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Abstract
This series of lectures reviews the basic principles underlying the use of quan-
tum chromodynamics in understanding the structure of high-Q2 processes in
high-energy hadronic collisions. Several applications of relevance to the LHC
are illustrated.
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1 Introduction
The initial state of any LHC collision is formed by a pair of protons. Whether the hard process we
are interested in is of electroweak origin (e.g. W production) or a strong-interaction process (e.g. the
production of jets, or the production of a pair of gluinos in Supersymmetry), its description requires
the understanding of the structure of the proton. Quantum Chromodynamics (QCD) is the theory that
describes the structure of the proton, and is therefore the starting point of any study of LHC physics. QCD
is formulated in terms of elementary fields (quarks and gluons), whose interactions obey the principles of
a relativistic quantum field theory, with a non-Abelian gauge invariance SU(3). To review the emergence
of QCD as a theory of strong interactions, analysing the various experimental data and the theoretical
ideas available in the years 1960–1973 (see, for example, Refs. [1, 2]), would require more time than
I have available. I shall therefore assume that you all know more or less what QCD is: that hadrons
are made of quarks, that quarks are spin-1/2, colour-triplet fermions, interacting via the exchange of an
octet of spin-1 gluons; I assume you know the concept of running couplings, asymptotic freedom and
of confinement. I shall finally assume that you have some familiarity with the fundamental ideas and
formalism of quantum field theory (Feynman rules, renormalization, gauge invariance), even though I
shall make only very limited use of them.

In these lectures I shall focus on some elementary applications of QCD in high-energy phenomena.
The material covered in these lectures includes the following:

1. The structure of the proton
2. The evolution of final states: from quarks and gluons to hadrons
3. Some key hard processes in hadron–hadron collisions: formalism, W/Z production, jet production

The treatment will be very elementary, and the emphasis will be on basic and intuitive physics concepts.
Given the large number of papers that contributed to the development of the field, it is impossible to
provide a complete and fair bibliography. I therefore limit my bibliography to some excellent review
books, and to references to some of the key results discussed here. For an excellent description of the
early ideas about quarks, the classic reference is Feynman’s book [3]. For a general, but rather formal,
introduction to QCD, see, for example, Ref. [4]. For a more modern and pedagogical introduction, in
the context of introductory course to field theory, use the excellent book by Peskin [5]. For a general
introduction to collider physics, see Ref. [6]. For QCD applications to LEP, Tevatron and LHC, see
Ref. [7] and, specifically for the LHC, see Ref. [8]. Explicit calculations, including the nitty-gritty
details of next-to-leading-order (NLO) calculations and renormalization, are given in great detail for
several concrete cases of interest in Ref. [12]. Many of the ideas used in my lectures are inspired by
the very physical perspective presented in Ref. [13]. Papers on specific items can easily be found by
consulting the standard hep-th and hep-ph preprint archives.
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2 QCD and the proton structure at large Q2

The understanding of the structure of the proton at short distances is one of the key ingredients to be able
to predict cross-sections for processes involving hadrons in the initial state. All processes in hadronic col-
lisions, even those intrinsically of electroweak nature such as the production of W/Z bosons or photons,
are in fact induced by the quarks and gluons contained inside the hadron. In this lecture I shall introduce
some important concepts, such as the notion of partonic densities of the proton, and of parton evolution.
These are the essential tools used by theorists to predict production rates for hadronic reactions.

We shall limit ourselves to processes where a proton–(anti)proton pair collides at large centre-of-
mass energy (

p
S, typically larger than several hundred GeV) and undergoes a very inelastic interaction,

with momentum transfers between the participants in excess of several GeV. The outcome of this hard
interaction could be the simple scattering at large angle of some of the hadron’s elementary constituents,
their annihilation into new massive resonances, or a combination of the two. In all cases the final state
consists of a large multiplicity of particles, associated to the evolution of the fragments of the initial
hadrons, as well as of the new states produced. As discussed below, the fundamental physical concept
that makes the theoretical description of these phenomena possible is ‘factorization’, namely the ability
to isolate separate independent phases of the overall collision. These phases are dominated by different
dynamics, and the most appropriate techniques can be applied to describe each of them separately. In
particular, factorization allows one to decouple the complexity of the proton structure and of the final-
state hadron formation from the elementary nature of the perturbative hard interaction among the partonic
constituents.

Fig. 1: General structure of a hard proton–proton collision

Figure 1 illustrates how this works. As the left proton travels freely before coming into contact
with the hadron coming in from the right, its constituent quarks are held together by the constant ex-
change of virtual gluons (e.g. gluons a and b in the picture). These gluons are mostly soft, because any
hard exchange would cause the constituent quarks to fly apart, and a second hard exchange would be
necessary to reestablish the balance of momentum and keep the proton together. Gluons of high virtual-
ity (gluon c in the picture) prefer therefore to be reabsorbed by the same quark, within a time inversely
proportional to their virtuality, as prescribed by the uncertainty principle. The state of the quark is, how-
ever, left unchanged by this process. Altogether this suggests that the global state of the proton, although
defined by a complex set of gluon exchanges between quarks, is nevertheless determined by interactions
which have a time scale of the order of 1/mp. When seen in the laboratory frame where the proton is
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moving with energy
p
S/2, this time is furthermore Lorentz dilated by a factor � =

p
S/2mp. If we

disturb a quark with a probe of virtuality Q � mp, the time frame for this interaction is so short (1/Q)
that the interactions of the quark with the rest of the proton can be neglected. The struck quark cannot ne-
gotiate with its partners a coherent response to the external perturbation: it simply does not have the time
to communicate to them that it is being kicked away. On this time scale, only gluons with energy of the
order of Q can be emitted, something which, to happen coherently over the whole proton, is suppressed
by powers of mp/Q (this suppression characterizes the ‘elastic form factor’ of the proton). In this figure,
the hard process is represented by the rectangle labelled HP. In this example a head-on collision with a
gluon from the opposite hadron, leads to a qg ! qg scattering with a momentum exchange of the order
of Q. This and other possible processes can be calculated from first principles in perturbative QCD.

When the constituent is suddenly deflected, the partons that it had recently radiated cannot be
reabsorbed (as happened to gluon c earlier) because the constituent is no longer there waiting for the
partons to come back. This is the case, for example, of the gluon d emitted by the quark, and of the
quark e from the opposite hadron; the emitted gluon got engaged in the hard interaction. The number
of ‘liberated’ partons will depend on the hard scale Q: the larger the value of Q, the more sudden the
deflection of the struck parton, and the fewer the partons that can reconnect before its departure (typically
only partons with virtuality larger than Q).

After the hard process, the partons liberated during the evolution prior to the collision and the
partons created by the hard collision will themselves emit radiation. The radiation process, governed
by perturbative QCD, continues until a low virtuality scale is reached (the boundary region labelled
with a dotted line, H, in our figure). To describe this perturbative evolution phase, proper care has
to be taken to incorporate quantum coherence effects, which in principle connect the probabilities of
radiation off different partons in the event. Once the low virtuality scale is reached, the memory of the
hard-process phase has been lost, once again as a result of different time scales in the problem, and the
final phase of hadronization takes over. Because of the decoupling from the hard-process phase, the
hadronization is assumed to be independent of the initial hard process, and its parametrization, tuned to
the observables of some reference process, can then be used in other hard interactions (universality of
hadronization). Nearby partons merge into colour-singlet clusters (the grey blobs in fig. 1), which are
then decayed phenomenologically into physical hadrons. To complete the picture, we need to understand
the evolution of the fragments of the initial hadrons. As shown in the figure, this evolution cannot be
entirely independent of what happens in the hard event, because at least colour quantum numbers must
be exchanged to guarantee the overall neutrality and conservation of baryon number. In our example, the
gluons f and g, emitted early on in the perturbative evolution of the initial state, split into qq̄ pairs which
are shared between the hadron fragments (whose overall interaction is represented by the oval labelled
UE, for Underlying Event) and the clusters resulting from the evolution of the initial state.

The above ideas are embodied in the following factorization formula, which represents the starting
point of any theoretical analysis of cross-sections and observables in hadronic collisions:

d�

dX
=

X

j,k

Z

X̂
fj(x1, Qi)fk(x2, Qi)

d �̂jk(Qi, Qf )

d X̂
F (X̂ ! X; Qi, Qf ) , (1)

where:

– X is some hadronic observable (e.g. the transverse momentum of a pion, the energy of a jet, the
invariant mass of a combination of particles, etc.);

– the sum over j and k extends over the partons types inside the colliding hadrons;
– the function fj(x,Q) (known as parton distribution function, PDF) represents the number density

of parton type j with momentum fraction x in a proton probed at a scale Qi (more later on the
meaning of this scale);
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– X̂ is a parton-level kinematical variable (e.g. the transverse momentum of a parton from the hard
scattering);

– �̂jk is the parton-level cross-section, differential in the variable X̂;
– F (X̂ ! X; Qi, Qf ) is a transition function, weighting the probability that the partonic state

defining X̂ gives rise, after hadronization, to the hadronic observable X;
– the scales Qi and Qf correspond to the scales at which we separate the hard, perturbative, process

from the initial and final-state evolutions, respectively.

In the rest of this Section I shall cover the above ideas in some more detail. While I shall not
provide you with a rigorous proof of the legitimacy of this approach, I shall try to justify it qualitatively
to make it sound at least plausible.

2.1 The parton densities and their evolution
As mentioned above, the binding forces responsible for the quark confinement are due to the exchange of
rather soft gluons. If a quark were to exchange just a single a hard virtual gluon with another quark, the
recoil would tend to break the proton apart. It is easy to verify that the exchange of gluons with virtuality
larger than Q is then proportional to some large power of mp/Q, mp being the proton mass. Since the
gluon coupling constant gets smaller at large Q, exchange of hard gluons is significantly suppressed 1.
Consider in fact the picture in Fig. 2. The exchange of two gluons is required to ensure that the mo-

Fig. 2: Gluon exchange inside the proton

mentum exchanged after the first gluon emission is returned to the quark, and the proton maintains its
structure. The contributions of hard gluons to this process can be approximated by integrating the loop
over large momenta: Z

Q

d4q

q6
⇠ 1

Q2
. (2)

At large Q this contribution is suppressed by powers of (mp/Q)2, where the proton mass mp is included
as being the only dimensionful quantity available (one could use here the fundamental scale of QCD,
⇤QCD, but numerically this is anyway of the order of a GeV). The interactions keeping the proton
together are therefore dominated by soft exchanges, with virtuality Q of the order of mp. Owing to
Heisenberg’s uncertainty principle, the typical time scale of these exchanges is of the order of 1/mp:
this is the time during which fluctuations with virtuality of the order of mp can survive. In the laboratory
system, where the proton travels with energy E, this time is Lorentz dilated to ⌧ ⇠ �/mp = E/m2

p.
If we probe the proton with an off-shell photon, the interaction takes place during the limited lifetime
of the virtual photon, which, once more from the uncertainty principle, is given by the inverse of its
virtuality. Assuming the virtuality Q � mp, once the photon gets ‘inside’ the proton and meets a quark,
the struck quark has no time to negotiate a coherent response with the other quarks, because the time
scale for it to ‘talk’ to its partners is too long compared with the duration of the interaction with the
photon itself. As a result, the struck quark has no option but to interact with the photon as if it were
a free particle. Let us look in more detail at what happens during such a process. In Fig. 3 we see a

1The fact that the coupling decreases at large Q plays a fundamental role in this argument. Were this not true, the parton
picture could not be used!.
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Fig. 3: Gluon emission at different scales during the approach to a hard collision.

proton as it approaches a hard collision with a photon of virtuality Q. Gluons emitted at a scale q > Q
have the time to be reabsorbed, since their lifetime is very short. Their contribution to the process can be
calculated in perturbative QCD, since the scale is large and in the domain where perturbative calculations
are meaningful. Since after being reabsorbed the state of the quark remains the same, their only effect
is an overall renormalization of the wave function, and they do not affect the quark density. A gluon
emitted at a scale q < Q, however, has a lifetime longer than the time it takes for the quark to interact
with the photon, and by the time it tries to reconnect to its parent quark, the quark has been kicked away
by the photon, and is no longer there. Since the gluon has taken away some of the quark momentum,
the momentum fraction x of the quark as it enters the interaction with the photon is different than the
momentum it had before, and therefore its density f(x) is affected. Furthermore, when the scale q is of
the order of 1 GeV the state of the quark is not calculable in perturbative QCD. This state depends on the
internal wave function of the proton, which perturbative QCD cannot easily predict. We can, however,
say that the wave function of the proton, and therefore the state of the ‘free’ quark, are determined by
the dynamics of the soft-gluon exchanges inside the proton itself. Since the time scale of this dynamics
is long relative to the time scale of the photon–quark interaction, we can safely argue that the photon
sees to good approximation a static snapshot of the proton’s inner guts. In other words, the state of the
quark had been prepared long before the photon arrived. This also suggests that the state of the quark
will not depend on the precise nature of the external probe, provided the time scale of the hard interaction
is very short compared to the time it would take for the quark to readjust itself. As a result, if we could
perform some measurement of the quark state using, say, a virtual-photon probe, we could then use this
knowledge on the state of the quark to perform predictions for the interaction of the proton with any
other probe (e.g. a virtual W or even a gluon from an opposite beam of hadrons). This is the essence of
the universality of the parton distributions.

The above picture leads to an important observation. It appears in fact that the distinction between
which gluons are reabosrbed and which ones are not depends on the scale Q of the hard probe. As a
result, the parton density f(x) appears to depend on Q. This is illustrated in Fig. 4. The gluon emitted

Fig. 4: Scale dependence of the gluon emission during a hard collision

at a scale µ has a lifetime short enough to be reabsorbed before a collision with a photon of virtuality
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Q < µ, but too long for a photon of virtuality Q > µ. When going from µ to Q, therefore, the partonic
density f(x) changes. We can easily describe this variation as follows:

f(x,Q) = f(x, µ) +

Z 1

x
dxin f(xin, µ)

Z Q

µ
dq2

Z 1

0
dyP(y, q2) �(x� yxin) , (3)

Here we obtain the density at the scale Q by adding to f(x) at the scale µ (which we label as f(x, µ))
all the quarks with momentum xin > x that retain a proton-momentum fraction x = y/xin by emitting
a gluon. The function P (y,Q2) describes the ‘probability’ that the quark emits a gluon at a scale Q,
keeping a fraction y of its momentum. This function does not depend on the details of the hard process,
it simply describes the radiation of a free quark subject to an interaction with virtuality Q. Since f(x,Q)
does not depend upon µ (µ is just used as a reference scale to construct our argument), the total derivative
of the right-hand side w.r.t. µ should vanish, leading to the following equation:

df(x,Q)

dµ2
= 0 ) df(x, µ)

dµ2
=

Z 1

x

dy

y
f(y, µ)P(x/y, µ2) . (4)

With additional considerations and explicit calculations, one can prove that

P(x,Q2) =
↵s

2⇡

1

Q2
P (x) (5)

from which the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation follows [14–16]:

df(x, µ)

d logµ2
=

↵s

2⇡

Z 1

x

dy

y
f(y, µ)Pqq(x/y) . (6)

The so-called splitting function Pqq(x) can be calculated in perturbative QCD. The subscript qq is a
labelling convention indicating that x refers to the momentum fraction retained by a quark after emission
of a gluon.

Fig. 5: The processes leading to the evolution of the quark density

More generally, one should consider additional processes. For example, one should include cases
in which the quark interacting with the photon comes from the splitting of a gluon. This is shown in
Fig. 5: the left diagram is the one we considered above; the right diagram corresponds to processes
where an emitted gluon has the time to split into a qq̄ pair, and it is one of these quarks which interacts
with the photon. The overall evolution equation, including the effect of gluon splitting, is given by

dq(x,Q)

dt
=

↵s

2⇡

Z 1

x

dy

y


q(y,Q)Pqq(

x

y
) + g(y,Q)Pqg(

x

y
)

�
, (7)

where t = logQ2. For external probes that couple to gluons (for example an external gluon, coming e.g.
from an incoming proton), we have a similar evolution of the gluon density (see Fig. 6):

dg(x,Q)

dt
=

↵s

2⇡

Z 1

x

dy

y

"
g(y,Q)Pgg(

x

y
) +

X

q,q̄

q(y,Q)Pgq(
x

y
)

#
. (8)
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Fig. 6: The processes leading to the evolution of the gluon density

The explicit calculation of the splitting functions Pij(x) (see, for example, Ref. [12]) gives then the
following expressions2:

Pqq(x) = Pgq(1� x) = CF
1 + x2

1� x
(9)

Pqg(x) =
1

2

⇥
x2 + (1� x)2

⇤
(10)

Pgg(x) = 2CA


1� x

x
+

x

1� x
+ x(1� x)

�
, (11)

where CF = (N2
C � 1)/2NC and CA = 2NC are the Casimir invariants of the fundamental and adjoint

representation of SU(NC) (NC = 3 for QCD). In the following we shall derive some general properties
of the PDF evolution, and give a few concrete examples.

2.2 General properties of parton density evolution
Defining the moments of an arbitrary function g(x) as follows:

gn =

Z 1

0

dx

x
xn g(x)

it is easy to prove that the evolution equations for the moments turn into ordinary linear differential
equations:

df (n)
i

dt
=

↵s

2⇡
[P (n)

qq f (n)
i + P (n)

qg f (n)
g ] , (12)

df (n)
g

dt
=

↵s

2⇡
[P (n)

gg fg + P (n)
gq f (n)

i ] . (13)

It is convenient to introduce the concepts of valence (V (x, t)) and singlet (⌃(x, t)) densities:

V (x) =
X

i

fi(x)�
X

ı̄

fı̄(x) , (14)

⌃(x) =
X

i

fi(x) +
X

ı̄

fı̄(x) , (15)

where the index ı̄ refers to the antiquark flavours. The evolution equations then become

dV (n)

dt
=

↵s

2⇡
P (n)
qq V (n) , (16)

2The expressions given here are strictly valid only for x 6= 1. The slight modifications required to extend them to x = 1
will be justified and introduced in the next section.
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d⌃(n)

dt
=

↵s

2⇡

h
P (n)
qq ⌃

(n) + 2nf P
(n)
qg f (n)

g

i
, (17)

df (n)
g

dt
=

↵s

2⇡

h
P (n)
gq ⌃

(n) + P (n)
gg f (n)

g

i
. (18)

Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
R 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
⌘ 0 =

↵s

2⇡
P (1)
qq V (1) = 0 . (19)

Since V (1) itself is different from 0, we obtain a constraint on the first moment of the splitting function:
P (1)
qq = 0. This constraint is satisfied by including the effect of the virtual corrections, which generate

a contribution to Pqq(z) proportional to �(1 � z). This correction is incorporated in Pqq(z) via the
redefinition

Pqq(z) !
✓
1 + z2

1� z

◆

+

⌘ 1 + z2

1� z
� �(1� z)

Z 1

0
dy

✓
1 + y2

1� y

◆
(20)

where the + sign turns Pqq(z) into a distribution. In this way,
R 1
0 dz Pqq(z) = 0 and the valence sum-rule

is obeyed at all Q2.
Another sum rule which does not depend on Q2 is the momentum sum-rule, which imposes the

constraint that all of the momentum of the proton be carried by its constituents (valence plus sea plus
gluons):

Z 1

0
dx x

2

4
X

i,i

fi(x) + fg(x)

3

5 ⌘ ⌃(2) + f (2)
g = 1 . (21)

Once more this relation should hold for all Q2 values, and you can prove by using the evolution equations
that this implies

P (2)
qq + P (2)

gq = 0 , (22)

P (2)
gg + 2nf P

(2)
qg = 0 . (23)

You can check using the definition of second moment, and the explicit expressions of the Pqq and Pgq

splitting functions, that the first condition is automatically satisfied. The second condition is satisfied by
including the virtual effects in the gluon propagator, which contribute a term proportional to �(1� z). It
is a simple exercise to verify that the final form of the Pgg(z) splitting function, satisfying Eq. (23), is

Pgg ! 2CA

⇢
x

(1� x)+
+

1� x

x
+ x(1� x)

�
+ �(1� x)


11CA � 2nf

6

�
. (24)

2.3 Solution of the evolution equations
The evolution equations formulated in the previous section can be solved analytically in moment space.
The boundary conditions are given by the moments of the parton densities at a given scale µ, where, in
principle, they can be obtained from a direct measurement. The solution at different values of the scale
Q can then be obtained by inverting numerically the expression for the moments back to x space. The
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resulting evolved densities can then be used to calculate cross-sections for an arbitrary process involving
hadrons, at an arbitrary scale Q. We shall limit ourselves here to studying some properties of the analytic
solutions, and will present and comment on some plots obtained from numerical studies available in the
literature.

As an exercise, you can show that the solution of the evolution equation for the valence density is
the following:

V (n)(Q2) = V (n)(µ2)


logQ2/⇤2

logµ2/⇤2

�P (n)
qq /2⇡b0

= V (n)(µ2)


↵s(µ2)

↵s(Q2)

�P (n)
qq /2⇡b0

(25)

where the running of ↵s(µ2) has to be taken into account to get the right result. Since all moments P (n)

are negative, the evolution to larger values of Q makes the valence distribution softer and softer. This is
physically reasonable, since the only thing that the valence quarks can do is to lose energy because of
gluon emission.

The solutions for the gluon and singlet distributions fg and ⌃ can be obtained by diagonalizing
the 2⇥2 system in Eqs. (17) and (18). We study the case of the second moments, which correspond to
the momentum fractions carried by quarks and gluons separately. In the asymptotic limit, ⌃(2) goes to a
constant, and d⌃(2)

dt = 0. Then, using the momentum sum rule:

P (2)
qq ⌃

(2) + 2nf P
(2)
qg f (2)

g = 0 , (26)

⌃(2) + f (2)
g = 1 . (27)

The solution of this system is

⌃(2) =
1

1 + 4CF
nf

(= 15/31 for nf = 5) (28)

, f (2)
g =

4CF

4CF + nf
(= 16/31 for nf = 5) . (29)

As a result, the fraction of momentum carried by gluons is asymptotically approximately 50% of the
total proton momentum. It is interesting to note that, experimentally, this asymptotic value is actually
reached already at rather low values of Q2. It was indeed observed already in the first deep-inelastic
ep experiments, which exposed the possible presence of quarks in the proton, that only approximately
50% of the proton momentum was carried by charged constituents. This was one of the early pieces of
evidence for the existence of gluons.

2.4 Example: quantitative evolution of parton densities
As I mentioned earlier, a complete solution for the evolved parton densities in x space can only be
obtained from a numerical analysis. This work has been done in the past by several groups (see, for
example, the chapter on PDFs contained in Ref. [8]), and is continuously being updated by including the
most up-to-date experimental results used for the determination of the input densities at a fixed scale.
The left side of fig. 7 shows the up-quark valence momentum density at various scales Q. Note the
softening at larger scales, and the clear logQ2 evolution. As Q2 grows, the valence quarks emit more
and more radiation, since they change direction over a shorter amount of time (larger acceleration). They
therefore lose more momentum to the emitted gluons, and their spectrum becomes softer. The most likely
momentum fraction carried by a valence up quark in the proton goes from x ⇠ 20% at Q = 3 GeV, to
x <⇠ 10% at Q = 1000 GeV. Notice finally that the density vanishes at small x.

The right-hand side of fig. 7 shows the gluon momentum density. This grows at small x, with an
approximate g(x) ⇠ 1/x1+� behaviour, and � > 0 slowly increasing at large Q2. This low-x growth
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Fig. 7: Left: Valence up-quark momentum-density distribution, for different scales Q. Right: Gluon momentum-
density distribution.

is due to the 1/x emission probability for the radiation of gluons, which was discussed in the previous
lecture and which is represented by the 1/x factors in the Pgq(x) and Pgg(x) splitting functions. As Q2

grows we find an increasing number of gluons at small x, as a result of the increased radiation off quarks,
as well as off the harder gluons.

Fig. 8: Left: Sea up-quark momentum-density distribution, for different scales Q. Right: Momentum-density
distribution for several parton species, at Q = 1000 GeV.

The left-hand side of Fig. 8 shows the evolution of the up-quark sea momentum density. Shape
and evolution match those of the gluon density, a consequence of the fact that sea quarks come from
the splitting of gluons. Since the gluon-splitting probability is proportional to ↵s, the approximate ratio
sea/gluon ⇠ 0.1 which can be obtained by comparing Figs. 7 and 8 is perfectly justified.

Finally, the momentum densities for gluons, up-sea, charm, and up-valence distributions are
shown, for Q = 1000 GeV, on the right side of Fig.8. Note here that usea and charm are approxi-
mately the same at very large Q and small x, as will be discussed in more detail in the next subsection.

10

M.L. MANGANO

36



The proton momentum is mostly carried by valence quarks and by gluons. The contribution of sea quarks
is negligible.

Parton densities are extracted from experimental data. Their determination is therefore subject
to the statistical and systematic uncertainties of the experiments and of the theoretical analysis (e.g.
the treatment of non-perturbative effects, the impact of missing higher-order perturbative corrections).
Techniques have been introduced recently to take into account these uncertainties, and to evaluate their
impact on concrete observables. A summary of such an analysis, for the LHC, is given in Fig. 9. What
is plotted is the uncertainty bands for partonic luminosities3 corresponding to the gg and qq̄ initial-state
channels. The partonic flux is given as a function of ŝ, the partonic CM invariant mass. Obvious features
include the growth of uncertainty of the gg density at large mass, corresponding to the lack of data
covering the large-x region of the gluon density. Notice that the gg luminosity drives the production of
both tt̄ and Higgs production, at mass values around 350 and 125 GeV, respectively. In this mass range,
the PDF uncertainty is today at the level of 2-3%. For the qq̄, which drives the production of DY pairs (or
of new vector gauge bosons), the uncertainty is likewise in the few percent range up to masses of about
1 TeV, and remains below 20% even up to 4 TeV.
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Fig. 9: Uncertainty in the parton luminosity functions at the LHC, using the PDF4LHC set of PDFs [9]. The plot
was obtained using the Apfel web resource [10, 11].

2.5 Example: the charm content of the proton
If the virtuality of the external probe is large enough, the time scale of the hard interaction is so short that
gluon fluctuations into virtual heavy quark states can be directly exposed, and the virtual heavy quarks
(charm quarks in our example) can be brought on-shell via the interaction with the photon (see fig. 10).
To the external photon, it will therefore appear as if the proton contained some charm. While in the

Fig. 10: Gluon evolution leading to a charm quark content of the proton

case of the gluons and of light quarks the boundary condition for the DGLAP evolution at small Q is
non-perturbative and cannot be derived from first principles, in the case of a heavy quark Q the boundary
condition fQ(x,Q0) = 0 holds at a scale Q0 ⇠ mQ that is large enough for perturbation theory to apply.

3For the definition of parton luminosity see Section 4.1.
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The charm density can be calculated assuming that the heavy quark density itself is 0 at Q ⇠ mc, and
builds up according to the DGLAP evolution equation:

dc(x,Q)

dt
=

↵s

2⇡

Z 1

x

dy

y
g(y,Q)Pqg(

x

y
) . (30)

Assuming a gluon density behaving like g(x,Q) ⇠ A/x, which is a first approximation to a brem-
strahlung spectrum, we can easily calculate

dc(x,Q)

dt
=

↵s

2⇡

Z 1

x

dy

y
g(x/y,Q)Pqg(y) =

↵s

2⇡

Z 1

x
dy

A

x

1

2
[y2 + (1� y)2]

=
↵s

6⇡

A

x
c(x,Q) ⇠ ↵s

6⇡
log(

Q2

m2
c
) g(x,Q) . (31)

The charm density is therefore proportional to the gluon density, up to an overall factor proportional to
↵s . When Q becomes very large, the effect of the quark mass becomes subleading, and we expect all
sea quarks to reach asymptotically the same density.

While this is a simplified approach to the estimate of the heavy quark density of the proton, the
approximation is rather good. This is shown by the plots in fig. 11, which compare the charm and
bottom PDF as given by Eq. 31 with the result extracted from a full set of PDFs. The solid histograms
in these plots represent the exact result, for three values of the evolution scale Q. The diamonds give
the approximate results. Notice that the agreement is very good at small x and at the smaller values of
Q. At larger x the approximation deteriorates, since in that case the assumption that g(x) ⇠ 1/x is no
longer valid. At higher scales Q the exact result becomes smaller than the approximate one, since the
latter neglects the momentum loss due to the higher-order gluon radiation (namely the contributions to
the evolution equation proportional to Pqq(y) ⇥ Q(x/y)). Of course, any accurate calculation of cross-
sections involving initial-state heavy quarks will make use of the exact results, but it is interesting to see
that even in such a complex process it is possible to identify useful analytic approximations that can give
us good order-of-magnitude estimates!

Fig. 11: Charm and bottom quark PDFs, as obtained from the exact and approximate evolutions.

3 The evolution of quarks and gluons
We discussed in the previous section the initial-state evolution of quarks and gluons as the proton ap-
proaches the hard collision. We study here how quarks and gluons evolve, and finally transform into
hadrons, neutralizing their colours. We start by considering the simplest case: e+e� collisions, which
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provide the cleanest environment in which to study applications of QCD at high energy. This is the place
where theoretical calculations have today reached their best accuracy, and where experimental data are
the most precise, especially thanks to the huge statistics accumulated by LEP, LEP2 and SLC. The key
process is the annihilation of the e+e� pair into a virtual photon or Z0 boson, which will subsequently
decay to a qq̄ pair. e+e� collisions have therefore the big advantage of providing an almost point-like
source of quark pairs, so that, in contrast to the case of interactions involving hadrons in the initial state,
we at least know very precisely the state of the quarks at the beginning of the interaction process.

Nevertheless, it is by no means obvious that this information is sufficient to predict the properties
of the hadronic final state. We know that this final state is clearly not simply a qq̄ pair, but some high-
multiplicity set of hadrons. For example, as shown in Fig. 12, the average multiplicity of charged hadrons
in the decay of a Z0 is approximately 20. It is therefore not obvious that a calculation done using the

Fig. 12: Charged particle multiplicity distribution in Z0 decays

simple picture e+e� ! qq̄ (see Fig. 13) has anything to do with reality. For example, one may wonder

Fig. 13: Tree level production of a qq̄ pair in e+e� collisions

why we do not need to calculate �(e+e� ! qq̄g . . . g . . .) for all possible gluon multiplicities to get an
accurate estimate of �(e+e� ! hadrons). And since in any case the final state is not made of q’s and
g’s, but of ⇡’s, K’s, ⇢’s, etc., why would �(e+e� ! qq̄g . . . g) be enough?

The solution to this puzzle lies both in a question of time and energy scales, and in the dynamics
of QCD. When the qq̄ pair is produced, the force binding q and q̄ is proportional to ↵s(s) (

p
s being
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the e+e� centre-of-mass energy). Therefore it is weak, and q and q̄ behave to good approximation like
free particles. The radiation emitted in the first instants after the pair creation is also perturbative, and
it will stay so until a time after creation of the order of (1 GeV)�1, when radiation with wavelengths
>⇠ (1 GeV)�1 starts being emitted. At this scale the coupling constant is large, and non-perturbative
phenomena and hadronization start playing a rôle. However, as we shall show, colour emission during the
perturbative evolution organizes itself in such a way as to form colour-neutral, low-mass, parton clusters
highly localized in phase-space. As a result, the complete colour-neutralization (i.e., the hadronization)
does not involve long-range interactions between partons far away in phase-space. This is very important,
because the forces acting among coloured objects at this time scale would be huge. If the perturbative
evolution were to separate far apart colour-singlet qq̄ pairs, the final-state interactions taking place during
the hadronization phase would totally upset the structure of the final state.

In this picture, the identification of the perturbative cross-section �(e+e� ! qq̄) with observable,
high-multiplicity hadronic final states is realised by jets, namely collimated streams of hadrons that are
the final result of the perturbative and non-perturbative evolution of each quark. The large multiplicity

Fig. 14: Experimental pictures of 2- and 3-jet final states from e+e� collisions

of the final states, shown in fig. 12, corresponds to the many particles that emerge from the collinear
emissions of many gluons from each quark. The dynamics of these emissions leads these particles to
grossly follow the direction of the primary quark, and the emergent bundle, the jet, inherits the kinematics
of the initial quark. This is shown in the left image of fig. 14. Three-jet events, shown in the right image
of the figure, arise from the O(↵s) corrections to the tree-level process, namely to diagrams such as those
shown in fig. 15.

Fig. 15: O(↵s) corrections to the tree-level e+e� ! qq̄ process

An important additional result of this ‘pre-confining’ evolution, is that the memory of where the
local colour-neutral clusters came from is totally lost. So we expect the properties of hadronization to be
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universal: a model that describes hadronization at a given energy will work equally well at some other
energy. Furthermore, so much time has passed since the original qq̄ creation that the hadronization phase
cannot significantly affect the total hadron production rate. Perturbative corrections due to the emission
of the first hard partons should be calculable in PT, providing a finite, meaningful cross-section.

The nature of non-perturbative corrections to this picture can be explored. One can prove, for ex-
ample, that the leading correction to the total rate Re+e� is of order F/s2, where F / h0|↵sF a

µ⌫F
µ⌫a|0i

is the so-called gluon condensate. Since F ⇠ O(1 GeV4), these NP corrections are usually very small.
For example, they are of O(10�8) at the Z0 peak. Corrections scaling like ⇤2/s or ⇤/

p
s can neverthe-

less appear in other less inclusive quantities, such as event shapes or fragmentation functions.
We now come back to the perturbative evolution, and shall devote the first part of this lecture to

justifying the picture given above.

3.1 Soft gluon emission
Emission of soft gluons plays a fundamental rôle in the evolution of the final state [7, 13]. Soft glu-
ons are emitted with large probability, since the emission spectrum behaves like dE/E, typical of
bremsstrahlung as familiar in QED. They provide the seed for the bulk of the final-state multiplicity
of hadrons. The study of soft-gluon emission is simplified by the simplicity of their couplings. Being
soft (i.e., long wavelength) they are insensitive to the details of the very-short-distance dynamics: they
cannot distinguish features of the interactions which take place on time scales shorter than their wave-
length. They are also insensitive to the spin of the partons: the only feature they are sensitive to is the
colour charge. To prove this let us consider soft-gluon emission in the qq̄ decay of an off-shell photon:

(32)

Asoft = ū(p)✏(k)(ig)
�i

p/+ k/
�µ v(p̄) �a

ij + ū(p)�µ
i

p̄/+ k/
(ig)✏(k) v(p̄) �a

ij

=


g

2p · k ū(p)✏(k) (p/+ k/)�µ v(p̄) � g

2p̄ · k ū(p)�µ (p̄/+ k/)✏(k) v(p̄)

�
�a
ij .

I used the generic symbol �µ to describe the interaction vertex with the photon to stress the fact that the
following manipulations are independent of the specific form of �µ. In particular, �µ can represent an
arbitrarily complicated vertex form factor. Neglecting the factors of k/ in the numerators (since k ⌧ p, p̄,
by definition of soft) and using the Dirac equations, we get:

Asoft = g�a
ij

✓
p · ✏
p · k � p̄✏

p̄ · k

◆
ABorn . (33)
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We then conclude that soft-gluon emission factorizes into the product of an emission factor, times the
Born-level amplitude. From this exercise, one can extract general Feynman rules for soft-gluon emission:

= g �a
ij 2p

µ . (34)

Exercise: Derive the g ! gg soft-emission rules:

= igfabc 2pµ g⌫⇢ . (35)

Example: Consider the ‘decay’ of a virtual gluon into a quark pair. One more diagram should be added
to those considered in the case of the electroweak decay. The fact that the quark pair is no longer in a
colour-singlet state makes things a bit more interesting:

(36)

k!0
=


i g fabc �c

ij

✓
Q✏

Qk

◆
+ g (�b �a)ij

✓
p✏

pk

◆
� g (�a�b)ij

✓
p̄✏

pk

◆�
ABorn

= g (�a �b)ij


Q✏

Qk
� p̄✏

pk

�
+ g (�b �a)ij


p✏

pk
� Q✏

Qk

�
. (37)

The two factors correspond to the two possible ways colour can flow in this process:

(38)

The basis for this representation of the colour flow is the following diagram which makes explicit the
relation between the colours of the quark, antiquark, and gluon entering a QCD vertex:

(39)
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We can therefore represent the gluon as a double line, one line carrying the colour inherited from the
quark, the other carrying the anticolour inherited from the antiquark. In the first diagram in (38) the
antiquark (colour label j) is colour connected to the soft gluon (colour label b), and the quark (colour
label i) is connected to the decaying gluon (colour label a). In the second case, the order is reversed. The
two emission factors correspond to the emission of the soft gluon from the antiquark, and from the quark
line, respectively. When squaring the total amplitude, and summing over initial and final-state colours,
the interference between the two pieces is suppressed by 1/N2 relative to the individual squares:

X

a,b,i,j

|(�a�b)ij |2 =
X

a,b

tr
⇣
�a�b�b�a

⌘
=

N2 � 1

2
CF = O(N3) . (40)

X

a,b,i,j

(�a�b)ij [(�
b�a)ij ]

⇤ =
X

a,b

tr(�a�b�a�b) =
N2 � 1

2
(CF � CA

2
)

| {z }
� 1

2N

= O(N) . (41)

As a result, the emission of a soft gluon can be described, to the leading order in 1/N2, as the incoherent
sum of the emission from the two colour currents.

3.2 Angular ordering for soft-gluon emission
The results presented above have important consequences for the perturbative evolution of the quarks.
A key property of the soft-gluon emission is the so-called angular ordering. This phenomenon consists
in the continuous reduction of the opening angle at which successive soft gluons are emitted by the
evolving quark. As a result, this radiation is confined within smaller and smaller cones around the quark
direction, and the final state will look like a collimated jet of partons. In addition, the structure of the
colour flow during the jet evolution forces the qq̄ pairs which are in a colour-singlet state to be close in
phase-space, thereby achieving the pre-confinement of colour-singlet clusters alluded to at the beginning
of this section.

Let us start first by proving the property of colour ordering. Consider the qq̄ pair produced by the
decay of a rapidly moving virtual photon. The amplitude for the emission of a soft gluon was given in
Eq. (33). Squaring, summing over colours, and including the gluon phase-space we get the following
result:

d�g =
X

|Asoft|2
d3k

(2⇡)32k0

X
|A0|2

�2pµp̄⌫

(pk)(p̄k)
g2

X
✏µ✏

⇤
⌫

d3k

(2⇡)32k0

= d�0
2(pp̄)

(pk)(p̄k)
g2 Cf

✓
d�

2⇡

◆
k0dk0

8⇡2
d cos ✓

= d�0
↵sCF

⇡

dk0

k0
d�

2⇡

1� cos ✓ij
(1� cos ✓ik)(1� cos ✓jk)

d cos ✓ (42)

where ✓↵� = ✓↵ � ✓� , and i, j, k refer to the q, q̄ and gluon directions, respectively. We can write the
following identity:

1� cos ✓ij
(1� cos ✓ik)(1� cos ✓jk)

=

1

2


cos ✓jk � cos ✓ij

(1� cos ✓ik)(1� cos ✓jk)
+

1

1� cos ✓ik

�
+

1

2
[i $ j] ⌘ W(i) +W(j) . (43)

We would like to interpret the two functions W(i) and W(j) as radiation probabilities from the quark
and antiquark lines. Each of them is in fact only singular in the limit of gluon emission parallel to the
respective quark:

W(i) ! finite if k k j (cos ✓jk ! 1) . (44)
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W(j) ! finite if k k i (cos ✓ik ! 1) . (45)

The intepretation as probabilities is however limited by the fact that neither W(i) nor W(j) are positive
definite. However, you can easily prove that

Z
d�

2⇡
W(i) =

8
<

:

1
1�cos ✓ik

if ✓ik < ✓ij

0 otherwise
(46)

where the integral is the azimuthal average around the q direction. A similar result holds for W(j):

Z
d�

2⇡
W(j) =

8
<

:

1
1�cos ✓jk

if ✓jk < ✓ij

0 otherwise

(47)

As a result, the emission of soft gluons outside the two cones obtained by rotating the antiquark direction
around the quark’s, and vice versa, averages to 0. Inside the two cones, one can consider the radiation
from the emitters as being uncorrelated. In other words, the two colour lines defined by the quark and
antiquark currents act as independent emitters, and the quantum coherence (i.e. the effects of interference
between the two graphs contributing to the gluon-emission amplitude) is accounted for by constraining
the emission to take place within those fixed cones.

Fig. 16: Radiation off qq̄ pair produced by an off-shell photon

A simple derivation of angular ordering, which more directly exhibits its physical origin, can be
obtained as follows. Consider Fig. 16(a), which shows a Feynman diagram for the emission of a gluon
from a quark line. The quark momentum is denoted by l and the gluon momentum by k, ✓ is the opening
angle between the quark and antiquark, and ↵ is the angle between the nearest quark and the emitted
gluon. We shall work in the double-log enhanced soft k0 << l0 and collinear ↵ << 1 region. The
internal quark propagator p = (l + k) is off-shell, setting the time scale for the gluon emission:

�t ' 1

�E
=

l0

(k + l)2
! �t ' 1

k0↵2
. (48)

In order to resolve the quarks, the transverse wavelength of the gluon �? = 1/E? must be smaller than
the separation between the quarks b(t) ' ✓�t, giving the constraint 1/(↵k0) < ✓�t. Using the results
of Eq. 48 for�t, we arrive at the angular ordering constraint ↵ < ✓. Gluon emissions at an angle smaller
than ✓ can resolve the two individual colour quarks and are allowed; emissions at greater angles do not
see the colour charge and are therefore suppressed. In processes involving more partons, the angle ✓ is
defined not by the nearest parton, but by the colour connected parton (e.g. the parton that forms a colour
singlet with the emitting parton). Figure 16(b) shows the colour connections for the qq̄ event after the
gluon is emitted. Colour lines begin on quarks and end on antiquarks. Because gluons are colour octets,
they contain the beginning of one line and the end of another, as we showed in (38).

If one repeats now the exercise for emission of one additional gluon, one will find the same angular
constraint, but this time applied to the colour lines defined by the previously established antenna. As
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shown in the previous subsection, the qq̄g state can be decomposed at the leading order in 1/N into two
independent emitters, one given by the colour line flowing from the gluon to the quark, the other given
by the colour line flowing from the antiquark to the gluon. So the emission of the additional gluon will
be constrained to take place either within the cone formed by the quark and the gluon, or within the cone
formed by the gluon and the antiquark. Either way, the emission angle will be smaller than the angle of
the first gluon emission. This leads to the concept of angular ordering, with successive emission of soft
gluons taking place within cones which get smaller and smaller, as in Fig. 17

Fig. 17: Collimation of soft gluon emission during the jet evolution

The fact that colour always flows directly from the emitting parton to the emitted one, the colli-
mation of the jet, and the softening of the radiation emitted at later stages, ensure that partons forming a
colour-singlet cluster are close in phase-space. As a result, hadronization (the non-perturbative process
that will bind together colour-singlet parton pairs) takes place locally inside the jet and is not a long-
distance phenomenon connecting partons far away in the evolution tree: only pairs of nearby partons
are involved. In particular, there is no direct link between the precise nature of the hard process and
the hadronization. These two phases are totally decoupled and, as in the case of the partonic densities,
one can infer that hadronization factorizes from the hard process and can be described in a universal
(i.e. hard-process independent) fashion. The inclusive properties of jets (e.g. the particle multiplicity, jet
mass, jet broadening) are independent of the hadronization model, up to corrections of order (⇤/

p
s)n

(for some integer power n, which depends on the observable), with ⇤ <⇠ 1 GeV.

Fig. 18: The colour flow diagram for a DIS event

The final picture, in the case of a DIS event, appears therefore as in Fig. 18. After being deflected
by the photon, the struck quark emits the first gluon that takes away the quark colour and passes on its own
anticolour to the escaping quark. This gluon is therefore colour-connected with the last gluon emitted
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before the hard interaction. As the final-state quark continues its evolution, more and more gluons are
emitted, each time leaving their colour behind and transmitting their anticolour to the emerging quark.
Angular ordering forces all these gluons to be close in phase-space, until the evolution is stopped once
the virtuality of the quark becomes of the order of the strong-interaction scale. The colour of the quark
is left behind, and when hadronization takes over it is only the nearby colour-connected gluons which
are transformed, with a phenomenological model, in hadrons. This mechanism for the transfer of colour
across subsequent gluon emissions is similar to what happens when we place a charge near the surface of
a dielectric medium. This will become polarized, and a charge will appear on the medium opposite end.
The appearance of the charge is the result of a sequence of local charge shifts, whereby neighbouring
atoms get polarized, as in Fig. 19.

Fig. 19: Charge transfer in a dieletric medium, via a sequence of local polarizations

3.3 Hadronization
The application of perturbation theory to the evolution of a jet, with the sequential emission of partons,
governed by QCD splitting probabilities and angular ordering to enforce quantum mechanical quantum
coherence, will stop once the scale of the emissions reaches values in the range of 1 GeV. This is called
the infrared cutoff. The are two reasons why we need to stop the emission of gluons at this scale. To start
with, we cannot control with perturbation theory the domain below this scale, where the strong coupling
constant ↵s becomes very large. Furthermore, we know that the number of physical particles that can
be produced inside a jet must be finite, since the lightest object we can produce is a pion, and energy
conservation sets a limit to how many pions can be created. This is different from what happens in a QED
cascade, where the evolution of an accelerated charge can lead to the emission of an arbitrary number
of photons. This is possible because the photon is massless, and can have arbitrarily small energy. The
gluons of a QCD cascade, on the contrary, must have enough energy to create pions.

When the perturbative evolution of the jet terminates, we are left with some number of gluons. As
shown in the previous subsection, and displayed in fig. 18, these gluons are pairwise colour connected.
As two colour-connected gluons travel away from each other, a constant force pulls them together. Phe-
nomenological models (see Ref. [7] for a more complete review) are then used to describe how this force
determines the evolution of the system from this point on. What I shall describe here is the so-called
cluster model [17], but the main qualitative features are shared by other alternatives, such as the Lund
string approach [18].

Most of the hadrons emerging from the evolution of a jet are known to be made of quarks; glue-
balls, i.e. hadrons made of bound gluons, are expected to exist, but their production is greatly suppressed
compared to that of quark-made particles. For this reason, the first step in the description of hadroniza-
tion is to assume that the force among gluons will rip them apart into a qq̄ pair, and that these quarks will
act as seeds for the hadron production. The break-up into quarks is not parametrized using the DGLAP
g ! qq̄ splitting function, since we are deaing here with a non-perturbative transition. One typically
employs therefore a pure phase-space ‘decay’ of the gluon into the qq̄ pair, introducing as phenomeno-
logical parameters the relative probabilities of selecting the various active flavours (up, down, strange,
etc.). The quark qi from one gluon (i representing the flavour) then forms a colour-singlet pair with the
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antiquark q̄j emerging from the break-up of the neighboring gluon. This colour-singlet qiq̄j pair cannot,
however, directly form a hadron, since in general the quarks will still be moving apart, and the invariant
mass of the pair will not coincide with the mass of an existing physical state. As they separate subject to

Fig. 20: Invariant mass distribution of clusters of colour-singlet quarks after non-perturbative gluon splitting.
The spectra for final states corresponding to different centre-of-mass energies are normalized to the same area,
displaying the energy independence of the shapes

a constant force, however, their kinetic energy turns into a linearly-rising potential energy. The potential
energy accumulated in the system will be able to convert into a new quark–antiquark pair, qkq̄k once its
value exceeds the relevant mass threshold. We are now left with two colour-singlet pairs, qiq̄k and qkq̄j .
One can force the kinematics of the qkq̄k pair to allow for both qiq̄k and qkq̄j invariant masses to coincide
with some resonance with the proper flavour. The residual energy of the system is then assumed to be
entirely kinetic, and the two resonances fly away free. Once again, one can associate phenomenological
parameters to the probabilities of selecting flavours k of a given type. Since the pair of flavour indices
ik does not specify uniquely a hadron (e.g. a ud̄ system could by a ⇡+, a ⇢+, as well as many other
objects), the model has a further set of rules and/or parameters to select the precise flavour type. For
example, a phenomenologically successfull description of the ⇡/⇢ ratio is obtained by simply assuming
a production rate proportional to the number of spin states (one for the scalar pion, three for the vector
rho) and to a Boltzmann factor exp(�M/T ), where M is the resonance mass and T is a universal pa-
rameter, to be fit from data. Furthermore, one can introduce the possibility of converting the potential
energy into a diquark–antidiquark pair, namely (qkq`) (q̄kq̄`). The resulting hadrons, qiqkq` and q̄j q̄kq̄`
will be a baryon–antibaryon pair.

The measurement of hadron multiplicities from Z0 decays is used to tune the few phenomeno-
logical parameters of the model, and these parameters can be used to describe hadronization at different
energies and in different high-energy hadron-production processes. The internal consistency of this as-
sumption is supported by fig. 20, which shows the invariant mass distribution of clusters of colour-singlet
quarks, after the non-perturbative gluon splitting, for e+e� collisions at different center-of-mass ener-
gies. All curves are normalized to 1, and they all overlap very accurately. This confirms the validity of
the implementation of factorization in the Monte Carlo: higher initial energies provide more room for
the perturbative evolution, leading to more splitting and more emitted radiation; but the structure and
distribution of colour-singlet clusters at the end of evolution is independent of the initial energy, and the
same model of hadronization can be applied.
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Table 1: Average particle multiplicities per event in e+e� collisions at 91.2 GeV. Experimental data were measured
by the following collaborations at LEP and at SLC: ALEPH(A), DELPHI(D), L3(L), OPAL(O), MARK2(M)
and SLD(S). The theoretical predictions in the last three columns, taken from Ref. [19], correspond to various
implementations of the cluster hadronization model (see Ref. [19] for details). The ⇤ indicates a prediction that
differs from the measured value by more than three standard deviations.

Particle Experiment Measured Old Model Herwig++ Fortran
All Charged M,A,D,L,O 20.924 ± 0.117 20.22⇤ 20.814 20.532⇤

� A,O 21.27 ± 0.6 23.03 22.67 20.74
⇡0 A,D,L,O 9.59 ± 0.33 10.27 10.08 9.88
⇢(770)0 A,D 1.295 ± 0.125 1.235 1.316 1.07
⇡± A,O 17.04 ± 0.25 16.30 16.95 16.74
⇢(770)± O 2.4 ± 0.43 1.99 2.14 2.06
⌘ A,L,O 0.956 ± 0.049 0.886 0.893 0.669⇤

!(782) A,L,O 1.083 ± 0.088 0.859 0.916 1.044
⌘0(958) A,L,O 0.152 ± 0.03 0.13 0.136 0.106
K0 S,A,D,L,O 2.027 ± 0.025 2.121⇤ 2.062 2.026
K⇤(892)0 A,D,O 0.761 ± 0.032 0.667 0.681 0.583⇤

K⇤(1430)0 D,O 0.106 ± 0.06 0.065 0.079 0.072
K± A,D,O 2.319 ± 0.079 2.335 2.286 2.250
K⇤(892)± A,D,O 0.731 ± 0.058 0.637 0.657 0.578
�(1020) A,D,O 0.097 ± 0.007 0.107 0.114 0.134⇤

p A,D,O 0.991 ± 0.054 0.981 0.947 1.027
�++ D,O 0.088 ± 0.034 0.185 0.092 0.209⇤

⌃� O 0.083 ± 0.011 0.063 0.071 0.071
⇤ A,D,L,O 0.373 ± 0.008 0.325⇤ 0.384 0.347⇤

⌃0 A,D,O 0.074 ± 0.009 0.078 0.091 0.063
⌃+ O 0.099 ± 0.015 0.067 0.077 0.088
⌃(1385)± A,D,O 0.0471 ± 0.0046 0.057 0.0312⇤ 0.061⇤

⌅� A,D,O 0.0262 ± 0.001 0.024 0.0286 0.029
⌅(1530)0 A,D,O 0.0058 ± 0.001 0.026⇤ 0.0288⇤ 0.009⇤

⌦� A,D,O 0.00125 ± 0.00024 0.001 0.00144 0.0009
f2(1270) D,L,O 0.168 ± 0.021 0.113 0.150 0.173
f 0
2(1525) D 0.02 ± 0.008 0.003 0.012 0.012
D± A,D,O 0.184 ± 0.018 0.322⇤ 0.319⇤ 0.283⇤

D⇤(2010)± A,D,O 0.182 ± 0.009 0.168 0.180 0.151⇤

D0 A,D,O 0.473 ± 0.026 0.625⇤ 0.570⇤ 0.501
D±

s A,O 0.129 ± 0.013 0.218⇤ 0.195⇤ 0.127
D⇤±

s O 0.096 ± 0.046 0.082 0.066 0.043
J/ A,D,L,O 0.00544 ± 0.00029 0.006 0.00361⇤ 0.002⇤

⇤+
c D,O 0.077 ± 0.016 0.006⇤ 0.023⇤ 0.001⇤

 0(3685) D,L,O 0.00229 ± 0.00041 0.001⇤ 0.00178 0.0008⇤

An example of the quality of the fits to Z0-decay data is given in table 1, which is taken from [19].
There more details are given on the possible variants of cluster hadronization model and on the choice of
parameters used in the fits. Overall, the agreement is excellent!

4 Applications to hadronic collisions
In hadronic collisions all phenomena are QCD related. The dynamics is more complex than in e+e�

or DIS, since both beam and target have a non-trivial partonic structure. As a result, calculations (and
experimental analyses) are more complicated. QCD phenomenology is however much richer, and the
higher energies available in hadronic collisions allow one to probe the structure of the proton and of its
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constituents at the smallest scales attainable in a laboratory, in addition to probing the large scales where
new physics phenomena may appear.

Recent remarkable progress in thoeretical calculations, furthermore, has allowed to achieve next-
to-leading-order (NLO) accuracy for all observables of interest, and a large majority of these can now be
calculated also to next-to-next-to-leading order (NNLO). The overall precision in the theoretical predic-
tions is therefore reaching now the level of accuracy that until recently was only imaginable for e+e� or
ep collisions.

The key ingredients for the calculation of production rates and distributions in hadronic collisions
are

– the matrix elements for the hard, partonic process (e.g., gg ! gg, gg ! bb̄, qq̄0 ! W, . . .),
– the hadronic parton densities, discussed in the previous lecture.

Then the production rate for a given final state H is given by a factorization formula similar to the one
used to describe DIS:

d�(pp̄ ! H +X) =

Z
dx1 dx2

X

i,j

fi(x1, Q) fj(x2.Q) d�̂(ij ! H) . (49)

where the parton density fi’s are evaluated at a scale Q typical of the hard process under consideration.
For example Q ' MDY for production of a Drell–Yan pair, Q ' ET for high transverse-energy (ET )
jets, Q2 ' p2T +m2

Q for high-pT heavy quarks, etc.
In this lecture we shall briefly explore two of the QCD phenomena currently studied in hadronic

collisions: Drell–Yan, and inclusive jet production. More details can be found in Refs. [7, 8].

4.1 QCD aspects of inclusive vector boson production
The main feature of inclusive gauge boson production in hadronic collisions is that the leading-order
(LO) amplitude, describing the elementary process qq̄(0) ! V (V = W,Z) is purely EW. The dynam-
ics of strong interactions, at this order, only enters indirectly through the parton distribution functions
(PDFs), which parameterize in a phenomenological way the quark and gluon content of the proton. At the
large momentum scales typical of gauge boson production (Q ⇠ MV ), higher-order perturbative QCD
corrections to the inclusive production are proportional to ↵s(Q) and are typically small, in the range of
10-20%. They are known [20,21] today to next-to-next-to-leading order (NNLO), including the descrip-
tion of the differential distributions of the boson and of its decay leptons [22–25], leaving theoretical
uncertainties from higher-order QCD effects at the percent level. These results have been incorporated
in full Monte Carlo calculations including the shower evolution, to give a complete description of the
physical final states [26–28]. Next-to-leading-order (NLO) EW corrections are also known [29–32], and
play an important role both for precision measurements, and in the production rate of dilepton pairs at
large pT or with large mass, above the TeV, where they can be larger than 10%. Finally, progress towards
a complete calculation of the mixed O(↵s↵) corrections has been recently reported in Ref. [33].

When considering the first and second generation quarks that dominate the production of W and
Z bosons, their weak couplings, including the CKM mixing parameters, are known experimentally with
a precision better than a percent. This exceeds the accuracy of possible measurements in hadronic col-
lisions, indicating that such measurements could not be possibly affected, at this level of precision, by
the presence of new physics phenomena. They therefore provide an excellent ground to probe to percent
precision the effects of higher-order QCD corrections and of PDFs [34]. To be more explicit, consider
the leading-order (LO) cross section given by eq. 49. In the case of W production (a similar result holds
for the Z), the LO partonic cross section is given by:

�̂(qiq̄j ! W ) = ⇡

p
2

3
|Vij |2 GF M2

W �(ŝ�M2
W ) = Aij M

2
W �(ŝ�M2

W ) (50)
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Here ŝ = x1x2S is the partonic centre-of-mass energy squared, and Vij is the element of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix.

Written in terms of ⌧ = x1x2 and of the rapidity y = log[(EW + pzW )/(EW � pzW )]1/2 ⌘
log(x1/x2)1/2, the differential and total cross sections are given by:

d�W
dy

=
X

i,j

⇡Aij

M2
W

⌧ fi(x1) fj(x2) , x1,2 =
p
⌧e±y (51)

�W =
X

i,j

⇡Aij

M2
W

⌧

Z 1

⌧

dx

x
fi(x) fj

⇣⌧
x

⌘
⌘

X

i,j

⇡Aij

M2
W

⌧Lij(⌧) (52)

where the function Lij(⌧) is usually called partonic luminosity. In the case of ud̄ collisions, ⇡Aij

M2
W

⇠
6.5nb. It is interesting to study the partonic luminosity as a function of the hadronic centre-of-mass en-
ergy. This can be done by taking a simple approximation for the parton densities. Using the approximate
behaviour fi(x) ⇠ 1/x1+�, with � < 1, one easily obtains:

L(⌧) =
1

⌧1+�
log

✓
1

⌧

◆
and �W /

✓
S

M2
W

◆�

log

✓
S

M2
W

◆
. (53)

The gauge boson production cross section grows therefore at least logarithmically with the hadronic
centre-of-mass energy.

Fig. 21: W and Z boson cross sections in pp collisions at
p
S = 7 TeV: ATLAS [35] and CMS [36] data, compared

to NNLO predictions for various PDF sets [34].

4.1.1 Rapidity spectrum of W and Z bosons and W charge asymmetries

The features of the momentum distribution of vector bosons along the beam direction (z) are mostly con-
trolled by properties of the parton PDFs. In particular, in the case of W bosons, the differences between
the PDFs of up- and down-type quarks and antiquarks lead to interesting production asymmetries. Since
the measurement of asymmetries is typically very accurate, due to the cancellation of many experimental
and theoretical uncertainties, these play a fundamental role in the precision determination of quark and
antiquark PDFs. Furthermore, the production asymmetries are modulated by the parity violation of the
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vector boson couplings, leading to further handles for the discrimination of quark and antiquark densi-
ties, and inducing a sensitivity to the weak mixing angle sin2 ✓lepte↵ , which controls the vector and axial
components of Z boson interactions.

For pp̄ collisions, and assuming for simplicity the dominance of u and d quarks, we have:

d�W+

dy
/ fp

u(x1) f
p̄
d̄
(x2) + fp

d̄
(x1)f

p̄
u(x2) (54)

d�W�

dy
/ fp

ū(x1) f
p̄
d (x2) + fp

d (x1)f
p̄
ū(x2) (55)

We can then construct the following charge asymmetry (using f p̄
q = fp

q̄ and assuming the dominance of
the quark densities over the antiquark ones, which is valid in the kinematical region of interest for W
production at the Tevatron):

A(y) = �A(�y) =

d�W+

dy � d�W�
dy

d�W+

dy +
d�W�
dy

⇠
fp
u(x1) f

p
d (x2)� fp

d (x1) f
p
u(x2)

fp
u(x1) f

p
d (x2) + fp

d (x1) f
p
u(x2)

(56)

Setting fu(x) = fd(x)R(x) we then get:

A(y) ⇠ R(x1)�R(x2)

R(x1) +R(x2)
, (57)

which gives an explicit relation between asymmetry and the functional dependence of the u(x)/d(x)
ratio. This ratio is close to 1 at small x, where the quark distributions arise mostly from sea quarks,
and it increases at larger x, where the valence contribution dominates. At positive y, where x1 > x2,
we therefore expect a positive asymmetry. This is confirmed in the left plot of Fig. 22, showing the
asymmetry measured at the Tevatron by the CDF experiment [38], and compared to the NNLO QCD
prediction [24, 32, 39, 40] and an estimate of the PDF uncertainty. When measuring the charged lepton

Fig. 22: Production [38] (left) and leptonic [41] (right) charge asymmetries of W bosons in pp̄ collisions at the
Tevatron,

p
S = 1.96 TeV.

from W decay, the W production asymmetry is however modulated by the W decay asymmetry caused
by parity violation. The squared amplitude for the process f1f̄2 ! W ! f3f̄4 is proportional to
(p1 · p4)(p2 · p3), where f1,3 are fermions and f2,4 antifermions, of momenta p1,...,4. In the rest frame
of this process, this is proportional to (1 + cos ✓)2, where ✓ is the scattering angle between final- and
initial-state fermions. The momentum of the final-state fermion, therefore, points preferentially in the
direction of the initial-state fermion’s momentum, cos ✓ ! 1. For dū ! W� ! `�⌫̄ the charged lepton
(a fermion) is more likely to move in the direction of the d quark, while for ud̄ ! W+ ! `+⌫ the
charged lepton (an antifermion) is more likely to move backward. The rapidity distribution of charged
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leptons is therefore subject to a tension between the W production asymmetry, which at positive rapidity
favours W+ over W�, and the decay asymmetry, which at positive rapidity favours `� over `+. The
net result is a distribution that changes sign, becoming negative at large lepton rapidity. This is seen
explicitly in the right plot of Fig. 22, from the D0 experiment [41], which also shows the great sensitivity
of this quantity to different PDF parameterizations, and the potential to improve their determination.

In pp collisions, assuming again the dominance of the first generation of quarks and fp
q (x) �

fp
q̄ (x) (q = u, d) at large x, the W charge asymmetry takes the form:4

A(y) = A(�y) ⇠ R(xmax)� r(xmin)

R(xmax) + r(xmin)
, (58)

where xmax(min) = max(min)(x1, x2) and fp
ū(x) = r(x)fp

d̄
(x). The extended rapidity coverage of-

Fig. 23: Left: leptonic charge asymmetries in W production at the LHC (
p
S = 7 TeV), extracted from the

measurements of the ATLAS [42], CMS [43] and LHCb [37] experiments. Right: Z boson rapidity spectrum from
CMS [44], compared with NNLO predictions [32].

fered by the combination of the ATLAS, CMS and LHCb detectors at the LHC, allows to fully exploit
the potential of asymmetry measurements as a probe of the proton structure. This is highlighted in the
left plot of Fig. 23, which summarizes the LHC experimental results for the lepton charge asymmetry,
obtained at

p
S = 7 TeV, compared to the theoretical predictions based on several sets of PDFs. In

particular, notice the large spread of predictions in the largest rapidity regions, spread to be reduced once
these data are included as new constraints in global PDF fits (see for example Refs. [45–48]). The PDF
sensitivity can be further enhanced by considering the W asymmetry at large rapidity in events produced
in association with a high-pT jet, as discussed in Ref. [49].

4.2 Jet production
Jet production is the hard process with the largest rate in hadronic collisions. For example, the cross-
section for producing jets of transverse energy ET >⇠ 100 GeV in pp collisions at the LHC (

p
Shad =

14 TeV) is of the order of a µb. This means ⇠ 104 events/s at the luminosities available at the LHC.
The data collected during the 8 TeV LHC run extend all the way up to ET >⇠ 2 TeV, and they will reach

4It goes without saying that in actual analyses the contributions of all quark and antiquark flavours are taken into account.
At the LHC, in particular, the contribution of strange and charm quarks is significant for the W

± production rate, at the level
of ⇠ 30%.
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⇠ 4 � 5 TeV by the end of its operations. These events are generated by collisions among partons that
carry over 60% of the available pp energy, and allow one to probe the shortest distances ever reached.
The leading mechanisms for jet production are shown in fig. 24.

Fig. 24: Representative diagrams for the production of jet pairs in hadronic collisions

The 2-jet inclusive cross-section can be obtained from the formula

d� =
X

ijkl

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

d�̂ij!k+l

d�2
d�2 (59)

that has to be expressed in terms of the rapidity and transverse momentum of the quarks (or jets), in order
to make contact with physical reality. The two-particle phase space is given by

d�2 =
d3k

2k0(2⇡)3
2⇡ �((p1 + p2 � k)2) , (60)

and, in the centre-of-mass of the colliding partons, we get

d�2 =
1

2(2⇡)2
d2kT dy 2 �(ŝ� 4(k0)2 ) , (61)

where kT is the transverse momentum of the final-state partons. Here y is the rapidity of the produced
parton in the parton centre-of-mass frame. It is given by

y =
y1 � y2

2
(62)

where y1 and y2 are the rapidities of the produced partons in the laboratory frame (in fact, in any frame).
One also introduces

y0 =
y1 + y2

2
=

1

2
log

x1
x2

, ⌧ =
ŝ

Shad
= x1 x2 . (63)

We have
dx1 dx2 = dy0 d⌧ . (64)

We obtain

d� =
X

ijkl

dy0
1

Shad
f (H1)
i (x1, µ) f

(H2)
j (x2, µ)

d�̂ij!k+l

d�2

1

2(2⇡)2
2 dy d2kT (65)

which can also be written as

d�

dy1 dy2 d2kT
=

1

Shad 2(2⇡)2

X

ijkl

f (H1)
i (x1, µ) f

(H2)
j (x2, µ)

d�̂ij!k+l

d�2
. (66)

27

QCD AND THE PHYSICS OF HADRONIC COLLISIONS

53



The variables x1, x2 can be obtained from y1, y2 and kT from the equations

y0 =
y1 + y2

2
(67)

y =
y1 � y2

2
(68)

xT =
2kTp
Shad

(69)

x1 = xT ey0 cosh y (70)
x2 = xT e�y0 cosh y . (71)

For the partonic variables, we need ŝ and the scattering angle in the parton centre-of-mass frame ✓, since

t = � ŝ

2
(1� cos ✓) , u = � ŝ

2
(1 + cos ✓) . (72)

Neglecting the parton masses, you can show that the rapidity can also be written as:

y = � log tan
✓

2
⌘ ⌘ , (73)

with ⌘ usually being referred to as pseudorapidity.
The leading-order Born cross-sections for parton–parton scattering are reported in Table 2.

Table 2: Cross-sections for light parton scattering. The notation is p1 p2 ! k l, ŝ = (p1 + p2)2, t̂ = (p1 � k)2,
û = (p1 � l)2.

Process d�̂
d�2

qq0 ! qq0 1
2ŝ

4
9
ŝ2+û2

t̂2

qq ! qq 1
2

1
2ŝ

h
4
9

⇣
ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

⌘
� 8

27
ŝ2

ût̂

i

qq̄ ! q0q̄0 1
2ŝ

4
9
t̂2+û2

ŝ2

qq̄ ! qq̄ 1
2ŝ

h
4
9

⇣
ŝ2+û2

t̂2
+ t̂2+û2

ŝ2

⌘
� 8

27
û2

ŝt̂

i

qq̄ ! gg 1
2

1
2ŝ

h
32
27

t̂2+û2

t̂û
� 8

3
t̂2+û2

ŝ2

i

gg ! qq̄ 1
2ŝ

h
1
6
t̂2+û2

t̂û
� 3

8
t̂2+û2

ŝ2

i

gq ! gq 1
2ŝ

h
�4

9
ŝ2+û2

ŝû + û2+ŝ2

t̂2

i

gg ! gg 1
2

1
2ŝ

9
2

⇣
3� t̂û

ŝ2 � ŝû
t̂2

� ŝt̂
û2

⌘

It is interesting to note that a good approximation to the exact results can easily be obtained
by using the soft-gluon techniques introduced in the third lecture. Based on the fact that even at 90�

min(|t|, |u|) does not exceed s/2, and that therefore everything else being equal a propagator in the t or
u channel contributes to the square of an amplitude 4 times more than a propagator in the s channel, it is
reasonable to assume that the amplitudes are dominated by the diagrams with a gluon exchanged in the
t (or u) channel. It is easy to calculate the amplitudes in this limit using the soft-gluon approximation.
For example, the amplitude for the exchange of a soft gluon among a qq0 pair is given by:

(�a
ij) (�

a
kl) 2pµ

1

t
2p0µ = �a

ij �
a
kl
4p · p0

t
=

2s

t
�a
ij �

a
kl . (74)
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The pµ and p0µ factors represent the coupling of the exchanged gluon to the q and q0 quark lines, respec-
tively (see Eq. (34). Squaring, and summing and averaging over spins and colours, gives

X

colours,spin

|Mqq0 |2 =
1

N2

✓
N2 � 1

4

◆
4s2

t2
=

8

9

s2

t2
. (75)

Since for this process the diagram with a t-channel gluon exchange is symmetric for s $ u exchange,
and since u ! �s in the t ! 0 limit, the above result can be rewritten in an explicitly (s, u) symmetric
way as

4

9

s2 + u2

t2
, (76)

which indeed exactly agrees with the result of the exact calculation, as given in Table 2. The corrections
which appear from s or u gluon exchange when the quark flavours are the same or when we study a qq̄
process are small, as can be seen by comparing the above result to the expressions in the table.

As another example we consider the case of qg ! qg scattering. The amplitude will be exactly
the same as in the qq0 ! qq0 case, up to the different colour factors. A simple calculation then gives:

X

colours,spin

|Mqg|2 =
9

4

X
|Mqq0 |2 =

s2 + u2

t2
.

The exact result is
u2 + s2

t2
� 4

9

u2 + s2

us
, (77)

which even at 90�, the point where the t-channel exchange approximation is worse, only differs from
this latter by no more than 25%.

As a final example we consider the case of gg ! gg scattering, which in our approximation gives:

X
|Mgg|2 =

9

2

s2

t2
. (78)

By u $ t symmetry we should expect the simple improvement:

X
|Mgg|2 ⇠

9

2

✓
s2

t2
+

s2

u2

◆
. (79)

This only differs by 20% from the exact result at 90�.
Notice that at small t the following relation holds:

�̂gg : �̂qg : �̂qq̄ =

✓
9

4

◆
: 1 :

✓
4

9

◆
. (80)

The 9/4 factors are simply the ratios of the colour factors for the coupling to gluons of a gluon (CA)
and of a quark (TF ), after including the respective colour-average factors (1/(N2� 1) for the gluon, and
1/N for the quark. Using Eq. (80), we can then write:

d�hadr =

Z
dx1 dx2

X

i,j

fi(x1) fj(x2) d�̂ij

=

Z
dx1 dx2 F (x1) F (x2) d�̂gg(gg ! jets) (81)

where the object

F (x) = fg(x) +
4

9

X

f

[qf (x) + q̄f (x)] (82)
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Fig. 25: Relative contribution to the jet-ET rates from the different production channels, in pp collisions at 8 and
14 TeV.

is usually called the effective structure function. This result indicates that the measurement of the in-
clusive jet cross-section does not allow in principle to disentangle the independent contribution of the
various partonic components of the proton, unless of course one is considering a kinematical region
where the production is dominated by a single process. The relative contributions of the different chan-
nels, calculated using current fits of parton densities, are shown for different center of mass energies at
the LHC in fig. 25.

4.3 Jet ET spectra: comparison of theory and experimental data
Predictions for jet production at colliders are available today at the next-to-leading order in QCD (see
the review in Ref. [8]). One of the preferred observables is the inclusive ET spectrum. An accurate
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Fig. 26: Comparison of the data vs theory in an early measurement of the jet cross-section at the Tevatron, by the
CDF experiment [51]

comparison of data and theory, should it exhibit discrepancies at the largest values of ET , could pro-
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vide evidence for new phenomena, such as the existence of a quark substructure. For years it has been
known [50] that an underlying quark compositeness would increase the rate of the highest-ET jets. The
real question, therefore, is how do we convince ourselves that the prediction is, indeed, accurate. This
question became particularly relevant in 1995, when CDF measured a jet cross-section that appeared to
deviate from theory in precisely the way predicted by an underlying quark compositeness (see fig. 26).
How do we know that this is not due to poorly known quark or gluon densities at large x? In principle
one could incorporate the CDF jet data into a global fit to the partonic PDFs, and verify whether it is
possible to modify them so as to maintain agreement with the other data, and at the same time to also
fit satisfactorily the jet data themselves. On the other hand, doing this would prevent us from using the
jet spectrum as a probe of new physics. In other words, we might be hiding away a possible signal
of new physics by ascribing it to the PDFs. Is it possible to have a complementary determination of
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Fig. 27: Inclusive ET spectra for jets in different rapidity regions, as measured at the run 1 of the Tevatron by the
D0 Collaboration [52].

the PDF at high-x, that could constrain the possible PDF systematics of the jet cross-section and at the
same time leave the high-ET tail as an independent and usable observable? This is indeed possible, by
fully exploiting the kinematics of dijet production and the wide rapidity coverage of the collider detec-
tors. One could in fact consider final states where the dijet system is highly boosted in the forward or
backward region. For example, one could consider cases where x1 ! 1 and x2 ⌧ 1. In this case,
the invariant mass of the dijet system would be small (since M2

jj = x1x2S ⌧ S), and we know from
lower-energy measurements that at this scale jets must behave like pointlike particles, following exactly
the QCD-predicted rate. These final states are characterized by having jets at large positive rapidity. One
can therefore perform a measurement with forward jets, and use these data to fit the x1 ! 1 behaviour of
the quark and gluon PDFs without the risk of washing away possible new-physics effects. At that point,
the large-x PDFs thus constrained can be safely applied to the kinematical configurations where both x1
and x2 are large, namely the highest-ET final states, and, if any residual discrepancy between data and
theory is observed, infer the possible presence of new physics.

In the case of the Tevatron data, the study of the forward-jet configurations was performed by
D0 [52]. Figure 27, from their work, shows the comparison between data and theory for different jet-
rapidity intervals. Two different PDF sets are used, CTEQ4M, and CTEQ4HJ [53], the latter having
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Fig. 28: Inclusive ET spectra for central jets, as measured by the CDF experiment at the Tevatron [54], compared
to NLO QCD calculations
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Fig. 29: Comparison of run 2 inclusive jets cross-sections at D0 [55] with QCD calculations. The dashed lines
represent the systematics band due to PDF uncertainties

been tuned to describe the CDF high-ET jet tail. Notice the good overall agreement of this prediction
for the whole set of rapidities. After this tuning, the residual discrepancy between the CDF high-ET data
and QCD is within the theoretical and experimental systematic uncertainties, confirming that jets behave
as expected in the Standard Model. This conclusion has been strengthened by the analysis of the run 2
data [54, 55], at

p
S = 1.96 TeV, as shown in Figs. 28 and 29.

4.4 Jets at the LHC
The huge statistics and energy lever arm available at the LHC is pushing even further the precision
and the sensitivity of jet data. This progress is proceeding hand in hand with the improved theoretical
calculations, which have now reached the level of NNLO precision [56].

The experimental systematics, shown in Fig. 30 for the recent final analysis of the ATLAS 8 TeV
data [57], are today reduced to less than 10% for the whole range of jet transverse energies up to ⇠ 2 TeV,
and are dominated by the knowledge of the absolute jet energy scale. The higher statistics available in
run 2 of the LHC, and beyond, will allow a further reduction of this systematics, using several experimen-
tal handles such as the energy balancing between prompt photons and jets. The theoretical uncertainties
include several components. Those of purely perturbative nature are shown in the right plot of Fig. 30,
and include the scale, ↵s and PDF uncertainties. The latter dominate at the largest ET values and, once
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Fig. 30: Experimental (left) and theoretical NLO (right) systematics in the measurement and prediction of the
inclusive jet cross section at

p
S = 8 TeV [57].

again, will likely be reduced with future PDF studies at higher luminosity, along the lines discussed in
the previous section in the context of the Tevatron studies.

Fig. 31: Hadronization systematics (left) and EW NLO (right) corrections in the theoretical prediction of the
inclusive jet cross section at

p
S = 8 TeV [57].

Further theoretical systematics are related to the non-perturbative corrections needed to translate
the jet energy, defined at the perturbative level by the partons, to the actual energy after partons shower
and evolve into hadrons. These effects, shown in the left plot of Fig. 31, are enhanced at the lowest
energies, and quickly vanish in the interesting multi-TeV domain. At the highest energies, finally, elec-
troweak (EW) corrections become important, and must be included in the calculations. Their size can
reach the 10% value above the TeV, as shown in the right plot of Fig. 31.

A comparison of data and the NLO theory (corrected for hadronization effects) is shown for the
ATLAS measurement [57] in the left plot of Fig. 32. The data extend to ET above 2 TeV, covering 10
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Fig. 32: ATLAS jet cross section data at
p
S = 8 TeV [57], compared to theoretical calculations (left). Ratio of

data and theory for the 8 TeV measurement by CMS [58].

orders of magnitude in rate. The level of agreement is highlighted in the right plot, using the CMS results
of the 8 TeV data sample [58]. The agreement is well within the ±10% overall systematics.
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