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Abstract

The field of relativistic heavy-ion physics has become an important testing
ground for our current understanding of the properties of strongly interact-
ing matter under extreme conditions. Strong interactions are described by
Quantum Chromodynamics which, in addition to its defining gauge symmetry,
possesses additional symmetries and properties that can be put to test in col-
lisions of heavy-nuclei at different beam energies. The exploration of these
properties is currently being conducted and will still continue for years to come
when new facilities enter into operation. This is the so called study of the
QCD phase diagram. Of particular relevance is the search of a possible critical
end point (CEP). In these lectures I make a brief survey of QCD properties
and of its symmetries. Since the phase diagram refers to the study of phase
transitions, I also give the main generalities of such and mention some of the
statistical tools than can be used to study the fluctuations in conserved charges
to identify the CEP location. I also give a brief summary of some of the ex-
perimental signals used to study the properties of the kind of matter created in
heavy-ion collisions at the highest available energy, the so called Quark Gluon
Plasma.

1 Introduction
The field of relativistic heavy-ion physics has become the main playground to explore the properties
of hadron matter under extreme conditions of temperature and density. Experimentally, the relativistic
heavy-ion program started out at modest energies in the mid-1980s, when collisions of heavy-nuclei, in
fixed target experiments with center-of-mass energy of 5 and 17 GeV per nucleon pair, were carried out
at the Alternating Gradient Synchrotron (AGS) in Brookhaven and the Super Proton Synchrotron (SPS)
at CERN, respectively. Shortly before the turn of the century, the relativistic heavy-ion program got a
new boost when the Relativistic Heavy-Ion Collider (RHIC) in Brookhaven started to collide gold nuclei
at a, by then unprecedented, center-of-mass energy of 200 GeV per nucleon pair. At the end of 2010, the
first collisions of led nuclei were delivered by the Large Hadron Collided at CERN, at a center-of-mass
energy of 2.76 TeV per nucleon pair. By the end of 2015, the LHC was able to increase this energy to
5.02 TeV. The exciting results obtained from experiments measuring the properties of the hot and dense
matter created in these collisions offer a better shaped but still incomplete picture of the properties of
strongly interacting matter under extreme conditions. The program promises to keep producing new and
equally exciting results when facilities such as NICA, FAIR, J-PARC and KEK, designed to explore the
properties of this kind of matter at higher baryon densities, enter into operation.

The purpose of these lecture notes is to provide a theoretical framework, at the introductory level,
to put into context the aim and meaning of some of the results of the experimental program. I focus on
the description of the different phases that strongly interacting matter can reach when its temperature
and baryon density are varied by varying the center-of-mass energy in the collisions. These phases can
be better described in terms of an idealized picture based on the so called QCD Phase Diagram, where
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Figure 1: Representation of the QCD phase diagram in the temperature (T ) and quark chemical potential (µ)
plane.

the transition lines correspond to the boundaries between one and another phase. Figure 1 shows a
representation of this phase diagram. Close to the phase boundaries, the relevant quark species are the
light quarks u, d and s. A complete description, accounting for the abundance of these species, should in
principle be given in terms of the chemical potentials associated to each of these quarks. Nevertheless,
when one assumes equilibrium, these chemical potentials are not independent from each other. They
are related by the requirements of beta equilibrium and charge neutrality. Therefore, out of the three
chemical potentials only one is independent. Any one of them can be chosen and the usual choice is the
baryon chemical potential µB, related to the quark chemical potential µ by µ = µB/3.

The transit through the phase boundaries is related to the restoration/breaking of QCD symmetries
and thus an account of such symmetries is the main unifying concept along the text. The lectures are
organized as follows: In Sec. 2, I focus on the description of QCD flavor and chiral symmetries. In
Sec. 3 I discuss the main features of QCD confinement and asymptotic freedom. In Sec. 4 I describe how
chiral symmetry/deconfinement are restored in heavy-ion collisions at high energy. Since the description
is made in terms of thermodynamical quantities, I recall the concept of phase transitions and provide a
survey of our current knowledge of the QCD phase structure obtained from lattice QCD (LQCD). I also
discuss how the search for the QCD critical end point is a central subject in the field and some of the
theoretical tools to try to identify this point from experimental measurements. In Sec. 5 I discuss some
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of the experimental signals that give an account of our current understanding of the properties of the
deconfined state of matter produced in heavy-ion reactions, generally known as the quark-gluon plasma
(QGP). I finally summarize in Sec. 6.

2 Flavor and chiral symmetries [1]
The quantum field theory that describes strong interactions is Quantum Chromodynamics (QCD). This
is a gauge theory based on the local symmetry group SU(Nc), where Nc is the number of colors. In
Nature Nc = 3. The fundamental fields are the quarks (matter fields) and the gluons (gauge fields). Each
one of the Nf quark fields belong to the fundamental representation of the color group which is Nc–
dimensional. The antiquark fields belong to the complex conjugate of the fundamental representation,
also Nc–dimensional and the gluon fields to the adjoint representation, which is N2

c �1–dimensional.
The QCD Lagrangian at the classical level is written as

LQCD =
Nf

Â
i=1

ya
i

⇣
igµ(∂µd ab + igsAab

µ )�mid ab
⌘

yb
i �

1
4

Ga
µnGµn

a (1)

where Ga
µn = ∂µAa

n �∂nAa
µ +gs f abs Ab

µAs
n , Aab

µ =As
µ (ts )ab with a,b= 1, . . . ,Nc and a,b ,s = 1, . . . ,N2

c �
1. gs is the coupling strength both between matter and gauge fields and between gauge fields themselves,
mi is the (bare) mass for each quark flavor and ts are the generators of the SU(Nc) algebra. For Nc = 3,
these are usually taken as the Gell-Mann matrices.

Quarks are distinguished form one another by a quantum number called flavor. There are six
flavors: u,d,s,c,b, t. and we refer to the number of flavors generically as Nf . Consider the ideal case
in which all Nf flavors have the same mass. Quark and antiquark fields are assigned to the fundamental
and complex conjugate representations (each Nf –dimensional), respectively, of the SU(Nf ) group. The
Lagrangian corresponding to the quark sector becomes (we omit color indices for quarks and gluons)

Lq =
N

Â
i=1

y i
�
igµ(∂µ + igsAµ)�m

�
yi (2)

Lq is invariant under continuous global transformations of SU(Nf )

yi �! y 0
i = e�iaA(T A) j

i y j

y i �! y 0
i = y jeiaA(T A) j

i

Aµ ! A0
µ = Aµ , (3)

A = 1, . . . ,N2
f �1, T A are Nf ⇥Nf matrices.

In infinitesimal form

dyi = �idaA(T A) j
i y j

dy i = idaAy j(T
A) j

i

dAµ = 0. (4)

Using Noether’s theorem, one finds N2
f �1 conserved currents

jA
µ(x) = y i(x)gµ(T A)i

jy i j(x)

∂ µ jA
µ = 0. (5)
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The generators of the group (the charges) are obtained from jA
0 by space integration

QA =
Z

d3x jA
0 (x). (6)

QA’s satisfy the SU(Nf ) algebra

[QA,QB] = i f ABCQC, (7)

A,B,C = 1, ...,N2
f � 1. Current conservation implies that the generators are independent of time and

therefore they commute with the Hamiltonian H

[H,QA] = 0. (8)

The transformation properties of the fields can be translated to the states. Introduce one-particle quark
states (omit spin labels) |p, ii. If the vacuum state is invariant under the group transformations, then

QA|p, ii= (T A) j
i|p, ji. (9)

Since these states are also eigenstates of the Hamiltonian, the above means that the various one-particle
states of the fundamental representation multiplet have equal masses m. This mode to realize the sym-
metry is called the Wigner-Weyl mode.

Consider however the real case where flavors have different masses

Lq =
N

Â
i=1

y i
�
igµ(∂µ + igsAµ)�mi

�
yi. (10)

The mass term spoils SU(Nf ) invariance, therefore currents are not conserved and we find

∂ µ jA
µ =�i

Nf

Â
i, j=1

(mi �m j)y i(T
A)i

jy j 6= 0 (11)

In Nature, quarks are divided into two groups: Light quarks u,d,s and heavy quarks c,b, t. The
mass difference between each group is large (> 1 GeV). An approximate symmetry can be expected only
for the light quarks: SU(2) for u,d or SU(3) for u,d,s.

Notice that quarks can also be transformed by means of unitary transformations that include the
g5 matrix. The transformations are called axial flavor transformations. In infinitesimal form

dyi = �idaA(T A) j
i g5y j

dy i = idaAy jg5(T A) j
i

dAµ = 0. (12)

Consider the quark part of the Lagrangian Lq with equal masses. Under these transformations Lq is not
invariant because of the mass

dLq = 2imdaAy i(T A) j
i g5y j. (13)

Invariance under axial flavor transformations requires vanishing of the quark mass. Contrary to flavor
symmetry transformations, equality of masses is not sufficient for invariance under axial flavor transform-
ations. In the general case of different masses, we introduce the mass matrix M = diag(m1,m2, ...,mNf ).
The variation of the Lagrangian is

dLq = idaAy i{M,T A} j
i g5y j, (14)
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Figure 2: Schematic representation of the parity doublets for the lightest meson and baryon states.

where {,} is the anticommutator.
Consider the massless case. The Lagrangian is invariant under both the flavor and the axial flavor

transformations. The conserved currents are

jA
µ(x) = y i(x)gµ(T A)i

jy j(x); ∂ µ jA
µ = 0

jA
5µ(x) = y i(x)gµg5(T A)i

jy j(x); ∂ µ jA
5µ = 0. (15)

The corresponding charges are

QA =
Z

d3x jA
0 (x), QA

5 =
Z

d3x jA
50(x). (16)

Together the flavor and axial flavor transformations form the chiral transformations. The corresponding
charges satisfy the commutation relations

⇥
QA,QB⇤=i f ABCQC,

⇥
QA,QB

5
⇤
=i f ABCQC

5 ,
⇥
QA

5 ,Q
B
5
⇤
=i f ABCQC. (17)

The axial charges do not form an algebra, however, if we define

QA
L =

1
2
(QA �QA

5 ), QA
R =

1
2
(QA +QA

5 ) (18)

we obtain
⇥
QA

L ,Q
B
L
⇤
= i f ABCQC

L ,
⇥
QA

R,Q
B
R
⇤
= i f ABCQC

R,
⇥
QA

L ,Q
B
R
⇤
= 0. (19)

The result can be summarized as follows: The left-handed and right-handed charges decouple
and operate separately. Each generate an SU(Nf ) group. The chiral group is decomposed into the
direct product of two SU(Nf ) groups, labeled with the subscripts L and R, i.e. the chiral group =
SU(Nf )L ⌦ SU(Nf )R. In Nature, chiral symmetry is not exact, quark masses break it explicitly. In the
light quark sector, the breaking can be treated as a perturbation, the symmetry is approximate. What is
the signature of this approximate symmetry?

Suppose that the symmetry is realized in the Wigner-Weyl mode. Thus, in the massless quark limit
a chiral transformation acting on a massive state gives

QA
5 |M,s,p,+, ii= (T A) j

i|M,s,p,�, ji. (20)
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This means that we should find parity partners for the massive states. When we consider the light quark
masses, the degeneracy within parity doublets is lifted, but the masses should remain close to each other.
No degenerate parity doublets are observed, thus the Wigner-Weyl mode realization of chiral symmetry
does not happen under ordinary conditions. The alternative is spontaneous symmetry breaking, also
known as Nambu-Goldstone mode. What happens if the generators of some transformations do not
annihilate the vacuum?

QA
5 |0i 6= 0. (21)

In this case we say that the symmetry has been spontaneously broken. The axial charges when applied
to the vacuum state produce new states

QA
5 |0i= |A,�i, A = 1, ...,N2

f �1 (22)

The states have the same properties as the axial charges that generate it, in particular they are pseudo-
scalar states.

In the massless limit, the charges commute with the Hamiltonian therefore, these states are mass-
less (Goldstone theorem). Spontaneous chiral symmetry breaking is manifested by means of the exist-
ence of N2

f � 1 pseudoscalar massless particles called Nambu-Goldstone bosons. The breaking of the
symmetry involves only the axial sector. The ordinary flavor symmetry is still realized in the Wigner-
Weyl mode.

SU(Nf )L ⌦SU(Nf )R �! SU(Nf )V . (23)

In Nature Nf = 3, this corresponds to eight pseudoscalar bosons (p,K,h) with small masses.
We have thus seen that chiral symmetry is broken due to a finite mass of the quarks. Under

ordinary circumstances, quarks are confined within hadrons. The quark mass is thus an effective mass
which corresponds to about one third of the nucleon mass ⇠ 300 MeV. The origin of this effective, or
dynamically generated mass, is the strength of the interaction and can be explained in terms of non-
perturbative methods [2]. It seems intuitively clear that if we could somehow overcome the confining of
quarks, their mass would decrease and chiral symmetry would be restored. Let us now study how the
strong interaction produces this confinement to later ask how a collision of relativistic nuclei could help
to study the situation where quiral symmetry and deconfinement are achieved.

Figure 3: Schematic representation of spontaneous symmetry breaking. Goldstone bosons correspond to the
directions where the potential is flat.
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3 Confinement and asymptotic freedom

To grasp why under ordinary circumstances quarks are confined within hadrons let us recall the
characteristics of the strong interaction: The potential between two quarks at “long" distances, O(1 fm),
is linear, this means that the separation of quarks requires “infinite" amount of energy. Confinement is a
direct consequence of the gluon self-interaction. Quarks and gluons confined inside the QCD potential
must combine into zero net color charge particles called hadrons.

The strength of strong interaction is characterized by a coupling “constant" as = g2
s/4p whose

strength decreases with distance since the bare color charge is antiscreened due to gluon self-interaction.
To study confinement and the running of the strong coupling with distance (or equivalently, with the
energy involved in the physical process), one resorts to a renormalization group analysis of the gluon
polarization tensor

Pµn(q) = P(q2,a2)

✓
gµn � qµqn

q2

◆
, (24)

where we refer to P as the gluon self-energy. Gauge invariance dictates that the gluon polarization tensor
be transverse and thus the tensor structure in Eq. (24). Let P(q2) represent the un-renormalized gluon
self-energy. Let us scale each factor of the momentum q appearing in P by the renormalization ultraviolet
energy scale µ̃ , writing

q2 = µ̃2(q2/µ̃2). (25)

Therefore, we have

P(q2;as) = µ̃DP(q2/µ̃2;as), (26)

where D = 2 is the energy dimension of P. Since µ̃ is arbitrary, the statement that P should be inde-
pendent of this scale is provided by the Renormalization Group Equation (RGE) [3]

✓
µ̃ ∂

∂ µ̃
+asb (as)

∂
∂as

� g
◆

P(q2;as) = 0, (27)

where b (as) is the QCD beta function defined by

asb (as) = µ̃ ∂as

∂ µ̃
, (28)

and

g = µ̃ ∂
∂ µ̃

lnZ�1, (29)

where Z is the gluon self-energy renormalization. The beta function represents the rate of change of the
renormalized coupling as the renormalization scale µ̃ is increased. The dependence of a given Green’s
function on µ̃ happens through the counter-terms that subtract ultraviolet divergences. Therefore, the
beta function can be computed from the counter-terms that enter a properly chosen Green’s function. In
QCD, to lowest order, the beta function can be computed as

b = gsµ̃
∂

∂ µ̃

✓
�d1 +d2 +

1
2

d3

◆
(30)

where d1, d2 and d3 are the counter-terms for the quark-gluon vertex, the quark self-energy and the gluon
self-energy [4]. The QCD beta function is negative and to one-loop level it is given by

b (as) = �b1as, b1 =
1

12p
(11Nc �2Nf )> 0. (31)
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Figure 4: Running of as as a function of the momentum transferred Q in the corresponding process.

To find the evolution of the strong coupling with the momentum scale, we start from Eq. (27) and intro-
duce the variable

t = ln(Q2/µ̃2), (32)

where Q2 is the momentum transfered in a given process. Notice that the reference scale µ̃ is usually
large enough, so as to make sure that the calculation is well within the perturbative domain, therefore
Q2 < µ̃2. After this change of variable, the RGE becomes

✓
� ∂

∂ t
+asb (as)

∂
∂as

� g
◆

P(q2;as) = 0. (33)

Using the method of the characteristics [5], one obtains the relation between the coupling values evalu-
ated at Q2 and the reference scale µ2 as

Z t(Q2)

t(Q2=µ̃2)
dt =� 1

b1

Z as(Q2)

as(Q2=µ̃2)

das

a2
s
. (34)

Solving for as(Q2), we obtain

as(Q2) =
as(µ̃2)

1+b1as(µ̃2) ln(Q2/µ̃2)
, (35)

from where it is seen that as Q increases, the coupling decreases. This behavior is known as asymptotic
freedom and it is responsible for the fact that strong interaction processes can be computed in perturbation
theory when the transfered momentum is large. Conversely, when this momentum is small, the coupling
is so large that pertuerbative calculations become meaningless. This is the so called non-perturbative
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Figure 5: Particle ratios obtained in the statistical model compared to experimentally measured ratios in central
Pb + Pb collisions at

p
sNN = 2.76 TeV, obtained by the ALICE Collaboration.

regime. Processes where perturbation theory can be applied are usually those where the transferred
momentum satisfies Q2 & 1 GeV2. To quantify this statement, notice that from Eq. (35) we can define
a transferred momentum value LQCD small enough such that the denominator vanishes and thus the
coupling blows up, namely

1+b1as(µ2) ln(L2
QCD/µ̃2) = 0, L2

QCD = µ̃2e�
1

b1as(µ̃) (36)

LQCD is a renormalization scheme dependent quantity. It also depends on the number of active flavors.
For instance, in the MS scheme and for three active flavors, its value is of order LQCD ⇠ 300 MeV. All
dimensionful QCD results where the transferred momentum is small, scale with LQCD. The existence
of this scale is the reason for the existence of the mass of baryons and thus of the mass of the visible
universe.

The question we now set up to address concerns whether and how heavy-ion reactions allow us to
explore the situation where the two above discussed properties of QCD, namely, the breaking of chiral
symmetry by the effective quark mass and confinement, can be overcome.

4 Chiral symmetry/deconfinement transitions at high temperature and baryon density
When nuclear matter is subject to extreme conditions, interesting phenomena take place. There are two
important parameters when this matter can be described as being in equilibrim: The temperature T and
the baryon number density nB (or equivalently its conjugate variable µB = 3µ). Since the intrinsic QCD
scale is of order LQCD ⇠ 200�300 MeV, one expects a transition around T ⇠LQCD and/or nB ⇠L3

QCD ⇠ 1
fm�3. The temperature and baryon density in a heavy-ion reaction are functions of the center-of-mass
energy in the collision.

To estimate the possible values that these quantities achieve, one usually resorts to the statistical
model. This model assumes that hadron matter is in thermal equilibirium during chemical freeze-out,
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Figure 6: Schematic representation of the meson density of states as a function of their mass. Notice that the
density of states increases exponentially. Figure taken from Ref. [8].

that is to say, when hadron abundances are stablished during the reaction. In this manner, it is possible
to extract the values for the temperature and baryon chemical potential from fits to particle abundances,
given in the model by

n j =
g j

2p2

Z •

0
p2d p

h
exp

nq
p2 +M2

j /Tch �µch

o
±1

i�1
, (37)

where ± refer to fermions and bosons, respectively. Figure 5 illustrates a comparison between the statist-
ical model calculations and experimentally measured particle ratios. The main claim of the model is that
since multi-particle scattering rates fall-off rapidly, the experimentally determined chemical freeze-out
temperature Tch and chemical potential µch are good measures of the phase transition temperature and
baryon chemical potential [6].

Using this model, it is found that for central collisions, the baryon chemical potential decreases
roughly as the inverse of the center-of-mass energy per nucleon pair in the collision [7]. Therefore, for
current collider based experiments where the highest energies are reached, such as the LHC and RHIC,
the bayon chemical potential associated to the reaction is the smallest. This can be understood in terms of
an increase of the degree of transparency of colliding nuclear matter with collision energy, whereby in the
interaction zone, the energy deposited produces roughly an equal number of particles and antiparticles.
On the contrary, when the collision energy decreases, the transparency decreases and the reaction zone
becomes baryon richer.

A systematic exploration over a wider range of nB values, up to several times the normal nuclear
matter density n0 ⇠ 0.16 fm�3, can be carried out currently by the BES-RHIC and in the future by other
facilities such as FAIR, NICA, J-PARC and KEK. In Nature, the interior of compact stellar objects is the
relevant system where dense and low temperature QCD matter is realized.
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4.1 Phase transitions
A phase transition is a transformation of a given substance from one state of matter to another. During
the phase transition some quantities change, often in a discontinuous manner. Changes result from
variations of external conditions such as pressure, temperature, etc. In technical terms, a phase transition
occurs when the free energy is non-analytic (one of its derivatives diverges) for some values of the
thermodynamical variables. Phase transitions result from the interaction of a large number of particles
and in general do not occur when the system is very small or has a small number of particles. On the
phase transition lines the free energies in both phases coincide. Sometimes it is possible to change the
state of a substance without crossing a phase transition line. Under these conditions one talks about a
crossover transition.

Phase transitions are classified according to behavior of the free energy as a function of a given
thermodynamical variable (Ehrenfest). They are named according to the derivative of lowest order that
becomes discontinuous during the transition: First order; the first derivative of free energy is discon-
tinuous. A prototypical example is boiling water. During this process there appears a discontinuity in
the density, i.e. the derivative of free energy with respect to chemical potential. Second order; the first
derivative is continuous but the second derivative is discontinuous. A prototypical example is ferromag-
netism. The magnetization, i.e. the derivative of the free energy with respect to the external field is
continuous. The susceptibility, i.e. the derivative of the magnetization with respect to the external field,
is discontinuous.

In a modern classification, a first order phase transition involves latent heat. The system absorbs or
releases heat at a constant temperature. Phases coexist, although some parts have competed the transition
whereas some others have not. A second order phase transition is a continuous transitions. Susceptibil-
ities diverge, correlation lengths become large.

4.2 Deconfinement transition form hadron thermodynamics
Consider an ideal gas of identical neutral scalar particles of mass m0 contained in a box volume V.
Assume Boltzmann statistics. The partition function and related thermodynamical quantities are given
by

Z (T,V ) = Â
N

1
N!

"
V

(2p)3

Z
d3 pexp

(
�
p

p2 +m2

T

)#N

lnZ (T,V ) =
V T m2

0
2p2 K2(m0/T )

e(T ) = � 1
V

∂ lnZ (T,V )

∂ (1/T )
T�m0�! 3

p2 T 4 energy density

n(T ) = � 1
V

∂ lnZ (T,V )

∂ (V )
T�m0�! 1

p2 T 3 particle density

w(T ) = e(T )/n(T )' 3T average energy per particle (38)

Notice that the above relations imply that an increase of system’s energy has three consequences: A
higher temperature, more constituents, more energetic constituents.

Let us now include in the analysis hadron resonances whose mass is mi. It is easy to show that the
partition function is given by

lnZ (T,V ) = Â
i

V T m2
i

2p2 r(mi)K2(mi/T ), (39)

where i starts with the ground state (m0) and then includes the possible resonances with masses mi and
r(mi) is the weight (density of states) corresponding to the state mi. It is thus crucial to determine r(mi),
i.e., how many states there are having mass mi.
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Figure 7: Schematic representation of the change of effective degrees of freedom for the description of a set of
hadrons when the density and/or temperature increases, as a consequence of a heavy-ion reaction. At low temper-
atures/densities, the description is given in terms of a collection of hadron resonances. As the temperature/density
increases, limiting values of the baryon density and/or temperature are reached above which the descriptions is
made in terms of the fundamental QCD degrees of freedom. This signals the onset of a phase transition.

Figure 4 shows a schematic representation of the density of states, albeit for non-strange mesons.
In any case, it serves to illustrate that the density of states grows exponentially with the mass of the
species, r(m) µ exp

�
m/T H , where T H ' 0.19 GeV. This exponential growth should be balanced by

the Boltzmann factor

exp
n m

T H � m
T

o
, (40)

such that when T > T H , the integration over m becomes singular. T H plays the role of a limiting temper-
ature known as the Hagedorn temperature above which the hadronic description breaks down.

Applying a similar argument, we can also estimate the critical line at finite µB. The density of
baryon states r(mB) µ exp

�
mB/T H , where mB is the typical baryon mass (of order 1 GeV) is balanced

by the Boltzmann factor exp{�(mB �µB)/T}. The limiting temperature becomes

T =

✓
1� µB

mB

◆
T H . (41)

Notice that the treatment of the system as a gas made out of resonances leads to three con-
sequences: More and more species of ever heavier particles appear; a fixed temperature limit T �! T H

above which the resonance picture does not hold; the momentum of the constituents do not continue to
increase. All in all, these observations imply that above and to the right of the limiting curve, Eq. (41),
a different description of hadron matter, in terms of degrees of freedom other than hadron resonances,
is called for. The situation is illustrated in Fig. 6. As the system becomes hotter/denser, the bound-
aries between individual hadrons disappear and the description should be made instead in terms of the
fundamental QCD degrees of freedom. A deconfinement phase transition takes place.

4.3 Chiral symmetry transition
The QCD vacuum within hadrons should be regarded as a medium responsible for the non-perturbative
quark mass. In hot and/or dense matter, quarks turn bare due to asymptotic freedom. We expect a phase
transition from a state with heavy constituent quarks to another with light current quarks. This transition
is called chiral phase transition.
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At finite T and µ the QCD phase diagram can also be studied from the point of view of chiral
symmetry restoration. In the chiral limit (m = 0), a true order parameter for the transition is the quark-
antiquark condensate hyyi, since it is finite in the chirally broken (Nambu-Goldstone) phase and van-
ishes in the chirally symmetric (Wigner-Weyl) phase. In this limit the (true) critical temperature can be
obtained from the chiral susceptibility

cm =
∂

∂m
hȳyi. (42)

In vacuum hyyi0 =�(0.24 GeV)3. This value sets the scale for the critical temperature of chiral restor-
ation.

From cPT at low T and low nB one knows that

hyyiT/hyyi0 = 1�T 2/(8 f 2
p )�T 4/(384 f 4

p )

hyyinB/hyyi0 = 1�spNnB/( f 2
p m2

p)� . . . (43)

where fp ' 93 MeV, is the pion decay constant and spN = 40 MeV, is the p �N sigma term. Equa-
tions (43) indicate that the quark-antiquark condensate melts at finite T and nB.

For physical quark masses neither hȳyi vanishes nor cm diverges at the pseudocritical temperat-
ure. Nevertheless these quantities retain a behavior reminiscent of the corresponding one in the chiral
limit. In particular cm has a peaked structure as a function of T . It is customary to define Tc as the
temperature for which cm reaches its peak. Other susceptibilities, such as cT = ∂

∂T hȳyi, can also be
used to define Tc. It has been shown [9] that the critical temperatures thus obtained coincide within a
narrow band and therefore using any of these susceptibilities gives basically the same Tc.

Lattice calculations have provided values for Tc extracted from the peak of cm for 2+1 flavors
using different types of improved staggered fermions [10]. These values show some discrepancies. The
MILC collaboration [11] obtained Tc = 169(12)(4) MeV. The BNL-RBC-Bielefeld collaboration [12]
reported Tc = 193(7)(4) MeV. The Wuppertal-Budapest collaboration [13] has consistently obtained
smaller values, the latest being Tc = 147(2)(3) MeV. The HotQCD collaboration [14] has reported Tc =
154(9) MeV. The differences could perhaps be attributed to different lattice spacings.

The unambiguous picture presented by lattice QCD for T � 0, µ = 0 cannot be easily extended
to the case µ 6= 0, given that standard Monte Carlo simulations can only be applied to the case where µ
is either 0 or purely imaginary. Simulations with µ 6= 0 are hindered by the sign problem [15]. Recall
that in the computation of the QCD partition function with finite µ , integration over each fermion field
produces a fermion determinant, i.e. a factor DetM ⌘ Det( 6D+m+µg0), where M is the fermion matrix.
Let us consider in general a complex µ . Taking the determinant on both sides of the identity

g5( 6D+m+µg0)g5 = ( 6D+m�µ⇤g0)
†, (44)

we get

Det(6D+m+µg0) = [Det(6D+m�µ⇤g0)]
⇤ , (45)

which shows that the fermion determinant is not real unless µ = 0 or purely imaginary. For real µ the
direct sampling of a finite density ensemble by Monte Carlo methods is not possible, since the sampling
requires a real non-negative measure. This problem is referred to as the sign problem, although a more
appropriate name would seem to be the phase problem.

That the integrand of the partition function becomes complex would seem to be only a minor
inconvenience. A naive approach to deal with the sign problem would be to write [16]

DetM = |DetM|eiq . (46)
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Figure 8: Comparison between phenomenological freeze-out curves with the experimentally measured values
for the temperature and baryon chemical potential obtained from particle abundances using the statistical model.
Shown is also the analytical expression for the chiral phase transition curve obtained by means of LQCD tech-
niques.

To compute the thermal average of an observable O in QCD one writes

hOi =

R
DUeSY M DetM OR
DUeSY M DetM

=

R
DUeSY M |DetM|eiq OR
DUeSY M |DetM|eiq , (47)

where SY M is the Yang-Mills action. Notice that written in this manner, the simulations could be imple-
mented in terms of the phase-quenched (pq) theory where the measure involves |DetM| and the thermal
average could be written as

hOi=
hOeiq ipq
heiq ipq

. (48)

The average phase factor (also referred to as the average sign) in the phase-quenched theory can be
written as

heiq ipq = e�V ( f� fpq)/T , (49)

where f and fpq are the free-energy densities in the full and phase-quenched theories, respectively and V
is the three-dimensional volume. If f � fpq 6= 0, the average phase factor decreases exponentially when
V goes to infinity (the thermodynamic limit) and/or T goes to zero. Under these circumstances the signal
to noise ratio worsens. This is referred to as the severe sign problem.

To circumvent the sign problem, a possibility is to determine the first Taylor coefficients in the
expansion of a given observable in powers of µB/T . The coefficients of the expansion can be expressed
as expectation values of traces of matrix polynomials taken in the µB = 0 ensemble. Although care has
to be taken regarding the growth of the statistical errors with the order of the expansion, this strategy has
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provided a very important result: the curvature of the transition line at µB = 0. The curvature k is defined
as the dimensionless coefficient of the quadratic term in the Taylor expansion of the pseudocritical line

Tc(µB) = Tc

✓
1�k µ2

B
T 2

c

◆
, k ⌘ �

✓
Tc

dTc(µB)

dµ2
B

◆����
µB=0

. (50)

Values for k between 0.006 – 0.02 have been reported [17]. It should be noted that since the phases
are separated by a crossover, the curvature should depend in principle on the observable considered.
Nevertheless, these curvatures give considerable smaller values than that of the chemical freeze-out curve
obtained from statistical models [18]. This observation could be of potential importance for if the pseudo
critical line is flatter than the chemical freeze-out line, the distance between the possible QCD critical end
point (CEP) and the freeze-out curve increases. If this happens then possible experimental evidences for
criticality may be washed out by the moment when particle abundances are established after a heavy-ion
collision.

Figure 8 shows a comparison between phenomenological freeze-out curves with the experiment-
ally measured values for the temperature and baryon chemical potential obtained from particle abund-
ances using the statistical model. Shown is also the analytical expression for the chiral phase transition
curve obtained by means of LQCD techniques. Although the physics portrayed in the statistical model
is quite different from the physics of chiral symmetry restoration, the agreement of the descriptions is
remarkable, a similarity that is worth exploring and understanding.

4.4 The critical end point
In the study of the QCD phase diagram, the location of a possible Critical End Point (CEP) is of particular
relevance. This point marks the end of a first order phase transition line. There are strong arguments
based on effective models suggesting that close to the µB-axis, the transition is first order [19]. Since,
on the other hand, close to the T -axis, the transition is a smooth crossover, a CEP should be located
somewhere in the middle of the phase diagram. To locat its position, the STAR BES-I program has
recently analyzed collisions of heavy-nuclei in the energy range 200 GeV >

p
sNN > 7.7 GeV [20].

Future experiments [21–23] will keep on conducting an exploration to locate the CEP changing the
collision energy down to about

p
sNN ' 5 GeV and the system size in heavy-ion reactions.

From the theoretical side, efforts to locate the CEP make use of a variety of techniques. These
involve Schwinger-Dyson equations, finite energy sum rules, functional renormalization methods, holo-
graphy, and effective models [24–32, 36–38]. These studies have produced a wealth of results for the
CEP location that range from low to large values µB and T . Recent LQCD analyses [39] have resorted
to the imaginary baryon chemical potential technique, extrapolating afterwards to real values, to study
the chiral transition near the T -axis. The method has still large uncertainties, however this technique has
shown that the transition keeps being a smooth crossover [40]. The Taylor expansion LQCD technique
has also been employed to restrict the CEP’s location to values µB/T > 2 for the temperature range 135
MeV < T < 155 MeV. Its location for temperatures larger than 0.9 T c(µB = 0) seems to also be highly
disfavored [41] (see also [42]).

Table I summarizes the CEP location found in some recent works.
A powerful tool to experimentally locate the CEP is the study of event-by-event fluctuations in

relativistic heavy-ion collisions [44]. These are sensitive to the early thermal properties of the created
medium. In particular, the possibility to detect non Gaussian fluctuations in conserved charges is one of
the central topics in this field.

Let n(x) be the density of a given charge Q in the phase space described by the set of variables x.
These quantities are related by

Q =
Z

V
dxn(x), (51)
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Reference TCEP µCEP

C. Shi, et al. [29] 0.85 Tc 1.11 Tc
G. A. Contrera, et al. [30] 69.9 MeV 319.1 MeV

T. Yokota, et al. [33] 5.1 MeV 286.7 MeV
S. Sharma [34] 145-155 MeV >2 TCEP

J. Knaute, et al. [36] 112 MeV 204 MeV
N. G. Antoniou, et al. [37] 119-162 MeV 84-86 MeV

Z. F. Cui, et al. [31] 38 MeV 245 MeV
P. Kovács and G. Wolf [35] >133.3 MeV
R. Rougemont, et al. [38] <130 MeV >133.3 MeV

A. Ayala, et al. [43] 18-45 MeV 315-349 MeV

Table 1: Summary of some recent results for the CEP location taken from Ref. [43].

where V is the total phase space volume available. When the measurement of Q is performed over the
volume V in a thermal system, we speak of a thermal fluctuation. For instance, the variance of Q is given
by

hdQ2iV = h(Q�hQiV )2iV =
Z

V
dx1dx2hdn(x1)dn(x2)i (52)

The integrand on the right hand side of Eq. (52) is called a correlation function, whereas the right hand
side is called a (second order) fluctuation. With this example, we see that fluctuations are closely related
to correlation functions. In relativistic heavy-ion collisions, fluctuations are measured on an event-by-
event basis in which the number of some charge or particle species is counted in each event. Although
these fluctuations are not necessarily equal to the thermal fluctuations, there are good reasons to expect
that, with an appropriate treatment these two can be taken as equivalent.

For a probability distribution function P(x) of an stochastic variable x, the moments are defined
as

hxni=
Z

dxxn
P(x). (53)

We can define the moment generating function G(q) as

G(q) =
Z

dxexq
P(x), (54)

from where

hxni= dn

dq n G(q)
����
q=0

(55)

To define the cumulants, it is convenient to define the cumulant generating function

K(q) = lnG(q). (56)

The cumulants of P(x) are defined by

hxnic =
dn

dq n K(q)
����
q=0

. (57)

It is then possible to write the cumulants in terms of the moments. For instance

hxic = hxi,
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Figure 9: Net proton number cumulants measured by STAR. The figure is from Ref. [45].

hx2ic = hx2i�hxi2 = hdx2i,
hx3ic = hdx3i,
hx4ic = hdx4i�3hdx2i2. (58)

The relation with thermodynamics comes through the partiton function Z , which is the funda-
mental object. The partition function is also the moment generating function and therefore the cumulant
generating function is given by lnZ .

Cumulants are extensive quantities. Consider the number N of a conserved quantity in a volume
V in a grand canonical ensemble. It can be shown that its cumulant of order n can be written as

hNnic,V = cnV, (59)

where the quantities cn are called the generalized susceptibilities. From the thermodynamical side, the
derivatives of lnZ with respect to the chemical potentials give the susceptibilities. For instance

c i jk
BQS =

∂ i+k+ j(P/T 4)

∂ i(µB/T )∂ j(µQ/T )∂ k(µS/T )
; P =

T
V

lnZ . (60)

Also, since cumulants higher than second order vanish for a Gaussian probability distribution,
non-Gaussian fluctuations are signaled by non-vanishing higher order cumulants.

Two important higher order moments are the skewness S and the curtosis k . The former measures
the asymmetry of the distribution function whereas the latter measures its sharpness. When the stochastic
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variable x is normalized to the square root of the variance, s , such that x ! x̃ = x/s , the skewness and
the kurtosis are given as the third and fourth-order cumulants, namely

S = hx̃3ic, k = hx̃4ic. (61)

When fluctuations of conserved charges in relativistic heavy-ion collisions are well described by
hadron degrees of freedom in equilibrium, their cumulants should be consistent with models that describe
these degrees of freedom, such as the Hadron Resonance Gas (HRG) model. On the other hand, when
fluctuations deviate from those in the HRG model, they can be used as experimental signals of non-
hadron and/or non-thermal physics. Figure 9 shows that experimental ratios of some cumulants present
statistically significant deviations from the HRG model, though within large errors. Near the CEP, higher
order cumulants of conserved charges also behave anomalously. In particular, they change sign in the
vicinity of the critical point. They are also sensitive to the increase of correlation lengths [46].

5 Experimental signatures of deconfinement
The results from relativistic heavy-ion experiments carried out at the largest available energies have
produced a picture of the properties of the created matter at high temperatures, though for small baryon
chemical potentials. These properties are extracted from observables optimized to probe the evolution of
the system during the different stages of the collision. There are many reviews devoted to the detailed
description of such observables and their meaning [47]. Here I contempt myself with a brief review of
some of the main characteristics that have been reported and on how these help us providing a coherent
picture of the kind of matter produced in these reactions.

During the initial stages of the collision, dense gluon fields create a strongly interacting medium,
the initial state is described by the Color Glass Condensate. This Medium rapidly expands and thermal-
izes; a Quark Gluon Plasma (QGP) is produced which continues to expand and eventually cools down
below Tc ' 155 MeV where it hadronizes and becomes a hadron-resonance gas. At a very similar temper-
ature (known as chemical freeze-out temperature T chem), the particle composition is fixed. After chemical
freeze-out, particles continue to interact. Only their momentum distributions are affected since their
energy is below the inelastic reaction threshold. Hadrons then cease to interact at a kinetic freeze out
temperature T kin ' 95 MeV,instant when they have developed a radial flow velocity hbT i ' 0.65. A
summary of the parameters that characterize the produced medium is as follows:

• Temperature: 100 – 500 MeV.
• Volume: 1 – 5 ⇥103 fm3.
• Lifetime: 10 – 20 fm/c.
• Pressure: 100 – 300 MeV/fm3.
• ensity: 1 – 10 r0 (r0 = 0.17 fm�3 normal nuclear density).

At low pT < 2 GeV/c, hydrodynamics provides a good description of this bulk properties. Notice
that a large fraction of all particles is produced in this pT regime. The produced bulk medium behaves like
an almost perfect fluid with a value of shear viscosity to entropy ratio h/s close to its lower theoretical
value. The medium is opaque to hard probes, quenching their energy. Radial flow tends to deplete the
particle spectrum at low values (blue shift), which increases with increasing particle mass and transverse
velocity.

In peripheral collisions, an elliptic flow, characterized by the coefficient v2 of the the azimuthal
angle particle distribution’s harmonic expansion, develops. The azimuthal distribution can be expressed
as

dN
d(f �YR)

= N0 [1+2v1(pT )cos(f �YR)+2v2(pT )cos(2(f �YR)) . . .] (62)
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Figure 10: Deviations from v2 scaling with hadron’s quark content measured by the ALICE Collaboration. The
figure is taken from Ref. [48]

It is believed that v2 originates from the asymmetric pressure gradients of the initial ellipsoidal
overlap region. The strength of this coefficient increases, as expected, with the initial geometric asym-
metry from central to peripheral collisions, with maximal value for the centrality range 40âĂŞ50%. It is
interesting to notice that particle depletion becomes larger in-plane than out-of-plane, thereby reducing
v2. The net result is that at a fixed value of pT heavier particles have smaller v2 than lighter ones.

At RHIC energies, it was reported that at intermediate pT if both v2 and pT were scaled by the
number of constituent quarks nq, the various identified hadrons follow an approximate common behavior.
Scaling was interpreted as a signature that quark coalescence was a dominant hadronization mechanism
in this momentum domain and also as the onset of the quark degrees of freedom importance during the
early stages of heavy-ion collisions, when collective flow develops. However, recent ALICE data shows
that scaling, if any, is only approximate, for all centrality intervals. This is illustrated in Fig. 10.

Angular correlations also provide with an important experimental tool to explore collective phe-
nomena. It has been observed that DhDf distributions contain two important features: (1) A peak around
(Dh ,Df) = (0,0) (near side peak from jets) and (2) Long-range correlations called ridges (collective
phenomena). This is illustrated in Fig. 11. Similar structures are observed in small reference systems.
Possible explanations for these observations are either hydrodynamical behavior and/or gluon saturation
of the initial state (CGC).
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Figure 11: DhDf distributions in Pb+Pb collisions measured by the CMS and ATLAS Collaboration. The main
features of these correlations are visible: A peak around (Dh ,Df) = (0,0) coming from the near side jet and
long-range correlations called ridges, associate to collective phenomena. The figure is from Ref. [49].

Figure 12: Nuclear Modification Factor, for all identified particles measured by PHENIX in central Au+Au colli-
sions at

p
sNN=200 GeV.

Hard probes such as highly energetic jets of hadrons with heavy flavor content are also a power-
ful tool to explore the response properties of the medium. An important finding in this context is the
observation of the jet quenching phenomenon. This is quantified in terms of the nuclear modification
factor

RAA(pT ) =
dNAA(pT )/d pT

hNcolidN pp(pT )/d pT
. (63)

The prototypical behavior of RAA for several species is illustrated in Fig. 12. Notice that had-
rons species show quenching. This quenching is usually attributed to the energy loss suffered by the
propagating parton that later on hadronizes. It is important to emphasize that energy loss and elliptic
flow are interconnected, that is to say that a clear relationship between jet suppression RAA and initial
nuclear geometry v2 is observed. This relationship confirms not only the existence of the medium but
also the expectation that jet suppression is strongest in the out-of-plane direction where partons traverse
the largest amount of hot matter.
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Figure 13: Asymmetry distribution as a function of jet asymmetry for p+p and Pb‘+Pb collisions from CMS data.
Notice that for the case of Pb+Pb collisions the peak of the distribution moves to larger jet asymmetries as the
centrality of the collision increases. The figure is from Ref. [50].

A pertinent question is, where does the quenched jet energy go? The answer can be quantified in
therms of the asymmetry distribution as a function of the jet asymmetry variable

AJ =
PT,1 �PT,2

PT,1 +PT,2
. (64)

When no medium modification is present, near and away-side jets carry similar momentum and the asym-
metry distribution peaks for AJ ⇠ 0. However, when near and away-side jets carry different amounts of
energy, the asymmetry distribution does not peak for AJ ⇠ 0 anymore. This is illustrated in Fig. 13 where
data from CMS on p+p and Pb+Pb data are compared to PYTHIA (no medium present) simulations. The
data on Pb+Pb collisions clearly show that the peak of the distribution moves to larger jet asymmetries
as the centrality of the collision increases.

To quantify the amount of missing momentum inside away jet, one defines the average missing pT

hp/kT i ⌘
1
N Â

i 2 all N tracks
�pi

T cos(fi �fL). (65)

The momentum in the away-side is obtained for tracks around the sub-leading jet within a cone aperture
larger than the jet cone. Data show that the contribution to the momentum around the leading cone comes
mostly from tracks with pT > 8 GeV. This momentum is balanced by the combined contributions from
tracks with 0.5 < pT < 8 GeV outside the away-side jet cone with Df < p/6. This is shown in Fig. 14

Finally, we mention that another important tool to probe medium properties is the study of heavy
flavors. Heavy flavors are produced by initial hard-scattering processes at time scales of order t ⇠ 1/2mH
(0.07 fm for charm and 0.02 fm for bottom), which are short compared to QGP formation (t0 ⇠ 0.1�1
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Figure 14: Missing pT , that is, the sum of the momentum in tracks in the away side with aperture larger than the
jet cone. The contribution to the momentum around the leading cone comes mostly from tracks with pT > 8 GeV
and this is balanced by the combined contributions from tracks with 0.5 < pT < 8 GeV outside the away-side jet
cone. The figure is from Ref. [50].

fm). Therefore heavy flavors witness the entire medium evolution. Their annihilation rate in the QGP
is small, although interaction with the medium may redistribute their momentum. These characteristics
make heavy flavors a good probe for medium properties, that is, for the study of transport coefficients.
At the LHC, the production cross section is much larger than at RHIC, thus heavy flavors can be studied
more systematically.

Figure 15 shows the quenching pattern for open-flavor heavy-mesons. Notice that in nuclear
collisions, the suppression is as strong as for the case of light flavors. This is contrary to the case
of p+Pb collisions. A large suppression indicates a strong heavy-flavor coupling with medium. Pure
energy loss predicts effects predict a hierarchy in the suppression pattern, Rlight

AA < RD
AA < RB

AA. However,
one should be cautious since there are a number of effects that may alter such suppression pattern, for
instance the differences between primordial spectral shapes of produced partons and their fragmentation
functions; the differences between the kinds of processes of flavor production (recall that light flavors are
mainly produced by soft processes, whereas heavies are produced by hard processes), etc. The observed
agreement RAA(D)' RAA(p) is reproduced by models that include different fragmentation functions and
shapes of the primordial pT distributions, in addition to the expected energy loss hierarchy. On the other
hand, a comparison of RAA(D) and RAA(J/y) shows the expected suppression pattern.

Heavy-flavor hadrons can share the medium azimuthal anisotropy quantified by v2. Data show
large v2 of charm (same magnitude as v2 of light-hadrons) which implies that charm thermalizes in
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Figure 15: RAA for prompt D mesons as a function of pT for Pb+Pb collisions compared to p+p collisions obtained
by ALICE (left) and CMS (right) Collaborations. Notice that in nuclear collisions, the heavy-flavor RAA is com-
parable to the light flavor one and that in p+Pb collisions it is comparable to 1. The figures are from Refs. [51,52].

Figure 16: Prompt D mesons v2 for Pb+Pb collisions at
p

sNN = 2.76 TeV measured by the ALICE Collaboration.
Figures are taken from Ref. [53]

medium. This is illustrated in Fig.16.
As a final remark, we notice that the simultaneous measurements of RAA and v2 help to disentangle

the interplay of different energy loss scenarios and imposes constraints on theoretical models.

6 Conclusions
The heavy-Ion Standard Model is being developed as we speak. For this purpose there is a strong syn-
ergy between experiment and theory. Experimental measurements pose many theoretical challenges
and rise questions stimulating progress. The field represents a rich and diversity field of approaches.
Semi-classical gauge theory for initial conditions, LQCD for static thermodynamic properties, perturb-
ative QCD in vacuum and in-medium, transport theory and particularly viscous hydrodynamics for the
evolution of bulk matter and even holographic methods can be employed to describe the dynamics of
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thermalization. There is also a large variety of open problems in different fronts: Thermal photon puzzle,
extraction of transport coefficients, interplay between hard and soft modes, limit of applicability of hydro
approach and inclusion of bulk viscosity in 3D calculations, role of magnetic fields in peripheral colli-
sions, critical point of phase diagram, etc., are only some of the questions that need attention. Overall this
is an exciting field with many opportunities to continue exploring the properties of QCD matter under
extreme conditions.

References
Bibliography

[1] This section is largely based on H. Sazdjian, Introduction to chiral symmetry in QCD,
arXiv:1612.04078.

[2] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, P. C. Tandy, Phys. Rev. C 68, 015203 (2003).
[3] P. Pascual and R. Tarrach (1984), QCD: Renormalization for the practitioner. Springer Berlin

Heidelberg.
[4] Michael E. Peskin and Daniel V. Schroeder (1995), An Introduction to Quantum Field Theory,

Addison-Wesley Publishing Company, Massachusetts.
[5] Fritz John (1971). Partial Differential Equations. Springer-Verlag New York.
[6] See for example: A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167-199 (2006).
[7] S. K. Tiwari, C. P. Singh, Adv. High Energy Phys. 2013, 805413 (2013).
[8] W. Broniowski, W. Florkowski, L. Ya. Glozman, Phys. Rev. D 70, 117503 (2004).
[9] X. Shu-Sheng, S. Yuan-Mei, Y. You-Chang , C. Zhu-Fang and Z. Hong-Shi, Chin. Phys. Lett. 32,

121203 (2015).
[10] For a review of these results see L. Levkova, PoS Lattice 2011, 011 (2011).
[11] C. Bernard et al. (MILC Collaboration), Phys. Rev. D 71, 034504 (2005).
[12] M. Cheng et al., Phys. Rev. D 74, 054507 (2006).
[13] S. Borsányi et al., J. High Energy Phys. 1009.073 (2010); Y. Aoki et al., J. High Energy Phys.

0906.088 (2009); Y. Aoki et al., Phys. Lett. B 643, 46 (2006).
[14] A. Bazavov, PoS Lattice 2011, 182 (2011); A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
[15] For a recent review see P. de Forcrand, PoS Lattice 2009, 010 (2009).
[16] G. Aarts, PoS Lattice 2012, 017 (2012).
[17] Z. Fodor, C. Guse, S. D. Katz, K. K. Szabo, PoS Lattice 2007, 189 (2007); O. Kaczmarek, F.

Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, W. Unger,
Phys. Rev. D 83, 014504 (2011); G. Endrödi, Z. Fodor, S. D. Katz, K. K. Szabo, J. High Energy
Phys. 1104, 001 (2011); E. Laermann, F. Meyer, M. P. Lombardo, J. Phys. Conf. Ser. 432, 012016
(2013); P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 89, 074512 (2014); C. Bonati, M. D’Elia, M.
Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 90 , 114025 (2014); C. Bonati, M. D’Elia,
M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 92, 054503 (2015); R. Bellwied, S.
Borsanyi, Z. Fodor, J. Günther, S. D. Katz, C. Ratti, K. K. Szabo, Phys. Lett. B 751, 559-564
(2015); P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 93, 014507 (2016); P. Hegde and H.-T. Ding (for
the Bielefeld-BNL-CCNU Collaboration), PoS Lattice 2015, 141 (2016).

[18] J. Cleymans, H. Oeschler, R. Redlich, S. Weaton, J. Phys. G 32, S165 (2006).
[19] M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668 (1989); A. Barducci, R. Casalbuoni, S.

De Curtis, R. Gatto and G. Pettini, Phys. Lett. B 231, 463 (1989); Phys. Rev. D 41, 1610 (1990);
A. Barducci, R. Casalbuoni, G. Pettini and R. Gatto, Phys. Rev. D 49, 426 (1994); J. Berges and
K. Rajagopal, Nucl. Phys. B 538, 215 (1999); M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A.
Stephanov and J. J. M. Verbaarschot, Phys. Rev. D 58, 096007 (1998); O. Scavenius, A. Mocsy,

A. AYALA

148



I. N. Mishustin and D. H. Rischke, Phys. Rev. C 64, 045202 (2001); N. G. Antoniou and A. S.
Kapoyannis, Phys. Lett. B 563, 165 (2003); Y. Hatta and T. Ikeda, Phys. Rev. D 67, 014028 (2003).

[20] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 112, 032302 (2014); Phys. Rev. Lett.
113, 092301 (2014).

[21] C. Yang [for the STAR Collaboration], Nucl. Phys. A 967, 800-803 (2017).
[22] P. Senger, J. Phys. Conf. Ser. 798, 012062 (2017).
[23] V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl.

Phys. A 967, 884-887 (2017).
[24] P. Costa, M. C. Ruivo, and C. A. de Sousa, Phys. Rev. D 77, 096001 (2008).
[25] A. Ayala, A. Bashir, C. A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, Phys. Rev. D 84, 056004Z

(2011).
[26] X.-Y. Xin, S.-X. Qin, Y.-X. Liu, Phys. Rev. D 90, 076006 (2014)
[27] C. S. Fischer, J. Luecker and C. A. Welzbacher, Phys. Rev. D 90, 034022 (2014).
[28] Y. Lu, Y.-L. Du, Z.-F. Cui, H.-S. Zong, Eur. Phys. J. C 75, 495 (2015).
[29] C. Shi, Y.-L. Du, S.-S. Xu, X.-J. Liu, H.-S. Zong, Phys. Rev. D 93, 036006 (2016).
[30] G. A. Contrera, A. G. Grunfeld, D. Blaschke, Eur. Phys. J. A 52, 231 (2016).
[31] Z.-F. Cui, J.-L. Zhang, H.-S. Zong, Sci. Rep. 7, 45937 (2017).
[32] S. Datta, R. V. Gavai, S. Gupta, Phys. Rev. D 95, 054512 (2017).
[33] T. Yokota, T. Kunihiro and K. Morita, arXiv:1611.06669 [hep-ph].
[34] S. Sharma [Bielefeld-BNL-CCNU Collaboration], Nucl. Phys. A 967, 728 (2017).
[35] P. Kovács and G. Wolf, Acta Phys. Polon. Supp. 10, 1107 (2017).
[36] J. Knaute, R. Yaresko and B. Kämpfer, arXiv:1702.06731 [hep-ph].
[37] N. G. Antoniou, F. K. Diakonos, X. N. Maintas and C. E. Tsagkarakis, arXiv:1705.09124 [hep-ph].
[38] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha and C. Ratti, Phys. Rev. D 96, no. 1,

014032 (2017).
[39] P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 93, 014507 (2016); C. Bonati, M. D’Elia, M. Mariti, M.

Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 92, 054503 (2015).
[40] R. Bellwiede, S. Borsanyi, Z. Fodor, J. GÃijnther, S. D. Katz, C. Ratti, K. K. Szabo, Phys. Lett. B

751, 559-564 (2015).
[41] A. Bazavov, et al., Phys. Rev. D 95, 054504 (2017).
[42] C. Schmidt and S. Sharma, J. Phys. G 44, 104002 (2017).
[43] A. Ayala, L. Hernandez, S. Hernandez-Ortiz , Rev. Mex. Fis, 64, 302-313 (2018).
[44] M. Asakawa, M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299-342 (2016).
[45] X. Luo [STAR Collaboration], PoS CPOD 2014, 019 (2015).
[46] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[47] P. Foka and M. A. Janik, Rev. Phys. 1, 154 (2016); ibid 1, 172 (2016).
[48] F. Noferini (for the ALICE Collaboration), Eur. Phys. Jour. Web of Conf. 90, 08005 (2015).
[49] S. Chatrchyan, et al., Eur. Phys. J. C72 (2012) 2012.
[50] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C 84, 024906 (2011).
[51] J. Adam, D. Adamová et al. (ALICE Collaboration), J. High Energy Phys. 2016, 81 (2016).
[52] QM2015, Nucl. Phys. A 956, 1âĂŞ974 (2015).
[53] N. Armesto, E. Scomparin, Eur. Phys. J. Plus 131 (3), 52 (2016).

HEAVY-ION PHYSICS

149


