the ARC-EN-CIEL project in France, and on the SCSS Test
Accelerator [572] in the frame of a French–Japanese collaboration.

SCSS TEST ACCELERATOR, HARIMA, JAPAN

The HHG chamber has been prepared in France and sent to Japan, whereas an existing laser has been
upgraded with a delay line added for such an experiment. The HHG seeding chamber, with a Xe gas cell
was located inside the accelerator tunnel. A second chamber handled the transverse focus of the seed in
the first undulator. An injection chamber, containing a set of steering mirrors, was located in a magnetic
chicane. HHG seeding has been first performed on SCSS Test Accelerator at 160 nm [573]. The HHG
seed was strongly amplified in the first undulator segment and the unseeded signal was amplified by
three orders of magnitude. The saturation length was reduced by a factor of 2, making the system more
compact. The fundamental wavelength was accompanied by the non-linear harmonics (NLH) at 54 nm
and 32 nm [574]. Figure 86 shows that light up to the seventh harmonic of the FEL resonance can be
measured while in presence of the seed. The seventh harmonic could not be detected when the FEL
amplifier was operated with no seed, in SASE mode. A significant increase of the non linear harmonics
signal, as compared to the unseeded case, was also observed at the third and fifth harmonics, which
were amplified by factors 312 and 47 for the third (0.3 nJ at 53.55 nm) and for the fifth (12 pJ at 32.1
nm) respectively. Spectral narrowing was also observed at the harmonics (from 2.66% to 0.84% for
the third harmonic and 2.54% to 1.1% for the fifth harmonic). The seed level required to overcome the
shot-noise [571, 575] was studied.

The HHG layout was modified to use a SiC harmonic separator mirror, set at the Brewster angle
(69o), for the Ti–Sa pump laser. By introducing a pair of Pt-coated, nearly normal incidence mirrors,
both the collimation and the focusing of the HHG radiation were achieved. HHG seed FEL was then
obtained at 60 nm [576] with a seed energy of 2 nJ/pulse (i.e. 40 kW, with 50 fs pulse duration). The
pulse energy of the seeded FEL (1.3 µJ), was twice larger than in SASE mode (0.7 µJ) and 650 times
larger than the HHG seed level (2 nJ).
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Fig. 86: Non0linear harmonics of SCSS Test Accelerator FEL seed with HHG at 60 nm (a) fifth to seventh
harmonic image of the spectrometer. Comparison of SASE and seeded FEL harmonics of third order (b) and fifth
one (c), from [571].

The synchronization was then improved with electro-optical sampling [577, 578], leading to a
better hit rate. A few tens of microjoule could then be obtained [579] EUV-FEL.

SCSS test accelerator components have now been moved to SACLA for providing a HHG seeded
FEL in the soft X-ray region down to 3 nm, with additional accelerating sections and undulator modules.
It could then be combined with HGHG.

SPARC TEST FACILITY, FRASCATI, ITALY

With the flexibility of SPARC for the HGHG configuration, it appeared also to be a good candidate for
testing HHG seeding. It was performed in the frame of an Italian (ENEA, INFN)–French (CEA /syn-
chrotron SOLEIL) collaboration. The Ti–Sa laser delivering up to 2.5 mJ at 800 nm with a pulse duration
of about 120 fs was focused by a 2 m focal length lens to an in-vacuum cell, where a synchronized valve
injected Argon gas at 15 bar. Seeding at 160 nm was performed. Then, for a 50 nJ 266 nm seed, the
resonance can be set both on the fundamental and second harmonics. The six 2.1 m long undulator
segments could be independently tuned at the seed wavelength, operating as modulators, or at its second
harmonic, 133 nm, as radiators of a frequency-doubling cascade. A beam of 176 MeV with a 50–70 A
peak current with 0.9π mm mrad emittance was employed. Figure 87 shows the comparison between
the experimental data and the results of a statistical study made with 100 random shots, simulated by
GENESIS 1.3. An output energy of 1 mJ at 133 nm was obtained with four modulators and two radiators
at 133 nm. The estimated gain length in the modulator of 1.1 m was sufficient to increase the input seed
to a level close to saturation, and up to 4× 1012 photons were produced at 133 nm [580].

SFLASH, HAMBURG, GERMANY

The sFLASH seed laser system producing 800 nm, 50 mJ adjustable pulse length (down to 30 fs), con-
nected to the accelerator tunnel by a 7 m long tube, was sent to a gas filled capillary for the production
of the seed at 38 nm of 2 nJ, the 21st harmonic of the 800 nm Ti–Sa laser. The seed was sent in the ac-
celerator. The first undulator was located 5 meters after the point of injection into the tunnel. A proof of
the interaction and amplification of the seed, coupled to the electron bunch, was obtained on the first and
second harmonics at 38 nm and 19 nm [581]. This is the shortest wavelength where harmonics generated
in gas have been amplified in a single-pass FEL.

7.4.4 Seeded FEL facilities

FERMI, TRIESTE, ITALY

FERMI is the first seeded FEL user facility VUV/soft X-ray located at Trieste in Italy. It was launched
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represented. Simulations confirm that in all the configura-
tions the FEL reaches saturation at the end of themodulator.
In the 5M=1R configuration (a) the deep saturation in the
long modulator, results in a very strong bunching with a
high harmonic content, enabling the emission of coherent
radiation at !rad ¼ 133 nm in the last radiator module. This
regime is known as the coherent harmonic generation [31].
The longitudinal pulse structure reveals the overbunching,
which occured in the modulator with multiple peaks deter-
mined by the particles synchrotron oscillation at 266 nm
[32]. In the experiment, we observe a broad spectrum with
sidebands and large shot to shot fluctuations [see Fig. 5(a)].
In the 4M=2R configuration (b), the radiation at !rad ¼
133 nm is progressively amplified along the available two
radiator modules. In the leading edge of the pulse, a super-
radiant peak develops, slipping toward the unmodulated
electron beam region, which offers a higher gain. The
generated output power is higher and the spectrum is nar-
rower, as confirmed by the experiment. The PERSEO simu-
lation, in the 3M=3R configuration [Fig. 6(c)], shows amore
pronounced build up of the superradiant peak together with
a clear modulation at the second harmonic wavelength in
the phase space. In the GENESIS 1.3 simulation, and in
agreement with the experiment, no further increase of the
output power could be observed. This is likely due to the

electron beam matching degradation in the last modules in
the 3M=3R configuration (see Fig. 3), which is not included
in the PERSEO model.
In this Letter, we have experimentally demonstrated the

feasibility of a cascaded FEL configuration seeded by
harmonics generated in gas. Up to about 4" 1012 photons
with high coherence at 133 nm were produced. The tran-
sition between the coherent harmonic generation and
superradiant emission was investigated, providing insights
in novel methods for producing coherent radiation at short
wavelengths.
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(a) (b) (c)

FIG. 5 (color online). Cascaded FEL pulse energy and band-
width at 133 nm at the end of the undulator in the 5M=1R,
4M=2R and 3M=3R configurations; experimental data (black
squares) and simulations by GENESIS 1.3 (red stars). Data aver-
aged over 100 shots. Error bars represent #1 standard deviation.
Electron beam parameter of Table I(b). Seed energy: 40# 10 nJ.
Simulation data: current I ¼ 49# 6 A and beam energy
E ¼ 176:2# 0:35 MeV [similar to those of Table I(b)], emit-
tance "x;y ¼ 0:9# 0:25 mmmrad (estimate of the slice parame-
ters based on a 80% charge cut) and energy spread
!E=E ¼ 10$4 # 10$5 (minimum slice energy spread along
the longitudinal bunch coordinate). The images in (a),(b),(c)
correspond to single shot spectra acquisitions in the various
configurations.

(a)

(b)

(c)

FIG. 6 (color online). Radiation power (solid line, a.u.) and
phase profiles (dotted line) on the left side, and e-beam phase
space (energy E vs phase z) in the highlighted region at the
end of the six undulator sections, on the right side.
(a) Configuration 5M=1R, (b) 4M=2R and (c) 3M=3R.
Simulation with PERSEO [33].

PRL 107, 224801 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 NOVEMBER 2011

224801-4

Fig. 87: HHG seeding at SPARC with 266 nm with (a) five modulators, one radiator, (b) four modulators, two
radiators, (c) three modulators, three radiators. Data averaged over 100 shots with one standard deviation error bar
and compared with GNESIS simulations. [580].

after the Italian initiative for FEL [582–585]. The electron bunches generated in a high-gradient photo-
cathode gun is accelerated by a normal conducting linear accelerator up to a beam energy of 1.2 GeV (1π
mm mrad emittance, 0.016% energy spread, 0.8 kA peak current) before reaching the two FEL branches
in the HGHG cascade configuration, in order to provide a good longitudinal coherence. It relies on the
two FEL branches, FEL 1 in the 100–20 nm via a single cascade harmonic generation, and FEL 2 in the
20–4 nm via a double cascade harmonic generation [586], as shown in Fig. 88. The seed laser is based on
an optical parametric amplifier continuously tuneable in the range 230–260 nm, delivering pulses of few
tens of microjoules [587, 588]. The modulators are planar undulators, and radiators are APPLE-II [589]
type undulators for providing adjustable polarization. For FEL 1, the modulator is a 3.03 m long un-
dulator of 160 mm period, providing a deflection parameter ranging between 3.9 to 4.9. The APPLE-II
type radiators are 2.34 m long with 65 mm period, from a deflection parameter ranging between 2.4 and
4. For FEL 2, the modulator of the first stage has 30 × 100 mm periods, the three first stage radiators
and second stage modulator have 44 × 55 mm periods in variable polarization, and the six second stage
radiators have 69 × 35 mm periods in variable polarization.
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Fig. 88: FERMI HGHG FEL lines

FERMI lasing was achieved in December 2010 on FEL1 and in May 2012 on FEL2 [587,588,590].
Tuneability can be achieved on the injection source coupled to a gap change or by applying a chirp
(frequency drift) both on the seed and on the electron bunch [591]. The combination of HGHG, fresh
bunch technique, and harmonic cascade has recently enabled an up-frequency conversion by a factor of
192 [592]. Two-colour operation was achieved both with the pulse splitting technique [593,594] or with
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a twin-pulse electron beam [595]. The polarization can be efficiently controlled thanks to the APPLE-II
type undulators [596]. FERMI results constitute a major step in the community with the control of the
temporal FEL distribution at short wavelength, and the flexibility in polarization.

There are different experimental stations for coherent diffraction imaging (DIPROI), absorption
and elastic scattering from materials under extreme conditions (EIS-TIMEX), gas phase and cluster spec-
troscopy (LDM) with additional facilities for inelastic and transient grating spectroscopy (EIS-TIMER),
and terahertz applications (TERAFERMI). Optical laser pulses are also available for pump-probe exper-
iments (SLU).

DALIAN FEL, DALIAN, CHINA

The project was started in early 2012 within a collaboration between Dalian Institute of Chemical Physics
(X. Yang), Shanghai Institute of Applied Source (Z. Zhao, D. Wang), from China Academy of Science.
The Dalian facility covers 50–150 nm (8–24 eV) in both HGHG and SASE modes [597]. The Dalian
FEL is sketched in Fig. 89.

Fig. 89: Dalian FEL sketch, from https://www.asianscientist.com/2017/01/topnews/brightest-vuv-free-electron-
laser/

The FEL has been commissioned in January 2017. A flux of 1.4 × 1014 ph/pulse was achieved
with undulator tapering [597]. Then, the performance of the Dalian FEL were achieved with pulses
ranging between 100 fs and 1 ps and an energy reaching 1 mJ [598]. lt be used to probe fuel combustion,
biomolecules behaviour in gases, and reactions process at solid–gas interfaces.

7.4.5 Echo demonstration

NLCTA TEST EXPERIMENT, STANFORD, USA

Experimentally demonstrated so far in the UV experiment on the Next Linear Collider Test Accelerator
at SLAC [599–601] with an up-frequency conversion up to the 75th harmonic and later on the 75th
harmonic [602]. It constitutes a breakthrough in up-frequency conversion from a conceptual point of
view, and in terms of compactness and pulse properties. Echo enables us to provide vortices [603, 604].

SHANGHAI FEL, SHANGHAI, CHINA

A first multipurpose test experiment SDUV-FEL was set in the Shanghai Jiading campus for FEL prin-
ciple studies, with an emphasis on seeding schemes. It uses an 148 MeV electron beam (0.2% energy
spread, 4–6π mm mrad emittance, 100–300 pC charge, 2–8 ps duration), a 10 µJ seed at 1.16–1.58 µm, a
modulator of 10 ×50 mm period (K = 2–3), a radiator of 80 × 40 mm period (K =0.9–2.5). Different
features of harmonic generation have been studied: local energy spread measurements thanks to coher-
ent harmonic generation [605], wide tuneability in the HGHG and cascaded HGHG configurations [606],
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phase-merging enhanced harmonic generation [607], phase space manipulation for seeding [608]. Po-
larization switching was tested [609]. Phase space linearization using corrugated chambers was demon-
strated [610]. Echo was also achieved on the SDUV-FEL [611].

The SDUV FEL was a test facility in view of the development of the Shanghai X-ray FEL (SXFEL)
in the main campus, a user facility in the soft X-ray (8.8 nm with 0.84 GeV with C-band accelerating
structures, 0.5 nC charge, below 0.15% energy spread, 2π mm mrad) with cascaded HGHG or echo con-
figurations to be extended to the hard X-ray (2 nm with 1.6 GeV with cascaded HGHG). The installation
is completed and the SXFEL is presently under commissioning [612].

7.4.6 FEL self-seeding
Seeding with the FEL itself is also an alternative [613]. Indeed, self-seeding suits better the hard X-
ray domain: a monochromator installed after the first undulator spectrally cleans the radiation before
the last amplification in the final undulator. Recently, self-seeding with the spectral cleaning of the
SASE radiation in a single crystal monochromator [614] appears to be very promising, as experimentally
demonstrated at LCLS [615, 616] and at SACLA [617].

7.5 Applications of X-ray FELs
The recent advent of tuneable coherent X-ray FELs (XFELs) [418,618] opened a new era for the investi-
gation of matter [619]. “It is worthwhile to recount that the first five years of LCLS operation generated
many unanticipated methods and discoveries. With many new next- generation x-ray FEL sources com-
ing online in the next five years, the advancement of science will only continue to accelerate” [619].
They enable us to decrypt the structure of biomolecules and cells [620–622], to provide novel insight in
the electronic structure of atoms and molecules [623–626], to observe non-equilibrium nuclear motion,
disordered media, and distorted crystal lattices, thanks to recent progress of fs spectroscopy [627], and
pump-probe techniques [628]. Detailed structural dynamics can be inferred from spectroscopic signa-
tures [629]. XFELs can also reveal chemical reactions movies. With new imaging techniques [630,631],
they are exceptional tools for the investigation of ultrafast evolution of the electronic structure and pro-
vide a deeper insight in the extreme states of matter [632].

8 Conclusion and prospects
Among the various light sources such as synchrotron radiation [633], high-order harmonics generated
in gas [567, 568], X-ray FELs are unique tuneable coherent light sources from far infrared to the X-ray
domain.

Figure 90 shows the evolution of the FEL wavelength versus years. After the first lasing in the
infrared in 1977, the second lasing in the visible in 1983, 2000 appeared to bring a transition where
VUV is reached both in the oscillator and SASE configurations [634]. Then, thanks to the development
of photoinjectors and more generally, to accelerator technology, the X-ray range was reached less than
10 years later, in 2009, 2011 with presently new facilities commissioned in 2016 and 2017, including the
European XFEL being a high repetition rate one.

The FEL spatial coherence is usually quite good: in the resonator configuration, it results from the
optical cavity for resonators and from the electron beam emittance on single pass systems, and possibly
from the seed with optical guiding in the high gain regime. Temporal Coherence is usually good, the
Fourier limit is reached in some cases (oscillators, seeding). Femtosecond pulses are possible (and there
are various schemes proposed schemes for reaching 100 attosecond pulses). Polarization results from
the undulator choice.

Major steps of FEL progress are recalled in Fig. 91.

Present developments are oriented in providing further advanced properties. The two-colour FEL
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Fig. 90: Achieved FEL wavelengths versus year for various configurations (oscillators, coherent harmonic gener-
ation, SASE, seeding).
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Fig. 91: Major FEL historical steps

concept can be applied to the X-ray domain in the SASE regime, either tuning the two series of undulators
at different wavelengths [635–637], the delay being adjusted by a chicane, or by using twin bunches at
different energies [638], enabling also operation in the self-seeded case. In the external seeding case, one
can take advantage of the pulse splitting effect [438] combined with chirp [593, 594], or apply a double
seeding [595,639]. Several strategies are investigated in the quest towards in attosecond pulses and high
peak power.

Another evolution trend is the search for compactness. Besides seeding and up-frequency con-
version, one considers implementing the FEL using a compact accelerator or undulator. In a Laser
Wakefield Accelerator (LWFA) [640], an intense laser pulse drives plasma density wakes to produce,
by charge separation, strong longitudinal electric fields, with accelerating gradient than can reach a 100
GV/m [641, 642]. Electrons have to be set at a proper phase with respect to the wake, to be efficiently
accelerated. LWFA can nowadays produce electron beams in the few hundreds of MeV to 1 GeV range
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with a typical current of a few kiloamperes with reasonable beam characteristics (relative energy spread
of the order of 1%, and a normalized emittance of the order of 1π mm mrad. This new accelerating
concept could thus be qualified by a FEL application [643, 644]. LWFA based undulator radiation has
been observed, even at short wavelengths [645–648]. The present LWFA electron beam properties are
not directly suited for enabling FEL amplification, and electron beam manipulation is required: the han-
dling of the divergence with strong permanent magnet quadrupoles, the reduction of the slice energy
spread by a demixing chicane [649, 650] where advantage can be taken from the introduced correlation
between the energy and the position to focus the slices can be focused in synchronization with the optical
wave advance, in the so-called supermatching scheme [651], or in using a transverse gradient undula-
tor [652] coming back to the old FEL times where large energy spread had to be managed [166]. Several
experiments are under way.

Fifty years after the laser discovery [653] and more than 30 years after the first FEL, the emergence
of several mJ X-ray lasers for users in the Angstrom range constitutes a major breakthrough. Higher
availability of X-ray pulses with stable energy, synchronized to an external pump laser, for jitter-free
optical pump/resonant X-ray probe experiments will enable us to step further. Besides, exploration of
future compact FELs has started. Present X-ray FELs enable us to pave the way towards unrevealed
properties of matter and dynamical processes.
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Appendices
This appendix gives the list of FEL Prize winners.

Table .1: FEL Prize winners

Year Town Country FEL Prize winners
1988 Jerusalem Israel FEL 10 John Madey
1989 Naples USA FEL11 William Colson
1990 Paris France FEL12 Todd Smith and Luis Elias
1991 Santa Fe USA FEL13 Phillip Sprangle and Nikolai Vinokurov
1992 Kobe Japan FEL14 Robert Phillips
1993 The Hague The Netherland FEL15 Roger Warren
1994 Stanford USA FEL16 Alberto Renieri and Giuseppe Dattoli
1995 New York USA FEL17 Richard Pantell and George Bekefi
1996 Rome Italy FEL18 Charles Brau
1997 Beijing China FEL 19 Kwang-Je Kim
1998 Williamsburg USA FEL 20 John Walsh
1999 Hamburg Germany FEL21 Claudio Pellegrini
2000 Durham USA FEL 22 Stephen V. Benson, Eisuke J. Minehara and George R. Neil
2001 Darmstadt Germany FEL 23 Michel Billardon, Marie-Emmanuelle Couprie

and Jean-Michel Ortega
2002 Argonne USA FEL24 H. Alan Schwettman and Alexander F.G. van der Meer
2003 Tsukuba Japan FEL25 Li-Hua Yu
2004 Trieste Italy FEL26 Hiroyuki Hama and Vladimir Livinenko
2005 Stanford USA FEL27 Avraham Gover
2006 Berlin Germany FEL28 Evgeni Saldin and Jorg Rosbach
2009 Liverpool Great Britain FEL29 Paul Emma and David Dowell
2010 Malmö Sweden FEL30 Sven Reiche
2011 Shanghai China FEL31 Tsumoru Shintake
2012 Nara Japan FEL32 John Galayda
2013 New York USA FEL33 Luca Giannessi and Young Uk Jeong
2014 Basel Switzerland FEL34 William Fawley and Zhirong Huang
2015 Daejeon Korea FEL35 Mikhail Yurkov and Evgeny Schneidmiller
2017 Santa-Fe USA FEL36 Bruce Carlsten, Dinh Nguyen and Richard Sheffield
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Lasers in FEL Facilities

M. Divall
PSI, Villigen, Switzerland

Abstract
This paper gives an overview about where and how conventional lasers are
used in Free-Electron Laser (FEL) facilities, covering lasers utilized for
timing system distribution, electron injection, beam treatment and diagnostics,
as well as in experimental stations. It starts with a short introduction to the
necessary laser terminology. The required laser parameters for each
application are shown, especially highlighting the specifications, which are
state-of-the-art. Examples from FEL facilities are listed. Finally, the future for
the building of compact FELs is discussed.

Keywords
Lasers; optical timing distribution; photo-injector; pump-probe experiments.

1 Introduction to lasers in layman’s terms
In this section I focus on the basic building blocks of the laser system. The aim is to give a pointer
towards the choices made in the scope of a Free-Electron Laser (FEL). More details can be found about
lasers in general in [1].

A laser is a device that emits light through a process of optical amplification based on the
stimulated emission of electromagnetic radiation. The term ‘laser’ originated as an acronym for ‘light
amplification by stimulated emission of radiation’ [2]. The main difference between a conventional laser
and a free-electron laser is that, in the former, electron are bound into the structure of a material, a lasing
medium; while in the FEL the ‘lasing medium’ consists of very-high-speed electrons moving freely
through a magnetic structure, and hence they are free. In the former the lasing properties will be
determined by the material and its energy levels and other physical properties, while in the FEL, by the
properties of the incoming electrons and the magnetic field structure they encounter.

Einstein postulated that photons prefer to travel together in the same state [3]. If one has a large
collection of atoms containing a great deal of excess energy or, so to say, in an excited state, they will
randomly emit a photon. If a photon of the correct wavelength passes through this excited material, its
presence will stimulate the atoms to release their photons early – and those photons will travel in the
same direction with the identical frequency and phase as the original stray photon. A cascading effect
will start where these identical photons move through the rest of the material. As a result, ever more
photons will be emitted from their atoms to join them, and an amplification process will take place. The
observation was intuitive, but proven to be correct. This is a bit like announcing an FEL School and
hence exciting likeminded people to gather together in the same place at the same time. May great things
come out of such events.

1.1 The choice of the laser material

The choice of the laser material is determined by many different parameters. We would like our laser to
emit at a specific wavelength and therefore we look for materials with a given emission band. This will
automatically bring an absorption band, where we would like to find a matching pump source, which
will bring our material to an excited state in the most efficient way, as shown in Fig. 1.
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Fig. 1: The process of excitation and stimulated emission in (a) three-level systems; and (b) four-level systems [4]

The pulse shape and length and rise time are important for low emittance machines for FEL.
When producing ultra-short laser pulses, below 100 fs, ultra-broadband emission is required, where the
choice of materials is limited. Often, a second laser source is required for pumping. As in most cases a
solid crystal material is used for such applications, we will limit ourselves to solid-state lasers. Some
FELs, such as the European XFEL, generate a long train of electron bunches that are induced by the
laser. Here, the fluorescence lifetime of the upper laser level will limit the length of the train, which can
be produced with identical laser parameters. The stimulated emission cross-section and the gain
properties of the material will determine the necessary amplification stages and hence the complexity
of the laser system. The thermal properties of the crystal will determine the scalability of the system to
high average powers as well as the quality of the beam.

As in FELs, synchronizability to the RF accelerating structures is required: the laser system
starts with a laser cavity, called the oscillator. The repetition rate will limit the available materials as
well as the pulse energy, often calling for several stages of amplification. The so-called saturation
fluence determines how much energy can be extracted from a given volume of the material. Hence, the
available crystal sizes and their thermal fracture limit will determine the maximum fluence that can be
extracted efficiently from a single amplification stage. The difference between the pump and the
emission band determines the proportion of the power converted into thermal losses, and will limit the
average power or complicate the cooling system requirements.

Table 1 shows for the properties of the three most typically used materials for solid-state lasers,.
highlighting the parameters where a material excels compared to the others [5].

Table 1: Examples of the different amplifier materials and their properties

Crystals
Nd:YAG Yb:YAG Ti:Saph

Fluorescence lifetime [ms] 0.23 0.96 0.0032
Stimulated-emission cross-section [× 10−20 cm−1] 20 to 30 2.1 30
Lasing wavelengths [nm] 1064 1030 660 to 1100
Absorption wavelengths [nm] 808 941 514 to 532
Fluorescence bands (FWHM) [nm] 0.67 to 10 440
Absorption bands (FWHM) [nm] 1.9 >10 200
Pumping quantum efficiency 0.76 0.91 0.55
Saturation fluence [J/cm2] 0.67 9.2 0.9

For picosecond pulse generation the materials most used are neodymium-doped, such as Nd:YLF,
Nd:YVO4 and Nd:YAG. The advantage of these materials is that the upper laser level lifetime is
relatively long, in the hundreds of microsecond range, which allows for efficient energy storage, as well
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as extraction of high repetition rate pulse trains, as opposed to single pulse generation. Furthermore,
these materials can be pumped directly with diodes at ~800 nm. These diodes are available relatively
cheaply, and also in stacks, which brings down the overall cost of the amplifiers.

For femtosecond pulse generation the most widely known material is titanium sapphire (Ti:Saph).
The amplification bandwidth of this material allows for sub-10 fs pulse generation, which can be further
amplified from the tens of millijoule level to sub-100 fs, and it is readily available on the market. The
large bandwidth allows for manipulation of the pulse shape, which is often required for low emittance
sources. The drawback is that it is not suitable for long pulse trains due to the short fluorescence lifetime.
The absorption band (~500 nm) also falls outside the widely available pump diodes’ range and therefore
frequency-doubled Nd:YAG lasers are used to pump these systems, which increases cost and
complexity.

Lasers based on ytterbium-doped materials (Yb:YAG, Yb:KGW, Yb:glass) provide a good
compromise. They allow for sub-picosecond pulses and diode pumping, as well as for fibre-based
oscillators and pre-amplifiers, making the system more robust and simple. Since a part for the system
could be in fibre, the beam profile is also improved substantially.

The pumping source to achieve excitation of the upper laser level can vary, depending on the
crystal geometry, the wavelength of absorption and the required repetition rate. Pumping by diodes is
by far the most efficient and cost-effective solution. Diodes in the 800 nm to 950 nm range are readily
available in diode-stack options, providing 1 kW/cm2 mean power up to kilohertz repetition rates. The
lifetime is estimated to be ~109 shots, which for a 100 Hz system would provide half a year of non-stop
operation. When power is reduced to below nominal, the lifetime could be further extended. Flash-lamps
are cheaper, but only provide a few weeks of operation at 100 Hz, and constant degradation often leads
to other laser parameters changing between maintenance. When other lasers are used for pumping the
main amplifier chain it can lead to very high energy broadband systems, but at the cost of inefficiency
and complexity.

So the material is chosen after taking into consideration the pulse length, pulse structure,
wavelength and maximum pulse energy required. In most cases a compromise needs to be taken between
flexibility and robustness. As much of the system as possible should be acquired commercially, from
industrial sources.

1.2 The architecture of the laser

The first element of a laser-chain is the oscillator. The oscillator has to provide the proper input
wavelength for the rest of the amplifier chain, and the active material is often chosen to be the same as
that of the amplifiers.

Figure 2 shows a schematic for an oscillator, containing a continuously pumped gain medium
as well as a pulse-shortening and mode-locking device. What is unique to applications in FELs is that
the laser pulses have to arrive synchronized at the RF accelerating cavities; the injector is synchronized
to the electron bunches for the diagnostics, and to the FEL pulses at the experiments. This requires
specific frequencies for the oscillator as well as an actively stabilized cavity to maintain the timing. The
specific macro-pulse structure will also have an influence on the repetition rate.

Fig. 2: Schematic of an oscillator (http://slideplayer.com/slide/5110070 slide 6)
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The pulses that are not needed in the machine are discarded, using acousto- or electro-optical switches,
and the pulses are then further amplified. Figure 3(a) shows an example for the cavity design of a
Ti:Saph laser, pumped by an external laser source and complex architecture to maintain the broad
bandwidth, providing pulses in the tens of femtoseconds range, commercially available. In contrast Fig.
3 (b) illustrates the simplicity of a diode pumped Yb fibre oscillator [6], providing unmatchable high
power 10 ps pulses directly from the oscillator. For synchronization purposes at the 10s of fs level the
pump-laser power noise, the mechanical stability, straight-light and electrical noise can all have an
effect.

(a)

(b)
Fig. 3: Example of a (a) 4 fs Ti:Saph oscillator (http://www.iqo.uni-hannover.de/591.html); (b) ytterbium fibre
laser.

As the non-linearities limit the energy that can be reached directly in an oscillator, the pulse
energy below nanojoule level will require further amplification. The amplification can take place in
different architectures. Figure 4(a) shows a multi-pass amplifier, most typically used for pre-
amplification and the final amplifier stages. This arrangement makes it possible to amplify several
pulses or pulse trains. The regenerative amplifier shown in Fig. 5(b) is recirculating a single pulse inside
the amplifier, allowing for high gain and efficiency, but is only suitable for single pulse amplification.
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(a)

(b)
Fig. 4: (a) Multi-pass amplification; (b) regenerative amplifier

All of these amplifier types can be combined with the so-called chirped pulse amplification
(CPA), shown in Fig. 5. To avoid damage in the amplifier due to the high peak intensity in a single short
pulse, the laser pulse is stretched after the oscillator or pre-amplifier stage and only compressed again
after the required energy is reached [7, 8].

Fig. 5: Basic layout of a chirped pulse amplifier (CPA)

This is possible due to the high bandwidth of the laser, which allows for controlled spectral
dispersion, or chirp. These types of amplifiers are able to reach Travelling Wave (TW) levels in a
standard Ti:Saph system. The mechanical design of these systems is very important, as are the total
amplification path and the alignment through the stretcher and the compressor. Another term needs to
be clarified at this point. The layout of a so-called master oscillator power amplifier is shown in Fig. 6.
There are an increasing number of FELs where the aim is to provide several pulses in a train, with the
same properties. They should therefore be able to distribute FEL pulses between experiments, as well
as sample processes that are on the timescale of the laser pulse train.
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Fig. 6: Master oscillator power amplifiers for burst mode operation

In principle, oscillators allow for GHz pulse-train generation, but this often results in an extremely
low energy single pulse at the front end of the system, making it difficult to maintain constant pulse
characteristics throughout the amplification process. Master oscillator power amplifiers typically use a
pulse train in the 100 MHz to 250 MHz repetition rate region. The pulse train is selected at the beginning
of the amplification process. The amplifiers are operated in a burst mode and the train, containing pulses
with identical parameters, is selected at the end. Thermal management of such systems can be difficult.

Last, but not least, we need to mention optical parametric amplifiers (OPA). These types of lasers
are just becoming commercially available with the new European projects, such as ELI. Here the
amplification takes place in a non-linear optical material, using a parametric process. The energy is
instantaneously transferred from the shorter wavelength pump-light to the signal beam, using the non-
linear properties of the material and taking advantage of the available high intensities. The transfer is
instantaneous: there is no energy storage. To avoid damage and unwanted non-linear effects and to
efficiently match and overlap with the length of the pump pulse, OPA can be combined with the
abovementioned CPA technique, where pulses are stretched prior to amplification. These are called
Optical Parametric Chirped Pulse Amplifiers (OPCPA). OPAs can cover a wide range of wavelengths
from 300 nm to 4 μm. Most of the commercially available tunable wavelength sources are based on
parametric oscillators or amplifiers. State-of-the-art OPCPA systems can generate 20 fs pulses with 1 J
of energy and provide a focused intensity around 1020 W/cm2, well exceeding the barrier for relativistic
optics at 1018 W/cm2 and giving the onset of non-linear effects and ionization.

The material is often chosen for its broad bandwidth or gain properties. Most efficient laser
systems are working in the IR region for efficient pumping and energy storage, as well as for longer
lifetimes. Applications often require light in the visible (experiments) or UV (injectors) ranges, which
is achieved by converting the output wavelength, using non-linear crystals. Ultra-intense pulses can
interact with non-linear or gaseous materials to extend their wavelength range from XUV to terahertz
radiation. High order harmonics down to the XUV regime and with pulse durations inherently shorter
than the drive pulse can be created, which opens up new application fields of attosecond science
[10].The scope of this paper does not allow for detailed expansion on this subject, but recommended
reading is found in [11, 12].

Finally for some applications one might require treatment of the pulse after amplification,
including spatial and longitudinal shaping. These include the use of adaptive optics, broadening
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techniques in solid or gas, carrier-envelope stabilization for a few femtosecond pulses and
programmable pulse trains. The specific techniques will be highlighted for applications with examples.

2 Lasers used in FELs, requirements, parameters and examples
FELs, based on LINACs and undulators, have been making their way to shorter wavelengths and a
higher degree of coherence over the past decade, and at the 1 kV photon energy range they currently
provide the brightest beams. This requires extremely high quality short electron bunches to be produced,
with ultralow emittance.

Conventional lasers take their place all over the machine, as Fig. 7 illustrates. Fibre lasers and
distribution systems are now routinely used in short-pulse FELs as the optical clock to provide the heart
of the whole machine. These lasers can be locked to an external microwave crystal oscillator to achieve
ultra-low reference noise and are distributed re-amplified and re-synchronized, achieving kilometre-
long stabilized optical links [13, 14]. An overall stability of 10 fs can be routinely achieved in these
systems. Photo-injection (PI) is used as the electron source, where electron bunches are produced
through photo-emission from a cathode irradiated by a laser and are accelerated to a few MeV by the
field present in the gun [15]. A laser heater is used to smooth out micro-bunching instabilities by
inducing uncorrelated modulation to the bunch at a low energy [16, 17]. Lasers are an essential part of
a FEL facility, not just by providing the primary electron source, but also by delivering ultra-short
synchronized laser pulses for pump-probe measurements. As electron bunches are becoming shorter and
shorter in the quest to produce XUV FEL pulses, conventional diagnostics devices are replaced by laser-
based diagnostics, such as a laser wire to measure bunch cross-section [18], electro-optical bunch length
and bunch arrival measurement [19–22]. These systems do not just provide superior accuracy in the
femtosecond region, but are also non-invasive, by using laser fields for detection. Short wavelength
FELs don’t allow for amplification of the FEL pulse in cavities and therefore radiation is built up from
self-amplification of spontaneous radiation from the undulators. As one seeds the undulators with a
specific sub-harmonic wavelength, a higher gain and better beam quality can be reached in the same
undulator length. Deep-UV and high-harmonic generation laser systems are used here for seeding the
FEL [23–26].

Fig. 7: Lasers used in FELs

As the stability and reliability of ultra-short pulse lasers is improved towards these applications,
lasers are taking their own territory in accelerators and FELs by providing overall solutions for
acceleration and beam production as well, aiming toward compact FELs.

All applications together require wavelengths from few a nanometres to terahertz, pulse energies
from picojoules to multi-megajoules and pulse lengths from a single optical cycle to many picoseconds.
Most of the time, additional flexibility is required, to cater for short- and long-pulse modes, and different
pulse structures and wavelengths from the FEL. This calls for tunability in beam size, pulse length and
sometimes also in the wavelength of the laser. It is not possible to cover all this within the scope of this
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paper, but in the following sections some examples will be brought to illustrate the main parameters,
requirements and challenges for each application.

2.1 Timing of the lasers

One of the requirements general to all lasers used in an FEL facility is the timing of the laser to the
reference and to the entire machine. Figure 8 shows the schematic of the timing distribution over
SwissFEL with all the time-of-arrival measurement and correction points. An optical master oscillator,
based on an ytterbium fibre laser from OneFive, is operating at the low dispersion wavelength at
1550 nm [27]. The 200 fs long pulses at 142.8 MHz, which is the 21st sub-harmonic of the S-band RF,
is distributed around the machine by stabilized fibre links. The RF distribution, the photo-injector laser
[28], the laser-based beam arrival monitors and the experimental lasers are all synchronized to the clock
pulses.

Fig. 8: Schematic of timing distribution for SwissFEL

At the injector the arrival time of the laser will determine the arrival time to the initial chicane
and effect compression to produce shorter bunches. This in turn will influence the overall FEL lasing
performance [29]. For the experimental lasers the users would ideally like to see their pump-probe
experiment online, with the FEL and laser pulses arriving at a well-controlled delay at the femtosecond
level. This problem is currently bridged by measuring the laser arrival time relative to the FEL at the
experiment and binning the data afterwards for analysis. The ultimate aim is to apply a feedback system,
which corrects the lasers’ arrival over time. This is aided by locking the laser oscillator to the distributed
reference. Large, ultra-short pulse laser systems include a long chain of optical components, however.
As an example the Ti:Saph laser in the SwissFEL test facility [30, 31] includes 3 EO switches, 2 acousto-
optical pulse shapers, 140 reflective surfaces and more than 7 crystals, and amounts to a total of 86 m
of propagation path until it reaches the cathode for electron production. To reach the required 40 fs
accuracy this length has to be stabilized to 12 μm accuracy. Mechanical vibrations, air-flow, electrical
noise in the switches, thermal distortions and fluctuations, both in the cooling system for the crystals
and in the environment, have detrimental effects on the arrival time. In a typical regenerative amplifier
the expansion of the baseplate at 0.1°C change can induce drift at the 100 fs scale. Air temperature and
pressure changes over long distances have the same effect. Therefore the direct control of the laser
timing is necessary to maintain synchronicity with the rest of the system. Slow temperature-related drifts
can easily be controlled with feed-forward systems, while fast variations related to vibrations are best
passively tackled by design. Using kilohertz repetition rates and fast feedback, some of these noise
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sources can also be damped. Laser- and beam-arrival monitors along the system are used to stabilize the
subsystems. The optical clock becomes very useful, as direct comparison of these pulses with the laser
pulses optically allows for measurements at 100 Hz.

2.2 Photo-injector lasers

In a photo-injector the electrons are produced by the photo-emission process. A photo-cathode is
illuminated by laser pulses and the electrons are extracted by a high electric field inside the gun [15]. PI
allows for approximately two orders of magnitude higher brightness than a conventional thermionic
source, where electrons are produced by heat. Short pulses with 4D shaping have the potential to produce
ultra-bright electron beams. Apart from the high particle beam quality achievable from these sources
they also take advantage of the wide range of pulse length, repetition rates and pulse train structures that
can be generated with laser oscillators, amplifiers and optical gating systems described in the previous
section.

The main considerations for laser for photo-injectors include:

i) Wavelength (tuned close to the work-function of the material):
– Cs2Te and Cu require UV ~260 nm;

– GaAs needs IR and gives polarized electrons;

– New type of alkaline cathodes, requiring visible light;

ii) Timing:
– The laser has to be synchronized to external reference/sub-harmonic of the RF;

– Noise of the oscillator architecture, active elements need to support this;

iii) Single pulse/burst mode to match machine operation:
– Determines the chosen laser architecture (regenerative or multi-pass amplifier);

iv) 3D–4D shaping to reduce emittance:
– Beer-can/truncated Gaussian/ellipsoidal;

v) Pulse length:
– To mitigate space-charge effects at the gun;

– To allow for shaping techniques;

vi) Pulse energy:
– Dependent on cathode choice/quantum efficiency and operational charge plus transport

losses;

vii) Reliability/reproducibility/stability:
– Architecture used;

viii) Running cost/service support.

When specifying a laser for a certain injector the cathode material will have a certain bandgap,
which will determine the required laser wavelength. The relationship between the produced charge and
the laser parameters can be described by the following simple equation

 [nC] = 8 ∙  [%] ∙  [µJ] ∙ l [nm] (1)
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where C is the produced charge in nC, QE is the quantum efficiency of the cathode as a percentage, W
is the energy/micropulse in μJ and λ is the wavelength of the laser in nm (8 includes elementary charge,
the Plank constant and speed of light).

Copper is usually used, when a charge below 1 pC is required for its robustness, long lifetime and
easy production. This requires pulse energies in the tens of microjoule range. Alkaline cathodes, most
typically Cs2Te, are used for a higher charge at a cost of degrading efficiency and shorter lifetime, as
well as more strict vacuum requirements. As the quantum efficiency is orders of magnitude higher, the
laser energy can be in the nanojoule range, which also allows pulse trains to be delivered to the cathode.
Both of these cathodes operate at a wavelength ~260 nm, which means fourth harmonic generation from
the Nd and Yb doped lasers or third harmonic from a Ti:Saph laser. Producing and propagating UV light
to the gun can be challenging due to losses or the conversion process and the degradation of the beam
while propagating through air. Often, part of the beam transport has to be in vacuum.

As an example, Fig. 9 shows the SwissFEL photo-injector laser system [28]. The SwissFEL gun
is a 2.5 cell S-band cavity, running at 100 Hz repetition rate. The peak acceleration is 120 MV/m and
the required charge is up to 200 pC with the option to reduce down to a few picocoulombs for ultra-
short FEL pulses. To maintain the space-charge conditions this in turn requires the scaling of the laser
beam cross-section (0.1 nm to 0.27 mm) and pulse-length (4 ps to 10 ps) to match the charge. The
normalized emittance requirement is 0.275/0.114 mm for the 100 pC and the 10 pC operational modes.
To reach these values shaping of the laser pulse longitudinally and transversally to flat top is necessary.
Both copper and Cs2Te cathodes are used, therefore a large energy range has to be covered, up to 60 μJ.
The stability is also crucial at the gun, as with single pulse operation the noise induced here cannot be
reduced by feedback. The energy stability in the UV has to be below 0.5% RMS and the timing jitter
below 40 fs. To reach these requirements the following architecture was chosen. The front-end oscillator
is an ultra-low noise compact Yb fibre oscillator operating at 1040 nm. The oscillator is synchronized
to the optical reference using RF locking to less than 30 fs integrated jitter. This can be further reduced
by optical locking, which is planned for the future. The chirped pulse amplifier is a single-box
regenerative amplifier with stabilized base-plates. The amplifier material is Yb:CaF2, which allows short
enough pulses for pulse-shaping purposes, but can still be directly diode-pumped. Part of the beam is
used in the IR for the laser heater (described in the following section), while the rest of the output is
converted to its fourth harmonic.

Fig. 9: The SwissFEL photo-injector laser system
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Another example is the Nd:YLF system for FLASH [32] (Fig. 10). What makes this system more
complicated is that there is a programmable train of pulses required at the cathode. This means that the
single-box regenerative amplifier has to be replaced by multi-pass amplifiers, which run in a steady-
state configuration to provide equal gain for each pulse in the train. After pre-amplification the pulses,
which are amplified during the build-up of the gain, are rejected by an electro-optic switch (pulse picker)
to produce a pulse train. All amplifiers are pumped by fibre-coupled pump diodes for accuracy,
reliability and to remove the heat sources from the laser table.

Fig. 10: Nd:YLF injector laser for FLASH

Pulse shaping is a very important aspect for achieving low emittance. Emittance at the gun is

2 2 2
spacecharge thermal RFs s s s= + + (2)

The space-charge forces, which are determined by the electron distribution at the exit of the
cathode, can be controlled by the laser pulse shape and the cathode response. Thermal emittance will be
dependent on the work-function and the laser wavelength. When approaching the bandgap of the cathode
material with the wavelength, lower thermal emittance can be achieved, but at the cost of reduced QE.
The RF field will also make a contribution to the emittance. This has been demonstrated in the SwissFEL
Tests Injector, where a Ti:Saph laser with tunable wavelength was converted to its third harmonic to
illuminate the cathode. By reducing the wavelength from 267.5 nm to 260 nm the thermal emittance has
increased from 584 nm/mm to 626 nm/mm and QE increased by ~50% [33]. In a linac with proper
focusing, emittance due to linear space-charge force can always be compensated. Hence, the idea that
the laser should be shaped to be flat top both in space and time. This is applied in many working
machines, such as LCLS, FLASH, SPARC, PITZ and SwissFEL. More information on the techniques
used can be found in [34]. A great deal of effort was invested to produce such flat top pulses in time.
While the spatial distribution can be achieved by simply aperturing the laser beam and projecting this
plane to the cathode, the temporal distribution is harder to achieve. Fourier transformation shows that
when sharp edges are created in time they require infinite frequencies, which is not possible in the
practical world. Gaussian ‘wings’ are therefore accepted at the rising and falling edges of the pulse. A
simple technique applied for UV pulse shaping is a passive, so-called pulse-stacking system, where the
pulses are propagated through birefringent crystals, which induce replica pulses with a certain delay.
The sum of the pulses then gives a quasi-flat top distribution in time. This, however, suffers from ripples
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on the top of the pulse. Care needs to be taken that the frequency of the modulation caused by the finite
number of pulses and interference between them is not enhancing micro-bunching instabilities in the
machine. The technique was further developed at BMI, where the shaping takes place in the IR, directly
after the oscillator and the crystals are temperature-controlled to maintain, and also to actively program,
the pulse shape [35]. A new approach to shaping the laser pulse into a ‘rugby ball’ provides even better
emittance on paper, but the production and propagation of such a beam in the UV is still challenging.
Tests were performed in PITZ in this direction [36]. Finally, Table 2 gives a summary of the different
types of photo-injector laser currently in use with FELs [37–49].

Table 2: Photo-injector lasers around the world

ELSA FLASH
(FEL)

TESLA LCLS ELETT
RA

European
XFEL

SwissFEL

Cathode K2CSSb Cs2Te Cs2Te Cu Cu Cs2Te Cs2Te/Cu

Wavelength on
cathode [nm]

532 262 263 253 261 262 260

Pulse length on
cathode [ps]

30 4.4 20 square 3 to 20
square

6 to 15 6 4 to 10
square

Material Nd:YAG Nd:YLF Nd:YLF;
Nd:glass

Ti:Saph Ti:Saph Nd:YLF Yb:CaF2

Harmonic 2nd 4th 3rd and
mixing

3rd 3rd 4th 4th

Macropulse
rep. rate [Hz]

1 ≤10 10 30 to
120

 ≤50 1 to 5 ≤100

Micropulse rep.
rate [MHz]

14.4 27 1 NA NA 1500 NA

Pulse train
length

150 µs ≤800 µs 800 µs NA NA 1.3 µs 2 pulses

Pumping† FL D, FL FL L L L D

Energy/pulse
IR

10 µJ 300 µJ 200 µJ 25 mJ 15 mJ 5 µJ 2 mJ

Macro-pulse
stability

3% – 3%
(<10%)

– 0.8% 1.5% to 3%
(<0.5% in IR)

Na

Micro-pulse
stability

? 1% to 2% (<5%) – – – 0.7%

†FL, flashlamp; D, diode; L, laser.

2.3 Laser heater

Following the order of the lasers found in the machine, the next is the laser heater [16, 17]. If short
pulses are generated in an RF gun with small momentum spread, due to ripples and oscillations in the
pulse and their interaction with the accelerating field, the pulses can suffer from so-called micro-
bunching instabilities. The laser heater superimposes a polarized laser beam and the electron beam in a
properly tuned undulator. This produces a momentum modulation which smeared out in a chicane to
obtain the desired momentum spread increase. To match the bunch length and the physical size of the
undulator the lasers used for the laser heater are working in the IR range (~0.8 μm to 1 μm). The pulse
length needs to be in the tens of picoseconds Gaussian, with cross-section to match or overfill the size
of the electron beam in the undulator. The energy required is ~100 μJ. The pulse structure matches the
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electron beam structure. Usually they can rely on the fundamental radiation from the gun laser system.
This has the advantage of the lasers being inherently locked together in timing and having the same
pulse structure. As the heater is usually a few tens of metres from the gun, propagating the beam to it
from the gun laser room is possible, but sometimes requires active beam-steering and stabilization to
get through the undulator.

2.4 Experimental lasers

Laser used for experiments are the most sophisticated and versatile as they have to cover many different
applications. Biological studies require visible and ultraviolet light, femtosecond chemistry relies on
800 nm Ti:Saph lasers, molecular studies need mid-infrared radiation, while magnetization studies reach
into the terahertz range.

General requirements are synchronizability to the machine, matching of the pulse structure of the
FEL, femtosecond accuracy and scanning capability and pulse length at least as short as the FEL’s.
There are also resonance experiments where wavelength tuning, although with longer pulses, is a
requirement.

I bring here as an example the European XFEL laser [50], used for pump-probe and molecular
alignment studies (Fig. 11). Because of the burst mode operation of the machine, the laser has been
developed specially for this machine. The intra-pulse repetition rate is up to 4.5 MHz with up to 2700
pulses in each burst, delivered at up to 10 Hz repetition rate. At 800 nm, 15 fs to 300 fs long pulses are
required with arbitrary pulse pattern selection. The pulses are then converted to different wavelengths.
This is all achieved by a fibre–solid-state and OPA system. A Yb fibre oscillator, which is synchronized
to the external reference, is further amplified in a CPA system before splitting part of the beam to further
amplify it in a 400 W InnoSlab amplifier and 5 kW InnoSlab booster. The pulses here are selected by
an electro-optical modulator and compressed from 400 ps to 800 fs. This part of the beam is converted
to its second harmonic and is used to pump the OPA stages. A 2 μJ fraction of the 1030 nm booster
output is compressed down to 300 fs. This high intensity allows for supercontinuum generation to
generate a wider range of wavelengths for the OPA stages, which can be tuned by the crystal angle, as
they work in a non-collinear arrangement. The final system delivers up to 2 mJ pulses.

Fig. 11: The experimental laser of the European XFEL

Other experiments around the XFEL require less unique configurations. For the high intensity
(HI) and high energy (HE) stations a commercial TW class Ti:Saph system and a kilojoule nanosecond
laser are used, respectively.
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Another example from SwissFEL is shown in Fig. 12. The core laser system is a commercial
Ti:Saph system from Coherent Inc., delivering 20 mJ pulses compressed to <30 fs at 100 Hz. Two
identical lasers will be used to ensure redundancy in the case of failure. The lasers will be housed in the
room above the experimental stations. The local installation in the experimental station includes a Light
Conversion Ltd OPA, delivering pulses from 1.1 mm to 15 mm with ~1 mJ to 10 mJ of energy,
respectively. The pulse length is below 100 fs. The output of the OPA will also be used to pump organic
crystals for terahertz pulse generation with 1 THz to 10 THz of >1 MV/cm electric field strength in
~10 μJ single-cycle pulses. For pulses shorter than the standard 30 fs output of the main laser system,
hollow core fibre, kagome fibre and halogen gas chambers are being investigated. The hall also houses
the laser arrival monitor and the THz streak camera, to ensure accurate timing between the laser and the
X-rays.

Fig. 12: The laser in the experimental hall of SwissFEL

Finally, mention is made of the requirements for infrared FELs: the FELBE facility is used as an
example [52]. For tuneability a range of Ti:Saph lasers are used in conjunction with parametric
oscillators and amplifiers, as well as different frequency stages. For the low energy pulses the repetition
rates are at 78 MHz, and pulse energies range from 4 nJ to 150 nJ with pulse lengths from 15 fs to 100 fs.
Regenerative amplifiers provide higher pulse energies above 200 μJ with 1 kHz repetition rate. In
addition, the laser systems are suitable for generating broadband terahertz pulses, which can be used for
probing the dynamics excited with FEL pulses (FEL-pump – broadband terahertz probe). All lasers can
be synchronized to the FEL.

2.5 Seeding laser

As radiation in an X-ray FEL builds up from the initial noise, there is a lack of temporal coherence in
the SASE beam. This can be helped by seeding the FEL with a wavelength that is tuned to a sub-
harmonic of the FEL [23–26]. Pulses should also be short and therefore the application of high
harmonics from lasers is a natural choice. This way the input signal, the so-called seed, is coherently
amplified in the FEL. Seeding was demonstrated at FERMI@Elettra down to 10 nm wavelength.

The advantages of such seeding arrangement are:

• Very high peak flux and higher 6D brightness than with SASE;

• Temporal and transverse coherence of the FEL pulse;

• Control of the time duration, polarization, wavelength and bandwidth of the FEL pulse;

• Inherent synchronization of the FEL pulse to the seed laser, which is also often used for
experiments;
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• Reduction in undulator length needed to achieve saturation as compared to starting from noise
as in SASE FELs.

To achieve efficient FEL seeding a spatial overlap between the electron and laser beams is
required, and therefore good pointing stability from the optical laser is needed. The harmonic
parameters, such as energy, chirp and wavelength, need to be within the tolerance of the undulator.
Temporal overlap between the laser and the electron beam needs to be maintained and the jitter has to
be below the sigma bunch length for stable output.

A White Paper was written by the ICFA-ICUIL Joint Task Force to identify high power laser
technological needs for accelerators [54]. It was shown, that to reach the required energy levels for
seeding at the 30 eV to 0.25 keV range, tens of μJ energies in 100 kHz bursts would be needed. This
requires a beast of a 100 GW Ti:Saph laser with a pulse length at 10 fs. Either of these parameters on
its own is a challenge. For hard X-rays, similar energy and power levels are necessary, but at a different
wavelength, which allows the use of diode-pumped solid-state lasers in conjunction with OPCPA. To
develop such lasers at 100 GW levels, however, still requires R&D.

Fig. 13: Seed laser at Fermi@ELETTRA

Figure 13 shows the layout of the Fermi seeding laser for a High Gain Harmonic Generation
(HGHG) scheme [55]. It is possible to reach the wavelengths required here with conventional harmonic
generation crystals (>200 nm). The system is delivered by Coherent Inc. The Micra Ti:Saph oscillator
delivers <100 fs pulses with 400 mW average power. An Evolution 23 mJ green laser provides the
pumping at 50 Hz for the amplifier, where a single pulse is recirculated and 6.5 mJ is produced in the
infrared. A standard third harmonic generation stage delivers 260 nm, while a tunable OPA gives the
seed for the variable UV output stage. Table 3 summarizes the required and achieved parameters.

Table 3: Fermi@ELETTRA seed laser parameter requirements, with the achieved values in brackets

Parameter Tunable UV Fixed UV
Tunability range [nm] 210 to 280 (230 to 260) 261 197
Peak power [MW] 100 >400
Pulse duration [fs] 100 (180) <150 (150 to 500)
Pulse energy stability [RMS, 5000 shots] <4% <2%
Timing jitter RMS [fs] <50 (100) <50 (100)
Spot in undulator 1/e2 [mm] 1 1 to 1.2
Wavelength stability 10−4 <10−4

Beam quality [M2] <2 <1.5
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To seed hard X-rays shorter wavelengths are necessary: 1 nm to 20 nm. Here, high harmonic
generation from the laser is used. At high laser intensities the laser field is strong enough to suppress
the coulomb barrier and therefore an electron is able to tunnel out of the atom. The laser’s electric field
then accelerates this electron in a half-cycle. The electron can then be steered back by the opposite
electric field from the laser and recombine with the parent ion, while emitting a photon at a higher
energy. The high harmonic radiation forms a ‘comb’, where the energies are separated by half of the
drive-laser period, due to the acceleration and recombination process. Such a comb structure, when
Fourier-transformed, corresponds to an attosecond pulse train in the time domain. At sFLASH such a
scheme was used to seed the FEL, using an off-the-shelf laser system at 800 nm, with 20 mJ laser energy
and 35 fs pulses. HGHG targets usually consist of a noble gas and a guiding structure.

Most FELs are now aiming for self-seeding arrangements, where a monochromator is used
between subsequent undulators and the residual beam is used for seeding [56, 57]. The process, however,
is much more lossy and the output after the monochromator is much more unstable than a laser seed.

2.6 Diagnostics lasers

The electro-magnetic field of the laser is used often as a tool for diagnostics due to its non-invasive
nature. Lasers are used to measure beam size, electron bunch length and time of arrival as well as to
characterize the final photon beam of the FEL. The following section will not give an exhaustive
summary, but more of a taster on how lasers can be used for diagnostics. The references should be
studied in more detail for each application.

A laser wire scanner is used at CAEP FEL to measure the transverse beam size of the electron
beam at 250 keV [18]. The energy of the beam in this particular case is very low and therefore a non-
invasive solution is very attractive. The bunch length is 15 ps and the repetition rate is very high at
~54 MHz, with a high bunch charge of 100 pC. The laser is propagated perpendicularly to the beam and
is at 5 ps length to ensure accurate timing overlap. The focusing arrangement is chosen so that the
Rayleigh range of the laser beam overlaps with the longitudinal size of the electron bunch. As only about
55.4 nJ energy is required an oscillator and a booster amplifier are sufficient. The laser is operating at
532 nm, using the second harmonic light of a neodymium laser. The interaction is based on Compton
scattering.

Another well-established application is electro-topical bunch length and arrival time
measurement [19–22]. All of these devices take advantage of the coulomb field generated by the electron
beam. When using specific electro-optical crystals, which change their properties due to this field, one
can map the properties of the electron beam in time by encoding the information into a short laser pulse
passing through the crystal. The encoding can take place in the spectral domain, making the readout
simple. For scanning methods the coincidence of the laser and the electron-pulse can be read out by a
photodiode, while for single shot measurements a CCD is used to map the spectrum. Spatial encoding
is also possible, though the imaging limits the resolution and the electron beam has to pass through the
crystal. Temporal encoding mixes a reference pulse with the spectrally encoded pulse to achieve tens of
femtoseconds resolution. Most methods are limited by the crystal size, as the signal strength is
proportional to this, but the encoding is smeared out when thicker crystals are used. Relatively low
energy but broadband pulses are needed, with a pulse structure matching the FEL’s Ti:Saph laser, so
pulses that are used for experiments can be split off for this purpose, or from fibre lasers with a
broadening stage.

Beam arrival monitors are very important to keep the whole machine, often spread over several
hundred metres, in synchronization. They use RF antennae to pick up the signal from the electron beam
and use this signal with appropriate attenuation to drive an electro-optical modulator. The signal to be
modulated is the optical pulsed reference. The signal, which is proportional to the relative delay between
the optical reference and the pickup signal, is read out by a photodiode. Here 20 fs resolution can be
achieved.
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A THz streak camera is used to measure the relative timing between the X-ray and the pump laser
pulses, as well as to characterize the FEL pulse length [58–60]. The technique has been adapted from
the attosecond world, where an electric field of a few cycles of IR pulses are used to sweep the electrons
[61], which are generated by ionization from the X-ray pulses, as shown in Fig. 14. The linear part of
the laser’s electric field has to match the pulse length. As FEL pulses are longer, one has to move to
longer laser wavelengths, hence to terahertz pulses. The other requirement is the field strength, which
has to be strong enough to deviate the electrons by an amount that is detectable by a time-of-flight
device. The challenge also lies in the initial temporal and spatial overlap of the terahertz and X-ray
pulses, both propagating in vacuum. This technique is also used for the AMO at LCLS.

Fig. 14: A schematic of the operation of a THz streak camera

The laser system at FERMI@Elettra is a fine example of how a laser can be utilized for most
tasks in the FEL. The same laser is used for seeding and experiments as well as for the time-of-arrival
measurements. The long optical passes are actively stabilized to keep the synchronization between the
different parts of the machine.

3 The future of lasers in FEL
Figure 15 shows the state-of-the-art for X-ray short pulse sources based on lasers and on FELs. With
new projects, such as Extreme Light Infrastructure (ELI) [63] and Berkeley Lab Laser Accelerator
(BELLA) [64] the photon energy gap between the two types of sources is closing. Both of these facilities
utilize a petawatt laser, giving multiple tens of joules of laser energy in a single pulse at 1 Hz. The aim
is to produce accelerating gradients reaching 100 GV/m by laser plasma acceleration. Eventually, robust
fibre technology developed for telecommunications could provide large numbers of lasers locked
together to reach joules of energy to drive laser plasma accelerators as well.

Fig. 15: Short pulse X-ray sources
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The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) project at
CERN is aiming to combine the best of both accelerator and laser technology and accelerate an electron
beam produced by a photo-injector using proton-driven plasma wakefield acceleration. The plasma is
produced by a laser and the modulation, which drives the acceleration, is induced by self-modulation
instabilities from the proton beam. The aim is to create GV/m accelerating strengths.

Scaling to higher repetition rates on the laser side has already been achieved, and commercial
high pulse energy ultra-short pulse laser systems at a few kilohertz are already available on the market,
while similar scaling for high power RF distribution is not clear. In conjunction with laser wakefield
acceleration techniques, these lasers can provide tabletop X-ray sources for universities, small
laboratories and medical treatment centres. I am certainly looking forward to reading the school notes
in ten years’ time on the same subject.
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Motion in the Undulator
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Paul Scherrer Institute, Villigen, Switzerland

Abstract
This paper gives an introduction to the theoretical framework for the motion
of an electron in the periodic field of an undulator and wiggler. The equations
of motion are derived and solved for planar and helical devices.

Keywords
Free-electron laser; theory; undulator; electron motion.

1 Electron motion in an undulator or wiggler
The hardware part of a free-electron laser is an undulator or wiggler. Its main purpose of the undulator
or wiggler is to force the electrons to oscillate (‘wiggle’) as they move through it. This transverse motion
causes the electron beam to emit synchrotron radiation. For relativistic electrons, the synchrotron radia-
tion is confined to a forward cone. The opening angle is the inverse of the Lorentz factor γ = E/mc2,
where E is the electron energy, m is the electron mass, and c is the speed of light.

The main feature of an undulator and wiggler is a series of paired magnets along the main axis.
They are placed opposite to each other, separated by a gap of width g. The magnetic flux has only a
component transverse to the undulator axis. If the plane of the gap is fixed, the undulator or wiggler is
planar. Another type of undulator involves rotation of the magnets along the main axis, in the form of a
double helix. This type of undulator is called helical.

A Cartesian co-ordinate system, where the z-axis coincides with the undulator axis, will be used
throughout this paper. The transverse co-ordinates x and y are chosen so that the magnetic field for a
planar undulator or wiggler is parallel with the y-axis. Owing to rotational symmetry, the choice of co-
ordinate system orientation for the helical undulator is arbitrary. Here, it is defined so that the magnetic
field at the undulator entrance (z = 0) has only field components in the y-direction.

A higher magnetic field strength can be achieved by hybrid magnets, in which iron poles with high
permeability are placed between permanent magnets [1]. Figure 1 shows a schematic cross-section of
a planar undulator or wiggler based on hybrid magnets. The magnetic field of the permanent magnets
points in either the positive or negative z-direction. The flux of two adjoining magnets is bent into the
transverse direction by the iron pole. The advantage of this method is that the cross-section of the iron
pole faces is smaller than that of the permanent magnets themselves. Therefore, the maximum achievable
magnetic field can be increased by compressing the magnetic flux. A magnetic field strength larger than
2 T can then be obtained.

Wigglers and undulators differ in the deflection strength of the magnetic field. If the maximum
deflection angle is larger than the opening angle of the spontaneous emission, there is no continuous
emission in the forward direction, resulting in a wiggler. The spectrum observed is enriched by higher
harmonics of the periodic signal of the detected radiation. Undulator radiation is modulated but not
pulsed in the forward direction and the number of higher harmonics in the spectrum is reduced. A typical
spectrum for the TESLA Test Facility is shown in Fig. 2. A more quantitative criterion to distinguish
undulators and wigglers is given later in this section. Although both undulators and wigglers are used for
free-electron lasers, for the sake of simplicity, the remaining part of this paper refers only to undulators,
unless necessity requires that the two types must be distinguished.
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Fig. 1: Cross-section of planar undulator with gap width g and periodicity λU . The direction of the magnetic field
is indicated by arrows.

1.1 The planar undulator
The discussion begins with the derivation of the electron trajectories within the planar undulator. The
calculation for the helical case is similar and is given in the next subsection in a more compressed form.

The magnetic field at the undulator axis is a harmonic function of the longitudinal position z:

By(z, x = 0, y = 0) = B0 cos(kUz) .

The field points in the y-direction and has an amplitude B0 and a wavenumber kU = 2π/λU . Although
it might be desirable, the field cannot be constant over the whole transverse plane. Within the free space
of the undulator gap, Maxwell’s equations for a static magnetic field require that the divergence and curl
vanish (~∇ · ~B = 0 and ~∇× ~B = 0). The second condition determines the dependence of the magnetic
field on the transverse co-ordinates. It also allows the magnetic field to be derived from a scalar potential
φ with ~B = −~∇φ. To fulfil Maxwell’s equations, the scalar potential φmust be a solution of the Laplace
equation ∆φ = 0.

A good starting assumption is

φ = −B0

ky
cosh(kxx) sinh(kyy) cos(kUz) , (1)

2
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Fig. 2: Radiation spectrum of the free-electron laser at the TESLA Test Facility

which gives the desired magnetic field at the axis. Inserting Eq. (1) into the Laplace equation, the scalar
potential is a physically reasonable solution if the relation

k2x + k2y = k2U (2)

is valid [2]. In general, to a good approximation, a magnetic field is perpendicular to the pole faces. This
implies that the pole faces can be identified with equipotential surfaces, where the scalar potential φ is
constant. For any arbitrarily chosen position z, the curvature of the equipotential surface is defined by
the relation cosh(kxx) sinh(kyy) = constant. It can be seen that y must be constant for kx = 0 and that
the pole faces are plane. The case of an outward bent pole face is covered by an imaginary value of kx
or, which is equivalent, by replacing the cosh function in Eq. (1) with the cosine function. In this case,
k2y becomes larger than k2U . For real values of kx with kx > 0, the two opposite poles are bent towards
each other and ky is either reduced (kx < kU ), zero (kx = kU ), or imaginary (kx > kU ).

For x and y small compared with the undulator period length, so that kxx, kyy � 1, the hyperbolic
function can be expanded into a Taylor series up to the second order. In this approximation, which is
reasonable for most undulators up to a beam radius of typically 1 mm, the magnetic field becomes

~B = B0




k2xxy cos(kUz)(
1 + k2xx

2

2 +
k2yy

2

2

)
cos(kUz)

−kUy sin(kUz)


 . (3)

The extra field caused by the curved pole faces is equivalent to a sextupole field with amplitude B0k
2
x.

As shown later in this section, it provides focusing of the electron beam in the x-direction.

For further discussion, it is useful to know the vector potential ~A of the undulator field. This is
given by

~A =
B0

kU




(
1 + k2x

2 x
2 +

k2y
2 y

2
)

sin(kUz)

−k2xxy sin(kUz)
0


 , (4)

with ~B = ~∇× ~A .
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The equations of motion for the position ~r and canonical momentum ~P of a single electron [3] are
obtained from the Hamilton formalism, using the Hamilton function of a relativistic electron,

H =

√
(~P − e ~A)2c2 +m2c4 + eΦ , (5)

where Φ is the scalar potential of the electric field ~E with ~E = −~∇Φ− ∂ ~A/∂t.
If the electron is relativistic with γ � 1, the motion of the electron is mainly defined by the

magnetic field of the undulator. Interaction with a radiation or electrostatic field can be regarded as a
perturbation. These effects, which are important for the free-electron lasing process, are discussed in
later sections.

With this assumption, the Hamilton function is a constant of motion because it does not depend
explicitly on the time t. Owing to the absence of an electric field (Φ = 0), the electron energy γmc2 is
also constant and identical in value to the Hamilton function.

It is difficult to solve the equations of motion directly. Therefore, the electron motion is split into
two parts,

~r(t) = ~r0(t) + ~R(t) ,

separating the main oscillation ~r0(t) due to the periodic undulator field from a drift ~R(t) in the transverse
position. The drift is slow compared with the quickly varying term ~r0(t) and has a characteristic length
of the scale of many undulator periods. As a first step, the solution for ~r0 is obtained by assuming that
~R(t) is constant.

The equations of motion for the transverse canonical momentum ~P are

Ṗx = − ∂

∂x
H =

e

γm

(
∂

∂x
~A

)
·
(
~P − e ~A

)
, (6)

Ṗy = − ∂

∂y
H =

e

γm

(
∂

∂y
~A

)
·
(
~P − e ~A

)
. (7)

For the vector potential of Eq. (4), the lowest-order term of the time derivative ~̇P is linear in kxx or kyy,
respectively. As mentioned at the expansion of the hyperbolic function in Eq. (3), these linear terms are
small compared with unity. Thus, the change in the canonical momentum contributes either to the ‘slow’
motion ~R(t) or to the higher-order solutions of ~r0, which are not regarded in this discussion.

The remaining equations of the transverse motion,

ẋ =
∂

∂Px
H =

Px − eAx
γm

, (8)

ẏ =
∂

∂Py
H =

Py − eAy
γm

, (9)

have only one dominant and quickly oscillating source term, given by the x-component of the vector
potential in Eq. (8). The resulting motion takes place in the xz-plane with the ‘fast’ velocity

ẋ0 = −
√

2cK

γ
sin(kUz) . (10)

Equation (10) suggests the definition of the dimensionless undulator field:

K =
eB̂

mckU

(
1 +

k2x
2
X2 +

k2y
2
Y 2

)
, (11)

depending, to second order, on the transverse position X = X(t) and Y = Y (t) of the ‘slow’ trajectory
~R(t). This definition differs from that given in other publications, where the on-axis peak field B0 is
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used instead of the r.m.s. value B̂. In the case of a planar undulator, B̂ is B0/
√

2. The advantage of this
definition is that many equations remain the same for the case of the helical undulator. The value of K
at the undulator axis (X,Y = 0) defines the undulator parameter. Because the second-order corrections
to the undulator field are of the order of 10−3, the transverse dependence of the undulator field has a
negligible impact on most of the calculations. Therefore, it is sufficient to use the constant value of the
undulator parameter instead.

Equation (10) exhibits the distinction between a wiggler and an undulator. If the electron is relativ-
istic (z ≈ ct), the maximum divergence x′ = ẋ0/c of the electron is

√
2K/γ. The opening angle of the

synchrotron radiation is γ−1; thus, the device is an undulator for K ≤ 1/
√

2 and a wiggler otherwise.

There is no dominant component of the vector potential in y and the motion in this direction
consists only of the ‘slow’ motion (y0(t) = 0).

Owing to energy conservation, the longitudinal velocity can be obtained directly from the defin-
ition of the Lorentz factor γ and the normalized velocity ~β = d~r/cdt. Then the longitudinal velocity
is

βz =

√
1− 1

γ2
− β2x − β2y (12)

≈ 1− 1 +K2

2γ2
− β2R

2
+
K2

2γ2
cos(2kUz) ,

where βR is the transverse velocity of the slow drift, normalized to c. The cross term proportional to
βRK/γ · sin(kUz) has been neglected because it is either small compared with the leading oscillating
term (∝ K2 cos(2kUz)) or not resonant with variation of βz , as is the case for β2R/2.

The transverse motion within the undulator slows down the electron by roughly ∆βz = K2/2γ2

with a superimposed longitudinal oscillation with a period half as long as the transverse oscillation.

To obtain the trajectory x0(t), the longitudinal position is approximated by z = cβzt ≈ cβ0t and
then Eq. (10) is integrated in first order, using the averaged velocity

β0 = 1− 1 +K2

2γ2
. (13)

The integration yields

x0(t) =

√
2K

γkUβ0
cos(ckUβzt) . (14)

The longitudinal oscillating term in Eq. (12) is the source of a phase modulation in the cosine function
in Eq. (14). As a consequence, the transverse oscillation exhibits higher harmonics of the fundamental
wavenumber kU . In addition, the synchronization of the electron position with a phase front of an
electromagnetic wave, propagating along the undulator axis, is reduced. The impact of both facts will be
discussed in the next section. Only slowly varying terms in the equations of motion can contribute to ~R.
By averaging over one undulator period, Eqs. (8) and (9) are reduced to Ẋ = Px/γm and Ẏ = Py/γm.
The vector potential ~A has only terms proportional to sin(kUz) or sin(2kUz) and these vanish after
averaging. In the remaining equations, Eqs. (6) and (7), all terms are zero except for (∂Ax/∂x)Ax and
(∂Ax/∂y)Ax, respectively.

The resulting differential equations

Ṗx = −γmc2K
2k2x
γ2

X , (15)

Ṗy = −γmc2
K2k2y
γ2

Y , (16)

describe reaction forces proportional to the displacement.
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The magnetic field of the undulator provides a natural focusing of the electrons if the pole faces
are flat or bent towards each other (k2x ≤ 0). Although the focusing strength in both planes depends on
the curvature of the magnetic poles, the combined strength K2k2U/γ

2 does not, owing to Eq. (2). For
flat horizontal pole faces, there is no focusing in the x-plane. Increasing the focusing strength in this
plane involves a reduction in the y-plane. A more precise calculation shows that the finite width of the
undulator magnets introduces a small change in the magnetic field, so that a slight defocusing term is
noticeable in the x-direction for kx = 0 [4].

The trajectories of the transverse slow motion are harmonic functions with frequencies Ωx =
Kkx/γ and Ωy = Kky/γ, for the x- and y-planes, respectively. The period length λβ is typically of the
order λβ ≈ (γ/K)λU and thus much larger than the undulator period for a highly relativistic electron
(γ � 1). The index β refers to the definitions used in accelerator physics, where this oscillation is called
a betatron oscillation [5].

The transverse beam size is strongly related to the focusing strength. The calculations for the
y-direction are identical to those for the x-direction, which are presented here. The general betatron
oscillation of a single electron is given by X(t) = X0 cos(Ωxz) + (X ′0/Ωx) sin(Ωxz), where X0 is the
initial offset of the electron and X ′0 is the initial angle relative to the undulator axis.

The emittance

εx =

√
(x− x)2 (x′ − x′)2 − (x− x)(x′ − x′)

2
, (17)

where a bar over a parameter denotes an average over all electrons, is a constant of motion in linear
optics [6]. Regarding this definition of the emittance, πεx can be identified as an equivalent volume of
the electron distribution in the transverse (x, x′) phase space.

In contrast with the emittance, the r.m.sq. envelope of the electron beam is usually not a constant
of motion [5]. The general expression of the envelope σx(z) for k2x > 0 within an undulator is

σx(z) =

√
σx(0)2 cos2(Ωxz) +

σx(0)σ′x(0)

2Ωx
sin(2Ωxz) +

ε2x − σ2x(0)σ′2x (0)

σ2x(0)Ω2
x

sin2(Ωxz) , (18)

where σx(0) and σ′x(0) are the initial beam size and its derivative in z, respectively. For a matched beam,
when the beam size remains constant over the full undulator length, the electron beam must go through
a waist directly at the entrance of the undulator (σ′x(0) = 0) with an r.m.s. size of σx(0) =

√
εx/Ωx. If

the undulator focuses equally in both planes with kx = kU/
√

2, the constant size is

σx(0) =

√
(
√

2mc/e)εxγ/B̂ .

All other initial settings cause a modulation of the envelope. If a smaller beam size is desired, it can be
achieved by superimposing a lattice of quadrupoles. Normally, this is referred to as strong focusing, in
contrast with the natural or weak focusing given by the undulator field itself.

1.2 The helical undulator
The treatment of the helical undulator is very similar to that of the planar one. Indeed most of the results
are the same. The magnetic field ~B, as well as the vector potential ~A, consists of a linear combination of
the first-order modified Bessel functions I0 and I1 [7], depending only on kUr, where r is the transverse
distance between the electron position and the undulator axis. Using the assumption that kUr is much
smaller than unity, the Bessel functions are expanded into a Taylor series. Up to second order in kUr, the
vector potential in the Cartesian co-ordinate system is given by

~A =
B0

kU




[
1 +

k2U
8 (3y2 + x2)

]
sin(kUz)− k2U

4 xy cos(kUz)[
1 +

k2U
8 (3x2 + y2)

]
cos(kUz)− k2U

4 xy sin(kUz)

0


 . (19)
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The magnetic field is derived in the usual way by evaluating ~B = ~∇× ~A.

The trajectory is split into a quickly oscillating term ~r0(t) and the slow betatron oscillation ~R(t).
The velocity of the fast motion ~̇r0 is proportional to the vector potential. Close to the undulator axis,
ẋ0 and ẏ0 have the same amplitude of oscillation but they have a phase difference of π/2. This is an
obvious result, which can be expected because of the symmetry of a helical undulator. Off-axis, the
velocity differs in both directions, owing to the higher-order terms in x and y of the vector potential.
The transverse motion of the electron becomes more elliptical, with the short axis pointing in the radial
direction. To eliminate this azimuthal dependence, and for a better comparison with the results for the
planar undulator, the vector potential is averaged in the azimuthal direction.

The normalized longitudinal velocity is

βz ≈ 1− 1 +K2

2γ2
− β2R

2
, (20)

with the undulator field

K =
eB̂

mckU

(
1 +

k2U
4

(X2 + Y 2)

)
(21)

in the Taylor series expansion up to second order in X and Y .

The major difference between helical and planar undulators becomes apparent here. Because
the electron oscillates in both transverse directions but with a π/2 phase difference, the longitudinal
velocity is almost constant. The terms proportional to βR cos(kUz) or βR sin(kUz) are negligible and
not included in Eq. (20). The absence of a longitudinal oscillation excludes the generation of higher
harmonics in the transverse motion of the electron. The helical undulator field of Eq. (21) agrees with
that of a planar undulator (Eq. (11)) if the planar undulator provides equal focusing in both planes, with
k2x = k2y = k2u/2. This similarity is an advantage of the undulator field definition based on the r.m.s.
value B̂.

With the definition of β0 in analogy with Eq. (13), the transverse velocity can be integrated to
obtain the trajectory ~r0. The electrons move along a helix with a pitch of λU . Owing to the asymmetry
in the azimuthal and radial motion for larger transverse offsets, the helix is slightly distorted [8]. The
average radius of the motion is independent of the azimuthal angle, with

r0 =
K

γkUβ0
. (22)

By averaging the transverse equations of motion over the length of one period, the fast oscillation
drops out. Some basic algebra yields the differential equations:

Ẋ =
Px
γm
− cΩ2

U

kU
Y , (23)

Ṗx = −γmc2Ω2
UX − c

Ω2
U

kU
Py , (24)

Ẏ =
Py
γm
− cΩ2

U

kU
X , (25)

Ṗy = −γmc2Ω2
UY − c

Ω2
U

kU
Px , (26)

with ΩU = Kku/
√

2γ.

These differential equations describe two coupled oscillations but they can be decoupled into
ordinary differential equations for harmonic oscillations with the frequencies

Ω̂ = ΩU

(√
1 +

Ω2
U

k2U
± ΩU

kU

)
, (27)

7

MOTION IN THE UNDULATOR

353



by transforming to the variables X ± iY . The ratio ΩU/kU is of the order 1/γ. The characteristic length
of the orbit beat by the coupling is roughly γ2λU and, even for moderately relativistic electrons, much
longer than the undulator length itself. This term is only important for storage-ring-based undulators
because it is a major source of coupling of the betatron motion [8]. By neglecting the coupling term,
Eqs. (23)–(26) become identical to the corresponding equations for the planar undulator, with k2x =
k2y = k2U/2. The conditions for optimum matching of the electron beam are also valid for the helical
undulator.
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Pendulum Equations and Low Gain Regime

S. Reiche
Paul Scherrer Institute, Villigen, Switzerland

Abstract
This paper introduces the theoretical framework for the motion of an electron
in the periodic field of an undulator and wiggler. It is a continuation of the
previous article on motion in the undulator but includes the interaction with
a co-propagating radiation field. The longitudinal motion of each electron is
similar to a pendulum and, in resonance with the co-propagating field, energy
can be exchanged between the electron beam and the radiation field in the
small signal low-gain regime of the free-electron laser.

Keywords
Free-electron laser; theory; low-gain regime; resonance condition.

1 Pendulum equations and low-gain regime
In this section, the interaction of electrons with a radiation field while they move through the undulator is
analysed. The approach to this problem is similar to that in the previous paper, except that an additional
term in the Hamilton function describes the vector potential of the radiation field [1]. If the emission of
radiation is stronger than the absorption, the electrons are losing energy, on average, and the radiation
field is amplified. As long as this amplification is small, the radiation field amplitude can be assumed to
be constant in the Hamilton function for deriving the equations of motion. The limitations of this model
of a ‘low-gain’ free-electron laser are given at the end of this section. A more self-consistent model of a
free-electron laser can be found in the next section, including Maxwell’s equation for the radiation field
description. Nevertheless, a discussion of the low-gain free-electron laser is fruitful, because it shows
the basic principle of how a free-electron laser works, using rather simple equations.

The interaction of charged particles with a radiation field shows two major aspects. The first is the
change of the particle momentum and energy. The Hamilton equations of motion are the mathematical
representation of this process. The method for solving these equations is very similar to the treatment in
the previous paper, but differs in that the electron energy is no longer constant, owing to the electric field
components of the radiation field.

The second aspect is the change of the radiation field itself. The fast transverse oscillation of the
electrons is a source of radiation. For relativistic particles, this radiation points mainly in the forward
direction of the electron beam motion. If the radiation wavelength is shorter than the electron bunch
length, the electrons emit at almost all phases and the radiation adds up incoherently. The emission is
strongly enhanced if the longitudinal beam profile is modulated on the scale of the radiation wavelength.

Under special conditions, both processes—the change of the particle energy and the emission
of radiation—are the source of a collective bunching of the electrons on a resonant frequency, and the
radiation field is strongly amplified. The next section analyses this instability—the working principle
of the ‘high gain’ free-electron laser. In contrast with the high gain free-electron laser, the low-gain
free-electron laser provides amplification without the necessity of a strong modulation in the electron
density.

The discussion begins with the assumption on the radiation field. If a radiation field propagates
along the undulator together with the electron bunch, the interaction time is maximized. The electric
field components are lying in the transverse xy-plane; thus, only a transverse motion, along or against
the field orientation, changes the electron energy. Owing to the symmetry of the magnetic field, the
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radiation emitted in a planar undulator is linearly polarized, while it is circularly polarized for the case
of a helical undulator. In this section, the case of a planar undulator is considered. Most of the results
are similar or identical for a helical undulator and only important differences are mentioned in the text.

The electric field component of the radiation field

~E = ~E0 cos(k(z − ct) + Ψ) , (1)

is defined by its amplitude ~E0, its wavenumber k = 2π/λ or wavelength λ, and its initial phase Ψ at the
undulator entrance.

The magnetic field component is perpendicular to ~E as well as to the unit vector in the direction
of propagation, which mainly coincides with ~ez . Compared with the strong undulator field, the magnetic
field of the radiation field is negligible and can be ignored in further discussion. The amplitude ~E0

and the phase Ψ depend on z, because of diffraction. The dependence becomes negligibly small if the
transverse extension of the radiation wavefront is much larger than the radiation wavelength.

The change of the electron energy is caused only by the electric field components, which, depend-
ing on the radiation phase, accelerate or decelerate the electron with

γ̇ =
e ~E · ~β
mc

. (2)

Only the parallel components of ~E and ~β contribute to Eq. (2). For the planar undulator, they are pointing
in the x-direction resulting in a linear polarization of the radiation field.

To obtain the transverse velocities, ~β the vector potential ~Ar of the electromagnetic wave must be
added to the Hamiltonian,

H =

√
(~P − e ~A)2c2 +m2c4 + eΦ . (3)

From the potential,

~Ar =
1

ck
sin(k(z − ct) + Ψ)



E0

0
0


 . (4)

the electric field is derived by the time derivative ~E = −∂ ~Ar/∂t. Here, the Lorentz gauge is chosen,
which enables the scalar potential to be omitted in the derivation of the electric field.

For an assumed pulse length L � λ, the dependence of the amplitude ~E0, as well as the phase
Ψ, on time is negligible and Ar is a valid vector potential for the radiation field of Eq. (1). Inserting the
vector potential of the radiation field and the undulator field into the Hamilton function, the transverse
velocities are

ẋ = −
√

2cK

γ
sin(kUz)−

√
2cKr

γ
sin(k(z − ct) + Ψ) + Ẋ , (5)

ẏ = Ẏ . (6)

The dimensionless radiation amplitude,

Kr =
eÊ

mc2k
, (7)

is defined in an analogous way as the undulator parameterK. The motivation to use the r.m.s. value Ê of
the electric field is the same. Most results will be identical for the helical undulator. The velocity terms
Ẋ and Ẏ of the betatron oscillation are the same as before.
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For the sake of simplicity, any transverse variation of the radiation field is excluded. A radiation
field with a finite transverse extension is more difficult to analyse. For small transverse momenta, the
longitudinal velocity is approximately

βz ≈ 1− 1 +K2 +K2
r

2γ2 − β2
R

2
+
K2

2γ2 cos(2kUz) +
K2
r

2γ2 cos (2k(z − ct) + 2Ψ)

− 2KKr

γ2 sin(kUz) sin(k(z − ct) + Ψ) . (8)

This expression is very similar to that for the electron motion in a pure magnetic field of an
undulator, except for three additional terms. The electric field forces an additional transverse oscillation
with the frequency of the electromagnetic wave. As for the undulator field, the longitudinal velocity is
slowed down and modulated with an oscillation of twice the frequency of the radiation field. It will be
shown later that the longitudinal modulation by the radiation field is much smaller than the longitudinal
modulation by the undulator field and can be neglected.

The cross term, ∝KKr, can be split into two independent oscillations. If one of them has a
small frequency, it can significantly change the longitudinal velocity βz on a time-scale different to the
dominant oscillating term, ∝K2. The explicit calculation of this term is postponed until βz is further
discussed (see Eq. (15)).

Combining all constant or slowly varying terms to β0, the integration of Eq. (8) up to first order
yields

z = β0ct+
K2

4γ2kUβ0

sin(2kUβ0ct) . (9)

With the given expression of the transverse velocities ẋ and ẏ, Eq. (2) can be evaluated. Most of
the cross terms between Ex and βx are quickly oscillating. Over many undulator periods, the net change
of the electron energy is negligible. The only possible term that might be constant is the product of
cos(k(z − ct) + Ψ) and sin(kUz), similar to the term in Eq. (8). This term is split into two independent
oscillations, with the phases (k ± kU)z − kct + Ψ. If one of the phases remains almost constant, the
energy change is accumulated over many periods.

With an average longitudinal velocity of cβ0, the phase relation between the electron and the
radiation field remains unchanged if the condition

β0 =
k

k ± kU
(10)

is fulfilled. As shown later, the interaction between the electron beam and the radiation field needs to
add up resonantly over many undulator periods to result in a significant change of the electron energy or
the radiation amplitude and phase. This implies that, for a given beam energy and undulator wavelength,
the radiation wavelength of the radiation field is well defined according to Eq. (10). The case of the
‘−’ sign is excluded because it would demand an electron velocity faster than the speed of light to keep
the electrons in phase with the radiation field for any time. The restriction to a well-defined resonant
radiation wavelength is called the resonance approximation.

In the limit of a weak electric field (Kr → 0) and a small beam emittance, the resonant radiation
wavelength is

λ0 =
λU

2γ2 (1 +K2) . (11)

This important equation is also valid for a planar and a helical undulator. A transverse betatron mo-
tion and a stronger radiation field shift the resonance condition slightly towards longer wavelengths. If
Eq. (11) is exactly fulfilled, the energy change is constant over many undulator periods, pushing the
electron off resonance.
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So far, the longitudinal oscillation of the electron has not been taken into account. As mentioned
previously, it induces higher harmonics in the motion of the electrons.

Inserting Eqs. (1) and (5) into Eq. (2) yields the resonant term

γ̇ = −2ckKKr

γ
cos(k(z − ct) + Ψ) sin(kUz) . (12)

Note that the choice of the radiation wavenumber k is free and does not need to agree with the resonant
wavenumber k0 = 2π/λ0, defined by the undulator properties and the particle energy. To evaluate
Eq. (12), the sine and cosine function are replaced by complex exponential functions. The oscillating
part of the longitudinal motion (Eq. (9)) can be expanded into a series of Bessel functions [2] by the
identity

eia sin b =
∞∑

m=−∞
eimbJm(a) .

The result is a sum of exponential functions with frequencies [(k + (2m + 1)kU)β0 − k]c. Beside the
ground mode with m = 0, some terms are resonant at different wavelengths. The frequencies of these
are the odd harmonics of the resonant frequency ω0 = ck0.

Collecting all terms belonging to one mode, Eq. (12) becomes

γ̇ = −2ckKKr

γ

1

4i

[
eiθ+iΨ

∞∑

m=−∞
ei2mkUβ0ct(Jm(χ)− Jm+1(χ))

− e−iθ−iΨ
∞∑

m=−∞
e−i2mkUβ0ct(Jm(χ)− Jm+1(χ))

]
, (13)

with χ = kK2/4γ2kU and the so-called ponderomotive phase,

θ = (k + kU)z − ckt . (14)

For completeness, it is noted that a transverse non-uniform radiation field also couples the particle
motion to the even harmonics of ω0 [3, 4]. If the radiation field is expanded into a Taylor series around
the electron position of the betatron oscillation (x = X + x0),

~E(x) = ~E(X) +
d ~E

dx

∣∣∣∣∣
X

x0 ,

the factor x0ẋ0 is proportional to sin(2kUz) in Eq. (2). Using the same calculation as for Eq. (13), the
complex exponential functions have the arguments [(k + (2m + 2)kU)β0 − k]ct, being resonant at all
even harmonics. The additional pre-exponential factor is (K/2KrγkUβ0)dKr/dx.

The postponed calculation of the cross term sin(k(z−ct)+Ψ) sin(kUz) in Eq. (8) is performed in
a very similar way. If the phase Ψ is temporarily replaced by Ψ̃ = Ψ− π/2 to convert the sine function
into a cosine function, the expansion into Bessel functions yields

βz = 1− 1 +K2 +K2
r

2γ2 − β2
R

2

+
KKr

2γ2

[
eiθ+iΨ

∞∑

m=−∞
ei2mkUβ0ct(Jm(χ)− Jm+1(χ))

+ e−iθ−iΨ
∞∑

m=−∞
e−i2mkUβ0ct(Jm(χ)− Jm+1(χ))

]
. (15)
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The resonant frequencies are well separated, such that only one resonance frequency is of importance
for a given radiation field. The coupling factor is smaller for higher modes. Thus, the interaction is the
strongest for the fundamental mode [5], which is the only mode considered in the following discussion.

Where the free-electron laser operates at the fundamental frequency, the non-linear terms in the
free-electron laser equations will induce an enhanced bunching in the longitudinal position at higher
harmonics. This bunching increases more quickly than operating on the higher frequency itself.

For a helical undulator, the amplification of higher modes is much smaller because the dominant
longitudinal oscillation, which is why coupling to higher harmonics is strongly suppressed. At the funda-
mental frequency, the synchronization of the phase front of the ponderomotive wave and the electrons is
almost perfect, while it is reduced by a factor (J0(χ)− J1(χ)) for the planar undulator.

Compared with the fast-changing position of the electron, z ≈ β0ct, the ponderomotive phase
θ = (k + kU)z − ckt of the electron is almost constant. It is convenient to change to a moving coor-
dinate system, which is synchronized with the ponderomotive wave. With a simple canonical transfor-
mation [6], which keeps the energy unchanged, the equation of motion for the new variable θ becomes
θ̇ = (k + kU)cβz − kc. Replacing βz with Eq. (15), the differential equations for the low-gain free-
electron laser are obtained:

θ̇ = ckU − ω
1 +K2 +K2

r − 2fcKKr cos(θ + Ψ)

2γ2 − ωβ
2
R

2
, (16)

and
γ̇ = −ωfc

KKr

γ
sin(θ + Ψ) . (17)

With the definition of the coupling factor

fc =

{
J0(χ)− J1(χ) planar undulator,
1 helical undulator.

(18)

and χ = kK2/4γ2kU = K2/2(1+K2) for the fundamental resonant wavelength, the free-electron laser
equations are valid for both types of undulator.

Another way to derive the differential equations is the rigorous canonical and Legendre transform-
ation of the Hamilton function of Eq. (3) [7]. The new Hamilton function, depending on the canonical
variable and momentum θ and γ, respectively, is

H = ckUγ + ω
1 + γ2β2

R +K2 +K2
r − 2fcKKr cos(θ + Ψ)

2γ
. (19)

The independent variable is time t. As long as the electric field and the transverse momenta do not
change significantly, they can be kept constant in the Hamiltonian. This is the basic assumption of the
low-gain free-electron laser. The limitation of this model will be given at the end of this section.

In the limit of a low-gain free-electron laser, the Hamilton function is regarded as independent
of t and therefore a constant of motion. Setting the Hamiltonian to H = 2ckU(1 + α)γR with γ2

R =
k(1 + γ2β2

R +K2 +K2
r )/2kU, the particle energy γ depends on θ as

γ = γR(1 + α)±
√
γ2

Rα(2 + α) +
kfcKKr

kU
cos(θ + Ψ) . (20)

The lowest boundary of α is α > −1, to avoid unphysical negative values of the energy. Other
limitations are given by the square root in Eq. (20). Two values of α are of particular interest, for
the lowest possible value of the Hamilton function and for an existing solution of γ for all phases θ,
respectively.
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The smallest value of α is found if the cosine function in the argument of the square root is unity.
At θ = −Ψ the root becomes real for

α0 = −1 +

√
1− kfcKKr

kUγ
2
R

. (21)

Inserting α0 in Eq. (20) yields the corresponding energy

γ0 =

√
γ2

R −
kfcKKr

kU
.

The position (−Ψ, γ0) in the longitudinal phase space is a stable fixed point, where the electron
remains in its position. For any small deviation, the differential equations, Eqs. (16) and (17), can be
linearized and combined to produce a second-order differential equation of ∆θ = θ + Ψ with

∆θ′′ + Ω2∆θ = 0 (22)

and Ω =
√

2fckkUKKr/γ0.

This equation is solved by any sine or cosine function with the frequency Ω. The motion in the
longitudinal phase space is bound. This is typical for a stable fixed point. For a larger amplitude of
∆θ, non-linear terms are no longer negligible and the frequency depends on the initial condition of the
electron.

Solutions of γ for all phases θ are found for α larger than

α1 = −1 +

√
1 +

kfcKKr

kUγ
2
R

. (23)

The trajectory in phase space is not closed and the electrons have either energy above or below γR.
A transition is not possible.

The phase space surface for H = 2ckU(1 + α1)γR is called a separatrix. It separates the bound
and unbound motion. Any electron within the separatrix is trapped in the ponderomotive wave and
oscillates around −Ψ. Referring to the acceleration of charged particle in RF cavities, this enclosed area
of the separatrix is often called a ‘bucket’ [8]. The width of the bucket is given by the properties of
the undulator and the radiation field and is ∆γ =

√
8kfcKKr/kU. Electrons outside the separatrix are

moving unlimited in θ either faster or slower than the ponderomotive wave.

Figure 1 shows several phase space trajectories for different initial conditions calculated by
Eq. (20). Within the bucket, the electrons are moving clockwise; above zero, they move towards larger
phases (θ̇ > 0), while below zero, they move towards smaller phases. This implies that an electron
injected at the ponderomotive phase 0 < θ + Ψ < π loses energy. If the undulator length is shorter
than the period length of the phase space oscillation 2π/Ω, the electron will mainly remain in this phase
region. Owing to energy conservation, the radiation field has been amplified. This can be generalized
for the whole electron bunch. As long as the initial distribution in the longitudinal phase space changes
to a final distribution of a mean energy smaller than the initial energy, the gain of the free-electron laser
is positive.

Unfortunately, the most obvious way by injecting all electrons at 0 < θ+ Ψ < π is not realizable.
The radiation wavelength depends on the energy as γ−2 (Eq. (11)) and is much smaller than a typical
bunch length of about 1 mm. The initial ponderomotive phases of the electrons are almost uniformly
distributed over 2π. Owing to the finite number of electrons over one radiation wavelength, a small
modulation of the electron beam remains. This spontaneous emission provides the initial radiation field
for self-amplified spontaneous emission free-electron lasers, discussed in the end of this paper.

6

S. REICHE

360



Fig. 1: Electron trajectories in the longitudinal phase space for different initial settings

With an RF photo gun driving the injector for a free-electron laser, relative energy spreads smaller
than 1% can be achieved. This width is typically smaller than the width of the bucket and fills it unevenly.
For a large energy spread, the bucket is filled almost homogeneously. Any motion of the electrons within
the homogeneously filled bucket would not change the mean energy, because the phase space density
remains constant, according to Liouville’s theorem [9].

Operating as a free-electron laser amplifier, the injection at resonance energy γR would not provide
any gain at all. For the unmodulated beam, the energy change of one electron is always compensated
by a complementary electron, which moves on the same trajectory but which has a phase difference of
2(θ+Ψ). The only visible effect is the increase of the energy spread, because electrons at−π < θ+Ψ <
0 gain energy while the complementary electrons at 0 < θ + Ψ < π lose energy.

If the injection is off-resonance (γ 6= γR) the change of the phase space distribution is no longer
symmetrical. For γ > γR, electrons at −π < θ+ Ψ < 0 tend to change the phase rather than the energy,
while the opposite is true for the remaining electrons. Averaging over all electrons, the electron beam
loses energy and the radiation field is amplified. For injection below the resonant energy, the electron
beam will gain energy and the radiation field is weakened.

The gain dependence on the injection energy can be calculated by perturbation theory [10]. The
rather long but straightforward calculation is not presented here. The dependence on the injection energy
is

G ∝ − d

d(η/2)

sin2(η/2)

(η/2)2 , (24)

where η = 4πNU(γ − γR)/γR and NU is the total number of undulator periods. The gain of the low-
gain amplifier is related to the spectrum of the spontaneous undulator radiation [11, 12] by taking the
frequency derivative of the intensity spectrum of the spontaneous radiation. This relation is known as
Madey’s theorem [13].
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For the free-electron laser oscillator, as well as for the self-amplified spontaneous emission free-
electron laser, the situation is slightly different, because both types of free-electron laser start from spon-
taneous emission with a broad bandwidth in the frequency domain. As a consequence, the electron beam
is always in resonance with the frequency of the largest gain. Using an energy dependence as the argu-
ment of Eq. (24) is no longer meaningful and the energy dependence must be replaced with the frequency
dependence. The results are made similar by redefining η as η = 2πNU(ω − ω0)/ω0, with ω0 as the
resonant frequency.

In this low-gain approximation, the interaction between the electrons is almost negligible and the
gain is proportional to the total number of electrons. In this one-dimensional model of a low-gain free-
electron laser, a higher beam current means a larger amplification of the radiation field. Unless the gain
does not exceed several per cent of the usage of the free-electron laser, Eqs. (16) and (17) are justified.
Otherwise, the assumption of a constant field Kr is no longer valid. The radiation power can increase,
which might change the strength of the electron interaction. To cover this aspect, a self-consistent set of
free-electron laser equations must be derived.
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Abstract 
An introduction to radio-frequency and magnetic bunch length compression 
of ultra-relativistic particle beams in linear accelerators is given, with a 
treatment of the single-particle motion up to the second order, and attention to 
the production of high peak current bunches for free-electron lasers. 
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1 Introduction 
There is a growing demand for generating and transporting very short, high charge density electron 
bunches. Applications range from light sources driven by radio-frequency linear accelerators (RF linacs) 
such as free-electron lasers (FELs), to future linear colliders and novel electron-beam-driven 
acceleration schemes, e.g., dielectric- and plasma-wake-field-driven accelerators. The generation of 
hundreds of amperes peak current electron bunches directly out of an electron source is in conflict with 
the production of small transverse emittance beams, due to the repulsive interparticle Coulomb 
interactions (‘space-charge’ forces) that are especially effective at low beam energies. It is therefore 
preferable to create only a few tens of amperes peak current bunches at the source, such as an RF photo-
injector, in order to dilute the charge density, and thereby ensure small transverse emittances. Beam 
manipulations are implemented then in the downstream transport line, at higher beam energies, in order 
to obtain short electron bunches while preserving the transverse emittance at the injector level. The 
process of manipulating an electron beam so to enhance its peak current is called, in short, bunch 
compression.  

In this chapter, we introduce the reader to bunch-length compression by means of RF and 
magnetic insertions, with an analytical treatment of the single-particle motion up to second order in the 
particle coordinates. We pay special attention to the production of high peak current bunches for high-
gain FELs. Other schemes aimed to produce short bunches have been proposed, either with a special 
design of the electron source or by selecting only one part of the bunch, e.g., via energy-dispersive 
collimation or spoiling. These latter techniques, however, are not addressed in this chapter. 

2 Why FELs require high peak current bunches 
Over the last decade several linac-driven FELs in the ultra-violet (UV) and X-ray wavelength ranges 
have been built, have met their design specifications and are now operating reliably in several 
laboratories around the world [1, 2]. One of the main factors contributing to this successful development 
has been the ability to create, accelerate, transport and control electron bunches of very high brightness.  

The six-dimensional (6D) energy-normalized electron-beam brightness is defined as the total 
bunch charge divided by the product of the root-mean-square (rms) horizontal, vertical and longitudinal 
normalized emittances, barring numerical factors that can be found in the literature. Essentially, it is the 
beam charge density in the 6D phase space. For simplicity, particle motion is intended to be uncoupled, 
and each transverse emittance is meant to be ‘projected’, i.e., it is computed over the particles’ 
coordinates projected onto the longitudinal z-coordinate internal to the bunch [3]. The normalized 
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transverse emittances scale as the product of beam size and angular divergence. The normalized 
longitudinal emittance scales as the product of bunch length and energy spread, the latter being in fact 
the particles’ spread in longitudinal momentum. The transverse normalized emittances are invariant 
under acceleration and linear transport, presuming that collective effects, such as space-charge forces, 
can be neglected. The same is true for the longitudinal normalized emittance if the energy spread is 
purely uncorrelated (i.e., not correlated with z) and particles are in the ultra-relativistic approximation: 
in this case, neither the bunch length, zσ , nor the beam energy spread, Eσ , vary during acceleration. 

The presence of non-linear motion and collective effects along the beam-delivery system may 
dilute the rms normalized emittances from their values at the injection point [2]. By introducing an 
effective degradation factor 1≥ς  in each plane of particle motion so that

n ,f 0 ,0 n ,f 0 ,0,x x x y y yε ς γ ε ε ς γ ε= =  and n ,f ,f E,f ,0 E,0z z z zε σ σ ς σ σ= = , we are able to relate the 6D 
normalized brightness at the undulator, Bn,f, to the one at the linac injection, Bn,0: 

 n,0
n,f 2

n ,f n ,f n ,f 0 ,0 ,0 ,0 E,0

 .
x y z x y z x y z x y z

BQ QB
ε ε ε ς ς ς γ ε ε σ σ ς ς ς

= = =  (1) 

In the ideal case of vanishing non-linear and collective effects, 1,, →zyx ςςς , and the 6D normalized 
brightness is preserved at the injector level under acceleration and bunch-length compression.  

The importance of electron-beam brightness for linac-driven high-gain FELs is underlined by the 
characteristic FEL parameter ρ , through which most of the one-dimensional (1D) FEL dynamics can 
be depicted [4]. In the so-called 1D, ‘cold-beam’ limit, where the effects on the FEL output of electron-
beam energy spread, transverse emittance and radiation diffraction are all neglected, the radiation peak 
power at the resonant wavelength grows exponentially along the undulator with a gain length

( )G u 4 3L λ π ρ= , where 

 
2/31/32/3

p u w u w

A

[ ] [ ]1  ,
8 2 2 x

a JJ a JJI
c I

λ λρ
π γ γ πσ

Ω    
= =    
     

 (2) 

pΩ being the plasma frequency,γ  the relativistic Lorentz factor for the electron-beam mean energy, 

uλ the undulator period length, I the electron-bunch peak current, IA = 17045 A the Alfven current, xσ  
the standard deviation of the (assumed round) electron-beam transverse size; [JJ] is the 
undulator–radiation coupling factor [5], equal to 1 for a helically polarized undulator and to

( ) ( )[ ]ξξ 10 JJ −  for a plane-polarized undulator, where J0 and J1 are Bessel functions of the first kind with 
argument ( )22 24 KK +=ξ . Here aw and K are defined in the expression for the FEL fundamental 
wavelength of emission [6]:  

 ( )2u
w2 1  ,

2
aλλ

γ
= +  (3) 

with aw = K for helically and aw = K/√2 for plane-polarized undulators, and
( )0 u e 0 u2 0.934 [T] [cm]K eB m c Bλ π λ= = , in practical units, is the so-called undulator parameter, B0 the 

undulator peak magnetic field, e and me the electron charge and rest mass, respectively, and c the speed 
of light in vacuum. K is linearly proportional to the electron’s amplitude of transverse oscillation in the 
undulator field and is typically in the range 1–5. Equation (3) is often referred to as the FEL ‘resonance 
condition’ since it selects, for any undulator period and magnetic field strength, the necessary electron 
beam energy for lasing atλ . 
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For kA-current beams, typicallyρ ≈ 10−3 in the UV range, and it drops to ∼10−4 in the X-ray range. 
If the undulator length u uN λ , with uN the number of undulator periods, is equal to or longer than ∼20LG, 
the conversion of electrons’ kinetic energy to photon energy considerably enlarges the electron-beam 
energy spread, with an eventual reduction in the FEL gain [6]. When the FEL process starts up from 
noise in the electron-charge distribution – it is therefore said to operate in self-amplified spontaneous 
emission (SASE) mode [7, 8] – the associated FEL power saturates at a level sat 1.6P EI eρ≈ . In spite 
of the low FEL extraction efficiency relative to the electron-beam power (because 1<<ρ ), an electron 
beam at multi-GeV energies and kA-scale peak currents is able to produce multi-GW-scale radiation 
peak power. For SASE devices, the value of ρ  also defines the approximate number of undulator periods

sat 1N ρ≈ and the length sat uL λ ρ≈ necessary to reach power saturation. The normalized spectral 
bandwidth at saturation is ρωω ≈∆ , presuming a more or less mono-energetic electron beam with little 
z-correlated energy spread.  

Equation (2) suggests that a smaller beam transverse emittance, which is proportional to the 
square of the beam transverse size, is associated with a higher FEL gain. In fact, the most efficient 
electron–photon beam interaction occurs when the transverse beam phase space area and distribution 
match those of the emitted radiation. This is also the condition for maximum transverse coherence of 
FEL radiation, and it translates into an electron-beam emittance at the undulator smaller than or of the 
same order as the one of the diffraction-limited photon beam [9]: 

 ,  .
4x y
λε
π

≤  (4) 

By substituting Eqs. (3) and (4) (with the beam emittance at the diffraction limit) into Eq. (1), we can 
establish a relationship between Bn,f andλ  [10]: 

 
( )

2

n,f 2 2 2
n ,f n ,f n ,f E 0 0 E u w

32  .
1x y z

Q I IB
c c a

π
ε ε ε σ γ ε λσ λ

= = ≈
+

 (5) 

It is worth noticing that the ratio EI σ is invariant under acceleration and compression, when collective 
effects are ignored. So, for any given undulator, efficient lasing at shorterλ requires a higher Bn,f. This 
is confirmed by Fig. 1, where Bn,f of designed and existing single-pass linac-driven FEL facilities is 
shown as a function of the maximum photon energy (i.e., minimum fundamental wavelength) from UV 
to X-rays.  

At this point one might wonder why a high peak current is required at the undulator, if the FEL 
dynamics appears to be so tightly related to the 6D normalized electron-beam brightness, the latter one 
being approximately invariant for a well-set beam-delivery system. The fact is that, as long as the beam 
effective rms relative energy spread is smaller than ρ (here ‘effective’ refers to the contribution of both 
beam transverse emittance and spread in longitudinal momentum to the lack of synchronism between 
the electrons and the radiation emitted in the undulator [6]), the FEL dynamics is well depicted by the 
1D cold-beam model in Eq. (2). We therefore see that the higher the peak current, the larger the FEL 
gain, the shorter the saturation length. The relatively weak dependence of ρ on I is one of the reasons 
why ρ  typically spans over one order of magnitude only, for lasing from UV to hard X-rays, whereas I 
has typically to be increased from a few tens of amperes out of photo-injectors to kA level at the 
undulator. With the common prescription of relative energy spread ρσδ 5.0< in mind for maximum FEL 
gain [6], it makes sense to collapse the electron-beam quality into the 5D normalized brightness, which 
is just n,f EB σ× . This quantity is not invariant under compression, and is actually linearly proportional 
to the bunch length total compression factor.  
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Fig. 1: 6D normalized electron-beam brightness (Eq. (1)) vs. maximum photon energy at fundamental FEL 
emission, for facilities in the UV to X-rays, in design stage (blue) or operational (red), up to 2013. From lower to 
higher photon energies, “existing” facilities are: SPARC (Italy), SDUV-FEL (China), FLASH-I (Germany), 
FERMI (Italy), LCLS (USA), SACLA (Japan). The brightness refers to the projected (circle) or slice value in the 
bunch (diamond). Published in Ref. [2]. Copyright of Elsevier. 

In summary, bunch-length compression is required for increasing the bunch peak current from 
the injection level by usually one to three orders of magnitude, and eventually driving a high-gain FEL, 
given that transverse emittances and relative energy spread are kept small at the undulator. In the 
following we will focus on RF and magnetic bunch-length compression of ultra-relativistic electrons. 
As we will see, RF compression is achieved by exploiting the longitudinal slippage of electrons in an 
RF linac, at beam energies typically lower than ∼100 MeV. A magnetic compressor is made of an RF 
linac followed by a magnetic insertion including dipole magnets, and the electrons’ longitudinal slippage 
happens in the magnetic insertion only. Magnetic compression is commonly achieved at beam energies 
higher than ∼100 MeV. An exhaustive literature on bunch-length compression is available, and some 
fundamental references are provided in this chapter. Still, we will introduce the reader to the salient 
topics related to the single-particle dynamics, and will illustrate the basic equations of motion. 

3 Particle motion in a RF linac 
We consider the motion of ultra-relativistic particles in an RF linac made, for example, of copper 
structures with inner iris. We assume each structure made of identical cylindrical cells; the RF power 
flows through the cells, and is eventually extracted on a load. Such structures behave like waveguides 
of cylindrical symmetry, and the longitudinal electric field component, which has in general a radial 
dependence, is a superposition of n field harmonics characterized by an angular RF frequencyω and by 
an RF wave-number k [11]: 

 ( ) ( )( ) ( )TW TW
, ,0 syn

TW TW
,0 syn ,0 rf

cos cos

cos( ) cos( ) ,

z n n r n n z
n

z z

E a J k r t z k s E t t ks

E t ks kz E kz

ω ϕ ω ω ϕ

ω ϕ φ

+∞

=−∞

= − + ≅ + ∆ − +

= − + + ≡ +

∑  (6) 

where the generic particle time coordinate t(z) was expanded in the arrival time tsyn of the reference (or 
synchronous) particle, e.g. the bunch centroid, plus the arrival time of the generic particle with respect 
to it. We then used the identity kzt =∆ω . The z-coordinate runs inside the bunch, with z = 0 for the 
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reference particle. The s-coordinate runs along the electric axis of the cell. The arbitrary phaseϕ
determines the arrival time of the reference particle relative to the electric field inside the cell. Finally, 
we defined the RF phase rf synt ksφ ω ϕ= − + , which tends to be constant for ultra-relativistic beams. 

The last term of Eq. (6) describes the fundamental on-axis mode of the longitudinal electric field 
in a ‘travelling wave’ (TW) accelerating structure. In fact, we assume that the transverse beam sizes are 
much smaller than the structure inner radius, and that the beam is well centred on the structure’s electric 
axis. Moreover, most of the acceleration is provided by the fundamental mode of the field. 

If the structure is made in order to allow reflections of the RF power, we calculate the resulting 
net positive interference of two counter-propagating waves as follows: 

 

 

( )( ) ( )( )
( ) ( )

( )

SW TW TW
,0 ,0

TW
,0 syn

,0 syn

cos cos

2 cos cos

cos( )cos  .

z z z

z

z

E E t z ks E t z ks

E t t ks

E t kz ks

ω ϕ ω ϕ

ω ω ϕ

ω ϕ

≅ − + + + +

= + ∆ + −

≡ + +

 (7) 

Equation (7) describes the on-axis longitudinal electric field in a ‘standing wave’ (SW) structure. 
We now assume that the electric field is approximately uniform across the cell gap (i.e., cos(ks) ≈ const.), 
and that the reference particle’s velocity v, as well as those of all other particles, does not change 
substantially during acceleration (ultra-relativistic limit). Then the generic particle energy gain through 
a cell of coordinates [–g/2, g/2] is 
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∫ ∫

∫  (8) 

T is called the ‘transit-time factor’; it is always less than 1 (typically in the range 0.85–0.95) and it 
describes the reduction of energy gain because of the time variation of the electric field along the cell, 
when the beam traverses the cell with a finite velocity v < c. In the following, for the sake of brevity, 
we will collapse T into an effective electric potential ∆V0. It is worth noticing that the final expression 
for the energy gain in Eq. (8) applies to a TW as well with T = 1, where the TW structure is assumed to 
be tuned in order to maintain the synchronism between the RF field and the reference particle. 

Finally, we notice that the first equality in Eq. (7) can be rewritten as
( ) ( ) ( )SW TW

,0 rf rf0 cos cos 2z zE z E ksφ φ= ≅ + +   . This tells us that a particle travelling in synchronism 

with the forward wave at the light speed experiences both a constant accelerating force and an oscillating 
force from the backward wave. The latter has a double oscillation frequency, and it does not contribute 
to beam motion on average. Henceforth, we keep the notation according to which beam acceleration 
(i.e., acceleration sampled by the reference particle) is maximum for rf 0φ = : in this case the beam is 
said to be ‘on-crest’ of the RF wave. As we will see in the next section, magnetic bunch-length 
compression requires a correlation of the particles’ energy with their longitudinal positions inside the 
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bunch (see Figs. 3 and 4 below), and such a correlation is established by operating the linac ‘off-crest’, 
namely at an RF phase rf 0π φ− < < or rf0 φ π< < , depending on the geometry of the downstream 
magnetic insertion. The special point rf 2φ π= ±  is commonly called ‘zero crossing’. Accelerated either 
on-crest or off-crest, we assume that the beam longitudinal phase space (z, E) is mainly determined by 
the curvature imposed by the cosine-like behaviour of the accelerating field. 

The coefficient used to quantify the linear correlation in (z, E) is named ‘linear energy chirp’, and 
it can be evaluated by expanding the electric field-induced energy gain in Eq. (8) to first order in z: 

 

 
( ) ( ) ( )2

i 0 rf 0 rf
0 i 0 rf

0 rf

i 0 rf

1 d 1 d cos sin
d cos d

sin  ,
cos

Eh E e V e V kz o z
E z E e V z

e V k
E e V

φ φ
φ

φ
φ

 ≡ ≅ + ∆ − ∆ + + ∆
∆

= −
+ ∆

 (9) 

where the beam is injected into the linac with a mean energy Ei. When the beam energy spread induced 
by the RF curvature is much larger than the uncorrelated energy spread, which depends on the process 
of beam generation, we may estimate zh σσδ≈ . As a consequence, as long as the beam correlated 
energy spread is constant when the bunch length is shortened (or lengthened) in a magnetic insertion, 
the energy chirp is increased (or lowered) by the same compression factor. 

4 Particle motion in a magnetic chicane 
By evaluating the Lorentz force for a particle with longitudinal momentum pz traversing a dipole magnet 
with uniform vertical field B0, one finds that the radius of curvature R of the particle’s trajectory depends 
on the magnetic field and the momentum according to [ ] [ ]0GeV 0.2998 T [m]zp c B R= . This suggests 
that particles with different momentum will follow different (longer vs. shorter) orbits. Since the 
longitudinal velocity of all particles is assumed to be very close to c independently from their spread in 
energy, the particles will arrive at a longitudinal position s downstream of the magnet at different times. 
In other words, the longitudinal coordinate z of particles inside the bunch is changed. We therefore 
envision a way to shorten or lengthen the bunch, with a suitable arrangement of energy spread and dipole 
magnets. The former is manipulated with an RF linac as depicted in the previous section. In particular, 
the energy spread is correlated along the bunch so that, for example, less energetic particles in the bunch 
head will follow orbits longer than more energetic particles in the bunch tail, as shown in Fig. 2. At the 
exit of the magnetic insertion, the bunch head and tail will have been caught towards the bunch centre, 
and the bunch length will be shortened. The final aim of bunch-length compression, as explained in 
Section 2, is that of increasing the bunch peak current. 

In linacs driving single-pass FELs, it is usually convenient to maintain the beam trajectory on a 
straight path, which is also the electric axis of the accelerating structures. For this reason dipole magnets 
devoted to bunch compression are arranged in geometries that do not provide a net beam deflection, 
such as a four-dipole chicane. We first consider a symmetric geometry made of identical dipoles, as 
shown in Fig. 2. In each dipole of length ld, the bending angle of the reference (on-momentum) particle 
is 0 d 0 d ,0zl R eB l pθ = = , and the total deflection angle through the chicane is

04,03,02,01,0 =+++ θθθθ . For a generic off-momentum particle the bending angle is

( ) ( )0 d ,0 0 1z zeB l p pθ θ δ= + ∆ ≡ + , and still the net deflection through the chicane is zero. The same 

result holds for an expansion of the total bending angle to any order inδ .  
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We now assume that when particles are travelling in the drift section upstream of the chicane, 
their transverse position and angular divergence do not depend on their energy difference, i.e. the 
energy-dispersion function and its first derivative w.r.t. s, evaluated at the entrance of the chicane, are 
both zero  [12]: ( ) ( ) 0'0',00 ≡∆==≡∆== δηδη xsxs xx . For symmetry, those functions are also 
zero at the chicane exit. Naively, this means that particles lying on a line at the entrance of the chicane 
and with no angular divergence still lie on a line at the chicane exit, regardless of their spread in energy 
(see Fig. 2). Such a property defines the chicane as an ‘achromatic’ line. Since the total bending angle 
of an off-momentum particle through the chicane is zero at all orders inδ , as demonstrated above, such 
a chicane is achromatic at all orders (barring magnets’ errors or geometry imperfections). 

 
Fig. 2: Geometry (not to scale) of a four-dipole symmetric magnetic chicane, and particles’ motion through it for 
the case of bunch-length compression. See context for the meaning of symbols. 

In accelerator physics, the evolution of particle 6D coordinates through an arbitrary beam line is 
commonly depicted through the matrix formalism [12], i.e., each element of the beam line is depicted 
through a matrix whose terms depend on the element’s parameters and geometry. A beam line made of 
consecutive elements is represented by a matrix that is the ordered product of the individual ones. Thus, 
the dependence of a particle’s z-coordinate at the exit of the chicane on its momentum deviation can be 
written as ( )f i 56z z Rδ δ= + , with R56 the chicane matrix element. We now calculate R56 looking at the 
particle longitudinal slippage ∆z = zf – zi, through the chicane, for the geometry shown in Fig. 2, and 
assuming once more ultra-relativistic particles. 

We neglect for the moment the length of dipole magnets with respect to other lengths of the 
chicane involved. The path length of an off-momentum particle through the chicane is

2
1

cos
2 LLsz +=
θ

, 

and the one of the on-momentum particle
2

0

1
0, cos

2 LLsz +=
θ

. Their path-length difference, i.e. the 

longitudinal slippage of the off-momentum particle w.r.t. the on-momentum one, at the exit of chicane, 
is 

 ( ) ( )
( )

( )

( )

2 2 4 2 4
,0 1 1 0 1 0 2

0

2 4 2
1 0

1 1 12 1
cos cos 1

2 ,  .

z zs s s L L o L o

L o

θ θ θ θ θ
θ θ δ

θ δ θ δ

  
∆ = − = − ≅ − + = − − +  

+    

≅ − +

 (10) 

Equation (10) tells us that 2
0156 2 θ

δ
LzR −≅

∆
= for 10 <<θ ; namely, at first order inδ  the bunch-length 

shortening is quadratic with the dipoles’ bending angle, and does not depend on the drift length in 
between the inner dipoles (in that region, particles are travelling on parallel trajectories at the same 
velocity, and therefore they do not slip one with respect to the others). When the path length in non-
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zero-length dipoles is included, we find 2
56 0 1 d

22
3

R L lθ  ≅ − + 
 

. More accurate expressions can be found 

in the literature [13]. 

There is an intrinsic connection between R56 and the energy-dispersion function (henceforth, 
simply dispersion), which we explicit below. Let us introduce the ‘momentum compaction’ factor of a 
dispersive beam line, i.e., the particle’s relative variation of path length per relative momentum 

deviation, 0
c

L Lα
δ

∆
≡ . In a dipole magnet we have ( ) 0000 θθθ xRxRL ∆≅−∆+=∆ for

( ) 00 →−=∆ θθθ , with R0 the curvature radius of the on-momentum particle, and ∆x the lateral 
distance in the bending plane of the off-momentum particle from the reference trajectory. Hence, we 

obtain c
0

1 x
R

α
δ
∆

≅ . For R56 we find 

 ( ) ( ) ( )
( ) ( )

( )56 c 0 56 c
0 0 0

' '1' d ' d ' d '
' '

s s s
xx s sz LR L R s s s s s

R s R s
η

α α
δ δ δ

∆∆ ∆
= ≅ = → = = =∫ ∫ ∫  , (11) 

where we have retained a generic dependence of the bending radius on the s-coordinate, and we used 
the definition of dispersion function introduced above. Equation (11) holds for an arbitrary beam line, 
and it shows that longitudinal slippage of particles only happens in the presence of curvature, i.e., inside 
dipole magnets. At the same time, manipulation of the dispersion function in between consecutive 
dipoles (e.g., through a suitable distance between dipoles of a chicane, or with additional quadrupole 
magnets in between them) allows R56 of the system to be tuned.  

We finally point out that if particles are not in the ultra-relativistic regime, i.e., their longitudinal 
velocity varies with their longitudinal momentum, then an effective particles’ slippage also happens in 
a drift section. It can be shown that the drift section is characterized by a matrix element: 

 ,0 ,0 0
56 0 2 2

,0 0 0

z zz

z z z

p LzR L L
p

ββ
δ β γ β γ

∆∆
= = −∆ = − = −

∆ ∆
 , (11a) 

where the suffix ‘0’ refers to the reference particle. At low beam energies, this term may become 
important. If applied to a chicane, L0 refers to the path length through the whole line. 

5 Bunch-length linear compression factor 
We now consider a particle motion in the chicane of Fig. 2. We differentiate the particle longitudinal 
slippage, evaluated through the whole chicane, and keep only terms to first order in the particle 
coordinates (linear approximation): 

 

( )

unc
f i 56 i 56 i 56 56

0 0 i 0

i i 56 56 unc i 56 unc

dd 1 d ( )d d d d d 1
d

d 1 d  .

EE E zz z R z R z R R
E E z E

z h R R z C R

δ

δ δ

 
= + ≅ + = + + 

 
= + + ≡ +

 (12) 

In Eq. (12), E0 is the electron beam mean energy at the compressor and δ is the energy deviation relative 
to E0. We have split the particle energy deviation into two terms, one for the energy deviation correlated 
with z, which translates into the initial linear energy chirp hi, and the other one for the initial uncorrelated 
energy deviation, uncδ . Equation (12) defines the linear compression factor ( ) 1

56i1 −+= RhC . It is worth 
noticing that ∞→C for 56 i1R h= − . However, even in that limit, the actual bunch length is finite and 

S. DI MITRI

370



reaches the minimum rms value ,min 56 ,uncz R δσ σ=  by virtue of a non-zero uncδ . Thus, ‘full’ compression 
at higher beam energies would result in shorter minimum bunch lengths. With accepted convention, the 
chicane geometry in Fig. 2 provides R56 < 0, and therefore the bunch length is shortened if hi > 0, namely 
if the bunch head has a lower energy than the bunch tail. If a non-linear energy chirp is present (E 
depends on z at higher orders in z), we expect hi(z) to vary along the bunch, and so will C. 

The uncorrelated energy spread plays an important role in the build up of the FEL instability, and 
for this reason it is convenient to point out its evolution during the compression process. In practical 
situations the linearly correlated energy spread is controlled through a proper setting of the linac RF 
phase. Quadratic and cubic components may require more sophisticated beam manipulations – such as 
acceleration through higher harmonic RF frequency structures or shaping the bunch current profile – 
which are not considered at the moment.  

We write down the total relative energy spread of a generic particle as the sum of an uncorrelated 
term ( uδ ) and a z-correlated term ( cδ ), the latter being the beam energy chirp times the particle z-
position. The total energy spread is assumed constant through the chicane (only magnetic fields are 
involved, and no frictional forces), and the final bunch length is expressed as a function of the initial 
one through the definition of C given above: 

 ( )2 2i
tot u,i c,i u,i i i u,f f f u,f i 56 u,i... ,  .zh z h z Ch R o z

C
δ δ δ δ δ δ δ δ∆ = + = + ∆ ≡ + ∆ = = + + + ∆ 

 
 (13) 

By equating the third and the last terms of Eq. (13), and then passing to the rms value of the quantities 
involved, we find ( )22 2 2 2

u,f u,i i 56 u,i1 Ch R Cσ σ σ= − = , i.e., the uncorrelated energy spread is increased by 
the same factor C by which the bunch length is shortened. This result is often referred to as ‘preservation 
of longitudinal emittance’ because, when the energy chirp is removed (virtually or in reality) from the 
phase space, the longitudinal emittance is just the product of bunch length and uncorrelated energy 
spread. The product is constant, in fact, in the approximation of linear motion and absence of frictional 
forces. An illustration of the preservation of the longitudinal emittance for ‘undercompressed’, ‘fully 
compressed’ and ‘overcompressed’ beams is given in Fig. 3.  

 
Fig. 3: Sketch of beam longitudinal phase space (ellipses) before (grey shadow) and after (blue) a magnetic 
chicane. Following accepted convention, R56 < 0 and bunch head is at z < 0; therefore, a positive chirp hi at the 
entrance of the chicane (bunch head at lower energy) leads to bunch shortening. The ‘undercompression’ scenario 
on the left is the prevalent mode of operation of FEL linac drivers. When hi = –1/R56, the longitudinal phase space 
at the chicane exit is upright (plot at centre), and the bunch length lb reaches its minimum value as set by the 
uncorrelated energy spread uδ . If hi > 0 but R56 is so negative that 1+ R56 hi < 0, then the bunch head and tail flip 
their longitudinal positions, and the energy chirp at the chicane exit has changed its sign. This is the case of 
‘overcompression’ (right-hand plot), in which the bunch surpasses the point of ‘full compression’, and therefore 
the final bunch length is longer than its minimum value. In the absence of frictional forces (collective effects), the 
total energy spread totδ  is constant through the chicane, as well as the beam longitudinal emittance, represented 
by the area of the ellipses. 
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6 Bunch-length compression at second order and linearization 
Quadratic and even cubic components of the energy chirp, as anticipated above, may play an important 
role in the compression process, as C is no longer constant through the bunch, and different longitudinal 
portions of the bunch (slices) may be compressed in a different manner. Such a dynamics would imply 
that the current profile before compression (e.g., uniform, parabolic, Gaussian, etc.) is not preserved by 
the compression process. The situation is additionally deteriorated by a higher order dispersion function 
that translates into a higher order momentum compaction (T566 term at second order, U5666 at third order 
etc). In order to evaluate such a non-linear dynamics, we start expanding the expression for the energy 
gained by a generic particle in an RF linac to second order in z. For illustration, we ignore at this stage 
the second-order momentum compaction in the chicane. As already done for Eq. (8), we find  

 

 ( )2 2 30
1 i 0 rf 0 rf rfcos sin cos

2
e VE E e V e V kz k z o zφ φ φ∆

≅ + ∆ − ∆ − +  . (14) 

The second-order term in z of Eq. (14) can be cancelled by means of an additional RF component, but 
with different RF wavenumber: 
 

 
( )

( )
2 1 H H H

2 2 3H
1 H H H H H H H

cos

cos sin cos  .
2

E E e V k z
e VE e V e V k z k z o z

φ

φ φ φ

= + ∆ +

∆
≅ + ∆ − ∆ − +

 (15) 

By comparing Eqs. (14) and (15), we find that the quadratic term generated by the additional 
structure(s) has to be positive, i.e., Hcosφ < 0  (say, Hφ π= ) and therefore the zeroth-order term from 

the additional linac is decelerating the beam. The new linac voltage has to satisfy
2

H 0 rf2
H

coskV V
k

φ∆ = ∆ . 

Thus, compensation of the second-order energy chirp (‘RF curvature’) and net beam acceleration can 
only be achieved simultaneously if the RF wavenumber of the additional linac (often named ‘linearizer’) 
is larger than the one of the baseline accelerator. The scaling of the linearizer peak voltage with the 
wavenumber favours this approach, as long as the ratio of wavenumbers is 1/3 or smaller. For example, 
a baseline RF linac running in the S-band 3 GHz RF and providing 200 MeV energy gain, can be 
supplied by an additional X-band 12 GHz RF structure with peak voltage at ∼15 MV level.  

As anticipated above, we have so far ignored the non-linear z-motion of particles through the 
chicane, which is depicted by ( ) 2

f i 56 566z z R Tδ δ δ= + + up to second order. In a more complete 
analysis, the energy deviation in this expression combines with the expression for the energy chirp up 
to second order. In this more general and realistic case, linearization does not apply to the longitudinal 
phase space at the entrance of the chicane only, but to the compression process as a whole, through the 
RF linac and the chicane. As a result of cancellation of all second-order terms in the particles’ dynamics, 
we expect that the current profile at the exit of the chicane resembles the one at its entrance, just squeezed 
in the z-coordinate. It can be shown [14] that cancellation of all the second-order terms for the special 

case Hcos 1φ = −  implies 0566
2

56 =+ TabR , with 0
rf

i

sine Va
E

φ
∆

= −  and 
2 2

0 rf H H

i

cos
2

e V k e V kb
E
φ∆ + ∆

= − . 

By imposing that the beam mean energy at the chicane, EBC, and the final bunch length do not 
change w.r.t. the case of purely linear motion, and additionally ignoring the contribution of the 
uncorrelated energy spread to the final bunch length, we find the necessary peak voltage of the harmonic 
cavity [14]: 
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Te V E E
k Ck k R

    ∆ = + − −   −      
 . (16) 

Figure 4 shows beam longitudinal phase-space and peak-current profiles simulated with the 1D 
tracking code LiTrack [15] up to second order, in the first stage of the FERMI FEL linac. The linac 
upstream the four-dipole chicane is set at 26 deg S-band far from the crest. With no X-band cavity, the 
RF curvature leads to a current spike in the bunch head, and to a ramped current profile at much lower 
level. A uniform current profile is recovered with an X-band cavity voltage of –15 MV. 

Although Eq. (16) is valid for a one-stage compression only, the dependence of the linearizer 
peak voltage on the RF wavenumber is the same for multistage compression schemes. Moreover, when 
two chicanes or more are adopted, the peak-voltage setting of the linearizer does not vary much because 
after the first chicane, at lower energy, the bunch is shorter and less vulnerable to RF curvature [16]. A 
semi-analytical treatment of linearization of the compression process through RF cavities in the presence 
of higher order beam dynamics and single-bunch collective effects (e.g., short-range geometric wake 
fields [17]) can be found in Ref. [18]. 

    

 
Fig. 4: Longitudinal phase space (top row) and current profile (bottom row) of a 700 pC charge bunch injected 
into the S-band FERMI FEL linac at 97 MeV (left). Centre plots are for the beam after magnetic compression in 
a four-dipole chicane, with no linearizer included. Right-hand plots are for the same beam when an X-band cavity 
in the upstream linac is set to –15 MV, for linearization of the compression process. Simulations were done with 
LiTrack code and up to second order. 

Compensation of third-order terms is also possible by running the linearizer off-crest. However, 
the third-order energy chirp is commonly generated in the beam injector by space-charge forces (at 
energies typically lower than 5 MeV for photocathode RF injectors), and is of a sign [19] that is difficult 
to cancel without also partially cancelling the linear energy chirp necessary for compression, resulting 
in either inefficient acceleration or insufficient compression factor.  

Alternative methods for the linearization of the compression process include passive dielectric-
lined insertions or magnetic elements. In the former case, an optimum longitudinal voltage loss over the 
length of the bunch can be provided in order to compensate both the second-order RF time curvature 
and the second-order momentum compaction term [20]. Removal of second-order non-linearities in the 
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longitudinal phase space through optical elements is typically dealt with by sextupole magnets [21–23]. 
Sextupoles introduce a quadratic dependence of the particle path-length difference on energy deviation 
through an effective T566 term that, if supplied with the appropriate sign, ‘stretches’ the curvature in 
phase space. This mechanism is illustrated in Fig. 5. However, if the beam has to enter the undulator 
chain for lasing, tight tolerances on the final beam transverse emittance make the sextupole correction 
in a four-dipole chicane less attractive due to possible high-order magnetic aberrations. Moreover, the 
use of a higher-harmonic RF field does not introduce coupling between longitudinal and transverse 
phase-space coordinates, unlike optical manipulation of R56 and T566 terms does. For this reason, to date 
most of the FEL facilities have chosen to linearize the magnetic compression process with up-frequency 
RF structures. In principle, sextupole-induced aberrations can be counteracted with a suitable betatron 
phase advance between those magnets. This approach, however, implies a more sophisticated design of 
the chicane [24] or a different magnetic insertion [25]. 

It is worth noticing that a larger T566 term, such as the one provided by a multistage compression 
scheme, may be helpful in the reduction of the quadratic energy chirp induced by longitudinal geometric 
wake fields excited in small-iris accelerating structures [2]. The multistage compression, however, tends 
to amplify the so-called microbunching instability, which implies a finally increased energy spread and 
modulated current profile, as discussed in the next chapter.  

 
Fig. 5: Linearization of longitudinal phase space with T566 transport matrix element provided, e.g., by a sextupole 
magnet installed in a dispersive region. (1) RF curvature imprints  second-order non-linearity onto the phase space 
(‘RF curvature’). (2) Linear energy chirp is imparted to the beam with off-crest acceleration upstream of a chicane. 
(3) Beam passes through a sextupole magnet in the middle of the chicane, and it is time-compressed at the chicane 
exit. (4) Linear chirp is removed with (opposite) off-crest phasing in a linac downstream of the chicane. 

Most common geometries of magnetic insertions for bunch-length compression are shown in Fig. 
6. C-shape symmetric chicanes are very common because they allow remote control of the bending 
angle through a translation stage of the inner dipoles, for a tuning of the compression factor and balance 
of momentum compaction vs. coherent synchrotron radiation (CSR) instability, which is discussed in 
the next chapter. The inner drift section does not contribute to the compression, but it offers room for 
hosting beam diagnostics and scrapers or masks for beam shaping. The chicane lateral arms may host 
weak quadrupole magnets for the correction of spurious dispersion function due to dipole magnet errors. 
Different geometries (S-shape, asymmetric tuneable C-shape and double C-shape) of the chicane have 
been explored in order to minimize the impact of CSR emission on the beam emittance. 

In symmetric C-shape geometries, all dipoles provide the same bending angle. For any given
2

56 0 1 d
22
3

R L lθ  ≅ − + 
 

 (see Section 4 for notation), we have T566 ≅ –1.5 × R56, U5666 ≅ 2 × R56. For 

compactness, the inner dipoles can be collapsed to one magnet with double bending angle than the outer 
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ones. In S-shape geometries, the inner dipoles provide a bending angle larger than the outer ones. 
Quadrupole and sextupole magnets can interleave dipole magnets. 

Arcs usually provide an R56 term with sign opposite to that of four-dipole chicanes, and are a natural 
choice for compression in recirculating machines, such as energy-recovery linacs. They may offer the 
chance of accommodating sextupole magnets for the linearization of the compression process, with a 
phase advance suitable for the cancellation of geometric and chromatic aberrations (the latter ones 
commonly dominate because of the relatively large relative energy spread required for compression). 
However, additional constraints on the linear optics functions in the bending plane are required in the 
arcs in order to minimize or cancel the otherwise CSR-induced projected emittance growth [26]. An arc 
composed of Nc fodo cells (focusing and defocusing quadrupoles alternate, interleaved by identical 
dipoles), with betatron phase advance µx per cell in the bending plane, and extending over a total length 

Larc, is characterized by
2
0 arc

56 2 2
c4 sin ( 2)x

LR
N

θ
µ

≅  ; with no sextupoles included, T566 ≈ 2 × R56 or larger. A 

dog-leg can be built with two consecutive arc-fodos. For the simplest two-dipole symmetric geometry, 
the dog-leg features 2

56 0 d 3R lθ≅ . A series of double- or multibend achromatic cells can be used to build 
up an arc of arbitrary bending angle. In a periodic arc made of Nc identical symmetric double-bend 
achromatic cells, 2

56 c 0 d2R N lθ≅ . 

    
 

 

            
 

 
Fig. 6: Most common geometries (not to scale) of magnetic insertions for bunch-length compression. From top, 
left to right: C-shape, S-shape and double C-shape chicanes; bottom, arc-fodo, dog-leg-fodo and double-bend 
achromatic cells.  

7 Jitter of bunch arrival time and compression factor 
FELs usually require tight control of the electron-beam arrival time at the undulator. The shot-to-shot 
reproducibility of the arrival time of consecutive electron bunches, henceforth named ‘arrival time jitter’ 
(ATJ), is of great importance for multishot experiments. On the single-pulse basis, it is even more 
important for FELs driven by an external laser (externally seeded FELs), in order to ensure synchronism 
between the laser and the electron bunch. The requirement of small ATJ is particularly stringent when 
the electron bunch is longitudinally compressed to sub-ps durations, in order for the jitter to be (much) 
smaller than the bunch duration. Following Ref. [27], we introduce a model for the ATJ in the presence 
of magnetic compression in a four-dipole chicane, like the one sketched in Fig. 2. The error sources 
contributing to the ATJ we consider are: photo-injector laser arrival time on the cathode, jitter of phases 
and voltages of the RF linac and fluctuations of the compressor’s dipole field, as may be produced by 
fluctuations of the power converters.  
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We adopt the bunch centroid as the reference particle. Its final time coordinate in the laboratory 

frame is f i
l Lt t
c

∆ +
= + , where ti is the reference initial arrival time, L is the straight trajectory length 

through the chicane (zero bending angle) and ∆l is the path-length difference between the beam 
trajectory through the chicane with dipoles turned on and the straight trajectory. If θ << 1, one finds [13]

256Rl −≅∆ . The ATJ after the beam has passed through an RF linac and one chicane is 
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∂ ∂ ∂ ∂ ∂

 (17) 

where E is the beam mean energy at the chicane and B is the dipoles’ magnetic field. The last equality 
makes use of the expressions for the dipole length d sinl R θ=  and of the curvature radius ( ).R E eBc=

The differential of the beam energy w.r.t. the variation of the peak voltage, RF phase and arrival time at 
the linac entrance, is rf id cos d sin d sin dE e V eV ecVk tφ φ φ φ= − − . Substituting it into Eq. (17), and 
also introducing the linear compression factor C (see Eq. (12)), we obtain 
 

 

56 rf
f i i

56i

sincos sin dd d d d d

d cos sin dd d  .

R eVckeV Bt t e V t
c E E E B

Rt eV Be V
C c E E B

φφ φ φ

φ φ φ

 ≅ + − − − 
 

 = + − − 
 

 (18) 

We now move from the single-particle picture in Eq. (18) to the rms value of the ATJ, where all 
the jitter sources are assumed to be small and independent perturbations to the particles’ motion: 
 

 
2 2 2 22 2

t,i2 256
t,f

cos sin  .V BR eV eV
C c E V E Bφ

σ σ σφ φσ σ
           ≅ + + +           
            

 (19) 

If no additional dispersive insertions are foreseen between the chicane and the undulator, the ATJ at the 
exit of the chicane will be frozen up to the end of the beam line. Reduction of the ATJ at the entrance 
of the chicane by the compression factor is due to the fact that an earlier (later) arrival of the bunch 
centroid to the RF field in the upstream linac translates, e.g., to a lower (higher) energy at the chicane, 
and therefore to a shorter (longer) path length with respect to the reference trajectory.  

The linac peak voltage jitter maximally (minimally) contributes to the ATJ for the linac operated 
on crest (at zero crossing). For on-crest operation, the RF phase jitter term can usually be neglected as 
long as the bunch length is much shorter than the RF wavelength. This opposite behaviour of the two 
RF jitter sources as a function of the RF phase, suggests the possibility of choosing the RF linac phase 
in a way that, for any specified error budget, the ATJ is minimum [27]. Although quite an attractive 
option in principle, such an optimal linac configuration constrains the compression factor to some 
specific values or to a limited range, for any given setting of the magnetic chicane. In the case of 
multistage compression schemes, more RF settings are available that may simultaneously ensure the 
lowest ATJ for a design compression factor, energy spread and chicane bending angle. 

A jitter of the compression factor implies a jitter of the final bunch length or of the final peak 
current, for initially constant bunch length and bunch charge. Owing to the fact that the linac upstream 
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of the chicane is run off-crest in practical cases, the jitter of C is dominated by the RF phase jitter. We 
therefore differentiate the expression for C assuming that only the RF phase varies (namely, we neglect 
any variation of linac peak voltage and dipole field): 
 

 

( ) ( )
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∆∆ ∆ ∆ ∆ = − = ∆ + ≅ ≅ = 
 

∆ ∆ ∆
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≅ −

 (20) 

Equation (20) shows that the relative jitter of C is proportional to C itself and that, for any given RF 
phase jitter, it is maximum for the phase set at zero crossing. 

8 RF compression 
RF compression [28] refers to two techniques of bunch-length shortening that exploit the relative 
longitudinal slippage of low-energy electrons as induced by a suitable arrangement of the RF linac 
phase. In RF ‘ballistic bunching’, an energy chirp is imparted to the beam in a cavity run off-crest. If 
the beam energy is low enough (particles are not in the ultra-relativistic limit yet), a difference in 
longitudinal momentum translates into a difference in longitudinal velocities, and therefore in arrival 
time at a given position downstream of the cavity. In order for a ∼10 MeV bunch to be shortened by, 
say, a factor ∼5, a drift length of the order of ∼1 m or longer may be needed after the cavity. Bunch 
shortening happens if the bunch head is at lower energies than the bunch tail. Most of bunch shortening 
happens outside the cavity, and the energy–position correlation established in the cavity tends to be 
removed later in the drift section. However, the final longitudinal phase space usually shows strong non-
linearities as induced by both the RF curvature and space-charge forces, which are enhanced by the 
increased charge density [29].  

RF ‘velocity bunching’ differs from ballistic bunching in that the phase-space rotation happens 
inside an RF linac, still run off-crest, and the energy chirp is smoothly removed in the linac itself through 
electrons’ longitudinal slippage and acceleration. Similarly to the ballistic bunching, the minimum 
bunch length achievable with this technique is determined by the distortion of the final phase space 
induced by RF field nonlinearities and space-charge forces.  

In order to follow the longitudinal particle motion in the presence of RF compression, we assume 
the beam to be accelerated in a (series of) SW structure(s), which were introduced in Section 3. The 
evolution of the beam mean energy gain and the beam arrival time along the beam line is  
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 (21) 

where we introduced the ‘electron capture’ parameter ,0
2

e2
zeE

km c
α ≡ and the RF phase ϕ; the factor ‘2’ in

α disappears for TW structures. The physical meaning of such a normalized strength of the accelerating 
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field is that, for values larger than 1, the particle dynamics shows relativistic effects within one period 
of the RF wave.  

Following Ref. [30], we notice that dt (equivalent to beam phase) changes considerably near the 
cathode, where the electrons are still not or weakly relativistic. In that region s is small and we integrate 
Eq. (21) as follows:  
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−

∫ ∫
 (22) 

We now insert the upper expression of Eq. (22) in the lower one, to find an approximate 
expression for the beam phase. The latter will be inserted into Eq. (21) again to find a more accurate 
expression for the energy gain. Eventually, we find  
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 (23) 

The asymptotic value of the beam phase in Eq. (23) is for γ >> 1. Figure 7 shows particle trajectories in 
the longitudinal phase space as depicted by Eq. (23). In that example, acceleration is maximum for

2πϕ = . 

A rough estimation of the bunch length compression factor in the limit of high beam energy can 
be obtained by recalling that bunch-length shortening means also compression of an incoming time or 
phase jitter (see Section 7). We differentiate the phase expression in Eq. (23) and find 
 

 
1

0 0
2

0

d sin1  .
d 2 cos

C φ φ
φ α φ

−

∞

 
≈ = − 

 
 (24) 

For example, for 2=α and 30 πϕ = , C ≈ 10.  

Although neglected so far, the longitudinal particle dynamics at beam energies as low as 
considered in this section is intrinsically coupled to the transverse one by means of the repulsive 3D 
space-charge forces. In practical situations, the compression factor achieved through RF compression is 
limited by the tolerable transverse emittance dilution induced by space-charge forces. This effect can be 
mitigated by the application of external magnetic focusing, such as solenoidal fields, that counteract the 
particles’ repulsion (‘emittance compensation’) [31]. 
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Fig. 7: Phase-space apparent rotation in RF sinusoidal accelerating field, leading to bunch-length shortening for a 
bunch injected near the phase of zero crossing. Published in Ref. [29]. Copyright of American Physical Society. 
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Coherent Synchrotron Radiation and Microbunching Instability 

S. Di Mitri 
Elettra – Sincrotrone Trieste, Trieste, Italy 

Abstract 
Emission of coherent synchrotron radiation (CSR) in dipole magnets by ultra-
relativistic electron beams is treated. The CSR impact on beam energy 
distribution and transverse emittance is discussed, and methods for 
minimizing emittance growth are recalled. A qualitative explanation of the 
contribution of CSR to the microbunching instability is given. This instability 
is treated in some detail in the presence of longitudinal space-charge force and 
magnetic bunch-length compression. Special attention is given to the 
aforementioned collective effects such as for the production of high peak 
current bunches driving free-electron lasers. 

Keywords 
Electron bunches; linear accelerators; electron optics; synchrotron radiation; 
impedance; microbunching instability. 

1 Coherent synchrotron radiation 
The advent of sub-picosecond-long electron beams with very high brightness in ultra-violet (UV) and 
X-ray free-electron lasers (FELs) driven by radio-frequency linear accelerators (RF linacs) has raised 
the awareness of the accelerators community to the effect of coherent synchrotron radiation (CSR) 
emission on the beam energy distribution and transverse emittance (primarily in the bending plane). In 
fact, CSR is one of the limitations associated to magnetic bunch-length compression (see previous 
chapter) and to transport of short bunches in multibend lines. 

CSR is the low-frequency component (typically up to the THz frequency range) of 
electromagnetic radiation emitted by ultra-relativistic particles in dipole magnets, see Fig. 1.  

 
Fig. 1: Synchrotron radiation flux spectral distribution, emitted by the ~70 pC electron-bunch profile in the inset, 
through a dipole magnet, at the beam kinetic energy of 12.5 MeV. Courtesy of I.V. Bazarov. 
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Particles are there subject to centripetal acceleration according to the Lorentz force. Radiation 
emitted by particles accelerated perpendicularly to their velocity is called synchrotron radiation (SR). 
The low-frequency part of the SR spectrum is amplified w.r.t. the high-frequency one, by the fact that 
electrons in the bunch are confined to a length scale of the order of, or shorter than, the radiation 
wavelength. As a consequence, the electric field of radiation produced by individual electrons adds in 
phase. This gives rise to a total radiation intensity that is proportional to the number of electrons in the 
bunch squared. In contrast, at shorter wavelengths the radiation field adds incoherently, i.e., the total 
intensity goes linearly with the number of beam particles. For a typical ~100 pC bunch charge, the CSR 
intensity is amplified by a factor ~5 ´ 108 w.r.t. the incoherent component.  

The SR total power emitted in the fully incoherent and fully coherent regime in a dipole magnet 
of bending radius R is, respectively: 

  (1) 

with N the number of particles in the bunch, g the Lorentz factor for the beam mean energy, e the electron 
charge, c the light speed in vacuum and e0 the vacuum permittivity. The choice of beam energy and 
dipole radius typical of magnetic insertions in linac-driven FELs is a compromise between radiation 
effects and space-charge effects on the beam quality. As a result, SR is emitted in a regime of partial 
coherence in which the power of coherent emission is independent of beam energy (this happens for 
rms bunch lengths of the order of the characteristic SR wavelength ~ , and up to ~7 orders of 
magnitude longer wavelengths) [1]. In this case the total CSR power emitted by a Gaussian line-charge 
distribution moving along an arc is 

  (2) 

Equation (2) shows that CSR power is highest for shortest bunches. For example, a 70 pC charge 
bunch with 20 µm rms bunch length emits MeV/m energy per meter in a 2 m radius 
dipole. At the energy of 1 GeV, that corresponds to 0.03% loss of kinetic energy in a 1 m long magnet. 
This is comparable to the equivalent energy bandwidth of a UV or X-ray FEL [2]; thus, it is a significant 
amount of CSR power.  

Owing to particles’ curved path, radiation emitted by trailing particles in the bunch is allowed to 
catch up with leading particles within the dipole magnet (see Fig. 5 below). The primary impact of this 
tail–head CSR interaction [3] is a slice-by-slice change of longitudinal momentum. Such a change is in 
fact correlated with the z-coordinate internal to the bunch, and the z–E correlation length scale is of the 
order of the bunch length. Hence, particles in the same bunch slice, with a slice length much shorter 
than the bunch length, are subjected to the same longitudinal electric field. The change in particle energy 
in a dispersive region causes particles to deviate from their design trajectory. This accumulates into 
transverse offsets and angular divergence of bunch slices, by an amount of the order of 

where are the energy dispersion function and its longitudinal derivative, 
respectively, at the location of CSR emission, and  is the CSR-induced relative energy deviation. This 
slice-by-slice character is illustrated in Fig. 2. Assuming typical values in magnetic compressors 

m, rad and , the CSR power corresponds to transverse errors of the order 
of . These are comparable to typical unperturbed rms beam size and angular 
divergence. We see from such examples that it is essential to incorporate CSR in the design and 
optimization stage of a magnetic lattice.  
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Fig. 2. Top-view representation of longitudinal bunch slices. Passing through a dipole magnet and interacting with 
CSR, the slices change their mean energy and energy spread. Energy change in a dispersive region causes different 
slices to end up at different transverse positions and angular divergences. 

2 One-dimensional CSR model 
The tail-to-head effect depicted in the previous section relies on the finite time that photons take to travel 
on a straight path from the source particle to the witness particle, in the same bunch. The CSR physics 
can therefore be described by taking into account the field retardation effect, i.e., the relation between 
the position and time t at which a field is observed, and the retarded position  and time t’ at which 
this field is actually generated: . The electric field and the magnetic field at 

position and time t due to a point charge q in general motion with instantaneous velocity  

and acceleration , derived from the Liénard–Wiechert retarded potentials, are [4] 

                            (3) 

where . The first term of the electric field in Eq. (3) is commonly named ‘velocity’ 
or ‘Coulomb’ term; the second one, ‘acceleration’ or ‘radiation’ term. When the distance of an observer 
from the emission point (say, ³ 0.1 m or so) is much larger than the bunch length (say, £ 1 mm or so), 
the physical system of any source particle–witness particle is well aligned with the circular trajectory. 
For this reason, the one-dimensional (1D) approximation to the description of the CSR field can be 
applied when the transverse offset of particles from the reference orbit can be neglected. An estimation 
of the regime in which the 1D approximation applies, also named the ‘Derbenev criterion’, is obtained 
by demanding that the retarded bending angle in the 1D model is a good approximation of the actual 
retarded angle, as shown in Fig. 3. This brings us to the constraint [3], where 

the symbols refer to rms transverse beam size in the bending plane, bunch length, and dipole radius. It 
is worth mentioning that in some cases [5, 6] the 1D model was found to reproduce well experimental 
evidence of transverse and longitudinal CSR effects, even if k was approaching unity. 
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Fig. 3: CSR modelling in 1D approximation neglects the transverse offset of source and witness particles. The 
condition according to which leads to the so-called Derbenev criterion (see context for details). 

A rather common 1D CSR model implemented, e.g., in the elegant particle-tracking code [7, 

8] approximates the electron bunch by a line-charge density , where

 is the volume-charge density. The calculation of the retarded electromagnetic field due to

is done on a path given by an infinitely long drift, a circular arc with radius R and angle , and a 

drift with finite length. Since any change in during the CSR interaction is neglected, the system 
is said to be in the ‘frozen-beam’ approximation. Namely, it is assumed that the current profile during 
CSR emission is the same as during CSR interaction.  

The point-charge field in Eq. (3) can be used to directly calculate the electric field due to a whole 
charge distribution  by a Green’s function method, i.e., by considering as a collection of 

infinitesimal charges  and integrating (in practice, some mathematical elaborations are done in 
order to speed up this calculation). The result for the component of the (longitudinal) electric field 
tangent to the beam trajectory at the interaction point, for an observation point on the arc, turns out to 
be [9] 

 ,                   (4) 

where we introduced the electron–photon path-length difference or ‘slippage length’ 

over a circular arc of length . For beam energies of interest 

here, the term ~ can usually be neglected.  

The term in square bracket of Eq. (4) dominates at the entrance of the dipole magnet (‘entrance 
transient’ regime of CSR emission) and finds its origin in the Coulomb term of Eq. (3). The integral 
dominates as becomes large (‘steady-state’ regime of CSR emission), and is mostly due to the radiation 
term in Eq. (3). The entrance transient effect is opposite in sign to that of the bulk contribution. It 
describes the physical picture in which some head particles are inside the magnet, but they do not interact 
with CSR because tail particles still lie outside the magnet (and therefore are not radiating yet). In 
elegant, an infinitely long drift section is always assumed at the magnet entrance. This implies that, 
by using the full expression of Eq. (4), the global CSR effect might be underestimated if the drift section 
between two consecutive dipoles is shorter than the characteristic formation length
[10]. Mostly depending on beam energy, LEN can be as long as ~0.1 m to ~10 m.  
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When both leading and trailing particles are inside the magnet, CSR interaction can be described 
in the steady-state regime. Formally, we are allowed to do this if emission happens at wavelengths 
comparable to bunch length, and much longer than the characteristic wavelength of incoherent 

synchrotron radiation (ISR), . Moreover, the bunch has to be short enough to allow 

photons emitted by trailing particles through the dipole to overcome leading particles. In short, we 
assume that [9], with lb the characteristic bunch length. The last inequality also means 
that the magnet has to be longer than the characteristic distance from the magnet entrance at which 

transition to the steady state takes place, i.e., . Equivalently, the transient effect at the 

dipole entrance extends to approximately an angle , and it can be ignored w.r.t. the 
steady-state emission as long as the retarded bending angle  [9]. Finally, propagation of CSR 
field through a drift section following the magnet enhances the global CSR effect, where the field is 
usually assumed to decay exponentially or so with the drift length [10].  

In summary, Eq. (4) relies on the following approximations: 

i) electrons are ultra-relativistic; 

ii) transverse offsets of bunch particles from the reference orbit are neglected; 

iii) the charge-density distribution rigidly moves along the curved path; 

iv) the CSR field only influences particles ahead of emitters, i.e., radiation emitted backward is 
neglected; 

v) the separation angle between the source particle and the witness particle is << 1; 

vi) the CSR effect is assumed to be purely longitudinal, i.e., only the longitudinal component of the 
emitted electric field at any point tangent to the witness particle’s orbit is responsible for change 
of its longitudinal momentum. Transverse electric field components, as well as magnetic field 
components, are all neglected. 

 As already mentioned, CSR physics relies on the CSR slippage length (it is documented that the 
classical expression for sL was already known to Ipparco in ancient Greece around 100 B.C.), i.e., on 
the fact that photons travel straight, and doing so they catch up with electrons ahead of the source, which 
move on a curved path. Since angles involved are all assumed to be small, one may wonder if the angular 
divergence of CSR radiation is large enough to justify the tail-to-head interaction. Henceforth, we will 
discuss this point by limiting our attention to the steady-state regime.  

It is known that most of SR is emitted in the laboratory frame in the forward direction, tangent to 
the source orbit, and with rms value of field intensity at angular divergence , as shown in Fig. 

4, left-hand plot. For example, in a case with and rad, the characteristic angle of 
emission of ISR would not permit any tail-to-head interaction. Instead, CSR emitted at wavelengths 

shows an intensity field distribution with angular divergence , and 
approximately independent of beam energy (see Fig. 4, right-hand plot) [11]. As an example, a 10 µm 
long bunch bent in a 0.3 m long dipole by an angle of 0.1 rad at the energy of 300 MeV would emit ISR 
at nm with rms opening angle mrad. CSR would be emitted with a characteristic 
opening angle from 6 mrad up to several tens of mrad. Roughly speaking, the opening angle of CSR, 
evaluated at wavelengths equal to or longer than the bunch length, is large enough to be comparable to 
the dipole bending angle, and thereby to allow photons emitted by the bunch tail to catch up with the 
head, inside the dipole.  
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Fig. 4: Left-hand side: angular distribution of SR intensity emitted in a dipole magnet, in the moving frame of the 
electron and in the laboratory frame. Presented in Ref. [12]. Right-hand side: spectral dependence of SR opening 
angle in the bending plane. SR emitted forward at wavelengths  shows an intensity 

distribution approximately Gaussian with rms width . At wavelengths , 

. Published in Ref. [11]. 

A geometrical representation of the tail-to-head effect is given in Fig. 5, where the vectors for the 
electric field of Eq. (3) are shown. The source particle has a charge q and the witness particle is at point 
P. The electric field associated to the emitted radiation is orthogonal to the plane wave’s direction of 
propagation in free space. We aim to estimate the electric field component E//, parallel to the longitudinal 
velocity of the witness particle at P. We see that as long as , we can approximate the motion of q 
as if it had constant velocity, in both modulus and direction. In this case, the expression for the retarded 
field at P is as if it originated by a line-charge distribution at point D [4] (we are now considering the 
effect from a whole 1D bunch). Moreover, at large distances and high energies , only the 
‘radiation’ field term in Eq. (3) contributes at P (‘far-field’ approximation). Hence, we can write

. By substituting the expression of d (see Fig. 5) and of the CSR 

‘overtaking length’s (the slippage length for an arbitrary angle q within the dipole) into , and also 

noticing that , we find , in agreement with [3]. For a 

uniform line-charge distribution , and for a bunch sufficiently short so that CSR emitted by 
the bunch tail overtakes the bunch head before the bunch leaves the magnet, we find that the single-

particle energy loss per unit length is . This result can be extended to any 

line-charge distribution by introducing the steady-state CSR ‘wake’ or Green’s function [3]:  

                                          (5) 

Equation (5) is just the integral term introduced abruptly in Eq. (4). We remark that the total 
bunch energy loss is N times the single-particle one and therefore, as expected, the coherent emission 
shows an N2 dependence on the total field intensity. It is also important to stress out that the CSR-
induced energy loss does not depend on beam energy. Equation (5) suggests that the energy loss is 
enhanced by fast variations of l(z) (current spikes, fast rises of the current profile and current 
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modulation), so that along the bunch can be monotonic or an oscillating function of z, for 
example, depending on the shape of the bunch current profile.  

With the help of Eq. (5), we find for a Gaussian line-charge distribution: 

                                                     (6) 

for the single-particle energy loss, relative mean energy loss and rms relative energy spread, 
respectively. is the vacuum impedance and re the classical electron radius. For typical 

numbers in FEL linac drivers, and . 

 
Fig. 5: Geometrical representation of CSR electric field in the 1D steady-state regime of emission in a dipole 
magnet. Symbols refer to Eq. (3). See context for details. 

3 Transverse emittance growth 
The growth of beam emittance in the bending plane is treated assuming the steady-state 1D CSR model 
discussed above. The transverse charge distribution in phase space (x, x’) is characterized by its second-
order momenta, which are associated to the so-called Twiss parameters: 

; is the beam geometric emittance [13]. Particle motion 

is described as the linear superposition of betatron and dispersive coordinates [14]: 

                                      (7) 

Here is the relative change in longitudinal momentum due to, e.g., absorption of CSR radiation in a 
dipole magnet. In the presence of a single energy perturbation (‘kick’) at location s, the perturbed beam 
emittance becomes 
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  (8) 

If is due to uncorrelated events (e.g., ISR emission), the perturbed emittance results:

 (and an analogous integral of R26). The integral is always 

positive, that is, the emittance growth is a non-reversible process. On the contrary, if is correlated 

with bunch length, the perturbed emittance is (and 

analogously for R26). In the latter case, a magnetic lattice can be designed in a way that the integral 
evaluated over the whole beam path is minimized or made null [15–17]. This situation applies to CSR 
emission, whose induced energy loss along a Gaussian bunch is shown in Fig. 6, left-hand plot.  

We associate to each longitudinal bunch slice an average slice longitudinal momentum, and 
follow the slice centroid motion in (x, x’) as predicted by Eq. (7). As a consequence of change of 
longitudinal momentum in a dispersive region, each slice will start moving on a different dispersive 
trajectory, and the beam projected emittance will increase according to Eq. (8) (see Fig. 6, centre plot). 
Moreover, since Dx and Dx’ are correlated along the bunch, we have that  

and, given the single-kick approximation , with the rms 

relative energy spread induced by CSR, we rewrite Eq. (8) as follows: 

              (9) 

Equation (9) introduces the optics function , to be evaluated at the 

location of the CSR kick. It suggests that CSR-induced projected emittance growth can be minimized 
or even cancelled through a suitable design of H-function, for any given value of . It is worth 
noticing that, according to this picture, the slice emittance is not affected. 

         
Fig. 6: (Left-hand side) CSR-induced mean slice energy difference for a Gaussian line-charge density, time 
compressed in a four-dipole symmetric chicane. The result is shown at the entry to third dipole (red), the entry to 
fourth dipole (green) and the exit of fourth dipole (blue). Published in Ref. [18]. Copyright of American Physical 
Society. (Middle) Charge distribution in the horizontal phase space of a beam matched to some design phase-space 
ellipse (blue dots), and for a beam mismatched due to CSR-induced emittance dilution (red dots). Ellipses represent 
second-order momenta. Courtesy of P. Emma. (Right-hand side) H-function and CSR-induced projected emittance 
growth along the first bunch compressor chicane of FERMI FEL. Published in Ref. [19]. Copyright of Elsevier. 
All plots are simulation results. 
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The single-kick picture in Eq. (9) usually applies to a four-dipole magnetic chicane adopted for a 
bunch-length compressor, and henceforth named a BC (see previous chapter). The CSR effect is 
strongest for a shortest bunch (see Eq. (6)) and, since the bunch approaches its final length already at 
the exit of the third magnet of a BC, this usually leads to a dominant CSR contribution from the fourth 
dipole, as shown in Fig. 6, left- and right-hand plots. Now, if the beam is forced to a horizontal waist in 
the second half of the chicane, and the dipoles’ bending angle is small, it can be shown [19] that Eq. (9) 
reduces to . Thus, emittance growth can be minimized by small bending 

angle and small horizontal betatron function in proximity of the fourth dipole magnet [20]. 

The perturbed emittance at the exit of a multibend transport line, locally isochronous so that the 
beam has the same length at identical dipole magnets, can be expressed in the form

, with  at the location of the first CSR kick, 

and is a function of Twiss parameters and relative betatron phase advance at the 

location of all other kicks. The energy kicks all being identical in modulus, the beam-line optics can be 
designed in a way that consecutive transverse kicks eventually cancel [21]. A most common and simple 
set-up is the one of identical Twiss parameters and dispersion functions at identical dipole magnets 
separated by p phase advance [16]. Other designs with non-symmetric optics parameters and phase 
advance different from p are in principle allowed. Similarly, emittance growth in a non-isochronous 
multibend line, such as an arc compressor, can be minimized with a proper optics design, where the 
‘optimal’ Twiss functions now depend on the local compression factor [22, 23].  

As an alternative to CSR-immune optics designs, Eq. (5) suggests that a line-charge distribution 
could be suitably produced at the entrance of a BC in order to generate a uniform energy loss by CSR 
along the bunch. In this case there would be no relative misalignment of bunch slices in phase space, 
and therefore no projected emittance growth [18]. 

4 Three-dimensional CSR model and shielding 
A 3D CSR model is usually considered in numerical simulations whenever the Derbenev criterion 
largely fails. This may happen when a large relative energy spread or large dispersion function enlarges 
the beam size well above the betatron envelope, such as in the inner dipoles of a BC. Moreover, when 
the bunch is deflected, a longitudinal bunch slice does not stay perpendicular to the slice longitudinal 
momentum, but yaws with respect to it. In the former case, particles far from the beam axis, either 
belonging to the same slice or not, can sample a radial dependence of the CSR field. In the latter case, 
particles within the same slice can sample non-linearities of the longitudinal CSR field. In both cases, 
slice emittance growth may happen [1, 24]. Numerical predictions and experimental results suggest that 
these mechanisms may be playing a role already at relatively low compression factors, and affecting the 
slice normalized emittance at the level of ~0.1 µm rad [25, 26]. 

An additional complication to a CSR-dominated beam dynamics in a real lattice is provided by 
the shielding effect of the CSR field by the vacuum chamber [27]. In general, not all spectral components 
of CSR propagate in the chamber, and therefore the actual radiating energy is smaller than in a free-
space environment. An analytical recipe for evaluating the shielding effect of an infinite parallel plate 
chamber of total height h, in a dipole magnet of curvature radius R, is [28] 

                                      (10) 
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Here is the threshold harmonic number for propagating radiation, and is 

the characteristic harmonic number for a Gaussian longitudinal density distribution whose standard 
deviation is . The meaning of nc is that the spectral component of radiation with harmonic numbers 
beyond it is incoherent. A more immediate although less accurate recipe for evaluating the shielding 

effect says that CSR emission is suppressed if , where w is the vacuum chamber width [29]. 

In practice, it is difficult to shield CSR completely because, for example, a beam pipe diameter 
of £ 2 mm would be needed for ultra-relativistic sub-picosecond-long bunches. At such small gaps, 
resistive-wall wake field could become intolerable [30]. 

5 Microbunching instability 
Self-developing microstructures in the longitudinal phase space of electron bunches undergoing strong 
compression have been observed in several high-brightness FEL linac drivers. In accordance with 
experimental results, computer simulations of longitudinal space charge (LSC) force (longitudinal 
interparticle Coulomb interaction) [31] and CSR in bunch compressors show that a so-called 
microbunching instability (MBI) may significantly amplify small longitudinal density and energy 
modulations, and hence degrade the beam quality. In its simplest picture, MBI relies on the accumulation 
of energy modulation induced by initial non-uniformity of the charge distribution, such as due to 
electron beam intrinsic shot noise or non-uniformity of the photo-injector laser pulse, and on its 
successive transformation to an amplified density modulation through non-isochronous (R56 ¹ 0) 
dispersive insertions, as shown in Fig. 7  [32]. Amplified density modulations will further drive energy 
modulations at higher amplitudes, and thereby a positive feedback for the instability is established. The 
process repeats at downstream stages of acceleration and compression and, in spite of relatively high 
energies, the beam may eventually show strong density and energy modulations. Especially disrupting 
for an FEL, the beam will show large slice energy spread, at scales equal to or longer than the (shortest) 
modulation wavelength. The model assumes that density modulations induce energy modulations at the 
same wavelength(s). Moreover, the effects of LSC and of R56 are fully decoupled: energy modulation 
only happens in drift (linac) sections, while density modulation only changes through BCs. Of course, 
as the bunch length is compressed, the initial modulation wavelength is compressed by the same factor. 
At this stage of description, CSR is not needed. In fact, it amplifies the LSC-induced MBI with an 
analogous mechanism established in the BC. 

In order to estimate the spatial scale and beam energies at which LSC and therefore MBI becomes 
important, we consider a two-particle 1D beam model. The beam is assumed to be ultra-relativistic, with 
Lorentz mean energy factor . One particle is at bunch centre, and it represents the whole bunch 
charge Q. The other particle of charge q is at the very bunch head, and the two are separated by a distance 
l’b in the co-moving frame of the bunch. The longitudinal electric field sampled by q is

. In the laboratory frame, the two particles are separated by the Lorentz-contracted 

length lb = l’b/g, and the electric field sampled by q is . Thus, the LSC field 

is stronger at lower energies and at shorter scale lengths. The model also suggests that (leading) particles 
gain energy, while others (trailing) lose it, namely, an energy modulation builds up. The work 

done by the LSC field over a length L ~ 10 m becomes comparable to typical beam energies 
spread values at beam mean energies < 10 MeV, and at bunch length scales of the order of 1 mm. At 
higher beam energies, the LSC effect can only be important at wavelengths much shorter than the bunch 
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length, e.g., < 0.1 mm. In the following, we present a quantitative analytical treatment of MBI as induced 
by LSC, and compare it with other collective effects common to beam dynamics in FEL linac drivers. 

 
Fig. 7: Evolution (left-hand diagrams) of density (n) and energy modulation (d) along the bunch (z), evaluated at 
different locations of an RF linac plus BC beam line (sketched on the right-hand side; beam is at the yellow dot). 
MBI is assumed to be only driven by LSC in the linac section, and by R56 in the BC. Upper: beam at the linac 
entrance has a small density modulation, and is uniform in energy. Middle: passing through the linac, the initial 
density modulation induces an energy modulation at the same wavelength via LSC field. Bottom: beam has passed 
through the BC. The longitudinal phase space is sheared due to the non-zero R56 in the BC (ddisp, red curve), and 
the density modulation is amplified (ndisp, orange curve). For a direct comparison, the initial density and energy 
modulations are superimposed. 

6 Impedances 
Accumulation of energy modulation in straight sections is driven by LSC and, at longer wavelengths, 
by linac geometric wake fields [30]. Since MBI is commonly studied in the frequency domain, an energy 
modulation at wavenumber  can be evaluated as the integral of the LSC impedance ZLSC(k) 
over a drift length L, times the Fourier transform of the bunch peak current I [33]: 

 ,                          (11) 

is called the ‘bunching factor’, and its value is proportional to the density modulation amplitude 
relative to the average bunch current. For a line-charge distribution dominated by shot noise, the 

bunching in a bandwidth  can be written . The free-space LSC impedance per unit 

length, averaged over a Gaussian transverse distribution of rms sizes , is [34] 

 ,                                             (12) 

with , I1 and K1 being modified Bessel functions of the first kind and  

is the equivalent radius of a transverse uniform distribution with area [35]. ZLSC has a maximum for
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. It tends to underestimate the effect of 3D fluctuations of the electric field, which happens at 
[35], i.e., when the Lorentz-contracted wavelength of modulation becomes comparable to, or 

shorter, than the transverse beam size (‘pancake-beam’ scenario). In the strict 1D limit (‘pencil-beam’ 
scenario),  and, for x << 1, [36]. Analytical approximations for ZLSC 

in the presence of boundary conditions, for example as given by a perfectly conducting round vacuum 
chamber of given radius rp, are available in the literature [37]. They rarely apply to cases of interest here 
because they become important at relatively long wavelengths, . 

In a way analogous to Eq. (12), we introduce an impedance per unit length for the CSR 
longitudinal electric field in a dipole of curvature radius R [38, 39], and the longitudinal geometric 
impedance of an RF structure of inner iris radius a [40]: 

 ,                                       (13) 

The imaginary nature of an impedance implies a redistribution of the particles’ longitudinal momentum 
inside the bunch, with no net energy loss, as contrary to a real impedance. In Eq. (13), the RF geometric 
impedance is associated to a ‘wake function’ in a periodic structure (this is proportional to a longitudinal 

electric field in the time domain) , with s0 » 1 mm [30], and we considered 

the impedance behaviour at high frequencies. Figure 8 shows the spectral domain of each of the 
aforementioned impedances. The typical band of interest for the MBI is at initial wavelengths in the 
range 1–100 µm, which, after a compression factor in the range 10–100, fit characteristic scale lengths 
of UV and X-ray FEL dynamics, such as FEL co-operation length and undulator slippage length [2].  

 
Fig. 8: Spectral behaviour of the modulus of RF, CSR and LSC impedance per unit length, see Eqs. (12) and (13). 
ZRF is for an iris radius a = 10 mm. ZCSR is calculated for R = 5 m. ZLSC is calculated for a beam energy of 300 
MeV and rb = 400 µm. The shadow area on the left-hand side covers characteristic lengths of uncompressed 
electron bunches. The shadow area on the right-hand side highlights the typical band of interest for the MBI 
(wavelengths before compression). 
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7 Spectral gain 
Modulation wavelengths of interest for FELs are usually much shorter than the electron-bunch length 
(‘coasting beam’ approximation). Moreover, it has physical sense to require that density modulation 
amplitudes be much smaller than the average current (‘linear regime’ of the instability). When both 
these assumptions hold, the amplitude of the density modulation at each wavelength grows 
independently, and the strength of MBI is quantified by a spectral gain

[32]. 

We now want to estimate the MBI gain in a relatively simple system, e.g. a straight section 
followed by a BC. Let us assume that the instability starts from a monochromatic sinusoidal modulation 
of the beam-current profile, , with A the relative modulation amplitude (the 

same logic and formalism applies to the case of initial energy modulation). According to Eq. (11), an 

energy modulation  is accumulated over a 

distance L. As the beam travels with a correlated energy spread dc or, equivalently, a linear energy chirp 
hi through the BC, the generic particle’s longitudinal coordinate follows

(see previous chapter).  

We will make use of the differential form to find the final 

line-charge density: . This expression is valid at 

first order in  and having introduced the linear compression factor . We are now 
able to write down the expression for the MBI gain as a function of the initial modulation wavenumber: 

 . (14) 

Owing to the fact that any real beam has a non-zero uncorrelated relative energy spread , 
particles belonging to the same bunch slice will travel through the BC along different path lengths 
because of their energy difference. The MBI gain is partially suppressed by those additional particles’ 
longitudinal slippage. The particles’ motion being uncorrelated, this process is called energy or 
longitudinal Landau damping, and it tends to exponentially smear energy and density modulations at 
relatively short wavelengths. With  defined at the entrance of the BC, the MBI gain after a linac 
plus BC section becomes [36]: 

.               (15) 

One can see that for ZLSC(k) approximately constant in amplitude over a wide range of k, the 
gain is peaked at the wavelength that satisfies . ZLSC(k) being a broadband impedance (see 
Fig. 8), this result is approximately true in general. Owing to the fact that the gain is exponentially 
suppressed by  at short wavelengths, we find a natural cut-off of the MBI gain at . If 
the dispersive line is isochronous, and MBI is only driven by LSC in the linac, we do not expect any 
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gain, because particles’ position inside the bunch would be the same at the entrance and at the exit of 
the BC.  

It is worth pointing out that the gain in Eq. (15) is independent of initial modulation amplitudes. 
In other words, the final bunching factor is assumed to be dominated by the energy-to-density 
transformation that happens in the BC, and the contribution of the very initial bunching to the final 
bunching is neglected. This is the so-called ‘high-gain’ approximation. A representative LSC-induced 
spectral gain is shown in Fig. 9, left-hand plot, evaluated under all the approximations discussed so far. 

If the MBI gain is relatively small, it may have physical sense to include the initial bunching 
into its expression [41]. Instead, if the linear regime of development of MBI is not satisfied (in our 
derivation of Eq. (14), that regime essentially corresponds to a Taylor expansion of at first order in

), an analytical prediction of the final gain could become a difficult task. In fact, a non-linear theory 
of MBI is still an open field of research [42]. For example, the linear regime may or may not apply to 
the case of weak compression, multistage compression schemes or to multibend lines. In a two-stage 
compression, the approximation of linear gain still holds through the second BC only if the bunching 
factor at the entrance of it is small, , as well as the induced energy modulation, 

. The total gain of the beam line can in that case be estimated as the product 

of individual gains at the two BCs: . Depending on beam and machine parameters, those 
conditions may not happen, and the total gain can largely exceed the product of individual gains. In 
general, the presence of numerous dipoles, such as in arcs or multibend transport lines, leads to multiple 
stages of amplification of the MBI, whose gain evaluation requires numerical methods.  

An expression for the amplification of initial energy modulation amplitudes equivalent to Eq. (15) 
can be obtained as well. Here, we prefer to point out that, once the final energy modulation amplitude 
is computed (see Eq. (11)), an upper limit for the growth of beam uncorrelated energy spread due to 
MBI is given by the assumption that the whole modulation translates into energy spread. Such a limit is 
obtained by integrating the final energy modulation amplitude over all frequency components [43]: 

                                            (16) 

with nz the line-charge density in m–1. 

The CSR contribution to MBI in compressors of FEL linac drivers is typically weaker than the 
one from LSC, because the effect of the latter one is summed over much longer distances. As the lattice 
starts being dominated by dipole magnets, however, such as in recirculating accelerators, the 
contribution to the gain from ZCSR may become comparable to, if not greater than, the one from ZLSC. In 
general, the CSR effect reinforces, if not drives, MBI [44]. This is because the CSR field modulates 
particles in energy inside dipole magnets, and the dispersion function translates energy modulations into 
density ones. A positive feedback for the instability, as already depicted for the LSC field, is therefore 
established inside the dispersive insertion [8].  

At the same time, since the CSR instability couples transverse and longitudinal motion of 
particles, we should also consider that particles belonging to the same bunch slice but moving with 
different betatron amplitudes, as in a beam with non-zero horizontal geometrical emittance e0, will 
follow different path lengths. Thus, beam emittance causes some damping of the CSR-induced MBI in 
a way analogous to energy-Landau damping induced by . It can be shown [19] that in order for the 
rms path-length difference to generate smearing of MBI at a wavenumber k, beam emittance and optics 
functions at the entrance of the dipole of interest must satisfy 
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                                                                (17) 

The H-function can be related to R51 and R52 transport matrix terms of an arbitrary beam line. If we do 
so for a BC, and if some relevant CSR gain is generated in the third and fourth dipoles of it (we could 
expect that because the beam is shorter, and therefore the CSR field stronger, in the second half of the 
BC), transverse Landau damping has to be calculated by means of matrix terms that propagate particles’ 
coordinates from the third dipole to the exit of the BC. We would therefore obtain an expression for the 
gain similar to that in Eq. (15), but now also dependent on ZCSR, and including an additional transverse 
damping term describing suppression of the final bunching [45]: 

     (18) 

In Eq. (18), beam motion is assumed to start at coordinate s = 0, and the matrix terms have to be 
calculated at position s > 0; are Twiss parameters at s = 0. A representative 1D CSR-induced 
spectral gain is shown in Fig. 9 – left and right, including the effect of energy- and emittance-Landau 
damping. We stress that since R51 = R52 = 0 through a whole four-dipole chicane, there is no net 
transverse damping of MBI induced by an upstream ZLSC, unless we consider a collective effect (ZCSR) 
taking place inside the chicane.   

    
Fig. 9: (Left-hand side) MBI spectral gain induced by LSC after an RF linac section and a BC in the LCLS beam 
line, as a function of the initial modulation wavelength. Published in Ref. [36]. Copyright of American Physical 
Society. (Right-hand side) MBI spectral gain induced by CSR from a 6 kA peak current bunch in a BC at 5 GeV 
and R56 = –25 mm. Beam initial uncorrelated energy spread and normalized horizontal emittance are: (1)

, ; (2) , ; (3) , 

; (4) , . Published in Ref. [46]. 

8 Laser heater 
Equation (18) illustrates the two mechanisms discussed so far for suppression of MBI gain, i.e., energy- 
and emittance-Landau damping. Owing to the fact that, in FEL linac drivers, MBI is usually dominated 
by LSC, the main setting for gain suppression is to increase the beam initial uncorrelated relative energy 
spread. Typical energy spread values for high-brightness beams generated in RF photo-injectors are
» 1–3 keV [47], and the associated peak gain in long FEL drivers may be as high as 102–104. It was 
demonstrated in existing facilities that by increasing to 10–40 keV rms level at the beam energy of 
~100 MeV, the total peak gain can be lowered by a factor of up to 102, and the FEL intensity is increased 
by a factor of up to 3 [48, 49]. Doing so, however, the final beam uncorrelated energy spread is increased 
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too, by approximately , where C is the total compression factor, the natural 

relative energy spread at the injector exit and sd,LH the relative energy spread added to the beam. For an 
FEL, we shall still require  [2]. 

A ‘laser heater’ (LH) was proposed [50], and is now in operation or in design stages at several 
FEL facilities, in order to generate sd,LH in a controlled manner. Basically, a resonant interaction of 
electron bunches with an external infrared (IR) laser in a short undulator induces rapid energy 
modulation at the laser frequency. If the undulator is installed in the middle of a small chicane, the 
chicane geometry and the beam-line optics can be designed in a way that the IR modulation eventually 
washes out, and transforms into purely uncorrelated energy spread for Landau-damping purposes. 
Typically, the electron beam is forced to a waist in the undulator, so that the beam angular divergence 
is large. Then the transport through the second half of the chicane allows smearing of the IR modulation 
if . Due to beam interaction with electromagnetic radiation in a dispersive section, beam 

emittance is also affected and its growth can be estimated at the level of , with 

optical parameters evaluated at the undulator location. 

For a plane-polarized undulator with strength parameter K (see previous chapter) and length Lu, 
the relative energy spread induced by a LH is approximately [48] 

 ,                                                     (19) 

where sx, sy are rms electron beam sizes at the undulator, GW, is the 
undulator length, given by the number of undulator periods times the period length, 

are Bessel functions of argument  and PL is the required 

laser peak power. Equation (19) is valid in the limit that the laser Rayleigh length is much longer than 
the undulator: , with w0 twice the laser rms transverse size at the undulator. This 
ensures that the laser cross-section does not vary substantially along the undulator due to radiation 
diffraction.  

Figure 10 shows the slice energy spread of a beam compressed in a two-BC scheme in the FERMI 
linac, measured at the beam energy of 1.2 GeV, as a function of the energy spread induced by a LH at 
0.1 GeV (approximately 150 m upstream) [49]. For large heating levels, MBI is suppressed and the final 
energy spread is linearly proportional to the initial value.  The constant of proportionality reflects the 
total compression factor C = 7, by virtue of the preservation of the longitudinal emittance (see previous 
chapter). For small heating levels, MBI ‘wins’ and the final energy spread is dominated by the instability 
gain. In this case, the final energy spread has a non-linear dependence on the initial value. In between 
the two regions, an optimum for the FERMI FEL is found that allows us to mitigate MBI while achieving 
a minimum slice energy spread at the linac end. The measurement was found to be in agreement with 
numerical predictions [51]. 
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Fig. 10: Slice energy spread of a 500 pC charge bunch, compressed by a total factor of 7 in a two-BC scheme at 
the FERMI FEL, and measured at the energy of 1.2 GeV, as a function of the energy spread added by the LH at 
the energy of 0.1 GeV. Published in Ref. [49]. Copyright of American Physical Society. 

9 Recent trends 
Analytical modelling of MBI may become challenging when complicated beam lines are considered, 
and when some of the approximations depicted so far do not apply any more. Several codes are available 
for a numerical computation of the instability gain and of its effect on the beam energy spread, each 
code having its own weak and strong points. One of the major issues related to particle-in-cell codes is 
the one of avoiding numerical sampling noise generated by tracking (macro)particles, which are often 
treated in populations a few orders of magnitude smaller than the real number of beam particles. For 
MBI driven by shot noise, the final bunching (see Section 6), with N the real 

number of electrons per modulation wavelength l. By tracking a number of particles , we tend 

to overestimate the total gain by a factor [32]. Attempts to overcome this issue include filtering 
techniques, preparation of ‘quiet’ initial distributions, tracking the real number of particles, and 
development of algorithms intrinsically noise-free. 

Present paths of research in physics of particle accelerators include practical ways to suppress the 
MBI, either alternative or complementary to a LH. For example, machine designs that minimize the 
MBI gain with a suitable compression scheme, and techniques to enhance either energy or transverse 
Landau damping without affecting the final beam quality. A review of such works can be found in Ref. 
[19]. Recently, some focus has been given to multibend lattice designs able to simultaneously minimize 
CSR-induced projected emittance growth and CSR-induced MBI [52].  

Theoretical, numerical and experimental studies have pointed out the capability of a LH of 
improving the FEL intensity also as a function of transverse shaping of the LH photon pulse and, 
indirectly, of the electron beam energy distribution that results from the LH interaction [53]. The 
adoption of a LH is also opening the door to an optical shaping of the FEL pulse duration [54] and of 
its spectral content [55]. MBI itself has been used, on purpose and in a controlled manner, to enlarge the 
range of spectral features of a coherent light source [56, 57]. 
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Electron Sources and Injection Systems

E. Chiadroni
National Laboratory of Frascati—INFN, Frascati, Italy

Abstract
High-brightness photo-injectors are mandatory for several applications, for
instance plasma-based accelerators, linear colliders, novel radiation sources,
such as free-electron lasers, terahertz radiation sources, and inverse Compton
scattering sources; all require the production, acceleration, and manipulation
of high-brightness electron beams.

Keywords
Brightness; photo-emission; photo-injectors.

1 Introduction
The physics and technology concerning the generation, manipulation, and transport of high-energy, high-
quality electron beams are of crucial importance in different fields of science, e.g., for the R&D of
future-generation light sources and novel plasma-based accelerators. Indeed, free-electron lasers (FELs)
[1–4], energy-recovery linacs [5], light sources, inverse Compton scattering sources [6], and plasma-
based accelerators [7] all demand high-brightness electron beams. The figure of merit of this electron
source is the normalized brightness in 6D phase space. There is no unique definition of brightness, as the
literature shows [8–13]; I choose in this regard the definition reported in Ref. [10] extended to the 6D
phase space:

B6D =
2Ip

∆γ
γ ε

2
n

. (1)

Efforts are made to maximize the brightness, thus minimizing the transverse projected emittance (εn is
of the order of millimetre milliradians) and the energy spread (∆γ/γ ∼ 0.1%), or increasing the peak
current (Ip of the order of kiloamps), which means shortening the electron bunch down to femtosecond-
scale durations. In particular, in both energy-recovery linacs [5] and FELs [1–4], high time-resolution
user experiments require extremely short X-ray pulses (shorter than femtoseconds), imposing the need
for small and linear longitudinal emittances to allow for proper compression along the linac. Indeed, the
exponential gain of self-amplified spontaneous emission FELs [14], as shown in Section 3, depends on
the peak current and not on the charge, at the price of a reduced number of photons per pulse, with the
advantage that a reduction of beam charge allows better control of the beam quality.

A great development of FEL user facilities has been driven by the advent of radio-frequency (RF)
based photo-injectors, contributing to an improvement of the normalized transverse emittance of at least
one order of magnitude [15].

In a photo-injector, electrons are emitted by a photocathode, located inside an RF cavity, illumi-
nated by a laser pulse, so that the time structure of the electron beam can be controlled and shaped on a
picosecond or subpicosecond time-scale via the laser pulse. This feature is one of the main advantages
of laser-based RF injectors. Indeed, the space charge can be controlled by reducing the beam charge
density, especially in the cathode region, where the beam energy is low, by working with larger laser spot
sizes; space charge can also be controlled by increasing the bunch length, which, however, contributes
to increasing the longitudinal emittance, requiring compression methods. In addition, to preserve the
brightness, the emitted electrons must be rapidly accelerated to relativistic energies, thus damping the
space-charge forces, which scale as 1/γ2, and resulting in a partial mitigation of the emittance growth.
At this regard, RF fields allow for large, from≈40 to≈130 MV/ m, electric fields at the cathode surface;
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therefore, a laser-assisted RF gun is the preferable choice because of the high peak field, ∼102 MV/ m,
and the possibility of shaping the 6D electron-beam phase spaces by acting on the laser pulse distribu-
tions, both transverse and longitudinal. In addition, the generation of longitudinally modulated electron
bunches directly at the cathode by means of a comb-like laser profile [16] is advantageous for the suc-
cessful development of new classes of application, e.g., plasma wakefield accelerators [17], high-power
narrow-band coherent terahertz sources [18], and two-colour FEL radiation [19–21].

In this report, I will overview electron injectors, highlighting the physics of the emission process
and focusing on the beam dynamics in normal conducting RF guns. An extensive and detailed study can
be found in Ref. [22]. In addition, I will introduce emittance compensation techniques to limit emittance
growth at the end of the injector, integrated in a RF-based longitudinal compression method.

2 Definition of brightness
In 1939, Von Borries and Ruska, who were awarded the Nobel Prize in 1986 for the invention of the
electronic microscope [23], introduced the concept of beam brightness as

Bmicroscope =
I

AΩ
=

Ne

πr2πα2∆t
≈ constant , (2)

where Ne/∆t is the electron current density escaping from the cathode surface with area A = πr2,
Ω = πα2 is the solid angle in which electrons are emitted, and ∆t is the time interval. This quantity
is practically constant in the microscope column: therefore, the smaller the spot size, the larger the
divergence. The brightness is extremely important because it defines the quality of the source and sets the
kind of experiments that can be done. Indeed, for imaging applications, the larger the number of electrons,
the better the contrast; spatial resolution and coherence are enhanced by a small area and a collimated
beam, i.e., small angles α, while temporal resolution is improved by short pulses. The definition in
Eq. (2) still holds nowadays in the field of electron microscopy, with peak values of Bmicroscope up to
1013 A/ m2/ sr.

In analogy with the electron microscope brightness, it is convenient to define the 6D electron-
beam brightness to compare and describe electron sources, as the number of electrons per unit volume
V6D occupied by the beam in 6D phase space, i.e., transverse (x, px, y, py), longitudinal (z, pz), and
proportional to the product of the three normalized emittances:

B6D =
Ne

V6D
∝ Ne

εnxεnyεnz
. (3)

Liouville’s theorem states that the phase space volume, bounded by a closed, arbitrary surface in the
phase space, is constant, provided that only conservative forces act on the particles. As long as the particle
dynamics in the beamline elements (transport optics, accelerating sections, etc.) can be described by
Hamiltonian functions, that is, neither particle–particle collisions nor stochastic processes are considered,
the phase space density will stay constant throughout the accelerator.

If we write the longitudinal emittance explicitly, in terms of energy spread, σγ , and bunch duration,
σt, then the physical meaning of the 6D brightness is clear,

B6D ∝
Ne

εnxεnyσtσγ
: (4)

a large number of quasi-monochromatic electrons, concentrated in very short bunches, with small trans-
verse size and divergence, which means small transverse emittance. For a fixed charge/bunch this trans-
lates to preserving the transverse emittance and increasing the final current by reducing the bunch length.
In numbers, for typical electron-beam parameters (N ≈ 109, σγ ≈ 10−3, εn ≈1 mm mrad, σt < 1 ps),
the 6D brightness is of the order of 1015 A/ m2.
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The maximum brightness theoretically achievable by an electron beam is set by the Heisenberg
uncertainty principle with one electron in each elementary quantum h3 unit of phase space volume:

Bquantum =
2e

h3
(m0c

2)3 =
2e

λ3
c

, (5)

with h the Planck constant, e the elementary charge, m0 the particle mass, and c the speed of light; λc is
the Compton wavelength, which for electrons is 2.426 pm. Replacing numbers in Eq. (5), Bquantum ≈
1025 A/ m2, being 10 orders of magnitude larger than typical 6D brightnesses in photo-injectors.

The maximum brightness practically achievable is limited by the degeneracy parameter δ, which
represents the number of particles per elementary volume of the phase space: B = δBquantum. In prin-
ciple, assuming the photo-emission process by metal photocathodes, we expect a peak brightness ap-
proaching the quantum limit, since the degeneracy factor inside a metal is ∼1. However, in practice,
we have 10 orders of magnitude less. Electron emission mechanisms and Coulomb interactions play a
crucial role in this severe reduction of beam brightness [24].

The brightness generated at the electron source represents the ultimate value. Possible sources of
emittance growth are:

– non-linear space-charge forces;
– non-linear forces from electromagnetic components, e.g., due to wakefields;
– synchrotron radiation emission (in magnetic compressors).

Sources of emittance degradation need to be kept under control, keeping in mind that the final beam
quality is set by the linac and ultimately by its injector and electron source; therefore, a careful definition
and specific requirements for both electron sources and injection systems are mandatory.

3 Applications of high-brightness electron beams
The great improvement of the characteristics of electron injectors started in the 1960s with thermionic
guns [25]. Thermionic RF guns employ cathodes that must be heated to allow emission of electrons.
Commonly used cathode materials are LaB6, CeB6, and BaO, with typical operating temperatures of the
order of 1000 ◦C. The disadvantages of thermionic guns lie in the fact that emission occurs throughout
the RF accelerating phase and during every RF period, resulting in a beam with large momentum and
time spread. However, the high stability is the main advantage.

In 1985, the need for fast and precise control of the electron pulse shape led to the first use of
photocathode RF guns because of the impressive reduction in transverse emittance, more than a factor of
ten [15], promoted by the ability to shape drive laser pulses and rapidly accelerate electrons from rest to
relativistic energies.

Starting from the first working prototype of an RF gun [26, 27], RF photo-injectors are nowadays
routinely exploited as electron sources for FEL user facilities [1–4] and multidisciplinary test facilities,
such as SPARC_LAB [28]. Radio-frequency photo-injectors are also fundamental for the successful
development of plasma-based accelerators where external injection schemes are considered, i.e., particle-
beam-driven [17] and laser-driven [29] plasma wakefield accelerators, since the ultimate beam brightness
and its stability and reproducibility are strongly influenced by the RF-generated electron beam.

The main supporter for the development of high-brightness injectors is represented by X-ray free-
electron lasers [30]. In particular, for FEL applications, the 5D brightness is often used to compare
electron sources:

B5D =
2Ip

εnxεny
=

2Ip

(βγ)2εxεy
, (6)

and is the relativistic analogue of the microscopic brightness.
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Fig. 1: Top: propagation of electron beam in undulator module. Middle: evolution of electron bunching along
undulator. Bottom: exponential increase of FEL radiation power along the undulator.

In an electron beam entering a magnetic undulator, electrons start to oscillate with period λu and
emit spontaneous radiation as synchrotron radiation because of the oscillating trajectory. They start to
lose energy in favour of the radiation and since the trajectory in the undulator is energy-dependent, while
propagating they start to bunch, which means that they start to modulate themselves longitudinally, as
shown in Fig. 1.

Emission begins to be coherent and the radiation wavelength is set by the resonance condition:

λr =
λu

2γ2

(
1 +

K2

2
+ γ2θ2

)
, (7)

where γ is the electron-beam Lorentz factor, K = (eB0λu)/(2πm0c) is the undulator parameter, which
defines the oscillation amplitude, and θ is the emitted angle with respect to the axis. B0 is the maximum
amplitude of the magnetic field andm0 is the electron mass, thusK is a measure of the on-axis undulator
magnetic field once the undulator period is fixed.

Because of the longitudinal modulation of the electrons in slices, the radiated power along the
undulator increases exponentially as a function of gain length, which, in 1D FEL theory, is defined as

Lg =
λu

4πρ
√

3
, (8)

assuming a mono-energetic beam and neglecting space-charge forces. Lg represents the length necessary
for the radiation field to be increased by e, Napier’s constant; therefore it is an indication of how long
the undulator chain should be in order to reach saturation. Beginning from shot noise, it typically takes
a self-amplified spontaneous emission FEL about 20 Lg to reach saturation. The gain length is related to
the beam brightness through the Pierce parameter, ρ,

ρ =
1

2γ

[
Ip

IA

(
λuK[JJ ]√

8πσx

)2
]1/3

, (9)

which scales with the peak current as ρ ∝ I1/3
p , resulting in Lg ∝ B−1/3

5D ; IA = 4πε0
m0c3

e ≈ 17 kA is the
Álfven current for an electron, [JJ ] is the Bessel function coupling factor depending on the undulator,1

1[JJ ]=1 for helical undulators and [JJ ] = J0

(
K2

4+2K2

)
− J1

(
K2

4+2K2

)
for planar ones.
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and σx is the r.m.s. electron transverse beam size in the undulator. IA represents a limit on the amount
of charge that can be transported. Physically, the beam self-magnetic field becomes sufficiently strong
to stop the propagation of electrons, whose trajectories reverse in direction, so that most of the electrons
are reflected back [31, 32].

The Pierce parameter, also called the universal FEL parameter, gives an indication of the gain
of the FEL and the speed of the bunching process; typically for kiloamp-current beams, ρ ∼ 10−3 to
10−4 in the VUV/X-ray regime. In practice, ρ ∼ 1/Nu, where Nu is the number of undulator periods
electrons must travel to increase the FEL power by 2e times. Indeed, the saturation power of the self-
amplified spontaneous emission FEL radiation is Psat = Pinez/Lg , with Pin the initial beam power;
Pin = ρIpEbeam.

In general, because of the finite energy spread and non-negligible space-charge effects, the expo-
nential gain might weaken, resulting in an increased undulator length to preserve the FEL gain and aim
at laser saturation. Therefore, the electron-beam brightness has to be extremely high in order to obtain a
relatively short FEL gain length.

In addition, the brightness plays an important role on the efficiency of the FEL process and on its
spectral characteristics. Indeed, to ensure coupling between the electron beam and the radiation it emits,
the matching condition for transverse emittance has to be satisfied (εn < γλr/4π). Concerning the
energy spread, the matching condition requires σδ < ρ ≈ 10−3, which defines the radiation bandwidth
∆ω/ω ≈ 1/Nu ≈ ρ.

Beyond X-ray FELs, high-brightness electron beams are needed for several other applications: for
instance, high-power FELs, either for soft X-rays or IR, energy-recovery linacs, and linac-based terahertz
sources all demand average currents of the order of milliamps, repetition rates of the order of megahertz,
and low emittance. In addition, terahertz sources require ultrashort electron bunches, of the order of
10–100 fs, to extend the frequency spectrum up to several terahertz. Concerning the development of
radiation sources, high-brightness electron beams are also fundamental in the success of γ-ray sources,
such as inverse Thomson or Compton scattering [6]. A relativistic electron beam collides head-on with
an ultrafast laser to produce scattered photons upshifted in energy in a 1/γ forward cone angle. The
high-charge beam increases the X-ray yield, while short bunches allow for ultrafast X-rays. Both small
emittance, which enables focusing to a micrometre-scale spot size, and low energy spread contribute to
narrow the radiation bandwidth [33].

High-brightness photo-injectors are fundamental for the successful development of plasma-based
accelerators. In particular, in particle-beam-driven plasma wakefield accelerators, the high-gradient
wakefield is driven by an intense, high-energy charged-particle beam, named the driver beam, as
it passes through the plasma. The space-charge forces of the electron bunch blow out the plasma
electrons, which rush back in and overshoot, setting up a plasma density oscillation at a frequency
ωp =

√
(n0e2)/(ε0m0), which depends on the plasma density n0. A second, appropriately phased

accelerating beam, named the witness beam, and containing fewer particles than the drive beam, is then
accelerated by the wake. The energy transfer from the drive bunch to the plasma is optimized by maximiz-
ing the transformer ratio R = |E+,max/E−,max|, defined as the ratio between the maximum accelerating
field behind the drive bunch, E+,max, where the particles of the witness bunch can be placed, and the
maximum decelerating field within the drive bunch, E−,max. R quantifies the energy gain of a witness
bunch placed at the accelerating phase. To accelerate high-brightness electron beams, both driver and
witness bunches must be focused to a size of a few micrometres, as requested by the transverse matching
condition at the plasma entrance, i.e.,

σmatching
⊥ =

(
2

γ

)1/4√εx
kp

, (10)

with kp = 2π/λp the plasma wave number, λp the plasma wavelength, and εx the transverse emittance;
therefore, the lower the emittance the smaller the beam transverse size. In addition, the great flexibil-
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Fig. 2: Layout of SPARC_LAB photo-injector: a copper cathode, illuminated by UV laser pulses and embedded in
a 1.6-cell standing wave S-band RF gun, generates a 5.6 MeV electron beam. A four-coil solenoid magnet focuses
and matches the beam into three S-band travelling wave accelerating structures to boost the energy to 180 MeV.
The first two accelerating structures are embedded by multicoil solenoid magnets to provide additional focusing
when the first section is used as a RF compressor in the so-called velocity-bunching regime.

ity of photo-injectors to shape and manipulate the longitudinal phase space allows for resonant plasma
wakefield acceleration driven by multibunch trains to increase the transformer ratio [34].

4 Photo-injector theory
An electron injector is the overall system from the electron source, the cathode, up to the place where
electrons have energies where space-charge forces, which scale as 1/γ2, can be considered negligible.
Therefore, the beam evolution is no longer space-charge dominated.

There are, at present, three broadly identifiable cathode technologies for electron-beam sources
and two main accelerator technologies used to perform the initial acceleration of the beam from those
cathodes, i.e., normal conducting (LCLS, FERMI, SPARC_LAB) and superconducting (FLASH, XFEL).
Most injector systems use photocathodes; one exception is the SACLA XFEL [35, 36], which success-
fully uses a thermionic cathode.

In this review, I will focus on the experience at SPARC_LAB which, being an R&D facility on
high-brightness photo-injectors, is paradigmatic for describing electron-beam generation, manipulation,
and acceleration. I recommend Ref. [22] for a more complete treatment of electron sources and injection
systems and Refs. [30, 37] for FEL physics and direct experience at user facilities.

The typical layout of an electron photo-injector is reported in Fig. 2. A photo-injector consists
of a laser-generated source, followed by an electron-beam optical system, which preserves and matches
the beam into a high-energy accelerator. A photocathode, embedded in a RF gun, releases picosecond
or subpicosecond electron bunches when irradiated by laser pulses of given wavelength, depending on
the cathode material. The high electric fields produced by the RF gun are necessary both to extract the
high current and to minimize the effects of space charge on emittance growth. Since the RF gun acts as
a strong defocusing lens, a solenoid magnet is needed to focus the divergent beam, preventing particle
losses, and to properly match the electron beam to the accelerating cavities, minimizing emittance growth
at the end of the accelerating chain (i.e., the linac exit).

A typical photocathode RF system depicts a 11
2 -cell with a cathode embedded in the half cell. The

cathode might be either metal or semiconductor depending mainly on applications: in the low-charge
regime, the ultimate brightness performance of the linac is set by the cathode intrinsic emittance, while
for high-repetition-rate photon sources, high-quantum-efficiency photocathodes are required.

The elements that constitute a photo-injector are highlighted in the following sub-sections.

4.1 Photocathode emission
The emission process determines the fundamental lower limit of the beam emittance, called the intrinsic
emittance, which represents the minimum emittance achievable and depends on the emission mechanism,
i.e.:

– thermionic emission [25];
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– field emission [38];
– photo-electric emission [39].

The ideal cathode should have low intrinsic emittance, since this limits the maximum achievable bright-
ness; high quantum efficiency, to reduce the laser load; long lifetime, uniform emission, since hot spots
on the cathode and surface roughness contribute to emittance growth [40]; and fast response, which
allows transverse and longitudinal electron-beam manipulation by properly shaping the laser pulse. At
present, there is no cathode that meets all these criteria. Semiconductor photocathodes, for instance, are
the best choice for high quantum efficiency and low emittance, while metallic photocathodes are chosen
because of their fast temporal response, long operational lifetime, and high vacuum compatibility. An
extensive and detailed study is reported in Ref. [22].

To understand the mechanism of electron emission from a cathode material, it is important to
identify the fields and the potentials at the cathode surface and close to it. The electric potential energy
as a function of the distance, x, from the cathode is given as

eΦ = eΦwork −
e2

16πε0x
− eE0x , (11)

and is the sum of the work function energy, eΦwork, which represents the work necessary to separate
a charge from its image within the material and depends on the material, the image charge potential,
−e2/(16πε0x), and the potential corresponding to a constant electric field normal to the surface, E0.
Electrons with energies greater than the work function can escape the barrier, while those with lower
energies can tunnel through it. In the case of thermionic and photo-electric emission, electrons are excited
above the barrier to escape, while in the field emission the barrier height is lowered by the external field
to encourage tunnelling. The reduction of the barrier by the applied field is called the Schottky effect and
plays a central role in all emission processes, especially field emission [41].

Photo-electric emission is well described by Spicer’s three-step model.

1. Photon energy absorption by the electron:

(a) the optical skin depth depends on photon wavelength (∼14 nm for UV light on copper);
reflectivity, and absorption as the photons travel into the cathode.

2. Electron transport to the surface through:

(a) electron–electron scattering, dominant for metals;
(b) electron–phonon scattering, dominant for semiconductors;
(c) angular cone of escaping electrons.

3. Electron escape through the barrier:

(a) Schottky effect and abrupt change in electron angle across the metal–vacuum interface; clas-
sical escape over the barrier due to the applied field.

Combining the three steps, the quantum efficiency can be expressed in terms of the probabilities
of these processes occurring:

QE(ω) = [1−R(ω)]Fe−e(ω)

∫ EF

EF+Φeff−~ω dE
∫ 1√

EF+Φeff
E+~ω

d(cosϑ)
∫ 2π

0 dφ

∫ EF

EF−~ω dE
∫ 1
−1 d(cosϑ)

∫ 2π
0 dφ

. (12)

The first factor represents the probability of a photon being absorbed by the metal, which depends on the
optical reflectivity: R(ω) ∼ 40% for metals and R(ω) ∼ 10% for semiconductors; the second factor,
Fe−e(ω), is the probability that an electron will reach the surface without scattering with another electron,
which for metals is 20%; the third factor is the probability that an electron will be excited into a state
with sufficient perpendicular momentum to escape the material, over the barrier:
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– occupied states with enough energy to escape, ∼0.04;
– electrons with angle within the max angle for escape, ∼0.01;
– azimuthally isotropic emission, ∼1.

The total energy of an electron inside the cathode after absorption of the photon is E + ~ω, therefore the
total momentum inside and outside is

ptotal,in =
√

2m0(E + ~ω) , ptotal,out =
√

2m0(E + ~ω − Φeff − EF) , (13)

where EF is the Fermi level. The electron within the material, approaching the boundary surface, needs
to have sufficient longitudinal momentum to escape, i.e.,

√
2m0(E + ~ω) cosϑin ≥

√
2m0(Φeff + EF) , (14)

where cosϑmax,in =
√

Φeff + EF/E + ~ω. In analogy to photons, electrons refract as they transit the
cathode interface, as a consequence of the boundary condition requiring conservation of transverse mo-
mentum across the metal–vacuum transition, px,in = px,out and ptotal,in sinϑin = ptotal,out sinϑout.

Combining the probabilities, it is possible to evaluate the nominal quantum efficiency for a copper
photocathode, i.e., QE ∼ 5 × 10−5 [42]. As a rule of thumb, the quantum efficiency is given by QE =
Ne/Nph = (hν[eV]/Elaser[J])Q[C]; therefore, to extract 1 nC of charge from a copper photocathode, a
UV (266 nm) laser energy of the order of 100 µJ is required.

The linear dependence between the number of emitted electrons and the incident number of pho-
tons holds until a critical intensity of the laser pulse is reached. Indeed, for higher laser intensities,
electrons will be emitted even for photon energies below the work function. In this case, n > 1 photons
have to be absorbed at the same time in order to promote an electron to an unbound state with enough
kinetic energy to escape the material, the scaling of the emitted charge being the nth power of the laser
intensity. Taking advantage of the multiphoton emission process, an IR-wavelength laser incident on a
metal cathode might also be used for electron-beam generation, in particular, when ultrashort pulses are
required [43].

Depending on the application, the cathode choice must be driven not only by the quantum effi-
ciency, but also by the intrinsic emittance, which represents the ultimate achievable emittance.

The intrinsic emittance is a feature of the emission process. To derive it, the definition of r.m.s.
emittance, εn,x = βγ

√
〈x2〉〈x′2〉 − 〈xx′〉2, can be used, observing that the correlation term, 〈xx′〉2, is

null out of the cathode. Therefore,

εn,x = σx

√
〈p2
x〉

m0c
(15)

is a function of the laser pulse spot size, σx, and the transverse momentum, px, as determined by the
emission process.

By calculating the IInd-order transverse momentum of the electron distribution function, we get
the photo-electric normalized emittance as

εintrinsic
n,x = σx

√
~ω − Φeff

3m0c2
. (16)

Therefore, to minimize the intrinsic emittance, one has to reduce the energy difference, ∆ = ~ω − Φeff ,
between the energy of the incident photons and the effective work function of the material. However,
since the quantum efficiency is proportional to ∆2, a low intrinsic emittance also results in a low quantum
efficiency.
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4.1.1 Space-charge limit emittance
As emitted electrons come out from the cathode surface, they create their own electric field and start to
fill the entire region, which can be represented as two parallel plates, i.e., cathode and anode, placed at
a distance d, with an applied field or bias potential, V . In the beam tail, the beam self-field is opposed
to the applied field and increases with the extracted charge. The effective potential is then distorted,
creating asymmetries in the tail and setting a maximum extractable current in the steady-state regime. The
maximum current density extractable is given, by solving the Poisson equation, by the Child–Langmuir
law [44], which expresses how the steady-state current varies with both the gap distance, d, and the bias
potential of the parallel plates, V , that schematize the RF gun:

jCL,1D =
4ε0

9

√
2e

m0

V 3/2

d2
. (17)

This formula has been derived by assuming an infinitely wide beam in the transverse dimensions (i.e.,
1D approximation) that completely fills the accelerating gap. However, in state-of-art photo-injectors, the
initial electron-beam pulse length is always much smaller than the accelerating gap; in addition, the laser
spot size on the cathode is usually smaller than millimetres in diameter to decrease the cathode emittance
contribution, therefore the 1D Child–Langmuir formula is no longer valid. Indeed, to describe a real
case, it is convenient to introduce the aspect ratio, i.e., the ratio between the beam radius and its length,
to define pancake-like (�1) and cigar-like (�1) beams. In the case of pancake-like beams, the maximum
surface charge density is set by the cathode extraction field, while in cigar-like beams only a small part
of the beam contributes to the space-charge field and a higher charge can be extracted. The space-charge
limit is reached when the space-charge field equals the applied, external field, E0, and electron emission
saturates. At the space-charge limit, the emitted charge saturates and the emission becomes constant. In
the RF gun, the signature for the observation of the space-charge limit is the non-linear dependence of
the charge on the laser energy.

The space-charge limit sets a minimum value for the beam emittance, once the applied field at the
cathode, Ea, and the required charge, Qbunch, are known. Indeed, for a cylindrical uniformly filled beam
with radius R, the r.m.s. size is σx = R/2 =

√
(Qbunch)/(4πε0Ea); therefore, substituting it in the

normalized intrinsic emittance for photo-electric emission (Eq. (16)), we get

εSCL =

√
Qbunch(~ω − Φeff)

4πε0m0c2Ea
. (18)

The dependencies of the space-charge limit emittance on both the applied field and the charge are re-
ported in Fig. 3(a) and (b), respectively. The space-charge limit emittance sets a maximum transverse
brightness, which in the case of pancake-like beams does not depend on the charge, but only on the
applied RF field and on the emission process:

B⊥ =
N

εnxεny
→ Bmax

⊥ = 4πε0
Ea

e

m0c
2

~ω − Φeff
. (19)

4.2 RF gun
Once the electrons are out of the cathode surface, they have to be promptly accelerated to keep under con-
trol the emittance growth driven by space-charge forces. For this purpose, the relevant modes are those
with large longitudinal electric fields Ez , since the energy transfer occurs when the particle’s velocity is
parallel to the electric field:

dU

dt
= Q~v · ~E . (20)

9

ELECTRON SOURCES AND INJECTION SYSTEMS

409



40 60 80 100 120

0.16

0.18

0.2

0.22

0.24

E
a
 (MV/m)

sp
ac

e 
ch

ar
ge

 li
m

it 
em

itt
an

ce
(m

m
 m

ra
d)

Q
bunch

 = 1 nC

4.65 eV at 266 nm
4.6 eV for Copper

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Charge (nC)

sp
ac

e 
ch

ar
ge

 li
m

it 
em

itt
an

ce
 

(m
m

 m
ra

d)

E
a
 = 100 MV/m

(b)

Fig. 3: Space-charge limit emittance as function of a) the applied field at and b) the charge for a Cu cathode
(Φeff=4.6 eV), illuminated by a UV laser pulse (~ω = 4.66 eV at 266 nm).

These modes are the transverse magnetic or TMm,n,p modes, since Bz = 0 and m, n, and p denote
the rotational symmetry, the radial dependence, and the longitudinal mode of the cavity, respectively. In
particular, the m-mode number represents the azimuthal angle, defining the ϑ-dependence or rotational
symmetry of the fields. For all RF guns, since a beam with rotational symmetry is desired,m = 0. The p-
mode number denotes the longitudinal mode of cavity, contributing to the RF emittance; for this reason,
the full cell length for most RF guns is λ/2 and p = 1.

Considering a pillbox geometry for the RF gun cavity, the longitudinal electric field is

Emnpz (r, z) = E0Jm(kmnr) cos(mϑ) cos

(
2pπz

λ

)
eiωz/c , (21)

with Jm(kmnr) the mth-order Bessel function, kmn the nth zero of the mth-order Bessel function. Con-
sidering the π-mode for a 11/2-cell standing wave RF structure, therefore, m = 0, n = 0, p = 1, and the
gun longitudinal field is Ez = E0 cos(kz) sin(ωt + φ0), presenting the maximum field on the cathode
surface, i.e., at z = 0 (k = ω/c, with ω the RF angular frequency, and φ0 the RF phase at which electrons
leave the cathode surface and start to be accelerated). The radial field Er and the azimuthal field Bϑ can
be derived by solving the Maxwell equations:

Er =
kr

2
E0 sin(kz) sin(ωt+ φ0) = −r

2

∂

∂z
Ez , (22)

Bϑ = c
kr

2
E0 cos(kz) cos(ωt+ φ0) =

r

2c

∂

∂t
Ez , (23)

where k = 2π/λ is the RF wave number.

The force acting on a particle in the RF gun can be derived by combining Er and Bϑ:

F = e(Er − βcBϑ) . (24)

The radial momentum kick is obtained by integrating the radial force impulse over the position at
the last iris:

∆pr = e

∫
Er

dz

βc
= −e

2

∫
r

βc

∂Ez
∂z

dz . (25)

Assuming that the RF field is a constant step function over the gun length, the change in radial momentum
is

∆pr = − eE0

m0c2
r sinφ, (26)
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Fig. 4: RF emittance as a function of the exit phase for a 100 MV/ m gun with a 1 mm r.m.s. size beam and a
Gaussian longitudinal distribution of 4 RF degrees r.m.s. at the exit iris, corresponding to a 10 ps FWHM bunch
length. The total emittance (green solid line) is the quadratic sum of the first-order (blue solid line) and second-
order (orange dashed line) emittances.

which depends on the applied field and the phase with respect to the wave, therefore, on the relative
position of the particle within the bunch. Moving from cylindrical to Cartesian co-ordinates, we obtain
the change in transverse momentum at the exit of the iris in terms of a kick angle x′:

∆px = βγx′ = − eE0

2m0c2
x sinφ → x′ = − eE0

2βγm0c2
x sinφ. (27)

The RF gun can then be schematized as a defocusing lens: the electron exiting the gun undergoes a
transverse kick from the exit iris, which can be written in terms of a focal length, fRF:

x′ =
x

fRF
→ fRF = −2βγm0c

2

eE0 sinφ
. (28)

The focal strength is phase dependent, therefore electrons at different longitudinal positions, or slices,
along the bunch, arriving at different phases at the gun exit, experience different kicks. In numbers (a
SPARC_LAB case), an S-band standing wave RF gun operating at E0 = 110 MV/ m, φ = 30◦, and
an electron energy of 5 MeV, has a focal length fRF = −18 cm, where the minus sign denotes the
defocusing effect of the gun exit iris. The different angular kicks received by the different slices along
the bunch contribute to an increase in the overall projected emittance, which can be estimated by deriving
the r.m.s. divergence from the variation of the angular dispersion with the exit phase, as

∆x′ = − d

dφ

( 1

fRF

)
∆x∆φ , (29)

and averaging over the particle distribution we get

σx′ =
eE0 cosφ

2γm0c2
σxσφ . (30)

The impact of the phase dependence on the projected emittance is then summarized as

εRF
n =

eE0

2m0c2
σ2
xσφ

√

cos2 φ+
σ2
φ

2
sin2 φ , (31)

as shown in Fig. 4. At 90◦, corresponding to the crest of the RF field, the phase space is strongly corre-
lated; this means that all the slices lie on the same line, resulting in a minimum in the total RF emittance;
conversely, far from the crest, each slice in the bunch explores more different fields, though contributing
with a different slice emittance, resulting in a finite projected RF emittance.
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Fig. 5: Cylindrical bunch distribution in both the laboratory and the co-moving particle frame

4.2.1 Space-charge derivation
Space-charge forces influence the beam dynamics and are one of the main performance limitations in
high-brightness photo-injectors.

To describe the origin of space-charge forces, let us consider the case of highly relativistic bunches
(Fig. 5). In the laboratory system, let us assumeN relativistic electrons uniformly distributed in a cylinder
with radius rb and length Lb; in a co-moving particle co-ordinate system, electrons are at rest and the
field is a pure Coulomb field. When transforming from the laboratory frame to the co-moving one, the
number of electrons and the radius remain invariant, while the length is expanded by a factor γ, the
Lorentz factor. Therefore, since γ � 1, the approximation of an infinitely long cylindrical distribution is
valid and, by applying the Gauss theorem, the electric field is retrieved having only a radial component:

E∗r (r) = − Ne

2πε0L∗b

r

r2
b

, r ≤ rb , (32)

E∗r (r) = − Ne

2πε0L∗b

1

r
, r ≥ rb . (33)

Transforming back to the laboratory frame, the radial component of the electric field yields a radial
electric field and an azimuthal magnetic field [45]:

Er(r) = γE∗r (r) = − Ne

2πε0Lb

r

r2
b

, (34)

Bφ(r) =
v

c2
Er(r) , r ≤ rb . (35)

The force a test particle inside the bunch experiences due to Er and Bφ is given by the Lorentz force,
~F = −e( ~E + ~v × ~B); therefore,

Fr(r) =
Ne2

2πε0Lb

r

r2
b

(
1− v2

c2

)
=

Ne2

2πε0Lb

r

r2
b

1

γ2
, (36)

which has a linear dependence on r and is proportional to γ−2. The overall force points outwards and is
then a defocusing force, which vanishes for γ →∞.

The repulsive space-charge forces represent an unavoidable issue, which must be compensated
to avoid a strong increase in emittance. For cylindrical bunch transverse distributions, the total space-
charge force depends linearly on the displacement r, as shown in Eq. (36). The linear dependence on the
particle displacement from the axis produces a quasi-laminar propagation of the beam, since there is a
full correlation between the particles’ position and their transverse angle; the particle motion follows a
laminar flow, therefore, particle trajectories do not cross each other. Therefore, applying a magnetic lens,
such as a solenoid, whose field increases linearly with r, the internal forces are counterbalanced and the
beam is focused, contributing to preserve the emittance.
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In the case of Gaussian transverse beam distribution, the radial force does not depend linearly on
r, as

Fr(r) =
Ne2

2πε0Lbr

(
1− e−

r2

2σ2

)
1

γ2
: (37)

it increases almost linearly from the axis (r = 0) up to 0.8σ of the Gaussian distribution, then it reverses
its trend and starts decreasing for r > 1.8σ, since the charge density is lower than around the axis. In
this case, space-charge forces cannot be fully compensated. A flat, uniform beam distribution is also
advantageous in the longitudinal direction, because slices in the core or in the tails would have different
charge density otherwise, experiencing a different defocusing effect due to space-charge along the bunch,
while the same external focusing force is applied along the bunch.

4.3 Emittance compensation
In the 1980s, Carlsten [46] first explained how to reduce the emittance increase induced by space-charge
in a RF gun. He suggested using a solenoid, placed at the exit of the RF gun, to control the emittance
oscillations in the downstream drift.

The beam can be virtually divided, in the longitudinal direction, by thin slices, each having its own
transverse phase space distribution. Assuming that each slices are independent and do not interact with
each other, the projected emittance is the phase space ellipse, which encloses all the slice phase space.
At the cathode, all the slices have low angular divergence and they can be considered almost aligned,
resulting in a projected emittance which is close to the intrinsic one. As the beam leaves the cathode
surface, the slices undergo different angular kicks, depending on their peak current. The ensemble of
phase spaces of each slice forms a kind of fan, resulting in a larger enclosing ellipse and, therefore, in
an increased projected emittance. A solenoid, whose focusing field is linear, can be used to give to each
slice a kick of the same sign. Indeed, the beam entering the end radial field of the solenoid receives a
transverse kick and rotates inward or outward, depending on the solenoid polarity. The particle is then
closer in when passing through the end radial field at the opposite end of the solenoid and, since it is
further in, the kick is smaller. After the solenoid, the beam drifts a distance with the slices all converging
at a beam waist, placed at the entrance of the high-energy linac. To prevent additional space-charge
emittance increase in subsequent accelerating sections, the final emittance minimum has to be reached at
high beam energy so that space-charge forces are sufficiently damped. Indeed, the linac boosts the beam
energy from the space-charge-dominated regime to the emittance-dominated one, freezing the aligned
slices. Therefore, a solenoidal field is needed to focus the beam and match it into a high-gradient booster
to damp emittance oscillations.

In the space-charge-dominated regime, i.e., when the space-charge collective force is largely domi-
nant over the emittance pressure, mismatches between the space-charge correlated forces and the external
RF focusing gradient produce slice envelope oscillations that cause normalized emittance oscillations,
also referred to as plasma oscillations.2 It has been shown [48] that to conveniently damp emittance
oscillations the beam has to be injected into the booster with a laminar envelope waist and the booster
accelerating gradient has to be properly matched to the beam size, energy, and peak current, according to

γ′ =
2

σ

√
Ip

2IAγ
, (38)

with γ′ ≈ 2Eacc, where Eacc is the accelerating field. The matching condition guarantees emittance
oscillation damping, preserving beam laminarity during acceleration. The final value of the emittance,
however, is strongly dependent on the phase of the plasma oscillation at the entrance of the booster, whose
typical behaviour is shown in Fig. 6, as computed by numerical simulations with PARMELA code [49]
for different initial electron pulse shapes, i.e., flat top with different rise time from a pure cylindrical

2For further detailed studies refer to Ref. [47].
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Fig. 6: Normalized r.m.s. emittance oscillations in the drift downstream the RF gun as computed by PARMELA,
for different initial electron pulse rise times. Gun length, 15 cm, solenoid length 20 cm centred at z = 20 cm [52].

bunch (0 ps rise time) to a quasi-Gaussian distribution (3 ps rise time). The emittance minimum decreases
for shorter rise times because of the reduced non-linear transverse space-charge effects in cylindrical-like
bunch charge distributions [50]. In addition, an emittance oscillation appears in the drift downstream of
the RF gun, showing a double emittance minimum [51]. The relative emittance maximum disappears
at longer rise times and becomes a ‘knee’ in a quasi-Gaussian distribution (yellow curve in Fig. 6).
Emittance oscillations of this kind are produced by a beating between head and tail plasma frequencies
caused by correlated chromatic effects in the solenoid. The working point matching condition, suitable
for damping emittance oscillations, requires the emittance to be a local maximum and the envelope to be
a waist at the entrance to the booster. In this way, the second emittance minimum can be shifted at higher
energies and frozen at the smallest value, taking advantage of the additional emittance compensation
occurring in the booster. The waist size is related to the strength of the RF fields and the peak current:
RF focusing aligns the slices, resulting in a smaller projected emittance, and acceleration damps the
emittance oscillations.

Experimental evidence of emittance oscillations in the drift before the booster has been obtained
at the SPARC high-brightness photo-injector [52] by using an emittance meter [53] to measure the evo-
lution of the beam transverse phase space in the drift downstream of the RF gun. The behaviour of both
projected normalized emittance and envelope along the longitudinal co-ordinate z is reported in Fig. 7.
The projected emittance evolution along z shows the expected double minimum oscillation, which is
crucial in achieving minimum emittance in high-brightness photo-injectors.

4.4 Longitudinal compression
Space-charge effects at low energy prevent the generation of short, subpicosecond, electron bunches,
with a significant amount of charge (tens of picocoulombs) directly from the electron source, leading to
emittance degradation and bunch elongation within a few centimetres downstream of the cathode. Bunch
compression is therefore necessary to shorten the electron pulse, achieving a high peak current, of the
order of kiloamps. Either magnetic or RF-based compression methods can be used for this purpose.

In magnetic compressors, a bunch with a time-energy correlation (or chirp) is driven along an
energy-dependent path length by a dispersive, non-isochronous beam transport section [54]. While this
scheme has been proved successful in increasing the beam current at high energies, the emittance in-
crease due to coherent synchrotron radiation in bending magnets can be dramatic. As an alternative, the
compression scheme used at SPARC_LAB exploits the interaction with the electromagnetic fields of an
accelerating cavity. Based on RF compression, it uses rectilinear trajectories, avoiding the degradation

14

E. CHIADRONI

414



Fig. 7: Normalized emittance and envelope (r.m.s. values) evolution from the cathode up to the beam line end, as
computed by PARMELA (red and blue curves), compared with measurements (red dots and blue squares) taken
in the emittance meter range (up to 2 m from the cathode). Beam measured parameters: 500 pC, 5 ps FWHM
(quasi-flat top pulse shape), 1.5 ps rise time, 5 MeV.

due to coherent synchrotron radiation suffered by the beam going through bending trajectories. In addi-
tion, working at relatively low energy [55], of the order of megaelectronvolts, it can be integrated into
the emittance compensation process [46] illustrated in the previous section. This scheme is commonly
known as velocity bunching [56].

The longitudinal phase space rotation in the velocity-bunching process is based on a correlated
time-velocity chirp in the electron bunch, causing electrons in the bunch tail to be faster than electrons
in the bunch head. The correlated chirp induces a longitudinal phase space rotation in the travelling
RF wave potential (longitudinal focusing), accelerating the beam inside a long multicell RF structure,
as depicted in Fig. 8 (right panel).3 Thus, simultaneously, an of-crest energy chirp is applied to the
injected beam. Subrelativistic electrons injected into a travelling wave cavity at zero crossing field phase
move more slowly than the RF wave. Thus, the beam slips back to phases, towards −90◦, as shown in
Fig. 8 (left-hand panel), where the field is accelerating, and it is chirped and compressed: compression
and acceleration take place at the same time within the same accelerating section, i.e., the first one
following the RF gun. The velocity-bunching technique is characterized by longitudinal and transverse
phase space distortions, leading to asymmetric current profiles and higher final projected emittances,
which can, however, be minimized by keeping the transverse beam size under control through solenoidal
magnetic fields in the region where the bunch is undergoing compression and the electron density is
increasing [57]. For this reason, the typical layout for a high-brightness RF photo-injector, shown in Fig.
2, presents solenoid coils embedding the first two accelerating sections. As shown in Fig. 9, the effect on
emittance compensation produced by the solenoids is clearly visible in the simulation (right plot: curve
c).

5 Conclusions
High-brightness electron beams can be achieved in RF photo-injectors by means of RF guns, equipped
with laser-driven photocathodes, followed by booster sections. An emittance compensation scheme [46]
based on a focusing solenoid at the exit of the RF gun can be used in photo-injectors to control emittance
increase due to space-charge effects. In addition, by properly matching the transverse phase space of the
electron beam with the downstream accelerating sections (booster), it is possible to control the transverse

3General Particle Tracer is a 3D code to study charged-particle dynamics in electromagnetic fields.
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Fig. 8: Left-hand side: longitudinal electric field in the first travelling wave section as a function of RF phase,
showing slippage of the beam, injected at the 0 crossing phase, towards −90◦. Right-hand side: General Particle
Tracer simulation of the longitudinal phase space. The maximum bunch compression, for this case, occurs at
around −87◦ (olive green curve).

Fig. 9: Left-hand side: measured envelopes and PARMELA simulations. Right-hand side: emittance evolution
along the linac (PARMELA simulations); (a) no compression, (b) compression with solenoids off along the first
travelling wave section, (c) same compression with solenoids set to 450 G [57].

emittance oscillations during the acceleration. Under conditions of invariant envelope and proper phasing
of space-charge oscillations [52], the final emittance is almost compensated down to the intrinsic emit-
tance value given by cathode emission, with an expected emittance scaling such as εn ∼ σcathode ∼

√
Q,

where σcathode is the hitting laser spot size on the photocathode, and Q is the extracted electron charge.
A compression stage can occur to shorten the beam length so to achieve the required large peak current.
The so-called velocity-bunching method [55] has opened up a new possibility of compressing the beam
inside an RF structure and, if integrated in the emittance compensation process [48, 56], can provide
the desired bunch current values with the advantage of compactness of the machine and absence of the
coherent synchrotron radiation effects present in a magnetic compressor [58–60]. It is interesting to note
that a shortened beam length also enables the energy spread dilution due to RF curvature degradation to
be contained; indeed the energy spread depends on the bunch length and the accelerating frequency as
∆γ/γ ≈ 2((πfRFσz)/c)

2, where an on-crest operation, in full relativistic conditions, has been consid-
ered.

The electron source is one of the key components, since the brightness generated at the elec-
tron source represents the ultimate achievable value. The final application must drive the choice of both
electron source and injector, since stability and reliability are common issues. Photo-injectors have the
advantage of producing a variety of bunch trains that can be tailored to the needs of a particular machine
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by properly shaping the laser pulses. Photocathodes (with respect to thermionic sources) can easily pro-
duce peak current densities of the order of kiloamps per centimetre squared, and high current densities
at the cathode are needed to minimize the transverse emittance. Conversely, DC photocathode electron
guns are the best solution for high-average power beams.
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Energy Efficiency
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Abstract
Particle accelerators are precious tools, not only for high-energy and nuclear
physics, but also for many other areas of science, medicine, and security. They
do, however, have a substantial energy consumption, which makes it
important to design them to make best use of the consumed energy.
Maximizing the energy efficiency of an accelerator means minimizing not
only the energy consumption and the environmental impact, but also allowing
for smaller installations. The concepts and technologies developed to improve
the energy efficiency of particle accelerators are not limited to accelerators,
but will have a significant impact on energy systems generally. These
developments include smart power grids and short-term energy storage
devices, better energy conversion efficiencies for subsystems, efficient
cryogenic systems, and, ultimately, the recovery of unused energy in more
valuable forms than low-temperature heat. Energy recovery linacs are the
prime example for good efficiency, since they accelerate, use, and decelerate
a continuous beam, using the energy recovered during deceleration for
acceleration.

Keywords
Energy conversion; exergy; efficiency; beam loading; Sankey diagram.

1 Introduction

1.1 Importance of energy consumption and efficient energy use

Humankind consumes about 160 PWh per year (or, on average, 18 TW or 2.4 kW per capita) for
transportation, industry, nutrition, and comfort. More than 80% of this energy stems from fossil fuels
(petrol, coal, natural gas), which are not abundant. Awareness of the scarcity of these natural resources
arose in the 1960s (Club of Rome, 1968) and 1970s ([1], oil crisis 1973). Environmental concerns have
increased since, relating global warming to greenhouse gas emissions and weather phenomena like El
Niño to the incineration of fossil fuels. The 1997 Kyoto Protocol and the 2015 Paris Agreement
document worldwide concern and underline the political will of many nations to reduce global warming.

Nuclear fusion and fission promise abundant resources, but have raised other concerns, either of
public acceptance or economic feasibility. Renewable resources (wind, solar, hydro, geothermal) are
not yet exploited to fully cover demand.

However, as illustrated using the example of the USA shown in Fig. 1, a large fraction of
consumed energy is ‘wasted’ or ‘rejected’ rather than used for its purpose, and the term ‘energy
efficiency’ is used here to denote the ratio between the useful output of an energy conversion system
and the input. The goal of maximizing energy efficiency is synonymous to minimizing the amount of
energy required to provide a requested service or product. Design towards higher energy efficiency will
thus not only save energy but also allow a smaller installation, both for the supply of energy and for the
disposal of rejected energy (typically cooling).

Proceedings of the CAS–CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May–10
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Fig. 1: Sankey diagram illustrating the different sources, forms, and uses of energy, using USA data for 2015 as
an example [2].

1.2 Orders of magnitude

The total daily energy consumption of humankind is about 440 TWh or 60 kWh per capita (in Western
Europe, 104 kWh). If we look at orders of magnitude for energy provision, storage, and use, we find the
following.

1.2.1 1 kWh

This order of magnitude is the daily work delivered by a Tour-de-France race cyclist or one run of
laundry in a household washing machine. A household freezer uses about 1 kWh per day, a laundry
tumbler will require about 2 to 4 kWh for one run, an average Western European household uses 16
kWh per day per capita. The energy required to heat 1 m  of water by 1 K is 1.16 kWh. A window-
mounted air conditioner unit running all day uses about 20 kWh. A mass of 37 t in 10 m height has a
potential energy of 1 kWh in the Earth’s gravitational field; a fully charged conventional lead car battery
stores about 1 kWh. A Tesla Model S Li-ion battery holds up to 100 kWh for a reach of up
to 540 km [3].

1.2.2 10 MWh

The order of magnitude 10 MWh corresponds to the electricity produced by a wind power station in one
average day. Per year, an average household in Western Europe uses about 6 MWh electricity per capita,
CERN’s Linac4 consumes 10 MWh/day, CERN’s PS-Booster or the Swiss Light Source require
about 80 MWh/day. 1 MWh of electricity costs of the order of €100 (range €30 to €300). The energy
stored in one ITER superconducting toroidal field coil is 11.5 MWh, about four times the energy stored
in all 1232 LHC main magnets together at top energy.

1.2.3 10 GWh

The electrical energy produced per day by an average size nuclear reactor block is about 24 GWh. The
‘Solar Star’ photovoltaic power station in Southern California produces 4.5 GWh per day on average [4],
the ‘Alta Wind Energy Center’ wind farm, with 320 wind turbines, also in California,
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about 7.3 GWh [5]. CERN’s total daily electricity consumption on average is about 3.5 GWh; about half
of this is needed for the LHC alone.

As indicated in Fig. 2, some proposals for post-LHC colliders will require RF powers alone of
the order of 100 MW, or grid powers of hundreds of megawatts (translating to tens of gigawatt hours
per day). It is clear that these large consumptions make the optimization of energy conversion
efficiencies compulsory.

Fig. 2: Some major high-energy physics collider proposals for the post-LHC era. Left-hand side: FCC-ee circular
collider, 90–350 GeV, 0.8 GHz continuous wave, total RF power: 110 MW. Centre: ILC (International Linear
Collider), 0.5 TeV, 1.3 GHz, total (average) RF power: 88 MW. Right-hand side: CLIC (Compact Linear
Collider),3 TeV, 1 GHz, total (average) RF power: 180 MW.

Regarding these examples, it is clear that large particle accelerators are in the size range that
matters, both for the acceptance of accelerator projects by the public and because the technology
developed to improve efficiency in particle accelerators may well be relevant for other areas of science
and technology and thus may have a large societal impact.

Energy storage for this order of magnitude is difficult—the energy stored in all German
hydroelectric energy storage plants together is of the order of 40 GWh.

1.2.4 1 TWh

France presently runs 19 nuclear power plants (58 reactor blocks) with a total power of 66 GW
or 1.6 TWh per day. Germany uses about 1.6 TWh of electricity per day—humankind about 53 TWh.
Energy storage does not really scale to this order of magnitude—the total energy that can be stored in
all existing hydroelectric plants probably sums up to about 1 TWh. The annual electricity consumption
of CERN is 1.2 TWh, that of the canton Geneva is 2.9 TWh; the whole of Switzerland uses 60 TWh,
Germany 584 TWh.

The total solar energy (sunshine) on the Earth’s surface is 3,000,000 TWh = 3 EWh every day.

1.3 Definition of energy efficiency

It is clear that it is important to define ‘useful’ in order to define energy efficiency. If, for example, we
consider the purpose of heating an apartment, very clearly the purpose is to keep a certain comfortable
temperature, which requires some heating if the outside temperature is lower. Large energy efficiency
here certainly has to do with good thermal insulation—perfect insulation would not require any heating
at all! One easily finds that all heating power is eventually required only to heat the environment through
the apartment’s imperfect thermal insulation, and good efficiency directly translates to avoided
consumption of primary energy.

If we are looking at a subsystem that converts or transports energy, the definition of ‘useful’ is
again relatively straightforward—the losses here are conversion or transmission losses and the
efficiency very clearly is

 = = 1 − = ⁄  
.
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Also, note that the consumed energy is given by
  = ,

and so both lost and consumed energy are reduced when  is maximized (indicated by the height of the
blue boxes in Fig. 3, clearly smaller on the right-hand side). This, of course, means that the size of the
installation and the cooling and ventilation systems can be designed to be smaller.

Fig. 3: Sankey diagram of the definition of efficiency as a ratio of useful energy to consumed energy. Note that
the illustration of small efficiency (left-hand side) and large efficiency (right-hand side) is scaled to show identical
‘useful energy’ for the two cases (green), and that a larger efficiency also means a smaller installation for both the
power supply (blue) and the cooling and ventilation (grey).

The fact that larger efficiency leads to less consumed energy allows us to coin the term ‘avoided
consumption’, which can, in fact, be considered as a resource gained by increasing efficiency. Looking
again at the example of Fig. 1, comparing the ‘rejected energy’ with the resources on the left, one realizes
that this new resource can be of significant size.

2 Power flow in an accelerator
It is useful to look at all components of a particle accelerator that contribute to the energy conversion
efficiency to identify at which point improvements pay off the most. Typically, one starts from the
electricity grid at high voltage (400 kV) or medium voltage (18 kV) with large transformers. These feed
so-called power converters that feed magnets, cryogenic installations, RF power generators and
amplifiers, particle detectors, computers, and ancillary systems.

In the example given in Fig. 4, the RF system, magnet system, and scientific instruments share
the consumed energy in almost equal parts, but this should not be generalized. A linac will certainly use
more energy for RF than for magnets; the LHC uses the largest part for the cryogenic system to allow
using only very little for the superconducting magnets themselves. In all cases, however, the energy of
the beam is an important intermediate quantity that allows efficiencies of the accelerator subsystems to
be quantified. In subsequent sections, we will look at these subsystems’ efficiencies in more detail.
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Fig. 4: Typical power flow in an accelerator (example PSI [6])

Conversely, it is equally important to assure that optimum use is made of the beam energy! The
luminosity upgrade project of the LHC at CERN, ‘HL-LHC’, is an example aimed at increasing the
luminosity (the number of physics events) by a factor of ten, while the beam intensities are increased by
(only) a factor of two. This is achieved by squeezing the two proton beams even further (decreasing ∗

from nominally 65 cm to below 20 cm). To avoid spurious collisions that would then result from head-
on collisions requires, however, increasing the crossing angle, which can only be achieved by enlarging
the aperture of the final focus magnets. A larger crossing angle with reduced ∗ would, however, lead
to incomplete overlap of the colliding bunches and thus a geometric luminosity reduction. Crab cavities
will enable correction for this geometric aberration, allowing again for the same luminosity as in head-
on collisions.

Another example for optimizing the use of the beam energy is presented in Fig. 5, which indicates
a series of steps that led to the more efficient use of the incoming proton beam in a spallation neutron
target, increasing its neutron yield by a remarkable factor of 1.42 [7]. This was achieved by using
zirconium cladding, arranging the target rods to be closer together, the usage of lead reflectors, and
reshaping the calotte for the incoming beam from convex to concave. Note that a yield increase by a
factor of 1.42 is equivalent to a reduction of the used energy by the same factor!
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It is often difficult to quantify what exactly the ‘best use of the beam energy’ is, since it is, a
priori, not known how much energy consumption is required for a physics discovery, but certainly one
can make comparative studies, as in the two examples above, at least if the physical processes involved
are understood.

In some cases, where a large beam energy is required continuously but the beam structure is not
‘destroyed’ in the process (for example, if electrons create light in a wiggler or undulator, or if electrons
interact in an electron–ion collider), the ‘best use’ of the beam energy could be its recovery, for example,
in an energy recovery linac (see Section 8 below).

3 Is everything lost?
Looking at the typical numbers in the previous examples it seems that—apart maybe from a few
microwatts in neutrons or muons—virtually all energy is converted to waste heat. The obvious question
arising is, ‘Can we recover the heat in a more valuable form of energy?’

According to the second law of thermodynamics, one can distinguish forms of energy of different
‘qualities’: heat, for example, is a form of energy, which has value only in the presence of a temperature
difference. Otherwise, in so-called thermodynamic equilibrium, it cannot be converted into another form
of energy—in particular, it cannot do work. Other forms of energy can do work directly (potential,
electric, to some degree kinetic) and thus have a higher value. Energy that can do work is often also
referred to as exergy [8].

Heat in the presence of a temperature difference can do some work, and in spite of the former
statement on heat as a form of energy of lower ‘quality’, it is practically involved in most energy
conversion processes, from the steam engine via most power plants to nuclear reactors. The efficiency
of the heat engine, the process of converting heat to work, is, however, strictly limited to the Carnot
efficiency [9], which is given as  = 1 − ⁄ , where  and  are the cold and hot temperature
in kelvins, respectively. This is illustrated on the left-hand side of Fig. 6 in a Sankey diagram, while the
Carnot efficiency of a heat engine operating in an ambient temperature of 20 ℃ is shown on the right-

SINQ Mark III SINQ Mark IV Improvements

Zr cladding
instead of steel

+12%

Compaction of
rod bundle

+5%

Pb reflectors +10%

Inverted entrance
calotte

+10%

Total gain +42.3%

Fig. 5: Improvements of a spallation neutron target for better neutron yield [7]
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hand side. It is clear that that this efficiency becomes zero with vanishing temperature difference and
reaches only 50% when  = 2 , which means that, with an ambient temperature of  = 20 ℃ =
293 K, the efficiency reaches only 25.4% for = 100 ℃ = 393 K. Substantial efficiencies can be
reached only at much larger  Δ .

Fig. 6: Left-hand side: Carnot efficiency as the limit for the conversion of heat to work. Right-hand side: Carnot
efficiency of a heat engine as a function of Δ  for = 20 ℃.

From this consideration, it should be clear that the recovery of waste heat to exergy is not efficient
and works better at high temperature. Please consider that the Carnot efficiency is the theoretical limit,
while measured efficiencies are always lower because of friction and other imperfections.

Before directly rejecting waste heat into the environment, one may of course consider injecting it
into a heating plant, but this should be considered only for the unavoidable remaining waste heat after
all other processes have been optimized to minimize consumption.

4 Optimizing magnets
In principle, no energy is consumed to generate a DC magnetic field—a prominent example for the use
of permanent magnets in accelerators is the Fermilab Recycler storage ring [10]. Permanent magnets,
however, are limited in both field strength (neodymium magnets reach ≈ 1.4 T) and homogeneous field
region. The downside of permanent magnets is, of course, the lack of tunability. An example showing
how permanent magnets can also be made tuneable is illustrated in Fig. 7, which shows a permanent
quadrupole studied for CLIC, which is tunable in a range from 15 T m⁄  to 60 T m⁄  by displacing parts
of the magnetic circuit mechanically by a stroke of 64 mm.

ENERGY EFFICIENCY

427



Fig. 7: Principle of tuneable quadrupole magnet based on permanent magnets (green) [11]

For the LHC, the main dipole magnets use NbTi superconductors up to 11.6 kA operated at 1.9 K
to reach fields of the order of 8.33 T to guide the 7 TeV proton beams on the LHC curvature [12]. Thanks
to superconductivity, the ohmic losses in the magnet coils are zero but, of course, energy is consumed
to establish and maintain the cryogenic conditions, treated in Section 7 below.

5 RF power generation
Figure 8 shows the Sankey diagram for the FCC-ee as an example with optimistic but not untypical
numbers for the energy conversion efficiencies involved. It should be noted that (i) the most significant
conversion efficiency in the example is the generation of RF power and (ii) a large amount of energy is
required to operate the cryogenic plant required to keep the cavities superconducting, which will be
treated in Section 7 below.
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Fig. 8: Sankey diagram indicating energy conversion efficiencies for the FCC-ee circular collider RF systems and
cavities. The generation of RF from DC is a significant contributor to the overall efficiency.

Active elements used for RF power generation are summarized in Table 1. Note that the
frequencies, powers, and efficiencies given are merely meant to indicate typical orders of magnitude,
while actual cases may significantly deviate. In particular, for solid-state power amplifiers, the attainable
efficiency depends strongly on the frequency range and on the technology used to fabricate the active
elements. The abbreviation IOT stands for ‘inductive output tube’, which is a hybrid between a tetrode
and a klystron.

Table 1: Typical frequency, average power, and efficiency ranges of active elements for RF power generation

Tetrodes IOTs Klystrons Solid-state
power
amplifier

Magnetrons

 range DC to 0.4 GHz 0.2–0.5 GHz 0.3–20 GHz DC to 20 GHz GHz range
 range 1 MW 1 MW 1.5 MW 1 kW <1 MW

Typical  85–90% (class C) 70% 50% 60% 90%
Remarks Broadcast

technology,
widely
discontinued

New ideas
promise
significant
increase

Requires
combination of
thousands

Oscillator, not
amplifier!

5.1 The impact of improving the RF power generation efficiency

I will use the example of the FCC-ee study, sketched in Fig. 8, to illustrate the impact that an
improvement of the klystron efficiency from 70% to 80% would have. Let us assume that the indicated
105 MW are given; in this case, the required power from the grid would decrease from 165 MW to
144 MW. All electrical installation on the primary side could thus be dimensioned 12.5% smaller. With
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an assumed annual operation period of 5000 h, the annual energy consumption would reduce by
105 GWh. With an assumed electricity cost of €50 MWh⁄ , this would reduce the annual electricity bill
by €5.2 million, savings that could co-finance the R&D. The waste heat rejected to the environment
would be reduced by 35% from 60 MW to 35 MW. This would also mean that the cooling and
ventilation systems could be designed to be 35% smaller.

All of these savings are significant and make it worthwhile to invest in ideas that could lead to
increased RF power generation efficiency and the development of better klystrons.

5.2 New concepts to increase klystron efficiencies

Klystrons are widely used in particle accelerators, in both pulsed and continuous wave operation.
Conventional klystrons reach efficiencies of up to 70% in saturation and typically around 50% in
standard operation. In a standard klystron, a DC voltage of typically 20–200 kV accelerates a continuous
electron through a vacuum tube. A small RF voltage applied to the passing beam in an input cavity leads
initially to a velocity modulation of the beam, which, after a drift region, leads to an intensity modulation
(bunching). This density modulation gives rise to RF components of the electron beam, which can be
extracted with an output cavity. In this simplest form of a klystron, consisting of just input cavity and
output cavity, a maximum efficiency (extracted output power divided by DC voltage and beam current)
of 58% can be reached. Additional passive cavities between the input cavity and the output cavity are
often used; they are tuned slightly off the operating frequency or near its harmonics and help in the
bunching process to reach larger efficiencies; this is how today’s conventional klystrons reach
approximately 70%.

Space charge forces limit the efficiency of a high-power klystron. Since short bunches are
required for high efficiency and space charge forces counteract the formation of short bunches, this led
to the invention of multi-beam klystrons, where the total beam current is divided into  smaller beams,
reducing the space charge by a factor of  .

New ideas appeared in 2013, which fundamentally questioned the established methods of
maximizing klystron efficiencies. One of these ideas is the core oscillation method, where the space
charge is used to help the bunching rather than obstructing it [13]. Figure 9 tries to illustrate the core
oscillation principle (bottom) by comparing it with conventional bunching (top). The plots on the left-
hand side show the particle phase distribution (vertical axis) while travelling through the klystron,
passing the different cavities (vertical grey lines). The particle distribution is sketched using two
different colours to distinguish between those particles that arrive in the output cavity in a useful RF
phase to contribute to power generation (light brown shading) and those that arrive in the wrong phase,
i.e. particles that will actually be accelerated in the output cavity and thus reduce efficiency (grey
shading). In conventional klystrons, the number of electrons arriving in the wrong phase is substantial—
this leads to the limitation of efficiency.
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Fig. 9: Conventional bunching (top) compared with core oscillation method (bottom) to reach higher klystron
efficiency.

For the core oscillation method, one allows the space charge to drive the forming bunches apart
again and puts the next cavity further downstream. Bunches form again, are driven apart again by space
charge and redressed again further downstream—this can be repeated several times, leading to ‘core
oscillation’. While this core oscillation takes place, the electrons that would otherwise arrive in the
wrong phase in the output cavity see smooth focusing forces that allow them to drift also into the core
of the bunch. This leads to a much more favourable electron distribution in the output cavity and thus
significantly larger efficiency.

The disadvantage of the core oscillation method is the need for a much longer device, but other
methods are the focus of recent studies to combine high efficiency with reduced length.

6 Conversion of RF power to beam power
Once the RF power is generated and transmitted to the cavity, where the interaction with the charged
particle beam takes place, how much of this power can actually be transferred to the beam? How can
one optimize this transfer of power to the beam?

In the early days of accelerators, the quantity optimized in the cavity design was the shunt
impedance. This makes sense, since the shunt impedance  is defined as | | = ∙ , i.e.
maximizing  will result in the largest accelerating voltage given the input power.  can be
expressed as the product of a factor ⁄ , which depends only on the cavity geometry, and the quality
factor , which is the number of RF periods, during which the stored energy decreases by a factor 535.5
(= e ) if no RF power is replenished. A typical order of magnitude for the factor ⁄  is 200 Ω; a
typical order of magnitude for  is 10  to 10  for normal-conducting copper cavities and 10  to 10
for superconducting niobium cavities.

Note that the power  in this equation is the power lost in  and not the power transferred
to the beam!

For the transfer of energy from the RF to the beam, however, optimizing the voltage by optimizing
 neglects the effect of the beam current, which, if not small, is important for the energy transfer

to the beam and thus for the conversion of RF power to beam power. Referring to Fig. 10, with the
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simplifying assumption that the cavity is in tune, such that  and  exactly compensate each other and
can be neglected. In the absence of the beam ( = 0), the generator current through  will create
the accelerating voltage , as desired.

Fig. 10: Equivalent circuit for a single mode in an accelerating cavity

In the presence of the beam ( ≠ 0), the sum of  and  flows through . When
accelerating, with the arrow direction as chosen in Fig. 10, the beam current will, however, be in
antiphase to the accelerating voltage ( < 0) and thus counteract , which means that the total current
through  and thus  will be reduced. This effect is generally referred to as ‘beam loading’.

In a more general formulation, the currents and voltages in the equivalent circuit have arbitrary
phases, best described as complex quantities, which also enables studying the cavity off tune and any
beam phase. With the arrow direction chosen in Fig. 10, the power transferred to the beam is given
as −ℜ{ ∙ ∗ }, where ℜ denotes the ‘real part’ and the asterisk denotes ‘complex conjugate’. This is
the quantity to be maximized for best efficiency in the transfer of RF energy to beam energy. One can
state that, to have a large energy transfer efficiency, the beam loading should be large.

If   is very large, as is the case for superconducting cavities, it can be neglected entirely in
the equivalent circuit, and now the task of optimizing energy transfer is to match  to the equivalent
beam impedance, − ⁄ . If this matching is possible, the energy transfer efficiency can reach 100%
in this limiting case.

Full beam loading can also be reached in normal-conducting accelerating structures, and was, in
fact, reached in CTF3 in the frame of the CLIC study [14]. For the acceleration of the drive beam in a
normal-conducting 3 GHz travelling-wave structure, an RF to beam energy transfer efficiency of 95.6%
could be experimentally verified. On the downside, maximizing the efficiency reduces the accelerating
voltage from the value that is reachable in the unloaded case. For full beam loading, this reduction is
roughly a factor of two, as indicated in Fig. 11. This reduction is of no concern for a circular accelerator,
but very important for linacs used in linear colliders. In the CLIC concept, full beam loading is used for
the drive beam, but only 20% beam loading is chosen to accelerate the main beam, which is a trade-off
between efficiency (36%) and a reduced accelerating gradient compared with the unloaded case (90%).
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Fig. 11: RF to beam energy transfer efficiency as a function of degree of beam loading. For full beam loading,
only about 50% of the unloaded gradient is reached; for partial beam loading, gradient and efficiency can be traded
off.

7 Cryogenic system efficiency
The concept of the Carnot efficiency introduced in Section 0 above, limiting the efficiency of a heat
engine, is also valid for other engines that transfer energy between heat and ordered motion, such as
heat pumps or refrigerators.

Figure 12 illustrates a refrigerator, where mechanical work is done to extract heat at a low
temperature—the basic principle of a cryogenic system. At the same time, this illustrates a heat pump,
for which  at  is the desired heating, extracting energy  at the lower temperature  with the
help of the mechanical work of the heat pump.

ENERGY EFFICIENCY

433



Fig. 12: Reversed Carnot cycle, illustrating the energy flow in a cryogenic system—the goal is to extract heat
at , which requires work = COP ∙ .

The established term used to describe the performance of cryogenic plants or heat pumps is the
‘coefficient of performance’, abbreviated COP. If we use our definition of efficiency as the ratio of
‘useful’ energy to ‘used’ energy, and define for a cryogenic plant the cooling power at low temperature,

 as the ‘useful’ energy, we could write COP = . For a heat pump, where  is the ‘useful’ energy,
the efficiency is sometimes defined as = ⁄ , neglecting the used incoming heat , which leads
to efficiencies well over 100%, limited by Carnot’s principle to Δ⁄ .

For real technical installations, the COP obtained is much larger than the Carnot limit (Fig. 13).
Based on consolidated experience with modern and large CERN cryogenic plants, the technically
achieved COP is about 230 at 4.5 K and 930 at 1.8 K, much larger than the Carnot limits of 64.1 and
161.8, respectively (assuming an ambient temperature of 293 K).

Fig. 13: COP obtained in large cryogenic systems as a function of temperature (P. Lebrun, private communication)
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7.1 Optimum operating temperature for a superconducting RF system

When optimizing a superconducting RF system, as, for example, the one used as an example in Fig. 8,
it is important to optimize the whole system and not just the subsystems. While superconducting cavities
reach lower losses when operated at lower temperatures (see Fig. 14, left-hand side), it is clear that
cooling to obtain those lower losses costs more energy, owing to the increased COP. Combining these
two effects leads to an optimum operating temperature at which the energy consumption for the
cryogenic system is minimized (see Fig. 14, right-hand side) [15].

Fig. 14: Left-hand side: surface resistance in a Nb superconducting cavity as a function of temperature, according
to the BCS model (blue) and real (red). Right-hand side: with the  dependence of both  and COP, an optimum
operating temperature results. Red: cavity wall losses in watts. Blue: required cooling power at ambient
temperature in kilowatts.

8 Recovering the beam energy

8.1 Beam energies and beam powers in synchrotrons and linacs

When we talk about ‘energy recovery’, we clearly mean the recovery of energy in a valuable form,
preferably as exergy.

There is a substantial difference between synchrotrons and linacs concerning the beam power and
beam energy: while a synchrotron is filled with a particle beam just once, which is then often kept for a
relatively long period, linacs are constantly fed with a fresh beam which normally has only a single
passage through it. In the following, we will illustrate this difference and its impact on the possibility
and viability of beam energy recovery based on the examples of the LHC and CLIC.

The beam energy stored in the LHC at nominal parameters (2808 bunches of 1.15 × 10  protons
at 7 TeV) is 362 MJ or 100 kWh (small). This energy is distributed over practically the whole ring
or 90 µs. This means that, when the beam is dumped, a 90 µs long pulse with a peak power of 4 TW
will impact on the dump once. The recovery of this energy (just once) does not seem worth the effort.

Now consider a CLIC linac as an example: it is designed to operate at a repetition frequency
of 50 Hz with pulses of 312 bunches of 3.72 × 10  electrons, accelerated to 1.5 TeV, resulting in 278 kJ
per pulse (more than a factor 1000 below the stored energy in the LHC!). But the repetition every 20 ms
leads to an average beam power of 14 MW, which, of course, would be very interesting to recover (if it
were not used to collide).

Looking at these beam powers and beam energies it is clear that—contrary to a synchrotron—it
looks interesting to recover the (large average) beam power of a linac.
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8.2 The principle of beam energy recovery

Looking again at the equivalent circuit in Fig. 10, note that the beam on the right-hand side is modelled
as an ideal current source, which, with our choice for the arrow direction, consumes power for
acceleration if ℜ{ } < 0. However, the equivalent circuit is equally valid for ℜ{ } > 0, which would
describe the case that the beam delivers power rather than consuming it. This can, in fact, be reached
simply by placing the bunches in the decelerating rather than the accelerating phase. Fig. 15 illustrates
the principle, combining two equal accelerating structures in series, with the second phased such that
the particles are decelerated. Neglecting losses, exactly the same RF power would be generated from
the beam in the second accelerating structure that is used in the first structure for acceleration. The beam
energy, which reaches a maximum after acceleration in the first structure, would be decelerated to
exactly the injection energy after passage through the second.

Fig. 15: Two equal accelerating structures with the same bunched beam passing through them. Depending on the
phase of the beam relative to the RF in the cavity, the beam will be accelerated or decelerated.

This principle can be extended by adding arcs and thus feeding the same beam through the same
accelerating structure again. This is the principle of an energy recovery linac, invented by M. Tigner in
1965 [16] and illustrated in Fig. 16.

Fig. 16: The illustration in the original paper by Tigner [16], where the spent beam is passing through the same
cavity again for deceleration to recover the beam energy (reproduced with permission from the publisher).
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Beam Dynamics of Energy Recovery Linacs
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Abstract
Energy recovery linacs (ERLs) combine the advantages of the two major ac-
celerator types used at present: the high currents and low energy consumption
of storage rings and the rapidly accelerated, high-brilliance beams of linear
accelerators (linacs). As concepts from both accelerator types are adopted,
similar beam physics challenges need to be overcome in the design of an ERL.
In the first part of this article we describe the main requirements and layout
options for an ERL’s beam optics, pointing out the individual demands of the
various subparts of the ERL: injector, merger and splitter, linac section, and
recirculator. In the second part, collective high-current effects are introduced
with a focus on space charge, coherent synchrotron radiation, the microbunch-
ing instability, and beam break-up. A comprehensive list of references is given
for readers interested in further details of the topics introduced.

Keywords
ERL; beam dynamics; optics; collective effects.

1 Introduction
Energy recovery linacs (ERLs) can generate high-energy electron beams of huge virtual power and high
density, and thus it is possible to base a synchrotron radiation light source of the ultimate brightness on
them. Short pulses and high peak currents will also allow the generation of coherent radiation. Although
terahertz radiation can be emitted from short bunches, low-gain free-electron laser (FEL) operation (i.e.,
an FEL amplifier) is also possible. Even high-gain FEL operation is feasible, as long as the beam degra-
dation remains within the machine acceptance (transverse and momentum). Another application option
is to use an ERL as a Compton source, generating hard X-rays from low-energy electrons.

In storage rings, the beam dimensions result from an equilibrium state between radiation excitation
and damping, and hence are totally independent of the quality of the beam from the source, and totally
independent of all pre-accelerators. In ERLs, as they are single- or few-turn machines, the passage time is
much too short to reach this equilibrium and the beam quality is defined by the electron source. Whereas
for a given storage ring the emittance ε scales as ε ∼ E2, in ERLs adiabatic damping causes an ε ∼ E−1
scaling. Thus, with increasing energy, the bunch quality in an ERL improves. Using present-day high-
brightness electron sources, based on laser-induced photoemission from a gun cathode, ERLs have the
potential to significantly exceed the bunch quality of modern storage-ring-based, third-generation light
sources. The physics of these sources is a large topic of its own and will not be covered here [1, 2].

The central goal parameter for almost all kinds of present and future accelerators, and especially
for synchrotron radiation light sources, is the brilliance B ∼ N/εxεy, which scales with the number of
electrons per secondN and the transverse emittances εx and εy. Small emittances of bunches with a high
charge and a high repetition rate maximize the average brilliance. Short pulses from ERLs enable insights
into the dynamics of subpicosecond processes and can produce an extreme peak brilliance B̂ ∼ B/σs.
The spectral brilliance obtained from long insertion devices scales inversely with the energy spread, i.e.,
B(ω) ∼ 1/σE . Thus achieving the ultimate spectral brilliance, average as well as peak, requires beams
of the highest electron densities, not only in 3D but also in the six-dimensional phase space.

As ERLs can reach and exceed storage ring beam parameters in any phase space dimension, many
of the beam dynamics challenges known for storage rings are relevant to ERLs as well and can affect
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their performance, possibly even to a higher degree. The beam dynamics challenges in an ERL arise
from its general layout and target parameters, and vary with beam energy and with the function of the
various machine sections.

– Injector. This provides high-brightness beam generation and low-energy beam transport under the
influence of strong space charge forces.

– Merger. This guides both the low-energy fresh beam and the high-energy used beam into the same
linac section.

– Linac section(s). This provides acceleration and deceleration of the beam. Depending on the target
energy, available linac length, and average accelerating gradients, a layout based on single linac, a
split linac, or a multipass linac can be chosen.

– Spreader. Using a multiturn layout, the various beams must be merged into the linac section, and
after acceleration/deceleration be sent to beam lines according to their energy.

– Recirculation section. This provides lossless beam transport with conserved beam quality, with the
option of beam manipulation; variants of arc lattices (Bates, double-bend achromat (DBA), triple-
bend achromat (TBA), multi-bend achromat (MBA), and fixed-field alternating-gradient (FFAG))
generate the conditions for the most efficient energy recovery.

– Splitter and dump line. This section is analogous to the merger: downstream of the linac section,
the fresh and used bunches need to be separated, for further acceleration or light generation with
the former and to guide the latter into the dump line.

For this overview report, we separate the beam dynamics issues of ERL-based synchrotron radia-
tion facilities into two main categories:

– beam optics, dealing mostly with charge- and current-independent problems of linear and non-
linear beam transport, manipulation, and acceleration; and

– collective effects, caused by the high electron density and average current, which can degrade the
beam quality, drive instabilities, and ultimately even lead to partial or total beam loss.

In the first, ‘beam optics’ part we will introduce general magnet optics designs applicable to ERLs,
and discuss the design philosophies of the subcomponents. The requirements on the beam optics are col-
lected together and the magnet lattice configurations that best satisfy them are compared. Non-linear
effects and their compensation by adjusting the linear optics and by the use of higher-order magnetic
multipole elements are considered. In the second part, the physics of potentially harmful collective ef-
fects is introduced. Options to counteract these effects by the use of special optics settings are discussed.

Since derivations of the fundamental formulas presented here are far beyond the scope of this
report, a selection of references to specialized papers is given for each issue considered. In general,
the online journal Physical Review Accelerators and Beams [3] and the proceedings of the International
Particle Accelerator Conference (IPAC) and ERL workshops hosted by JACoW, the Joint Accelerator
Conferences Website [4], provide an excellent source of information on all fields of ERL beam dynamics
issues. As the authors were involved in the design of two ERL projects, we would like to refer the
reader also to the conceptual design reports for these projects, which give a good insight into the beam
dynamics aspects of low- and high-energy ERLs: bERLinPro [5, 6], currently under construction at the
Helmholtz-Zentrum Berlin (HZB), and FSF, the Femto-Science-Factory [7], an HZB design study for a
6 GeV ERL-based synchrotron light source.

2 Beam optics
The magnetic lattice is defined by the type, number, and arrangement of multipole magnets and radio
frequency (RF) structures. These devices are tuned to form a beam optics system, capable of transporting
the beam (including acceleration and deceleration) throughout the machine while:
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– maintaining the beam quality delivered from the source;
– ensuring minimum electron losses;
– merging or splitting beams of various energies, for example injected and recirculated beam(s);
– performing bunch manipulations, for example compression, emittance exchange, and plane rota-

tion;
– establishing conditions for efficient energy recovery.

There are many challenges related to specific parts of an ERL. In contrast, particle losses and beam size
are issues in all machine sections and thus will be covered here first.

2.1 Beam size and losses
In optics simulations, the beam is described by its 6D phase space size σx, σx′ , σy, σy′ , σs, σE , its emit-
tances εx, εy, εs, and its Twiss parameters βx,y, αx,y, γx,y, assuming Gaussian particle distributions. The
behaviour of energy-deviating electrons is described by the dispersion function η. Various partially con-
tradictory demands are made on the beam size.

– For a high-brilliance light source, suitable electron bunches at the point(s) of radiation genera-
tion are required. Small beam sizes in all dimensions enable generation of diffraction-limited
light pulses with high transverse and longitudinal coherence fractions. For the minimum radia-
tion wavelength λγ to be generated, diffraction puts a lower limit on the transverse emittances
εx,y ≈ λγ/4n, such that smaller electron beam emittances do not further reduce the photon beam
size [8].

– Particle losses are at least as important as they are in storage rings. Although beam decay (as in
storage rings) is not an issue, radiation and activation issues, as well as RF power limits, are of
great importance. Especially, losses in high-energy turns need to be minimized as far as possible.
The beam size is directly involved in two mechanisms:

– losses at the machine aperture: the transverse beam size must be small compared with the
dimensions A of the vacuum chamber: Ax,y(s) > Nσx,y(s). In large storage rings, N is
quite high, of order 102–103, whereas in the lower-energy parts of ERLs this number can be
much smaller. In dispersive sections passed through by a chirped beam,N can be of the order
of 10 or even below. To reach storage-ring-like relative loss rates of 10−10 per turn, one needs
N ≥ 7 for a Gaussian-distributed beam. Starting from the electron source, any emission of
electrons into the extreme tails of the distribution must be prevented. Nevertheless, halo
electrons independent of any assumed distribution function can contribute to particle losses.

– Touschek losses (see Section 2.4): electron collisions within a bunch (intrabeam scattering)
lead to momentum transfer between the transverse and longitudinal motions and can be a
source of beam halo formation and losses in ERLs. The loss rate from these Touschek events
scales with the electron density and thus with the bunch charge and volume. A low density,
i.e., a large bunch volume, reduces Touschek losses.

– Collective effects, for example space charge, coherent synchrotron radiation (CSR), and other
kinds of wake fields (see Sections 3.1 and 3.2), act on the beam and imprint an energy modulation
along the bunch, which ultimately deteriorates the beam quality. As the strength of all these effects
scales with the peak current and thus inversely with the bunch length, bunches should be kept long
during transport if possible, and only tuned short when generating radiation.

– RF curvature is important: while passing through the RF structures for acceleration or deceleration,
the bunches scan the temporal and spatial field variation in the cavities, generating a correlation in
the longitudinal phase space. The non-linear part of this correlation can limit bunch manipulation
techniques, for example bunch compression, and increases the energy spread. As short bunches
scan a smaller RF phase range, non-linearities are reduced compared with longer bunches.
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Fig. 1: Mergers for existing and proposed ERLs: (a) deflecting three-bend dog-leg, (b) four-bend dog-leg, (c)
four-bend chicane, (d) ‘zigzag’ merger.

The optimal beam size is a compromise between these demands and has to be found for the various
machine sections. Besides the beam size, many more aspects needs to be considered—the most important
ones for the various machine sections of an ERL will be covered in the following.

2.2 Injector line and merger
The first machine section, which guides the beam from the source to the first multibeam linac, is referred
to as the injection line here. On exit, the low-energy beam must be merged with the high-energy beam to
pass through the linac on the same centered trajectory.

Beam transport in the injection line at energies of a few MeV is space charge dominated. Spatially
varying forces due to self-generated fields in the bunch can cause significant emittance growth. By
following an emittance compensation scheme [9, 10], a sophisticated beam optics system can reverse
these space charge effects and cancel the emittance degradation to a major degree. The basic concept is
described in Section 3.1. As space charge effects scale strongly with the beam energy, pre-acceleration
in the injection line and before the first major acceleration will reduce the initial emittance growth.
On the other hand, the pre-acceleration energy is not recovered in an ERL, and RF and dump power
considerations will limit its value.

At the end of the injector line, the new and the recirculated beam have to be merged into the linac
section. This is achieved by a series of bending magnets, where the last one is passed through by both
beams, which are bent at different angles according to their respective energies. Whereas at the beginning
of the injector line the optics can be kept axially symmetric and solenoids provide sufficient focusing,
the symmetry is broken in the merger. Quadrupole magnets are used here to control dispersion (to form
an achromatic bump) and to shape the beam size throughout the merger. Mergers with four different
layouts, shown in Fig. 1, have been considered for ERL test facilities [11]: dog-leg-type (Fig. 1(a) and
(b)), chicane-type (Fig. 1(c)), and zigzag-type (Fig. 1(d)) mergers.

In contrast to the start of the injection line, in the merger the longitudinal space-charge-induced
energy modulation takes place in a dispersive section. Thus, with any energy change, an oscillation
around the shifted, new reference path is excited. Since the energy modulation varies along a bunch from
its tail to its head, the centroids of longitudinal slices through the bunch oscillate as well. On leaving the
merger, the projected emittance in the merger plane can be significantly increased. The emittance growth
of parts of the bunch with a linear energy modulation ∆E(s) ∼ s (where s is the longitudinal position in
the bunch) can be removed by adjusting the dispersion at the merger exit. When this is done, however,
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the achromaticity of the merger is broken, so that variations in the initial energy now cause an emittance
growth at the merger exit. Finally, the merger is set up to minimize the overall emittance growth due to
space charge dispersion and unclosed merger dispersion (ηx = 0 m out of the merger).

The same physics applies to the splitter, which divides the accelerated, high-energy beam from the
decelerated, low-energy beam, which is sent into the dump line.

Stray fields also need to be considered. Although they are unwanted in general, interfering fields
such as the Earth’s magnetic field, remanent fields from the optics magnets, and magnetic fields from
vacuum pumps and gauges are most distorting in the injection line owing to the low beam energy and low
rigidity. Shielding of fields, magnet-cycling procedures, and careful placing of vacuum devices reduce
these stray fields. For the remaining fields, trajectory offsets have to be corrected with a sufficient number
of steerer magnets.

2.3 Linac sections
One or more ERL sections are equipped with linacs to accelerate the beam in one or several turns up to
its final energy. Several aspects of the beam dynamics have to be considered.

– RF focusing. The cavity fields focus the beam [12], both horizontally and vertically, when it enters
the cavity, and defocus it when it leaves. During acceleration, owing to the energy increase in the
cavity, the focusing on the low-energy side prevails over the defocusing on the high-energy side.
The opposite effect happens during deceleration. Especially at low energies, the focal strength is
high and needs to be carefully considered when the linac section beam optics are being set up.

– RF phase slip. At low injection energies, the beam is not sufficiently relativistic and time-of-flight
effects can cause a phase slip relative to the recirculated, high-energy beam. A power mismatch in
the RF cavities is the consequence, and beam-loading problems arise. The effect can be reduced
by increasing the injection energy, but clearly at the cost of the RF and dump power.

– Multienergy beam lines. The linac sections are passed through by beams of different energies,
sharing the same focusing elements, namely magnets and RF structures. The difficulty of finding
suitable optics for all beams scales with the range of energy in the beam line. The optics are
mainly tuned with respect to the lowest-energy beam, because it has the lowest magnetic rigidity.
Any other strategy would lead to strong overfocusing and an unsuitable beam size. The lack of
focusing for the high-energy beam has to be compensated in a separate beam transport section or
sections.

– Spreader. The separation of the multiple beams into energy-adjusted beam lines is done by a
spreader, using the energy dependence of the bending angle in the first, shared dipole magnet(s).
The challenge here is to create a compact layout, using a small number of magnets even for several
beams of different energies. The dispersion in the spreader plane should be closed at its exit, and
the beam size must be matched to the recirculation arcs to avoid emittance degradation.

– Beam break-up (BBU). The BBU instability (see Section 3.5) is driven by a positive feedback of
the beam into higher-order-mode (HOM) fields of the superconducting RF cavities. Although the
most important countermeasure is the use of cavities with a minimized HOM spectrum, the beam
optics also influence BBU: a betatron phase advance of ∆ψ = nπ between consecutive cavity
passages sets the transport matrix element R12 to zero, so that the beam passes through the cavity
on axis after recirculation and no power is fed into the HOMs (see Eq. (2)). In addition, optimized
Twiss parameters for the linac can be calculated [13]. Both of these measures can significantly
increase the instability threshold. Effective measures against BBU become even more important
for multiturn ERLs, where various beams (multiplying the total current) traverse the linac sections
simultaneously.
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Fig. 2: Recirculator arc lattice types: (a) Bates arc, (b) TBA, (c) BINP arc

2.4 Recirculators
The transfer lines connecting the ERL linac sections and the full-energy section dedicated to radiation
generation are referred to here as recirculators. Together with the linac sections, they form the majority
of the machine sections in an ERL. A careful beam optics set-up, fulfilling a variety of demands, is
mandatory. Several basic lattice concepts are suitable for ERL recirculator arcs, depending on the energy
and on the available space and number of magnets [14]. In low- to medium-energy ERLs of moderate
size, DBAs [15], TBAs [16], Bates arcs [17], and also individual, non-standard schemes have been
applied, as shown in Fig. 2.

For large-scale ERL-based light sources with energies in the GeV range, multibend achromat
lattices and FFAG lattices have been considered [18–22]. The various lattice types differ in their tunabil-
ity, space, and magnet number requirements, and in performance with respect to emittance conservation,
lossless beam transport, and beam manipulation capabilities. Flexible control of the linear and non-linear
beam optics is the key to covering all of the aspects mentioned above.

2.4.1 Lossless beam transport
As mentioned earlier, Touschek scattering is one of the two dominant loss processes. Besides a large
bunch volume, which is contrary to radiation generation requirements, the momentum acceptance Ap of
the optics is of crucial significance. Although energy transfer due to intrabeam scattering into the trans-
verse motion is of minor importance, the longitudinal momentum change is Lorentz transformed into
the laboratory frame and is thus strongly enhanced. With a momentum change ∆p/p from a scattering
event, the downstream reference trajectory shifts to a dispersive path xref(s) = η(s) ·∆p/p. Depending
on the dispersion function at the scattering position, a betatron oscillation of initial amplitude

(
x

x′

)
=

∆p

p

(
η

η′

)

may be excited in addition. This is equivalent to a single-particle emittance of

ε0 = γx2 + 2αxx′ + βx′2 = (∆p/p)2(γη2 + 2αηη′ + βη′2) = (∆p/p)2H , (1)
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H = γη2 + 2αηη′ + βη′2 (2)

(the Twiss parameter, dispersion, and H-function are evaluated at the scattering position s = s0). The
general expression for the downstream trajectory of the scattered electrons is

x(s) =
√
ε0β(s) cos (ψ(s)− φ0) + η(s) ∆p/p (3)

= ∆p/p
[√
H0β(s) cos (ψ(s)− φ0) + η(s)

]
, (4)

which is directly proportional to ∆p/p. Scattering events that cause a downstream offset larger than
the available horizontal aperture Ax(s) lead to particle losses. The maximum deviation ∆p/p, where
x(s) = f(∆p/p) ≤ Ax(s), defines the momentum acceptance Ap(s) of the optics. The Touschek
loss rate [23] scales as Ṅ/N ∼ 1/A3

p, and therefore a large momentum acceptance is essential for
low losses. A small overall dispersion and lower maxima of the beta and dispersion functions optimize
the H-function (reducing its maximum value) and thus increase the momentum acceptance (see also
Section 3.2). Lattices with lower bending angles of the dipole magnets are advantageous, but require
more magnets at increased cost.

The loss rate due to elastic scattering from the atomic nuclei of the residual gas is the second
main loss mechanism. The loss rate scales as Ṅ/N ∼ 1/(θ2x + θ2y), with the angular acceptance
θ2x,y ≈ A2

x,y/(〈βx,y〉βmax
x,y ). Smaller transverse beta functions with lower maximum values increase

the angular acceptance, thus reducing the loss rate. Besides the intentionally generated ‘wanted beam’,
there are a few sources of unwanted beam, for example stray light from the gun laser, extreme tails of
the distribution, ghost pulses, and dark current from field emission from the (superconducting) RF struc-
tures. This unwanted beam, often referred to as beam halo, can be simulated if the generating process is
known. Unfortunately, the dominating contributor only becomes apparent in the real machine, and may
even change its origin. The best measure to control beam halo is a large acceptance of the magnet optics
to transport both the core beam and the halo.

2.4.2 Bunch manipulation
To generate the most brilliant light pulses, several manipulation techniques are applied that exchange
parts of phase space between two planes by means of quasi-phase-space rotations. Conservation of the
uninvolved phase space dimensions and the overall beam quality is mandatory.

In many linear accelerators and ERLs, bunch compression is used, where in the first step a chirp
(mostly a linear z–pz correlation, ∆p/p = C · ∆z) is imprinted by passing the beam through the RF
structures off crest. In the second step, the beam passes through a dispersive section with η 6= 0, where
the path length depends on the particle momentum in accordance with ∆L = R56 ∆p/p+T566(∆p/p)

2+
. . . , with R56 =

∫
η/ρ ds and T566 as the first- and second-order beam transport matrix elements. Non-

linearities (RF curvature, T566, etc.) can be corrected using higher-order multipole magnets, starting
with sextupole magnets at the lowest order. Whereas extra bunch compressor sections are often provided
in linacs, in ERLs the recirculation arcs can be used as an alternative. The various lattice types offer
different amounts of variability for tuning the optics: for an achromatic arc (ηin = ηout = 0), the DBA
lattice offers no R56 tunability at all, whereas, for example, in a TBA lattice R56 can be tuned via the
dispersion function of the middle bend. With more quadrupole magnets in the more complex lattice
types, one generates ‘free knobs’ to adjust the dispersion and beta functions for non-linear corrections,
minimizing the required multipole strengths. Also, the phase advance in certain sections can be tuned
with respect to emittance-degrading effects, for example CSR.

Another manipulation that can be done in ERLs is so-called ‘beam rotation’, where the two trans-
verse phase spaces are completely switched. This can increase the BBU threshold for polarized cavities,
since no further excitation of the kicking HOM occurs on the return pass. A section with a set of skew
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quadrupole magnets is required to swap the transverse planes, ideally transforming the beam in accor-
dance with

~X1 = M ~X0, with M =

[
0 E
E 0

]
, E =

[
1 0
0 1

]
.

There are more manipulation techniques, for example emittance exchange, but they have either not been
used or not been required in ERLs so far.

2.4.3 Energy recovery
A further important task of recirculator arcs is to provide path length adjustment options, to enable one
to set up accurately the required RF phase advances of 0 or 180◦ between linac sections. Depending
on the ERL layout, these tuning options may be needed not only in the deceleration but also possibly
in the acceleration pass. Common options are movable arcs for small ERLs with 180◦ DBA, TBA, or
Bates arcs (the latter only in the large centre magnet), two longitudinal movable bends within an arc
(e.g., in bERLinPro), or high-amplitude steering bumps in large recirculators with sufficient mechanical
aperture. Chicanes outside the recirculators can also be used, but they can significantly contribute to
the R56 budget and can only lengthen the pass (compared with the straight option with all bends off).
Moreover, a lengthening of the order of the RF wavelength with a chicane requires large offsets and is
hard to achieve in a single wide vacuum chamber.

Beam matching, especially in the last deceleration to the lowest energy, is of vital importance for
the efficiency of the recovery process. Minimization of the energy spread at the low-energy side is a
precondition for a high recovery rate and for safe transport of the high-power beam into the dump. One
option to cancel out RF curvature effects is to adjust the bunch length so that it is equal to that during
acceleration. In this case, any bunch compression needs to be reversed. Owing to beam-loading effects,
this can be only done by inverting the sign of R56 in the corresponding recirculator sections, which
again favours highly tunable lattice types with a wide range of values of R56. If the bunch length differs
between acceleration and deceleration, sextupole magnets can be used to remove RF non-linearities.
Any remaining non-linearities arising from the magnet optics or from collective effects (CSR, wakes,
. . . ) have to be minimized using higher-order multipole magnets.

For efficient recovery, the transverse beam size in the linac needs to be adjusted to take RF focusing
into account and also to provide suitable BBU conditions.

2.4.4 Radiation excitation
Despite the transfer line character of ERLs and the short passage times, the emission of incoherent
synchrotron radiation (ISR) can cause considerable emittance growth. Since the energy loss due to
emission of synchrotron radiation scales as ∆E ∼ E4/ρ ∼ E3B, high-energy ERLs are most affected.
Moreover, the critical photon energy εc scales non-linearly with energy, as εc ∼ E3/ρ ∼ E2B, extending
the photon spectrum equivalently to higher values, and thus increasing the resulting energy change and
energy spread of the emitting electrons. Similarly to a Touschek event, an energy change in a dispersive
section excites a betatron oscillation around the new reference orbit. The corresponding emittance growth
is described by the function H (see Eq. (1)), which relates the momentum change to the amplitude of
the downstream transverse betatron oscillations. A low H-function represents an optics system where
momentum changes cause a smaller transverse-phase-space blow-up and thus reduced emittance growth.
Assuming an achromatic arc tuning, minimal form factors F ∼ H can be calculated for the various lattice
types for comparison [24]. Compared with the DBA lattice, the theoretical minimum for an MBA lattice
is reduced by a factor of 3 when the Twiss parameters and the dispersion function are optimized to reduce
H and extra bends at the beginning and end of the cell close the dispersion. Thus, the emittance growth
will be smaller with an MBA lattice, but zero-dispersion sections, for example for insertion devices, are
not available without lattice modifications.
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2.5 Dump line and beam dump
The ERL’s last section is the dump line, which guides the low-energy but high-power beam into the beam
dump, where sufficient cooling power is provided to safely absorb the beam in the walls. Losses in the
dump line are no longer relevant for the RF budget, but the high-power beam has substantial damage
potential. When mis-steered, the beam is able to melt holes in vacuum chamber components on a very
short timescale. Thus lossless beam transport is the main task of the beam optics. Large apertures are
essential, therefore, to allow safe beam transport with increased emittance (compared with that in the
injector) and a moderate further emittance degradation due to space charge effects in the dump line.

In the dump, the full beam power of hundreds of kilowatts or even megawatts is mostly transferred
into heat (and radiation). Clearly, this must not happen in an area of a few square millimetres or less, not
even an area of a few square centimetres. Instead, the beam power needs to be carefully distributed over
the inner surface of the dump, usually over an area of the order of 1–2 m2. Two options exist:

– beam widening by massively increasing (by orders of magnitude) the beta functions in the last part
of the dump line and in the dump;

– beam sweeping using two rapid-cycling (at tens of hertz) transverse steerers, to distribute equally
the beam impact points in the dump.

Ideally, a combination of both is used to relax the hardware requirements and to improve the reaction
time of the ‘machine protection system’ in the case of device failures.

3 Collective effects
The intensity and quality of the beam in an accelerator are usually limited by collective effects. In the
following, the characteristic effects and their peculiarities in the case of ERLs are discussed.

3.1 Space charge
Space charge effects typically limit the performance of the low-energy beam transport in high-brightness
photoinjectors. One direct effect is transverse defocusing of the beam by space charge forces within
bunches. The linear part of the forces can be compensated by external focusing (by solenoids or
quadrupoles), but the non-linear part still affects the beam quality. Emittance degradation due to collec-
tive space charge forces is one of the important issues in the design of injector optics. Flat-top cathode
laser profiles, both transversely and longitudinally, which linearize the space charge forces in the central
part of the beam, are routinely used to achieve the highest beam brightness [1, 25].

If the aim is to achieve a high-brightness electron beam in an ERL, the injector should be designed
with the emittance compensation technique [9] in mind. The critical difference between an ERL and a
conventional linac injector is the merger section, where axial symmetry of the beam can no longer be
assumed. This means that emittance compensation with a solenoid is not enough any more to achieve
the minimum beam emittance in both planes. A theory of so-called ‘2D emittance compensation’ was
developed in Ref. [10]. The application of this method to the superconducting RF photoinjector in the
bERLinPro project [5] is described in [26].

Space charge effects determine the choice of the merger geometry. An overview of practical
merger designs can be found, for example, in Ref. [11]. One problem with a space-charge-dominated
merger is the longitudinal space charge force, which affects the transverse motion of individual bunch
slices in a dispersive section. Transverse defocusing and changes in the energy of a slice, caused by space
charge forces, can modify the achromatic condition significantly. This effect favours merger designs that
are short and have a low dispersion [26]. The linear part of the effect can be corrected if the bunch has a
sufficiently large correlated energy spread.

Particle-tracking codes (e.g., Parmela [27], ASTRA [28], and GPT [29]) can be used to model
space-charge-dominated beams. Usually, these programs require extensive resources for tracking, which
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makes optimization of beam lines time- and resource-consuming. There are space charge codes (e.g.,
Trace3D [30], SCO [31], and HOMDYN [32]), which allow fast tracking of a model charge distribution
(a Kapchinsky–Vladimirsky distribution, applied to a whole bunch or slicewise). These codes allow an
initial optimization to be achieved quickly; afterwards, tracking with ‘full’ space charge codes can be
done.

See specialized contributions in this CAS, especially "Space Charge Mitigation" (Massimo Fer-
rario, INFN-LNF).

3.2 Coherent synchrotron radiation
Although synchrotron radiation is usually emitted incoherently (i.e., ISR), very short electron bunches
generate CSR with wavelengths comparable to the bunch length. The resulting energy loss can become
very significant. For typical bunch lengths in storage rings (20–100 ps), CSR is shielded by the vacuum
chamber and plays only a minor role in the beam dynamics. In linacs, however, where bunches can easily
be compressed, CSR can strongly influence the beam parameters. Moreover, with the high average beam
currents typical of ERLs, CSR can cause damage to vacuum system components as a result of its high
average power. As an example [5], the CSR losses of bERLinPro in normal operation with 2 ps bunches
and 100 mA average current were estimated to be 2.5 kW. For short-pulse operation mode at full current
(100 mA) and with bunch lengths down to 150 fs, the losses would increase to about 25 kW.

The main problems and solutions related to the effects of CSR on the beam emittance have been
investigated, for example, for short-wavelength FELs (FLASH, LCLS, and XFEL). If the key effect of
the CSR wake on a bunch is a longitudinal-position-dependent transverse kick to the bunch slices, a 1D
model can be a good approximation. A comprehensive derivation of 1D CSR wake functions for different
cases is presented in [33]. This model has also been implemented in a number of packages (e.g, Elegant
and Opal) [34, 35].

For very short bunches (if the bunch is, in its reference frame, equal in length to or shorter than its
transverse sizes), the full 3D radiation field should be taken into account. Appropriate simulation codes
(e.g., CSRTrack [36]) should be used in this case. However, the 1D model usually gives an overestimation
of the effect and can still be used for quick checks.

CSR-induced emittance growth can be reduced by several methods. The increase in the transverse
emittance is proportional to the H-function (Eq. (1)), so keeping this function low reduces emittance
degradation. In an ERL, this measure is essential in the magnets, where the bunches are at their shortest.

If the effect on the bunches is small, magnetic optics with a repetitive symmetry and an appropriate
betatron phase advance between cells can cancel out the CSR kicks (see, e.g., [37] and references therein
for the implementation of this method in FERMI@Elettra). The idea is easy to understand when the
bunch length does not change along the beam line, so that the CSR emission conditions don’t vary, i.e.
with an isochronous arc or a bunch without correlated energy spread. In this case the energy change
imprinted on every bunch slice is the same in each cell of the periodic focusing system. The final
displacement and angle of the slice are the sums of the displacements and angles arising from each cell
(i.e., a superposition). If the betatron phase advance from cell to cell is 2πk/N , where k is any integer
and N is the number of cells, then

(
x

x′

)
=

(
x1
x′1

) N∑

k=1

exp [2πik/N ] = 0 ,

i.e., all slices are aligned again.

A similar approach is possible even for a periodic arc with bunch compression. In this case the
assumption of a self-similar CSR wake is necessary, which is not always satisfied. For example, the CSR
wakes in the drifts are not self-similar. The implementation of such emittance correction is described,
for example, in [7].
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3.3 Microbunching instability

The average power coherently emitted from a short bunch is Ptotal ∼ Q2
B/R

2/3σ
4/3
z , and is capable

of causing significant beam quality degradation. The effect can be greatly intensified if the bunch is
structured on scales much shorter than the bunch length.

The mechanisms of such ‘microbunching’ can involve different wakes, the most important being
those due to the longitudinal space charge (LSC) and the CSR itself [38–40]. The CSR wake shows only
a weak dependence on the beam energy, whereas the LSC wake scales with 1/γ2 and therefore plays an
important role in the low-energy, injector part of an accelerator. The wake imprints an energy modulation
on the bunch, which can be transformed further into a longitudinal density modulation (microbunching).
In a storage ring, the momentum compaction factor αc and, in a linear accelerator, the element R56 of
the transport matrix is responsible for this. This is the same matrix element that is necessary for bunch
compression, so the two processes are intrinsically dependent on each other. The amplification factor of
the density modulation (gain) in a beam line can be found, for example, in Ref. [40]. The initial density
modulation can be imprinted in the RF photogun, for example by the longitudinal profile of the laser
beam, which may be generated with a pulse shaper. Some details of the analysis that was done for LCLS
can be found in Ref. [41]. Shot noise in the beam is another possibility, which usually gives a much
lower initial modulation amplitude. The gain of this instability scales with the peak current of the bunch.
An uncorrelated energy spread in the bunch smears out the bunching and can be used to suppress the
instability [42]. A laser heater [43] is one option to increase the energy spread in a slice controllably;
using a strong wiggler to induce an energy spread through emission of ISR is another.

3.4 Wakes and impedances
Resistive walls, surface roughness, and geometric wakes are other sources of distortions in ERL beam
dynamics. Usually these distortions are smaller than those due to the CSR and LSC wakes. However,
if countermeasures are taken to reduce or (ideally) completely compensate the effects of the CSR wake,
they can become the main concern.

The resistive-wall impedance is usually higher for ERLs than for storage rings owing to the short
bunch length achievable. The scaling is kL ∼ σ

−3/2
z (for σz > a/γ), where kL is the longitudinal loss

factor, σz is the bunch length, a is the radius (half gap) of the vacuum chamber, and γ is the relativistic
factor [44]. Surface roughness can also be an issue. For example, smooth NEG coating of the vacuum
chambers may be necessary. Resonances in geometric wakes (when spectral lines of the beam coincide
with resonances of the structure) should be avoided at the design stage, as was done, for example, for
bERLinPro [45].

3.5 Linac configuration and beam break-up
Dipole-mode-driven transverse BBU can be a serious limitation in high-current operation of an ERL.
This is primarily an ERL-specific problem, since accelerators that have high-quality-factor cavities (su-
perconducting) and operate with a high average current are vulnerable to this instability.

Transverse BBU was observed and understood well at the JLab ERL [46]. A simple analytical
scaling can be derived for the ‘one cavity, one mode, one turn’ case:

Ith = − 2pc2

eω(R/Q)QR12 sin(ωT )
, (5)

where Ith is the threshold current for the instability, p is the beam momentum, ω is the dipole mode fre-
quency, (R/Q)Q is the mode impedance, R12 is the element of the transport matrix of the recirculation,
and T is the recirculation time. In the case of coupled optics and an arbitrary polarization angle α of the
mode,

R∗12 = R12 cos2 α+ (R14 +R32) sinα cosα+R34 sin2 α
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has to be used instead of R12 [47]. The threshold current is proportional to the beam energy, so the most
problematic cavities are those where the beam has its lowest energy. The threshold current for transverse
BBU in the case of a single cavity and a single TM110 mode for a multipass ERL can be estimated as
[48]

Ib ≈ I0
λ2/4π2

QLeff

√
2N−1∑
m=1

2N∑
n=m+1

(βmβn/γmγn)

,

where I0 is the Alfvén current, Q is the quality factor of the HOM, λ is the wavelength corresponding to
the resonant frequency of the mode, γm is the relativistic factor at the mth pass through the cavity, βm is
the Twiss parameter, Leff is the effective length of the cavity, andN is the number of acceleration passes.
This expression indicates the limitation on the number of passes and suggests an optical design with beta
functions as low as possible for cavities with low beam energy.

As was shown in Ref. [49], the BBU threshold current for an N -turn ERL may be estimated as
roughlyN(2N−1) times smaller than that for a single-turn machine. The worst-case scenario, where the
betatron phase advances between all pairs of passes through the cavity were sin(µnm) = 1, was assumed
in that estimate. The expression in Ref. [48] gives another estimate, assuming random phases, which is
closer to reality for a ‘large’ number of cavities and passes. Numerical modelling of the transverse BBU
instability is necessary to take many linac cavities into account, with all relevant modes. A number of
codes for this purpose exist [50–52]. Also, a high arc chromaticity has been proposed as a measure to
stabilize the beam against transverse BBU [53].

Longitudinal BBU driven by monopole modes is another issue for ERLs. In this case the longitu-
dinal dispersion R56 replaces R12 in the estimate of the threshold current in Eq. (5) (see, e.g., [54]). If a
single-turn ERL operates with R56 = 0, it is not vulnerable to this instability (at least in theory). How-
ever, in a multiturn ERL with bunch compression in the arcs, R56 6= 0 and an analysis of this instability
becomes necessary.

3.6 Ion trapping
ERLs are vulnerable to the effects of ions accumulated in the potential well of the electron beam. These
effects include:

– optical errors due to strong focusing of the electron beam by the space charge of the ion cloud;
– higher electron-beam scattering rates, leading to the formation of a beam halo and increased beam

losses;
– ion-induced beam instabilities.

The ions are produced by electron ionization of the residual gas (ionization by synchrotron radiation is
also possible). Confined inside the ‘time-averaged electrostatic potential’ of the electron beam, ions can
be ‘trapped’ in the beam for a relatively long time, oscillating near the minima of the potential. These
minima coincide with the minima of the beam size for axially symmetrical beams.

Simulation of the formation and dynamics of the ion cloud is complicated by the complex tra-
jectories of ions in the potential of a non-axisymmetric electron beam and the fact that the dynamic
equilibrium that determines the neutralization factor of the electron beam is defined by a competing
process of ion heating (by scattering from the electrons). Modelling of these processes is therefore a
complex task; some results can be found, for example, in Ref. [55]. The methods for clearing ions in
an ERL are basically the same as those used in storage rings. Clearing electrodes, gaps in the bunch
train, and resonant excitation of the ion cloud are discussed, for example, in [56, 57]. For small-scale
machines, a gap is not a good option owing to the short recirculation time. The variable beam loading
due to the fluctuating beam current is a general concern.
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High-Gain Regime: 1D1
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Abstract
We discuss the free-electron laser physics in high-gain regime in 1D regime,
which contains the most important aspects of the free-electron laser dynamics.
The high-gain regime is particularly important when mirrors are not available
to build oscillators, and has been used as the most straightforward way to
produce intense X-rays from FELs.

Keywords
High-gain regime; FELs.

1. Introduction

A free-electron laser (FEL) can act as a high-gain amplifier, in which case the energy exchange during a
single pass through the undulator is large and the field amplitude cannot be regarded as a constant.
Therefore, it is necessary to consider the field evolution, so that we must study the pendulum equations
for the electron motion and Maxwell equation for the radiation. We will derive these equations, limit
them to 1D case. An approximate solution of the coupled Maxwell-pendulum equations are obtained to
exhibit the basic characteristics.

1 Maxwell equation
An FEL is a natural extension of spontaneous undulator radiation once we include the self-consistent
electron motion in the radiation field. Thus we may begin our FEL derivation starting from the paraxial
approximation of Maxwell equation [1] for e electrons arbitrarily distributed:

+
i
2

ℰ ( ; ) =
( ) −

4
e ( )

× d 	e ∙ − 	.																																									(1)

Here, we have rewritten the angular dependence of the current so that we can replace the point-like
electron source with a constant charge density in the transverse plane by making the replacement ( −

) 	→ 	 tr
−1, where tr	 is the transverse area. Then, in the one-dimensional (1D) limit we have

d 	e ∙ − →
1	

d e ∙ = ( ) 	,																																(2)

and the source is directed entirely in the forward direction. We complete the 1D limit by defining the 1D
electric field ( ) via
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ℰ ( ; ) = ( ) ( ).																																																													(3)

The ( ) enforces the field to be in the forward direction only, which also implies that the spatial
representation of the electric field is independent of x. We insert the field Eq. (3) and the transverse
electron velocity , = / cos( ) into Eq. (1), and then integrate over angles to find the 1D field
equation

( ) =
1

2
cos( )

4
e ( ) 	.																																											(4)

Here = = 	is the dimensionless frequency. We have assumed that the field ( ) describes a
slowly varying envelope, so that consistency requires that we also identify the slowly varying current
in  Eq.  (4).  As discussed previously, we can do this by introducing the average particle time ̅ =
− ( /8 ) sin(2 ) that subtracts off the oscillatory figure-eight component from t. In terms of

the slowly varying ponderomotive phase, we have

( ) − = ̅ ( ) − ( + ) + +
4 + 2

sin(2 )

= − ( ) + ∆ + ℎ + sin(2 ) 	,																																							(5)

where we recall that h is an odd integer identifying the harmonic number, the normalized frequency
difference ∆ ≡ − ℎ ≡ ⁄ − ℎ	, and we have introduced the shorthand notation ≡ /(4 + 2 ).
Then, the wave equation Eq. (4) becomes

( ) = −
4

1
2

1
e ( ) ∆

× e ( ) + e ( ) e ( )	.																																				(6)

The envelope ( ), energy , and phase ( ) all vary slowly over one undulator period, as
does e ∆ 	if we restrict our attention to small frequency detunings, |∆ | ≪ 1. We can extract the slowly
varying terms from the second line of Eq. (6) by averaging over an undulator period as follows:

1
d e ( ) + e ( ) e ( )

= ( )/ ( ) + ( )/ ( ) ≡ [JJ] 	,																																												(7)

where we have used the Jacobi–Anger identity to evaluate the integral, from  which  we  find  the
harmonic Bessel function factor [JJ] .

We are now in a position to write the frequency domain wave equation for the 1D FEL. However,
there are a few notational issues that we would like to simplify. First, we will find it convenient to have
the temporal and frequency representations of the field be related by a Fourier transform with respect
to the scaled frequency . To do this, we write

( , ; ) = d d 	e ( ∙ )e ℰ ( ; ) = d 	e ( ) ( )

= e ( ) d 	e ∆ e ∆ (z)	.																																															(8)
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The integrand contains the slowly varying field, and we can both simplify this and eliminate the
phase e ∆  from the source current in Eq. (6) by defining the phase-shifted electric field amplitude

( ) = e ∆ ( )	.																																																						(9)

Note that this phase shift must be retained even though ∆ ≪ 1, since we may also have ≫ 1.
Finally, the field equation for ( ) is

+ i∆ ( ) =
[JJ]

4
1

2 e ( )

= −
1

e ( ) 	.																																																				(10)

Here, Nλ is the number of electrons in one wavelength, and the harmonic coupling and electron volume
density are, respectively,

≡
[JJ]

4
,																				 ≡

⁄
≡ 	.																																							(11)

Note that while approximating  by in is a very good approximation, such a replacement in
the particle phase would eliminate the FEL interaction entirely.

Equation (10) is in frequency domain, and is the most convenient to analytically study the FEL
dynamics [1]. There are situations in which the time domain approach is more useful. The time domain
equations are also well-suited for efficient numerical simulation codes. In the rest of this paper we will
use the time domain formulation to obtain some basic understanding of the high-gain behaviour and its
scalings.

The time domain wave equation basically follows from the inverse Fourier transform of Eq. (10).
To make this connection explicit, we use the definitions Eq. (8) and Eq. (9) to find that 1D slowly
varying envelopes are related by the Fourier transforms

( ; ) = d 	e ∆ ( )	,																	 ( ) =
1

2
d 	e ∆ ( ; ) 	.								(12)

Therefore, multiplying Eq. (10) by e ∆  and integrating over yields

+ ( ; ) = −
2

e ( ) − ( ) 	,														(13)

at the fundamental frequency ω1.

It may appear that our work is done, but the transverse current in Eq. (13) is composed of a  sum
of delta functions that is unfortunately both difficult to treat and apparently in violation of our
assumption that E varies slowly. To establish a well-defined, slowly varying current, we average
Eq. (13) over some number of periods in θ. This ‘slice-averaging’ has the same physical significance
as our previous assumption that |∆ | ≪ 1, and is valid provided the averaging time is much shorter than
the characteristic time over which the field amplitude changes. For a high-gain FEL we require the
averaging time ∆ 	to be much less than the coherence time, ∆ = ∆ / ≪ , which at the
fundamental frequency reduces to ∆ ≪ 1/(4 ) or ∆ ≪ 1/2 . The time window over which the
beam average is taken is sometimes referred to as an FEL slice.

We average Eq. (13) over an FEL slice by applying
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1
∆

d

∆ /

∆ / at	fixed	

																																																										(14)

to both sides. Averaging the left-hand side of Eq. (13) leaves it unchanged since it is slowly varying,
while applying Eq. (14) to the right-hand side picks out those electrons whose ponderomotive phase
is within the interval − ∆ /2	 and + ∆ /2	. In other words, the source for ( ) includes the ∆ =
(∆ /2 ) electrons that satisfy − ≤ ∆ /2 when they arrive at location . Then, we find that the

wave equation in the time domain is

+ ( ; ) = −
1
∆

e ( )

∆

																																			(15)

= − 〈e ( )〉∆	.																																										(16)

The notation in Eq. (15) denotes that we are to sum over the particles within the FEL slice at
position and phaseθ. Hence, the average 〈e 〉∆, which is often referred to as the local bunching factor
(or just bunching factor), is a function of both and θ . For any given , the bunching factor quantifies
the spectral content of the current near the fundamental frequency by a complex number whose
magnitude is between 0 and 12. Finally, we note while that the Maxwell equation in the time and frequency
domain look quite similar, they differ as follows: the driving current in Fourier version Eq. (10) is a sum
over all electrons with the phase e , while the time domain Eq. (15) sums only over those electrons
within the FEL time slice using the phase	e .

2 FEL equations and energy conservation
All equations governing the 1D FEL in the time domain are as follows:

+ ( ; ) = − 〈e 〉∆	,																																																				(17)

d
d

= 2 	,																																																																						(18)

d
d

= e + ∗e 	,																																											(19)

with

≡
e [JJ]
4

		,								 ≡
e [JJ]

2
	.																																																					(20)

Equations  (17)  is  Maxwell  equation  (the  same  as  Eq.  (16))  and  Eqs.  (18)  and  (19)  are  the
pendulum equations describing the electron motion [1]. These equations conserve total (particle + field)
energy. To show this, we first integrate the electromagnetic energy density  over length and multiply
the result by the transverse area  to obtain the field energy

=
2

d 	 =
2

d
2

( + )

2 Harmonic generalizations of the bunching factor can also be defined as ≡ 〈e 〉∆.
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=
2

d 	2 | | 	.																																													(21)

Hence, an equation for the electromagnetic field energy can be obtained by multiplying (Eq. (17)) by
( 1/ ) 0

∗, adding the complex conjugate, and integrating over θ; we find that

d
d

= −
e [JJ]

2 2 ∆
d ∗e + . .

∆

	= −
e [JJ]

2
e
∆

d

∆ ⁄

∆ ⁄

	 ∗( ) + . .

= −
e [JJ]

2
∗ e + . . 	,																																																		(22)

where in the last line we assumed that ( ) is constant over the length ∆ ; this assumption is required
because of our slice averaging, but is not necessary if one uses the frequency representation (Eq. (10))
or the unaveraged Eq. (13). The change in the total kinetic energy is obtained by multiplying (Eq. (19))
by 	

2 and summing over all electrons,

d
d

=
d

d
1 + =

e [JJ]
2

e + . . 																				(23)

Adding Eqs. (22) and (23) shows that energy is conserved:

d
d

[ + ] =
d

d
+

2
d 	2 | ( ; )| = 0	.														(24)

3 Dimensionless FEL scaling parameter
By expressing the governing equations of physical systems in terms of dimensionless quantities, one
can identify important time and length scales and characterize the relevant magnitudes of the physical
variables. In this section we cast the FEL equations into dimensionless form and find the fundamental
scaling parameter ρ. We will subsequently see that ρ, which is also called the Pierce parameter,
characterizes most properties of a high-gain FEL, while the dimensionless beam and radiation variables
will give us some sense of the dynamics without any additional computation.

We introduce the as-yet-unspecified parameter ρ by defining the scaled longitudinal coordinate
̂ 	 ≡ 	2 that leads to the phase equation

d
d ̂

= ̂ 	for	 ̂ ≡ 						(the	new	‘momentum’	variable).																						(25)

To simplify the energy equation for ̂ , we define the dimensionless complex field amplitude

=
2

	,																																																																								(26)

in terms of which the energy equation reduces to
d ̂
d ̂

= , ̂ e + , ̂
∗
e 	.																																																	(27)

Writing the field Eq. (17) in terms of ̂ and a, we have
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̂
+

1
2

( , ̂) = −
2 2

〈e 〉∆	.																																								(28)

To simplify the field equation, we choose to set the coefficient on the right-hand side of Eq. (28) to unity.
Thus, the dimensionless Pierce parameter ρ must be [1]

= (2 )

/
=

[JJ]
32

/

						

=
1

8
[JJ]

1 + /2 2
	,																																											(29)

where = / = 4 / ≈ 17045 A is the Alfvén current and we have set the cross-sectional
area of the electron beam → 2  assuming a Gaussian transverse profile.

The scaled FEL equations have all coefficients unity, so that the dimensionless form allows one
to make a number of order-of-magnitude estimates regarding the dynamics. First, one may a priori
expect that the scaled variation d/d ̂ ≲ 	1. Thus, in the exponential growth regime we may anticipate
the 1D gain length ~(2 ) . Additionally, since resonant energy exchange proceeds if the
ponderomotive phase is nearly constant, this implies that saturation of the FEL interaction occurs when
the scaled energy deviation ̂ 	~	1 (or 	~	 ). At this point we expect that the bunching will approach
its maximum value 〈e 〉∆ → 1, which in turn implies that the maximum scaled amplitude of the
radiation | |	~	1. Furthermore, if we had included the transverse derivatives in the wave equation we
would expect

1
4

→ 1	.																																																																					(30)

Identifying the transverse Laplacian with the radiation size via 	~	1/  we find that the RMS mode
size of the laser is roughly given by

	~	
4 4

	.																																																																				(31)

While these arguments are heuristic, they give useful predictions of FEL performance. Besides
the observation that the gain length is approximately /4 , we use the definition Eq. (26) to translate
the scaled radiation amplitude | | 	→ 	1 at saturation to | | → 	2 / , so that the maximum field
energy density

2 | | 	~	2
4

= 2 = 	.																																			(32)

Because 2
	 is the electron energy density, we see that ρ also gives the FEL efficiency at

saturation:

=
field	energy	generated
e-beam	kinetic	energy

	.																																																						(33)

To determine the distance at which the FEL gain saturates and 	 ∼ 	 beam, we consider the
motion of the electron in the pendulum potential. The period of motion is characterized by the synchrotron
wavenumber

Ω ≡
[JJ]

= 2 |2 | ⁄ 	,																																										(34)
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and that the radiation field gains or loses energy depending on the oscillation phase of the particles.
Since the energy exchange to the radiation ends when most of the particles make one-half oscillation in
the ponderomotive bucket, we have 〈Ω 〉 ≈ , where 〈Ω 〉 is the average value of the synchrotron
wavenumber over the FEL length sat. Taking 〈Ω 〉 to be one-quarter of its maximum value at saturation
where | 0| 	∼ 	1, we have sat/√2 	∼ 	 , or sat		 ∼ 	 / .  It  is  interesting  to  note  that  the  power
saturates when the synchrotron wavenumber is roughly equal to the exponential growth rate,

	 ∼ 	 		⇔ 		Ω 	∼ 	2 	.																																									(35)

This is to be expected, since when Ω 	 ∼ 	2 the particles can rotate to the accelerating phase of the
potential during one growth length, in which case they then extract energy from the field.

Therefore, the FEL (or Pierce) parameter determines the main characteristics of high-gain
FEL systems, including the following.

1. Gain length ∼ 	 /4 .

2. Saturation power ∼ ρ× (e-beam power).

3. Saturation length sat 	∼  .

4. Transverse mode size 	 ∼ 	 /16  .

In the following sections we will analyse the FEL equations and demonstrate that the dynamics indeed
exhibit these simple scalings.

4 1D solution using collective variables
In this section, we illustrate the essentials of FEL gain by neglecting the θ dependence of the
electromagnetic field. This ignores the propagation (slippage) of the radiation, and is equivalent to
assuming that a has only one frequency component. This model will be useful to illustrate the basic
physics of the electron beam and radiation field in a high-gain device, but will be insufficient to fully
understand the spectral properties of self-amplified spontaneous emission (SASE). A more rigorous
discussion of SASE can be found in literature [1]. The 1D FEL equations ignoring radiation slippage are
as follows

d
d ̂

= ̂ ,																																																																																						(36)

d ̂
d ̂

= e + ∗e ,																																																													(37)

d
d ̂

= −〈e 〉∆	.																																																																						(38)

These are 2 ∆ 	+ 	2 coupled first-order ordinary differential equations, 2 ∆ for the particles, and 2 for
the complex amplitude a. In general, these can only be solved via computer simulation. However, the
system can be linearized in terms of three collective variables as in Ref. [2]:

																																																									(field	amplitude);	
	 = 	 〈e 〉∆																																	(bunching	factor);
	 = 	 〈 ̂ e 〉∆																														(collective	momentum) .

The equations of motion for the bunching b and the field amplitude a follow directly from Eqs. (36)
and (38). Differentiating the collective momentum yields
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d
d ̂

=
d ̂
d ̂

e − i〈 ̂ e 〉 = + ∗〈e 〉 − i〈 ̂ e 〉	.																		(39)

Note that Eq. (39) contains additional field variables, and the resulting system of equations is not closed.
Nevertheless, these other terms are nonlinear, which we therefore expect to result in negligible higher-
order corrections when a, b, and P are much smaller than unity before saturation. Thus, linearizing
Eq. (39) and including the equations for b and a from Eqs. (36) and (38) yields the following closed
system in the small-signal regime:

d
d ̂

= − 							bunching	produces	coherent	radiation	,																															(40a)

d
d ̂

= −i 					energy	modulation	becomes	density	bunching,																(40b)

d
d ̂

= 										coherent	radiation	drives	energy	modulation	.																		(40c)

These are three coupled first-order equations, which can be reduced to a single third- order equation
for a as

d
d ̂

= i 	.																																																																									(41)

We solve the linear equation by assuming that the field dependence is ∼ e ̂ , which results in the
following dispersion relation for μ:

= 1	.																																																																								(42)

This is the well-known cubic equation, whose three roots are given by

= 1		,														 =
−1 − √3i

2
	,															 =

−1 + √3i
2

	.																							(43)

The root 1 is  real  and gives rise  to  an oscillatory solution,  while 2 and 3 are complex conjugates
that lead to exponentially decaying and growing modes, respectively. Furthermore, the roots obey

ℓ = 0
ℓ

,																				
1
ℓ

= ℓ
∗ = ℓ = 0

ℓℓℓ

	,																									(44)

and the general solution to Eq. (41) is composed of a linear combination of the exponential solutions:

( ̂) = ℓe ℓ ̂

ℓ

	.																																																													(45)

The three constants ℓ are determined from the initial conditions a(0), b(0), and P(0). By differentiating
the expression for a and using Eq. (40), we find

(0) = + + 	,																																																								(46)

d
d ̂

= − (0) = −i[ + + ]	,																																						(47)

d
d ̂

= (0) = −[ + + ]	.																																		(48)

Using Eq. (44), this yields the electromagnetic field evolution as

K.-J. KIM ET AL.

462



( ̂) =
1
3

(0) − i
(0)

ℓ
− i ℓ (0) e ℓ ̂

ℓ

	.																												(49)

The general solution for the radiation requires all three roots of μ. For long propagation distances,
however, the relative importance of the oscillating root μ1 and decaying root μ2 becomes insignificant
in comparison with the growing solution associated with μ3. Thus, the radiation field is completely
characterized by μ3 in the exponential growth regime where ̂ ≫ 1, so that

( ̂) ≈
1
3

(0) − i
(0)

− i (0) e ̂ 	.																																		(50)

The first term in the bracket describes the coherent amplification of an external radiation signal, while
the second and the third term show how modulations in the electron beam density and energy may lead
to FEL output. When the source of these modulations is the electron beam shot noise then the exponential
growth is considered to be SASE.

5 Qualitative description of SASE
SASE results from the FEL amplification of the initially incoherent spontaneous undulator radiation,
Refs. [2, 3, 4]. It is of primary importance for FEL applications in wavelength regions where mirrors
(and, hence, oscillator configurations) are unavailable.

For  our  first  look  at  SASE,  we  use  the  formula  for  the  radiation  in  the  high-gain regime
Eq. (50) assuming that there is no external field a(0) = 0 and that the beam has vanishing energy
spread with P(0) = 0. In this case, the radiation intensity in the exponential growth regime is

〈| ( ̂)| 〉 ≈
1
9
〈| (0)| 〉e√ ̂ 	.																																																									(51)

Here, the scaled propagation distance √3 ̂ = √3(2 ) = / ,  and  the  ideal  1D power gain length
is

≡
4 √3

	.																																																																							(52)

The bunching factor at the undulator entrance 〈| (0)|2〉 derives from the initial shot noise of the beam,
which  is  subsequently  amplified  by  the  FEL  process.  This  level  of shot noise is determined by the
number of particles in the radiation coherence length, and it can be shown that

〈| (0)|2〉 =
1

e ≈
1

	,																																										(53)

where coh is the number of electrons in a coherence length coh. It turns out that the normalized
bandwidth of SASE is ∆ / ~ , so that the coherence time coh	 ∼ 	 1/ and the coherence length

coh	 ∼ 	 1/  [2]. Alternatively, one can recognize the coherence length as the amount the radiation
slips  ahead  of  the  electron  beam  in  a few gain lengths. Hence, the start-up noise of a SASE FEL is
characterized by

	~ 	 	.																																																																			(54)

Figure 1 is a schematic plot that illustrates the initial start-up, exponential growth, and saturation
of a  SASE FEL. As is  clear  from the figure and from the previous discussion, ρ plays a fundamental
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role in the high-gain FEL physics for SASE. While we have not yet derived all the radiation properties,
some of the important ones include:

1. saturation length at	 ∼ 	 /  ;

2. output power ∼ × beam ;

3. frequency bandwidth ∆ / 	~	  ;

4. 1D power gain length 0	 = 	 /(4 √3 ) ;

5. transverse coherence: radiation emittance 	 = 	 /4 ;

6. transverse mode size: r	 ∼ √	 	 0 ;

7. for the SASE power = in 	exp( / ), the effective noise in ∼ 2/
coh  .

Fig. 1: Illustration of basic SASE processes. Adapted from Ref. [5]

While these basic scalings and the plot of Fig. 1 describes the ensemble averaged SASE properties,
we should keep in mind that any individual SASE pulse is essentially amplified undulator radiation,
and therefore has the same basic  power and spectral fluctuations as the chaotic light discussed in
“Temporal Coherence of Radiation Beam from a collection of Electrons” (previous lecture from these
proceedings). We can understand the connection of SASE to amplified undulator radiation by
considering the undulator energy as computed from the 1D power spectral density,

= d 	d
d

d 	d
	

d
d 	d

	,																											(55)

where the quantity 2/ tr can be understood as the characteristic angular spread from a source of area
tr:	∆ ∆ 	~	 2/ tr. In the 1D limit this tends to zero and we identify ( ) 	= 	 tr/ 2, so that

d
d

= ( )
d
d

=
d

d
	.																																									(56)

The same factor 2/ tr appeared for the 1D limit in Eq. (2). Inserting the power density in the forward
direction [1], we find that

=
[JJ]

1 + /2
	d

sin
	

= 8 	→ 8 																																																						(57)
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at the FEL saturation distance 	 ≈ 	1/ . Now, we use Eq. (57) to rewrite the FEL energy at saturation
as

= =
8

~ = 																											(58)

= 	.															(59)

The first line Eq. (58) shows that in the forward direction the FEL output at saturation is larger
than that of the undulator radiation by the number of particles in a coherence time ≳ 10 . The
second result Eq. (59) interprets the FEL energy as being proportional to the undulator field energy
due to a single electron times the square of the number of electrons in a coherence length times the
number of coherent regions / coh.

Finally, we would like to emphasize that X-ray FELs based on SASE would not have been realized
without incredible improvements in the production, transport, and manipulation of electron beams, since
very high brightness electron beams are essential for X-ray FELs. In particular, SASE FELs have been
made possible through recent advances in photocathode gun design (see Ref. [6] and a review in
Ref. [7]), and tremendous improvements of radiofrequency linac and undulator technology. These
advances have made it possible to produce sufficient gain in the undulator for transversely coherent
radiation, meaning that the electron beam meets the following criteria:

1. energy spread ∆ / < ;

2. emittance ≲ /(4 );

3. beam size ≳ ~ to have 1D scalings approximately apply;

4. high peak current to achieve 	~	10 and, hence, a reasonable saturation length and power
efficiency.
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Abstract
The quantum regime of the free-electron laser (FEL) interaction, where the
recoil associated with photon emission plays a significant role, is discussed.
The role of quantum effects and their relation to electron beam coherence are
considered. An outline derivation of a 1D quantum high-gain FEL model and
some of its predictions for the behaviour of a quantum FEL in the linear and
non-linear regimes are presented. The effect of slippage and, consequently, the
quantum regime of self-amplified spontaneous emission are discussed. Sug-
gestions on how to realise a quantum FEL are presented and some recent re-
lated work is summarized.

Keywords
Free-electron laser; quantum; recoil.

1 Introduction
Free-electron lasers (FELs) have demonstrated the ability to produce coherent radiation ranging from the
microwave to the X-ray region of the electromagnetic spectrum. Although the first theoretical studies of
the FEL involved a quantum mechanical analysis (e.g., [1]), it is generally accepted that FEL experiments
to date are well described by classical models in which an electron beam consisting of classical particles
interacts with a classical electromagnetic radiation field. Until relatively recently, most theoretical studies
using a quantum analysis have been restricted to the regime of low gain (e.g., [2–6]). More recently,
however, there has been a revival of interest in the role of quantum effects in the FEL interaction (e.g.,
[7–9]), stimulated in part by the development of short-wavelength, high-gain FEL amplifiers producing
progressively higher-energy photons (see, e.g., Ref. [10] for a review of X-ray FELs). In this article,
methods for describing the quantum regime of high-gain FEL operation are outlined and some of the
effects which are beyond description by the usual classical models are discussed.

2 The role of quantum effects in the free-electron laser interaction
2.1 Recap of classical high-gain free-electron laser theory
In this section, a brief summary of 1D classical high-gain FEL theory is presented, which will be used
both as a benchmark with which to compare the results from the quantum model, and to illustrate where
the limitations of classical FEL models occur.

Classical high-gain FEL models (e.g., [11–13]) describe the self-consistent evolution of a collec-
tion of relativistic electrons interacting with an electromagnetic radiation field as they propagate through
an undulator/wiggler magnet. The Newton–Lorentz equations of motion describing the dynamics of each
electron and Maxwell’s wave equation can be written in a dimensionless, universally scaled form where
the number of free parameters is minimized [11]:

dθj
dz̄

= p̄j , (1)

dp̄j
dz̄

= −
(
Āeiθj + c.c.

)
, (2)
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dĀ

dz̄
=

〈
e−iθ

〉
+ iδĀ , (3)

where θj = (k + kw)z − ωtj is the electron ponderomotive phase, p̄j = (γj − γr)/ργr is the scaled en-
ergy/momentum change of each electron, z̄ = z/Lg is the scaled position in the wiggler, Lg = λw/4πρ
is the gain length, δ = (γ0 − γr)/ργr is the scaled detuning of the beam energy from its resonance value,
where γ0 is the initial Lorentz factor of the electron beam, γr is the Lorentz factor of the electron beam
at resonance, which satisfies the FEL resonance condition γr =

√
λw(1 + a2w)/2λ, where λ is the radi-

ation wavelength and aw = eBw/mckw is the wiggler deflection parameter for a wiggler with magnetic
field, Bw, and wiggler wavenumber, kw = 2π/λw, where λw is the wiggler period. The dimension-
less radiation field amplitude Ā is defined so that |Ā|2 = ε0|E|2/ρ~ωne, where |E| is the electric field
amplitude, ne is the electron beam density, k = 2π/λ is the wavenumber of the radiation, ω = ck is
the angular frequency of the radiation and c is the speed of light. The average, 〈(...)〉 ≡ 1

N

∑N
j=1 (...)j ,

where j = 1, . . . , N is the electron index, and N is the number of electrons. The FEL parameter ρ is
defined as

ρ =
1

γr

(
awωp

4ckw

)2/3

, (4)

where ωp =
√
e2ne/ε0m is the plasma frequency associated with the electron beam, m is the electron

mass, and e is the magnitude of the electron charge. In deriving Eqs. (1)–(3), the relative slippage of the
radiation with respect to the electron beam has been neglected.

Assuming an initial condition corresponding to equally distributed electron phases, a monoener-
getic electron beam, and no electromagnetic field, i.e.,

〈
e−iθ

〉
= 0, p̄j = 0 ∀j, Ā = 0 ,

then a linear stability analysis [11] shows that this initial condition is unstable to fluctuations in the
electromagnetic field amplitude and electron phase, i.e., shot noise. A numerical solution of Eqs. (1)–(3)
with initial conditions 〈

e−iθ
〉

= 0 , p̄j = 0 ∀j , |Ā| = 10−4 , δ = 0

is shown in Fig. 1, showing exponential amplification of the electromagnetic field intensity and the
bunching factor |b| = |〈e−iθ〉| before saturation, when |Ā|2 ≈ 1.4 and |b| ≈ 0.8. This high-gain field
amplification therefore occurs simultaneously with the development of strong electron bunching on the
scale of the radiation wavelength. Figure 2 shows the corresponding electron phase space distribution
at different stages of the interaction (starting from z̄ = 0) and at saturation (z̄ ≈ 12 here). It can be
seen that during the interaction, the electron distribution becomes strongly modulated on the scale of the
radiation wavelength λ.

2.2 Energy and momentum considerations
The FEL process fundamentally involves electrons emitting photons, with each photon carrying a finite
momentum ~k. Consequently, in the relativistic limit in which the Lorentz factor of the electrons γ � 1
so that k � kw, then each photon emission event will result in the electron recoiling, reducing its
momentum by an amount ~k. The classical model of Section 2.1 neglects the discrete nature of this
recoil process, and assumes that the interaction involves a continuous exchange of energy/momentum
between the electrons and the radiation field, with the electrons moving along continuous trajectories
in phase space as shown in Fig. 2. This assumption is valid as long as the momentum associated with
each photon recoil is negligible compared with the momentum exchange between the electrons and the
radiation field. A condition for this classical approximation can be derived by inspection of the electron
beam phase space in Fig. 2.
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Fig. 1: Evolution of (a) radiation intensity, |Ā|2, and (b) bunching factor amplitude, |b|, in the classical FEL model
of Eqs. (1)–(3) for an ideal, resonant (δ = 0) monoenergetic electron beam.

It can be seen from Fig. 2 that, as a consequence of the FEL interaction, the initially monoenergetic
electron beam acquires a spread in the scaled energy/momentum variable p̄ of ∆p̄ ∼ 1. Consequently,
from the definition of p̄ above, this implies a relative energy spread ∆γ/γr ∼ ρ, or a momentum spread
∆p = ∆γ mc ∼ ργrmc. The validity of the classical model will therefore depend on the relative size of
this ‘classical’ momentum spread and the single-photon recoil ~k, i.e., the quantity

∆p

~k
=
γrmc

~k
ρ ≡ ρ̄ , (5)

where ρ̄ is the quantum FEL parameter [7]. The classical regime will therefore be valid when
ρ̄ = ∆p/~k � 1, so that the discrete nature of each photon recoil is insignificant and the electron
energy/momentum and position evolve along continuous trajectories in phase space as in Fig. 2. In the
opposite limit, where ρ̄ ≥ 1, this continuous classical picture breaks down owing to the finite momentum
of each photon recoil being significant. Consequently, to describe this quantum FEL regime it is neces-
sary to replace the particle–field model described by Eqs. (1)–(3) with a different model whose behaviour
reduces to that of Eqs. (1)–(3) in the classical limit where ρ̄� 1.

2.3 Electron beam coherence considerations
Although electron beams are usually described as moving collections of point-like classical charged
particles, there are situations where electron beams display coherent phenomena which require a wave-
like description; for example, it has been shown [14] that an electron beam which is split into two parts
which follow different paths before being recombined produces an electron density interference pattern
if the path difference involved is less than the electron beam (temporal) coherence length, defined as

Lec =
λ2e

∆λe
, (6)

where λe = h/p is the electron de Broglie wavelength and h is Planck’s constant.
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Fig. 2: Evolution of electron trajectories in phase space as described by the classical model of Eq. (1) for an ideal,
resonant (δ = 0) monoenergetic electron beam.

The interference patterns observed in Ref. [14] cannot be described in terms of electrons as parti-
cles, but can be described in terms of two wave functions, one for each part of the split electron beam,
i.e., Ψ1,2 = |Ψ1,2|eiφ1,2 , where φ1,2 are the phases of parts 1 and 2, respectively. The total electron
density after recombination can therefore be written as

|Ψ|2 = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + 2|Ψ1||Ψ2| cos(φ1 − φ2) , (7)

which displays interference.

For the FEL, it is expected that the wave-like nature of the electron beam should be significant
during the FEL interaction if the electron beam coherence length becomes comparable with or exceeds
the radiation wavelength λ, i.e., Lec ≥ λ. Rewriting Lec in terms of the electron momentum p from
Eq. (6) produces

Lec =
h2

p2
p2

h∆p
=

h

∆p
, (8)

so Lc ≥ λ implies h/∆p ≥ λ, i.e., ~k ≥ ∆p, which is just the condition for the breakdown of the
classical FEL model described in Section 2.2. Consequently, when ~k ≥ ∆p, i.e., ρ̄ ≥ 1, the classical,
particle model of the FEL interaction must be replaced with a wave function model, or its equivalent.
The arguments above raise the interesting question of what would happen in the case of an FEL using a
fully temporally coherent electron bunch [15] such that Lec > Le, where Le is the electron bunch length.

3 A one-dimensional quantum free-electron laser model
In this section, an outline derivation of a model capable of describing both the classical and the quantum
regime of high-gain FEL operation is presented. More rigorous derivations can be found in [7, 9, 16].
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3.1 Electron dynamics
It is possible to rewrite the pendulum-like Newton–Lorentz equations of motion shown in Eqs. (1) and
(2) in the following slightly modified form, where the parameter ρ̄ appears explicitly:

dθj
dz̄

=
p̃j
ρ̄
, (9)

dp̃j
dz̄

= −ρ̄
(
Āeiθj + c.c.

)
, (10)

where the dimensionless variable p̃ = ρ̄p̄ ≈ mc(γ − γ0)/γr. Equations (9) and (10) can be written in
the form of Hamilton’s equations, i.e.,

dθj
dz̄

=
∂Hj

∂p̃j
,

dp̃j
dz̄

= −∂Hj

∂θj
,

in terms of the single-electron Hamiltonian function

Hj(θj , p̃j) =
p̃2j
2ρ̄
− iρ̄

(
Āeiθj − c.c.

)
. (11)

The Hamiltonian in Eq. (11) can in turn be used to write a Schrödinger equation of the form

i
∂Ψ(θ, z̄)

dz̄
= HjΨ(θ, z̄)

for the single-electron wave function Ψ(θ, z̄), where p̃ is now treated as an operator, i.e., p̃ = −i∂/∂θ,
so that

i
∂Ψ(θ, z̄)

∂z̄
= − 1

2ρ̄

∂2Ψ

∂θ2
− iρ̄

(
Āeiθ − c.c.

)
Ψ, (12)

where the index j has been dropped.

3.2 Radiation field dynamics
To describe the evolution of the radiation field in terms of the wave function Ψ(θ, z̄), the ensemble
average in Eq. (3) is replaced by a corresponding average involving the probability distribution of the
electron positions in the beam, so that Eq. (3) becomes

dĀ

dz̄
=

∫ 2π

0
|Ψ(θ, z̄)|2e−iθ dθ + iδĀ , (13)

where the wave function Ψ(θ, z̄) is normalized such that

∫ 2π

0
|Ψ(θ, z̄)2| dθ = 1 .

The Maxwell–Schrödinger equations in Eqs. (12) and (13) together constitute a quantum model of the
high-gain FEL which is valid for any value of ρ̄.

3.3 Momentum state representation
The quantum FEL equations, Eqs. (12) and (13), can be solved directly numerically, but it is convenient
to write them in terms of a set of discrete momentum state amplitudes rather than a spatially dependent
wave function. To do this, the fact that the states |n〉 = 1√

2π
exp(inθ) are momentum eigenstates is

used, where n is an integer. This means that |n〉 satisfies the eigenvalue equation
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p̂|n〉 = n|n〉
where p̂ = −i∂/∂θ is the momentum operator.

It is possible to expand the electron wave function Ψ(θ, z̄) in terms of these momentum eigen-
states, i.e.,

Ψ(θ, z̄) =
1√
2π

∞∑

n=−∞
cn(z̄) exp(inθ) , (14)

where |cn|2 is the probability of an electron having momentum (γ − γ0)mc = n~k. Substituting for
Ψ(θ, z̄) using Eq. (14) in Eqs. (12) and (13), the quantum FEL equations in the momentum state repre-
sentation are

dcn(z̄)

dz̄
= −i

n2

2ρ̄
cn − ρ̄

(
Ācn−1 − Ā∗cn+1

)
, (15)

dĀ(z̄)

dz̄
=

∞∑

n=−∞
cnc
∗
n−1 + iδĀ . (16)

In this momentum state representation, the electron-beam–light interaction is described as an exchange of
population between different electron momentum states via the electromagnetic field in discrete amounts
~k. The evolution of the electromagnetic field is driven by spatial bunching of electrons (as in Eq. (3)
or (13)), which from Eq. (16) can be seen to be equivalent to coherence between adjacent momentum
states.

3.4 Linear stability analysis
One of the advantages of using the momentum state representation given in the previous section is that
it easily allows an analysis of the linear stability of stationary solutions, and consequently identification
of the conditions under which instability can occur. A stationary solution of the quantum FEL equations
in the momentum state representation, Eqs. (15) and (16), is Ā = 0, i.e., no radiation field, and c0 =
1, cm = 0 ∀m 6= 0, i.e., a spatially uniform electron distribution. Introducing small fluctuations in cn
and Ā about these stationary values, denoted by c(1)n and Ā(1) respectively, then

Ā = 0 + Ā(1),

c0 = 1 + c
(1)
0 ,

ck = 0 + c
(1)
k for all k 6= 0 .

Retaining only terms linear in the fluctuation variables produces

dc1
dz̄

= − i

2ρ̄
c1 − ρ̄Ā , (17)

dc−1
dz̄

= − i

2ρ̄
c−1 + ρ̄Ā∗ , (18)

dĀ

dz̄
= c∗−1 + c1 + iδĀ , (19)

where the (1) superscript has been dropped throughout as all the dependent variables represent fluctuating
quantities. Looking for solutions to Eqs. (17)–(19) of the form (c1, c−1, Ā) ∝ exp(iΛz̄) results in the
dispersion relation

(Λ− δ)
(

Λ2 − 1

4ρ̄2

)
+ 1 = 0 . (20)
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The solutions Λ of Eq. (20) with =(Λ) < 0 correspond to instability, resulting in exponential growth of
the radiation field amplitude Ā and of the momentum state amplitudes c±1, and consequently a spatially
periodic electron density modulation with wavelength λ, i.e., bunching.

Figure 3 shows a graph of the instability growth rate |=(Λ)| versus the detuning δ for different
values of ρ̄. For ρ̄→∞, it can be seen that Eq. (20) reduces to

Λ2 (Λ− δ) + 1 = 0 , (21)

which is the dispersion relation which would be obtained from a linear stability analysis of the classical
FEL model, Eqs. (1)–(3) [11]. Similarly, the curve for ρ̄ = 10 in Fig. 3 is almost identical to the classical
FEL gain curve which would be obtained from Eq. (21), with the maximum growth rate at resonance
(δ = 0). As ρ̄ is decreased, the region of gain decreases in size and the value of detuning at which
maximum gain occurs shifts to increasing values of δ such that δmax gain ≈ 1/2ρ̄, i.e., (γ0 − γr) ≈
~k/2mc.

−4 −2 0 2 4 6 8 10

δ

0.0

0.2

0.4

0.6

0.8

|ℑ
(λ
)|

ρ̄=10

ρ̄=1

ρ̄=0.2

ρ̄=0.1

Fig. 3: Graph of growth rate against detuning, δ, for different values of ρ̄ as calculated from Eq. (20)

4 One-dimensional quantum free-electron laser simulations
Using numerical simulations of the quantum FEL equations in either their position representation/Schrö-
dinger form (Eqs. (12) and (13)) or their momentum representation (Eqs. (15) and (16)) allows investi-
gation of the non-linear regime of the quantum FEL interaction. Here, results from simulations of the
momentum representation equations are presented. In all cases shown, the initial condition corresponds
to a monoenergetic/spatially uniform electron distribution such that c0 = 1 and ck = 0 ∀ k 6= 0, and that
the radiation field amplitude is extremely small (Ā = 10−4).

Figure 4 shows the evolution of the radiation field intensity as calculated from Eqs. (15) and (16)
for a case where ρ̄ = 10 and δ = 0. A comparison with Fig. 1 calculated from the classical equations,
Eqs. (1)–(3), shows that the evolution of the radiation field is almost identical when calculated using
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either the quantum, wave-function-based FEL model or the classical, particle FEL model when ρ̄ � 1,
which is consistent with this being the classical limit as discussed in Section 2. Figure 5 shows snapshots
of the corresponding electron energy/momentum distribution for the case where ρ̄ = 10 and δ = 0. It
can be seen that during the interaction, a large number of momentum states (∼ ρ̄) become populated,
again consistent with the idea that this represents a classical regime of interaction.

0 5 10 15 20

z̄

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|A
|2

Fig. 4: Classical regime: evolution of radiation intensity, |Ā|2, when ρ̄ = 10, δ = 0 as calculated from Eqs. (15)
and (16).

In contrast, Fig. 6 shows the evolution of the radiation field intensity as calculated from Eqs. (15)
and (16) for a case where ρ̄ = 0.1 and δ = 1/2ρ̄ = 5, which should correspond to a quantum regime
of interaction as discussed in Section 2. It can be seen that the field intensity evolves in a very different
manner from that of the classical behaviour shown in Fig. 4 as a sequence of hyperbolic secant pulses.
Figure 7 shows snapshots of the corresponding electron energy/momentum states. It can be seen that
during the interaction, now only a maximum of two momentum states are populated at any stage of the
interaction, the population cycling periodically between momentum states n = 0 and n = −1, with one
radiation pulse being emitted as the population cycles from state 0→ −1→ 0. It can be shown that this
evolution is well described by a model consisting of only two momentum states.

4.1 Including slippage
So far, it has been assumed that the relative slippage between the radiation field and the electrons due
to their different velocities is negligible, so that the electron beam can be described in terms of a single
ponderomotive potential with periodic boundary conditions such that every ponderomotive potential in
the electron beam evolves identically. Here, the quantum FEL model is extended to include the effects of
slippage, which allows the description of radiation pulse propagation and evolution during the quantum
FEL interaction.

The inclusion of slippage is essential to model the process of self-amplified spontaneous emission
(SASE) in an FEL, as SASE involves the FEL interaction being initiated by electron beam shot noise
rather than a coherent seed radiation field. Consequently, as electron shot noise is stochastic in nature,
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Fig. 5: Classical regime: snapshots of the electron momentum distribution, |cn|2, when ρ̄ = 10, δ = 0 as calculated
from Eqs. (15) and (16).

the (weak) initial bunching of electrons due to shot noise will vary randomly between different parts of
the electron beam. It is important, therefore, to describe the effect of one part of the electron beam on the
rest of the beam as mediated by the radiation field as it propagates forward through the electron beam.

To incorporate slippage into the models described so far, it is necessary to introduce an additional
length scale which represents position in the electron bunch, i.e.,

z1 =
z − vzt
Lc

, (22)

where Lc = λ/4πρ is the ‘cooperation length’ [17] and vz is the mean axial velocity of the electron
beam. .

Using this new independent variable, we can now define the radiation field amplitude Ā and the
momentum state amplitudes cn at each position along the electron bunch, i.e.,

Ā(z̄)→ Ā(z̄, z1) ,

cn(z̄)→ cn(z̄, z1) ,

so that the quantum FEL equations in the momentum state representation, Eqs. (15) and (16), become
the set of coupled partial differential equations [18]

∂cn(z̄, z1)

∂z̄
= −i

n2

2ρ̄
cn − ρ̄

(
Ācn−1 − Ā∗cn+1

)
, (23)

(
∂

∂z̄
+

∂

∂z1

)
Ā(z̄, z1) =

∞∑

n=−∞
cnc
∗
n−1 + iδĀ . (24)

As this model now describes the spatio-temporal evolution of the radiation field, it is possible to in-
vestigate the spectral properties of SASE radiation in a quantum FEL. To simulate SASE, the initial
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Fig. 6: Quantum regime: evolution of radiation intensity, |Ā|2, when ρ̄ = 0.1, δ = 5 as calculated from Eqs. (15)
and (16).

momentum amplitudes cn are distributed with random phases to simulate a stochastically fluctuating
bunching parameter along the electron bunch.

Snapshots of the spatio-temporal evolution of classical SASE radiation and its corresponding fre-
quency spectrum are shown in Figs. 8 and 9, respectively. It can be seen that the evolution of the
interaction results in a radiation field consisting of a sequence of random spikes of radiation, similar to
what is produced in the classical model [11, 13]. Similarly, the corresponding frequency spectrum of
classical SASE, shown in Fig. 9, is broad and chaotic. Note that the scaled frequency variable is defined
as ω̄ = (ω′ − ωr)/ρωr, where ωr ≈ 2cγ2r kw is the resonant (angular) frequency of the radiation.

Corresponding graphs showing the spatio-temporal evolution of SASE radiation and its frequency
spectrum in the quantum regime (ρ̄ < 1) are shown in Figs. 10 and 11, respectively. It can be seen that
the evolution of the interaction in the quantum regime results in a radiation field which is amplified at
a lower rate, but consists of a smoother, less spiky profile, with a frequency spectrum which evolves
as series of discrete, narrow lines. Each discrete line is produced by transitions between successive
momentum states, i.e., n = 0 → −1 → −2, . . . . It can be shown [19] that the frequency separation
between these lines is ∆ω = ~k2/γm, the recoil frequency associated with the emission of a photon
with momentum ~k by a relativistic electron. The presence of these different discrete frequencies results
in a beating between these frequencies, which can be seen in the spatio-temporal evolution of the field
for large values of z̄ (see, e.g., Fig. 10(b) and (c)). The existence of this beat note illustrates the phase
coherence between the frequencies being generated.

The spectral features of the quantum regime of SASE, for example higher temporal coherence
than that produced by classical SASE, are attractive for potential applications of the radiation generated.
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Fig. 7: Quantum regime: snapshots of the electron momentum distribution |cn|2 when ρ̄ = 0.1, δ = 5 as calculated
from Eqs. (15) and (16).

5 Realising the quantum free-electron laser regime
It was shown in Section 2 that the quantum FEL regime requires

ρ̄ =
mcγ

~k
ρ < 1 ,

which can be rewritten as
γλ

λc
ρ < 1 , (25)

where λc = h/mc ≈ 2.4 × 10−12 m is the Compton wavelength. All current short-wavelength FELs
operate in the classical regime; for example, the Linac Coherent Light Source (LCLS) has approximate
parameters γ ≈ 3× 104, ρ ≈ 5× 10−4, and λ ≈ 1 Å ≈ 40λc, which from Eq. (25) gives ρ̄ ≈ 600.

Equation (25) shows that to attain the quantum regime where ρ̄ < 1 without drastically reducing
the FEL gain (∝ ρ), then it is best to reduce λ as far as possible (i.e., high photon momentum), but keep
γ as small as possible. This would seem to be unfeasible for an FEL using a magnetostatic wiggler, such
as the LCLS, but may be possible if an electromagnetic wiggler is used [19], where the much shorter
effective wiggler period (λw < 1 µm compared with∼ cm for magnetostatic wigglers) allows generation
of short radiation wavelengths with much lower-energy electrons than with a magnetostatic wiggler. A
challenging feature of laser wigglers is that the effective interaction length is much shorter than for a
magnetostatic wiggler, but recent studies [19, 20] suggest that current high-power technology is capable
of producing sufficiently high intensities and pulse durations to potentially satisfy the conditions required
to achieve the high-gain quantum FEL regime.
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Fig. 8: Snapshots of the spatio-temporal evolution of the classical regime of SASE (ρ̄ = 5) when the electron
bunch length Le = 20Lc.

−20 −15 −10 −5 0 5 10 15 20

ω̄

0.000000
0.000001
0.000002
0.000003
0.000004
0.000005
0.000006
0.000007

P
(ω̄

)

(a) z̄=0.2

−20 −15 −10 −5 0 5 10 15 20

ω̄

0

50

100

150

P
(ω̄

)

(b) z̄=25.0

−20 −15 −10 −5 0 5 10 15 20

ω̄

0
50

100
150
200
250

P
(ω̄

)

(c) z̄=50.0

Fig. 9: Snapshots of the evolution of the frequency spectrum for classical SASE when the electron bunch length
Le = 20Lc.
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Fig. 10: Snapshots of the spatio-temporal evolution of the quantum regime of SASE (ρ̄ = 0.2) when the electron
bunch length Le = 20Lc.
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Fig. 11: Snapshots of the evolution of the frequency spectrum for quantum SASE when the electron bunch length
Le = 20Lc.
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6 Conclusions
In this article, the possibility of a quantum regime of FEL operation, the conditions under which quantum
effects due to large photon recoil may be significant in the FEL interaction, and some of the features of
the quantum FEL interaction have been discussed using a 1D model. Although the quantum regime of
high-gain FEL operation has not yet been achieved, it appears that with current technology, realisation of
the quantum FEL regime may be a possibility. Given that some spectral properties of the quantum FEL
regime appear attractive relative to those of classical SASE FELs, for example improved temporal coher-
ence, then the quantum FEL seems to have potential as a compact source of coherent, short-wavelength
(X-ray/γ-ray) radiation.

Some recent and current work on quantum FELs which has not been covered in detail here is
summarised below.

6.1 2D and 3D models
Although this article has concentrated on 1D models to illustrate concepts, both 2D and 3D quantum
FEL simulations and models have been investigated [21,22]. Such studies are important to determine the
conditions under which transverse inhomogeneities in and diffraction of the intense laser pulses used as
electromagnetic wigglers will affect the quantum FEL gain process.

6.2 Spontaneous emission
It is well known that the stochastic kicks produced by spontaneously emitted photons can produce mo-
mentum diffusion, which eventually quenches the classical FEL gain process at short wavelengths and
provides an effective lower limit to the wavelength which can be produced by classical FEL operation
of λ ≈ 1 Å. There has recently been some debate about the significance of the role which spontaneous
emission will play in attempts to achieve the quantum regime of FEL operation [23, 24].

Finally, although the terminology of ‘quantum’ FEL has been used throughout this article, based
on the conventional terminology used in the quantum optics literature, the models described here are
more correctly described as ‘semiclassical’, as they use a quantum description of the medium (the elec-
tron beam) but a classical description of the electromagnetic field. Fully quantum FEL models involving
quantized radiation fields were developed long ago for the low-gain regime and used to investigate, for
example, the photon statistics of the low-gain FEL interaction [3], and recent work has extended these
models into the high-gain regime [16,25]. Such models offer the exciting prospect of opening up a whole
range of new coherent, quantum, X-ray, and γ-ray phenomena, as has been done in the optical region of
the spectrum.
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High-Gain Regime: 3D1 
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Abstract  

Although the FEL interaction is predominantly longitudinal in nature, 

transverse physics cannot be neglected if one wants to have a complete picture 

of the FEL. Specifically, we must understand the roles of radiation diffraction 

and how the electron’s betatron motion in the undulator affects performance. 

We discuss these effects emphasizing the underlying physical picture. A high-

gain FEL has a set of transverse modes, of which the fundamental mode has 

the largest growth rate and thus become dominant as the radiation-electron 

beam system travels along the undulator. To maximize the growth rate, the 

electron beam phase space distribution should be matched to the guided 

optical beam, leading to criteria on electron beam parameters. The FEL gain 

length is presented near the end of this chapter. 

Keywords 

High-Gain Regime; FELs. 

1 Diffraction and guiding 

A remarkable feature of a self-amplified spontaneous emission [SASE] FEL is its transverse coherence. 

The spontaneous undulator radiation has a transverse phase space area that is determined by the electron 

beam emittance (2𝜋𝜀𝑥)2. This area is typically much larger than the diffraction-limited phase space 

area (𝜆/2)2, especially at X-ray wavelengths, so that undulator radiation is composed of many 

transverse modes. Thus, in a SASE FEL, the initial transverse phase space of the spontaneous emission 

also consists of an incoherent sum of many spatial modes. However, since the FEL interaction is 

localized within the electron beam near the peak electron density, there is one ‘dominant’ mode whose 

transverse size 𝜎𝑟 is dictated by the beam area, and whose natural divergence satisfies 𝜎𝑟𝜎𝑟′  =  𝜆/4𝜋 . 
Higher-order spatial modes either diffract more, which results in greater effective losses, or are of larger 

spatial extent and couple less efficiently to the particles. Thus, the fundamental mode has the highest 

effective gain, so that it eventually becomes the preferred spatial distribution for the SASE radiation. 

This surviving fundamental mode appears to be guided after a sufficient undulator distance, a 

phenomenon commonly referred to as ‘optical guiding’ or ‘gain guiding’ [1, 2]. 

We illustrate the general idea of gain guiding schematically in Fig. 1. Since gain is only effective 

within the central area, one ‘matched’ transverse mode shape is selected over all others, and this mode 

then appears to be guided over many vacuum Rayleigh lengths due to the gain. The transverse mode 

selection is also clearly evident in Fig. 2, which was obtained from a three-dimensional (3D) GENESIS 

simulation of SASE. Initially, the radiation power is randomly distributed in the transverse plane, but 

after a sufficient propagation length only one localized coherent mode survives. For one Gaussian-like 
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transverse mode to completely dominate in this way, there must be enough propagation distance for the 

competing modes to communicate transversely via diffraction. 

 

Fig. 1: Illustration of Moore’s guided mode. In the top panel the preferentially guided mode is plotted in black, while 

the higher-order modes are in grey. The intensity at each z location is scaled to keep the height of the guided (black) 

mode invariant, so that what appears to be a decrease in the power in the higher-order (grey) modes is actually the 

larger gain of the Gaussian guided profile outstripping the smaller gain associated with all other modes. The bottom 

panel compares the natural diffraction of the radiation with that of the guided mode generated by FEL gain. 

In the one-dimensional (1D) analysis, we introduced the important FEL scaling or Pierce 

parameter ρ, defined through the relation 𝑛𝑒𝜅1𝜒1 =  4𝑘𝑢
2𝜌3 which is equivalent to 

𝜌 = (
𝑒2𝐾2[JJ]2𝑛𝑒

32𝜖0𝛾𝑟
3𝑚𝑐2𝑘𝑢

2)

1/3

= [
1

8𝜋

𝐼

𝐼A
(

𝐾[JJ]

1 + 𝐾2/2
)

2
𝛾𝑟𝜆1

2

2𝜋𝜎𝑥
2]

1/3

 ,                           (1) 

where 𝐼A =  𝑒𝑐/𝑟𝑒 ≈  17045 A is the Alfvén current. Many important characteristics of the FEL scale 

with 𝜌: the gain length and saturation length scale inversely with ρ, while the bandwidth is proportional 

to 𝜌. As shown in the paper titled “High-Gain Regime: 1D” in these proceedings, for vanishing e-beam 

energy spread the ideal gain length is given by 

𝐿𝐺0 =
𝜆𝑢

4√3𝜋𝜌
 .                                                                    (2) 
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Fig. 2: Evolution of the LCLS radiation angular distribution at different z location. Courtesy of S. Reiche 

When 3D effects are included, a different dimensionless combination of parameters may govern 

the gain characteristics of the FEL. To see this, consider the extreme case where the effect of diffraction 

is ‘large’, meaning that the radiation mode size is significantly larger than the electron beam size. To better 

describe the interaction between the electrons and the radiation in this 3D limit, the beam area 𝒜tr =
 2𝜋𝜎𝑥

2 in Eq. (1) should be replaced by the diffraction-limited cross-section which is as follows: 

2𝜋𝜎𝑥
2 → 2𝜋

𝜆1

4𝜋
𝑍𝑅 .                                                                (3) 

Here 𝑍R is the Rayleigh length of the radiation, which from our discussion on gain guiding ought to 

be of order a few gain lengths. Thus, by inserting 2𝜋𝜎𝑥
2 →  𝜆1𝐿𝐺 into Eq. (1) and then the resulting 

expression for ρ into Eq. (2), one can solve the resulting algebraic equation for the gain length LG to find 

𝐿𝐺
−1 =

4𝜋

𝜆𝑢

33/4

2
√

𝐼

𝛾𝐼A

𝐾2[JJ]2

(1 + 𝐾2 2⁄ )
 .                                                        (4) 

This equation gives an approximate formula for the growth rate when the 3D effect of diffraction 

dominates, specifically, when the optical mode is larger than the electron beam cross-sectional area. 

Thus, it may be convenient to introduce the diffraction D-scaling for certain FEL applications as was 

done in Ref. [3]. Notice that 𝐿𝐺
−1 scales as I1/2 in the 3D diffractive limit, which is in contrast to the 

I1/3 behaviour that characterizes the 1D limit when the electron beam size is larger than that of the 
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optical mode. Additionally, the D-scaling shows that shrinking the electron beam cross-section much 

below that of the radiation mode does not further reduce the gain length. In fact, reducing the beam 

size beyond a certain point actually tends to increase the gain length, since decreasing the physical beam 

size necessarily increases the angular spread of an electron beam with non-zero emittance. It then 

follows from this discussion that the optimal electron beam size should roughly match the size of 

the radiation beam: 

𝜎𝑥  ~ 𝜎𝑟 = √𝜀𝑟𝑍𝑅~√𝜀𝑟𝐿𝐺  ,                                                         (5) 

where 𝜀𝑟 =  𝜆1/4𝜋 is the radiation emittance. 

The above qualitative arguments are useful for understanding the effect of diffraction and for 

estimating the gain length of certain high-gain FEL projects operating in the infrared and visible 

wavelengths, where the optical mode size is larger than the e-beam size. Nevertheless, we will continue 

to scale quantities by the dimensionless parameter ρ for two reasons. First, ρ-scaling is more relevant 

for X-ray FELs because the typical optical mode size is smaller than the RMS beam size. Second, ρ 

does not require introducing the (formally undetermined) Rayleigh range, and instead relies on the 

electron beam cross-sectional area as shown in Eq. (1). 

2 Beam emittance and focusing 

An electron beam with finite emittance 𝜀𝑥 has a RMS angular spread 𝜎𝑥′ = 𝜀𝑥/𝜎𝑥, so that its size will 

expand in free space. Hence, to keep a nearly constant e-beam size and maximize the FEL interaction 

in a long undulator channel requires proper electron focusing. The undulator magnetic field does provide 

a ‘natural’ focusing effect. The natural focusing strength, however, is typically too weak, so that external 

focusing by quadrupole magnets is often required. This focusing is used to decrease the beam size, 

thereby increasing the ρ parameter and decreasing the gain length. As mentioned in the previous section, 

decreasing the beam size below that of the optical mode may actually degrade the FEL performance, 

because the increasing angular spread introduces a spread in the resonant wavelength. This effect is 

similar to that of energy spread, and can be understood by considering the FEL resonance condition 

𝜆1(𝜓) =
𝜆𝑢

2𝛾2 (1 +
𝐾2

2
+ 𝛾2𝜓2) ,                                                 (6) 

where ψ is the angle the particle trajectory1 makes with respect to the z axis. From Eq. (6), we see 

that the spread in particle angles given by 𝜓 = 𝜎𝑥′ causes a spread in the resonant wavelength 

∆𝜆

𝜆1
= 𝜎𝑥′

2 𝜆𝑢

𝜆1
=

𝜀𝑥

𝛽𝑥

𝜆𝑢

𝜆1
 .                                                            (7) 

To not adversely affect the FEL gain, we demand that the induced wavelength variation due to the angular 

spread be less than the FEL bandwidth ∼ 𝜌, namely that 

∆𝜆

𝜆1
= 𝜎𝑥′

2 𝜆𝑢

𝜆1
≲ 𝜌 ≈

𝜆𝑢

4𝜋𝐿𝐺
 .                                                      (8) 

Due to optical guiding, the radiation Rayleigh range is of order the gain length, 𝑍𝑅 ∼ 𝐿𝐺, so that Eq. (8) 

implies that the electron beam angular divergence should be no more than that of the radiation: 

𝜎𝑥′ = √
𝜀𝑥

𝛽𝑥
≤ √

𝜀𝑟

𝐿𝐺
 ~ 𝜎𝑟′  .                                                        (9) 

The inequalities regarding the beam size (see Eq. (5)), and angular divergence (see Eq. (9)), 

together require 
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𝜀𝑥,𝑦 ≲ 𝜀𝑟 =
𝜆1

4𝜋
 ,                                                               (10) 

while the optimal focusing beta function for a given emittance saturates the inequality seen in Eq. (9): 

𝛽𝑥  ~ 𝐿𝐺

𝜀𝑥

𝜀𝑟
 .                                                                  (11) 

A smaller beam emittance allows for a tighter focused beam size and hence a smaller gain length.  
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Abstract  

We review [1] the temporal characteristics of the radiation produced by an 

electron beam, in time-domain as well as in the frequency domain. For 

synchrotron radiation, the radiation is chaotic, while it is coherent when the 

beam is micro-bunched as in a free-electron laser. 

Keywords 
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1. Time-domain picture 

Temporal coherence of a radiation specifies the extent to which the radiation maintains a definite phase 

relationship at two different times. Temporal coherence is characterized by the coherence time, which 

can be experimentally determined by measuring the path length difference over which fringes can be 

observed in a Michelson interferometer. A simple representation of a coherent wave in time is given 

by 

𝐸0(𝑡) =  𝑒0 exp (−
𝑡2

4𝜎𝜏
2

− i𝜔1𝑡) .                                                      (1) 

Here στ is the root mean square (RMS) temporal width of the intensity profile |E0(t)2|. The coherence 

time tcoh can be defined as 

𝑡coh ≡ ∫ d𝜏|𝐶(𝜏)|2  ,                                                                   (2) 

where 𝐶(τ) is the normalized, first-order correlation function (or complex degree of temporal coherence) 

given by 

𝐶(𝜏) ≡
〈∫ d𝑡 𝐸(𝑡)𝐸∗(𝑡 + 𝜏)〉

〈∫ d𝑡 |𝐸(𝑡)|2〉
 ,                                                          (3) 

and the brackets denote ensemble averaging. In the simple Gaussian model of Eq. (1), the coherence 

time 𝑡coh = 2√𝜋𝜎𝜏 . 

In the frequency domain, we have 

𝐸𝜔
0 = ∫ d𝑡 ei𝜔𝑡𝐸0(𝑡) =

𝑒0√𝜋

𝜎𝜔
exp [−

(𝜔 − 𝜔1)2

4𝜎𝜔
2 ] ,                                  (4) 

where 𝜎𝜔 = (2𝜎𝜏)−1 is the RMS width of the frequency profile |𝐸𝜔|2. Let us introduce the temporal 

(longitudinal) phase space variables ct and (𝜔 − 𝜔1)/𝜔1 =  ∆𝜔/𝜔1.The Gaussian wave packet then 

satisfies 
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𝑐𝜎𝜏 ∙  
𝜎𝜔

𝜔1
=

𝜆1

4𝜋
 .                                                                   (5) 

 

Most radiation observed in nature, however, is temporally incoherent. Sunlight, fluorescent light 

bulbs, black-body radiation, and undulator radiation are all temporally incoherent, and are often referred 

to as chaotic light or as a partially coherent wave. As a mathematical model of such chaotic light, we 

consider a collection of coherent Gaussian pulses that are displaced randomly in time with respect to 

each other: 

𝐸(𝑡) = ∑ 𝐸0(𝑡 − 𝑡𝑗) = 𝑒0 ∑ exp [−
(𝑡 − 𝑡𝑗)

2

4𝜎𝜏
2

− i𝜔1(𝑡 − 𝑡𝑗)]

𝑁e

𝑗=1

𝑁e

𝑗=1

 .             (6) 

In Eq. (6), tj is a random number, and the sum extends to Ne to suggest that these wave packets 

have been created by electrons. We illustrate this partially coherent wave (chaotic light) in Fig. 1, which 

we obtained by using 𝑁e =  100 wave packets with 𝜆1 =  2𝜋/𝜔1 =  1 and 𝜎𝜏 =  2 (𝜎𝜔 =  0.25), 

assuming that the 𝑡𝑗 are randomly distributed with equal probability over the bunch length duration 

𝑇 =  100. Panel (a) shows 10 randomly chosen such wave packets; plotting many more than this results 

in a jumbled disarray. Figure 1(b) shows the E(t) that results by summing over all 100 waves.  

 
 

Fig. 1: (a) Representation of the randomly phased wave packets that chooses 10 out of the 100 total waves. The 

individual waves are shown transversely displaced for illustrative purposes only. (b) Total electric field, given by 

the incoherent sum of the 100 wave packets. The field consists of order 𝑇/4𝜎𝜏 ≈ 10 regular regions (i.e., 𝑀L ≈
10 longitudinal modes). 

The remarkable feature of this plot is that the resultant wave is a relatively regular oscillation that 

is interrupted only a few times, much fewer than one might have naively guessed based on the fact that 

it is a random superposition of 100 wave packets. In fact, the duration of each regular region is 

independent of the number of wave packets, and is instead governed by the time over which the wave 

maintains a definite phase relationship, namely, the coherence time. Note that the coherence time of 

a random collection of Gaussian waves Eq. (6) equals that of the single mode Eq. (1). Thus, each regular 

region can be identified with a coherent mode whose temporal width is of order the coherence time tcoh. 

The number of regular regions equals the number of coherent longitudinal modes 𝑀L, which is roughly 

the ratio of the bunch length to the coherence length. Approximately, we have 

𝑀L ≈
𝑇

𝑡coh
=

𝑇

2√𝜋𝜎𝜏

≈
𝑇

4𝜎𝜏
 .                                                     (7) 

The average field intensity scales linearly with the number of sources, while the instantaneous 

intensity fluctuates as a function of time. Associated with this intensity variation will be a fluctuation 

in the observed number of photons ph  over a given time. Denoting the average photon number by 

〈ph〉, the RMS squared fluctuation in the number of photons observed is 
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𝜎ph

2 =
〈ph〉2

𝑀L
 ,                                                                  (8) 

where ML is the number of longitudinal modes in the observation time T. 

The formula Eq. (8) for the photon number variation can be generalized in two respects. 

First, the mode counting must include the number of transverse modes MT in both the x and y 

directions, so that the total number of modes 

𝑀 = 𝑀L𝑀T
2.                                                                          (9) 

Second, there are inherent intensity fluctuations arising from quantum mechanical uncertainty in 

the form of photon shot noise. This number uncertainty is attributable to the discrete quantum nature 

of electromagnetic radiation, and, like any shot noise, it adds a contribution to 𝜎𝑁ph
2  equal to the average 

number ph. Thus, the RMS squared photon number fluctuation is 

𝜎ph

2 =
〈ph〉2

𝑀
+ 〈ph〉 =

〈ph〉2

𝑀
(1 +

1

𝛿degen
) .                               (10) 

The second term in parentheses is the inverse of the number of photons per mode, which is also 

known as the degeneracy parameter. In the classical devices that we consider there are many photons 

per mode, 〈ph〉/𝑀 ≡  𝛿degen ≫ 1, and the fluctuations due to quantum uncertainty are negligible. In 

this classical limit the length of the radiation pulse can be determined by measuring its intensity 

fluctuations, from which the source electron beam length may be deduced, see Ref. [2]. 

 

 
Fig. 2: Intensity spectrum of Eq. (11) using identical parameters as Fig. 1(b). The spectrum consists of 𝑀 ~ 10 

sharp frequency spikes of approximate width 2/𝑇 ≈ 0.02, which are distributed within a Gaussian envelope of 

RMS width 𝜎𝜔 ~ 0.25. The height and placement of the spectral peaks fluctuate by 100 per cent for different sets 

of random numbers. 

 

2. Frequency-domain picture 

It is interesting to note that the mode counting we performed in the time domain can also be 

done in the frequency domain. Figure 2 shows the intensity spectrum 𝑃(𝜔) ∝ |𝐸𝜔|2, where 

𝐸𝜔 =
𝑒0√𝜋

𝜎𝜔
∑ exp [−

(𝜔 − 𝜔1)2

4𝜎𝜔
2 + i𝜔𝑡𝑗]

𝑁e

𝑗=1

                                 (11) 
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using the same wave parameters as in Fig. 1. The spectrum consists of sharp peaks of width 

∆𝜔 ~ 2/𝑇 that are randomly distributed within the radiation bandwidth 𝜎𝜔 = (2𝜎𝜏)−1. In other words, 

the frequency bandwidth ∆𝜔 of each mode is set by the duration of the entire radiation pulse T, 

while the frequency range over which the modes exist is given by the inverse coherence time. Thus, 

the total number of spectral peaks is the same as the number of the coherent modes in the time 

domain. 
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Abstract
In this lecture we discuss the principles of an FEL oscillator, in which a
radiation pulse is trapped in an optical cavity but receives repeated
amplification as the pulse meets an electron bunch as it come to the entrance
of a low-gain FEL. We provide a qualitative picture of how the power and the
longitudinal and transverse modes of the pulse develop.

Keywords
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1. Introduction
The basic schematic of an FEL oscillator is illustrated in Fig. 1. Electron bunches from a (usually
radiofrequency) accelerator pass through an undulator that is located inside a low-loss optical cavity.
Starting from an empty cavity, in the first pass the electron beam emits spontaneous undulator radiation
that is reflected back into the undulator by the cavity mirrors. In the second pass, the pulse of
spontaneous emission meets and overlaps with a second electron bunch at the entrance of the undulator.
The radiation and the e-beam interact in the undulator, after which the output field is composed of the
spontaneous emission from both the first and second pass, along with an amplified signal due to FEL
gain. This process repeats, so that the amplified radiation signal will eventually dominate the output if
the gain is larger than the round-trip loss in the cavity.

Fig. 1: Schematic of an FEL oscillator showing its basic operating principle

1 Power evolution and saturation
For a simple mathematical description of the power evolution in an oscillator, let Pn be the power of the
optical pulse at the undulator exit after its nth pass, and Ps be the power of spontaneous emission. Then
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=  ,                                                

= (1 + ) +     for ≥ 2 ,                                                 (1)

where G is the FEL gain and R is the reflectivity of the optical transport line. The net single pass power
amplification is (1 +  ), and evidently the power increases if the single pass gain overcomes the
losses such that

(1 +  ) >  1 .                                                                      (2)

This is the ‘lasing’ condition for an FEL oscillator. The power after the nth pass is governed by Eq. (1),
whose solution is

=
[ (1 + )] − 1

(1 + ) − 1
 .                                                           (3)

Assuming that (1 + ) > 1, we see that the power increases exponentially with n after sufficiently
many passes of amplification.

The exponential growth of the intracavity radiation power does not continue indefinitely. Rather,
the optical power eventually becomes large enough to trap electrons in the ponderomotive potential and
then rotate them to an absorptive phase where they extract energy from the field. This in turn reduces
the gain from its small signal value, and the system reaches a steady state or ‘saturates’ when the gain
decreases to the value sat given by

(1 + sat) = 1 .                                                                  (4)

Furthermore, at saturation the power generated during one pass ∆ equals the total losses, so that if the
power inside the cavity is sat we have ∆  = (1 − ) sat.  It can be shown that ∆ ≈ beam/2 , which
in turn implies that the intracavity optical power at saturation is

≈
1

2 (1 − )  .                                                            (5)

The optical elements in the cavity, and in particular the mirrors, must be able to withstand the power
sat for the oscillator to operate stably.

At saturation the power decreases by an amount (1 − )∆  during any complete round-trip cycle;
this energy loss can be due to many different mechanisms, including radiation absorption in the mirror
material, diffraction at the edges of the optical elements, and transmission out of the cavity for useful
purposes. If one had an ideal optical line with no losses, the cavity transmission would equal (1 − )
so that the maximum power that can be coupled out of the oscillator is (1 − ) sat ≈ beam/2 .

Useful output radiation from an FEL oscillator requires it to operate for some time at saturation.
Hence, an oscillator can be driven by a pulsed accelerator only if the number of bunches within each
macro-pulse is more than that required to reach saturation. With a CW accelerator, on the other hand,
the oscillator can be maintained at a steady state indefinitely. This is a desirable mode of operation, since
the FEL then provides a stable source with a higher average photon flux.

2 Qualitative description of longitudinal mode development
There is much more physics at work in addition to the power evolution just described. One subtle but
important phenomenon is lethargy (Ref. [1])—the fact that the trailing part of the optical pulse (the tail)
is more strongly amplified than the front (the head). This is because the initially unmodulated electron
beam must propagate some distance through the undulator to develop the density modulation that
provides FEL gain, during which time the electron beam and its gain slips behind the field envelope. As
a consequence, the FEL gain is maximized when the cavity length is slightly shorter than that given by
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the exact synchronism condition (the synchronism condition is when the cavity length equals the
distance between successive bunches).

The lethargy effect causes the round-trip time of the pulse envelope to be in general different from
the round-trip time of the phase, since the latter is determined essentially by the cavity length. In other
words, the phase fronts return to the undulator after a time approximately equal to the round-trip time
in the cavity, while the peak of the pulse envelope arrives a time of order the slippage time 1/ after.
To be more precise, any delay of the phase fronts is given by the imaginary part of the complex gain,
which is small at peak gain.

Temporal coherence in an FEL oscillator is achieved by gain narrowing due to the FEL itself and
also through spectral filtering provided by the cavity mirrors if their reflectivity is wavelength-
dependent. The FEL-induced spectral gain narrowing occurs because the FEL gain is frequency
dependent; alternatively, it can be understood as the slow increase in the coherence length from 1
due to many passes through the undulator. Hence, when the mirror reflectivity is independent of
wavelength, we expect that the FEL spectral bandwidth decreases with pass number n as

 ~  
1 1

√
 .                                                                 (6)

For short electron bunches, gain narrowing stops when ( / 1) becomes the transform limited
bandwidth 1/(4 ) associated with the root mean square (RMS) length of the electron bunch . For
longer electron bunches that have a current maximum in the centre, the non-uniform gain causes the
optical pulse profile to also narrow in length/duration, with (∆ )  ~ /√  . The spectral and
temporal narrowing will stop when the pulse is determined by Fourier transform-limited, i.e., at the pass
number  ∼ FT determined by

(∆ ) ~
4

 ,                                                             (7)

from which we determine that the steady state is reached after approximately FT ∼ 4 / 1 passes,
and that the limiting bandwidth is, as seen in Ref. [2]

~
4

 .                                                                     (8)

This limiting mode is known as the dominant supermode, see Ref. [3].

In what follows we will show how the longitudinal supermodes arise from the dynamic interplay
between amplification, gain narrowing, FEL lethargy, and spectral filtering from the mirrors. Hence, we
will further extend the physics above to include the possibility that the spectral narrowing comes about
not only through slippage, but also because the mirrors have a limited bandpass.

3 Longitudinal supermodes of the FEL oscillator
In this section we use the simple low-gain model developed by Elleaume [4] to more fully investigate
the supermode longitudinal dynamics. This model divides the evolution during a single round trip into
its various components: gain that depends on the current and the propagation/slippage in the undulator,
reflection by the mirrors, and propagation in the cavity. Assuming that all of these effects result in small
perturbations to the radiation (as is true in the low-gain regime), then we can approximate each as acting
individually and in succession on the electric field ( ). We discuss these longitudinal effects in turn,
and then combine them into a single equation describing the linear dynamics of a low-gain oscillator.
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We assume that the FEL gain transforms the field via the amplification operator → + [ ].
To develop a simple model for, we recall that FEL gain depends linearly on the current and that the field
interacts with the electron beam within one slippage length 1. In terms of the light-cone coordinate

≡ − , this means that the amplification of ( ) depends on the interaction between the current and
field amplitude for points  satisfying ≤ ≤ + 1 (see, for example, [5]). We will use a very
simple description of this process in which we model the gain operation [ ] as increasing the field by
an amount depending on the e-beam current and E-field amplitude at the point one-half the slippage
distance 1/2 ahead. Hence, we approximate the amplitude gain from an electron beam with RMS
length as acting via

( ) → ( ) + [ ] ≈ ( ) +
2

e ( / ) / +
1
2

≈ 1 +
2

1 −
2

( )

          +
4

+
16

( )  ,                                      (9)

where for simplicity we assume that  »  and that the amplitude gain /2 is real2.

After the FEL interaction, the mirror reduces the field amplitude by the multiplicative factor √ ≡
√1 − ≈ 1 − /2, where  is the (assumed real) power loss. In addition, we include the possibility
that the reflectivity depends on frequency by modelling it as a Gaussian filter in  with RMS power
bandwidth . Since we model the mirror filtering as acting on the slowly-varying field envelope, it
is centred near = 0 and results in the transformation

( ) → d  e ⁄ ( ) ( ) ≈ (1 − 2⁄ ) d  e ⁄ e ( )

≈ 1 −
2

d  e ⁄ 1 −
4

( )    

= 1 −
2

( ) +
4

( ).                            (10)

Finally, we include the possibility that after one round trip through the cavity the arrival time of
the radiation pulse and the next electron bunch may differ by an amount ℓ/c; this timing difference,
called detuning in the FEL community, could be due to adjustments to the cavity length or timing jitter
of the electrons; we model it by

( ) → ( + ℓ) ≈ ( ) + ℓ
 

( ) .                                 (11)

A full pass through the oscillator is composed of the transformation Eqs. (9)–(11) due to the gain
including slippage, the mirror, and the cavity length detuning. Every transformation is written as a sum
of the initial field ( ) and a perturbation. If each of these perturbing effects is small, then the field at
pass ( + 1) can be written a sum of the various perturbations acting on the field as follows:

( ) ≈ ( ) +
−
2

( ) −
4

( )               

+ ℓ +
4

+
4

+
( )

16
 .                  (12)

2 The generalization to complex G and √  is straightforward but messy. For example, the change in power is |1 + /2|2 ≈
1 + ( + ∗)/2 if G is complex.
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Moving to the left-hand side and setting −  ≈ / leads to a linear partial differential
equation for the field ( ). This PDE can be solved by the separation of variables technique, which
leads to exponential dependence on n, while the temporal variation is described by Hermite–Gauss
functions. We index these linear modes by p and find that the general solution can be written as a sum
over the ‘supermodes’

( ) = exp
−
2

−
2 filter +

(1 + 2 )√
2 filter

× e filter ⁄ exp −
√ filter / filter  ,                (13)

where we have defined the net detuning length ≡ ℓ + 1/4 and the effective filtering bandwidth
filtervia

1

filter
≡

1

refl
+

16
 .                                                     (14)

The first line in Eq. (13) indicates that the exponential power growth is reduced from its nominal
value −  (gain minus loss) if the total detuning length ≠ 0; this condition shows one effect of
lethargy since maximum gain is achieved when the cavity length is reduced slightly from its nominal
synchronous length (i.e., = 0 implies that ℓ <  0). Significant FEL gain requires the total detuning to
be within the effective oscillator bandwidth such that filter ≪ 1. Additionally, setting = 0 shows
that the gain approaches the infinite beam limit only if the electron beam is also significantly longer than
the inverse bandwidth 1/ filter . For shorter electron bunches, only the fraction of current whose spectral
content lies within the effective bandpass set by either the mirror refl or the slippage 4/( √ )
contributes to the gain.

The RMS width of the pth mode is proportional to the geometric mean of the e-beam size and
1/ filter , with temporal width ∼ (1 +  2 ) / filter . When the electron bunch is long there are many
longitudinal modes with comparable growth rates, and the oscillator output is comprised of a
superposition of supermodes whose total bandwidth ∼ 1/  and temporal duration ∼ . As the
evolution proceeds through many passes, however, the lowest-order ( = 0) Gaussian mode with largest
gain will eventually become dominant. If the mirror is essentially wavelength independent, refl  ≫
 1/ , our discussion in the beginning of this chapter applies and the output bandwidth will approach
the limiting value Eq. (8), albeit slowly.

On the other hand, we will see that the crystal mirrors that enable FEL oscillators in the X-ray
spectral region have refl ≪  1/  (typically ≲  3 × 10  while / ∼ 10   to 10 ). In this
case, filter →  refl which simplifies some of the preceding discussion. For example, the lowest-order
(Gaussian) supermode simplifies to

( ) = exp − −
4ℓ refl −

√
refl

e refl ⁄ e /  ,             (15)

where the mean square temporal width ≡ √ refl⁄ . Hence, in this case the gain is reduced
from its nominal value if either the cavity length shift ℓ or the electron beam width  is smaller than
the inverse bandwidth of the mirror / refl . The steady state temporal width is given by ∝ / refl

with final bandwidth ∝ refl/  , and it now requires ∼  2 refl / ≪ 4 /( ) passes to
reach this steady state.

In addition to modifying the supermode behaviour, the additional spectral filtering provided by
the mirrors also completely suppresses the sideband/synchrotron instability, eliminating the unstable
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and chaotic ‘spiking mode’ of operation observed at lower wavelengths, example [6, 7]. This is because
the sideband instability amplifies frequency content near that associated with the synchrotron period,
i.e., with frequencies at = 1 ± , where

~ = √ = √  ,                                            (16)

where  is the normalized field strength. At saturation  ~ 1, so that the characteristic frequency of the
sideband/‘spiking’ mode is

~ ≫ refl ,                                                             (17)

and the narrow bandwidth of the XFELO crystal mirrors effectively filters out the sideband instability.

4 Transverse physics of the optical cavity
When the gain is small, the transverse mode is typically well described by the vacuum resonator modes
of the cavity. We will briefly describe some of the transverse cavity physics in the limit of Gaussian
optics, which assumes that angles from the optical axis are small (paraxial) and that optical elements
can be treated as producing linear transformations to the field. The linear transformations propagate the
radiation brightness/Wigner function along rays, which implies that we can analyse the cavity modes
using the same matrix formulation for particle beams. Under these limiting circumstances, the
transformations act on the (pseudo)-distribution of rays in the position–angle phase space ( , ), and
the wave behaviour can be described by referencing only the propagation of rays3.

In the laser community the matrix approach is referred to as the ABCD-matrix method, see
Ref. [8], and typically these matrix elements are used to derive the stable Rayleigh range and wavefront
curvature for Hermite–Gaussian cavity modes. The lowest-order mode is analogous to a Gaussian
particle beam with emittance /4 , while its Rayleigh length at the waist = /( /4 ) = ( /4 )
is equivalent to the Courant–Snyder beta function from particle optics.

In order to understand the transverse X-ray profile, we first consider the simple two-mirror
resonator. We model this optical cavity as containing one ideal mirror of focal length , such that the
round-trip distance in the cavity is . We restrict our discussion to the two-dimensional phase space
( , ), and using the fact that the matrices associated with a drift length ℓ and a focusing mirror are,
respectively,

L(ℓ) = 1 ℓ
0 1  ,               F( ) = 1 0

−1/ 1  .                                        (18)

Stable resonator modes exist when the RMS size, divergence, and correlation are periodic over one
round trip through the cavity. These mode sizes can be determined from the matrix map that starts and
ends in the middle of the undulator; for the two-mirror resonator this is given by M2res =
 L( /2)F( )L( /2). The matrix M2res maps ( , ) from and back to the centre of the cavity such that

out
= M res

in
 ,                                                            (19)

3 Non-ideal elements, apertures, and nonlinear transformations introduce interference effects that may not be well described
by the methods presented here.
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while the second-order moment matrix Σ  at the output plane is related to the initial Σ  via

Σ ≡
〈 〉 〈 〉
〈 〉 〈 〉 out

                    

  = M res
〈 〉 〈 〉
〈 〉 〈 〉 in

M res                                      

= M resΣ M res  .                                                     (20)

Equating Σ  and Σ  implies that at the cavity middle the correlation vanishes (the radiation has
a waist), and that the cavity round trip length  and mirror focal length  are related to the trapped
mode Rayleigh length through the following relation:

=
4

+
1 〈 〉in

〈 〉in
=

4
+

c
 .                                                (21)

Note that stable operation requires > /4, which in terms of the mirror’s radius of curvature is 2 =
> /2. This inequality can be violated if there is sufficient FEL amplification, but for low-gain

devices it provides a good starting point for optical cavity design.
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LLRF Controls and Feedback:
Free-Electron Lasers and Energy Recovery Linacs

S. Pfeiffer
DESY, Hamburg, Germany

Abstract
The low-level radio frequency (LLRF) system generates the drive sent to the
high-power components. In this paper, we give the basics of LLRF controls and
feedback. This includes a brief introduction to the two concepts for this school,
i.e., the energy recovery linac and the free-electron laser, and their main differ-
ences, from a LLRF perspective. The physical behaviour of the subcomponents
(detector, amplifier, cavity, etc.) within an LLRF feedback loop is outlined, to-
gether with its system modelling in the time and frequency domains. System
identification using special input–output signals is introduced. Furthermore,
stability checks for the closed-loop operation and the feedback controller de-
sign in the time and frequency domains are briefly discussed. This paper con-
cludes with some examples for system identification, its feedback design, and
the achieved stability at different facilities, showing the need for LLRF control
and feedback operation.

Keywords
Low-level radio frequency; LLRF; feedback; system identification; controller
design.

1 Introduction
Low-level RF (LLRF) field control is used to stabilize the accelerating field inside normal- and super-
conducting RF cavities, mainly using digital feedback loops. Optimal feedback regulation is part of
this contribution and discussed in this paper. First, a brief introduction to energy recovery linacs and
free-electron lasers is given. Here, the main focus is on the differences between both concepts. At the
end of this section, a short introduction to the need for LLRF controls is discussed. The mathematical
modelling of certain components within the feedback loop (Section 2) is often necessary to optimize
the feedback controller. An alternative to this mathematical modelling using differential equations is
system identification using special excitation signals and relating them to the corresponding output signal
(Section 3). Based on such a system model, the optimal feedback controller can be designed in the time
or frequency domain, as shown in Section 4. Examples for the system identification and the feedback
controller design are discussed in Section 5, justifying the need of LLRF controls and feedback.

1.1 Energy recovery linac
An energy recovery linac concept is given in the CAS 2016 contribution from Dr. A. Jankowiak (HZB)
Concept of ERL. At bERLinPro, the beam current will be 100 mA and the accelerating structures are
superconducting RF cavities operated in continuous wave mode at an RF frequency of 1.3 GHz [1–3].
Another energy recovery linac, the compact energy recovery linac at KEK, is described in the follow-
ing [4]. The compact energy recovery linac is an ongoing project at KEK, intended to demonstrate excel-
lent energy recovery linac performance towards a future light source. The compact energy recovery linac
is illustrated in Fig. 1. The injector consists of a photocathode d.c. gun, a normal-conducting buncher
cavity with a loaded quality factor (QL) of 1.1 × 105 and three two-cell superconducting cavities oper-
ated with QL = 5 × 105. The recirculation loop hosts several magnets (dipoles and quadrupoles), the

Proceedings of the CAS–CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs, Hamburg, Germany, 31 May–10
June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol. 1/2018, CERN-2018-001-SP (CERN, Geneva, 2018)

2519-8041 – ©c the Author/s, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2018-001.501
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Fig. 1: Compact energy recovery linac ©Rey.Hori/KEK [6]: the injector part (located in the lower left) and the
recirculation loop are shown.

Table 1: Example RF and beam parameters for energy recovery linac and free-electron laser

Compact energy recovery linac bERLinPro FLASH
Desired RF stability (r.m.s.) ∆A/A ≤ 0.1% ∆A/A ≤ 0.05% ∆A/A ≤ 0.01%

∆ϕ ≤ 0.1◦ ∆ϕ ≤ 0.02◦–0.1◦ ∆ϕ ≤ 0.01◦

Loaded quality factor QL 1.1× 105–1× 107 1× 105–5× 107 1.2× 105–3× 106

Nominal beam energy 35 MeV 50 MeV max. 1.25 GeV
Beam current ∼100 mA ∼100 mA ∼1 mA
Mode of operation Continuous wave Continuous wave Pulsed

beam diagnostics (e.g., beam position monitors), and two nine-cell superconducting cavities operated
with QL = 1 × 107. The RF frequency for all cavities is 1.3 GHz. For the compact energy recovery
linac, a RF field stability of 0.1% in amplitude and 0.1◦ in phase is required [5]. The compact energy
recovery linac is operated in continuous wave mode with a beam current of up to 100 mA; normal- and
superconducting RF structures, powered with klystrons and solid state amplifiers, are used to accelerate
the beam to its target energy.

Energy recovery linacs are widely used in research facilities. The beam current is of the order
of 100 mA; it is foreseen to increase to the ampere regime. Normal- and superconducting RF cavities
are used to reach the final target energy. The cavities are driven by klystrons, solid state amplifiers,
or inductive output tubes. The key parameters of this compact energy recovery linac at KEK and the
bERLinPro at HZB are given in Table 1.
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Fig. 2: FLASH: beam direction is from left to right. Both beamlines are shown, the old FLASH1 beamline and the
new FLASH2 beamline [7].

Fig. 3: Location of electron bunch for different phase settings [8]

1.2 Free-electron laser
The free-electron laser (FLASH) is the world’s first soft X-ray free-electron laser (XFEL). It is a linear
accelerator with a total length of about 315 m [7]. Electron bunches are generated using an external laser
and a photocathode inside the normal-conducting RF-gun (QL ≈ 1.2×105). They are further accelerated
by 56 superconducting RF cavities operated at 1.3 GHz with QL = 3× 106 in seven cryomodules. Each
cryomodule is depicted in Fig. 2 as a blue box hosting eight superconducting RF cavities. Furthermore,
four superconducting RF cavities (red box with one cryomodule) operated at 3.9 GHz, i.e., the third
harmonic of 1.3 GHz, are used for phase space linearization. The cavities at FLASH are all driven by
klystrons. Up to a maximum of 16 cavities are driven by one klystron, for cost efficiency. FLASH is
operated in short-pulse mode with a repetition rate of 10 Hz and 800 µs maximum beam time. Each RF
pulse is active for about 1.4 ms (including fill time and beam time), corresponding to a duty factor of
about 1%. During the beam time a maximum of 800 electron bunches at 1 MHz repetition rate can be
used for experiments. The maximum final bunch energy is 1.25 GeV, corresponding to a fundamental
laser light wavelength of 4.12 nm using fixed gap undulators at the FLASH1 beamline. The maximum
bunch charge of each electron bunch is of the order of 1 nC; therefore, the maximum beam current is of
the order of 1 mA (1 nC bunch at 1 MHz repetition rate), instead of 100 mA for an energy recovery linac,
see Table 1.

1.3 LLRF in general—control goal
The LLRF system is used to supply the accelerating cavities with high-power RF signals. Furthermore,
it is used to modify or adjust the accelerating field in amplitude and phase (A/P). The desired A/P
value depends on the mode of operation, i.e., acceleration, deceleration, or an imposed energy chirp,
see Fig. 3. The typical RF stability of an accelerating section is of the order of ∆A/A ≤ 0.1%–0.01%
and ∆ϕ ≤ 0.1◦–0.01◦.

Consider, e.g., a free-electron laser with a bunch compressor to achieve high peak currents. Its
injector laser stability, cavity amplitude, phase stability are directly related to the timing jitter after a
bunch compressor defining the achievable free-electron laser performance, see contribution from Dr. M.
Divall (PSI) Lasers in FEL Facilities. This requires a precise timing and synchronization of the master
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Cavity

Sensor

Controller

Actuator

Master Oscillator
Amplifier

Fig. 4: The LLRF control loop with master oscillator, actuator, amplifier, cavity, and sensor. The controller closes
the feedback loop.

clock and all attached subdevices, such as the accelerating modules. For now, we will assume that the
timing and synchronization are perfect.

We will start with the description of the closed-loop system to be controlled. An example of a
LLRF feedback control loop is depicted in Fig. 4. The master oscillator provides a constant sinusoidal
signal with the desired frequency, e.g., 1.3 GHz. This master oscillator signal is amplified from low
power (a few volts) to high power to drive the cavity. A sensor, e.g., a pick-up or magnetic loop, is placed
inside the cavity to detect a fraction of the RF field. This information is used by a controller to control
the amplitude and phase inside the cavity by modulating the amplitude and phase of the master oscillator
signal. This closes the feedback loop. The LLRF regulates on a low power signal, while only the part
after the amplifier and in the cavity are operated at high power (e.g., in the megavolt regime).

In the following we will discuss the individual blocks separately before modelling the system
behaviour to optimize the controller.

2 System description
In this section, we will focus on the individual blocks within a feedback loop for the LLRF system. A
brief overview is given in Fig. 4.

2.1 RF detection
The principles of RF field detection are based on mixing a reference signal (LO) with the RF signal to
be detected. Here, the goal is to measure the amplitude and phase, or the in-phase (I) and quadrature (Q)
part of an RF signal with respect to a reference signal. The relation between A/P and I/Q is:

I = A · cosϕ A =
√
I2 +Q2

Q = A · sinϕ ϕ = atan2(Q, I) ,

with

atan2(Q, I) =





arctan
(
Q
I

)
if I > 0 ,

arctan
(
Q
I

)
+ π if I < 0 and Q ≥ 0 ,

arctan
(
Q
I

)
− π if I < 0 and Q < 0 ,

+π
2 if I = 0 and Q > 0 ,

−π
2 if I = 0 and Q < 0 ,

undefined if I = 0 and Q = 0 .
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Fig. 5: RF down-sampling directly to baseband (BB) or via an intermediate frequency (IF)

The high-frequency signal is down-converted to the baseband. Different amplitude and phase conditions
between the RF and the LO are responsible for the corresponding output signal (A/P or I/Q). Only a
short overview of different detection schemes is given; detailed information can be found in Ref. [9].

The briefly discussed detection schemes are:

1. direct amplitude and phase detection:

– no down-conversion;
– analogue or digital (up to 800 MHz analogue-to-digital converters);

2. baseband sampling (analogue I/Q detector);
3. digital I/Q sampling;
4. intermediate-frequency sampling (non-I/Q sampling).

Scheme (1) is a direct sampling scheme, while schemes (2)–(4) are based on mixing a reference signal
(LO) with the RF signal, meaning that the RF signal is down-converted into baseband directly or using
an intermediate frequency, see Fig. 5.

2.1.1 Analogue direct amplitude and phase detection
The analogue amplitude and phase detection are achieved by splitting the RF signal into two parts, see
Fig. 6. The first part is used to detect the amplitude using a diode. The second part is mixed with a
frequency- and phase-stable LO signal (the same frequency as the expected RF signal), leading, for
small angle variations, to a signal proportional to the phase difference between the RF and LO signal.
The mathematical description for the phase signal is given by:
Input signals:

VRF(t) = ARF sin(ωt+ ϕ0) ,

VLO(t) = ALO cos(ωt) ,

Output signal:

Vmixer = ARF sin(ωt+ ϕ0) ·ALO cos(ωt) =
ARFALO

2
(sin(ϕ0) + sin(2ωt+ ϕ0)) ,

Output signal after low-pass filtering:

VLPF =
ARFALO

2
sin(ϕ0) ≈ ARFALO

2
ϕ0 (for small ϕ0) .
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Fig. 6: Basic principle of analogue direct amplitude and phase detection

Fig. 7: Analogue I/Q detection [9]

2.1.2 Digital direct amplitude and phase detection
Nowadays, high-speed analogue-to-digital converters are available with sampling rates of more than
500 megasamples per second and analogue input bandwidth of up to 1.5 GHz. These analogue-to-
digital converters enable the RF signal to be sampled directly without any RF converter or intermediate-
frequency scheme, with a signal-to-noise ratio of more than 50 dB. The advantage is the reduction of the
number of input stages for pre-configuration (down-conversion, filter, amplifier, etc.), reducing possible
errors and noise sources and increasing reliability. The disadvantage is the increasing impact of the clock
jitter on the signal-to-noise ratio for higher input frequencies. This effect is linear and can be reduced by
the process gain due to digital band-limitation and averaging as a function of the square root. If digit-
al filtering is used to filter out noise components outside the bandwidth, then the process gain must be
included in the equation to account for the resulting increase in the signal-to-noise ratio using an N -bit
analogue-to-digital converter, as shown in Eq. (1):

signal-to-noise ratio = 6.02×N + 1.76 dB + 10 log10

fs

2× fBW
. (1)

See, in addition, Ref. [10] for the noise characteristics and measurements performed at FLASH.

2.1.3 Baseband sampling (analogue I/Q detector)
This concept is an analogue I/Q detector, in which a direct conversion from RF to baseband is performed.
The RF signal is multiplied by the LO signal resulting in analogue I/Q signals. Here, the LO signal is
split by a hybrid and one signal is given a phase difference of 90◦, see Fig. 7. Two analogue-to-digital
converters are required for the digitization of an I/Q pair; hence, it requires more space and leads to
higher cost than using only one analogue-to-digital converter, and the reliability is reduced. The main
problem of this scheme is the phase-dependent amplitude detection due to I/Q imbalances and offsets,
see Fig. 8.
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Fig. 8: Constellation diagram with different errors in I and Q. (a) The output signals of the mixers are not exactly
I and Q, i.e., the phase difference is not 90◦. (b) Gain mismatch between I and Q mixer branch. (c) I/Q offset at
the mixer outputs [9].

Fig. 9: Left-hand side: digital I/Q sampling scheme. Right-hand side: corresponding output sequence in time and
complex domains [9].

2.1.4 Digital I/Q sampling
This detection scheme is similar to baseband sampling, but here only one analogue-to-digital converter
and a switched LO are required, see Fig. 9. The LO signal after each sampling is switched in phase by
90◦ for a fixed time interval, leading to an output signal that represents a series of I,Q,−I,−Q, . . . and
so on. If the signal to be detected is of low bandwidth, or if it can be assumed that the signal does not
change significantly between two samples, the field vector can be computed by two consecutive samples
(I/Q value). To do this, the signal needs to be shifted by n × 90◦ (n = 0, 1, 2, 3). The problem for
this scheme is that the Nyquist frequency is fs/4. Furthermore, owing to the switching with rectangular
output signal, the entire signal chain needs a relatively high bandwidth.

2.1.5 Intermediate-frequency sampling (non-I/Q sampling)
In contrast with the conversion directly from RF to baseband, the RF can be first mixed down to an
intermediate frequency and sampled. The detection scheme is depicted in Fig. 10. Based on the sampled
analogue-to-digital converter signals, the actual I/Q detection is achieved by multiplication of the input
signal by a sine and a cosine function on a digital level. The advantage of this scheme is that, e.g., phase
and gain imbalance of the two multipliers of an analogue IQ-detector do not exist. For a series of samples,
the series of I[i] and Q[i] are calculated by:
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Fig. 10: Intermediate-frequency (IF) sampling principle with LO and clock (CLK) generation synchronized to the
master oscillator (MO) [9]

Fig. 11: Intermediate-frequency sampling: left-hand side, with sliding window detection; right-hand side, with step
window detection [9]

(1) sliding window detection (left-hand plot in Fig. 11):

I(i) =
2

M

M−1∑

k=0

s(k + i) cos((k + i)∆ϕ) ,

Q(i) =
2

M

M−1∑

k=0

s(k + i) sin((k + i)∆ϕ) ;

(2) step window detection (right plot in Fig. 11):

I(i) =
2

M

M−1∑

k=0

s(k + iM) cos((k + iM)∆ϕ) ,

Q(i) =
2

M

M−1∑

k=0

s(k + iM) sin((k + iM)∆ϕ) .

For further details, see, e.g., Ref. [9].

2.2 RF manipulation using a vector modulator
A vector modulator is often used to up-convert a baseband signal in I/Q coordinates back to an RF signal.
The basic operation of a vector modulator is shown in Fig. 12. The signal from the master oscillator
yin(t) is split into two parts, i.e., a 0◦ and a 90◦ part. The baseband I/Q values are multiplied with the
corresponding sine and cosine parts. The sum of both signals leads to the RF output signal, i.e., the signal
to the klystron, which is modulated by the I/Q components. In this way, the amplitude and phase of the
RF output signal can be modulated by an I/Q pair with respect to the RF input signal. The bandwidth of
a vector modulator is usually tens of megahertz [11].
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Fig. 12: Principle of vector modulator

Fig. 13: Desired and real amplifier characteristics [12]

Fig. 14: Result of iSim simulation without klystron linearization (blue) and with linearization (purple). Left-
hand side: klystron linearization algorithm output amplitude [arbitrary units] versus input amplitude [arbitrary
units]. Right-hand side: klystron linearization algorithm output phase [degrees] versus input amplitude [arbitrary
units] [12].

2.3 Amplifier
Each amplifier, e.g., a klystron, solid state amplifier, or inductive output tube, is itself a non-linear device.
The non-linearity is caused by, e.g., saturation at maximum output power. Furthermore, non-linearities
in terms of changes of the output amplitude and phase are mostly present if only the input amplitude is
changed, see, for example, Fig. 13. For most applications, such as superconducting RF cavity control, it
is sufficient to linearize the amplifier input–output (I/O) behaviour using a static I/O characteristic. An
example is shown in Fig. 14, where a simulation of a real and corrected klystron characteristic is shown.
The bandwidth of a klystron is of the order of 10 MHz [11]. Refer to, e.g., Ref. [12] for further details of
the klystron linearization.

2.4 Cavity
This section gives a brief overview of the mathematical modelling for a TESLA-type RF cavity; detailed
information can be found in Ref. [11].

9
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Fig. 15: TESLA-type superconducting RF cavity [13]

Table 2: Parameters for superconducting RF Tesla-
type cavity

Operating frequency 1.3 GHz
Length 1.036 m
Aperture diameter 70 mm
Cell to cell coupling ≈ 2%
Quality factor Q0 ≈ 1010

r/Q := rsh/Q0 1036 Ω

2.4.1 Introduction
A typical nine-cell TESLA-type superconducting RF cavity is shown in Fig. 15. The cavity has a length
of about 1 m and is operated with a driving frequency of 1.3 GHz; its typical parameters are shown in
Table 2.

2.4.2 Cavity modelling by RCL circuit
The TESLA-type superconducting RF cavity consists of nine electrically coupled cells. An equivalent
RCL circuit model with nine magnetically coupled cells is shown in Fig. 16. Such a structure with nine
coupled cells has nine normal modes, the so-called passband modes. The fundamental operating mode is
called the π-mode, meaning that the RF fields in adjacent cells are at a phase difference of π. The closest
mode to the operating mode is the 8π/9-mode, with a frequency separation of about 800 kHz. A plot of
all the modes is shown in Fig. 17. Every passband mode can be modelled by an RCL circuit, which is in
parallel with the others. To simplify the modelling, let’s first consider only the π-mode and neglect all the
other modes. Then the nine-cell structure simplifies to a single cell, displayed in Fig. 18, with generator
driving term Ĩg, beam-induced driving term Ib, and an external load Zext. Here, the transmission line,
circulator, and coupler are already part of the model and can be neglected. The total current going into
the RCL circuit must be the same as the current inside the RCL circuit, i.e.,

IC + IRL
+ IL = I = Ĩg + Ib (IRL

= IR + IZext , see Eq. (5)) , (2)

using Kirchhoff’s rule. Inserting the well-known relationships

dIL
dt

= İL =
V

L
, İRL

=
V̇

RL
, and İC = CV̈ (3)

leads to the differential equation for a driven RCL circuit:

V̈ (t) +
1

RLC
V̇ (t) +

1

LC
V (t) =

1

C
İ(t) . (4)

Here, the external load Zext and the cavity resistor R are combined to give the so-called loaded shunt
impedance

RL =

(
1

R
+

1

Zext

)−1

=
R

1 + β
, with coupling factor β =

R

Zext
. (5)

The loaded quality factor is defined similarly to the loaded shunt impedance as

QL =

(
1

Q0
+

1

Qext

)−1

=
Q0

1 + β

(
β =

Q0

Qext

)
. (6)
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Fig. 16: Equivalent RCL circuit for nine-cell cavity modelled with nine magnetically coupled loops [11]

Fig. 17: Passband modes of TESLA-type nine-cell cavity [11]

Fig. 18: Simplified equivalent RCL circuit for single-cell cavity with external load and, as driving source, generator
and beam [11].

The inductance L and capacitance C can be described by the measurable cavity quantities QL and ω0

with

1

RLC
=
ω0

QL
and

1

LC
= ω2

0 . (7)

Using these relations in Eq. (4) gives the well-known cavity differential equation,

V̈ (t) +
ω0

QL
V̇ (t) + ω2

0V (t) =
ω0RL

QL
İ(t) , (8)

with harmonic RF driving term I(t) = Î0 sin(ωt), e.g., with driving frequency ω = 2π × 1.3 GHz.

The solution of the cavity differential equation (Eq. (8)) for a driving term I(t) = Î0 sin(ωt) will
be proportional to cos(ωt). Its stationary solution, i.e., the particular solution of the cavity differential
equation, is given by

V (t) = V̂ (t) · sin(ωt+ ψ) (9)

with

V̂ =
RLÎ0√

1 + tan2(ψ)
≈ RLÎ0√

1 +
(
2QL

∆ω
ω

)2 , (10)
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Fig. 19: Resonance curves for amplitude and phase [11]

and ψ as angle between the driving current and cavity voltage; ψ(t) = ∠(I(t), V (t)). Furthermore, it
is shown in Ref. [11] that the tuning angle can be approximated if the generator frequency ω is very
close to the cavity resonance frequency ω0 (ω ≈ ω0) by tanψ ≈ 2QL

∆ω
ω , with ∆ω = ω0 − ω � ω.

The frequency dependence of the amplitude is known as the Lorentz curve, shown in Fig. 19. The half
bandwidth ω1/2 is defined as the frequency offset where the voltage drops to 1/

√
2 (−3 dB) from its

maximum. The corresponding phase at the −3 dB point will have an offset of 45◦
(∣∣ψ(ω1/2)

∣∣ = π/4
)
.

The half bandwidth of a cavity is inversely proportional to the loaded quality factor QL and is given by:

ω1/2 =
ω0

2QL
=

1

τ
(� ω), with time constant τ .

The definition of half bandwidth can be used to rewrite Eq. (10) as:

V̈ (t) + 2ω1/2V̇ (t) + ω2
0V (t) = ω1/2RLİ(t) . (11)

2.4.3 Baseband model
The high-frequency part from the generator, i.e., sin(ωt) or, more generally, ejωt, is not of interest in the
case of a down-conversion regulation scheme. For this reason, the high-frequency part can be separated
from the slow variations using

V =
→
V (t)ejωt ;

→
V (t) = VI + jVQ ,

I =
→
I (t)ejωt ;

→
I (t) = II + jIQ .

(12)

Consider the phasor diagram in Fig. 20. Both the driving current
→
I (t) and the cavity voltage

→
V (t)

have the same driving frequency component ω. The cavity voltage and phase with respect to the driving
current depend on the tuning angle ψ(t), see Eq. (10). Inserting Eq. (12) in Eq. (11) and neglecting the
second-order time derivatives of V (t) leads to the first-order differential cavity equation for the envelope
(cavity baseband equation) in the complex domain, as

→̇
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I . (13)

Separating its real and imaginary parts gives the two first-order equations:

V̇I + ω1/2VI + ∆ωVQ = RLω1/2II ,

V̇Q + ω1/2VQ −∆ωVI = RLω1/2IQ .
(14)

The latter is well known in accelerator physics and can be rewritten in a so-called state space form,

d

dt

[
VI(t)
VQ(t)

]
=

[−ω1/2 −∆ω

∆ω −ω1/2

] [
VI(t)
VQ(t)

]
+RL · ω1/2

[
II(t)
IQ(t)

]
, (15)
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Fig. 20: Phasor diagram of driving current and cavity voltage
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Fig. 21: Transient step responses of a cavity for different normalized detuning values: left-hand side, shown in
amplitude and phase; right-hand side, shown in complex plane.

in which V is the complex cavity voltage, I the complex driving current, ω1/2 the half bandwidth,
∆ω = ω0 − ω the detuning and RL the shunt impedance of the cavity. This cavity equation has two
inputs (the driving current in I and Q) and two outputs (the cavity voltage in I and Q). We will call this
a multi-input, multi-output (MIMO) system.

2.4.4 Step response
Drawing the step response of Eq. (15) for different normalized detuning values ∆ω/ω1/2 for
an input of which the real part is normalized to one and the imaginary part is zero, i.e.,
RL · [II(t) IQ(t)]T = [1 0]T, we have the graphs shown in Fig. 21. Here, the left panel of Fig. 21
shows the amplitude and phase of the resulting cavity voltage. The right panel shows the step response as
a time-dependent field vector in the complex plane with the steady-state value located on the resonance
circle (black dashed line), corresponding to the stationary solution in Eq. (8).

2.4.5 Additional passband modes
The latter cavity equation is given around the baseband frequency, meaning that the operating π-mode is
located at frequency zero; Eq. (15) holds only for this mode. Eight other passband modes (see Fig. 17)
are present for a nine-cell cavity. Thus, all the differential equations for each mode have to be added to
get the overall cavity model; remember that all cavity mode models are in parallel. The field probe signal
is measured at the end cell of the cavity; thus, each even mode, e.g., the 8/9π-mode, is sign-inverted
such that each fundamental mode is represented in the complex domain—compare this with Eq. (13) for
the π-mode—as

→̇
V +

(
(ω1/2)n

9
π − j(∆ω)n

9
π

) →
V= (−1)n+1Kn

9
π(ω1/2)n

9
π ·RL

→
I , n = 1, . . . , 9 .
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The extended state space form, see Eq. (15), is given as

d

dt

[
VI(t)
VQ(t)

]
=

[
−(ω1/2)n

9
π −∆ωn

9
π

∆ωn
9
π −(ω1/2)n

9
π

] [
VI(t)
VQ(t)

]
+ (−1)n+1Kn

9
π(ω1/2)n

9
π ·RL

[
II(t)
IQ(t)

]
. (16)

This equation is used to compute the transfer function matrix of the π-mode (n = 9) with Kπ = 1.
The variation in the coupling and loaded quality factor for the remaining modes (n 6= 9) is described in
Ref. [14] and requires an adjustment of static gain, bandwidth, and detuning by

Kn
9
π
n6=9
= 2 sin2

(nπ
18

)
, (ω1/2)n

9
π
n6=9
= 2 sin2

(nπ
18

) πfn
9
π

QL
and ∆ωn

9
π = 2π

(
fn

9
π − fπ

)
,

(17)

where QL is the loaded quality factor and fπ is the resonance frequency of the π-mode.

2.5 Summary
In this section, we have seen the different components acting in an LLRF feedback loop. For a feed-
back controller design, one can follow and identify the mathematical description of each component
separately. However, setting up an optimal feedback regulation of each LLRF system, e.g., 27 LLRF
feedback loops at the European XFEL, requires the mathematical description and parameter estimation
of a huge amount of components. To avoid this, a system modelling for all components within one step
can be performed, as described in the next section.

3 System modelling
The last section gave an overview of the main components within an LLRF feedback loop, such as the
vector modulator, klystron, and cavity. However, additional components are required, e.g., to transport
the signal using a cable or waveguide. Mathematical modelling using, e.g., differential equations of a
complete signal chain is a huge amount of work and very complex. Furthermore, consider the European
XFEL project with its 27 RF stations. Each RF station will differ in its mechanical design, e.g., waveguide
distribution, but also in the mathematical description of the individual components, e.g., klystron. Here,
separate modelling for 27 feedback systems is required, but very time consuming. Furthermore, ageing
and, e.g., temperature changes may require this modelling to optimize the feedback controller. Another
way to overcome this mathematical description of each feedback loop is system modelling using a special
input signal, discussed next. Such system modelling can be done in the time or frequency domain. We
will see in this section why the frequency domain is the preferable approach. Furthermore, we will
assume that only linear time-invariant systems are considered. These are linear systems because they
are describable by linear differential equations. Time-invariance of a system implies that for any time
delay d > 0 the response to the delayed input u(t− d) is a time-delayed output y(t− d). Moreover, the
coefficients of the transfer function are time-invariant and their values are constant.

3.0.1 Example RCL circuit
The electrical circuit in this example (Fig. 22) contains an inductance L, a resistance R, and a capaci-
tance C. Applying Kirchhoff’s voltage law to the system, we obtain the equations:

L
di

dt
+Ri(t) + Vo(t) = Vi(t) ,

C
dVo

dt
= i(t) .
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L R

CVi(t) Vo(t)

i(t)

Fig. 22: Electrical RCL circuit

Eliminating the current i(t) between both equations yields

LC
d2Vo

dt2
+RC

dVo

dt
+ Vo(t) = Vi(t) ,

leading to

V̈o(t) +
R

L
V̇o(t) +

1

LC
Vo(t) =

1

LC
Vi(t) .

We can identify Vi(t) with the input signal u(t) and Vo(t) with the output signal y(t).

3.1 State space model
The previous example illustrates how dynamic systems can be modelled by a second-order linear ordin-
ary differential equation. It may be more convenient to rewrite the differential equation in a more compact
form, called a state space model, when dealing with systems that are described by higher-order differ-
ential equations. Each nth-order linear differential equation model can be transformed into a first-order
vector differential equation model. Let’s use the previous example and introduce a second variable as
Vm(t) = V̇o(t). Then we can write

V̈o(t) +
R

L
V̇o(t) +

1

LC
Vo(t) =

1

LC
Vi(t)

as

V̇o(t) = Vm(t) ,

V̇m(t) = −R
L
Vm(t)− 1

LC
Vo(t) +

1

LC
Vi(t) .

Defining a state vector

x(t) =

[
Vo(t)
Vm(t)

]
,

we can express this second-order ordinary differential equation in a more compact form as
[
V̇o(t)

V̇m(t)

]
=

[
0 1

− 1
LC −R

L

] [
Vo(t)
Vm(t)

]
+

[
0
1
LC

]
Vi(t) . (18)

Furthermore, the output is

Vo(t) =
[
1 0

] [Vo(t)
Vm(t)

]
. (19)

Equations (18) and (19) are an example of a state space model, which in general has the form

ẋ(t) = Ax(t) +Bu(t) , (20)

y(t) = Cx(t) +Du(t) , (21)

with input u(t), output y(t), state x(t), system matrix A, input matrix B, output matrix C, and
feedthrough matrix D.
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G(s)

g(t)

plant

U(s)

u(t)

input

Y (s)

y(t)

output

Fig. 23: System or plant g(t) with input u(t) and output y(t); with signal notation in frequency domain using
Laplace operator s.

3.2 System description in the time and frequency domains
3.2.1 Time domain
The system output y(t), see Fig. 23, can be computed by a convolution of the input signal u(t) with the
impulse response of the system g(t) as

y(t) = g(t) ∗ u(t) . (22)

Solving a convolution in the time domain and, by this, analysing the system behaviour is complicated,
making the system analysis very complex. Therefore, system analysis is typically done in the frequency
domain.

3.2.2 Frequency domain
The system output Y (s), see again Fig. 23, in the frequency domain is given as a multiplication of the
transformed input signal U(s) and the impulse response G(s):

Y (s) = G(s) · U(s) , (23)

with s := σ + jω, as operator in the frequency domain.

3.3 Transformation into the frequency domain
The transformation into the frequency domain using Fourier transformation is well known and given by

F{f(t)} = F (ω) =

∫ ∞

t=−∞
f(t) · e−jωtdt .

This transformation is defined for all times, even negative times, which are not needed for system model-
ling. The Laplace transform, often used by system engineers, is very similar to the Fourier transform. The
Fourier transform of a function is a complex function of a real variable (frequency), while the Laplace
transform of a function is a complex function of a complex variable.

3.3.1 Laplace transform
Laplace transforms are usually restricted to functions of t with t ≥ 0, with f(t) = 0,∀t < 0. A
consequence of this restriction is that the Laplace transform of a function is a holomorphic function
of the variable s := σ + jω. The Laplace transform from the time to the frequency domain is given as

L{f(t)} = F (s) =

∫ ∞

t=0
f(t) · e−stdt . (24)

The Laplace transform of a signal f(t) as defined in Eq. (24) exists if the integral converges. In practice,
the question of existence and the region of convergence are not usually issues of concern. The inverse
Laplace transform, mapping from the frequency to the time domain is defined as:

f(t) = L−1{F (s)} =
1

2πj
lim
T→∞

∫ α+jT

s=α−jT
F (s) · est ds .

We will not go into detail with the Laplace transform, since many properties and examples of using the
Laplace transform can be found in the literature, e.g., Ref. [15].
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3.3.1.1 Example cavity equation

The cavity equation introduced in Eq. (13) is given in the time domain as

→̇
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I .

Mapping this equation into the frequency domain using the Laplace transform is done by solving Eq. (24)
or by using the relations given in Table 3. Here, the cavity equation in the frequency domain is given as

s
→
V + (ω1/2 − j∆ω)

→
V = ω1/2RL

→
I ,

(s+ (ω1/2 − j∆ω))
→
V = ω1/2RL

→
I ,

where only the first derivative in time is transformed using No 5 from Table 3 and setting f(0) = 0.

Sorting the input (
→
I ) and output (

→
V ) of the system leads to the transfer function G(s), defined as the

ratio of the output to the input signal, as:

→
V (s) =

ω1/2RL

s+ (ω1/2 − j∆ω)
·
→
I (s)

G(s) =

→
V (s)
→
I (s)

=
ω1/2RL

s+ (ω1/2 − j∆ω)
.

This concept is shown in Fig. 23. If we consider the non-complex MIMO case from Eq. (14), with

V̇I + ω1/2VI + ∆ωVQ = RLω1/2II ,

V̇Q + ω1/2VQ −∆ωVI = RLω1/2IQ ,

and if we assume that ∆ω = 0, i.e., there is no coupling between the I and Q channels, we get

V̇I + ω1/2VI = RLω1/2II ,

V̇Q + ω1/2VQ = RLω1/2IQ ,

leading to two decoupled first-order single-input, single-output (SISO) systems as

GII(s) = GQQ(s) =
Vx
Ix

=
RLω1/2

s+ ω1/2
,

with x as ∗II or ∗QQ. Based on this transformation, we can directly find several properties of a first-order
transfer function given as

G(s) =
b0

s+ a0
,

such as the static gain, given as KP = b0/a0 for s → 0, the time constant, as τ = 1/a0, and the step
response in time, as y(t) = KP(1− e−t/τ ); these properties are displayed in Fig. 24.

3.3.1.2 Time delay

A positive time delay within the system shifts the output signal by the delay. Such a time-delayed system
can be described by a system free of time delay G(s) and the delay. The overall system including the
time delay Td is hereby given as

Gd(s) = G(s) · e−Td·s .
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Table 3: Examples of Laplace transforms

No Time domain f(t) Frequency domain F (s)

1 Unit impulse δ(t) 1
2 Unit step σ(t) 1

s
3 t 1

s2

4 tn n!
sn+1

5 df
dt = ḟ(t) sF (s)− f(0)

6 f̈(t) s2F (s)− sf(0)− f ′
(0)

7 eat 1
s−a ; s > a

8 tneat n!
(s−a)n+1 ; s > a

9 sin at a
s2+a2

; s > 0

10 cos at s
s2+a2

; s > 0

· · · · · · · · ·

Fig. 24: Step response of first-order system: time delay, Td = 2 ms

3.3.1.3 Bode diagram

The information about the frequency response can be displayed graphically. The most widely used graph-
ical representation of a frequency response is the Bode diagram. The magnitude and phase are plotted
versus frequency in two separate plots, where a log scale is used for magnitude and frequency and a
linear scale for the phase. The magnitude and phase are defined as

|G(s)|dB = 20 log10(|G(s = jω)|) and ∠(G(s)) = arg(G(s = jω)) .

Consider a system given with a measurable input u(t) and output y(t). Apply to the input a sinusoidal
signal with amplitude set as 1 and frequency fi as u(t) = sin(2πfit). This leads to an output signal
y(t) = K·sin(2πfit+ϕ), where the amplitude and phase of the sinusoidal frequency may change. The in-
put/output gain and phase relation between input and output signal for all frequencies fi results in a Bode
diagram. An example of a Bode diagram is given in Fig. 25. This Bode diagram shows the delay-free sys-
tem G(s), the pure time delay exp(−Tds), and its combination as serial connection, G(s) · exp(−Tds).
Here, it can be seen that the log scale is useful because the transfer function is composed of pole and zero
factors that can be added graphically, i.e., adding G(s) and exp(−Tds) leads to the combined transfer
function. Again, the static gain (f → 0) and the corner frequency (−3 dB drop at 214 Hz) can be read
out. Furthermore, it is shown that a pure time delay has no effect on the magnitude given as |e−Td·s| = 1,
i.e., only the output is delayed without change in the gain. The phase of a pure time delay shows a roll-off
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Fig. 25: Bode diagram of example system without and with time delay

of

∠(e−Td·s) = ϕ(ω) = −Tdω [rad]

= −Tdω
180

π
[deg] .

3.3.1.4 Example Bode diagram for cavity model

Figure 26 shows the resulting continuous-time white-box model for the cavity with all fundamental
modes. Here, it is assumed that the cavity equation includes an initial detuning of ∆ωπ = −2π · 10 Hz
and a loaded quality factor of QL = 3× 106. The Bode diagram is computed by Eqs. (16) and (17).

3.4 System connection
If not just one system but several systems are considered, it may required to connect them using a serial
and parallel connection or in a feedback scheme.

3.4.1 Serial connection
The serial connection of two systems is simply the multiplication of the individual systems, shown in
Fig. 27.

3.4.2 Parallel connection
The parallel connection of two systems is the sum of the systems, resulting in a combined system, Fig. 28.

3.4.3 Feedback
In contrast with a serial and parallel connection, a positive feedback loop, indicated by a summation
of the feedback path from G2(s) to the input of the system G1(s), leads to a combined system with a
forward path divided by one minus the loop path, i.e., in this example the serial connection of G1(s) and
G2(s), Fig. 29. For a negative feedback loop, used for most of the feedback controller, the sign of the
denominator needs to be changed from minus to plus.
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Fig. 26: Continuous-time cavity baseband white-box model without time delay. The fundamental π-mode
(fπ = 1.3 GHz) is located at frequency zero. The other peaks are the eight additional fundamental cavity modes,
i.e., from 8π/9-mode to 1π/9-mode.

Fig. 27: Serial connection of two systems

Fig. 28: Parallel connection of two systems

Fig. 29: Feedback of two systems
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Fig. 30: Overview of system modelling

3.4.4 Summary
We have considered the system description using input/output signals of individual subsystems. The
combination of different systems with different paths is shown in Section 3.4. In the next section, we
will focus on the identification of a system model by exciting a system with special input signals and
observing its output response.

3.5 System identification
A system model is a simplified representation or abstraction of a reality. Modelling the reality is gener-
ally too complex to produce an exact copy. Furthermore, much of the complexity is actually irrelevant
in problem solving, e.g., controller design. This can be overcome to define a robust controller that can
cope with model uncertainties. In general, one can describe a system using different approaches. On the
one hand, a mathematical description can be created, using differential equations. This is a so-called
white-box model, where all necessary components are described, e.g., the cavity modelling described
in Section 2.4, which is already an example of the white-box modelling approach. On the other hand,
system engineers often use so-called black-box models, where no assumption about the system is made,
see Fig. 30. Applying special input signals, e.g., pseudo-random binary signals, and observing the output
signal leads to the possibility of estimating the system impulse response, i.e., the transfer function in
the frequency domain or the state space model in the time domain. A combination of white-box and
black-box modelling is often used to define the main physical equations describing a system. A grey-box
model can be identified by leaving important parameters within those main equations of the white-box
model as free parameters to be identified. The main possibilities of a system identification and its different
approaches to identify a system are described in Ref. [16]. An example of a grey-box modelling approach
to identify a superconducting RF feedback loop can be found in Ref. [17].

In the following, a short example of a black-box modelling using MATLAB is given. For the mod-
elling, MATLAB provides a graphical tool within the System Identification Toolbox™. This tool allows
the transfer function, state space models, etc., to be identified only for SISO systems. Estimation of
MIMO systems requires use of the command line.
Let’s define a transfer function (tf command) of a systemG(s), its input signal u(t), which is a step, and
an output signal, which is the simulation of the input with the system using the MATLAB lsim command,
see Fig. 31. To this output signal, 1% noise is added by a random signal generator. The MATLAB ident
command opens a graphical interface for SISO system identification, see Fig. 32. Within this graphical
tool, the following steps need to be taken.

1. Import data.

– Choose data format and select the input and output data.
– Hint: An example data-set should be available.
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Fig. 31: MATLAB command line to define system identification

– Adjust the sampling interval.

2. Estimate the system model.

– Select one of the proposed methods, e.g., transfer function, state space model.
– Define the number of poles and zeros.
– Choose continuous or discrete time for the resulting model.
– If necessary, set the I/O delay.

3. Compare the model (tf1) with the plant G.

– Hint: You can import the initial plant model G for comparison.

4. Export the system model to the workspace for further use of the dataset, e.g., controller design.

This graphical tool gives an idea of how system identification using MATLAB works. Without going into
detail, the identification requires some knowledge of the plant, to avoid the identification of unnecessary
dynamics of the system using an overestimated model order. As a rule of thumb, start with a low system
order and increase the model order (number of poles and zeros) until the system response fits the simu-
lated model response sufficiently well. Another method to estimate the minimum model order is to use
the state space model as the resulting model and choose the option Pick best value in the range. This
option guessing the optimal model order based on the I/O data.

The interested reader is referred to other books and publications for detailed information of the
systems identification.

4 Feedback controller design
We will start in this section with an overview of the different regulation or control schemes and their
usage before defining the objective of a feedback control problem. Since each feedback scheme changes
the transfer function (poles and zeros) of the closed loop, it is further necessary to introduce some checks
for the stability of the resulting system.

4.1 Ways to control
There are different ways to control a plant or system. On the one hand, there is the open-loop case,
Fig. 33, and on the other hand, regulation using a feedback loop, Fig. 34. If the disturbance acting on
the plant is known, using only a feedforward adaptation scheme, Fig. 35, or using a feedforward control
scheme for the reference and disturbance together with feedback control, Fig. 36, are further ways to
minimize disturbances.
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Fig. 32: System identification tool in MATLAB

Fig. 33: Open-loop scheme Fig. 34: Feedback scheme

Fig. 35: Feedforward scheme
Fig. 36: Feedback scheme with feedforward compen-
sation
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4.1.1 Open loop
The input/output (I/O) behaviour of a system driven in open loop needs to be known exactly, since there
is no feedback to adjust the input signal to compensate for output variations e.g., caused by disturbances.
Such a scheme can be used if the output signal is not critical and may change by several per cent without
losing system performance.

4.1.2 Feedforward scheme
Like the open-loop case, a precise knowledge of I/O behaviour is required when operating a system in
a feedforward scheme. The disturbances must be measurable and therefore they can be compensated for
by adjusting the drive signal. However, in the feedforward scheme, there is no process for automatically
adjusting the output signal to be controlled.

4.1.3 Feedback scheme
The signal to be controlled (output) is fed back using a feedback regulation scheme. Therefore, the output
signal acts directly on the input. In contrast with the feedforward scheme, this interconnection of signals
changes the system transfer function, as seen in Section 3.4.

4.1.4 Feedback controller together with feedforward scheme
This control structure is often called a two-degrees-of-freedom controller, where two signals, i.e., the
output and reference, are treated independently by introducing, in addition to a feedback controller, a
feedforward controller to the reference (FFr). Furthermore, a feedforward controller for the measurable
disturbance is used. Hence, this concept copes with a combination of the feedback and the two feed-
forward controllers.

4.1.5 Short summary
The optimal regulation approach depends on the application for which it is used. Here, several questions
must be addressed, e.g., are the signals of interest of even all signals measurable or observable? Further
information on the different regulation schemes can be found, e.g., in Ref. [18] or control theory lectures
from universities.

4.1.5.1 Example feedback loop for cavities

Figure 37 depicts an example of a feedback loop in LLRF controls. The plant consists in this case of a
serial connection of its main components, i.e., the pre-amplifier, klystron, and cavity. The signal to be
controlled is depicted as an ideal signal yi(t), while, in practice, disturbances to the output dy(t) need
to be added. The measurable signal yr(r) is overlapped with noise n(t) from the detection scheme. The
feedback controller with the error signal as input, i.e., the difference between the reference r(t) and the
measured output signal yr(t) + n(t), optimizes the ideal drive signal ui(t). Again, we can assume that
the drive signal to the real plant is modulated by a disturbance du(t) leading to the real drive signal ur(t),
which is the input to the plant. To complete the entire feedback loop, several time delays in the detection
path, the controller, and plant must be added; these are not negligible and affect the feedback operation.

4.2 Objective of a feedback control problem
The main objective of a feedback regulation scheme is to make the output y(t) behave in a desired way
by manipulating the plant input u(t). Two different scenarios can be considered.

1. Regulator problem (output disturbance rejection with constant reference);
2. Servo problem (reference tracking without disturbance).
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Fig. 37: Simplified block diagram of cavity feedback loop with signals and subsystems to be considered

On the one hand, in the regulator problem, the main goal is to suppress output disturbances. Here, it is
assumed that the reference signal is constant and the feedback loop counteracts only the effect of disturb-
ances. On the other hand, in the servo problem, the reference signal must be tracked optimally. In this
case, it is assumed that no disturbance acts on the plant. Therefore, the goal is to keep the output close to
the reference by manipulating the plant input.

Mostly, the regulator problem is addressed in practice. However, for both cases, the error signal,
which is the difference between reference and output, should be minimal.

4.3 Stability
A system is stable if, for a given bounded input signal, the output signal is bounded and finite (bounded
input, bounded output stable); otherwise, the system is called unstable. Stability can be checked for
stable and unstable linear systems in open or closed feedback loops. For an unstable open-loop system,
the main goal is to stabilize the closed-loop system behaviour using a feedback controller. The stability
can be checked in the time or frequency domain.

4.3.1 Time domain
The system is stable if its impulse response g(t) is absolutely integrable and bounded:

∫ ∞

t=−∞
|g(t)|dt <∞ .

This stability check in the time domain is often not preferred and frequency domain checks are recom-
mended.

4.3.2 Frequency domain
The stability can be checked in the frequency domain using:

1. pole location (all poles in left half plane);
2. Bode diagram;
3. Nyquist plot;
4. H-infinity norm (mostly for MIMO systems);
5. harmonic balance (for non-linear systems).

In the following, we will restrict the stability check to SISO systems, i.e., cases (1) to (3). The interested
reader is referred to, e.g., Ref. [18] to learn about MIMO stability checks using the H-infinity norm.
Furthermore, special methods, e.g., the harmonic balance, exist to check the stability for non-linear sys-
tems, which are beyond the scope of this paper.
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Fig. 38: Time-domain impulse response for different pole locations [19]

4.3.2.1 Pole location

Assume a SISO continuous-time transfer function of the system given as

G(s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

ansn + an−1sn−1 + . . .+ a1s+ a0
.

This system has n poles and m zeros, and if it is physically realizable, we have n ≥ m. The values of s
at which the denominator of G(s) takes the value zero, and therefore at whichG(s) becomes infinite, are
called the poles of the transfer function G(s). The locations of the poles in the complex plane determine
the dynamic behaviour of the system; for this reason the denominator polynomial of the transfer function
is called the characteristic polynomial. To check the stability, the poles of the system must be computed
and its pole location must be checked. If all poles have negative real part and therefore lie in the left half
plane of the complex plane, the system is stable. A system is called semi-stable if the real part of a pole
is zero. A visualization is given in Fig. 38 as an example.

4.3.2.2 Bode diagram and Nyquist plot

Another way of checking the stability of the system is by its Bode magnitude and phase plot or by its
corresponding Nyquist representation. The Nyquist plot is simply the mapping from the Bode amplitude
and phase plot to the complex plane; here, the frequency information is lost. The following description
is a very simplified check; for further details, the reader is referred to, e.g., Ref. [18].

The system is plotted in open loop and the so-called gain margin and phase margin can be read
from the graph. This gives an easy stability check for the closed-loop system using a proportional control-
ler. Hence, both checks are made in open loop, and the closed-loop stability can be predicted.

Example: Assume a proportional controller connected serially with the system and plot the system as a
Bode diagram or a Nyquist plot, as shown in Figs. 39 and 40, respectively. Read out the phase margin
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Fig. 39: Bode: gain and phase margin Fig. 40: Nyquist: gain and phase margin

at point A, where the magnitude crosses 0 dB and the gain margin at point B, where the phase crosses
−180◦. Increasing the proportional controller gain from one shifts the point A towards higher frequencies
for the Bode representation. This obviously reduces the phase margin. If points A and B are equal, i.e.,
if the controller gain is equal to the reciprocal of the gain margin, from the system Bode plot, the closed-
loop system becomes unstable, i.e., with a phase shift of 180◦, the negative feedback loop becomes a
positive feedback loop. The same can be observed using the Nyquist plot. Here, the complex system line
is blown up and the point B moves towards the critical point −1, i.e., with magnitude 0 dB and phase
−180◦ in the Bode plot. Furthermore, point A moves on the circle with radius 1 towards −1 causing a
decrease of the phase margin.

Thus, both representations help to identify the maximum possible proportional feedback gain.
Furthermore, one can easily see whether the loop is stable or not. To err on the side of caution in real
applications, it is often recommended to choose a phase margin of 60◦ to cope with system variations
and to keep the closed-loop operation more robust.

4.3.2.3 MIMO system stability check

Consider a MIMO system with transfer matrix Gcl(s) with input r(t) and output y(t) operated in a
closed feedback loop, see e.g., the example given in Fig. 29. This feedback system is stable if and only
if the transfer function matrix Gcl(s) is stable. Furthermore, it is mandatory that each transfer function
itself within the transfer matrix is stable. Furthermore, the MIMO stability can be checked using the
generalized Nyquist plot or H-infinity based methods, see, e.g., Ref. [18].

4.4 Gang of four
Often it is not sufficient to check the stability or closed-loop behaviour for only one I/O pair. It is highly
recommended to check it for the so-called gang of four. An example of a feedback loop is depicted in
Fig. 41. Here, the system has one output (y(t)), three inputs (r(t), d(t), n(t)), and intermediate signals
(e.g., e(t) and u(t)). First check the response of y(t) to disturbance d(t) and the response of u(t) to
measurement noise n(t) by

Gyd(s) =
G(s)

1 +G(s)C(s)
and Gun(s) = − C(s)

1 +G(s)C(s)
.

This is followed by a check of the robustness to process variations by

S(s) =
1

1 +G(s)C(s)
and T (s) =

G(s)C(s)

1 +G(s)C(s)
,
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Fig. 41: Closed loop with feedback controller C(s) and plant G(s) operated in negative feedback loop. The main
signals are given: reference r(t), output y(t), error e(t), controller output u(t), disturbance d(t), and noise n(t).

Fig. 42: Increase of feedback gain and the waterbed effect [20]

where S(s) is the so-called sensitivity function and T (s) is the so-called complementary sensitivity
function. Both transfer functions depend on the loop transfer function L(s) = G(s) · C(s). The cou-
pling between the sensitivity and complementary sensitivity function is given for the SISO case as
S(s) + T (s) = 1. In a typical feedback operation S(s), for frequencies towards zero should be small
(S(0) → 0) and S(∞) → 1, i.e., often referred to as disturbance rejection, and T (0) → 1 and
T (∞) → 0, i.e., referred to as reference tracking. By changing the controller transfer function C(s),
all four transfer functions to be checked for stability and its behaviour are changing. The effect of chang-
ing the controller gain is often visualized by S(s) and T (s); an example is given in Fig. 42. Pushing
down the sensitivity function S(s) for low frequencies pushes up S(s) for higher frequencies caused
by the so-called waterbed effect. In this way, high-frequency oscillations occur if the controller gain is
increased. Hence, the optimal feedback strategy is often not reaching high feedback gain. The optimal
controller is often a trade-off between reference tracking and disturbance rejection.

Hint: By using, in addition, a filter function for the reference, the so-called gang of six is formed, so, in
total, six transfer functions need to be checked.

4.5 Types of feedback controller design
A feedback controller can be designed in two different ways, i.e., in the frequency or time domain.
The classical feedback controller design is normally implemented in the frequency domain for a SISO
controller design using loop-shaping techniques. Here, the open-loop controller and system analysis is
performed using e.g., Bode or Nyquist plots, see Section 4.3.2. A simple example is the PID controller
with transfer function

U(s)

E(s)
= C(s)
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Fig. 43: PID controller

and the error signal as input, i.e., the difference between the set-point and the signal to be controlled, and
the output signal, i.e., the signal driving the system or plant. Its time and frequency response is given as

u(t) = KP

(
e(t) +

1

TI

∫ t

t0

e(τ)dτ + TD
de(t)

dt

)
,

= KPe(t) +KI

∫ t

t0

e(τ)dτ +KDė(t) ,

U(s) = KPE(s) +
1

s
KIE(s) + sKDE(s) ,

= KP

[
1 +

1

TIs
+ TDs

]
E(s) ,

with a block diagram for the frequency domain depicted in Fig. 43. The proportional part accounts for
present values of the error, i.e., for a positive proportional gain, and if the error is positive, the control
output will also be positive. The integral part accounts for past values of the error. Therefore, the integral
of the error will accumulate over time and the controller will respond by applying a stronger action. The
derivative part accounts for possible future trends of the error, based on its current rate of change.

A PID controller relies only on the measured process variable, not on knowledge of the underly-
ing process. The use of the PID algorithm does not guarantee optimal control of the system, or even its
stability. Normally PI controllers are in use, since the derivative action is sensitive to measurement noise
(for digital signal processing this involves analogue-to-digital converter noise), whereas the absence of
an integral term may prevent the system from reaching its target value. Here, the goal is to tune two pa-
rameters (KP andKI) to achieve a kind of optimal closed-loop behaviour. The tuning of a PID controller
in general can be implemented in different ways, e.g., loop-shaping techniques, manual tuning by ob-
serving the closed-loop behaviour, or the Ziegler–Nichols tuning rules. The interested reader is referred
to the literature for more detail on such tuning rules.

In contrast with classical feedback control, the modern feedback controller design is usually imple-
mented as time-domain analysis, i.e., the system is presented as a state space model, given as

ẋ(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) +Du(t) .

Such a system representation and, therefore, the modern feedback controller design is not restricted to
SISO systems. Hence, it is more general for MIMO systems and often based on signals directly, e.g.,
the linear quadratic regulator, or closed-loop shaping methods, e.g., considering the H-infinity norm of
the weighted sensitivity function. The linear quadratic regulator control approach assumes that the plant
dynamics are linear and known. The quadratic cost function is given as

J =

∫ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt , (25)
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Fig. 44: H∞ design problem with shaping filter WS(s), WCS(s), and WT(s)

with weighted state x(t) and weighted controller output u(t); the constant weighting matrices Q and R
are the design parameters. The optimal solution to this problem is

u(t) = −K · x(t) ,

with K = R−1BTX and X as the unique positive semi-definite solution of the Riccati equation

ATX +XA−XBR−1BTX +Q = 0 .

Often not all states x(t) are directly measurable, a prerequisite for linear quadratic regulator state feed-
back. This requires a Kalman filter as state estimator and its regulation on the estimated state. The reader
is referred to Ref. [18].

In contrast with state feedback using a linear quadratic regulator, direct feedback to the measurable
output signal y(t) can be designed, e.g., using H-infinity (H∞) based optimization methods and weight-
ing filter functions to shape the sensitivity and complementary sensitivity function, see Section 4.4. A
block diagram is given in Fig. 44. Here, the goal is to find the optimal controller minimizing the H∞-
norm

‖Tzr(s)‖∞ =

∥∥∥∥∥∥




WS(s) · S(s)
WCS(s) · C(s)S(s)
WT(s) · T (s)



∥∥∥∥∥∥
∞

< 1 (26)

from the reference r(t) to the fictitious output signals z(t), which are connected by shaping filters to
different signals within the feedback loop. Keeping theH∞-norm below 1 one guarantees a stable closed-
loop system, see the small-gain theorem. A complete description of the H∞-norm optimization would
be beyond the scope of this paper and the interested reader is referred to Ref. [18].

5 Examples
Next, some examples for feedback controller design at different facilities are given. First let’s start with
the feedback controller design for an RF field regulation, where the system is operated in pulsed mode.
The transition from pulsed to continuous wave mode often requires an increase in QL, putting additional
effort in microphonics suppression or rejection acting to the cavities, described in the second example. If
additional disturbances are measurable, a feedback scheme based on known disturbance is recommended,
discussed in the last example.
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Fig. 45: Pulsed mode at FLASH with filling, flattop, and decay. The electron bunches are injected during the flattop
time, where the amplitude and phase of the RF field needs to be kept constant.
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Fig. 46: LLRF system overview with plant and LLRF control system

5.1 RF field feedback loop
This example is performed at the FLASH based on the description in Ref. [17]. FLASH is operated in a
pulsed mode with 10 Hz repetition rate and a pulse length of about 1 ms, see Fig. 45.

Each RF pulse can be divided into three parts: the filling; the flattop, where the electron bunches
are accelerated; and the decay. The regulation goal is to achieve a stability of ∆A/A ≤ 0.01% and
∆ϕ ≤ 0.01◦. Two main concepts are used; on the one hand, adaptation by learning from pulse to pulse,
i.e., the optimization of the drive signal at 10 Hz, and, on the other hand, the feedback controller acting
within an RF pulse, i.e., at 9 MHz sampling frequency. The system is controlled in the in-phase (I)
and quadrature (Q) plane. Hence, the signals for regulation are mapped from the amplitude and phase
representation. With this, the system has two inputs and two outputs, i.e., it is a MIMO system (Fig. 46).

The feedback controller is designed using H∞-norm optimization. To do this, a system model is
required. This is created by adding, in addition to the nominal drive signal (the input to the system u),
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Fig. 47: Bode diagram of model and cross-validation, confirming system modelling

a small excitation signal. The change in output and its corresponding input signal are used to estimate
a small signal model around the nominal operating point. In this way, the transfer matrix is estimated;
its transfer functions (four in total for a 2 × 2 MIMO system) are given as a Bode diagram in Fig. 47.
Furthermore, a cross-validation (the new excitation signal differs from the signal used for the system
identification) shows the accuracy of the system identification.

With this model, the optimal MIMO controller coefficients based on an H∞ approach are com-
puted and follow the introduction in Section 4.5. Here, the weighting filters for closed-loop shaping
are used to define the resulting closed-loop behaviour. The filter function for the controller sensitivity
WCS(s) is chosen such that the controller must suppress the 7π/9 resonance mode at 3 MHz; a notch
filter at the analogue-to-digital converter for the 8π/9 resonance mode is set such that this mode is not
present in the error signal. The optimization is performed and leads to a MIMO controller with the control
objectives of plant decoupling (no coupling from channel I to Q and vice versa), avoidance of passband
mode excitation, and optimal closed-loop behaviour.

The idea of iterative learning control [21] for pulse-to-pulse feedforward adaptation is described
in Ref. [22]. It is similar to the MIMO controller design for a model-based regulation scheme. The time-
dependence within an RF pulse is given by t = 0, . . . , T , and the indices k and k + 1 represent the
previous and current RF pulses, respectively. Given is a discrete linear time-invariant state space model,

x(t+ 1) = Ax(t) +Bu(t) , x(0) = x0 , 0 ≤ t ≤ T ,

y(t) = Cx(t) ,

of the closed-loop system G(z), with the discrete time shift operator z. Mapping from continu-
ous (Gc = G(s)) to discrete time (Gd = G(z)) can be done in MATLAB, using the command
Gd = c2d(Gc,Ts,'tustin'); Ts is the sampling time in seconds and 'tustin' the bilinear discretiza-
tion method. Here, the closed-loop transfer function is given with the error as input (u(t) → e(t)) and
the controller output as output (y(t) → u(t)), since the LLRF system is operating with MIMO feed-
back and the iterative learning control is acting on u(t) with the signal to be minimized from pulse to
pulse e(t), see Fig. 41. The iterative learning control performance index is given by

Jk+1(uk+1) =
1

2

(
T∑

t=1

ek+1(t)TQ(t)ek+1(t) +
T−1∑

t=0

(uk+1(t)− uk(t))T R(t) (uk+1(t)− uk(t))
)

,

where the weighting matrices Q(t) and R(t) are of compatible dimensions. This is the familiar perform-
ance criterion from linear quadratic optimal control theory. The optimal correction signal for the next RF
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Fig. 48: Resonance frequency change by microphonics (courtesy: C. Schmidt)

pulse uk+1(t) is computed by

ξk+1(t) = β(t)ξk+1(t+ 1) + γ(t)ek(t+ 1),

uk+1(t) = uk(t) + ωξk+1(t),

where the required matrices β(t), γ(t), λ(t), and ω are calculated by solving a Riccati equation back-
wards with the corresponding closed-loop model. For further information see, e.g., Refs. [17, 21, 22].

Using both feedback schemes, the MIMO controller, together with iterative learning control, the
regulation goal in amplitude and phase stability are met and typically below the specification, i.e.,
∆A/A ≈ 0.008% and ∆ϕ ≈ 0.008◦.

5.2 Microphonics suppression
Microphonics is one of the main disturbances acting to a cavity leading to small deformations of the
cavity body. Such small deformations lead to an amplitude and phase error of a driven cavity caused by
a detuning of the cavity from its resonance frequency, see Fig. 48.

The effect is mainly dominant for highQL (QL > 107) cavities used in continuous wave operation.
However, even at FLASH, microphonics was observed during the construction of the European XFEL.
FLASH is typically operated withQL = 3×106, where microphonics is not the main disturbance source.
This changes, by using e.g., a compacting machine at the XFEL injector (distance to FLASH is approx.
400 m) and its strong ground shaking, see Fig. 49. Here, the system performance gets worse (up to a
factor of four during the work). Hence, a decoupling from the ground or all external noise sources is
often the first approach. This could be confirmed for a continuous wave driven cavity by placing an anti-
vibration mat below a vacuum pump, see Fig. 50. Such passive noise reduction helps improve the system
performance. However, not all disturbance and noise sources can be avoided.

An active microphonics reduction for high QL (QL > 107) superconducting RF cavities was
studied [23]. In this thesis, the main disturbances acting on a superconducting RF cavity were studied,
see Fig. 51.

Furthermore, a system model is estimated, which consists of different mechanical cavity modes:

∆ω̈cav,k(t) + 2ξkωm,k ·∆ω̇cav,k(t) + ω2
m,k ·∆ωcav,k(t) = ±kLF,k2πω

2
m,kVPiezo(t) ,

∆ωcav(t) =
∑

k

∆ωcav,k(t) ,
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Fig. 49: Left-hand side, amplitude stability at the FLASH superconducting RF modules; right-hand side, compact-
ing machine at XFEL injector (noise source).

Fig. 50: Left-hand side, superconducting RF cavity detuning (courtesy: R. Rybaniec); right-hand side, vacuum
pump as noise source (courtesy: J. Eschke).

Fig. 51: TESLA cavity welded in cryo-unit; possible detuning sources are depicted [23]
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Fig. 52: Left-hand side, principle of transfer function measurement; right-hand side, model transfer function in
frequency range of 10–200 Hz [23].

Fig. 53: Left-hand side: detuning compensation scheme given by a feedback and an adaptive feedforward signal
path. Right-hand side: time-domain detuning data in open loop (blue), PI controller (red), and combined feedback
and feedforward control (black).

Fig. 54: Disturbance observer-based control scheme in combination with PI feedback loop [26]
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Fig. 55: Left-hand side, power supply ripple reduction using disturbance observer-based control; right-hand side,
beam-induced disturbance rejection [26].

with the applied piezo voltage Vpiezo as input and the corresponding eigenmode detuning ∆ωcav,k as
output. Thus, the model for each mode k in frequency domain using Laplace transform is given as

Hk(s) =
ω2
kMk

s2 + 2ξkωks+ ω2
k

.

Together with a low-pass behaviour and a time delay, the total system model is

H(s) =

(
H0(s) +

N∑

k=1

Hk(s)

)
·Hdelay(s) ,

with

H0(s) =
M0

τs+ 1
(low-pass)

and

Hdelay(s) = exp(−Tdelay · s) (time delay) .

A model is identified for the Saclay II tuner and its measured and estimated transfer function is shown in
Fig. 52. Based on this model a controller consisting of a feedforward and feedback scheme is designed,
as shown in the left panel of Fig. 53. The resulting detuning stability for a superconducting RF cavity
operated at 1.8 K with QL = 6.4 × 107 is shown on the right panel of Fig. 53. For further information,
see Refs. [23] and [24].

5.3 Disturbance rejection
Reference [25] describes the application using a disturbance observer-based control scheme for LLRF
systems. It is in use at the compact energy recovery linac at KEK. In the following, a brief outline of this
topic is given. Assume, a disturbance acting on the system, and that, for this example, the disturbance is
not precisely measurable. However, a disturbance observer can be used to estimate the disturbance. This
requires a sufficiently precise system model GP (s). The system output is filtered by the inverse system
transfer function G−1

n (s) together with a filter function Q(s), see Fig. 54. This filter function is needed
to low-pass filter high-frequency components, to set the frequency region of interest for the expected
occurring disturbance and to cope with the inversion of causal systems. Furthermore, it is necessary to
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filter the system input (known from the drive signal) by the same filter function. The difference between
the filtered drive signal and the estimated drive signal computed from the output signal is an estimate of
the disturbance. This estimated disturbance signal is subtracted from the drive, i.e., in the best case, the
subtracted estimated disturbance and the real disturbance cancel.

Beside this feedforward disturbance cancellation, a PI feedback loop is added as an outer loop.
This further reduces the occurrence of disturbances that are not compensated by the disturbance observer-
based control scheme. Two examples are given in Fig. 55: the suppression of power supply ripples and
the beam-induced voltage decrease. Both examples show that using advanced control schemes helps to
improve the system performance. For further details, see Ref. [25].
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Coherence Properties of the Radiation from X-ray Free Electron Lasers

E.A. Schneidmiller and M.V. Yurkov
Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany

Abstract
A description of the statistical and coherence properties of the radiation from
X-ray free electron lasers is one of the most complicated topics in free electron
laser physics. Results of studies in this field are distributed over many papers
published during the past three decades. We have made an attempt to put to-
gether all knowledge on the subject available to date. We avoid complicated
mathematical derivations, and put the main emphasis on physical features and
final results. Free electron laser theory has reached mature status, making it
possible to present final results in an elegant form. Application of similarity
techniques to the results of numerical simulations allowed us to derive uni-
versal scaling relations for the main characteristics of an X-ray free electron
laser operating in the saturation regime: efficiency, coherence time, degree of
transverse coherence, and pointing stability of the radiation. Statistical and
coherence properties of the higher harmonics of the radiation are highlighted
as well.

Keywords
Free electron laser; X-ray laser; self-amplified spontaneous emission FEL;
SASE FEL; statistics; fluctuations; coherence; temporal coherence; spatial co-
herence; harmonics.

1 Introduction
Single-pass free electron laser (FEL) amplifiers starting from shot noise in the electron beam have been
intensively developed during the last decades. An origin for this development was an idea born in the
early 1980s to extend the operating wavelength range of FELs to the vacuum ultraviolet and X-ray
bands [1–5]. Following the terminology of quantum lasers (amplified spontaneous emission), the term
‘self-amplified spontaneous emission (SASE)’ in connection with an FEL amplifier, starting from the
shot noise, has been introduced in Ref. [5]. We note that this essentially quantum terminology does not
reflect the physical properties of the device. In fact, FELs belong to a separate class of vacuum tube
devices, and their operation is completely described in terms of classical physics (see Ref. [6] for more
details).

Significant amounts of effort have been invested in the development of high brightness injectors,
beam formation systems, linear accelerators, and undulators. The result was a rapid extension of the
wavelength range from infrared to hard X-rays within one decade [7–18]. The first dedicated user facility,
FLASH at DESY in Hamburg, has been in operation since 2005 and provides a wavelength range from
3.1 nm to 80 nm [10–16]. The Linac Coherent Light Source (LCLS) at Stanford was the first FEL
operating in the hard X-ray regime, in the 0.15–1.5 nm wavelength range [17]. SACLA extended the
wavelength range down to 0.06 nm [18]. The PAL X-ray free electron laser (XFEL) has produced its
first light and is being commissioned at the time of writing this review [19–21]. Two other dedicated
facilities are under commissioning at the moment, the European XFEL and the SwissFEL [22–24]. The
main mode of operation of these facilities is SASE. One more soft X-ray FEL user facility is FERMI
FEL, which uses external seeding [25].

The high-gain FEL amplifier starting from shot noise in the electron beam is a simple system
consisting of a relativistic electron beam and an undulator. The FEL collective instability in the electron
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beam produces an exponential growth (along the undulator) of the modulation of the electron density
on the scale of the undulator radiation wavelength. The initial seed for the amplification process is
fluctuation of the electron beam current. Since shot noise in the electron beam is a stochastic process,
the radiation produced by a SASE FEL also possesses stochastic features. Its properties are naturally
described in terms of statistical optics using notions of probability density distribution functions of the
fields and intensities, correlation functions, notions of coherence time, degree of coherence, etc.

Development of the theoretical description of the coherence properties of the radiation from
SASE FELs has spanned more than twenty years (see [26–45]). This subject is rather complicated,
and it is worth mentioning that theoretical predictions agree well with experimental results obtained
at FLASH [10–13, 46–49]. Some averaged output characteristics of SASE FELs in the framework of
the one-dimensional model have been obtained [26, 27]. An approach for time-dependent numerical
simulations of SASE FELs has been developed [28, 29]. Realization of this approach allowed some
statistical properties of the radiation from a SASE FEL operating in linear and non-linear regimes to be
obtained [30, 31]. A comprehensive study of the statistical properties of the radiation from the SASE
FEL in the framework of the same model is presented in Ref. [32]. It has been shown that a SASE
FEL operating in the linear regime is a completely chaotic polarized radiation source, described with
Gaussian statistics. Short-pulse effects (for pulse durations comparable with the coherence time) have
been studied [29, 33, 34]. An important practical result was prediction of the significant suppression of
the fluctuations of the radiation intensity after a narrow-band monochromator, for the case of SASE FEL
operation in the saturation regime [33]. Statistical description of the chaotic evolution of the radiation
from SASE FEL has been presented [35, 36].

The first analytical studies of the problem of transverse coherence relate to the late 1980s [37,38].
Later on, more detailed studies have been performed [39]. The problem of start-up from the shot noise
has been studied analytically and numerically for the linear stage of amplification, using an approach
developed in Ref. [38]. It has been found that the process of formation of transverse coherence is more
complicated than that given by a naive physical picture of transverse mode selection. Namely, in the case
of perfect mode selection, the degree of transverse coherence is defined by the interdependence of the
longitudinal and transverse coherence. Comprehensive studies of the evolution of transverse coherence
in the linear and non-linear regime of SASE FEL operation have been performed [40–43]. It has been
found that the coherence time and the degree of transverse coherence reach maximum values at the end of
the linear regime. Maximum brilliance of the radiation is achieved at the very beginning of the non-linear
regime, which is also referred as a saturation point [41,42]. The output power of the SASE FEL increases
continuously in the non-linear regime, while the brilliance decreases after passing the saturation point.

Another important subject related to mode degeneration is fundamental limitation of the point-
ing stability of SASE FEL radiation. The radiation from a SASE FEL always has a limited degree of
transverse coherence. When the transverse size of the electron beam significantly exceeds the diffraction
limit, the mode competition effect does not provide selection of the ground mode, and spatial coherence
degrades, owing to the contribution of the higher-order transverse modes. Important consequences of
this effect are fluctuations of the spot size and of the pointing stability of the photon beam [50–52].
These fluctuations are fundamental and originate from the shot noise in the electron beam. The point-
ing instability effect becomes more pronounced for shorter wavelengths. We analyse in detail the case
of an optimized SASE FEL and derive universal dependencies applicable to all operating and planned
X-ray FELs. It is shown that the hard X-ray FELs driven by low-energy beams may exhibit poor spatial
coherence and bad pointing stability.

Radiation of the electron beam in the planar undulator contains a rich harmonic spectrum. This
refers to both incoherent and coherent radiation. Over the past years, significant research efforts have
been devoted to studying the process of generation of higher harmonics in high-gain FELs [53–66]. Such
an interest has mainly been driven by practical needs for prediction of the properties of XFELs. A fraction
of a higher-harmonic content is very important for users planning experiments at an XFEL facility. On
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the one hand, higher harmonics constitute rather harmful background for some classes of experiment. On
the other hand, higher-harmonic radiation can significantly extend the operating band of the user facility.
In both cases, it is highly desirable to know the properties of the higher-harmonic radiation. Analytical
techniques have been used to predict properties of the higher harmonics for FEL amplifiers operating in
the linear mode of operation [56,57]. However, most of the radiation power is produced in the non-linear
regime, and a set of assumptions needs to be accepted in order to estimate the saturation power of higher
harmonics on the base of extrapolation of analytical results. As for statistical properties, these could not
be extrapolated from linear theory at all. Many studies have been performed with numerical simulation
codes. These studies developed in two directions. The first direction is investigations of higher-harmonic
phenomena by means of steady-state codes [58–61]. Although the results of these studies are applicable
to externally seeded FEL amplifiers, it is relevant to appreciate that they gave the first predictions for
high radiation power in higher harmonics of SASE FELs. Another direction was an extraction of the time
structure for the beam bunching from time-dependent simulation code with subsequent use of analytical
formulae of linear theory [56]. Recent studies of the mechanism of non-linear harmonic generation in
SASE FEL have been presented [64, 65].

This review is mainly based on our papers published during the last two decades. References to
original papers of our colleagues working on the same problems are also made, and we believe that the
reader can find further details therein. Analysis of higher harmonics of FEL radiation is restricted to
the odd harmonics in the planar undulator. We consider only the non-linear harmonic generation mech-
anism. Owing to limitations of space, it was impossible to derive the results from first principles, and we
decided to concentrate on a description of physical models and final results. The results themselves are
strict results of FEL theory. The theory has now reached a mature status and allows rather complicated
phenomena to be described in an elegant way. In addition, we widely use application of the similarity
techniques to the results of numerical simulations. This allowed us to describe the saturation regime
in detail, which is important from a practical point of view. Universal formulae that can be used in
practical calculation are distributed across the text, which can be inconvenient for the reader. The review
proceeds as follows. In Section 2, we present general statistical properties of SASE FEL radiation. We
show that a SASE FEL operating in the exponential growth regime can be described by Gaussian stat-
istics, and that properties of the radiation correspond to the properties of completely chaotic polarized
light. In the framework of the one-dimensional model, in Section 3, we describe temporal properties
of the radiation. Topics related to spatial coherence are described in Section 4, in the framework of
three-dimensional FEL theory. Essential practical formulae are collected in Appendices A and B for
the results of the one-dimensional and three-dimensional FEL theory, respectively. Finally, Appendix C
describes statistical techniques for measurements of the main parameters of SASE FEL radiation. This is
an extremely powerful technique allowing measurement of the FEL parameter ρ, coherence time, photon
pulse duration, number of longitudinal and transverse modes, and degree of transverse coherence. It is
based on fundamental principles, and measured values have strict physical meaning.

2 General properties of SASE FEL radiation
The amplification process in the SASE FEL starts from the shot noise in the electron beam; then it
passes the stage of exponential amplification (high-gain linear stage) and finally enters saturation stage
(see Fig. 1). At the initial stage of amplification, coherence properties are poor, and the radiation consists
of a large number of transverse and longitudinal modes [6, 67–73]. In the exponential stage of amplifi-
cation, transverse modes with higher gain dominate over modes with lower gain as the undulator length
progresses. This feature is also known as the mode competition process. Longitudinal coherence also
improves in the high-gain linear regime [32,64,71]. The mode selection process stops at the onset of the
non-linear regime, and maximum values of the degree of transverse coherence and the coherence time
are reached at this point. If one traces the evolution of the brilliance of the radiation along the undulator
length, there is always a point, which we define as the saturation point, where the brilliance reaches a
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Fig. 1: Evolution of main characteristics of SASE FEL along the undulator: brilliance (solid line), radiation power
(dash-dotted line), degree of transverse coherence (dashed line), and coherence time (dotted line). Brilliance
and radiation power are normalized to saturation values. Coherence time and degree of transverse coherence are
normalized to the maximum values. Undulator length is normalized to saturation length. The plot has been derived
from the parameter set corresponding to ε̂ = 1. Calculations made with simulation code FAST [77].

maximum value [41, 42]. The undulator length to saturation is in the range from about nine (hard X-ray
SASE FELs) to eleven (visible-range SASE FELs) field gain lengths Lg [41, 42]. Figures 2 and 3 show
the evolution of the temporal and spectral structure of the radiation pulse along the undulator: at 0.5Lg

(beginning of the undulator), 5Lg (high-gain linear regime), and 10Lg (saturation regime). Figure 4
shows snapshots of the intensity distributions across a slice of the photon pulse. We see that many
transverse radiation modes are excited when the electron beam enters the undulator. The radiation field
generated by a SASE FEL consists of wavepackets (spikes [29]) which originate from fluctuations of
the electron beam density. The typical length of a spike is approximately the coherence length. The
spectrum of the SASE FEL radiation also exhibits a spiky structure. The spectrum width is inversely
proportional to the coherence time, and a typical width of a spike in a spectrum is inversely proportional
to the pulse duration. The amplification process selects a narrow band of the radiation, the coherence
time increases, and the spectrum shrinks. Transverse coherence is also improved, owing to the mode
selection process (Eq. (25)).

Figure 5 shows probability distributions of the instantaneous power density I ∝ |Ẽ|2 (top) and
the instantaneous radiation power P ∝

∫
I(~r⊥)d~r⊥ (bottom). We see that transverse and longitudinal

distributions of the radiation intensity exhibit rather chaotic behaviour. However, probability distributions
of the instantaneous power density I and of the instantaneous radiation power P look more elegant
and seem to be described by simple functions. The origin of this fundamental simplicity relates to
the properties of the electron beam. The shot noise in the electron beam has a statistical nature that
significantly influences the characteristics of the output radiation from a SASE FEL. Fluctuations of the
electron beam current density serve as input signals in a SASE FEL. These fluctuations always exist in
the electron beam, owing to the effect of shot noise. Initially, fluctuations are not correlated in space
and time, but when the electron beam enters the undulator, beam modulation at frequencies close to the
resonance frequency of the FEL amplifier initiates the process of the amplification of coherent radiation.
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Fig. 2: Temporal structure of the radiation pulse at different undulator lengths. Indexes 1, 2, and 3 correspond to
undulator lengths of 0.5Lg, 5Lg, and 10Lg, respectively. The plot in the right panel is an enlarged portion of the
plot in the left panel. Calculations made using simulation code FAST [77].

Fig. 3: Spectral structure of the radiation pulse at different undulator lengths. Solid, dashed, and dotted lines
correspond to undulator lengths of 0.5Lg, 5Lg, and 10Lg, respectively. Left: envelope of the radiation spectrum.
Right: enlarged portion of the radiation spectrum. Calculations made with simulation code FAST [77].

Fig. 4: Snapshots of the power density distribution in a slice at an undulator length of (left) 0.5Lg, (middle) 5Lg,
and (right) 10Lg. Calculations made with simulation code FAST [77].

Let us consider a microscopic picture of the electron beam current at the entrance of the undu-
lator. The electron beam current consists of moving electrons randomly arriving at the entrance of the
undulator:

I(t) = (−e)
N∑

k=1

δ(t− tk) ,

where δ(. . .) is the delta function, (−e) is the charge of the electron, N is the number of electrons in
a bunch and tk is the random arrival time of the electron at the undulator entrance. The electron beam
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Fig. 5: Probability density distributions of (top) instantaneous power density I = |Ẽ|2 and (bottom) instantaneous
radiation power P from a SASE FEL at different stages of amplification: linear regime, saturation regime, and deep
non-linear regime (undulator lengths, 5Lg, 10Lg, and 15Lg, respectively). Top: solid lines on the power density
histograms represent negative exponential distribution (Eq. (2)). Bottom: solid lines on power histograms represent
gamma distribution (Eq. (3)) with M = 1/σ2

P. ε̂ = 2. Calculations made with simulation code FAST [77].

current I(t) and its Fourier transform Ī(ω) are:

I(t) = (−e)
N∑

k=1

δ(t− tk) =
1

2π

∞∫

−∞

Ī(ω)e−iωtdω ,

Ī(ω) =

∞∫

−∞

eiωtI(t)dt = (−e)
N∑

k=1

eiωtk . (1)

It follows from Eq. (1) that the Fourier transformation of the input current, Ī(ω), is the sum of large
number of complex phasors with random phases φk = ωtk. Thus, harmonics of the electron beam
current can be described with Gaussian statistics.

The FEL process is simply an amplification of the initial shot noise in the narrow band near the
resonance wavelength λ when both harmonics of the beam current and radiation are increasing. An
FEL amplifier operating in the linear regime is simply a linear filter, and the Fourier harmonic of the
radiation field is simply proportional to the Fourier harmonic of the electron beam current, Ē(ω) =
HA(ω−ω0)Ī(ω). Thus, the statistics of the radiation are Gaussian—the same as of the shot noise in the
electron beam. This kind of radiation is usually referred to as completely chaotic polarized light, a well-
known object in the field of statistical optics [74]. For instance, the higher-order correlation functions
(time and spectral) are expressed via the first-order correlation function. The spectral density of the
radiation energy and the first-order time correlation function form a Fourier transform pair (Wiener–
Khinchin theorem). The real and imaginary parts of the slowly varying complex amplitudes of the
electric field of the electromagnetic wave, Ẽ , have a Gaussian distribution. The instantaneous power
density, I = |Ẽ|2, fluctuates in accordance with the negative exponential distribution (see Fig. 5):

p(I) =
1

〈I〉 exp

(
− I

〈I〉

)
. (2)
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Any integral of the power density, such as radiation power P (or radiation pulse energy E), fluctuates in
accordance with the gamma distribution:

p(P ) =
MM

Γ(M)

(
P

〈P 〉

)M−1 1

〈P 〉 exp

(
−M P

〈P 〉

)
. (3)

where Γ(M) is the gamma function, with argument M = 1/σ2
P , and σ2

P = 〈(P − 〈P 〉)2〉/〈P 〉2 is the
relative dispersion of the radiation power. For completely chaotic polarized light, the parameter M has a
clear physical interpretation—it is the number of modes [6]. Thus, the relative dispersion of the radiation
power directly relates to the coherence properties of the SASE FEL operating in the linear regime.

When the amplification process enters a non-linear stage and reaches saturation, the statistics of
the radiation significantly deviate from Gaussian. A particular signature of this change is illustrated in
Fig. 5. We see that the probability distribution of the radiation intensity is not negative exponential, and
that the probability distribution of the radiation power visibly deviates from a gamma distribution. As
yet, there is no analytical description of the statistics in the saturation regime, and we refer the reader
to the analysis of the results of numerical simulations [41]. A general feature of the saturation regime
is that fluctuations in radiation intensity are significantly suppressed. When we trace the amplification
process further in the non-linear regime, we find that fluctuations of the radiation intensity and radiation
power increase, and that relevant probability distributions tend to those given by Eqs. (2) and (3). This
behaviour hints that the properties of the radiation from a SASE FEL operating in the deep non-linear
regime tend to be those of completely chaotic polarized light [32, 41].

Another practical problem refers to the probability distributions of the radiation intensity in the
frequency domain, like that filtered by a monochromator. For SASE FEL radiation produced in the
linear regime, the probability distribution radiation intensity is defined by Gaussian statistics, and it
is negative exponential for a narrow-band monochromator. When the amplification process enters the
saturation regime, this property still holds for the case of long electron pulses [6, 32] but is violated
significantly for the case of short electron bunches, approximately equal to or less than the coherence
length. In the latter case, fluctuations of the radiation intensity after the narrow-band monochromator are
significantly suppressed, as has been predicted theoretically and measured experimentally at the FLASH
FEL at DESY, operating in a femtosecond mode [33, 46].

All these considerations are related to the fundamental harmonic of the SASE FEL radiation.
Radiation from a SASE FEL with a planar undulator has rich harmonics contents. Intensities of even
harmonics are suppressed [75], but odd harmonics provide visible contribution to the total radiation
power [53–65]. Comprehensive studies of the statistical properties of the odd harmonics have been con-
ducted [64]. It has been found that the statistics of the high-harmonic radiation from the SASE FEL
changes significantly with respect to the fundamental harmonic (with respect to Gaussian statistics). For
the fundamental harmonic, the probability density function of the intensity is the negative exponential
distribution: p(W ) = 〈W 〉−1 exp(−W/〈W 〉). The mechanism of higher-harmonic generation is equiva-
lent to the transformation of the intensity W as z = (W )h, where h is the harmonic number. It has been
shown [64] that the probability distribution for the intensity of the hth harmonic is given by:

p(z) =
z

h〈W 〉z
(1−h)/h exp(−z1/h/〈W 〉) . (4)

The expression for the mean value is 〈z〉 = h!〈W 〉h. Thus, the hth-harmonic radiation for the SASE
FEL has an intensity level roughly h! times larger than the corresponding steady-state case, but with more
shot-to-shot fluctuations than the fundamental [56]. The non-trivial behaviour of the intensity of the high
harmonics reflects the complicated non-linear transformation of the fundamental harmonic statistics. In
this case, Gaussian statistics are no longer valid. Practically, this behaviour occurs only at the very end of
a high-gain exponential regime when coherent radiation intensity exceeds incoherent radiation intensity.
When amplification enters the non-linear stage, probability distributions change dramatically on the scale
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of the gain length, and in the saturation regime (and further downstream the undulator) the probability
distributions of the radiation intensity of higher harmonics are already close to the negative exponential
distribution [64].

2.1 Definitions of the statistical properties of radiation
In the proceeding sections we present a systematic description of the main statistical properties of SASE
FEL radiation. We describe the radiation in terms of statistical optics [74]. Longitudinal and transverse
coherence are described in terms of correlation functions. The first-order time correlation function,
g1(t, t′), is defined as:

g1(~r, t− t′) =
〈Ẽ(~r, t)Ẽ∗(~r, t′)〉

[
〈| Ẽ(~r, t) |2〉〈| Ẽ(~r, t′) |2〉

]1/2
. (5)

For a stationary random process, the time correlation functions are dependent on only one variable,
τ = t− t′. The coherence time is defined as [6, 76]:

τc =

∞∫

−∞

|g1(τ)|2dτ . (6)

The transverse coherence properties of the radiation are described in terms of the transverse cor-
relation functions. The first-order transverse correlation function is defined as:

γ1(~r⊥, ~r′⊥, z, t) =
〈Ẽ(~r⊥, z, t)Ẽ∗(~r′⊥, z, t)〉[

〈|Ẽ(~r⊥, z, t)|2〉〈|Ẽ(~r′⊥, z, t)|2〉
]1/2

,

where Ẽ is the slowly varying amplitude of the amplified wave, E = Ẽ(~r⊥, z, t)eiω0(z/c−t) + C.C. We
consider the model of a stationary random process, meaning that γ1 does not depend on time. Following
Ref. [41], we define the degree of transverse coherence as:

ζ =

∫
|γ1(~r⊥, ~r′⊥)|2I(~r⊥)I(~r′⊥)d~r⊥d~r′⊥[∫

I(~r⊥)d~r⊥
]2 , (7)

where I ∝ |Ẽ|2 is the radiation intensity.

An important figure of merit of the radiation source is the degeneracy parameter δ, the number
of photons per mode (coherent state). Note that when δ � 1, classical statistics are applicable, while a
quantum description of the field is necessary as soon as δ is comparable to (or less than) one. Using the
definitions of the coherence time (Eq. (6)) and of the degree of transverse coherence (Eq. (7)), we define
the degeneracy parameter as

δ = Ṅphτcζ , (8)

where Ṅph is the photon flux. The peak brilliance of the radiation from an undulator is defined as a
transversely coherent spectral flux:

Br =
ωdṄph

dω

ζ

(λ/2)2 =
4
√

2cδ

λ3
. (9)

When deriving the right-hand term of the equation, we used the fact that the spectrum shape of SASE
FEL radiation in a high-gain linear regime and near saturation is close to Gaussian [6]. In this case, the
r.m.s. spectrum bandwidth σω and coherence time obey the equation τc =

√
π/σω.

8

E.A. SCHNEIDMILLER AND M.V. YURKOV

546



3 Temporal coherence of SASE FEL radiation
In this section, we present a comprehensive study of the phenomena related to the temporal coherence
of SASE FEL radiation. The study is performed in the framework of the one-dimensional model with
time-dependent simulation code FAST [6, 77]. We restrict our study to odd harmonics produced in the
SASE FEL. We omit from consideration an effect of self-consistent amplification of the higher har-
monics [56, 66]. In other words, we solve only the electrodynamic problem, assuming that particle
motion is governed by the fundamental harmonic. The latter approximation is valid when the power in
higher harmonics is much less than in the fundamental. We apply similarity techniques to the results of
numerical simulations and derive universal relations describing general properties of the odd harmonics
in the SASE FEL: power, statistical, and spectral properties. The results are illustrated for the first, third,
and fifth harmonics having practical importance for X-ray FELs.

We consider planar undulator with the magnetic field:

Hz(z) = Hw cos(2πz/λw) ,

where λw is undulator period, and Hw is the peak magnetic field. In the SASE FEL, the radiation is
produced by the electron beam during a single pass of the undulator. The amplification process starts
from shot noise in the electron beam. During the amplification process, a powerful, coherent radiation is
produced, having narrow-band near-resonance wavelength:

λ0 =
λw

2γ2
(1 +K2) , (10)

where K = eλwHw/(2
√

2πmc2) is the r.m.s. undulator parameter, γ is relativistic factor, and (−e) and
m are the charge and mass of an electron, respectively.

In the framework of the one-dimensional model, we consider amplification of the plane electro-
magnetic wave by the electron beam in the undulator. When space charge and energy spread effects can
be neglected, operation of an FEL amplifier is described in terms of the gain parameter Γ and efficiency
parameter (or FEL parameter) ρ (see, e.g. [4, 6]):

ρ =
λw

4π

[
4π2j0K

2A2
JJ

IAλwγ3

]1/3

, Γ =
4πρ

λw
. (11)

Here, j0 is the beam current density, IA = mc3/e ' 17 kA, and ω = 2πc/λ is frequency of electromag-
netic wave. The coupling factor Kh is given by

Kh = K(−1)(h−1)/2
[
J(h−1)/2(Q)− J(h+1)/2(Q)

]
, (12)

where Q = K2/[2(1 +K2)]. The FEL amplifier is a resonance device with an amplification bandwidth
of about ∆ω/ω0 ' 2ρ around the resonance frequency ω0 = 2πc/λ0. In the linear stage of amplification,
the radiation power W increases exponentially along the undulator length, W ∝ exp[2z/Lg], and the
field gain length is about Lg ' 2/(Γ

√
3). Saturation of the FEL amplifier occurs when relative energy

loss by the electrons at one field gain length is approximately equal to the saturation parameter ρ.

A complete description of the start-up from shot noise in the FEL amplifier can be made only
with time-dependent simulations of the FEL process. We do not present here general technical details
of the time-dependent simulations; they are described in detail elsewhere [6, 77]. Details related to the
particle loading tool can be found in Ref. [78]. We note merely that, within the accepted approximation
(the particle’s dynamics are governed by the fundamental harmonic), we can simply calculate the odd
harmonics from the particle distribution, and the amplitude of the electric field scales as

E(z, t) ∝ Kh

z∫

0

ah(z′, t− z′/c)dz′ , (13)
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where ah is the hth harmonic of the beam bunching. Thus, we find that the coupling factor Kh, and the
time-dependent integral of the beam bunching are factorized. This allows us to extract the universal ratio
of the power of higher harmonics to the power of the fundamental harmonic.

3.1 Statistical properties of the odd harmonics of the radiation from SASE FEL
In this section, we present the results of numerical studies of the operation of the SASE FEL in the linear
and non-linear regimes. In the framework of the accepted model, the input parameter of the system is
the number of cooperating electrons Nc = I/(eρω0), where I is the beam current. Most of the statistical
characteristics of the SASE FEL process are functions of Nc, only at fixed z coordinate [6,32]. A typical
range of the values ofNc is 106–109 for the SASE FELs of wavelength range from X rays to the infrared.
The numerical results presented in this section, are calculated for the valueNc = 3×107, which is typical
for a vacuum ultraviolet FEL. It is worth mentioning that the dependence of the output parameters of the
SASE FEL on the value of Nc is rather weak, in fact logarithmic. Therefore, the obtained results are
pretty general and can be used for the estimation of the parameters of actual devices with sufficient
accuracy.

3.1.1 Temporal characteristics
Figure 6 presents a typical time structure of the first and the third harmonic of the radiation from a
SASE FEL at different undulator lengths ẑ = Γz = 10–13. The normalized power of the hth harmonic
is defined as η̂h = 〈Wh〉 × (K1/Kh)2/(ρWb). Here, 〈Wh〉 is averaged radiation power in the hth
harmonic, and Wb = γmc2I/e is the electron beam power. The longitudinal coordinate along the pulse
is ŝ = ρω0(z/v̄z − t), and v̄z = v− cK2/(2γ2) is the velocity of the electron along the z axis, averaged
over the undulator period. The head of the pulse is located in the positive direction of ŝ. The plot for the
averaged power of the first harmonic is shown in Fig. 7 with a solid line. It can be seen that saturation
is achieved at the undulator ẑ = 13. The saturation length is described well in terms of the number of
cooperating electrons Nc [6, 32]:

ẑsat ' 3 +
1√
3

lnNc . (14)

The normalized efficiency at saturation, η̂sat = 〈Wsat〉/(ρWb) ' 1.08, is almost independent
of the value of Nc. The dashed and dotted lines in the figure show a normalized power ratio,
η̂h/η̂1 = (〈Wh〉/〈W1〉) × (K1/Kh)2, for the third and fifth harmonics. One can notice that the
power of the higher harmonics is greater than the shot noise level only at the end of the linear regime.
This becomes clear if one takes into account the fact that the shot noise level of the beam bunching is
about 1/

√
Nc. We consider an example typical for a vacuum ultraviolet FEL with Nc = 3× 107, which

corresponds to the shot noise beam bunching a ' 2 × 10−4. When the FEL amplifier operates in the
linear regime, odd harmonics increase as ah1 , and we expect from this simple physical estimate that co-
herent contribution into higher harmonics can exceed the shot noise level only for the values of the beam
bunching at the fundamental harmonic a1 & 0.1, i.e. at the end of the linear regime. Note that the shot
noise level increases when approaching the X-ray region.

The plots presented in Fig. 6 allow the evolution of the third harmonic power to be traced from
ẑ = 10 (when it just starts to exceed the shot noise level) up to saturation point ẑ = 13. At ẑ = 10–11, the
SASE FEL operates in the high-gain linear regime, and the beam bunching in the fundamental harmonic
is small, |a1| � 1. In this case, one can expect the well-known mechanism of the higher-harmonic
generation, i.e. ah ∝ ah1 , and the spikes of the third harmonic radiation become rather pronounced.
However, the noisy nature of the SASE FEL makes a big difference to the behaviour of the growth rates
with respect to predictions given in the framework of steady-state simulations [58, 59]. Analysing the
plot for the power growth rate (see Fig. 8) we can state that, in practical situations, the prediction of the
steady-state theory (the growth rate of higher harmonics is proportional to the harmonic number) is valid
only for the third harmonic, and then only on a short piece of undulator close to saturation, of about one
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Fig. 6: Normalized power in the radiation pulse versus ŝ = ρω0(z/v̄z− t) at different lengths of the FEL amplifier
ẑ = 10–13. Left and right columns correspond to the fundamental and third harmonic, respectively. Calculations
made with simulation code FAST [77].
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Fig. 8: Normalized power growth rate for the first, third, and fifth harmonic (solid, dashed, and dotted line,
respectively). Calculations made with simulation code FAST [77].

gain length. Also, a prediction for the relation between averaged values of the beam bunching at the
third harmonic, < |a3|2 >= 6 < |a1|2 >3, holds only approximately, and is strongly violated for higher
harmonics, because of the strong contribution of the shot noise. This feature of the SASE FEL has been
highlighted qualitatively in early papers [56] with the analysis of simulation results obtained with code
GINGER [55]. Here we simply present a more quantitative study.

The plots in Fig. 7 present a general result for a ratio of the power in the higher harmonics with
respect to the fundamental one. For the saturation, we find a universal dependency:

〈W3〉
〈W1〉

|sat = 0.094× K2
3

K2
1

,
〈W5〉
〈W1〉

|sat = 0.03× K2
5

K2
1

. (15)
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Fig. 9: Ratio of coupling factors, (Kh/K1)2, for the third (solid line) and the fifth (dashed line) harmonics with
respect to the fundamental harmonic versus the r.m.s. value of undulator parameter Krms. Calculations made with
simulation code FAST [77].

Universal functions for the ratio (Kh/K1)2 are plotted in Fig. 9. Asymptotic values for large values
of the undulator parameter are (K3/K1)2 ' 0.22 and (K5/K1)2 ' 0.11. Thus, we can state that the
contribution of the third harmonic into the total radiation power of SASE FEL at saturation could not
exceed a level of 2%. Thus, its influence on the beam dynamics should be small. This result justifies a
basic assumption used for derivation of a universal relation, Eq. (15). A contribution of the fifth harmonic
to the total power at saturation could not exceed the value of 0.3%.

Another important topic is an impact of the electron beam quality on the non-linear harmonic
generation process. In the framework of the one-dimensional theory, this effect is described by the
energy spread parameter Λ̂2

T [6]:

Λ̂2
T =

〈(∆E)2〉
ρ2E2

0

,

where 〈(∆E)2〉 is the r.m.s. energy spread and E0 = γmc2 is the nominal energy of the electrons. Thus,
the result given by Eq. (15) is generalized to the case of finite energy spread with the plot presented in
Fig. 10. We see that the energy spread in the electron beam suppresses the power of the higher harmonics.
Within the practical range of Λ̂2

T, this suppression can be about a factor of three for the third harmonic,
and about an order of magnitude for the fifth harmonic. For practical estimates, one should use an
effective value of the energy spread, describing the contribution of the energy spread and the emittance
to the longitudinal velocity spread [6]:

〈(∆E)2〉eff

E2
0

=
〈(∆E)2〉
E2

0

+
2γ4

z ε
2

β2
,

where γz is the longitudinal relativistic factor (γ2
z = γ2/(1 + K2)), ε is the beam emittance, and β is

the focusing beta function. The plot in Fig. 10 covers the practical range of parameters for X-ray FELs.
The saturation length at Λ̂2

T = 0.5 is increased by a factor of 1.5 with respect to the ‘cold’ beam case
Λ̂2

T = 0.
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Fig. 10: Normalized power ratio at saturation, (Wh/W1)× (K1/Kh)2, for the third (solid line) and fifth (dashed
line) harmonic as a function of energy spread parameter Λ̂2

T. SASE FEL operates at saturation. Calculations made
with simulation code FAST [77].

3.1.2 Probability distributions
The next step of our study is the behaviour of the probability distribution of the instantaneous
power. In Fig. 11 we show the normalized r.m.s. deviation of the instantaneous radiation power,
σw = 〈(W − 〈W 〉)2〉1/2/〈W 〉, as a function of the undulator length. We see that, at the initial stage of
SASE FEL operation, the r.m.s. deviation of the instantaneous power is equal to one for all harmonics. As
we already discussed in Section 2, this is a consequence of the start-up from the shot noise in the electron
beam. The statistical properties of the undulator radiation and of the radiation from SASE FEL operating
in the linear regime are governed by Gaussian statistics [6, 32]. An important feature of the Gaussian
statistics is that the normalized r.m.s. deviation of the instantaneous radiation power is equal to the unity.
For the fundamental harmonic, the statistics of the radiation are non-Gaussian when the amplification
process enters the non-linear mode [6, 32]. For the higher harmonics, non-Gaussian statistics take place
when the non-linear harmonic generation starts to dominate over incoherent radiation (at ẑ & 8 in the
present numerical example). Analytical theory of non-linear harmonic generation [56] predicts a value of
σw ' 4 for the third harmonic. Analysis of the relevant curve in Fig. 11 shows that this prediction holds
approximately in a short piece of the undulator length only. As we explained, this is because non-linear
harmonic generation starts to dominate over incoherent radiation only at the values of the beam bunching
at the fundamental harmonic a1 ∼ 0.1. However, at such a value of the beam bunching, the modulation
of the beam density already deviates from a sinusoidal shape, owing to non-linear effects.

Probability density distributions for the instantaneous power of the fundamental and the third
harmonic are presented in Fig. 12. The SASE radiation is a stochastic object and, at a given time, it
is impossible to predict the amount of energy that flows to a detector. The initial modulation of the
electron beam is defined by the shot noise and has a white spectrum. The high-gain FEL amplifier cuts
and amplifies only a narrow frequency band of the initial spectrum ∆ω/ω � 1. In the time domain,
the temporal structure of the fundamental harmonic radiation is chaotic with many random spikes, with a
typical duration given by the inverse width of the spectrum envelope. Even without performing numerical
simulations, we can describe some general properties of the fundamental harmonic of the radiation from
the SASE FEL operating in the linear regime. Indeed, in this case we deal with Gaussian statistics. As
a result, the probability distribution of the instantaneous radiation intensity W should be the negative
exponential probability density distribution of Eq. (2) [6, 32]. One should remember that the notion of
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Fig. 11: Normalized r.m.s. deviation of fluctuations of instantaneous radiation power as a function of normalized
undulator length. Solid, dashed, and dotted lines correspond to fundamental, third, and fifth harmonics, respec-
tively. Calculations made with simulation code FAST [77].

the instantaneous intensity refers to a certain moment in time, and that the analysis must be performed
over an ensemble of pulses. Also, the energy in the radiation pulse Erad should fluctuate in accordance
with the gamma distribution of Eq. (3) [6, 32]. These properties are well known in statistical optics as
properties of completely chaotic polarized radiation [74].

As discussed in Section 2, the statistics of the high-harmonic radiation from the SASE FEL change
significantly with respect to the fundamental harmonic (e.g., with respect to Gaussian statistics), The
probability density function of the instantaneous intensity of higher harmonics SASE radiation (Eq. (4))
is a non-linear transformation of Eq. (2). Using this distribution, we obtain the expression for the mean
value: 〈z〉 = h!〈W 〉h. Thus, the hth-harmonic radiation for the SASE FEL has an intensity level
roughly h! times larger than the corresponding steady-state case, but with more shot-to-shot fluctuations
than the fundamental [56]. The non-trivial behaviour of the intensity of the high harmonics reflects the
complicated non-linear transformation of the fundamental harmonic statistics. One can see that Gaussian
statistics are no longer valid. The upper plots in Fig. 12 give an illustration to these consideration.
Although in our practical example we do not have a pure linear amplification regime, the probability
density functions for the instantaneous power follow the prediction of Eq. (4) rather well.

Analysis of the probability distributions in Fig. 12 shows that, in the non-linear regime, near
the saturation point, the distributions change significantly with respect to the linear regime for both
the fundamental and the third harmonic. An important message is that at the saturation point the third
harmonic radiation exhibits much more noisy behaviour (nearly negative exponential) while stabilization
of the fluctuations of the fundamental harmonics takes place.
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Fig. 12: Probability distribution of instantaneous radiation power at different lengths of the FEL amplifier ẑ = 10–
13. Left and right columns correspond to fundamental and 3rd harmonic, respectively. Solid line shows probability
density function (Eq. (4)). Calculations made with simulation code FAST [77].
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3.1.3 Correlation functions
The first- and second-order time correlation functions are defined as:

g1(t− t′) =
〈Ẽ(t)Ẽ∗(t′)〉

[
〈|Ẽ(t)|2〉〈|Ẽ(t′)|2〉

]1/2
, g2(t− t′) =

〈|Ẽ(t)|2|Ẽ(t′)|2〉
〈|Ẽ(t)|2〉〈|Ẽ(t′)|2〉

. (16)

In Fig. 13 we show the evolution of the time correlation functions of the first and second order.
At each normalized position along the undulator, ẑ, they are plotted against the normalized variable
τ̂ = ρω0(t − t′). The upper plot in Fig. 13 corresponds to the linear stage of SASE FEL operation. In
the case of the fundamental harmonic, we deal with a Gaussian random process and the relation between
the correlation functions holds for g2(t − t′) = 1 + |g1(t − t′)|2. This feature does not hold for higher
harmonics. The non-trivial behaviour of the correlation functions reflects the complicated non-linear
evolution of the SASE FEL process. The second-order correlation function of the zero argument, g2(0),
takes values smaller or larger than two, but always larger than unity. Note that there is a simple relation
between g2(0) and the normalized r.m.s. power deviation: g2(0) = 1 + σ2

w (see Fig. 11). It is a well-
known result of statistical optics that the cases of g2(0) = 1 and g2(0) = 2 correspond to stabilized
single-mode laser radiation and to completely chaotic radiation from a thermal source, respectively. The
values of g2(0) between 1 and 2 belong to some intermediate situation. In classical optics, a radiation
source with g2(0) < 1 cannot exist but the case of g2(0) > 2 is possible. As one can see from Fig. 13,
the latter phenomenon (known as superbunching) occurs for higher harmonics of SASE FEL, or for the
fundamental when the SASE FEL operating in the non-linear regime.

Figure 14 shows the dependence on the undulator length of the normalized coherence time τ̂c =
ρω0τc, where τc is given by Eq. (6). For the fundamental harmonic, the coherence time achieves its
maximal value near the saturation point and then decreases drastically. The maximum value of τ̂c depends
on the saturation length and, therefore, on the value of the parameter Nc. With logarithmic accuracy, we
have the following expression for the coherence time of the fundamental harmonic:

(τ̂c)max '
√
π lnNc

18
. (17)

Longitudinal coherence for higher harmonics evolves in three different stages. Initially (up to
ẑ = 7–8, see Fig. 14) coherence time increases linearly, as it should, for the spontaneous emission of
radiation from the undulator. When the process of non-linear harmonic generation starts to dominate
over the spontaneous emission, the coherence time drops sharply. At positions around ẑ = 10–11,
we obtain some plateau where the ratio of the coherence time of the hth harmonic to that of the first
harmonic scales as 1/

√
h. At these distances, the SASE FEL still operates in the exponential regime

when the amplitude of the beam bunching is visibly less than unity, and the intensity of the hth harmonic
scales as Ih1 . Such a mechanism of non-linear harmonic generation leads to scaling of the coherence
time as 1/

√
h. To explain this, we refer to Fig. 6, which presents the temporal structure of the radiation

pulse. The radiation pulse consists of a number of spikes (wavepackets). For the sake of simplicity, let us
approximate a wavepacket with a Gaussian, G1(ŝ), with an r.m.s. width σ1. Non-linear transformation
of the intensity for the hth harmonic gives us envelope Gh ∝ Gh1 . Therefore, the relevant spike for
the hth harmonic is σh = σ1/

√
h. In other words, sharpening of the peaks in intensity distribution

leads to suppression of coherence times for higher harmonics. When the amplification process enters
the non-linear stage (ẑ & 11), the relative sharpening of the intensity peaks of higher harmonics
becomes stronger, and coherence time starts decrease again. In fact, as one can find from Fig. 13, the
coherence time at the saturation point (ẑ = 13) for higher harmonics approximately decreases inversely
proportional to the harmonic number h.
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Fig. 13: First-order (left column) and second-order (right column) correlation function at different lengths of the
FEL amplifier ẑ = 10–13. Solid, dashed, and dotted lines correspond to fundamental, third, and fifth harmonics,
respectively. Calculations made with simulation code FAST [77].
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Fig. 14: Normalized coherence time of SASE FEL as a function of normalized undulator length. Solid, dashed,
and dotted lines correspond to fundamental, third, and fifth harmonics, respectively

When comparing radiation spectra, it is convenient to use the normalized spectral density, H(Ĉ),
defined as ∞∫

−∞

dĈH(Ĉ) = 1 .

Here Ĉ = [2π/λw − ω(1 + K2)/(2cγ2)]/Γ is the detuning parameter. The frequency deviation, ∆ω,
from the nominal value of ωh can be recalculated as ∆ω = −2ρωhĈ. Since we consider the model of a
long rectangular bunch, the function H(Ĉ) can be treated as the normalized spectral density of both the
radiation energy and the power.

The spectral density of the radiation energy and the first-order time correlation function form a
Fourier transform pair [74]:

G(∆ω) =
1

2π

∞∫

−∞

dτg1(τ) exp(−i∆ωτ) . (18)

This is the so-called Wiener-Khinchin theorem.

The temporal structures of the radiation pulses (see Fig. 6) are used to calculate the first-order time
correlation function (see Fig. 13). Then the radiation spectra are reconstructed by Fourier transformation
of the first-order time correlation function. Figure 15 shows the evolution of the radiation spectra of
the SASE FEL radiation from the end of the linear regime to saturation. Note that the spectrum width
of the higher harmonics from SASE FEL differs significantly from that of incoherent radiation. For
the case of incoherent radiation, the relative spectrum width ∆ω/ωh scales inversely proportional to the
harmonic number h [79]. One can see that the situation changes dramatically for the case when the non-
linear harmonic generation process starts to dominate. At saturation, we find that the relative spectrum
bandwidth is nearly the same for all odd harmonics.

3.2 Short-pulse effects in SASE FEL
Up to now we have studied the properties of the SASE FEL radiation in the framework of a stationary
process, i.e. we considered the model of a long electron bunch with a rectangular profile. In this section,
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Fig. 15: Normalized spectrum at different lengths of the undulator: ẑ = 10–13. Solid, dashed, and dotted
lines correspond to fundamental, third, and fifth harmonics, respectively. Calculations made with simulation code
FAST [77].

we analyse the statistical properties of the radiation from a SASE FEL driven by short electron bunches.
In the linear regime, the radiation from a SASE FEL is a Gaussian random process. When approaching
saturation point, the statistical properties of the radiation change drastically on a scale of one field gain
length. We devote particular attention to the analysis of fluctuations of the total energy in the radiation
pulse and after a narrow-band monochromator. We show that slippage effects result in a set of novel
features of SASE FEL operating in the non-linear regime. In particular, for very short pulses, we observe
the effect of stabilization of fluctuations of energy in the radiation pulse and fluctuations of the energy
after the narrow-band monochromator. The suppression factor scales as a square root of the pulse length.

To be specific, we consider an electron beam with a Gaussian axial profile of the current density:

S(ŝ) =
j(ŝ)

jmax
= exp

(
− ŝ2

2σ̂2
b

)
,

where σ̂b = ρω0σb/c and σb is the r.m.s. bunch length. Here and in the following, the normalization
is performed with respect to the maximum current density, jmax. The r.m.s. bunch length is assumed
to be large, ω0σb/c � 1, or, in normalized form: σ̂b � ρ. Under this assumption, we can neglect
the contribution of the coherent seed to the input signal of the FEL amplifier starting from the shot
noise. Since ρ is always much less than unity, we can investigate short-pulse effects, when the bunch is
comparable to (or even much shorter than) the typical slippage distance c/(ρω0).

Even without simulations, we can predict the general properties of the radiation from a SASE
FEL operating in the linear regime. Indeed, shot noise in the electron beam is a Gaussian random proc-
ess [32]. The FEL amplifier, operating in the linear regime, can be considered as a linear filter that does
not change statistics. As a result, the radiation is also a Gaussian random process. In this case, the
probability distribution of the instantaneous radiation power should be the negative exponential distri-
bution (the notion of instantaneous power refers to a certain moment of time and a certain z coordinate,
and that the analysis must be performed over an ensemble of pulses). Also, the finite-time integrals of

20

E.A. SCHNEIDMILLER AND M.V. YURKOV

558



the instantaneous power and the integrated spectral density (measured after the monochromator) should
fluctuate in accordance with the gamma distribution. Nevertheless, a reasonable question arises as to
what are the features of the radiation from SASE FEL operating in the non-linear mode and, in particular,
at saturation and post-saturation regime.

In the case of a SASE FEL driven by a short electron bunch, we deal with non-stationary random
process, and temporal coherence can be described in terms of an effective correlation function [6]:

g
(eff)
1 (τ) =

∞∫
−∞
〈Ẽ(t̄+ τ/2)Ẽ∗(t̄− τ/2)〉dt̄

∞∫
−∞
〈|Ẽ(t̄)|2〉dt̄

, (19)

where t̄ = (t+ t′)/2 and τ = t− t′.
The normalized envelope of the radiation power spectrum and the effective correlation function

are connected by a Fourier transform [6]:

〈|Ē(∆ω)|2〉
∞∫
−∞
〈|Ē(∆ω)|2〉d(∆ω)

=
1

2π

∞∫

−∞

dτg
(eff)
1 (τ)ei∆ωτ . (20)

In other words, the correlation function g
(eff)
1 (τ) effectively describes the case of a long rectangular

bunch producing the same spectrum as that of a bunch with a gradient profile.

It is natural to define the coherence time for the non-stationary process as

τc =

∞∫

−∞

dτ |g(eff)
1 (τ)|2 . (21)

To obtain the output characteristics of the radiation from SASE FEL, one should perform a large
number of simulation runs with a time-dependent simulation code. The result of each run contains par-
ameters of the output radiation (field and phase) stored in the boxes over the full length of the radiation
pulse. At the next stage of the numerical experiment, the data arrays should be handled to extract infor-
mation on statistical properties of the radiation. Probability distribution functions of the instantaneous
radiation power, of the finite-time integrals of the instantaneous power, and of the radiation energy after
the monochromator installed at the exit of the SASE FEL are calculated by plotting histograms of large
amounts of statistical data.

3.2.1 Average energy and fluctuations
The time structure of a sample radiation pulse and the radiation power averaged over an ensemble are
presented in Fig. 16 for different bunch lengths. It can be seen that, for values of σ̂b of about unity,
the radiation pulse is visibly shifted from the centre of the electron bunch, owing to the slippage effect.
In Fig. 17, the number of modes M is plotted against the longitudinal coordinate for different bunch
lengths. The SASE FEL operates in the linear regime, and the number of modes is M = 1/σ2

E , where
σ2
E = 〈(E − 〈E〉)2〉/〈E〉2 is the relative energy dispersion in the radiation pulse.

Figure 18 shows the evolution of the averaged efficiency along the undulator length. The averaged
efficiency is defined as 〈η̂〉 = 〈Erad〉/(ργmec

2N), where Erad is energy in the radiation pulse, and N is
the number of electrons in the bunch. The dashed line in Fig. 18 represents the averaged efficiency for the
case of a long electron bunch with a rectangular profile. The amplification process involves three stages:
start-up from shot noise, a stage of exponential gain, and a non-linear stage. Let us define the saturation
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Fig. 16: Averaged (left column) and typical single-shot (right column) axial distribution over ŝ = ρω0(z/v̄z − t))
of normalized radiation power from SASE FEL for different r.m.s. bunch lengths of σ̂b = 0.5, 2, and 8 (upper,
middle, and lower plots, respectively). Dashed lines represent axial profile of the beam current. The normalized
length of the undulator is ẑ = 10. Calculations made with simulation code FAST [77].

point as the first maximum of the gain curve. At σ̂b . 2, the saturation length increases as ẑsat ∝ 1/
√
σ̂b,

and the averaged saturation efficiency decreases as 〈η̂〉 ∝ √σ̂b. These features of short bunch effects
were addressed in an earlier paper [29]. Figure 19 shows the dependence of the saturation efficiency on
the bunch length. It can be seen that the saturation efficiency quickly approaches an asymptotical value.
A comparison with the case of a long electron pulse with a rectangular profile (the dashed line in the
plot) shows that only 60% of electrons produce radiation. This is a consequence of the gradient profile
of the electron bunch.

Figure 20 (left plot) shows the evolution along the undulator of the radiation pulse energy, fluctu-
ations of the radiation pulse energy, and the r.m.s. photon pulse length. A maximum of the fluctuations
of the radiation pulse energy and a minimum radiation pulse duration are obtained at the end of the
exponential gain regime. Normalized values of these parameters (E/Esat, σE/σ

max
E , and σph/σ

min
ph )

exhibit nearly universal dependencies for the r.m.s. electron pulse duration ρωσz & 1, as shown in the
right plot in Fig. 20. This allows us to derive the universal dependency of the r.m.s. electron pulse length
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Fig. 17: Number of modes in the radiation pulse for Gaussian electron bunches of different lengths versus undulator
length: SASE FEL operates in linear regime. Calculations were made with simulation code FAST [77].

Fig. 18: Left: Averaged efficiency of SASE FEL versus undulator length ẑ = Γz for different lengths of electron
bunch σ̂b = 0.25-8. Right: normalized r.m.s. deviation of energy in radiation pulse; Nc = 108. Dashed line
represents case of long electron pulse with rectangular profile. Calculations made with simulation code FAST [77].

and the minimum FWHM radiation pulse length τmin
ph =

√
2πσmin

ph at the end of the linear regime as
a function of the number of modes in the radiation pulse (see Fig. 21). For M & 2 we have, with
reasonable practical accuracy:

σz ' τmin
ph '

Mλ

5ρ
' MλLsat

5cλw
. (22)

The minimum radiation pulse duration expressed in terms of the coherence time is τmin
ph ' 0.7×M ×τc.

Lengthening of the radiation pulse occurs when the amplification process enters the saturation
regime. This happens because of two effects. The first effect is lasing to saturation of the tails of
the electron bunch, and the second effect is pulse lengthening due to slippage effects (just simply one
radiation wavelength per one undulator period). The effect of lasing tails gives the same relative radiation
pulse lengthening as is illustrated in the bottom plot in Fig. 20. At the saturation point, pulse lengthening
is about a factor of 1.4 with respect to the minimum pulse for the linear regime given by Eq. (22), and is
increased up to a factor of two in the deep non-linear regime. It can also be seen that the slippage effect
is more pronounced for relative lengthening of short pulses.
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green lines correspond to electron r.m.s. pulse durations ρωσz of 2, 4, and 8, respectively. Values on the right plot
are normalized as E/Esat, σE/σmax

E , and σph/σmin
ph .

3.2.2 Correlation functions and coherence time
The effective correlation function is calculated as follows. We perform a large number of simulation runs,
calculate the spectrum of each pulse, and calculate the envelope of the normalized averaged spectrum.
Equation (20) is used to calculate the first-order correlation function. The plot of the effective correlation
function g1(τ) at saturation is shown in Fig. 22. The circles in this plot represent the correlation function
for the case of a long electron pulse with a rectangular profile [32]. Figure 23 shows plots for the
coherence time τ̂c (Eq. (21)) for different electron pulse lengths. Analysis of these results allows us to
state that for the bunch length σ̂b & 4 we have good agreement between the case of finite pulse duration
and asymptotic results for a long pulse with a rectangular profile. Conversely, at short bunch length,
σ̂b . 2, the behaviour of the coherence time differs visibly from an asymptotic one. This is a clear
indication of a different physical process.
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Fig. 22: Module of first-order time correlation function, where σ̂b = 8 and Nc = 108; SASE FEL operates at
saturation, ẑ = 14. Circles correspond to the case of a long electron bunch with a rectangular profile. Calculations
made with simulation code FAST [77].

3.2.3 Fluctuations of energy in the radiation pulse
The right plot in Fig. 18 shows the normalized r.m.s. deviation of energy in the radiation pulse. There
is a straightforward explanation for the behaviour of the fluctuations in the linear regime: the number
of longitudinal modes decreases with the pulse length and the undulator length. The radiation of the
SASE FEL operating in the linear regime is a Gaussian random process, so the probability distribution
of the energy in the radiation pulse is a gamma distribution. The situation changes drastically when the
amplification process enters a non-linear stage. It is seen that deviation of energy drops quickly on a scale
of a field gain length. For a long pulse, fluctuations are suppressed as 1/

√
σ̂b, which is a consequence

of increasing the number of statistically independent spikes in the radiation pulse [29]. The physical
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Fig. 23: Normalized coherence time τ̂c versus undulator length. Electron bunch length varies within the limits
σ̂b = 0.5–8; Nc = 108. Calculations made with simulation code FAST [77].

Fig. 24: Averaged normalized radiation power versus time; SASE FEL operates in the non-linear regime. Undu-
lator lengths are ẑ = 16, 17, and 18. Dashed line represents electron bunch profile (σ̂b = 0.5). Calculations made
with simulation code FAST [77].

picture becomes quite different for the bunch length σ̂b . 2: the deviation of energy in the radiation
pulse starts to decrease with the bunch length as

√
σ̂b. The nature of this phenomenon can be understood

by analysing the structure of the radiation pulse (see Fig. 24). At the end of the linear mode of operation,
a SASE FEL driven by a short electron bunch produces radiation pulses of nearly the same shape, but
with amplitudes fluctuating by almost negative exponential distribution. When the amplification process
enters the non-linear stage, the radiation power is saturated, and pulses sleep forward. A further increase
in the total energy occurs, due to the radiation of bunched electron beam. Since maximal bunching of the
electron beam is limited to unity, this additional radiation is well stabilized, leading to overall stability
of the total energy in the radiation pulse.

Simulations show that the statistics of the radiation also change drastically near the saturation
point, on a scale of one field gain length. Figure 25 shows the evolution of the probability density
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Fig. 25: Probability density distribution of energy in radiation pulse for different undulator lengths; electron pulse
length, σ̂b = 2. Solid curve represents gamma distribution. Calculations made with simulation code FAST [77].

distribution of energy in the radiation pulse for different lengths of the undulator. The electron pulse
length is σ̂b = 2. The solid curve represents a gamma distribution. Such behaviour is also typical for
shorter bunch lengths.

3.2.4 Fluctuations of energy after narrow-band monochromator
Let us study the statistics of SASE FEL radiation filtered through a narrow-band monochromator. Plots
of the normalized r.m.s. deviation of energy after a narrow-band monochromator versus undulator length
are presented in Fig. 26. In the linear stage of SASE FEL operation, the value of normalized energy
deviation is equal to unity, and energy fluctuates in accordance with a negative exponential distribution.
This is a consequence of the fact that, in this case, radiation is a Gaussian random process. However, in
the non-linear mode of operation, we obtain a significant decrease in fluctuations when the pulse length
decreases (see Fig. 27). This effect has a simple physical explanation. When a SASE FEL driven by
a short bunch operates in the linear regime, radiation pulses have a similar shape each time, but the
amplitude fluctuates by an almost negative exponential distribution (see left plot in Fig. 16). When the
amplification process enters the non-linear stage, amplitudes of different pulses are equalized, owing
to saturation effects, while keeping the close shape (see right plot in Fig. 28). The spectrum of the
radiation pulse is given by the Fourier transform of the radiation field, and at saturation we obtain a nearly
similar spectrum envelope for different pulses (see right plot in Fig. 29). As a result, we can expect that
fluctuations of the radiation energy after a narrow-band monochromator should follow fluctuations of the
total energy in the radiation pulse. Figure 30 confirms this simple physical consideration. At saturation,
fluctuations of the energy after the narrow-band monochromator decrease as σM ' σE ∝

√
σ̂b.

Study of the amplification process in the SASE FEL driven by an electron bunch of finite pulse
duration allows us to make the following conclusions. For the bunch length σ̂b & 4, asymptotical
results [32] for a long rectangular bunch are applicable. At σ̂b . 2, the SASE FEL exhibits quite
different behaviour, caused by the strong influence of slippage effects. In addition to a reduction in
the FEL gain and efficiency [29], short-pulse effects strongly influence the statistical properties of the
radiation in the non-linear regime. In particular, for very short pulses, we found the effect of stabilization
of fluctuations of energy in the radiation pulse and fluctuations of the energy after the narrow-band
monochromator. The suppression factor scales as

√
σ̂b with electron bunch length. This effect has been

measured experimentally at the TTF FEL [46].
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Fig. 26: Normalized r.m.s. deviation of energy after narrow-band monochromator versus undulator length. Elec-
tron bunch length changes within the limits σ̂b = 0.5–4. Nc = 108. Calculations made with simulation code
FAST [77].
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Fig. 27: Normalized r.m.s. deviation of energy after narrow-band monochromator versus length of electron bunch;
SASE FEL operates at saturation. Calculations made with simulation code FAST [77].

4 Transverse coherence
At the initial stage of amplification, the spatial coherence is poor, and the radiation consists of a large
number of transverse modes. Longitudinal coherence is poor as well. In the exponential stage of amplifi-
cation, transverse modes with higher gain dominate over modes with lower gain as the undulator length
progresses. This feature is also known as the mode competition process. Longitudinal coherence is
also improving in the high-gain linear regime. The mode selection process stops at the onset of the
non-linear regime, and maximum values of the degree of the transverse coherence and of the coherence
time are reached at this point. The undulator length to saturation is in the range of about nine (hard
X-ray SASE FELs) to eleven (visible-range SASE FELs) field gain lengths [41]. The situation with
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Fig. 28: Normalized power of SASE FEL radiation in (left) the linear regime and (right) at saturation. Solid
curves are single pulses, and circles represent averaging over many pulses; dashed curve is electron bunch profile,
σ̂b = 0.5. Calculations made with simulation code FAST [77].
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Fig. 29: Spectrum of SASE FEL radiation in (left) the linear regime and (right) at saturation. Solid curves are single
pulses (see Fig. 16); circles represent averaging over many pulses. Electron bunch length, σ̂b = 0.5. Calculations
made with simulation code FAST [77].

Fig. 30: Normalized r.m.s. deviation of (1) total energy in the radiation pulse and (2) energy after narrow-band
monochromator versus undulator length. Length of electron bunch, σ̂b = 0.5. Calculations made with simulation
code FAST [77].
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transverse coherence is favourable when the relative separation of the field gain between the fundamental
and higher modes exceeds 25–30%. In this case, the maximum degree of transverse coherence can exceed
90% [39, 41]. Further development of the amplification process in the non-linear stage leads to visible
degradation of the coherence properties.

Separation of the gain of the FEL radiation modes mainly depends on the value of the diffraction
parameter. An increase in the value of the diffraction parameter results in less relative separation of the
gain of the modes. In this case, we deal with the mode degeneration [6, 68]. Since the number of gain
lengths to saturation is limited, the contribution of the higher spatial modes to the total power increases
with the value of the diffraction parameter, and the transverse coherence degrades. The range of large
diffraction parameter values is typical for SASE FELs operating in the hard X-ray wavelength range.
It is also worth noticing that a spread of longitudinal velocities (due to energy spread and emittance)
helps to suppress high-order modes, thus improving transverse coherence properties. This consideration
suggests that a tight focusing of the electron beam in the undulator can be important for reaching a good
coherence, owing to a reduction of the diffraction parameter and an increase of the velocity spread.

In this section, we present a thorough analysis of the coherence properties of the radiation from
a SASE FEL. The analysis is performed in the framework of three-dimensional theory. We find that
there is such a parameter range where the degree of transverse coherence of the radiation from SASE
FEL is visibly less than unity. We also show that the pointing stability of the SASE FEL beam suffers
from insufficient mode selection of higher spatial radiation modes, which happens for large values of the
diffraction parameter.

4.1 FEL radiation modes
We consider an axisymmetrical model of the electron beam. It is assumed that the transverse distribution
function of the electron beam is Gaussian, so that the r.m.s. transverse size of the matched beam is
σ =
√
εβ, where ε is the r.m.s. beam emittance and β is the beta function. In the framework of the three-

dimensional theory, the operation of a short-wavelength FEL amplifier is described by the following
parameters: the diffraction parameter B, the energy spread parameter Λ̂2

T, the betatron motion parameter
k̂β , and the detuning parameter Ĉ [6, 70]:

B = 2Γ̄σ2ω/c , Ĉ = C/Γ̄ ,

k̂β = 1/(βΓ̄) , Λ̂2
T = (σE/E)2/ρ̄2 , (23)

The gain parameter Γ̄ and efficiency parameter ρ̄ are given by:

Γ̄ =

[
I

IA

8π2K2A2
JJ

λλwγ3

]1/2

, ρ̄ =
λwΓ̄

4π
. (24)

Here, E = γmc2 is the energy of electron, γ is a relativistic factor, and C = 2π/λw − ω/(2cγ2
z ) is

the detuning of the electron with nominal energy E0. Note that the efficiency parameter ρ̄ entering the
equations of the three-dimensional theory relates to the one-dimensional parameter ρ as ρ = ρ̄/B1/3

[4, 6]. The following notation is used here: I is the beam current, ω = 2πc/λ is the frequency of the
electromagnetic wave, λw is undulator period,K is the r.m.s. undulator parameter, γ−2

z = γ−2+θ2
s , IA =

mc3/e = 17 kA is the Alfven current, AJJ = 1 for a helical undulator and AJJ = J0(K2/2(1 +K2))−
J1(K2/2(1 + K2)) for a planar undulator. J0 and J1 are the Bessel functions of the first kind. The
energy spread is assumed to be Gaussian with r.m.s. deviation σE.

The amplification process in a SASE FEL starts from the shot noise in the electron beam. At
the initial stage of amplification, the coherence properties are poor, and the radiation consists of a large
number of transverse and longitudinal modes [6, 39, 67–73]:

Ẽ =
∑

m,n

∫
dωAmn(ω, z)Φmn(r, ω) exp[Λmn(ω)z + imφ+ iω(z/c− t)] . (25)
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Fig. 31: Contour plot of ratio of maximum field gain of TEM10 to field gain of the ground TEM00 mode versus
radiation wavelength and emittance: beam current, 1.5 kA; beta function, 10 m. Calculations made with simulation
code FAST [77].

Each mode is characterized by the eigenvalue Λmn(ω) and the field distribution eigenfunction Φmn(r, ω).
The real part of the eigenvalue Re(Λmn(ω)) is referred to as the field gain. The field gain length is
Lg = 1/Re(Λmn(ω)). Eigenvalues and eigenfunctions are the solutions of the eigenvalue equation
[69, 70]. Each eigenvalue has a maximum at a certain frequency (or, at a certain detuning), so that
the detuning for each mode is chosen automatically in the case of a SASE FEL (in contrast with seeded
FELs, where the detuning can be set to any value). Thus, we will in fact deal with the three dimensionless
parameters: B, k̂β , and Λ̂2

T.

Let us look closer at the properties of the radiation modes. The gains for several modes are depicted
in Fig. 31 as functions of the diffraction parameter. The values for the gain correspond to the maximum of
the scan over the detuning parameter Ĉ. The curve for the TEM00 mode shows the values of normalized
gain Re(Λ00/Γ̄). Curves for the higher spatial modes show the ratio of the gain of the mode to the gain of
the fundamental mode, Re(Λmn/Λ00). Sorting of the modes by the gain results in the following ranking:
TEM00, TEM10, TEM01, TEM20, TEM11, TEM02. The gain of the fundamental TEM00 mode is always
above the gain of higher-order spatial modes. The difference in the gain between the fundamental TEM00

mode and higher-order spatial modes is pronounced for small values of the diffraction parameter B . 1.
The gain of higher-order spatial modes approaches, asymptotically, the gain of the fundamental mode for
large values of the diffraction parameter. In other words, the effect of mode degeneration takes place. Its
origin can be understood through a qualitative analysis of the eigenfunctions (distribution of the radiation
field in the near zone). Figure 32 shows eigenfunctions of the FEL radiation modes for two values of
the diffraction parameter, B = 1 and B = 10. We observe that, for small values of the diffraction
parameter, the field of the higher spatial modes spans far away from the core of the electron beam,
while the fundamental TEM00 mode is more confined. This feature provides a higher coupling factor
of the radiation with the electron beam and higher gain. For large values of the diffraction parameter,
all radiation modes shrink to the beam axis, which results in equalization of coupling factors and of the
gain. Asymptotically, the eigenvalues of all modes tends to the one-dimensional asymptote as [43]:

Λmn/Γ̄ '
√

3 + i

2B1/3
− (1 + i

√
3)(1 + n+ 2m)

3
√

2B2/3
. (26)

For a SASE FEL, the undulator length to saturation is in the range from about nine (hard X-
ray range) to eleven (visible range) field gain lengths [41, 42, 65]. The mode selection process stops
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Fig. 32: Amplitude of the eigenfunctions of the FEL radiation modes, |Φmn(r)|/|Φmax|. Left: diffraction parame-
ter B = 1. Right: B = 10. Detuning corresponds to the maximum of the gain. Energy spread parameter, Λ̂2

T → 0;
betatron motion parameter,s k̂β → 0. Colour codes refer to the radial index of the mode: 0, black; 1, red; 2, green.
Line type codes refer to the azimuthal index of the mode: 0, solid line; 1, dotted line; 2, dashed line. Calculations
made with simulation code FAST [77].

at the onset of the non-linear regime, about two field gain lengths before saturation. Let us make a
simple estimate of the value of the diffraction parameter B = 10 and the cold electron beam, Λ̂2

T → 0,
and k̂β → 0. We get from Fig. 31 that the ratio of the gain Re(Λ10/Λ00) is equal to 0.87. With
an assumption of similar values of coupling factors, we find that the ratio of the field amplitudes at
the onset of the non-linear regime is about of factor of three only. An estimate of the contribution
of the higher spatial modes to the total power is about 10%. Another numerical example for B = 1
gives the ratio Re(Λ10/Λ00) = 0.73, and the ratio of field amplitudes exceeds a factor of 10. Thus,
an excellent transverse coherence of the radiation is not expected for a SASE FEL with a diffraction
parameter B & 10 and a small velocity spread in the electron beam.

A longitudinal velocity spread due to the energy spread and emittance serves as a tool for selective
suppression of the gain of the higher spatial modes [6,68]. Figures 33 and 34 show the dependence of the
gain of TEM00 and TEM10 modes on the betatron motion parameter and the energy spread parameter.
We see that with the fixed value of the diffraction parameter, the mode degeneration effect can be relaxed
at the price of gain reduction.

The betatron motion can influence the gain of different modes (and, therefore, transverse co-
herence properties) via two different mechanisms. First, the particles move across the beam, thus
transferring the information between different points in the beam cross-section. Second, as already
mentioned, there is a spread of longitudinal velocities that has a similar effect as the energy spread (and
is usually more important than the first one). One can introduce a combination of parameters B and k̂β
that can, to some extent, be similar to the energy spread parameter:

(Λ̂2
T)eff = B2k̂4

β (27)

Finally, let us note that the situation with transverse coherence is favourable when relative separ-
ation of the gain between the fundamental and higher spatial modes is more than 25–30%. In this
case, the degree of transverse coherence can reach values above 90% at the end of the high-gain linear
regime [39, 43]. Further development of the amplification process in the non-linear stage leads to a
significant degradation of the spatial and temporal coherence [41, 42, 65].

4.2 Coherence properties of the radiation from the FLASH free electron laser
In the current experimental situation, many parameters of the electron beam at FLASH depend on prac-
tical tuning of the machine. Analysis of measurements and numerical simulations shows that, depending
on the tuning of the machine, emittance may change from about 1 to about 1.5 mm-mrad. Tuning at
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Fig. 33: Dependence of gain of (black) TEM00 and (red) TEM10 modes on betatron motion parameter k̂β =

1/(βΓ̄). Values normalized to those at k̂β → 0. Green curve shows ratio of gain of TEM10 mode to gain of
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Fig. 34: Dependence of gain of (black) TEM00 and (red) TEM10 modes on energy spread parameter Λ̂2
T. Values

normalized to those at Λ̂2
T → 0. Green curve shows ratio of gain of TEM10 mode to gain of TEM00 mode.

Diffraction parameter, B = 10; betatron oscillation parameter, k̂β → 0. Calculations made with simulation code
FAST [77].

33

COHERENCE PROPERTIES OF THE RADIATION FROM X-RAY FREE ELECTRON LASERS

571



small charges may enable smaller values of the emittance, down to 0.5 mm-mrad, to be reached. The
peak current may change in the range from 1 kA to 2 kA, depending on the tuning of the beam formation
system. An estimate of the local energy spread is σE [MeV] ' 0.1× I [kA]. The average beta function
in the undulator is about 10 m.

Let us choose a reference working point with a radiation wavelength 8 nm, r.m.s. normalized emit-
tance 1 mm-mrad, and beam current 1.5 kA. The parameters of the problem for this reference point are:
diffraction parameter,B = 17.2; energy spread parameter, Λ̂2

T = 1.7×10−3; betatron motion parameter,
k̂β = 5.3× 10−2. Then the reduced parameters at other working points can be easily recalculated using
the scaling:

k̂β ∝
1

βI1/2λ1/4
, Λ̂2

T ∝ Iλ1/2 , B ∝ εnβI
1/2

λ1/4
.

The effective contribution of the emittance to the longitudinal velocity spread (Eq. (27)) scales as

(Λ̂2
T)eff ∝

ε2n
β2Iλ3/2

and equals 2.3× 10−3 at the considered working point.

Analysing these simple dependencies in terms of their effect on mode separation, we can state
that:

– Dependencies on the wavelength are relatively weak (except for (Λ̂2
T)eff ), i.e. one should not ex-

pect a significantly better transverse coherence at longer wavelengths. Moreover, mode separation
can even be somewhat improved at shorter wavelengths, owing to a significant increase in (Λ̂2

T)eff .
– Reduction of the peak current (by going to a weaker bunch compression) would lead to an improve-

ment of mode separation (even though the energy spread parameter would smaller). Obviously,
the peak power at the saturation would be reduced.

– Dependence on the normalized emittance is expected to be weak because of the two competing
effects. Mode separation due to a change of the diffraction parameter can be to a large extent
compensated by a change of the longitudinal velocity spread. As we will see next, this does indeed
indeed in the considered parameter range.

A contour plot for the value of the diffraction parameter B for the value of beta function of 10 m
and the value of beam current 1.5 kA is prese0nted in Fig. 35. We see that the value of the diffraction par-
ameter is B & 10 in the whole parameter space. Figure 31 shows the ratio of the field gain Re(Λ10(ω))
to the value of the field gain Re(Λ00(ω)) of the fundamental mode. We see that this ratio is above 0.8 in
the whole range of parameters, and we can expect significant contribution of the first azimuthal mode to
the total radiation power. We can also notice relatively weak dependencies on the emittance and on the
wavelength.

We illustrate the general characteristics of FLASH with a specific numerical example for FLASH
operating at the wavelength of 8 nm, peak current 1.5 kA, and r.m.s. normalized emittance 1 mm-mrad.

4.2.1 Radiation power
Figure 36 shows the evolution along the undulator of the radiation power in the fundamental harmonic.
Higher values of the peak current and smaller emittances would enable higher radiation powers to be
achieved. When the amplification process enters the non-linear stage, a process of non-linear harmonic
generation takes place [53–61, 64]. Contour plots in Fig. 37 show the relevant contribution to the total
power of the third and the fifth harmonic at the saturation point. A general observation is that the relative
contribution of the higher harmonic is higher for smaller values of the emittance. With the value of
the normalized emittance of 1 mm-mrad, partial contributions for the third and the fifth harmonic are
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Fig. 35: Contour plot for diffraction parameter B versus normalized emittance and radiation wavelength. Beam
current, 1.5 kA; beta function, 10 m. Calculations made with simulation code FAST [77].
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Fig. 36: Evolution of radiation power along undulator for (left) fundamental and (right) third harmonics. Colour
codes (black, red, and green) refer to different emittances, εn = 0.5, 1, and 1.5 mm-mrad. Line styles (solid,
dash, and dot) refer to different values of peak current, 1 kA, 1.5 kA, and 2 kA. Radiation wavelength, 8 nm; beta
function, 10 m. Calculations made with simulation code FAST [77].

0.7× 10−2 and 2× 10−4, respectively. Note that this result is fairly close to that described by universal
scaling law of Eq. (15), with an appropriate correction for longitudinal velocity spread derived in the
previous section.

4.2.2 Temporal coherence
Plots in Fig. 38 show the coherence time for the whole parameter range for the fundamental and the third
harmonic. In the high-gain linear regime, the coherence time increases as a square root of undulator
length. It reaches a maximum value just before saturation point, and then decreases. The value of the
coherence time at the saturation is close to that derived in the previous section in the framework of the
one-dimensional theory (Eq. (17)), in terms of the FEL parameter ρ [4] and the number of cooperating
electrons Nc = I/(eρ1Dω) [6]. The coherence time for the higher harmonics at the saturation point
and in the post-saturation amplification stage can be derived using the scaling derived in the previous
section—it scales inversely proportional to the harmonic number, while the relative spectrum bandwidth
remains constant with the harmonic number.
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Fig. 38: Evolution along undulator of coherence time of radiation at (left) fundamental and (right) third harmonics.
Colour codes (black, red, and green) refer to different emittance,εn = 0.5, 1, and 1.5 mm-mrad. Line styles (solid,
dash, and dot) refer to different values of peak current, 1 kA, 1.5 kA, and 2 kA. Radiation wavelength, 8 nm; beta
function, 10 m. Calculations made with simulation code FAST [77].

4.2.3 Spatial coherence
Figure 39 presents an overview of the degree of transverse coherence in the considered parameter space.
In our studies of coherent properties of FELs [41], we have found that, for an optimized SASE FEL, the
degree of transverse coherence can be as high as 0.96. One can see from Fig. 39 that, in the considered
cases, the degree of transverse coherence for the first harmonic is visibly less.

We should distinguish two effects limiting the degree of transverse coherence at FLASH. The first
one is called mode degeneration and was intensively discussed in this paper. This physical phenomenon
takes place at large values of the diffraction parameter [6]. Figure 40 shows the contribution of higher
azimuthal modes to the total power for the specific example of emittance 1 mm-mrad and peak current
1.5 kA. The contribution of the first azimuthal modes decreases in the high-gain linear regime, but only
to 12%, and then starts to increase in the non-linear regime, reaching 16% at the undulator end.

The second effect is connected with a finite longitudinal coherence; it was discovered in Ref. [39]
and discussed in Refs. [41, 42]. The essence of the effect is a superposition of mutually incoherent
fields produced by different longitudinally uncorrelated parts of the electron bunch. In the exponential
gain regime, this effect is relatively weak, but it prevents a SASE FEL from reaching full transverse
coherence, even when only one transverse eigenmode survives [39]. In the deep non-linear regime
beyond FEL saturation, this effect can be strong and can lead to a significant degradation of the degree
of transverse coherence [41, 42]. In particular, as one can see from Fig. 39, this effect limits the degree
of transverse coherence to about 50% when FLASH operates in the deep non-linear regime.
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Fig. 39: Evolution along undulator of degree of transverse coherence of radiation. Left: fundamental frequency (8
nm). Right: third harmonic (2.66 nm). Colour codes (black, red, and green) refer to different emittances, εn = 0.5,
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2 kA. Radiation wavelength, 8 nm; beta function, 10 m. Calculations made with simulation code FAST [77].
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Fig. 40: Partial contribution of the higher azimuthal modes for (left) fundamental and (right) third harmonic. Black,
red, and green curves refer to modes with n = ±1, n = ±2, and n = ±3, respectively. Radiation wavelength, 8
nm; beta function, 10 m; beam current, 1.5 kA; r.m.s. normalized emittance, 1 mm-mrad. Calculations made with
simulation code FAST [77].

Higher harmonics are derived from the non-linear process governed by the fundamental harmonic.
As a result, the coherence properties of the harmonics follow the same tendencies as the fundamental,
but with visibly lower degree of transverse coherence [65].

Note that an easier way to improve the transverse coherence dramatically would be to decrease
the beam current such that saturation is achieved at the very end of the undulator. This would eliminate
not only the degradation in the deep non-linear regime, but would also improve the mode selection
process because the diffraction parameter is then reduced while the velocity spread due to emittance is
increased. According to our expectations, the degree of transverse coherence might reach around 90%
in this regime. Such a regime was realized at FLASH on a user‘s demand, but it is not typical for the
machine operation because the peak power is low due to a low peak current.

One can also suppress unwanted effects in the deep non-linear regime by kicking the electron
beam at the saturation point (or close to it) when the peak current is high. Then one can still have a high
power and an improved (about 70–80%) degree of transverse coherence. Further improvement could be
achieved by reducing the beta function (thus improving the mode selection, as discussed).

4.2.4 Pointing stability and mode degeneration
Mode degeneration has a significant impact on the pointing stability of a SASE FEL. Let us illustrate
this effect with a specific example for FLASH, operating with average energy in the radiation pulse of
60 µJ. The left plot in Fig. 41 shows evolution along the undulator of the radiation energy in azimuthally
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Fig. 41: Left: evolution of energy in radiation pulse versus undulator length. Colour codes (black to blue) corre-
spond to different shots. Line styles correspond to total energy in the azimuthally symmetrical

∑
TEM0m modes

(solid lines), and in the first azimuthal modes
∑

TEM1m (dashed lines). Right: partial contribution of the first az-
imuthal modes to the total radiation power,

∑
P1m/Ptot. Radiation wavelength, 8 nm; beta function, 10 m; beam

current, 1.5 kA; r.m.s. normalized emittance, 1 mm-mrad. Calculations made with simulation code FAST [77].

symmetrical modes and of the energy in the modes with azimuthal index n = ±1. The right plot in
this figure shows relative contribution to the total radiation energy of the modes with azimuthal index
n = ±1. Four consecutive shots are shown here. Temporal profiles of the radiation pulses are presented
in Fig. 42. The intensity distributions in the far zone for these four shots are shown in four rows in
Fig. 43. Four profiles on the left-hand side of each row show intensity distributions in the single slices
for the times 40 fs, 50 fs, 60 fs, and 70 fs. The right column presents intensity profiles averaged over full
shots. We see that the transverse intensity patterns in the slices have a rather complicated shape, owing to
interference of the fields of statistically independent modes with different azimuthal indexes. The shape
of the intensity distributions changes on a scale of coherence length. Averaging the slice distributions
over the radiation pulse results in a smoother distribution. However, it can clearly be seen that the spot
shape of a short radiation pulse changes from pulse to pulse. The centre of gravity of the radiation pulse
visibly jumps from shot to shot. The position of the pulse also jumps from shot to shot; this is frequently
referred to as bad pointing stability. Note that the effect illustrated here is a fundamental one, which
takes place as a result of the mode degeneration when the contribution of the higher azimuthal modes
to the total power is pronounced (10–15% in our case). Only in the case of a long radiation pulse, or
after averaging over many pulses, do we come asymptotically to an azimuthally symmetrical radiation
distribution.

4.3 Optimized SASE FEL
The best properties of the output radiation from SASE FEL correspond to the case when the fundamental
TEM00 mode dominates over higher-order spatial modes. Thus, the standard procedure for optimization
of the SASE FEL is optimization for the maximum gain of the fundamental mode. For given parameters
of the electron beam and the undulator there always exists an optimum focusing beta function βopt,
which provides a minimum gain length Lg of the fundamental mode [66, 80]:

Lg0 = 1.67

(
IA

I

)1/2 (εnλw)5/6

λ2/3

(1 +K2)1/3

KAJJ
(1 + δ) ,

βopt ' 11.2

(
IA

I

)1/2 ε
3/2
n λ

1/2
w

λKAJJ
(1 + 8δ)−1/3 ,

δ = 131
IA

I

ε
5/4
n

λ1/8λ
9/8
w

σ2
γ

(KAJJ)2(1 +K2)1/8
. (28)
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Fig. 42: Temporal structure of four radiation pulses. Black: power of azimuthally symmetrical modes. Red:
power of first azimuthal modes. Radiation wavelength, 8 nm; beta function, 10 m; beam current, 1.5 kA; r.m.s.
normalized emittance, 1 mm-mrad; undulator length, 27 m. Calculations made with simulation code FAST [77].

A realization of the conditions of Eq. (28) is referred to as an optimized FEL amplifier. Sometimes, for
technical reasons, the focusing beta function might be β > βopt. In such a case, the gain length can be
approximated as follows:

Lg(β) ' Lg(βopt)

[
1 +

(β − βopt)
2(1 + 8δ)

4β2
opt

]1/6

, for β > βopt (29)

Here εn = γε is the r.m.s. normalized emittance, σγ = σE/mc
2 is the r.m.s. energy spread (in units of

the rest energy), and factor AJJ is the usual coupling factor defined in the previous sections. Equation
(28) provides an accuracy better than 5% in the range of parameters

1 <
2πε

λ
< 5 , δ < 2.5

{
1− exp

[
−1

2

(
2πε

λ

)2
]}

(30)

The saturation length of the optimized SASE FEL is given by [42]:

Lsat ' 0.6 Lg ln

(
NλLg

λw

)
. (31)

Here, Nλ = Iλ/c is the number of electrons per wavelength. When operating vacuum ultraviolet and
X-ray SASE FELs, one typically has Lsat ' (10± 1)× Lg.

For small energy spread, δ � 1, the physical parameters describing operation of the optimized
FEL, the diffraction parameter B, and the parameter of betatron oscillations k̂β , are functions of the only
parameter ε̂ = 2πε/λ [6, 41]:

B = 2Γ̄σ2ω/c ' 12.5× ε̂5/2 ,
k̂β = 1/(βΓ̄) ' 0.158× ε̂−3/2 . (32)
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Fig. 43: Profiles of radiation intensity in the far zone. Rows (a–d) correspond to specific shots with temporal
structures presented in Fig. 42 (plots a–d). Profiles on the right-hand side show average intensity over full pulse.
Profiles 1 to 4 from the left-hand side show intensity distributions of selected slices corresponding to 40 fs, 50 fs,
60 fs, and 70 fs, respectively. Crosses denote the geometrical centre of the radiation intensity averaged over many
shots. Radiation wavelength, 8 nm; beta function, 10 m; beam current, 1.5 kA; r.m.s. normalized emittance, 1
mm-mrad; undulator length, 27 m. Calculations made with simulation code FAST [77].

The diffraction parameter B directly relates to diffraction effects and the formation of transverse
coherence. If diffraction expansion of the radiation on a scale of the field gain length is comparable
to the transverse size of the electron beam, we can expect a high degree of transverse coherence. For
this range of parameters, the value of the diffraction parameter is small. If diffraction expansion of the
radiation is small (which happens at large values of the diffraction parameter), we can expect significant
degradation in the degree of transverse coherence. This effect occurs simply because different parts of
the beam produce radiation nearly independently. In terms of the radiation expansion in the eigenmodes
of Eq. (25), this range of parameters corresponds to the degeneration of modes [6]. The diffraction
parameter for an optimized XFEL exhibits strong dependence on the parameter ε̂ (see Eq. (32)), and we
can expect the degree of transverse coherence to drop rapidly with the increase of the parameter ε̂.
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4.3.1 Characteristics of the radiation from optimized SASE FEL operating in the saturation regime
Figure 1 shows the evolution of the main characteristics of a SASE FEL along the undulator. If one traces
the evolution of the brilliance (degeneracy parameter) of the radiation along the undulator length, there is
always a point (defined as the saturation point [41]) where the brilliance reaches a maximum value. The
best properties of the radiation in terms of transverse and longitudinal coherence are achieved just before
the saturation point, and these values then degrade significantly, despite the radiation power continuing
to increase with undulator length.

Application of similarity techniques allows us to derive universal parametric dependencies of the
output characteristics of the radiation at the saturation point. As mentioned in Section 2, within accepted
approximations (optimized SASE FEL and negligibly small energy spread in the electron beam), normal-
ized output characteristics of a SASE FEL at the saturation point are functions of only two parameters:
ε̂ = 2πε/λ and the number of electrons in the volume of coherence Nc = INgλ/c, where Ng = Lg/λw

is the number of undulator periods per gain length. Characteristics of practical interest are: saturation
length Lsat, saturation efficiency ηsat = Psat/Pb (ratio of the radiation power to the electron beam
power Pb = γmc2I/e), coherence time τc, degree of transverse coherence ζ, degeneracy parameter δ,
and brillianceBr. Applications of similarity techniques to the results of numerical simulations of a SASE
FEL [41] gives us the following result:

L̂sat = Γ̄Lsat ' 2.5× ε̂5/6 × lnNc ,

η̂ = P/(ρ̄Pb) ' 0.17/ε̂ ,

τ̂c = ρ̄ωτc ' 1.16×
√

lnNc × ε̂5/6 ,
σω =

√
π/τc . (33)

These expressions provide reasonable practical accuracy for ε̂ & 0.5. With logarithmic accuracy in terms
of Nc, characteristics of the SASE FEL expressed in a normalized form are only functions of the par-
ameter ε̂. The saturation length, FEL efficiency, and coherence time exhibit monotonous behaviour in
the parameter space of modern XFELs (ε̂ ' 0.5, . . . , 5). The situation with the degree of transverse
coherence at saturation is more complicated, as we can see from Fig. 44—degradation of spatial co-
herence at small emittances seems to be counter-intuitive. To understand the origin of this phenomenon,
we trace in Fig. 45 the degree of transverse coherence ζ versus the reduced propagation coordinate z/zsat

for different values of the parameter ε̂. The typical behaviour of the degree of transverse coherence is that
it increases in the exponential stage of amplification, reaches a maximum value at the saturation point,
and degrades in the post-saturation regime. The increase of the degree of transverse coherence in the
exponential stage of amplification happens because of two physical effects. The first effect is the mode
selection process, which is reflected in Eq. (25). As we have shown, smaller values of the diffraction
parameter provide better mode selection. Simple calculations of the gain (see Fig. 46) shows that, for
values of diffraction parameter less than or approximately equal to one (diffraction-limited beam), one
should expect almost 100% contribution of the fundamental mode to the total power. However, this is
not the case. The maximum degree of transverse coherence is degraded for smaller emittances, as we can
see from Fig. 45. The physical effect responsible for such a degradation is the interdependence of the
poor longitudinal coherence and transverse coherence [39]. We pay attention to the feature that, owing
to the start-up from shot noise, every radiation mode entering Eq. (25) is excited within a finite spectral
bandwidth. This means that, in the high-gain linear regime, the radiation of the SASE FEL is formed by
many fundamental TEM00 modes with different frequencies. The transverse distribution of the radiation
field of the mode is also different for different frequencies. A smaller value of the diffraction parameter
(i.e. smaller value of ε̂) corresponds to larger deviation of the radiation mode from the plane wave. This
effect explains the degradation of the transverse coherence at small values of ε̂. The degree of transverse
coherence asymptotically approaches unity as (1−ζ) ∝ 1/z ∝ 1/ lnNc at small values of the emittance.
The maximum value of the degree of transverse coherence is about 0.96 and is achieved at ε̂ ' 1.
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Fig. 44: Degree of transverse coherence ζsat in saturation point versus ε̂. Number of electrons in coherence volume,
Nc = 4× 106. Calculations made with simulation code FAST [77].

Fig. 45: Evolution of degree of transverse coherence along undulator length for ε̂ = 0.5, 1, 2, 3, and 4. Undulator
length normalized to saturation length. Calculations made with simulation code FAST [77].

When the parameter ε̂ is large, the diffraction parameter is also large, leading to degeneration of
the radiation modes. The amplification process in the SASE FEL passes a limited number of field gain
lengths and, starting from some value of ε̂ the linear stage of amplification, becomes too short to provide
the mode selection process of Eq. (25). When the amplification process enters the non-linear stage, the
mode content of the radiation becomes even richer, owing to independent growth of the radiation modes
in the non-linear medium (see Fig. 47). Thus, at large values of ε̂, the degree of transverse coherence is
limited by poor mode selection. Analytical estimates show that, in the limit of large emittance, ε̂ � 1,
the degree of transverse coherence scales as 1/ε̂2. To avoid complications, we present here just a fit for
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Fig. 46: Ratio of maximum gain of higher modes to maximum gain of fundamental mode Re(Λmn)/Re(Λ00)

versus diffraction parameter B. Energy spread parameter, Λ̂2
T → 0, betatron motion parameter, k̂β → 0. Colour

codes refer to radial index of the mode: 0, black; 1, red; 2, green. Line type codes refer to azimuthal index of the
mode: 0, solid line, 1, dotted line; 2, dashed line. Black solid line shows gain of the fundamental mode Re(Λ00)/Γ̄.
Calculations made with simulation code FAST [77].

the degree of transverse coherence for the number of electrons in the coherence volume Nc = 4× 106:

ζsat '
1.1ε̂1/4

1 + 0.15ε̂9/4
. (34)

Recalculation from reduced to dimensional parameters is straightforward. For instance, the saturation
length is Lsat ' 0.6×Lg×lnNc. Using Eq. (33), we can calculate the normalized degeneracy parameter
δ̂ = η̂ζτ̂c and then the brilliance (Eq. (9)):

Br

[
photons

sec mrad2 mm2 0.1% bandw.)

]
' 4.5× 1031 × I[kA]× E[GeV]

λ[ ]
× δ̂ . (35)

4.3.2 Coherence properties of the higher odd harmonics
We start the analysis with a specific numerical example corresponding to ε̂ = 0.5. This operating point
corresponds to the maximum degree of transverse coherence that can be achieved in SASE FEL [41, 42,
44]. Figure 48 shows a slice of the temporal structure of the radiation pulse from a SASE FEL operating
in the saturation regime. Already, this specific example provides a lot of physical information. We note
that the spikes of all harmonics are well aligned in space, illustrating an effect of non-linear harmonic
generation: higher harmonics radiate only by those parts of the electron bunch that have been effectively
modulated by the fundamental harmonic. We also notice that the typical scale of the radiation intensities
of the third (fifth) harmonic is in the range of a few per cent (per mille) of the fundamental. Even a
brief look at the spike widths in Fig. 48 gives us an idea that the coherence time of the third harmonic
is significantly less than that of the fundamental harmonic. The spikes of the fifth harmonic are shorter
than those of the third harmonic; thus, the coherence time of the fifth harmonic should be even less.

The plots in Fig. 49 show the evolution along the undulator of the radiation power and brilliance.
The longitudinal coordinate is normalized to the saturation length of the fundamental harmonic. The
brilliance and power of the harmonics are normalized to the values corresponding to the saturation point
of the fundamental harmonic. We see that the radiation powers of all harmonics continue to increase
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Fig. 47: Optimized XFEL. Ratio of powers in the (black) third and (red) fifth harmonics to the power of the fun-
damental harmonic versus ˆε = 2πε/λ; SASE FEL operates at saturation point. Calculations made with simulation
code FAST [77].
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Fig. 48: Optimized XFEL. Temporal structure of radiation pulse in saturation point for ε̂ = 0.5. Black, red,
and green lines refer to first, third, and fifth harmonics, respectively. Calculations made with simulation code
FAST [77].
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All values normalized to values corresponding to the values at the saturation point of the first harmonic. Black,
red, and green lines refer to first, third, and fifth harmonic, respectively. Calculations made with simulation code
FAST [77].

after the saturation point of the fundamental harmonic. The increase in power of the third and the fifth
harmonic is visibly faster than that of the fundamental. An important feature is that the brilliances of
the higher harmonics also continue to increase after the saturation point. The maximum brilliance of
the higher harmonics is reached in the deep non-linear regime, mainly as a result of faster growth of
the harmonic radiation power with respect to the fundamental. This means that in a parameter range of
ε̂ ≈ 0.5, the electron beam after saturation remains a relatively good amplification medium for higher
harmonics. The contribution of higher harmonics to the total radiation power depends strongly on how
long the amplification process develops after the saturation point.

The plots in Fig. 50 show the evolution along the undulator of the coherence time and degree of
transverse coherence. We multiplied the coherence time by the harmonic number h to bring all curves
into scale. We find an important feature; that coherence time in the saturation regime scales inversely pro-
portional to harmonic number. Moreover, the relative spectrum bandwidth ∆ωh/ωh remains constant for
all harmonics. This finding confirms the result obtained earlier in the framework of the one-dimensional
model [64]. Note that recent measurements of the harmonic properties at FLASH and LCLS [13,81] are
in good qualitative agreement with the results reported here.

Figure 49 shows the evolution of the degree of transverse coherence along the undulator. Note that
we illustrate the parameter space providing the maximum degree of transverse coherence in the funda-
mental harmonic (about 95%) for an optimized X-ray FEL. An important observation is that the degree
of transverse coherence for higher harmonics is visibly less. There is nothing unusual in this result.
Qualitatively, it can be explained by the general feature of frequency multiplication schemes, which also
amplify noise progressively with harmonic number [82]. The fundamental harmonic already contains
visible noise content, resulting in a reduced degree of transverse coherence, and we can readily expect
further reduction for higher harmonics. An example of similar physical behaviour is the degradation of
longitudinal coherence in the high-gain harmonic generation scheme [83].

As already mentioned, the characteristics of the optimized FEL in the saturation point depend only
on the parameter, ε̂. Figure 51 shows the dependence of the degree of transverse coherence for the first,
third, and fifth harmonic on the value of the emittance parameter. We see that the maximum values of the
degree of transverse coherence correspond to values of ε̂ ≈ 0.5. While the coherence properties of the
fundamental harmonic do not change too much when ε̂ increases to 2, we obtain a significant degradation
for the third harmonic.
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Fig. 50: Optimized XFEL. Left: degree of transverse coherence, ζ. Right: normalized coherence time,τ̂c, versus
undulator length for ε̂ = 0.5. Black, red, and green lines refer to first, third, and fifth harmonic, respectively.
Coherence time is multiplied by corresponding harmonic number h. Calculations made with simulation code
FAST [77].
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Fig. 51: Optimized XFEL: degree of transverse coherence ζsat in saturation versus parameter ε̂ = 2πε/λ. Black
and red lines refer to first and third harmonics, respectively. Calculations made with simulation code FAST [77].

When we analyse expressions for the radiation power, we find that the dependencies for the ratios
of the power of higher harmonics to the fundamental become universal functions of emittance parameter
when we factorize them with factor A2

JJh/A
2
JJ1. Relevant plots are presented in Fig. 47. For large values

of the undulator parameter K, asymptotic values of A2
JJh/A

2
JJ1 are equal to 0.22 and 0.11 for the third,

and fifth harmonics, respectively. In the range of emittance parameter from 0.25 to 2, contributions to
the total power of the third (fifth) harmonic are between 0.3% and 1.4% (0.07% and 0.16%). Note that
the contribution of higher harmonics to the total power increases in the deep non-linear regime, and may
constitute a substantial amount (see Fig. 49).
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4.3.3 Mode degradation and pointing stability
The diffraction parameter scales with the emittance parameter as B ' 13 × ε̂5/2 . Starting from ε̂ > 1
the gain of the TEM10 mode approaches very close to the gain of the ground TEM00 mode (see Fig. 52).
The contribution of the TEM10 mode to the total power progresses with the increase of the emittance
parameter (see Fig. 53). Starting from ε̂ > 2, the azimuthal modes TEM2n appear in the mode contents,
and so on. The maximum value of the degree of transverse modes (which occurs at the end of the linear
regime) degrades gradually with the increase of the emittance parameter (see Fig. 52).

Mode degeneration has a significant impact on the pointing stability of a SASE FEL. Figure 53
shows the relative contribution to the total radiation energy of the modes with higher azimuthal indices.
Typical intensity distributions in the far zone are shown in Fig. 54. Transverse intensity patterns in
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Fig. 54: Typical slice distribution of radiation intensity for optimized SASE FEL with (left to right) ε̂ = 1, 2, 3, 4.
Circle denotes r.m.s. spot size. SASE FEL operates at saturation. Simulations run with code FAST [77].

Table 1: Parameter space of X-ray FELs

LCLS SACLA EXFEL SWISS FEL PAL XFEL
Energy [GeV] 13.6 8.0 17.5 5.8 10
Wavelength [A] 1.5 0.6 0.5 0.7 0.6
εn [mm-rad] 0.4 0.4 0.4 0.4 0.4
ε̂ 1 2.7 1.5 3.4 2.1

slices have a rather complicated shape, owing to the interference of the fields of statistically independent
modes with different azimuthal indices. These slice distributions are essentially non-Gaussian when the
relative contribution of higher azimuthal modes to the total power approaches 10%. The shapes of the
intensity and phase distributions change drastically on a scale of the coherence length, and the source
point position and pointing jumps from spike to spike. Figure 52 presents a quantitative description
of this phenomenon, using the notion of the r.m.s. deviation of the photon beam centre of gravity ∆θ

expressed in terms of the r.m.s. size of the photon beam. We see that there is no perfect pointing of the
photon beam, and that for ε̂ & 2 fluctuations of the pointing exceed 40%. Averaging of slice distributions
over a radiation pulse results in a smoother distribution. However, with a limited number of longitudinal
modes, the centre of gravity of the radiation pulse (position) and its shape jitter from shot to shot; this
is frequently referred to as poor pointing stability. This effect has been observed at FLASH [47] experi-
mentally, and should evidently take place at other X-ray facilities. Only in the case of a long radiation
pulse, or after averaging over many pulses, does the intensity distribution approach, asymptotically, an
azimuthally symmetrical shape.

Table 1 presents a list of parameters of the X-ray FELs compiled for the shortest design wavelength
[17–19,22,24]. We assume the normalized emittance to be the same for all cases (εn = 0.4 mm-mrad). A
lower electron beam energy results in a larger value of the emittance parameter, and the output radiation
will have poor spatial coherence and poor pointing stability of the photon beam. Note that the spatial
jitter is of a fundamental nature (shot noise in the electron beam), and takes place even for an ‘ideal’
machine.

There are very limited means of suppressing the mode degeneration effect by controlling the
spread of longitudinal velocities (due to energy spread and emittance) [6, 51, 68]. Energy spread can
be increased with a laser heater [84]. The price for this improvement is a significant increase in satur-
ation length and reduction of the FEL power. Stronger focusing of the electron beam in the undulator
helps to improve transverse coherence by reducing the diffraction parameter and increase of the velocity
spread. However, this will also result in the increase in saturation length. Finally, with fixed energy of
the electron beam, an available undulator length will define the level of a spatial coherence and spatial
jitter of the photon beam.
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Appendix
A Estimates of the radiation properties in the framework of the one-dimensional model
In this section, we combine the most essential formulae of the one-dimensional theory of the FEL ampli-
fier, describing the main characteristics of the radiation. The main physical parameter of the problem is
the FEL parameter ρ (see Eq. (11)) [4, 6]:

ρ =
λw

4π

[
4π2j0K

2A2
JJ

IAλwγ3

]1/3

,

where j0 = I/(2πσ2) is the beam current density, σ =
√
βεn/γ is the r.m.s. transverse size of the elec-

tron beam, and β is the external focusing beta function. The FEL parameter ρ relates to the efficiency
parameter of the three-dimensional FEL theory as ρ = ρ̄/B1/3. Basic characteristics of the SASE FEL
are estimated in terms of the parameter ρ and the number of cooperating electrons Nc = I/(eρω). Here
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we, present a set of simple formulae extracted from [6, 29, 32]:

Field gain length: Lg ∼
λw

4πρ
,

Saturation length: Lsat ∼
λw

4πρ

[
3 +

lnNc√
3

]

Effective power of shot noise:
Psh

ρPb
' 3

Nc

√
π lnNc

,

Saturation efficiency: ρ ,

Power gain at saturation: G ' 1

3
Nc

√
π lnNc ,

Coherence time at saturation: τc '
1

ρω

√
π lnNc

18
,

Spectrum bandwidth: σω =
√
π/τc . (A.1)

The contribution of the higher odd harmonics to the total power of SASE FEL operating at satur-
ation is described by Eq. (15). The coherence time at saturation is inversely proportional to the harmonic
number, and the relative spectrum bandwidth remains constant with harmonic number.

B Estimates of radiation properties in the framework of the three-dimensional theory
Here, we present practical formulae that enable calculation of the parameters of a FEL amplifier opti-
mized for maximum gain of the ground TEM00 radiation mode. The minimum gain length Lg of the
fundamental mode and the corresponding optimum focusing beta function βopt are [66, 80]:

Lg0 = 1.67

(
IA

I

)1/2 (εnλw)5/6

λ2/3

(1 +K2)1/3

KAJJ
(1 + δ) ,

βopt ' 11.2

(
IA

I

)1/2 ε
3/2
n λ

1/2
w

λKAJJ
(1 + 8δ)−1/3

δ = 131
IA

I

ε
5/4
n

λ1/8λ
9/8
w

σ2
γ

(KAJJ)2(1 +K2)1/8
. (B.1)

When (for technical reasons) focusing beta is β > βopt, the gain length is:

Lg(β) ' Lg(βopt)

[
1 +

(β − βopt)
2(1 + 8δ)

4β2
opt

]1/6

, for β > βopt. (B.2)

Equation (B.1) provides an accuracy better than 5% in the range of parameters given by Eq. (30). For
small energy spread, δ � 1, the diffraction parameter B, the parameter of betatron oscillations k̂β , the
reduced saturation length L̂sat, the reduced FEL efficiency η̂, the reduced coherence time τc, the radiation
bandwidth σω, and the degree of transverse coherence ζ are functions of the parameter ε̂ = 2πε/λ and
the number of electrons in the volume of coherence Nc = ILgλ/(λwc):

B =
2Γ̄σ2ω

c
' 12.5× ε̂5/2 ,

k̂β =
1

(βΓ̄)
' 0.158× ε̂−3/2 ,

L̂sat = Γ̄Lsat ' 2.5× ε̂5/6 × lnNc ,

η̂ =
P

(ρ̄Pb)
' 0.17/ε̂ ,
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τ̂c = ρ̄ωτc ' 1.16×
√

lnNc × ε̂5/6 ,

σω =

√
π

τc
,

ζsat '
1.1ε̂1/4

1 + 0.15ε̂9/4
. (B.3)

The gain parameter Γ̄ and efficiency parameter ρ̄ are given by:

Γ̄ =

[
I

IA

8π2K2A2
JJ

λλwγ3

]1/2

, ρ̄ =
λwΓ̄

4π
.

Equations (B.1) and (B.2) should be used for the case of a finite value of the energy spread and non-
optimum beta function. Correction to the coherence time and spectrum bandwidth scales as relative
increase of the gain length. Spot size and angular divergence can be calculated following Ref. [85].

Properties of the higher odd harmonics for relative contributions to the total radiation power and
spectral characteristics are similar to those found in the framework of the one-dimensional model. The
contribution of the higher odd harmonics to the total power at the saturation is close to that given in Eq.
(15) with relevant correction on effective energy spread. The coherence time at saturation is inversely
proportional to harmonic number, and the relative spectrum bandwidth remains constant with harmonic
number.

C Application of statistical methods for measurements of the coherence properties of the
radiation from SASE FEL

Radiation from the SASE FEL operating in the linear regime has the properties of completely chaotic
polarized light. Measurements of the SASE FEL gain curve enable determination of the saturation length,
which is strictly connected with the coherence time. Statistical analysis of the fluctuations of the radiation
energies measured with different spatial apertures allows one to determine the number of the longitudinal
and transverse modes. Thus, with these simple measurements, it becomes possible to determine the
degree of transverse coherence, coherence time, and photon pulse duration. In this section, we present
the theoretical background and experimental results obtained at the FLASH FEL.

The amplification process in a SASE FEL starts from the shot noise in the electron beam. Initially
poor, the coherence properties of the radiation are significantly improved in the exponential stage of
amplification, and reach their best values at the onset of the saturation regime [41,42]. Radiation of SASE
FEL consists of wavepackets (spikes) having durations of about the coherence time. Fields Ẽ are well
correlated within one spike, and are statistically independent for different spikes. Coherence properties
of the radiation are described with temporal and spatial correlation functions (g1 and γ1), coherence time,
and degree of transverse coherence (τc and ζ), given by Eq. (7). Radiation from a SASE FEL operating
in the linear regime has properties of completely chaotic polarized light [6, 32], and the probability
distribution of the radiation energy is a gamma distribution (Eq. (3)). This distribution is the function of
the only parameter—the number of radiation modes,M . The parameterM is equal to the inverse squared
value of the standard deviation of the radiation energy, M = 1/σ2

E , and σ2
E = 〈(E − 〈E〉)2〉/〈E〉2.

We consider the electron bunch with Gaussian longitudinal profile of r.m.s. pulse duration σz.
Figure 20 shows the evolution along the undulator of the radiation pulse energy, fluctuations, and r.m.s.
photon pulse length. Normalized values of these parameters exhibit nearly universal dependencies for
ρωσz & 1. A maximum of fluctuations and a minimum of the pulse duration are obtained at the end of
the exponential gain regime. The saturation point (corresponding to maximum brilliance of the radiation
[41]) is defined by the condition for fluctuations to decrease by a factor of three with respect to the
maximum value. In the framework of the one-dimensional model, the maximum value of the coherence
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time and saturation length,

(τc)max '
1

ρω

√
π lnNc

18
, Lsat '

λw

4πρ

(
3 +

lnNc√
3

)
,

are expressed in terms of the FEL parameter ρ [4] and the number of cooperating electronsNc = I/(eρω)
[6, 32]. Here, ω = 2πc/λ is the frequency of the amplified wave, I is the beam current, −e is the charge
of an electron, and λw is the undulator period. A practical estimate for parameter ρ comes from the
observation that, in the parameter range of SASE FELs operating in the vacuum ultraviolet and X-ray
wavelength ranges, the number of field gain lengths to saturation is about 10 [32]. Thus, the parameter ρ
and coherence time τc relate to the saturation length as:

ρ ' λw/Lsat , τc ' λLsat/(2
√
πcλw) . (C.1)

For the number of modes M & 2, the r.m.s. electron pulse length and minimum FWHM radiation pulse
length τmin

ph at the end of the linear regime are given by [86, 87]:

τmin
ph ' σz '

Mλ

5ρ
' MλLsat

5cλw
. (C.2)

The minimum radiation pulse duration expressed in terms of coherence time (Eq. (C.1)) is τmin
ph '

0.7×M × τc.

Lengthening of the radiation pulse occurs when the amplification process enters the saturation
regime. This happens as a result of two effects. The first effect is lasing to saturation of the tails of the
electron bunch, and the second effect is pulse lengthening due to slippage effects (one radiation wave-
length per undulator period). The effect of lasing tails gives the same relative radiation pulse lengthening
as illustrated in Fig. 20. At the saturation point, pulse lengthening is about a factor of 1.4 with respect to
the minimum pulse for the linear regime given by Eq. (C.1), and it is increased by up to a factor of two
in the deep non-linear regime. The slippage effect is more pronounced for relative lengthening of short
pulses.

The total number of modes in the radiation pulse is the product of the number of longitudinal and
transverse modes, MTotal = MLong ×MTrans. This is the origin of an idea to use measurements of the
fluctuations of the radiation pulse energy to derive the degree of the transverse coherence. Measurements
of the fluctuations of the total pulse energy and of the radiation energy after a pinhole gives us the total
number of modes MTotal, and the number of longitudinal modes MLong, respectively. Their ratio gives
the number of transverse modes MTrans = MTotal/MLong. The degree of transverse coherence is equal
to the inverse value of the number of transverse modes [41]:

ζ =
1

MTrans
=
MLong

MTotal
. (C.3)

Numerical simulations with code FAST [77] confirm this physical consideration. We see from Fig. C.1
that, in the exponential gain regime, the squared ratio of the fluctuations exactly follows the degree of
transverse coherence calculated with rigorous statistical definition (Eq. (7)). We should stress that simple
statistical measurements give the fundamental quantity without making any additional assumptions. This
happens as a result of the fundamental nature (Gaussian statistics) of the light produced by the SASE
FEL in the exponential gain regime. Pinhole techniques enable the evolution of the degree of transverse
coherence to be traced, up to the onset of the saturation regime.

The experimental technique is as follows. The gain curve of the SASE FEL is measured at the
first step (average radiation energy and fluctuations versus undulator length), and the saturation length is
determined. A practical hint for determination of the saturation point is the decrease of the fluctuations by
a factor of three with respect to the maximum value. Using the value of the saturation length, we derive
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Fig. C.1: Evolution of (red) degree of transverse coherence ζ and (blue) FEL power P . Circles show ratio of
fluctuations of radiation energy in pinhole to fluctuations of total energy, σ2
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E,tot. Simulations run with code

FAST [77].

the FEL parameter ρ and coherence time τc (Eq. (C.1)). Then, the FEL process is stopped at the end of
the high-gain linear regime (the FEL power is a factor of 20 less than the saturation level, see Fig. 20).
Fluctuations are measured by using a pinhole aperture to select the central part of the photon pulse.
Essential electron beam and machine parameters (charge, orbit, compression signal, RF parameters) for
each shot are also recorded. The final step of the experimental procedure is the gating of the experimental
results with machine parameters. The final data set contains mainly fundamental fluctuations of the
radiation pulse energy related to SASE FEL process. The inverse squared value of fluctuations gives the
number of longitudinal modes MLong. The radiation pulse length is derived from Eq. (C.2). Additional
measurements of the fluctuations for full radiation pulse energy enable determination of the number of
total and transverse modes and the degree of transverse coherence (Eq. (C.3)).

Here we present the results of experimental measurements at FLASH of the number of the number
of modes, coherence time, and degree of transverse coherence [86,87]. FLASH is equipped with a set of
detectors for measurements of the energy in the radiation pulse: gas monitor detector, micro channel plate
(MCP) based detector, photodiode, and thermopile [14, 88]. Detectors are installed in several positions
along the photon beam line. The MCP detector is installed in front of all the other detectors and is used
for precise measurements of the radiation pulse energy. The MCP measures the radiation scattered by a
metallic mesh (Cu, Fe, and Au targets are used) placed behind an aperture located 18.5 m downstream
of the undulator. The electronics of the MCP detector itself have low noise, about 1 mV at the level of
signal of 100 mV (1% relative measurement accuracy).

C.1 Measurements of the number of modes and pulse duration at FLASH [86]
The measurement procedure is organized as follows. We tune the SASE process to the maximum signal
at a full undulator length of 27 m (six undulator modules). Then we apply an orbit kick (by means of
switching on steerers) after the fourth undulator module, such that the FEL amplification process is sup-
pressed in the last two undulator modules. The level of the radiation pulse energy after four undulator
modules is about a factor of 20 less than the saturation level. This point corresponds to the end of the
high-gain exponential regime with a minimum photon pulse length. To evaluate the number of longi-
tudinal modes, we put a small (1 mm) aperture centred on the photon beam. Then we record radiation
pulse energies (readings of the MCP detector) at this point. However, this is not all: fluctuations of the

56

E.A. SCHNEIDMILLER AND M.V. YURKOV

594



0 1 2 3
0.0

0.5

1.0

 

 

p(
E

)

E/<E>

Q = 150 pC
σ = 60%
M = 2.8

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

 

 

p(
E

)

E/<E>

Q = 500 pC
σ = 29%
M = 12

Fig. C.2: Experimental results from FLASH: probability distributions for energy in radiation pulses at end of
exponential growth regime. Radiation wavelength, 13.5 nm. Left: 150 pC bunch charge. Right: 500 pC bunch
charge. Solid lines show gamma distribution with M = 2.8 and M = 12 for 150 pC and 500 pC bunch charges,
respectively.

electron beam and machine parameters may contribute to the fluctuations of the radiation pulse energy,
but only fundamental SASE FEL fluctuations are essential for us. The final step of the experimental pro-
cedure is gating of the experimental results, enabling selection of only fundamental fluctuations of the
radiation pulse energy related to the SASE FEL process. To do this, we record essential electron beam
and machine parameters (bunch charge monitor readings, beam position monitor readings, readings of
the pyroelectric detectors, read back values of RF parameters) for each shot, together with the readings
of the MCP detector. Fluctuations of machine parameters are detected with this set of readings. If the
machine (or electron beam) parameters deviate beyond a prescribed threshold, this event is excluded
from data set. The number of events after the selection procedure must be sufficiently large, to provide
the required statistical accuracy.

Experiments were performed for two different tunings of the beam formation system: a short pulse
with 150 pC bunch charge, and a long pulse with 500 pC bunch charge. Figure C.2 shows the probability
distribution of the radiation energy. Sets of raw data contained about 1400 (1700) measurements, and
about 800 (550) measurements remained after the selection procedure for the 150 pC (500 pC) bunch
charge. The measured number of radiation modes is 2.8 and 12 for the 150 pC and 500 pC bunch charges,
respectively. Within current experimental conditions, the saturation length is estimated to be about 22 m
for both cases of the bunch charge. Assuming the Gaussian shape of the lasing fraction of the electron
bunch, we apply Eq. (C.2) to determine the r.m.s. electron pulse length, and obtain the following values:
6.2 µm (20 fs) and 26 µm (86 fs) for the 150 pC and 500 pC bunch charges, respectively. The FWHM
pulse duration of the photon pulse in the end of the linear regime is approximately the r.m.s. electron
pulse duration.

In parallel with statistical measurements, we recorded radiation spectra [86]. In the case of 150 pC,
the single-shot spectra were dominated by two or three spikes. There were about ten spikes in the
spectrum for the 500 pC bunch charge. Note that the spectrum is simply a Fourier transform of the
temporal structure, and that the average number of spikes (modes) in the temporal domain should be
about the same as the number of spikes in the spectral domain. These qualitative observations are in a
good agreement with the measured number of modes.

C.2 Measurements of the degree of transverse coherence at FLASH [87]
Measurements were made in the framework of the experimental program at FLASH, with the aim of
characterizing the transverse coherence of the radiation. Measurements were made in the same way as
described before, except with one more statistical run with full pulse energy to define the total number
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Fig. C.3: Experimental results from FLASH: probability distributions of the radiation energy. Left: weak com-
pression. Right: strong compression. Upper and lower rows relate to pinhole and full pulse energy measurements.

of modes in the radiation pulse. Then the degree of transverse coherence is given by ζ = MLong/Mtot.
Two regimes (weak and strong) of compression were characterized (see Fig. C.3). For weak and strong
compression, with 1 mm aperture measurements, we find the number of longitudinal modes MLong,
8.65 and 4.4, respectively. Measurements with full energy gives us the total number of modes, equal
to Mtot = 10.2 for weak compression, and Mtot = 5.8 for strong compression. The ratio of these
two measurements gives us the degree of transverse coherence, 85% and 75% for weak and strong
compression, respectively. The obtained values are in reasonable agreement for the values expected at
FLASH in these parameter range [50].

In conclusion to this section, we can state that statistical measurement is an extremely powerful
tool for characterization of the main SASE FEL parameters: the FEL parameter ρ, saturation length,
coherence time, photon pulse duration, and degree of transverse coherence. The method is based on
the fundamental principles, and measured values have strict physical meaning (Eq. (7)). Statistical mea-
surements have been used at FLASH since the start of its operation [10–13, 86]. There was also a trial
experiment at LCLS [89]. However, FLASH is currently the only facility where statistical measurements
are routinely used for SASE FEL characterization. Statistical measurements are conceptually simple, but
rely on two important technical requirements. The first requirement is availability of a fast and precise
radiation detector capable of measuring radiation energy of every pulse with high relative accuracy for
a wide range of radiation intensities. At FLASH, we use an MCP detector with relative measurement
accuracy better than 1%. The second requirement is small jitter of the machine parameters, much less
than the fundamental SASE FEL fluctuations. Good phase stability of the superconducting accelera-
tor FLASH helps a lot. In addition, the success of the technique depends on the quality of diagnostics
enabling detection of jitters of the electron beam and machine parameters.
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The European XFEL—Status and commissioning*†

H. Weise
Deutsches Elektronen-Synchrotron, Hamburg, Germany, on behalf of the European XFEL Accelerator
Consortium

Abstract
The European XFEL under construction in Hamburg, Northern Germany,
aims to produce X-rays in the range 260 eV to 24 keV using three undulators
that can be operated simultaneously with up to 27,000 pulses per second. The
FEL is driven by a 17.5 GeV superconducting linac. Installation of this linac
is  now  finished  and  commissioning  will  take  place  next.  First  lasing  is
expected for spring 2017. This paper summarizes the status of the project. First
results of the injector commissioning are given.

Keywords
European XFEL; superconducting linac; long bunch trains.

1 Introduction
The accelerator complex of the European XFEL [1] is being constructed by an international consortium
under the leadership of DESY. Seventeen European research institutes contribute to the accelerator
complex and to the comprehensive infrastructure. Major contributions are coming from Russian
institutes. DESY co-ordinates the European XFEL Accelerator Consortium but also contributes with
many accelerator components and the technical equipment of buildings, with associated general
infrastructure. With the finishing of accelerator installation, the commissioning phase is now starting,
with cool-down of the main linac scheduled for the end of November 2016.

2 Layout of the European XFEL
In the following, an overall layout of the European XFEL is given, with emphasis on the different
sections of the accelerator complex.

2.1 Introduction to the accelerator

The European XFEL, with its total facility length of 3.4 km, follows the established layout of a high-
performance single-pass self-amplified spontaneous emission (SASE) FEL. A high-bunch-charge, low-
emittance electron gun is followed by some initial acceleration to typically 100 MeV. In the following,
magnetic chicanes help to compress the bunch and therefore increase the peak current. This happens at
different energies to take care of beam dynamic effects that would deteriorate the bunch emittance in
the case of too early compression at too low energies. Thus, the linac is separated by several such
chicanes.  The  European  XFEL main  linac  accelerates  the  beam in  three  sections,  following  the  first
acceleration in the injector.

*This work is supported by the respective funding agencies of the contributing institutes; for details please see
http:www.xfel.eu.
† This paper has already been published in the Proc. of RuPAC2016, St. Petersburg, Russia, 21—25 November 2016,
http://accelconf.web.cern.ch/AccelConf/rupac2016/index.html, and it is reproduced with permission from the author.
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June 2016, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol. 1/2018, CERN-2018-001-SP (CERN, Geneva, 2018)
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2.2 Injector

The injector design of the European XFEL is visibly affected by the need for long bunch trains, which
are required for the efficient use of superconducting linac technology. Like many other FELs, it starts
with a normal-conducting 1.6 cell radio frequency (RF) electron gun but here the source has to deliver
600 µs long trains, i.e., the RF on time is equivalently long, and not just some few microseconds. The
6 MeV electron beam produced is almost immediately injected into the first superconducting accelerator
section, which allows efficient acceleration of bunch trains. This first linac section consists of a standard
eight-cavity XFEL module, followed by a harmonic 3.9 GHz module. The latter is needed to manipulate
the longitudinal beam profile, together with the later bunch compression in magnetic chicanes. Beam
diagnostics are used to verify the electron beam quality at an energy of about 130 MeV. The injector
installation, which is 50 m long in total, ends with a beam dump that is able to take the full beam power.

The injector of the European XFEL was commissioned and operated during the installation period
of the main linac sections. The first beam was accelerated in December 2015. At the end of the injector,
600 µs long electron bunch trains of typically 500 pC bunches are available, with measured projected
emittances of 1–1.5 mm mrad. Most relevant for the FEL process is the slice emittance, which was found
to be of the order of 0.5 mm mrad for 500 pC.

The next section downstream of the injector is a warm beamline including a so-called dogleg and
the first bunch compressor, for historical reasons named BC0. The dogleg takes care of the vertical offset
between the injector tunnel and the main linac tunnel.

Compression in all bunch compressors is obtained by creating different path lengths in a four-
dipole magnet chicane. Electrons with slightly lower beam energy are deflected more strongly and thus
pass the chicane on an ‘outward curve’. The acceleration in the injector section is slightly off-crest, i.e.,
the energy of the leading electrons in the bunch is intentionally smaller. The aforementioned 3.9 GHz
harmonic system helps to achieve the proper energy modulation along the bunch. Since all electrons
have essentially the same speed, the leading ones travel for slightly longer, and the bunch is compressed.

At the XFEL bunch compressor BC0 there is a first slight compression, by roughly a factor of
two. The bunches ready for further acceleration reach 1 mm length, ≈100 A peak current, with an energy
spread of 1.5% at 130 MeV beam energy.

At  present,  the  European  XFEL  uses  the  lower  of  two  injector  tunnels.  The  second  one  was
originally built to install a copy of the first injector—availability depending on reliable injector operation
was the issue. Meanwhile it seems to be more adequate to aim for a different injector, favouring longer
pulse or even continuous wave operation.

2.3 First linac section, L1

The first section of the main linac consists of four superconducting XFEL accelerator modules operated
at 1.3 GHz. Since each module houses eight ≈1 m long superconducting structures, and since the
required energy increase is only 470 MeV—the bunch compression scheme asks for ≈600 MeV at
BC1—the accelerating gradient in the first linac section is very moderate and well below the XFEL
design gradient of 23.6 MV/m. In fact, the failure of a few cavities could easily be compensated. With
respect to the RF operation, the first four modules represent a standard XFEL unit, since all four are
connected to a single 10 MW multibeam klystron [5]. While the injector klystrons are located outside
the accelerator tunnel, the configuration of this first RF power station is identical to all other downstream
stations: the modulator is installed outside the tunnel, the pulse transformer and the klystron, with its
waveguide distribution, are located below the accelerator modules (see also Fig. 1). Special care is taken
to improve the availability of the first linac section. The low-level RF control, installed in shielded
compartments next to the klystron, is duplicated, with the possibility of switching between the two
systems without tunnel access.

H. WEISE

598



Fig. 1: Wide-angle photograph showing some few metres of the, in total, almost 1 km long superconducting linac
of the European XFEL. The yellow accelerator module (length 12.2 m) is suspended from the ceiling. It houses
eight superconducting structures. All installed 96 main linac modules are the result of a strong collaborative effort.
Subcomponents were contributed by different partners, assembly [2, 3] was done at Saclay, France, and final cold
testing [4] was carried out in the accelerator module test facility at DESY, Hamburg.

2.4 Bunch compression in BC1

The  next  section,  starting  at  ≈100  m  deep  in  the  main  linac  tunnel  (called  XTL),  is  the  bunch
compression chicane, BC1.

The BC section needs four dipole magnets, further focusing elements, and beam diagnostics.
Since  this  warm beamline  section  is  close  to  the  preceding,  as  well  as  to  the  succeeding,  cold  linac
section, particle-free preparation of ultrahigh vacuum systems is essential. Here, the work had already
started during the design phase of all respective beamline components. Cleaning methods had to be
considered early on, and movable parts are to be avoided wherever possible. In consequence, the chicane
vacuum chambers are wide and flat (in the vertical plane); changing the compression factor by shifting
the beam to different paths does not involve moving the vacuum chambers mechanically. Here, the
European XFEL design differs from normal-conducting linac designs, which are usually less restrictive
with respect to particle cleanliness.

2.5 Second linac section, L2

The BC1 compressor is followed by a 12 accelerator module section (called L2). This altogether 150 m
long superconducting linac is supposed to increase the electron beam energy to 2.4 GeV. The required
average gradient is, at 18.75 MV/m, still moderate. Also here a conservative design gradient was chosen.
Conversely, the installation of intentionally high-performance modules—accelerating gradients of
around 30 MV/m were achieved in many module tests—can be and in fact has been done, again to
increase the availability of a beam with sufficiently high energy, here at bunch compressor BC2. In
addition, an energy increase at BC2 during parameter optimization becomes possible. From the point of
view of the RF station, L2 consists of three identical RF stations with a pulse transformer and klystron
every 50 m. Cryogenic-wise, L2 forms a standard unit. Altogether, 12 modules are connected to one
cryogenic string, i.e., one long cryostat without intermediate separation valves. All linac sections have
a cryogenic feed- and end-box, both connecting to the cryogenic bunch compressor bypass lines linking
the different linac sections.
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2.6 Final bunch compression in BC2

Downstream of L2, the last bunch compressor BC2 is installed, which basically repeats the functionality
of BC1, here with the goal of producing the final electron bunch length required for lasing. A bunch
length of 0.02 mm, corresponding to a 5 kA peak current, with a relative energy spread of 0.3% at 2.4
GeV beam energy will be produced. The section includes a transverse deflecting system as an essential
beam diagnostic device. Single bunches are picked and deflected transversely to convert the short bunch
length into a corresponding transverse beam size that can then be measured.

2.7 Main linac section, L3

Downstream of BC2, the linac L3 starts with a design length of more than 1 km. The actually installed
length, including the cryogenic string connection and end boxes, is 984 m. Taking into account all
installed main linac accelerator modules—4 in L1, 12 in L2, and 80 in L3—the achievable electron
beam energy is greater than the European XFEL design energy of 17.5 GeV. The exact value will depend
on the optimization of the low-level RF (LLRF) control, and here especially on the regulation reserve
needed as a function of the electron beam current.

The main linac ends after 96 accelerating modules, corresponding to nine cryogenic strings, or 24
RF stations. The shortening by four accelerating modules was because of beamline vacuum leaks in two
modules that could not be repaired in a timely manner. A third module suffers from a small leak in one
of the cryogenic process lines. Thus, one RF station, equivalent to four modules, was omitted; this was
legitimated by the excellent performance of many accelerator modules. A temporary transport beamline
was installed, which is then followed by some further transport and a collimation beamline, protecting
the downstream undulator beamlines from beam-halo and mis-steered beams in case of linac problems.

2.8 Beam transport, collimation, and distribution to the different undulators

Downstream of the linac, the electron beamline is also supported from the ceiling, over a length of
600 m. This keeps the tunnel floor free for transport and installation of electronics. Especially at the end
of the 5.4 m diameter  tunnel,  where three beamlines (to SASEs 1 and 3,  SASE 2,  and into the linac
dump) run in parallel, installation and maintenance of the components posed a considerable challenge.
During accelerator operation, the electrons are distributed with a fast-rising flat-top strip-line kicker into
one of the two electron beamlines. Another kicker system is capable of deflecting single bunches into a
dump beamline. This allows for a free choice of the bunch pattern in each beamline, even with the linac
operating with constant beam loading.

All undulators and photon beamlines are located in a fan-like tunnel. Figure 2 shows the
arrangement of two hard X-ray undulators (SASE 1 und SASE 2), and a soft X-ray undulator (SASE 3),
installed downstream of SASE 1. Each undulator provides X-ray photon beams for two different
experiments. The time structure of the photon beams reflects the electron bunch pattern in the
accelerated bunch trains, affected by the kicker systems.
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Fig. 2: Arrangement of two hard X-ray undulators (SASE 1 und SASE 2) and a soft X-ray undulator (SASE 3)
installed downstream of SASE 1.

The fan-shaped tunnel system houses two electron beam dumps. Here the electrons are stopped
after separation from the photon beams. Each dump can handle up to 300 kW beam power. An identical
beam dump is located further upstream, at the end of the main linac tunnel (not shown in Fig. 2). Thus,
accelerator commissioning and also beam operation is possible while installation or maintenance work
in the undulator and photon beam tunnels is ongoing. All five photon beam tunnels end at the
experimental hall. During initial operation, two experiments each are set up at three beamlines.

3 Overview of accelerator in-kind contributions
As described, the European XFEL project benefits from in-kind contributions provided by many
partners. In the following, an overview is given, which allows understanding of the responsibilities
within the project. The description essentially follows the project structure, i.e., contributions to the
superconducting linac are listed first, followed by assignments related to the other sections of the
accelerator complex. Infrastructure tasks are also described.

3.1 Cold linac contributions

Building the world’s largest superconducting linac was only possible in collaboration. Sufficiently
developed superconducting RF expertise was required. Major key players already working together in
the TESLA linear collider R&D phase joined the European XFEL in an early phase. During the XFEL
construction phase, DESY had several roles. The accelerator complex, including the superconducting
linac, required coordination. At the same time, large in-kind contributions in the field of superconducting
RF technology were made. Work packages contributing to the cold linac are, in all cases, co-led by a
DESY expert and a team leader from the respective contributing institute. Integration into the linac
installation and infrastructure was another task. The commissioning and operation of the accelerator
complex is delegated to DESY.

The accelerator of the European XFEL is assembled from superconducting accelerator modules
contributed by DESY (Germany), CEA Saclay, LAL Orsay (France), INFN Milano (Italy), IPJ Swierk,
Soltan Institute (Poland), CIEMAT (Spain), and BINP, Russia. The overall design of a standard XFEL
module was developed in the frame of TESLA linear collider R&D. Final modifications were made for
the required large-scale industrial production. Further details of the contributions to the superconducting
accelerator modules can be found in Ref. [3].

3.2 Contributions to the cold linac infrastructure

Operation of the superconducting accelerator modules requires the extensive use of dedicated
infrastructure. DESY provided the RF high-power system, which includes klystrons, pulse transformers,
connection modules and matching networks, high-voltage pulse modulators, preamplifiers, power
supplies, RF interlocks, RF cables, and waveguide systems. During the design and development phase,
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the 10 MW multibeam klystrons used were developed together with industrial partners. In total, 27
klystrons were finally ordered from two vendors. Pulse transformers were procured as one batch from
one company. The modules connecting klystrons and pulse transformers were developed and built in
collaboration with BINP Novosibirsk. Each klystron supplies RF power for 32 superconducting
structures, i.e., four accelerator modules. The waveguide system used takes care of sophisticated RF
power matching [6]. The individual accelerating gradients, determined by module tests, are considered
for a special tailoring of the distribution system. To optimize the RF control, both outputs of the
multibeam klystron deliver roughly the same power, which is realized by a sorting of the accelerator
modules before tunnel installation.

The LLRF system that controls the accelerating RF fields of the superconducting modules is
another major DESY contribution. Precision regulation of the RF fields inside the accelerating cavities
is essential to provide a highly reproducible and stable electron beam. The RF field regulation is
achieved by measuring the stored electromagnetic field inside the cavities. This information is further
processed by the feedback controller to modulate the driving RF source. Detection and real-time
processing are performed using the most recent field programmable gate array (FPGA) techniques.
Performance increase demands a powerful and fast digital system, which was realized with the Micro
Telecommunications Computing Architecture (MicroTCA.4). Fast data transfer and processing is
achieved by FPGAs within one crate, controlled by a CPU. In addition to the MicroTCA.4 system, the
LLRF comprises external supporting modules, also requiring control and monitoring software. During
the XFEL construction phase, DESY was operating the Free Electron Laser (FLASH), which is a user
facility of the same type as the European XFEL but at a significantly lower maximum electron energy
of 1.2 GeV. The LLRF system for FLASH is equal to that of the European XFEL, which allowed for
testing, developing, and performance benchmarking in advance of the European XFEL commissioning
[7].

BINP Novosibirsk produced and delivered major cryogenic equipment for the linac, such as valve
boxes and transfer lines. The cryogenic plant itself was an in-kind contribution of DESY.

3.3 Contributions to the warm linac sections

The largest visible contributions to the warm beamline sections are the >700 beam transport magnets
and the 3 km vacuum system in the different sections. While most of the magnets were delivered by the
Efremov Institute, St. Petersburg, a smaller fraction were built by BINP Novosibirsk. Many metres of
beamline, either simple straight chambers or quite sophisticated flat bunch compressor chambers, were
also fabricated by BINP Novosibirsk. DESY made a careful incoming inspection, including particle
cleaning when necessary.

State-of-the art electron beam diagnostics are of essential importance for the success of an FEL.
Thus, 64 screens and 12 wire scanner stations, 460 beam position monitors of eight different types, 36
toroids, and 6 dark-current monitors are distributed along the accelerator. Longitudinal bunch properties
are measured by bunch compression monitors, beam arrival monitors, electro-optical devices, and, most
notably, transverse deflecting systems. Production of the sensors and readout electronics is basically
finished. Prototypes of all devices have been tested at FLASH. BPM electronics were developed by the
Paul-Scherrer-Institut, Villigen, and showed, together with the DESY built pick-ups, performance
exceeding the specifications [8, 9].

4 Accelerator status at the start of commissioning
As of autumn 2016, the installation work in the main accelerator tunnel will be finished. All linac
sections except for the last cryogenic strings (eight accelerator modules) will be ready for cold
commissioning. The complete linac will be cooled to operating temperature. The last cryogenic string
requires final actions, such as finishing the waveguide systems, commissioning of the technical interlock
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system, or, for a few components, even finishing installation of signal cables. The respective work will
be done during maintenance access.

4.1 Cold linac status

Installation of, in total, 96 main linac accelerator modules was finished in September 2016. The original
plan to get one module per week ready for tunnel installation was basically fulfilled. Modules assembled
at  CEA  Saclay  came  to  DESY  and  were  tested.  Test  results  were  used  to  define  the  RF  power
distribution, which was then realized by a proper tailoring of the waveguide system. Sorting of modules
helped to find an optimum in the grouping of four modules connected to each multibeam klystron.
Finally, some prognosis with respect to the achievable linac energy can be made. Neglecting the working
points of the bunch compressors, and looking only at the accelerator modules’ usable gradients, as
determined during the cold test after arrival at DESY, the sum of all individual accelerator modules’
usable gradients is about 22 GeV. Respecting the constraints of the possible RF power distribution leads
to a reduction to 21 GeV, corresponding to an average gradient of 27.5 MV/m. The European XFEL
linac by far exceeds the design gradient of 23.6 MV/m. Details are given in Ref. [4].

It is expected that during cold commissioning some accelerator cavities or the respective
associated systems (RF power coupler, waveguide, LLRF) will show some unforeseen limitations. The
European XFEL design included one RF station (i.e., four modules) as spare. Thus, it is correct to state
conservatively that the designed 17.5 GeV final energy can be safely reached. The excess in energy will
give a higher availability.

The nominal working point of BC2 is 2.4 GeV, while the current highest possible working point
is  3.3  GeV,  which  would  bring  the  final  energy  to  about  19.5  GeV,  assuming  that  all  systems  are  in
operation and close to their limit.

Completing the picture of the accelerator module performance, the following can be stated.

— To make 808 superconducting cavities available for 101 accelerator modules, fewer than 1%
extras were required. This is based on indispensable quality measures in the full production
chain [10].

— Although many accelerator modules needed correction of non-conformities (component or
assembly related), discovered either during assembly or even later during test at DESY, in the
end, only three modules were not ready for installation in time. Nevertheless, sufficient
expertise was required at all partner laboratories.

— Most challenging for the cold linac team was the availability of the RF power couplers.
Quality issues, often, but not exclusively, related to the copper plating of stainless steel parts,
and the resulting schedule challenges, were faced. The experienced supply chain risk required
a large degree of flexibility and willingness to find corrective measures.

4.2 Other sections of the accelerator complex

The installation of all beamline sections from the injector to the end of the main linac tunnel (XTL) will
be finished at the time of linac cool-down. Beam transport to the linac commissioning dump after 2.1 km
will be possible.

After  the  linac,  almost  3  km  of  electron  beamlines  distribute  the  beam  through  the  SASE
undulators to the three different beam dumps. In the northern branch, housing the SASE1 and SASE3
undulators, most of the beamline sections are ready. All undulators are in place. During the last quarter
of 2016, the northern branch of tunnels will be completed. The southern branch, housing SASE 2, is
scheduled for the first quarter of 2017.
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5 Conclusion
The installation of the European XFEL accelerator complex comes to an end. While the linac sections
are finished and cool-down and commissioning follows, the remaining beamline sections will be
finalized in the next months. First lasing in the SASE 1 undulator is expected for spring 2017, about 6
months after the start of the linac cool-down
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Crystallography and Molecular Imaging using X-ray Lasers

T.A. White
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
A very successful application of X-ray free-electron lasers has been made in
structural biology. Acquiring diffraction data using X-ray pulses with dur-
ations of a few tens of femtoseconds allows the conventional processes of
radiation damage to be sidestepped, breaking limits that previously applied,
while at the same time permitting experiments to probe chemical dynamics
on short timescales. This contribution gives an introduction to applications of
free-electron lasers in biochemistry, including potential future applications to
single-molecule diffraction.

Keywords
Crystallography; biochemistry; free-electron laser.

1 The need for knowledge of the structure of biomolecules
The functioning of many biochemical systems relies primarily not on the chemical compositions of
the molecules—the relative amounts of different elements making up the participating molecules—but
rather on the structures of the molecules. Proteins, for example, are comprised primarily of carbon,
hydrogen, nitrogen, and oxygen atoms in the ratios 40 : 62 : 10 : 12 respectively, with remarkably little
variation. Proteins are built from amino acids, which can be consecutively bonded together to form a
polypeptide chain. A protein consists of one or more polypeptide chains, perhaps in addition to a few
extra chemical groups. Stabilized primarily by hydrogen bonds, the polypeptide chains form specific
structures consisting of structural motifs, such as helices, sheets, and loops. The specific structure of
a protein gives it its particular properties, for example, by creating an open region or ‘pocket’ where
another molecule can fit during catalysis of a bond-breaking reaction. Many proteins can be considered
as ‘molecular machines’.

Discovering the structure of a protein is one of the first steps towards understanding how it per-
forms its task. This understanding is directly applicable in areas such as medicine, one possible appli-
cation being to block a binding pocket in a pathogenic protein and therefore hinder its activity. A good
example of this is shown in Fig. 1, which illustrates a protein known as HIV-1 protease. At a certain
stage in the life cycle of the human immunodeficiency virus, this protein cuts a long polypeptide chain
into smaller segments, which have specific activities of their own. The active side of HIV-1 protease is
the hole that can be seen in the picture, which is where the polypeptide chain fits while being cut. The
action of the protein can be inhibited by blocking the active site with some other molecule. A class of
drugs known as protease inhibitors work in exactly this way, by fitting into the hole and binding there
more tightly than the polypeptide chain. By acquiring and applying knowledge of the structure of the
protease, including seeing how the inhibitor binds into the hole, we may be able to make better protease
inhibitors, which bind more strongly and more selectively to the target molecules. Stronger binding, in
this case, would mean the drug is more effective, while more selective binding may mean that the drug
has fewer side-effects.

2 Diffraction from molecules and crystals
In an ideal experiment, we could determine the structure of a single protein molecule simply by placing
it in an X-ray beam and measuring the intensity of the scattered X-rays in different directions with an
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Fig. 1: Structure of HIV-1 protease, showing the hole where a long peptide chain fits while being cut into smaller
segments. Atoms are represented by spheres. Carbon atoms are green; nitrogen, blue; oxygen, red; and sulphur,
gold. Hydrogen atoms are not shown. Image generated from Protein Data Bank entry 3HVP [1].

area detector. Several features of a practical experiment have prevented us from doing this so far. First,
the incident X-ray beam would have to be very intense to produce a measurable diffraction pattern. The
required flux is of the order of 1013 photons per square micrometre, which corresponds to a radiation
dose of the order of 1010 Gy [2]. The gray (Gy) is the unit of radiation dose, one gray being defined as
one joule of radiation absorbed per kilogram of matter. These figures do not immediately say anything
about the timescale over which the flux should be administered—it could be given using a very weak
X-ray source over a long period of time—but 1010 Gy is a very large X-ray dose for a biological sample,
several orders of magnitude greater than it would be able to withstand. The situation appears even more
dire when we consider that the term ‘measurable diffraction pattern’, above, already takes into account
that the detector should be able to measure individual scattered X-ray photons.

This problem can be solved by spreading the radiation dose among a large number of protein
molecules. This can be done by using a protein crystal instead of a single protein molecule. A crystal
consists of many copies of a translationally repeated unit cell, each of which contains one or more copies
of the entire protein molecule. The regular arrangement of molecules within a crystal provides a very
large increase in the scattered intensity, because the X-rays scattered by each unit cell of the crystal
interfere constructively with those scattered by the others. This raises the signal to the point where a
diffraction pattern can be measured from a protein crystal using an X-ray source of the type found in
many laboratories. The increased signal, however, is compressed into sharp Bragg peaks, compared with
the smoothly varying pattern that would be seen from a single molecule (albeit at a very low signal
level). Figure 2 shows these two scenarios side by side. Reconstructing the structure in both cases would
mean solving the well-known phase problem. The X-ray detector can measure only the intensities of
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Fig. 2: Comparison of diffraction patterns from a single molecule (left) and a crystal (right). The colour scale, for
low to high intensity, goes from white through yellow, green, cyan, blue, and, finally, black.

the diffraction signal, when in reality it is a complex-valued function and therefore has phase values
as well. No atomic-resolution lens exists for X-rays, so we cannot build an imaging system to turn
the amplitude and phase information directly into an image. Instead, we must reconstruct the phase
information computationally.

It might appear that the crystal diffraction pattern, although it has the big advantage of being easily
measurable, contains less information, and this is indeed the case. The crystal diffraction pattern in fact
contains exactly half of the information that would theoretically be needed to reconstruct the structure [3].
The single-molecule pattern contains sufficient information to reconstruct the structure using a constraint
satisfaction procedure [4], at least for the ideal experiment without background scattering and detector
artefacts.

For the crystal case, a variety of structure solution techniques have been developed for making up
the information shortfall. The most widely used of these is known as molecular replacement, and essen-
tially involves comparing the measured intensities with those that would be produced by a molecule that
we hypothesize is similar in structure to the protein under investigation. Other techniques exploit the
variation of scattering power of heavy atoms with X-ray wavelength (the so-called anomalous diffraction
techniques), or the changes to the intensities that arise when heavy atoms are embedded into the struc-
ture (the isomorphous replacement method). Notice that all of these techniques involve making further
measurements or introducing external information. Direct methods, which are ‘pure’ solutions to the
phase problem without doing either of these things, also exist. However, direct methods are usually not
applicable to diffraction data from protein crystals because they require information to higher resolution
than is usually permitted by their degree of order [5].

Is there any hope of measuring the diffraction from a single molecule? This would be possible if
we could somehow suspend the usual rules of radiation damage and deliver an extremely large X-ray
dose without the molecule being damaged. It turns out that this can be achieved by delivering the X-rays
in a pulse with a very short duration indeed, and this is, of course, exactly the type of pulse provided by
an X-ray free-electron laser. Before the first X-ray free-electron laser had been built, it was theorized,
based on computer simulations, that radiation damage could be ‘sidestepped’ by delivering the entire X-
ray dose in a single pulse with a duration of a few femtoseconds [6]. The molecule would be completely
destroyed shortly afterwards, the electrons having been stripped from the atoms by the intense electric
field, but the destruction would happen on a timescale longer than the pulse. Since the diffraction pattern
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is recorded during the pulse itself and not the time afterwards, the destruction of the molecule should not
significantly affect the diffraction signal.

A few years after it was first proposed, this ‘diffraction before destruction’ principle was demon-
strated in an experiment at FLASH, a soft X-ray free-electron laser facility in Hamburg, Germany [7].
Using a single radiation pulse, a diffraction pattern was recorded from a two-dimensional pattern etched
into a silicon nitride membrane. The pattern was destroyed in the process, as could be seen from a pattern
recorded using a subsequent pulse on the same sample.

3 Crystallographic data collection and processing
Interpretable diffraction signals from single protein molecules have not been achieved to date. In the
meantime, the ability of X-ray free-electron laser pulses to sidestep the usual radiation damage processes
has been put to good use on crystalline samples. In biomolecular crystallography, radiation damage is
still a serious problem, although the dose is spread among a large number of molecules. Conventional
crystallography, as has been practised for several decades, is based on the rotation method, where a
series of diffraction patterns is recorded while the crystal is continuously rotated. This produces a three-
dimensional dataset. However, it requires the crystal to be exposed to the X-ray beam for a relatively
long period of time. The maximum tolerable dose must be apportioned over the entire rotation series.

Using X-ray pulses from a free-electron laser sidesteps the radiation damage limit, but un-
fortunately means that only one diffraction pattern can be recorded from a single crystal. Many different
views of the crystal, in different orientations, are needed to reconstruct the three-dimensional structure.
If a very large crystal is available, subsequent frames can be recorded from a different position on it,
away from the region affected by damage from the first shot. Applications of this method have been de-
scribed [8]. However, if this is not possible then many crystals will be required to form a complete dataset.
The situation where only one diffraction ‘snapshot’ is recorded from each crystal has been dubbed ‘serial
crystallography’. There are many ways to achieve this, but one of the most popular is to inject a ‘jet’ of
crystal-laden liquid into the path of the X-ray beam [9]. Another popular method is to spread the crys-
tals over a solid support, and then to raster the X-ray beam across it (although in practice the sample is
moved, not the X-ray beam). When serial crystallography is performed using femtosecond X-ray pulses,
it is known as serial femtosecond crystallography.

Data processing in serial crystallography is broadly similar to data processing for conventional
rotation data. It is an active field of research in its own right, and has been described extensively in the
literature [10]. The process is briefly described here. First, the Bragg peaks are found in each detector
frame, and a decision made about whether the frame actually contains a usable diffraction pattern or
not. Depending on the sample delivery method and the density of well-ordered crystals, typically only a
small fraction of detector frames actually contain usable patterns. Once the ‘hits’ have been identified, the
locations of the Bragg peaks are used to determine the orientation of the crystal, and hence to calculate
the locations in the image where Bragg peaks should appear. This way, measurements can be made of all
the peaks, even if they were not all found by the peak search, and even if some of them are very weak.
Of course, the information that a particular Bragg peak is very weak, or even completely absent, is just
as important as if it were very strong. Once the intensities have been measured from all the patterns,
the measurements are combined, and the merged intensities used with a variety of algorithms to solve
the structure. For serial crystallography, several data processing packages are now available, the most
popular of which is CrystFEL [11,12]. The subsequent steps—to solve the phase problem, determine the
structure, and refine the structural model—are essentially the same for the merged data from free-electron
laser experiments as in conventional rotation crystallography.
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4 Human membrane proteins
All organisms must keep some volumes separated from others. For example, a cell contains different
compartments, which allow many specialized processes to occur separately, and these compartments
may contain very different chemical environments, such as varying levels of acidity. A completely sealed
cell compartment would not be of much use, and some means of transmitting signals or controlling the
movement of substances in and out of compartments is required. These movements and transmissions
are controlled by proteins embedded in the membranes enclosing the compartments. Since so many bio-
logical processes involve this type of protein, they are the target of most pharmaceutical substances and
consequently the proteins of which we would most like to know the structures. Unfortunately, extracting
such proteins from the membrane is difficult, because often pressure from the membrane helps to main-
tain their structure and they become unstable once extracted. The proteins in this category, known as
integral membrane proteins, are therefore some of the most difficult ones to study crystallographically.

This category of protein has proven to be a success story for serial femtosecond crystallography,
with several examples now published. Crystals can be grown inside a lipidic cubic phase, in which the
proteins remain embedded in a membrane. Rather than subsequently extracting the crystals from the
lipidic cubic phase matrix, the whole thing can be injected into the X-ray beam using an injection device
designed for viscous fluids [13], which greatly simplifies sample handling. In addition, using a viscous
medium has the great advantage that the sample can flow very slowly, meaning that more of it is probed
by the X-ray beam rather than flowing past the interaction point between X-ray pulses and being wasted.

Proteins that have been studied include the serotonin receptor 5-HT2B [14], δ-opioid receptor [15],
AT1 receptor [16], A2A receptor [17], and smoothened receptor [13]. All of these are human proteins,
involved with the regulation of such things as pain and blood pressure. In all these cases, the protein was
crystallized while containing a drug molecule or analogue of one. From a biochemical point of view, this
is useful for precisely the reasons outlined in Section 1. From the point of view of technique development,
it is also useful because it provides a test of quality of the data. If the structure is solved correctly and the
intensity measurements are sufficiently accurate and precise, the drug molecule should be visible in the
resulting electron density map. Indeed, this was the case for all these examples.

A recent success for serial femtosecond crystallography was the structure of a light-sensitive pro-
tein found in the retina, rhodopsin, bound to another protein called arrestin. The action of arrestin reverses
the structural changes that take place in rhodopsin when light interacts with it, preparing it for a new cycle
of light detection. The combination of both molecules is very delicate, making it very challenging to grow
large, well-ordered crystals, and data could be acquired only to a resolution of 7.7 Å using conventional
rotation crystallography at a synchrotron. In contrast, the structure was solved to a resolution of about
3.5 Å using serial femtosecond crystallography [18].

5 Time-resolved crystallography
Although the use of free-electron lasers for determining static structures has been the target of interest in
structural biology, their potential for determining dynamic structures, or so-called ‘molecular movies’,
is much greater. The short duration of the X-ray pulses means that the time resolution can be very
high. Time-resolved serial femtosecond crystallography has now been applied to several systems where
a protein responds to illumination in the visible region of the electromagnetic spectrum. In these cases,
the reaction was triggered using a short pulse of light from a laser, a small fraction of a second before the
arrival of the X-ray free-electron laser pulse at the sample. This is the so-called ‘pump-probe’ scheme,
and is used in conjunction with many techniques other than X-ray crystallography.

The process of photosynthesis is a very important and interesting light-activated chemical reaction.
It has therefore been (and continues to be) a high-profile target for time-resolved femtosecond crystal-
lography [19, 20], even more so because of the large sizes of the protein complexes involved and the
consequent difficulties with making large crystals.
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Recently, the high time resolution achievable with an X-ray free-electron laser was demonstrated
for two proteins, myoglobin [21] and photoactive yellow protein [22], in both cases achieving a time
resolution close to 100 fs. Many other ways to start a chemical reaction have been proposed, such as
to mix a protein with a substance it can act on [23], and acquire diffraction snapshots after a controlled
amount of time for mixing and diffusion to occur.

6 Future outlook
It would be the dream of many structural biologists to determine the structure of biomolecules, at near
atomic resolution, without crystallization, and progress is being made in that direction. Even though
the problem of radiation damage is avoided, there are several other difficulties to be overcome. Since
the signal level is still very low, only a few photons at high resolution, background scattering must be
reduced to almost nothing, in turn, affecting how the protein molecules are delivered to the X-ray beam.
The X-ray beam must be carefully characterized, and the detector must be well-calibrated and produce
low noise. Alongside this, an interesting discovery was made recently; that certain types of disorder in
a protein crystal can reveal the molecular scattering [24]. In this case, the signal is superimposed on the
Bragg scattering of the crystal and extends to a higher resolution than the Bragg peaks.

It is clear that structural biology will continue to be a very important and productive application
for current and future X-ray free-electron laser facilities.
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Machine Protection

L. Fröhlich
DESY, Hamburg, Germany

Abstract
Conventional linacs used for modern free-electron lasers carry electron beams
of unprecedented brightness with average powers ranging from a few watts to
hundreds of kilowatts. Energy recovery linacs are already operated as radiation
sources with nominal electron beam powers beyond 1 MW, and this figure can
only be expected to increase in the future. This lecture discusses the scope
of machine protection for these accelerators, reviews the parameters of exist-
ing and planned facilities, and gives an overview of typical hazards and dam-
age scenarios. A brief introduction to the interaction of electron beams with
matter is given, including a simple model for estimating some properties of
electromagnetic cascades. A special problem common to most light sources—
the field loss of permanent magnet undulators and its consequences for the
emission of radiation—is discussed in the final section.

Keywords
Machine protection; linear accelerators; free-electron lasers; energy recovery
linacs; radiation-induced demagnetization.

1 Introduction
Machine protection aspects have influenced the design and operation of particle accelerators for many
decades. The storage ring community has recently seen a wave of activity in this field, owing to the
unprecedented amount of energy stored in the beams and in the magnets of the Large Hadron Collider.
In a similar fashion, the advent of high-gain free-electron lasers (FELs) and energy recovery linacs has
led to a renewed interest in high-power electron linacs as drivers of radiation sources and in the special
machine protection needs of these facilities.

All of this activity has produced countless reports, conference papers, and articles concerned with
specific implementations and technical details. Alas, only a few publications attempt to provide a broader
view of the machine protection field; interested readers will find a selection in Refs. [1–8]. The CERN
Accelerator School undoubtedly deserves credit for inspiring some of the more extensive works.

This paper does not strive for generality. Prepared for the school on FELs and energy recovery
linacs, it excludes any discussion of the specific issues of hadron machines, and is instead biased towards
machine protection issues for linear accelerators in light sources. The initial section tries to establish
the scope of what ‘machine protection’ means for these accelerators. Afterwards, an overview of typical
hazards and damage scenarios is given and the parameters of existing and planned facilities are reviewed
in light of their damage potential. The central part of the paper provides a brief introduction to the
interaction of electron beams with matter, which is fundamental to an understanding of many problems
in the field. A discussion of the field loss of permanent magnet undulators and its consequences for the
emission of radiation sheds some light on a problem specific to light sources at the end of the paper.

2 The scope of machine protection
The term machine protection is often understood as a mere synonym for a system of protective interlocks
and beam loss diagnostics. While such active systems play an important role, effective protection from
damage involves many fields of accelerator engineering and physics. If we attempt to define the term
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in a single sentence, we might say that machine protection is the sum of all measures that protect an
accelerator and its infrastructure from the beam. Traditionally, the focus is on the charged particle beam,
but the generated photons need to be considered as well, especially in light of X-ray FELs and energy
recovery linacs with unprecedented peak and average power output. If we take this definition seriously,
a number of fields must be regarded as integral parts of machine protection work, or at least as closely
related.
Machine protection systems: a machine protection system implements interlocks on components that

may interfere with the safe transport of the beam (e.g., magnets, screens). It monitors the beam with
instrumentation that may be generic (beam position monitors, current monitors) or specifically
designed for protection purposes (beam loss monitors, dosimetry systems). When excessive beam
losses or other problems are detected, the machine protection system intervenes according to a
mitigation strategy—it might simply inform the operator, reduce the repetition rate, or stop the
beam production.

Collimators: collimators and scrapers are used to limit the extent of the electron bunch (and of possible
dark currents) in phase space. If there are trajectory or focusing problems, they should intercept the
electron beam before it reaches sensitive components. The electromagnetic cascades originating
from the interaction of high-energy electron beams with matter are not easy to contain, so care
must be taken to place suitable absorbers.

Shielding: the loss of a small fraction of an electron beam at the gigaelectronvolt level releases a danger-
ous amount of spontaneous radiation. Even if the average power of the beam is as low as a few
watts, the radiation can quickly cause temporary or permanent damage to electronics in the vicinity
of the beamline. Sustained exposure causes various types of radiation damage—cable insulation
becomes brittle, optical components darken. Beam loss can also release sizable quantities of neu-
trons and activate materials in the process. Depending on the beam power, accelerator components
may therefore require shielding against both electromagnetic dose and neutrons.

Beam physics: a loss-free transport of charge from the injector to the dump requires a good under-
standing of the optics and of the entire acceleration process. The higher the beam power, the more
important it is to have good control over the optics matching and over collective effects that create
emittance blow-ups, tails, or halos.

Robust systems: every system or software package that has a direct or indirect influence on the beam
contributes to the protection of the machine by providing a certain level of robustness. Cardinal
examples are beam-based feedback systems, low-level radio-frequency systems, or even high-level
physics tools for optimization of the radiation output.

Procedures: well-defined procedures for typical linac operations, such as switch-on, change of energy,
or ramp to full power, contribute to safety and make the machine state more reproducible. Automa-
tization of these procedures can further help to avoid errors.

3 Beam power of existing and future facilities
When we examine the machine protection needs of an electron linac, the most important characteristic
to consider is its average beam power P :

average beam power =
energy
charge

· charge
time

=
‘beam energy’

e
· average current .
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Table 1: Maximum energy, bunch frequency, and average beam power of selected existing and planned FELs. The
calculation of the beam power assumes typical parameters for minimum and maximum power operation for each
facility.

E (GeV) ν (Hz) P (W)
FERMI 1.4 10 14
SACLA 7 10–60 8–140
LCLS 15 120 36–360

FLASH 1.3 1M–3M pulsed 10–22k
European XFEL 17.5 4.5M pulsed 600k
LCLS-II 4 100k–1M cw 120k

NovoFEL 0.012 5.6M–22M cw 15k–60k
JLab FELs 0.2 75M cw >1M
Future energy recovery linacs? 5 1.3G cw 500M

When the machine accelerates single bunches of charge Q at a fixed repetition rate ν, this becomes

P =
νQE

e
,

where E denotes the energy per electron and e the elementary charge.

Most existing and proposed single-pass FELs are based on normal conducting linacs using S-
and C-band accelerating structures. The normal conducting technology permits only a short RF pulse so
that, usually, only a single bunch is accelerated per pulse. The beam power is therefore limited by the
repetition rate of the RF systems, of 5–120 Hz, and by the maximum usable bunch charge, which may
vary between tens of picocoulombs and a few nanocoulombs. Depending on their individual parameters,
normal conducting machines transport beams from a few watts to about 400 W (the first three entries in
Table 1).

Superconducting linacs can sustain the RF pulse for a considerably longer time span. This makes
it possible to accelerate long bunch trains with bunch frequencies in the megahertz range, which raises
the average beam power considerably. FLASH, which is still the only working single-pass FEL based
on a superconducting linac, has demonstrated the transport of 1800 bunches per pulse at a bunch charge
of 3 nC with a repetition rate of 5 Hz, carrying an average power of 22 kW [9]. Facilities that are
already under construction have design powers in excess of 100 kW (LCLS-II, with continuous-wave
RF systems) or even above 0.5 MW (European XFEL, with pulsed RF systems). It is obvious that super-
conducting linacs, when operated at these power levels, have a serious damage potential.

Table 1 also lists the parameters for selected energy recovery linacs—although these are oscillators
instead of single-pass FELs, they are an instructive point of reference for the typical problems associated
with high beam powers. The Jefferson Lab FELs, when operated with a bunch frequency of 75 MHz
(continuous wave), can carry a nominal electron beam power of more than 1 MW. This means that even
the loss of a tiny fraction of the electron beam can cause serious problems including mechanical damage,
and, consequently, machine protection aspects are a fundamental part of the operation of the accelerator.
It is a safe assumption that future superconducting single-pass FELs operating in a similar power range
will share many of the problems encountered in today’s energy recovery linacs, while adding some of
their own.
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Fig. 1: Schematic of the European XFEL (not to scale). Main dipole magnets are shown as blue squares; acceler-
ating sections as yellow rectangles.

4 Emergency reaction times: a case study
The high repetition rates of superconducting machines bring with them some complications for the design
of machine protection systems. The European XFEL (Fig. 1) is an instructive example. In the machine,
the distance from the injector laser to the last undulator is approximately 3 km. Hence, a signal needs
about 10 µs to travel from one end of the accelerator to the other at the speed of light in vacuum (c). At
the maximum bunch frequency of 4.5 MHz, up to

3 km · 4.5 MHz/c ≈ 45

bunches are simultaneously travelling through the beamline. Assuming that a beam loss occurs at the
farthest position from the injector and is detected immediately, the signal still needs considerable time to
reach the injector laser in order to switch it off; this time would be on the order of 15 µs for a fibre-optic
transmission line with a signal propagation speed of 2

3 c. As a consequence, at least 45 + 3
2 · 45 ≈ 113

bunches would be (partially) lost before a machine protection system could take any countermeasures.
At a bunch charge of 1 nC and a final energy of 17.5 GeV, these bunches would carry a total energy of

113 · 17.5 GeV · 1 nC
e
≈ 2 kJ ,

enough to melt about 5 g of copper from room temperature.

In a nutshell, the efficiency of active systems for the protection of a high-power accelerator can
already be limited by unavoidable signal propagation times. In such cases, greater emphasis needs to
be put on passive protection measures, such as resilient and effective collimators. Sometimes it is also
possible to make use of additional beam abort points—for the European XFEL, the fast dump kicker
magnet can be fired when beam losses occur in the undulator sections.

5 Hazards
The complete or partial loss of the electron beam in a vacuum chamber can cause a number of detrimental
effects. If we try to order these effects roughly by the local power deposition needed to cause them, we
obtain a list like the one in Table 2. Any such overview can only be understood as an approximate
indication of the orders of magnitude; obviously, each damage scenario needs to be assessed individually
and, for special cases, very different numbers may be found.

Direct mechanical damage through melting or sublimation depends on power density rather than
power; for typical scenarios, however, a substantial power deposition of hundreds of watts or kilowatts
is necessary—hence, direct damage is of little concern for normal conducting machines, but needs to
be protected against for superconducting ones. Single-bunch damage is not to be expected for the par-
ameters of typical FELs or energy recovery linacs because of too low charge densities; however, for the
design parameters of the International Linear Collider it is a clear possibility [10].

4

L. FRÖHLICH

616



Table 2: Effects of beam loss. The table roughly relates the onset of various damaging effects to the local power
deposition caused by a beam loss.

Pmin (W) Effects
100–1000 Thermal or mechanical damage
10–100 Mechanical failure of flange connections
1–100 Activation of components
1–100 Radiation damage to electronics,

optical components, etc.
1–10 Excessive cryogenic load, quenches
0.01–0.1 Demagnetization of permanent magnets

The deposition of heat can also have indirect consequences—such as impairing the tightness of a
flange connection once the metal starts to cool down after thermal expansion. This, again, is an unlikely
scenario for the typical beam powers of normal conducting machines, but is a real danger once the beam
power reaches the multikilowatt level.

The spontaneous radiation released by beam losses can lead to malfunctions in electronics or
to various types of radiation damage. In fact, the radiation released by a single watt of electron beam
dumped on a beam pipe is quite destructive to many types of electronics in the vicinity if no proper
shielding is in place. Such a loss is, of course, easily diagnosed in a linac operating at low current,
but it only corresponds to a fraction of 10−5 of a 100 kW beam. Similar considerations apply to the
activation of components; generally, induced radioactivity at electron accelerators is relatively short-
lived and substantially less than at hadron machines, but it can impair the maintainability of components
and the accessibility of the beamline.

Superconducting accelerators have a special vulnerability to beam losses because any deposition
of heat in the cold mass must be compensated for through the cryogenic system with a disproportion-
ate amount of power. Beam losses can also cause superconducting cavities or magnets to quench (i.e.,
to become normal conducting), which in turn creates an immediate instability in the downstream beam
transport. For cavities, a reduction of RF power is usually sufficient to stop a quench, whereas super-
conducting magnets need more intricate quench protection systems to protect them from damage.

Finally, light sources usually depend on undulators made of permanent magnets. These magnets
are installed in the immediate vicinity of the beam axis and are susceptible to field loss under irradiation.
This makes beam losses in insertion device sections a particular concern for machine protection. We will
therefore revisit the topic in greater detail later on.

6 Interaction of electron beams with matter
For almost all studies related to machine protection, a good understanding of the interaction of the beam
with matter is fundamental. In other words, what happens when the electrons or photons of our light
source hit an obstacle?

6.1 How electrons lose energy
Electrons passing through matter lose kinetic energy and are deflected from their original direction.
Several processes contribute to both effects, most importantly:

– elastic scattering with nuclei;
– inelastic scattering with atomic electrons;
– bremsstrahlung.
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Fig. 2: Feynman diagram for the emission of a bremsstrahlung photon by an electron scattered at an atomic nucleus

All of these phenomena are caused by Coulomb interaction of the projectile with the atoms of the target
material, but only the latter two contribute substantially to the energy loss of the electrons. In elastic
scattering with a nucleus, the mass difference between both collision partners is so large that the electron
loses only a tiny fraction of its kinetic energy. Multiple Coulomb scattering in the lattice of the target
material can, however, deflect the electrons significantly from their incident direction and cause a broad-
ening of the beam. A discussion of the angular distribution caused by multiple Coulomb scattering is
found, e.g., in Ref. [11].

Inelastic scattering mainly takes place between the projectiles and the bound electrons of the tar-
get material. Some of the kinetic energy of the moving charge is transferred to the target atom in the form
of electronic excitation or ionization. This is the only effect of any importance by which electrons can
transfer energy directly to matter. The ESTAR online database [12] is an excellent resource for quantita-
tive calculations and contains stopping power and range data for many materials. Readers interested in
the original quantum mechanical treatment of inelastic scattering by Bethe and Bloch from the 1930s
and in later corrections to the theory should consult Refs. [13–15].

Bremsstrahlung is the radiation emitted by fast electrons due to the interaction with the electric
field of the positively charged nuclei of the target material (Fig. 2). By bremsstrahlung, the electrons lose
energy without depositing it directly in matter—instead, the energy is carried away by photons, which
may or may not interact with the material themselves. In the high-energy limit, these radiative losses
scale almost linearly with the energy of the projectile E as

dE

dx
≈ const. · E · Z

2

m2
, (1)

where dE/dx is the energy loss per distance travelled inside the material, Z is the atomic number, andm
is the mass of the projectile. The occurrence ofm2 in the denominator also indicates why bremsstrahlung
is so much more important for electrons than for any other charged particles—they are light.

Figure 3 shows the contributions to the energy loss of an electron travelling through aluminium,
copper, and lead. Inelastic scattering is most important at low energies, while emission of bremsstrahlung
dominates the high-energy region.

For practical purposes, it is useful to know the particle energy at which the loss by inelastic scat-
tering is equal to the radiative loss. To a good approximation, this quantity is a material constant called
the critical energy. It can be estimated fairly well by the simple formula:

Ecrit ≈
800 MeV
Z + 1.2

.

Typical values are 51 MeV for aluminium, 25 MeV for copper, and 9.5 MeV for lead; more materials are
listed in Ref. [16].
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Fig. 3: Energy loss by electrons in aluminium, copper, and lead as a function of total electron energy
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Table 3: Radiation length of selected materials [18]

Material Lrad (cm) X0 (g/cm2)
Aluminium 8.90 24.01
Titanium 3.56 16.16
Iron 1.76 13.84
Copper 1.43 12.86
Tungsten 0.35 6.76
Lead 0.56 6.37

6.2 Radiation length
As long as we are in the bremsstrahlung-dominated regime (well above the critical energy), we find that
radiative losses are approximately proportional to the total energy of the electrons (Eq. (1)). Of course,
this means that the energy decays exponentially with the distance x travelled in matter:

E(x) ≈ E0 exp

(
− x

Lrad

)
.

The quantity Lrad is a material constant called the radiation length. It specifies the distance after which
the energy of an ultrarelativistic electron has decreased to 1/e of its initial value. Some authors prefer to
normalize the constant to the density ρ of the material (X0 = Lrad · ρ), although the resulting quantity
is no longer a length in the literal sense. Table 3 shows values of Lrad and X0 for some materials. A
convenient method of calculating X0 to a precision of a few per cent is given in Ref. [17]. Using the
atomic number Z and the mass number A,

X0 ≈
A

Z(Z + 1) ln(287Z−0.5)
· 716.4

g

cm2
.

6.3 Interaction of photons with matter
So far, we have treated only the direct interaction of electrons with the target material. Of course, the
emitted bremsstrahlung photons can interact with the material, too. The most important processes for
this are:

– the photoelectric effect;
– Compton scattering;
– pair production;
– photonuclear reactions.

The first two effects lead to ionization of the material—in Compton scattering, the incident photon trans-
fers part of its energy to an atomic electron; in the photoelectric effect it is absorbed completely—
while pair production creates a positron and an electron from a photon of sufficient energy (Fig. 4).
Compared with these three effects, photonuclear reactions are extremely rare. Their main importance
lies in the creation of free neutrons in the giant dipole resonance, which is the main source of beam-
induced activation at electron accelerators.

The interaction cross-sections of photons in aluminium, copper, and lead are shown in Fig. 5.
The photoelectric effect and Compton scattering are more important at lower energies, whereas pair pro-
duction is clearly the dominant process above a few tens of megaelectronvolts. As a rule of thumb, the
interaction cross-section for pair production scales with the square of the atomic number, σpair ∝ Z2.
This is essentially the same proportionality as for the energy loss of electrons due to bremsstrahlung
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Fig. 4: Feynman diagram for electron–positron pair production

(Eq. (1)): unsurprisingly, heavier elements tend to provide better shielding against high-energy electron
and photon beams.

In a pair production event, almost all of the photon energy is converted into the rest mass and
kinetic energy of the electron–positron pair; the momentum transfer to the nucleus also participating in
the interaction is negligible. Hence, the overall picture is the same as for electrons: high-energy particles
do not transfer energy directly to matter; such energy absorption mainly takes place at the lower end of
the energy spectrum.

A useful rule of thumb can be used to calculate the mean free path length Lpair of photons at high
energies. It can be readily expressed in terms of the radiation length of the material as

Lpair ≈
9

7
Lrad .

Ignoring the difference of ∼30 %, this translates into the following, remarkably simple result:

The typical path length a photon can travel in matter until it is consumed in a pair
production event is roughly the same as the radiation length of the material.

On a final note, electrons and positrons are, of course, not the only particles produced in pair
production events. For example, a channel for pair production of the next heavier particle, the muon,
opens at photon energies of 2mmuon ≈ 211 MeV. However, the cross-section for muon production
is several orders of magnitude less than that for electron–positron production. While muons can be of
concern for general radiation protection (exposure to human beings), electrons and positrons are usually
the only particles produced in sufficient quantities to be considered for machine protection purposes.

6.4 Electromagnetic cascades
At sufficiently high energies, the energy loss of electrons is dominated by bremsstrahlung, and the
main interaction of photons with matter is the production of electron–positron pairs. Combined, these
two effects create the phenomenon of an electromagnetic cascade or shower. As illustrated in Fig. 6,
bremsstrahlung photons induce pair production, and the newly created electrons and positrons in turn
generate bremsstrahlung when they interact with the nuclei of the material. These new photons can
produce additional e+/e− pairs, and therefore the number of particles involved in the cascade increases
exponentially until the energies are low enough to favour different processes. Hence, the effect of an
electromagnetic cascade is the dispersal of transported energy from a few high-energy particles to many
low-energy particles. These low-energy particles are mainly responsible for the energy transfer to the
material.

6.5 Simplified cascade model
It is possible to derive a coarse estimate of the penetration depth of an electromagnetic shower from a
very simple model of the cascade (see, e.g., Ref. [16]). Exploiting the fact that the characteristic length
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Fig. 5: Total cross-sections for photonic interactions in aluminium, copper, and lead
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Fig. 7: Simplified model of electromagnetic cascade

scale of the problem is the radiation length of the material, three basic assumptions are made.

– An electron emits half of its energy as a single photon after travelling a distance Lrad.
– A photon is converted to an e+/e− pair, each carrying half of its energy, after Lrad.
– The shower stops when particle energies drop below the critical energy.

Apart from some general approximations, these assumptions basically reduce statistical statements to
deterministic rules for individual particles.

Figure 7 shows the evolution of the cascade in this simplified model. The cascade starts from a
single electron of energy E0, which emits a photon of energy E0/2 after one radiation length. More
generally, after N radiation lengths, there are 2N particles, each with energy E0/2

N .

After a certain number Ncrit of radiation lengths, the particle energy has decreased to the critical
energy of the material, and the cascade stops. From

Ecrit =
E0

2Ncrit
,

it is straightforward to calculate the number of particle generations in the shower:

Ncrit =
ln(E0/Ecrit)

ln(2)
. (2)

It is not obvious how to interpret this remarkably simple result—clearly, a real cascade does not come to
a sharp stop after a certain distance. To get a feeling for the physical meaning of Eq. (2), it is instructive
to calculate the values of Ncrit for a few scenarios and to compare them against the results of more
sophisticated simulations. Considering an electron beam hitting a (large) copper block, Eq. (2) yields the
following values for a critical energy of Ecrit(Cu) = 25 MeV:

– for a beam energy of 100 MeV: Ncrit ≈ 2;
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Fig. 8: Energy deposition by a 1 GeV pencil electron beam impinging on a big copper target. The deposited energy
is averaged over the range −2 cm < y < 2 cm.
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Fig. 9: The same plot as Fig. 8, but with a linear energy scale

– for a beam energy of 1 GeV: Ncrit ≈ 5.3;
– for a beam energy of 10 GeV: Ncrit ≈ 8.6.

6.6 Monte Carlo simulations
The propagation of electromagnetic cascades in the presence of obstacles or shielding can be modelled
very well by Monte Carlo simulations. In such simulations, lots of particles are tracked, and their inter-
actions with the material are modelled by random sampling from the actual physical probability distri-
butions. The end result of such a simulation is always obtained by averaging over the contributions of
all individual particles to the quantity of interest (e.g., energy deposition or fluence). Widely used and
fairly complete simulation codes—not only for electromagnetic, but also for hadronic problems—are,
for instance, FLUKA [19, 20] and Geant4 [21, 22].

We can continue the discussion of the simplified shower model by comparing its results with
those obtained from a simple FLUKA simulation. In this simulation, we let a (pencil) electron beam
impinge on a huge target made of copper. The deposited energy in the material is scored on a Cartesian
three-dimensional grid. Figure 8 shows the result for a beam energy of 1 GeV. The deposited energy is
averaged over a slice of the target geometry (namely, the range with −2 cm < y < 2 cm) and indicated
by false colours distributed along a logarithmic scale. This kind of plot is typical for all kinds of machine
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Fig. 10: Energy deposition by electron beams of various energies in a huge copper target. The beam impinges from
the left at z = 0. Both plots show the same curves with different scales for the vertical axis.

and radiation protection studies where walls and other shielding implements attenuate radiation fields
by many orders of magnitude; it can, however, be misleading because of the logarithmic colour scale.
Where Fig. 8 seems to suggest that a substantial amount of energy is deposited far off-axis, the same plot
with a linear energy scale (Fig. 9) shows clearly that this is not the case.

Figure 10 shows the projection of the deposited energy onto the z axis. This view is especially
useful for judging the penetration depth of the shower in the material. Because the simulated copper
target is huge, it absorbs all of the energy of the incoming beam. Therefore, a 10 GeV beam deposits
ten times more total energy than a 1 GeV beam, which in turn deposits ten times more energy than a
100 MeV beam. All of these high-energy beams show similar curve shapes: the energy deposition rises
steeply to a maximum and afterwards decreases ever more slowly, with a long tail to large penetration
depths. This is simply a consequence of the statistical nature of an electromagnetic cascade: there are
always some high-energy photons that traverse long stretches of the material before interacting with it.
The behaviour of the electron beam at 5 MeV is different—because the beam energy is far less than
the critical energy, its energy loss is dominated by inelastic electron–electron scattering, and very little
bremsstrahlung is generated.
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The figure also allows the results for Ncrit from Eq. (2) to be put into context. The simple shower
model reliably predicts a shower depth that is a good way beyond the actual shower maximum. For all
its simplicity, the model can therefore be used for quick shielding estimates—at a thickness of about
2–3 Ncrit radiation lengths, most of the shower energy has been absorbed by the material.

7 Damage to permanent magnets
Free-electron lasers and energy recovery linacs used as light sources usually depend on undulators or wig-
glers made of permanent magnets to extract synchrotron radiation from the electron beam. Unfortunately,
the beam can also damage them: permanent magnets gradually lose their magnetization under irradiation
(see e.g., Refs. [23–25]). This problem is of particular concern for machine protection at light sources
because:

– it is cumulative (even small beam losses or dose rates can cause a deterioration of the field over
longer time-scales).

– it is often not possible, or at least very expensive, to exchange an undulator.
– the undulators represent one of the smallest apertures in the accelerator (the SACLA in-vacuum

undulators have a minimum gap of 3.5 mm [26]).
– in FELs, the lasing process itself depends crucially on a high precision of the magnetic field.

As a general rule, designers of insertion devices already prefer magnetic materials of higher co-
ercivity because they are more radiation-resistant. Nonetheless, measurements after a few years of oper-
ation in an accelerator sometimes reveal significant loss of field. For example, a sacrificial permanent
magnet structure installed at FLASH lost 3% of its initial field after 3 years of operation [27], and the
first period of an undulator from the Petra-II storage ring was reduced to almost half of its magnetization
in the lifetime of the machine, with visible signs of demagnetization continuing at least until the 20th
period of the device [28,29]. These measurements are alarming enough that we should examine the effect
of a partially demagnetized undulator on the emission of synchrotron radiation in some detail.

7.1 Effect of demagnetization in an undulator
For a number of reasons, typical beam loss scenarios cause a very inhomogeneous dose deposition along
the longitudinal axis of an undulator. The strongest demagnetization is usually to be expected in the first
periods at the upstream end of the magnet structure.

To understand the effect of a partially demagnetized undulator, we can track a single electron
through the centre of a perfect undulator field with a simple two-dimensional tracking code. At each
turning point n of the undulating trajectory (where the transverse velocity is zero), we note the longi-
tudinal slippage ∆zn between the electron and a photon emitted at the undulator entrance. In an ideal
undulator, this slippage simply increases by one radiation wavelength λr for each full period of the
undulating motion, ∆zn+2 −∆zn = λr.

If the field amplitude at the undulator entrance is reduced, the electron motion is no longer
synchronous with the nominal radiation wavelength—the particle effectively takes a straighter trajectory
and therefore gets ahead of where it should be. This effect can be described by a phase error ∆φ. At each
trajectory turning point n, we define:

∆φn = 2π · nλr/2−∆zn
λr

+ φ0 ,

where the starting phase φ0 can be chosen at will (as by a phase shifter chicane in a real-world FEL).

We are going to use the parameters of an undulator in the final stage of the FEL-2 line of FERMI
(Table 4) to study a real-world example. To simulate radiation-induced demagnetization, the ideal undu-
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Table 4: Undulator and electron beam parameters for phase error calculation

Number of periods 66
Period length 3.48 cm
Field amplitude 1.105 T
Electron energy 1.25 GeV
Wavelength (fundamental) 21.7 nm
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Fig. 11: Magnetic field profiles used for phase error calculations. Thick lines show the tapering of the field ampli-
tude; the actual oscillating magnetic field is indicated by thinner lines below.

lator field By(z) is tapered exponentially according to

B′y(z) = By(z) ·
(

1− de(−z/L)
)
,

with L = 0.5 m and a factor d specifying the relative demagnetization at z = 0. Field profiles for values
of d between 10−3 and 5 · 10−2 are shown in Fig. 11.

The resulting phase errors are displayed in Fig. 12. For ease of comparison, they have been ad-
justed (via φ0) to coincide at zero at the exit of the undulator. It can be seen that the phase errors quickly
reach large values: already at a tapered demagnetization of 1%, the electron bunch is out of phase by
90◦ at the undulator entrance. For higher values of d, the electron bunch in the first part of the struc-
ture effectively cancels out a part of the radiation through destructive interference. It should be noted
that inhomogeneous phase errors like this can only partially be compensated by adjusting the undulator
gap—after all, opening the undulator gap is equivalent to the introduction of a linear phase slope.

Obviously, the effect on the microbunching and on the final output power of an FEL needs to
be studied in the context of the whole system of insertion devices and electron beam optics. It is clear,
however, that even a small loss of magnetic field can have a big influence on the performance of an
undulator.
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8 Conclusions
All synchrotron light sources share a common set of machine protection problems: the limitation of
induced activation, the protection of components from radiation damage, and the protection of permanent
magnet undulators from demagnetization. The latter is of particular concern for FELs because magnet
damage can directly impair the FEL process itself. The high beam power of superconducting or energy
recovery linacs makes all of these problems much more challenging and adds the potential for direct
or indirect mechanical damage. In this context, it is quite natural to see catastrophic, sustained losses
of the entire beam as the main danger in high-powered accelerators. However, while such an incident
can obviously have dramatic consequences, it is also relatively easy to detect and to avoid. The more
serious problem with powerful beams is that even tiny fractional losses can represent huge absolute
power depositions: a loss of 10−4 of a 1 MW beam is not easily measurable by beam current monitors,
but it still represents 100 W of power. To control beam losses to this level, possible causes have to be
understood and many aspects of the accelerator operation have to be optimized. Ultimately, the goal of
machine protection is to avoid damage to expensive components and to prevent the loss of beam time—
one of the most precious resources at any light source. The best approach to this goal is not to reduce
machine protection to a mere system of interlocks, but to make safety considerations an integral part of
the design and operation of an accelerator.
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Abstract
Besides their application for radiation generation, energy recovery linacs
may become a unique tool for scattering experiments in nuclear and parti-
cle physics. Applications for fixed target and also for collider experiments
are discussed. Spin polarized operation is an essential feature which requires
additional attention.

Keywords
Energy recovery linac; electron ion collider; Mainz energy-recovering super-
conducting accelerator.

1 Introduction
The proposal to use energy recovery for electron-collider experiments by Maury Tigner dates back to
the 1960s [1]. However, it soon became apparent that synchrotrons would offer better conditions, thus
the idea was not pursued intensely until the end of the century. Nowadays, the limitations of the storage
ring concept are well known and scientists have revisited the advantages linac-based experiments would
offer. The advantages of Energy Recovery Linacs (ERLs) for radiation production have been discussed
in another contribution to this school [2]. In this paper I will mention the possibilities for scattering
experiments with ERLs that serve particle or nuclear physics studies.

Such experiments have been pursued in the past with linacs and also storage rings, the Stanford
Linear Collider (SLC) and the Large Electron Positron collider (LEP) being typical large-scale examples.
In Section 2 I will address the specific advantages that ERLs may offer compared to the established
systems. Typical experiments are discussed together with their physics goals in Section 3. Present ERL
designs always incorporate recirculations, therefore their energy range is limited to ≈ 100 GeV due to
synchrotron radiation losses. In this energy region, the investigation of spin-dependent interactions is an
important possibility. The requirements of spin operation are discussed in the final Section 4, together
with some specific hardware needed for such experiments.

2 Applications for ERLs in particle physics
ERLs have hitherto not been used for particle physics experiments, although the initial suggestion of
Tigner pointed in exactly this direction. The reason is of course that other accelerator types have served
the purposes of particle physics with extraordinary success. However, accelerator-based experiments are
presently facing tremendous challenges. One of these challenges, increasing the beam energy, cannot
be efficiently addressed with present-day electron ERLs due to the fact that the recirculation system
will produce intense synchrotron radiation and consequently limit the luminosity at high energies. The
advantages of ERLs have therefore to be sought at low energies (<100 GeV or even much lower) where
unprecedented experimental conditions can be achieved which are not accessible with the established
accelerators. Two such regimes have been proposed, which we discuss in the following subsections.

2.1 Low background in fixed target experiments at low energies
If a beam hits a target at rest which has dimensions larger than the beam itself, the reaction rate is given
by
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R = L · dσ

dΩ
∆Ω (1)

The symbols denote L: luminosity, dσ
dΩ differential cross-section, ∆Ω: solid angle of the detector

system. If the interest of the experimenter is in achieving high statistical accuracy—for instance if the
cross-section to be measured is very low—a high luminosity is desired. In a fixed target experiment the
luminosity can be increased by a high areal density which represents the product of the density ρ and the
thickness (dtarget) of the target:

L =
NA

A

Ibeam

e
ρTargetdtarget (2)

where e = electron charge, NA = Avogadro’s number, and A = atomic mass unit of the target.

Conventional fixed target experiments have the advantage of a potentially very high luminosity,
for instance, the planed P2 experiment at the Mainz Energy-recovering Accelerator (MESA) facility in
Mainz will be operated with a 60 cm long liquid hydrogen target and an external beam current (without
energy recovery) of 150µA [3], yielding a luminosity of >1039 cm−2 s−1. In this experiment, the areal
density of the scattering centres which contribute to the reactions is approximately 2.5× 1024 cm−2.

The large number of scattering centres in the target creates limitations for precision experiments in
several ways. One of them is the uncertainty caused by multiple scattering in the target which sets limits
to the precision of the determination of scattering angle, energy loss, etc. Furthermore, multiple scat-
tering leads to tails in the angular distribution which can cover large angular intervals. In consequence,
the background created from such halo particles when they hit structural components in the vicinity of
the experiment creates another source of systematic uncertainty. Yet another contribution of this kind is
the enclosure of the target, which represents another background source. Moreover, the scattered signal
particles have to penetrate the enclosure too. This will straggle their angular and energy distribution and
hence further reduce the measurement accuracy. These effects become more and more pronounced with
decreasing energy.

Whereas these effects are not limiting for experiments such as P2, other high-precision experi-
ments call for a target without enclosure and low areal density. These demands are met, for instance, by
gas jets—such targets are also called ‘windowless gas targets’. The application of such a target, together
with an ERL, was proposed by Heinemeyer et al. [4]. They observed that a thin target would only lead
to a small deterioration of the beam quality which could allow for energy recovery of the beam. Figure
1 shows the schematic setup of an ERL employing such a target.

Experiments of this type have already been performed at storage rings for a long time, for instance
with the HERMES target at HERA [5]. In a storage ring, precision experiments are burdened by the
fact that the luminosity is varying with time and that the injection periods interrupt the data acquisition.
Again, these disadvantages become more severe the lower the energy of the operation. On the other hand,
in an ERL, each beam particle passes the target only once, which leads to stationary beam conditions. In
order to distinguish this from the storage ring, where beam particles may pass the target billions of times,
we call the ERL target a ‘pseudo internal target’ (PIT).

Therefore, in a beam energy range <1 GeV, a window of opportunity may exist in which operat-
ing an ERL can enable experiments with fixed targets which have hitherto been difficult or impossible.
The existing Jefferson Laboratory ERL and the MESA facility at Mainz, which is currently under con-
struction, both operate at energies in the 100 MeV range, where the shortened beam lifetime in a storage
ring would make internal target experiments difficult. Experiments at these facilities aim to demonstrate
the advantages of this new type of experimental regime. I discuss several such experiments below. A
very encouraging result has already been obtained by a team formed by MIT/Bates and JLAB1. They

1MIT=Massachusetts Institute of Technology, Boston, USA; JLAB= Jefferson Laboratory, Newport News, USA
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Fig. 1: Schematic of an ERL setup with ‘pseudo internal target’ (PIT)

successfully demonstrated transmission of a high intensity beam through a 127 mm long tube with a
2 mm aperture with negligible losses [6].

2.2 Electron ion colliders
Electron ion colliders (EICs) are operating in the multiple GeV energy range. They may be designed
as ring/ring (RR) or as linac/ring (LR) machines. Figure 2 shows a schematic layout of such a LR
configuration. Two examples which are currently under discussion for the LR configuration are the
eRHIC project at BNL [7] and the LHeC [8] at CERN2. In both cases, a high energy ion accelerator
already exists and will be complemented by an ERL. In the BNL design, the ERL will be integrated into
the already existing tunnel and at CERN a dedicated electron ring separated from the LHC tunnel will
be built.

Again it is useful to discuss what the substantial advantages are that can be achieved with respect
to the established RR ansatz. A first advantage is the enormously reduced complexity with respect to the
spin degree of freedom. In a ring setup, depolarizing resonances have to be avoided and space consuming
spin rotators are difficult to integrate. This is one of the main reasons why the LEP ring did not directly
exploit spin degrees of freedom for its particle physics program, although important information was
gained by using the depolarizing resonances as a tool for absolute energy calibration [9]. Such problems
are virtually absent in a linac-based approach that offers high flexibility of spin orientation with very
modest effort [10]. Due to the fast acceleration in the linac-type accelerator, depolarization is virtually
absent.

As in the fixed target case, the luminosity is a salient ingredient to obtain sufficient reaction rates.
For the case of a collider, a simplified formula under the assumption of equal emittances (ε) and beta
functions at the interaction point (β∗) is

L = fcoll
NelNIon

εβ∗
, (3)

whereNIon is the number of ions per bunch. The bunch collision rate, fcoll, times the number of particles
per electron bunch, efcollNel , is the beam current which can surpass 1 A in a storage ring. The virtual

2eRHIC=electron Relativistic Heavy Ion collider at Brookhaven National Laboratory (BNL), Upton, USA, LHeC=Large
electron Hadron Collider at Centre des Etudes des Recherches Nucleaires (CERN), Geneva Switzerland.
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Fig. 2: Schematic layout of a linac/ring (LR) configuration

beam power at the collision point (beam current times energy) is ≈GW which is of no concern in a
storage ring but makes energy recovery mandatory for a linac.

The fact that the emittance (ε) of the lepton beam [2] can be smaller than the equilibrium emittance
in the ring can create an advantage for the generation of high luminosities. This of course also calls for
a similar emittance of the ion beam. Recently, promising concepts such as coherent cooling [11] have
been suggested for ion beams which might help to increase the luminosity even further. Another potential
advantage can be realized if one takes into account that stable operation of a ring collider may be limited
by the beam–beam tune shift which is proportional to the bunch charge of the other beam species [12].

ΞIon ∝
Nel

γIon
; ΞEl ∝

NIon

γel
. (4)

This offers a means to circumvent the beam tune shift by reducing the number of electrons per
bunch at the expense of a higher NIon. The increased tune shift of the electrons can be handled, since
the electrons pass the target only once. A further advantage is that the difficulties of producing a high
average current of spin polarized electrons (see Section 4 below) can be mitigated in this regime.

It should be noted that for experiments using (polarized) positron beams the RR concept is better.
A linac-based experiment needs a particle source with an average current in the mA range which is
presently not feasible for positrons. But the majority of experiments suggested for such colliders aim at
hadronic observables which are probed with the lepton beam. In this case positrons do not give much of
an advantage.

3 Particle physics experiments at ERLs
As an example of possible fundamental physics applications we discuss the experimental portfolio for
the MESA ERL. The ERL will be operated with a beam energy of 105 MeV. The machine is currently
being built at the Johannes Gutenberg-University in Mainz, Germany. Figure 3 gives an overview of the
accelerator and its experiments.
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MESA accelerator at Johannes Gutenberg-Universität Mainz 

Double sided recirculation design with normalconducting injector 
and two-sided superconducting main linac 

Two different modes of operation: 
- EB-operation (P2/BDX experiment): polarized beam, up to 150 µA @ 155 MeV 

-ERL-operation (MAGIX experiment): unpolarized beam, up to 1 (10) mA @ 105 MeV 
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Fig. 3: Schematic layout of the MESA accelerator

3.1 Brief description of the MESA accelerator
MESA (Mainz Energy-recovering Superconducting Accelerator) will use a spin polarized photo source
with currents up to 1 mA. The beam time structure will be 1.3 GHz c.w. (continuous wave) which min-
imizes the bunch charges and therefore the beam dynamical issues associated with the charge. Never-
theless, space charge related effects are still important. The P2 experiment requires sophisticated spin
manipulation techniques which lead to a relatively long low energy beam transport system between the
source and the injector linac. Therefore larger currents than 1 mA will be difficult to handle, hence for
experiments with even higher demands, we plan to install another source for an unpolarized beam closer
to the injector linear accelerator (ILAC), which will allow us to achieve 10 mA of beam current.

After passing the injector the beam will have 5 MeV and can be injected in the first cryomodule
where an energy gain of 25 MeV is achieved by 2 slightly modified TESLA-type cavities. The beam is
then sent through a spreader, a 180 degree deflection and a recombiner which latter is almost identical to
the spreader, and then enters the second cryomodule. The different recirculation arcs can be used to pass
the cryomodules 3 times, yielding 155 MeV for external beam operation with the P2 experiment. This
experiment is not of direct relevance here since it operates with the conventionally extracted beam. The
“MAGIX” (MAinz Internal Gas target Experiment) experiment is integrated in another recirculation
loop where 105 MeV will be the beam energy. To operate the experiment, the recirculation loop is
extended into an additional hall in which the beam passes the MAGIX target and is sent back to the
main linac. Since the loop represents a net 180 degree phase shift the beam is decelerated again through
2 recirculations. Afterwards, the beam leaves at the opposite side with respect to the injection point at
5 MeV.
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High resolution spectrometers MAGIX: 

 double arm, compact design 
 momentum resolution: Δp/p <10-4 

 acceptance: ±50 mrad  
 GEM-based focal plane detectors 
 Gas Jet or polarized T-shaped target 

~3m 

Fig. 4: Artists view of the MAGIX setup [13]

3.2 The MAGIX experiment
Figure 4 gives an impression of the planned MAGIX setup. Two magnetic spectrometers are employed
in order to perform coincidence experiments. The spectrometers operate with a bending radius ≈ 1 m
which indicates that the setup will be quite compact. They can achieve a momentum resolution of
∆p/p < 10−4. This sets a corresponding requirement for the energy definition of the MESA beam
which should be at least the same or preferentially have a lower value. Specific detector systems are
currently being designed which take into account the low energies of the scattered particles.

The target region is separated from the beam line vacuum by a differential pumping stage. Modern
jet or cluster targets allow high areal densities>5×1018cm−2 (see Section 4.1 below). With the planned
beam current of MESA stage-1 (1 mA) this results in a luminosity of >3 × 1034 s−1 cm−2. Figure 5
shows the angular distribution after a beam with no angular spread has hit such a hydrogen target. The
distribution has been produced by Monte Carlo simulation with Geant 4. The resulting widening of the
angular distribution is negligible in terms of the natural divergence of an electron beam, at least as far as
the root-mean-square value of the angular straggling is concerned.

However, this does not mean that operation of such a target with an ERL beam is straightforward.
It is obvious that trajectories at arbitrary angles will exist due to elastic scattering. For very large angles
(θ > 5 deg) such particles may reach the detectors and can be considered as a signal. For small angles
(θ < 10 mrad) particles may fit into the acceptance of the beamline and the subsequent deceleration
system. Particles in the interval between these regions are target-induced halo and must be absorbed
(collimated) at well-defined positions. The stopping process should ideally not produce background in
the detectors or produce radiation levels that could become harmful for hardware installed in the areas
behind the target.
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Fig. 5: Angular electron distribution behind target

3.3 Low background reactions: dark photons
The ‘dark photon’ (denoted here by γ′) is a hypothetical gauge particle that could explain several anoma-
lies related to astrophysical observations or the (g-2) anomaly of the muon [14]. Such a particle would
behave like a photon but would have rest mass. The observations hint at a particle mass of the γ′ of
between 1 and 1000 MeV.

Since a gauge particle represents a force carrier, a charge is attributed to it. Though its effective
interaction with ordinary matter will be very small, it is not zero. This is expressed via the Feynman graph
in Fig. 6. In a scattering process radiation occurs, the vast majority of which is photon bremsstrahlung,
but in very rare cases the dark photon could be produced due to the charge which causes a coupling ε.

If the dark photon preferentially decays into electron/positron pairs, the total energy of the pair will
correspond to the rest mass of the γ′. Hence, if one observes such pairs and measures their momentum,
a continuous background spectrum will be reconstructed on which the sharp peak resulting from the
mass of the γ′ is superimposed. The sensitivity of such a discovery increases with the resolution of the
detectors, which motivates the use of magnetic spectrometers. Such measurements have been performed
for instance at the Mainz Mikcrotron (MAMI), but also at many other accelerators, although a γ′ has so
far not been discovered [15, 16].

These measurements allow us to exclude certain ranges of charge and mass for the dark photon.
The current (2016) status of this exclusion is presented in Fig. 7. MAGIX can cover hitherto uncovered
area in the parameter space for 2 MeV ≤ mγ′ < 80 MeV and for couplings 10−3 ≥ ε > 5 × 10−5.
Besides this, there is an even more interesting argument to use MAGIX in a slightly modified way.

In a specific region of the parameter space (red hatched area in Fig. 7) the observed (g-2) anomaly
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Z Z 

e- e- 

Fig. 6: Feynman graph for dark photon (γ′) production during electromagnetic scattering on a nucleus of charge
Z. The γ′ could decay either into a lepton/antilepton pair (L+/L−) or into dark matter particles (χ/χ).

mg‘ 

Fig. 7: Exclusion plots for the dark photon based on the assumption of a dominant reaction channel γ′ → e+ + e−

of the muon could be explained by the existence of a γ′, but it has not been discovered there. However,
the exclusion limits have been achieved under the assumption that the decay into e+/e−-pairs is the
dominant reaction channel. This may not be the case if dark particles χ, χ exist into which the γ′ could
decay preferentially (Fig. 6). In this case, a wide region of the interesting area remains unexplored.
The χ− dark matter particles are invisible to detectors. Nevertheless, the rest mass of the γ′ can still
be reconstructed if the energy of the outgoing scattered electron and the recoil energy of the nucleus are
measured. Due to the low recoil energy this is difficult in conventional targets but can be achieved in the
windowless gas target of MAGIX.

3.4 Precision observables: form factors
Form factors are ground state properties of composite systems, for instance the proton. They depend
on the four momentum transfer Q2 in elastic scattering. Of particular interest is the extrapolation of the
form factor towards Q2 = 0. The slope of this extrapolation at Q2 = 0 defines the charge radius of the
particle. For the proton an exciting situation has occurred recently which has been dubbed the ‘proton
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Fig. 8: Existing magnetic form factor data can be extended to much lower momentum transfers with the MAGIX
setup using a 1 mA spin polarized beam. The red points stand for the expected accuracy of the data in the hith-
erto unexplored region of momentum transfers. The references given correspond to different experiments sand
extrapolations that where undertaken during the last two decades [18–27].

radius puzzle’. This has been caused by the availability of high precision spectroscopic data from muonic
hydrogen atoms which do not agree with the data obtained by electron scattering [17, 18]. The situation
calls for data at lower momentum transfer in the electron scattering experiments, which so far have not
been achievable due to the aforementioned strong beam target interaction in conventional experiments.
Figure 8 presents the situation for the ratio of the electric to the magnetic form factor. The theoretical
extrapolation (solid line) can be checked by MAGIX data points at the indicated level of precision, if an
intense spin polarized beam is available .

It should be mentioned that MAGIX can also be used to observe other ground state properties such
as the electromagnetic polarizabilities of the nucleons. To summarize, it can be stated the outlook for a
rich physics program in low energy hadron physics at MAGIX looks very promising.

3.5 Nuclear physics at MAGIX
The possibility of exploring low momentum transfers opens new windows also for nuclear physics. For
instance, in nuclear astrophysics, the reaction 12C+α→ 16O+γ is highly important for stellar evolution
but is so far not accessible experimentally due to the low energies relevant here. This can be changed by
using MAGIX if the inverse reaction 16O + γ∗ → 12C + α is investigated. Here, electron scattering
creates exchange of a virtual photon γ∗. Again, the extrapolation to the photon point (mass of exchanged
particle = Q2 = 0) will deliver the desired information.
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Fig. 9: The jet target foreseen for MAGIX at MESA

4 Instrumentation for ERLs operating for particle physics
4.1 Windowless targets
In Fig. 9 we present the target setup which is presently discussed for MESA. Present day designs allow
for unpolarized densities of 1019 cm−2 for various gas species [28], whereas polarized gas targets are
much more difficult to handle. They need the application of a storage cell—typically about one 0.3–1 m
long with a small aperture to increase the gas density inside. Such targets can achieve only ≈1016 cm−2

with high nuclear polarization. Experiments with such targets therefore require high electron currents,
moreover, since single spin asymmetries are not particularly interesting in this energy range, a spin
polarized electron beam is needed to perform double polarization experiments.

4.2 Spin polarized beams at ERLs
Spin polarized beams are produced by photoemission from so-called semiconductor superlattices [29].
Typically GaAs/GaAsP layers of a few nanometres thickness form a basic period which is repeated
many times. This lifts the light hole/ heavy hole degeneracy in the semiconductor and allows therefore
the efficient transfer of the angular momentum of the photons towards the spin of the electrons. In
reality, this means that circularly polarized light can be transformed to spin polarized electrons inside
the conduction (mini-) band of the superlattice. After photoexcitation, the electrons diffuse towards the
surface from where they can escape if the work function of the photocathode is lowered by about a
mono-atomic layer of caesium plus a certain amount of fluorine or Oxygen atoms [30]. The degree of
spin polarization may reach almost 90% at typical laser wavelengths in the near infra-red (IR) (780 nm).
The quantum efficiency at this wavelength can approach 1% which is in more practical units about 5 mA
of electron current per watt of incident laser power. Modern laser systems can produce enough laser
power to allow the production of a 100 mA electron beam which is presently a typical goal for light
source ERLs [31] and spin polarized currents for the electron–ion collider projects are typically a little
bit lower.
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However, the weak point of the chain is the sustainability of the beam current, which is expressed
by the so-called cathode lifetime τ . The lifetime during which the quantum efficiency drops to 1/e of its
initial value is electron current dependent. This is due to the ionization of the residual gas which causes
back bombardment of the cathode and corresponding radiation damage. The highest average currents
that have been achieved for reasonable operation times (>100 hours) are a few milliampere only. The
product I · τ is called the charge lifetime [32]. There are indications that it is not current, but the electron
fluence, which limits the lifetime, i.e. the extracted charge per square centimetre. Since the beam emit-
tance is proportional to the beam radius at the cathode, one cannot increase the extractable charge during
one lifetime arbitrarily without increasing the beam emittance. However, for a large acceptance injector,
which could accept a normalized emittance of ≈20µm in theory, charge lifetimes of 10 000 coulombs
or more can be expected which could make operation for a collider feasible. Nevertheless, there are
remaining challenges here. They can for instance be addressed by further lowering the base pressure
and in consequence the amount of ion back bombardment. This could, for instance, be achieved by a
cryogenic system and there is hope that, for instance, higher lifetimes could be observed in supercon-
ducting Radio-Frequency (RF-)guns. Another approach is being pursued at BNL where the beam time
structure of the proposed eRHIC collider makes it possible to funnel beams from several cathodes onto
a common orbit by interleaving them with a time-dependent deflector. This scheme has been called the
‘Gatling-gun’ and is currently under development at BNL [33].

In summary, the problem of lifetime should be tractable at the level desired for the collider projects
but the effort and the resources needed should not be underestimated.
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