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"They say that understanding ought to work by the rules of right reason. These rules are, or
ought to be, contained in Logic; but the actual science of logic is conversant at present only
with things either certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Therefore the true logic of this world is the calculus of Probabilities, which
takes account of the magnitude of the probability which is, or ought to be, in a reasonable
man’s mind"

J.C. Maxwell
1 Introduction

These notes are based on a course on Probability and Statistics given to graduate and PhD students at
different places and, in particular, at the very nice 2017 CERN Latin-American School of High Energy
Physics in San Juan del Rio, Mexico. They contain a humble overview of the basic concepts and ideas
one should have in mind before getting involved in data analysis and, altough they may have to be tailored
for undergraduate students, I hope they will be a useful reading for all of them.

I feel, maybe wrongly, that there is a tendency in a subset of the Particle Physics community to
consider statistics as a collection of prescriptions written in some holy references that are used blindly
with the only arguments that either "everybody does it that way" or that "it has always been done this
way". In the talks I tried to demystify the “how to” recipes not because they are not useful but because,
on the one hand, they are applicable under some conditions that tend to be forgotten and, on the other,
because if the concepts are clear so will be the way to proceed ("at least formally") for the problems that
come across in Particle Physics. At the end, the quote from Laplace given at the beginning of the first
section is what it is all about.

There is a countable set of books on probability and statistics and a sizable subset of them are
very good out of which I would recommend the following ones (a personal choice function). Section 2
(Lecture 1) deals with probability and this is just a measure, a finite non-negative measure, so it will be
very useful to read some sections of Measure Theory (2006; Springer) by V.I. Bogachev; in particular
the chapters 1 and 2. A large fraction of the material presented in this lecture can be found in more
depth, together with other interesting subjects, in the book Probability: A Graduate Course (2013;
Springer Texts in Statistics) by A. Gut. Section 3 (Lecture 2) is about statistical inference, Bayesian
Inference in fact, and a must for this topic is the Bayesian Theory (1994; John Wiley & Sons) by
J.M. Bernardo and A.F.M. Smith that contains also an enlightening discussion about the Bayesian and
frequentist approaches in the appendix B. It is beyond question that in any worthwile course on statistics
the ubiquitous frequentist methodology has to be taught as well and there are excellent references on the
subject. Students are encouraged to look for instance at Statistical Methods in Experimental Physics
(2006; World Scientific) by F. James, Statistics for Nuclear and Particle Physicists (1989; Cambridge
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University Press) by L.Lyons or Statistical Data Analysis (1997; Oxford Science Pub.) by G. Cowan.
Last, Section 4 (Lecture 3) is devoted to Monte Carlo simulation, an essential tool in Statistics and
Particle Physics.

“Time is short, my strength is limited,...”, Kafka dixit, so many interesting subjects that deserve
a whole lecture by themselves are left aside. To mention some: an historical development of probability
and statistics, Bayesian Networks, Generalized Distributions (a different approach to probability distri-
butions), Decision Theory (Games Theory), ... and Markov Chains for which we shall state only the
relevant properties without further explanation. Additional chapters and appendices are given in [4].

“The Theory of Probabilities is basically nothing else but common sense reduced to calculus”

PS. Laplace
2 Probability

2.1 The Elements of Probability: (2, B, )

The axiomatic definition of probability was introduced by A.N. Kolmogorov in 1933 and starts with the
concepts of sample space (£2) and space of events (Bg) with structure of o-algebra. When the pair
(Q, Bg) is equipped with a measure p we have a measure space (E, B, u) and, if the measure is a
probability measure P we talk about a probability space (2, Bq, P). Let’s start with a discussion of
these elements.

2.1.1 Events and Sample Space: ()

To learn about the state of nature, we do experiments and observations of the natural world and ask
ourselves questions about the outcomes. In a general way, the object of questions we may ask about
the result of an experiment such that the possible answers are it occurs or it does not occur are called
events. There are different kinds of events and among them we have the elementary events; that is,
those results of the random experiment that can not be decomposed in others of lesser entity. The
sample space () is the set of all the possible elementary outcomes (events) of a random experiment
and they have to be:

i) exhaustive: any possible outcome of the experiment has to be included in €2;
ii) exclusive: there is no overlap of elementary results.

To study random phenomena we start by specifying the sample space and, therefore, we have to have
a clear idea of what are the possible results of the experiment. To center the ideas, consider the simple
experiment of rolling a die with 6 faces numbered from 1 to 6. We consider as elementary events

e; = {get the number 7 on the upper face} ; ¢=1,...,6

so 2 = {ey, ..., es}. Note that any possible outcome of the roll is included in §2 and we can not have two
or more elementary results simultaneously. But there are other types of events besides the elementary
ones. We may be interested for instance in the parity of the number so we would like to consider also the
possible results !

A = { get an even number} and A = { get an odd number}

'Given two sets A, BC(2, we shall denote by A° the complement of A (that is, the set of all elements of €2 that are not in
A) and by A\B = ANB°¢ the set difference or relative complement of B in A (that is, the set of elements that are in A but
not in B). Itis clear that A° = Q\ A.
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They are not elementary since the result A = {eg, e4, €5} is equivalent to get ez, e4 or eg and A° = Q\ A
to get ey, e3 or es. In general, an event is any subset > of the sample space and we shall distinguish
between:

elementary events: any element of the sample space (2;
events: any subset of the sample space;
and two extreme events:
sure events: Sg = { get any result contained in 2} = Q
impossible events: St = { get any result not contained in Q} = ()

Any event that is neither sure nor impossible is called random event. Going back to the rolling of the
die, sure events are

Sg = {getanumbern|1<n<6} = Q or
Sg = { get a number that is even or odd} = Q
impossible events are
S; = { get an odd number that is not prime} = () or
Sy = { get the number 7} = {)

and random events are any of the e; or, for instance,

Sy = { get an even number } = {eq, €4, €5}

Depending on the number of possible outcomes of the experiment, the the sample space can be:

finite: if the number of elementary events is finite;

Example: In the rolling of a die, Q = {e;; i =1,...,6} so dim(Q2) = 6.

countable: when there is a one-to-one correspondence between the elements of 2

and \V;

Example: Consider the experiment of flipping a coin and stopping when we
get H. ThenQ = {H, TH, TTH, TTTH, ...}.

non-denumerable: if it is neither of the previous;

Example: For the decay time of an unstable particle Q@ = {t € R[t>0} =
[0, 00) and for the production polar angle of a particle Q = {6 € R|0<0<r} =
[0, 7).

This is not completely true if the sample space is non-denumerable since there are subsets that can not be considered as
events. It is however true for the subsets of R"™ we shall be interested in. We shall talk about that in section 1.2.2.
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It is important to note that the events are not necessarily numerical entities. We could have for
instance the die with colored faces instead of numbers. We shall deal with that when discussing random
quantities. Last, given a sample space ) we shall talk quite frequently about a partition (or a complete
system of events); that is, a sequence {.5;} of events, finite or countable, such that

0= U S; (complete system) and S m S; = 0; i#j (disjoint events) (D
i Vi, j

2.1.2 o-algebras (Bgq) and Measurable Spaces (2, Bq)

As we have mentioned, in most cases we are interested in events other than the elementary ones. It is
therefore interesting to consider a class of events that contains all the possible results of the experiment
we are interested in such that when we ask about the union, intersection and complements of events we
obtain elements that belong the same class. A non-empty family Bo = {S;}7_; of subsets of the sample
space € that is closed (or stable) under the operations of union and complement; that is

SiUSjEB; VSi,SjEB and S;ce B; VS, eB 2)

is an algebra ( Boole algebra) if () is finite. It is easy to see that if it is closed under unions and
complements it is also closed under intersections and the following properties hold for all S;, S;€Bq:

Qe Bg (Z)EBQ SimSjEBQ
S;¢U Sjc € Bo (Szc U Sjc)c € Bq S; \ Sj € Bg

Given a sample space {2 we can construct different Boole algebras depending on the events of
interest. The smaller one is B,, = {0, 2}, the minimum algebra that contains the event A C ) has
4 elements: B = {0,9, A, A°} and the largest one, By = {0, 2, all possible subsets of Q} will
have 2 4m(©) elements. From B); we can engender any other algebra by a finite number of unions and
intersections of its elements.

2.1.2.1 o-algebras

If the sample space is countable, we have to generalize the Boole algebra such that the unions and
intersections can be done a countable number of times getting always events that belong to the same
class; that is:

GSZ'GB and ﬁSiEB 3)
i=1 i=1

with {S;}?2, € B. These algebras are called o-algebras. Not all the Boole algebras satisfy these prop-
erties but the o-algebras are always Boole algebras (closed under finite union). Consider for instance a
finite set £ and the class A of subsets of E that are either finite or have finite complements. The finite
union of subsets of .4 belongs to .4 because the finite union of finite sets is a finite set and the finite union
of sets that have finite complements has finite complement. However, the countable union of finite sets
is countable and its complement will be an infinite set so it does not belong to .A. Thus, A is a Boole
algebra but not a o-algebra. Let now E be any infinite set and B the class of subsets of E that are either
countable or have countable complements. The finite or countable union of countable sets is countable
and therefore belongs to 3. The finite or countable union of sets whose complement is countable has a
countable complement and also belongs to B. Thus, B is a Boole algebra and o-algebra.
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2.1.2.2 Borel o-algebras

Eventually, we are going to assign a probability to the events of interest that belong to the algebra and,
anticipating concepts, probability is just a bounded measure so we need a class of measurable sets
with structure of a o-algebra. Now, it turns out that when the sample space € is a non-denumerable
topological space there exist non-measurable subsets that obviously can not be considered as events
3. We are particularly interested in R (or, in general, in R™) so we have to construct a family Br of
measurable subsets of R that is

i) closed under countable number of intersections: {B;}3°, € Br — N2, B; € Br
ii) closed under complements: B € Br — B® = R\B € B

Observe that, for instance, the family of all subsets of R satisfies the conditions ) and 4i) and the
intersection of any collection of families that satisfy them is a family that also fulfills this conditions but
not all are measurable. Measurably is the key condition. Let’s start identifying what we shall considered
the basic set in R to engerder an algebra. The sample space R is a linear set of points and, among it
subsets, we have the intervals. In particular, if a<b are any two points of R we have:

e open intervals: (a,b) = {x € R|a <z < b}

e closed intervals: [a,b] = {zr € R|a <z <b}

e half-open intervals on the right: [a,b) = {x € R|a < z < b}
e half-open intervals on the left: (a,b] = {x € R|a <z < b}

When a = b the closed interval reduces to a point {x = a} ( degenerated interval) and the other three to
the null set and, when a— — oo or b—o0 we have the infinite intervals (—oo, b), (—o0, b], (a,c0) and
[a, 00). The whole space R can be considered as the interval (—oo, c0) and any interval will be a subset
of R. Now, consider the class of all intervals of R of any of the aforementioned types. It is clear that
the intersection of a finite or countable number of intervals is an interval but the union is not necessarily
an interval; for instance [a1, b1] U [ag, ba] with ag > by is not an interval. Thus, this class is not additive
and therefore not a closed family. However, it is possible to construct an additive class including, along
with the intervals, other measurable sets so that any set formed by countably many operations of unions,
intersections and complements of intervals is included in the family. Suppose, for instance, that we take
the half-open intervals on the right [a, b), b > a as the initial class of sets * to generate the algebra B so
they are in the bag to start with. The open, close and degenerate intervals are

DX

(a,b) = U[afl/n,b) i la,b=1()[a,b+1/n) and a={x e R|lx=a}=[a,a] @)
n=1

n=1

so they go also to the bag as well as the half-open intervals (a, b] = (a, b) U [b, b] and the countable union
of unitary sets and their complements. Thus, countable sets like A, Z or Q are in the bag too. Those are
the sets we shall deal with.

The smallest family Bg (or simply B) of measurable subsets of R that contains all intervals and
is closed under complements and countable number of intersections has the structure of a o-algebra, is

*In particular, there are subsets of R™=! for which the Lebesgue measure does not satisfy o-additivity... and even finite-
additivity for R™"=® (Hausdorff; 1914). Ts not difficult to show the existence of Lebesgue non-measurable sets in R. One
simple example is the Vitali set constructed by G. Vitali in 1905 although there are other interesting examples (Hausdorff,
Banach-Tarsky) and they all assume the Axiom of Choice. In fact, the work of R.M. Solovay around the 70’s shows that one
can not prove the existence of Lebesgue non-measurable sets without it. However, one can not specify the choice function so
one can prove their existence but can not make an explicit construction in the sense Set Theorists would like. In Probability
Theory, we are interested only in Lebesgue measurable sets so those which are not have nothing to do in this business and
Borel’s algebra contains only measurable sets.

*The same algebra is obtained if one starts with (a, b), (a, b] or [a, b].
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called Borel’s algebra and its elements are generically called Borel’s sets or borelians Last, recall that
half-open sets are Lebesgue measurable (A((a,b]) = b — a) and so is any set built up from a countable
number of unions, intersections and complements so all Borel sets are Lebesgue measurable and every
Lebesgue measurable set differs from a Borel set by at most a set of measure zero. Whatever has been
said about R is applicable to the n-dimensional euclidean space R".

The pair (2, Bq) is called measurable space and in the next section it will be equipped with a
measure and "upgraded" to a measure space and eventually to a probability space.

2.1.3 Set Functions and Measure Space: (2, Ba, )

A function f : A € Bg — R that assigns to each set A € Bq one, and only one real number,
finite or not, is called a set function. Given a sequence {A4;}!" ; of subset of By pair-wise disjoint,
(A;NA;=0;4,j=1,...,n; i#j) we say that the set function is additive ( finitely additive) if:

f (U Ai> = f(A) )
=1 =1

or c-additive if, for a countable the sequence {A;}?°, of pair-wise disjoint sets of 3,

f (U Ai) = > f(4) (6)
i=1 i=1

It is clear that any o-additive set function is additive but the converse is not true. A countably additive
set function is a measure on the algebra B, a signed measure in fact. If the o-additive set function
ispu:A e Bg — [0,00) (ie., u(A)>0) for all A € Bg it is a non-negative measure. In what
follows, whenever we talk about measures p, v, .. on a o-algebra we shall assume that they are always
non-negative measures without further specification. If (A) = 0 we say that A is a set of zero measure.

The “trio” (2, Bq, ), with  a non-empty set, Bq a o-algebra of the sets of 2 and ;1 a measure
over B, is called measure space and the elements of B, measurable sets.

In the particular case of the n-dimensional euclidean space {2 = R", the o-algebra is the Borel
algebra and all the Borel sets are measurable. Thus, the intervals I of any kind are measurable sets and
satisfy that

1) If I € R is measurable — I¢ =R — I is measurable;
ii) If {I}°, € R are measurable — U2, I; is measurable;

Countable sets are Borel sets of zero measure for, if 1 is the Lebesgue measure, we have that i ([a, b)) =
b — a and therefore:
1
n({a}) = tim p(la,a+1/n) = lim ~ =0 ™)
n—oo

n—o00 N

Thus, any point is a Borel set with zero Lebesgue measure and, being p a o-additive function, any
countable set has zero measure. The converse is not true since there are borelians with zero measure that
are not countable (i.e. Cantor’s ternary set).

In general, a measure p over B satisfies that, for any A, B € B not necessarily disjoint:

m.1) u(AUB) = u(A) + p(B\A)

m.2) p(AUB) = p(A)+pu(B) — (AN B) (M(AUB) < pu(A) +pu(B))
m.3) If A C B, then pu(B\A) = u(B) — u(A) (> 0 since pu(B) > u(A))
m.4) (@) =0
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Observe that, for (m.1), A U B is the union of two disjoint sets, A and B\ A, and the measure is an
additive set function. For (m.2), we have that A N B¢ and B are disjoint and its union is A U B so
w(AU B) = u(AN B€) + u(B). On the other hand A N B¢ and A N B are disjoint at its union is A so
w(AN B¢ + u(AN B) = p(A). Property (m.3) follows from (m.1) considering that, if A C B, then
AU B = B. Last, (m.4) is a consequence of (m.3) with B = A.

A measure £ over a measurable space (€2, Bq) is finite if ;(2) < oo and o -finite if Q = U2, A,
with A;€B¢q and pu(A;) < oo. Clearly, any finite measure is o-finite but the converse is not necessarily
true. For instance, the Lebesgue measure A in (R", B~ ) is not finite because A\(R™) = oo but is o-finite
because

R = |J (kK"

keN

and \([—k,k]") = (2k)™ is finite. As we shall see in lecture 2, in some circumstances we shall be
interested in the limiting behaviour of o-finite measures over a sequence of compact sets. As a second
example, consider the measurable space (R, B) and p such that for ACB is u(A) = card(A) if A is
finite and oo otherwise. Since R is an uncountable union of finite sets, 4 is not o-finite in R. However,
it is o-finite in (N, Byr).

2.1.3.1 Probability Measure

Let (2, Bn) be a measurable space. A measure P over Bq, (that is, with domain in Bg), image in the
closed interval [0,1] € R and such that P(2) = 1 (finite) is called a probability measure and its
properties a just those of finite (non-negative) measures. Expliciting the axioms, a probability measure is
a set function with domain in Bq and image in the closed interval [0, 1] € R that satisfies three axioms:

1) additive: is an additive set function;
ii) no negativity: is a measure;
iii) certainty: P(Q) =1.

These properties coincide obviously with those of the frequency and combinatorial probability
(see Note 1). All probability measures are finite (P(€2) = 1) and any bounded measure can be converted
in a probability measure by proper normalization. The measurable space (2, Bg) provided with and
probability measure P is called the probability space (2, B, P). It is straight forward to see that if
A, B € B, then:

p.1) P(A%) =1 — P(A)
p2) P(0)=0
p3) P(AUB) = P(A)+ P(B\A) = P(A) + P(B) — P(AN B) < P(A) + P(B))

The property p.3 can be extended by recurrence to an arbitrary number of events {A4;}” , € B for if
S = U?:lAj’ then S, = ApUS,_1 and P(Sn) = P(An) + P(Sn_l) — P(An N Sn—l)-

Last, note that in the probability space (R, B, P) (or in (R", B,, P)), the set of points W =
{Vx € R|P(x) > 0} is countable. Consider the partition

w o= J Wk where Wy = (Ve e R|1/(k+1) < P(z) <1/k} (8)
k=1

If z € W then it belongs to one W}, and, conversely, if x belongs to one W}, the it belongs to W. Each
set W}, has at most & points for otherwise the sum of probabilities of its elements is P(W},) > 1. Thus,
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the sets W, are finite and since W is a countable union of finite sets is a countable set. In consequence,
we can assign finite probabilities on at most a countable subset of R.

NOTE 1: What is probability?

It is very interesting to see how along the 500 years of history of probability many people (Galileo,
Fermat, Pascal, Huygens, Bernoulli, Gauss, De Moivre, Poisson, ...) have approached different problems
and developed concepts and theorems (Laws of Large Numbers, Central Limit, Expectation, Conditional
Probability,...) and a proper definition of probability has been so elusive. Certainly there is a before
and after Kolmogorov’s "General Theory of Measure and Probability Theory" and "Grundbegritfe der
Wahrscheinlichkeitsrechnung" so from the mathematical point of view the question is clear after 1930’s.

But, as Poincare said in 1912: "It is very difficult to give a satisfactory definition of Probability’".
Intuitively, What is probability?

The first “definition” of probability was the Combinatorial Probability (~1650). This is an
objective concept (i.e., independent of the individual) and is based on Bernoulli’s Principle of Symmetry
or Insufficient Reason: all the possible outcomes of the experiment equally likely. For its evaluation we
have to know the cardinal (v(-)) of all possible results of the experiment (v(£2)) and the probability for
an event ACC) is “defined” by the Laplace’s rule: P(A) = v(A)/v(Q) This concept of probability,
implicitly admitted by Pascal and Fermat and explicitly stated by Laplace, is an a priory probability in
the sense that can be evaluated before or even without doing the experiment. It is however meaningless if
(2 is a countable set (¥(€2) = oo) and one has to justify the validity of the Principle of Symmetry that not
always holds originating some interesting debates. For instance, in a problem attributed to D’ Alembert,
a player A tosses a coin twice and wins if H appears in at least one toss. According to Fermat, one can
get {(TT),(TH),(HT),(HH)} and A will loose only in the first case so being the four cases equally
likely, the probability for A to win is P = 3/4. Pascal gave the same result. However, for Roberval one
should consider only {(T'T"), (T H), (H-)} because if A has won already if H appears at the first toss so
P = 2/3. Obviously, Fermat and Pascal were right because, in this last case, the three possibilities are
not all equally likely and the Principle of Symmetry does not apply.

The second interpretation of probability is the Frequentist Probability, and is based on the idea
of frequency of occurrence of an event. If we repeat the experiment n times and a particular event A;
appears n; times, the relative frequency of occurrence is f(A;) = n;/n. As n grows, it is observed
(experimental fact) that this number stabilizes around a certain value and in consequence the probability
of occurrence of A; is defined as P(A;)=lim{™  f(A;). This is an objective concept inasmuch it is
independent of the observer and is a posteriori since it is based on what has been observed after the
experiment has been done through an experimental limit that obviously is not attainable. In this sense, it
is more a practical rule than a definition. It was also implicitly assumed by Pascal and Fermat (letters of
de Mere to Pascal: I have observed in my die games...), by Bernoulli in his Ars Conjectandi of 1705 (
Law of Large Numbers) and finally was clearly explicited at the beginning of the XX’th century (Fisher
and Von Mises).

Both interpretations of probability are restricted to observable quantities. What happen for in-
stance if they are not directly observable?, What if we can not repeat the experiment a large number of
times and/or under the same conditions? Suppose that you jump from the third floor down to ground
(imaginary experiment). Certainly, we can talk about the probability that you break your leg but, how
many times can we repeat the experiment under the same conditions?

During the XX’th century several people tried to pin down the concept of probability. Pierce and,
mainly, Popper argumented that probability represents the propensity of Nature to give a particular re-
sult in a single trial without any need to appeal at “large numbers”. This assumes that the propensity,
and therefore the probability, exists in an objective way even though the causes may be difficult to

178



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICS

understand. Others, like Knight, proposed that randomness is not a measurable property but just a prob-
lem of knowledge. If we toss a coin and know precisely its shape, mass, acting forces, environmental
conditions,... we should be able to determine with certainty if the result will be head or tail but since we
lack the necessary information we can not predict the outcome with certainty so we are lead to consider
that as a random process and use the Theory of Probability. Physics suggests that it is not only a question
of knowledge but randomness is deeply in the way Nature behaves.

The idea that probability is a quantification of the degree of belief that we have in the occurrence
of an event was used, in a more inductive manner, by Bayes and, as we shall see, Bayes’s theorem and
the idea of information play an essential role in its axiomatization. To quote again Poincare, ” ... the
probability of the causes, the most important from the point of view of scientific applications.”. It was
still an open the question whether this quantification is subjective or not. In the 20’s, Keynes argumented
that it is not because, if we know all the elements and factors of the experiment, what is likely to occur
or not is determined in an objective sense regardless what is our opinion. On the contrary, Ramsey
and de Finetti argued that the probability that is to be assigned to a particular event depends on the
degree of knowledge we have ( personal beliefs) and those do not have to be shared by everybody so it
is subjective. Furthermore they started the way towards a mathematical formulation of this concept of
probability consistent with Kolmogorov’s axiomatic theory. Thus, within the Bayesian spirit, it is logical
and natural to consider that probability is a measure of the degree of belief we have in the occurrence
of an event that characterizes the random phenomena and we shall assign probabilities to events based
on the prior knowledge we have. In fact, to some extent, all statistical procedures used for the analysis of
natural phenomena are subjective inasmuch they all are based on a mathematical idealizations of Nature
and all require a priory judgments and hypothesis that have to be assumed.

2.1.4 Random Quantities

In many circumstances, the possible outcomes of the experiments are not numeric (a die with colored
faces, a person may be sick or healthy, a particle may decay in different modes,...) and, even in the
case they are, the possible outcomes of the experiment may form a non-denumerable set. Ultimately,
we would like to deal with numeric values and benefit from the algebraic structures of the real numbers
and the theory behind measurable functions and for this, given a measurable space (£, Bg), we define a
function X (w) : weQ—R that assigns to each event w of the sample space 2 one and only one real
number.

In a more formal way, consider two measurable spaces (€2, Bq) and (€', B(,) and a function
X(w) : weQ —s X (w)eQ 9)

Obviously, since we are interested in the events that conform the o-algebra Bg, the same structure has
to be maintained in (€, Bg,) by the application X (w) for otherwise we wont be able to answer the
questions of interest. Therefore, we require the function X (w) to be Lebesgue measurable with respect
to the o-algebra Bg; i.e.:

X Y(B) = BCBq v B € B, (10)

so we can ultimately identify P(B') with P(B). Usually, we are interested in the case that ' = R
(or R™) so By, is the Borel o-algebra and, since we have generated the Borel algebra /3 from half-open
intervals on the left I, = (—oo, z] with z€R, we have that X (w) will be a Lebesgue measurable function
over the Borel algebra ( Borel measurable) if, and only if:

X YI,) = {weQ| X (w)<z} € Bg VaereR (11)

We could have generated as well the Borel algebra from open, closed or half-open intervals on the right
so any of the following relations, all equivalent, serve to define a Borel measurable function X (w):
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D) {w|X(w
3) {w|X(w
4) {w|X (w
5) {w|X (w

> c}eBq VeeR,
>c}eBq VeeR;
< c}eBq VeeR,
<c}eBq VceR

~— — — —

To summarize:

e Given a probability space (2, B, @), a random variable is a function X (w) : Q—R, Borel
measurable over the o-algebra B, that allows us to work with the induced probability space
(R,B,P)">.

Form this definition, it is clear that the name “random variable” is quite unfortunate inasmuch
it is a univoque function, neither random nor variable. Thus, at least to get rid of variable, the term
“random quantity” it is frequently used to design a numerical entity associated to the outcome of an
experiment; outcome that is uncertain before we actually do the experiment and observe the result, and
distinguish between the random quantity X (w), that we shall write in upper cases and usually as X
assuming understood the w dependence, and the value x (lower case) taken in a particular realization
of the experiment. If the function X takes values in Q2xCR it will be a one dimensional random
quantity and, if the image is Qx CR™, it will be an ordered n-tuple of real numbers (X7, Xo, ..., X,).
Furthermore, attending to the cardinality of {2x, we shall talk about discrete random quantities if it is
finite or countable and about continuous random quantities if it is uncountable. This will be explained
in more depth in section 3.1. Last, if for each w € Q is | X (w)| < k with k finite, we shall talk about a
bounded random quantity.

The properties of random quantities are those of the measurable functions. In particular, if X (w) :
Q—€ is measurable with respect to Bq and Y (z) : Q' —Q" is measurable with respect to By, the
function Y (X (w)) : Q—Q" is measurable with respect to Bq, and therefore is a random quantity. We
have then that

P(Y<y) = P(Y(X)<y) = P(XcY YIy)) (12)
where Y ~1(I) is the set {x|z€'} such that Y (z)<y.

Example 2.1: Consider the measurable space (€2, Bg) and X (w) : Q@ — R. Then:

e X(w) = k, constant in R. Denoting by A = {we| X (w) > c} we have that if c>k then A = () and if
¢ < k then A = Q. Since {0, E}€Bq we conclude that X (w) is a measurable function. In fact, it is left as
an exercise to show that for the minimal algebra By = {(), Q}, the only functions that are measurable are
X (w) = constant.

o Let GeBg and X (w) = 1¢(w) (see Note 2). We have that if I, = (—o0, a] with a€R, then a€(—o0,0) —
X~YI,) = 0, a€l0,1) - X~1(I,) = G, and a€[l,00) = X~(I,) = Q so X(w) is a measurable
function with respect to Bq. A simple function

X(w) = arla,(w) (13)
k=1

where a,€R and {A;}}_, is a partition of € is Borel measurable and any random quantity that takes a
finite number of values can be expressed in this way.

e Let Q = [0, 1]. It is obvious that if G is a non-measurable Lebesgue subset of [0, 1], the function X (w) =
1¢e(w) is not measurable over Byg 1 because a€[0,1) — X (1) = G¢Bjg 1j.

o Consider a coin tossing, the elementary events

el = {It[}7 and ey = {T} — Q= {61, 62} (14)

3 Tt is important to note that a random variable X (w) : Q—TR is measurable with respect to the o-algebra B,.
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the algebra Bo = {0,Q, {e1}, {e2}} and the function X : Q—R that denotes the number of heads
X(e1) =1 and X(ep) =0 (15)

Then, for I, = (—o0, a] with a€R we have that:

a€(—00,0) — XY1,) = 0eBq (16)
acl0,1) — XH1,) = ea€Bq (17)
a€ll,00) — XUI,) = {e1,e2} = QB (18)

so X (w) is measurable in (£2, Bg,, P) and therefore an admissible random quantity with P(X = 1) = P(ey)
and P(X = 0) = P(e3). It will not be an admissible random quantity for the trivial minimum algebra
Byin = {0, Q} since exg BI".

Example 2.2: Let Q = [0, 1] and consider the sequence of functions X,,(w) = 2™ 1q_(w) where wef?, ,, =
[1/27,1/2""!] and neN. Is each X,,(w) is measurable iff VreR, A = {weQ | X,,(w) > r} is a Borel set of Bq.
Then:

1) re(2™,00)—A = BeBg with \(A) = 0;
2) ref0,27]—A = [1/2",1/2"1|€Bq with A(A) = 2/2" — 1/2" = 1/27.
3) re(—00,0)—A = [0,1] = Q with with A(Q) = 1.

Thus, each X, (w) is a measurable function.

Problem 2.1: Consider the experiment of tossing two coins, the elementary events
e1r={H,H}, ea={HT}, es={T,H}, e,={T,T}

the sample space Q2 = {ey, eq, e3, e4} and the two algebras

Bi = {0,Q{er},{ea}, {e1.e2,e3} {ea,e3,ea}, {e1, €4}, {ea, €31}
By = {@79,{61762},{63,64}}

The functions X (w) : Q—R such that X (e1) = 2; X(e2) = X(eg) = 1; X(eq) = 0 (number of heads)
and Y(w) : Q—R such that Y(e;) = Y(e2) = 1; Y(e3) = Y(eq) = 0, with respect to which algebras are
admissible random quantities? (sol.: X wrt B1; Y wrt Bs)

Problem 2.2: Let X;(w) : R—R with ¢ = 1,..., n be random quantities. Show that
Y = max{X;, X2}, Y = min{X;,Xo}, Y =sup{Xy}i_; and Y = inf{X;};_;

are admissible random quantities.

Hint: It is enough to observe that

{w| max{Xy, Xo} <z} = {wlXi(w)<z}{w|Xz(w) <z}eB
{w| min{X, X0} <z} = {w|Xi(w)<z}U{w|Xs(w)<z}eB
{w| sup, Xn(w) <z} = N {w|X,(w) <z}eB
{w] inf,, X, (w) <z} = Up{w|X,(w)<z}eB

NOTE 2: Indicator Function. This is one of the most useful functions in maths. Given subset AC(Q)
we define the Indicator Function 1 4(x) for all elements z€S2 as:

1 if zeA
La(@) = { 0 if 2¢ A (19)
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Given two sets A, BC(), the following relations are obvious:

lanp(z) = min{la(z),1p(x)} = 1a(z)1p(x)
lavp(z) = max{la(x),1p(z)} = 1a(x)+1p(x) — 14(x)1p(x)
Lae(z) = 1 - 1a(x) (20)

It is also called "Characteristic Function" but in Probability Theory we reserve this name for the Fourier
Transform.

2.2 Conditional Probability and Bayes Theorem

Suppose and experiment that consists on rolling a die with faces numbered from one to six and the event
eo ={ get the number two on the upper face}. If the die is fair, based on the Principle of Insufficient
Reason you and your friend would consider reasonable to assign equal chances to any of the possible
outcomes and therefore a probability of P;(e2) = 1/6. Now, if I look at the die and tell you, and only
you, that the outcome of the roll is an even number, you will change your beliefs on the occurrence of
event e and assign the new value P5(e2) = 1/3. Both of you assign different probabilities because you
do not share the same knowledge so it may be a truism but it is clear that the probability we assign to
an event is subjective and is conditioned by the information we have about the random process. In one
way or another, probabilities are always conditional degrees of belief since there is always some state of
information (even before we do the experiment we know that whatever number we shall get is not less
than one and not greater than six) and we always assume some hypothesis (the die is fair so we can rely
on the Principle of Symmetry).

Consider a probability space (2, Bg, P) and two events A, B C Bq that are not disjoint so
AN B # (). The probability for both A and B to happen is P(A N B)=P(A, B). Since Q2 = BU B¢
and BNB®¢ = (} we have that:

P(A) = P(A(Q) = P(ANB) + P(ANB®) = P(A\B) (21)
probability for A P(A\B) : probability for
and B to occur A to happen and not B

What is the probability for A to happen if we know that B has occurred? The probability of A con-
ditioned to the occurrence of B is called conditional probability of A given B and is expressed
as P(A|B). This is equivalent to calculate the probability for A to happen in the probability space
(€Y, Bf,, P') with €’ the reduced sample space where B has already occurred and By, the corresponding
sub-algebra that does not contain B¢. We can set P(A|B) o P(A N B) and define (Kolmogorov) the
conditional probability for A to happen once B has occurred as:

def. P(A () B) P(A,B)

PaB) " So T = (22)

provided that P(B)#0 for otherwise the conditional probability is not defined. This normalization factor
ensures that P(B|B) = P(B N B)/P(B) = 1. Conditional probabilities satisfy the basic axioms of
probability:

i) non-negative since (A B) C B - 0 < P(A|B) <1

P@B) _ P(B)
P(B) — P(B)

ii) unit measure ( certainty) since P(Q2|B) =
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iii) o-additive: For a countable sequence of disjoint set { 4;}2°;

o

o - > P(A()B)
P (L_Jl Ai|B) -l NS = > rain e
Generalizing, for n events {4;}!" ; we have, with j = 0,...,n — 1 that
P(Ay,... Ay) = P(An,....AujlAj, .. A)P(A;, ... Ay) = 24)
= P(An|As, ..., An_1)P(A3|Az, A1) P(A2|A1) P(A1) (25)

2.2.1 Statistically Independent Events

Two events A, BEB(, are statistically independent when the occurrence of one does not give any
information about the occurrence of the other ©; that is, when

P(A,B) = P(A)P(B) (26)

A necessary and sufficient condition for A and B to be independent is that P(A|B) = P(A) (which
implies P(B|A) = P(B)). Necessary because
P(A,B) _ P(A)P(B)

P(A.B) = PAP(B)  —  PAIB) = 5ot = =5 5= = P(4) 27)

Sufficient because
P(A|B)=P(A) — P(A,B) = P(A|B)P(B) = P(A)P(B) (28)

If this is not the case, we say that they are statistically dependent or correlated. In general, we have
that:

P(A|B) > P(A) — theevents A and B are positively correlated; that is, that B has already
occurred increases the chances for A to happen;

P(A|B) < P(A) — the events A and B are negatively correlated; that is, that B has al-
ready occurred reduces the chances for A to happen;

P(A|B) = P(A) — theevents A and B are not correlated so the occurrence of B does not
modify the chances for A to happen.

Given a finite collection of events A = {4;}?_; with Ay, C Bq, they are statistically independent if

P(Ay,....An) = P(A1) - P(Ay) (29)

® In fact for the events A, BE Bg we should talk about conditional independence for it is true that if C'€ Bg, it may happen
that P(A, B) = P(A)P(B) but conditioned on C, P(A, B|C)#P(A|C)P(B|C) so A and B are related through the event C'.
On the other hand, that P(A|B)#P(A) does not imply that B has a "direct” effect on A. Whether this is the case or not has to
be determined by reasoning on the process and/or additional evidences. Bernard Shaw said that we all should buy an umbrella
because there is statistical evidence that doing so you have a higher life expectancy. And this is certainly true. However, it
is more reasonable to suppose that instead of the umbrellas having any mysterious influence on our health, in London, at the
beginning of the XX™ century, if you can afford to buy an umbrella you have most likely a well-off status, healthy living
conditions, access to medical care,...
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for any finite subsequence {Ak}};”: 5 1 < j < m < n of events. Thus, for instance, for a sequence of 3
events { A1, Aa, Az} the condition of independence requires that:

P(Ay, Ay) = P(A1)P(Az) 3 P(A1,As) = P(A1)P(A3) ; P(Az,A3) = P(A2)P(A3)
and P(Al, AQ, Ag) = P(Al)P(AQ)P(Ag) (30)

so the events { A, Ay, A3} may be statistically dependent and be pairwise independent.

Example 2.3: In four cards (Cy, Cs, C3 and Cy) we write the numbers 1 (C1), 2 (C2), 3 (C3) and 123 (C4) and
make a fair random extraction. Let be the events

A; = {the chosen card has the number i}
with ¢ = 1,2, 3. Since the extraction is fair we have that:
P(A;) = P(C;) + P(Cy) = 1/2 31

Now, I look at the card and tell you that it has number j. Since you know that A; has happened, you know that the
extracted card was either C; or C4 and the only possibility to have A;#A; is that the extracted card was Cy so the
conditional probabilities are

P(A;|A;) =1/25 4,5 =1,2,3; i#j (32)
The, since
P(AilA;) = P(Ai) 3 1,5 = 1,2,3; i#j (33)
any two events (A;, A;) are (pairwise) independent. However:
P(Ay, A, As) = P(A1|As, A3) P(A|As) P(As) (34)

and if I tell you that events A, and A3 have occurred then you are certain that chosen card is C and therefore A;
has happened too so P(A;|As, A3) = 1. But

11

1
P(Aq, Ay, As) = 15 3 # P(A;1)P(A2)P(A3) = 3 (35)

so the events {41, A, A3} are not independent even though they are pairwise independent.

Example 2.4: Bonferroni’s Inequality. Given a finite collection A = {Ay, ..., A,} C B of events, Bonferroni’s
inequality states that:

P(AlmﬂAn) = P(A1>--~7An)ZP(A1) + ...+ P(An) - (nfl) (36)

and gives a lover bound for the joint probability P(A1, ..., A,). Forn = 1itis trivially true since P(A41) > P(A1).
For n = 2 we have that

P(Ar|JA2) = P(A1) + P(A2) — P(A1[|A2) €1 —  P(A1[)A2)=P(A1) + P(42) =1 (37)

Proceed then by induction. Assume the statement is true for n—1 and see if itis so forn. If B,,_1 = A1N...NA,_1
and apply the result we got for n = 2 we have that

P(A1 () ()An) = P(Bu-1()An) = P(B,1) + P(A,) — 1 (38)

but
P(B,_1) = P(Bn2( |An-1) > P(By_2) + P(A,_1) — 1 (39)

50
P(A;1().--()An) = P(Ba—2) + P(An_1) + P(Ay) — 2 (40)

and therefore the inequality is demonstrated.
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2.2.2 Theorem of Total Probability

Consider a probability space (€2, Bq, P) and a partition S = {S;}}"_; of the sample space. Then, for any
event A € By we have that A = AN Q = A((U;, S:) and therefore:

n n
Py =P (AN U s)) =P (U [ANs]) = Pean)s) =D Pals)-P(si) @)
i=1 i=1
Consider now a second different partition of the sample space { By }}" ;. Then, for each set Bj, we have

n

P(By) = > P(BplS)P(Si); k=1,....,m (42)
=1
and
Y P(By) = > P(S) | Y PBS)| = > P(S:) =1 (43)
k=1 =1 k=1 =1

Last, a similar expression can be written for conditional probabilities. Since

P(A,B,S) = P(AB,S)P(B,S) = P(A|B,S)P(S|B)P(B) (44)
and
P(A,B) = zn:P(A,B,Si) 45)
=
we have that
P(A|B) = P](;?g) - P(lB> jZlP(A,B,Si) - iP(A|B,S,»)P(Si|B) (46)

Example 2.5: We have two indistinguishable urns: U; with three white and two black balls and U, with two white
balls and three black ones. What is the probability that in a random extraction we get a white ball?

Consider the events:
Ay = { choose urn U } ; As = { choose urn Us} and B = { get a white ball}  (47)

It is clear that A; N A2 = @ and that A; U A = Q. Now:

3 2 1
so we have that
31 21 1
P(B) = P(B|A;)-P(A;) = == —-= = = 4
(B) = > P(BIA)P(A) = 25 + 25 = 5 (49)

i=1

as expected since out of 10 balls, 5 are white.
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2.2.3 Bayes Theorem

Given a probability space (2, Bg, P) we have seen that the joint probability for for two events A, BE Bq
can be expressed in terms of conditional probabilities as:

P(A,B) = P(A|B)P(B) = P(B|A)P(4) (50)
The Bayes Theorem (Bayes ~1770’s and independently Laplace ~1770’s) states that if P(B)#0, then

PAp) = SPIALA) (B]L‘g; )

apparently a trivial statement but with profound consequences. Let’s see other expressions of the theo-
rem. If H = {H;}}" , is a partition of the sample space then

S1Y)

P(A, H;) = P(A|H;)P(H;) = P(H;|A)P(A) (52)
and from the Total Probability Theorem
= Y P(A|Hy)P(Hy) (53)
k=1
so we have a different expression for Bayes’ Theorem:
P(A|H;)P(H,) P(A|H;)P(H;)
P(H;|A) = = =5 54
W= TGy T S PGP

Let’s summarize the meaning of these terms '

P(H;) : is the probability of occurrence of the event H; before we know if event
A has happened or not; that is, the degree of confidence we have in the
occurrence of the event H; before we do the experiment so it is called

prior probability;
P(A|H;) : is the probability for event A to happen given that event H; has oc-
curred. This may be different depending on ¢ = 1,2,...,n and when

considered as function of H; is usually called likelihood;

P(H;|A) . is the degree of confidence we have in the occurrence of event H; given
that the event A has happened. The knowledge that the event A has
occurred provides information about the random process and modifies
the beliefs we had in H; before the experiment was done (expressed by
P(H;)) soitis called posterior probability;

P(A) : is simply the normalizing factor.

Clearly, if the events A and H; are independent, the occurrence of A does not provide any information
on the chances for H; to happen. Whether it has occurred or not does not modify our beliefs about H;
and therefore P(H;|A) = P(H;).

In first place, it is interesting to note that the occurrence of A restricts the sample space for H and
modifies the prior chances P(H;) for H; in the same proportion as the occurrence of H; modifies the
probability for A because

P(H;|A)  P(A|H;)

P(A|H;)P(H;) = P(H;|A)P(A) P(H;) —  P(A)

(55)

7 Although is usually the case, the terms prior and posterior do not necessarily imply a temporal ordering.
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Second, from Bayes Theorem we can obtain relative posterior probabilities (in the case, for instance,
that P(A) is unknown) because
P(Hi|A)  P(A|H;) P(H:)

P(H,|A) ~ P(A[H;) P(H,) (56)

Last, conditioning all the probabilities to Hy (maybe some conditions that are assumed) we get a third

expression of Bayes Theorem

P(A[H;, Ho) P(Hi|Ho) _  P(A[Hi, Ho)P(H;|Ho)
P(A[Ho) > k=1 P(AlHy, Ho) P(Hy|Ho)

P(H;|A, Ho) = (57)
where H( represents to some initial state of information or some conditions that are assumed. The pos-
terior degree of credibility we have on H; is certainly meaningful when we have an initial degree of
information and therefore is relative to our prior beliefs. And those are subjective inasmuch different
people may assign a different prior degree of credibility based on their previous knowledge and experi-
ences. Think for instance in soccer pools. Different people will assign different prior probabilities to one
or other team depending on what they know before the match and this information may not be shared by
all of them. However, to the extent that they share common prior knowledge they will arrive to the same
conclusions.

Bayes’ rule provides a natural way to include new information and update our beliefs in a sequen-
tial way. After the event (data) D; has been observed, we have

P(D1|H;)

P(Hl) — P(HZ|D1) = P(Dl)

P(H;) < P(D1|H;)P(H;) (58)

s

Now, if we get additional information provided by the observation of Dy (new data) we
beliefs on H; as:

‘update” or

P(Dy|H;, D1)P(D:|H;)P(H;)
P (D3, D)

P(Ds|H;, Dy)

P(HZ’|D1)—>P(HZ‘|D2,D1) = P(D2|D1)

P(H;|D:) =

(59)

and so on with further evidences.

Example 2.6: An important interpretation of Bayes Theorem is that based on the relation cause-effect. Suppose
that the event A ( effect) has been produced by a certain cause H;. We consider all possible causes (so H is a
complete set) and among them we have interest in those that seem more plausible to explain the observation of the
event A. Under this scope, we interpret the terms appearing in Bayes’s formula as:

P(A|H;, Hp) : is the probability that the effect A is produced by the cause (or hypothesis) H;;

P(H;,Hy) : is the prior degree of credibility we assign to the cause H; before we know that A
has occurred;

P(H;|A, Hp) : is the posterior probability we have for H; being the cause of the event (effect) A
that has already been observed.

Let’s see an example of a clinical diagnosis just because the problem is general enough and conclusions may
be more disturbing. If you want, replace individuals by events and for instance ( sick,healthy) by ( sig-
nal,background). Now, the incidence of certain rare disease is of 1 every 10,000 people and there is an efficient
diagnostic test such that:

1) If a person is sick, the tests gives positive in 99% of the cases;
2) If a person is healthy, the tests may fail and give positive (false positive) in 0.5% of the cases;
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In this case, the effect is to give positive (T') in the test and the exclusive and exhaustive hypothesis for the cause
are:

H, : besick and Hy :  be healthy (60)

with Hy = H1°. A person, say you, is chosen randomly (H) among the population to go under the test and give
positive. Then you are scared when they tell you: "The probability of giving positive being healthy is 0.5%, very
small" (p-value). There is nothing wrong with the statement but it has to be correctly interpreted and usually it is
not. It means no more and no less than what the expression P(T'|Hs) says: “under the assumption that you are
healthy (H) the chances of giving positive are 0.5%” and this is nothing else but a feature of the test. It doesn’t
say anything about P(H;|T), the chances you have to be sick giving positive in the test that, in the end, is what
you are really interested in. The two probabilities are related by an additional piece of information that appears
in Bayes’s formula: P(Hq|Hy); that is, under the hypothesis that you have been chosen at random (H,), What
are the prior chances to be sick?. From the prior knowledge we have, the degree of credibility we assign to both
hypothesis is

1 9999
P(H |Hp) = —— P(H3|Hy) =1 — P(Hy) = —— 1
(HhlHo) = 15555 and (HzlHo) (1) = To000 1)
On the other hand, if T" denotes the event give positive in the test we know that:

99 5
P(T\Hy) = — d P(T|\Hy) = —— 62
(T1H) = 155 an (T1H2) = T500 62)

Therefore, Bayes’s Theorem tells that the probability to be sick positive in the test is

P(T|H,)-P(H,|H, X o

P(Hl‘T) _ ( | 1) ( 1| 0) _ 100 10000 ~ 0.02 (63)

S22 | P(T|H;)-P(H;|Hy) 10670000 T 000 10000

Thus, even if the test looks very efficient and you gave positive, the fact that you were chosen at random and that
the incidence of the disease in the population is very small, reduces dramatically the degree of belief you assign
to be sick. Clearly, if you were not chosen randomly but because there is a suspicion from to other symptoms that
you are sic, prior probabilities change.

2.3 Distribution Function

A one-dimensional Distribution Function is a real function F' : R—R that:

p.1) is monotonous non-decreasing: F(r1) < F(x3) Va1 < x9€R
p.2) is everywhere continuous on the right: lim,_,q+ F(z + €) = F(z) Vz€R
p-3) F(—o0) =lim,;,_o F(x) = 0and F(o0) = limy_, 400 F(x) = 1.

and there is [?] a unique Borel measure ;1 on R that satisfies u((—oo,z]) = F(x) for all zeR. In
the Theory of Probability, we define the Probability Distribution Function ® of the random quantity
X(w) : Q=R as:

Fz)d P(X<2) = P(Xe(—00,2]) ; VoeR (64)

Note that the Distribution Function F'(z) is defined for all z€R so if supp{P(X)} = [a,b], then
F(z) =0Vz < aand F(z) = 1 Yx>b. From the definition, it is easy to show the following important
properties:

8The condition P(X < x) is due to the requirement that F'(x) be continuous on the right. This is not essential in the
sense that any non-decreasing function G(x), defined on R, bounded between 0 and 1 and continuous on the left (G(z) =
lim,_, o+ G(z — €)) determines a distribution function defined as F'(x) for all  where G(x) is continuous and as F'(z + ¢)
where G(x) is discontinuous. In fact, in the general theory of measure it is more common to consider continuity on the left.
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a) Vx € R we have that:

al) P(X<z) < F)

a2) P(X<z) = F(z —¢€);

a3) P(X>z) = 1—-P(X<z) =1-F(x);

ad) P(X>z) = 1-P(X<z) =1—-F(z—e¢);
b) Va1 < xo € R we have that:

b.1) P(z1<X<z3) = P(X € (z1,23]) = F(x2) — F(x1) ;

b.2) P(:ElﬁXSl‘g) = P(X c [1‘1,%2]) = F(xg) — F(l‘l — 6)

(thus, if 1 = zo then P(X = x1) = F(21) — F(z1 —¢€));
b.3) P($1<X<£L'2) = P(X S (:L’l,l'g)) = F((EQ — 6) — F(l’l) =
= F(z9) — F(x1) — P(X = x2)

b4) P(x1<X<z9) = P(X € [z1,22)) = F(xzg —€) — F(z1 —¢) =

F(xg) — F(x1) = P(X =x2)+ P(X =x1) .

The Distribution Function is discontinuous at all € R where F(x — €)#F(z + ¢€). Let D be
the set of all points of discontinuity. If z € D, then F(x — €)<F(z + €) since it is monotonous non-
decreasing. Thus, we can associate to each z € D a rational number r(z) € Q such that F(z —¢) <
r(x) < F(z + €) and all will be different because if 1 < x9 € D then F'(z1 + €)<F(x9 — €). Then,
since Q is a countable set, we have that the set of points of discontinuity of F'(z) is either finite or
countable. At each of them the distribution function has a “jump” of amplitude (property b.2):

F(z) — Flx—¢) = P(X =x) (65)

and will be continuous on the right (condition p.2).

Last, for each Distribution Function there is a unique probability measure P defined over the
Borel sets of R that assigns the probability F'(x2) — F(z1) to each half-open interval (z1, 2] and, con-
versely, to any probability measure defined on a measurable space (R, B) corresponds one Distribution
Function. Thus, the Distribution Function of a random quantity contains all the information needed to
describe the properties of the random process.

2.3.1 Discrete and Continuous Distribution Functions

Consider the probability space (€2, F,Q), the random quantity X (w) : weQl— X (w) € R and the
induced probability space (R, B, P). The function X (w) is a discrete random quantity if its range
(image) D = {x1,..., ...}, withz; € R,i=1,2,...is afinite or countable set; that is, if { Ax; k =
1,2,...} is a finite or countable partition of €2, the function X (w) is either:

simple: X(w) = Zxk 14, (w) or elementary: X(w) = ka 14, (w) (66)
k=1 k=1

Then, P(X = z3) = Q(A) and the corresponding Distribution Function, defined for all z€R, will be

F(z) = P(X<z) = Y  P(X =az)la(zr) = Y P(X =) (67)

VaeD Vo <z

with A = (—o0, ] N D and satisfies:

i) F(—o0) =0and F(4o00) = 1;
ii) is a monotonous non decreasing step-function;
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iii) continuous on the right (F'(x 4+ €¢) = F'(x)) and therefore constant but on the finite or countable
set of points of discontinuity D = {zy, ...} where

F(zy) — F(ag —€) = P(X = xy) (68)

Familiar examples of discrete Distribution Functions are Poisson, Binomial, Multinomial,...

The random quantity X (w) : —R is continuous if its range is a non-denumerable set; that is,
if for all x € R we have that P(X = z) = 0. In this case, the Distribution Function F'(z) = P(X <z)
is continuous for all x € R because

i) from condition (p.2): F(x + €) = F(x);
ii) from property (b.2): F(z —¢) = F(x) — P(X = z) = F(x)

Now, consider the measure space (€2, B, ) with p countably additive. If f : Q—[0,00) is
integrable with respect to 4, it is clear that v(A4) = [ 4 Jdu for A€Bgq is also a non-negative countably
additive set function. More generally, we have:

e Radon-Nikodym Theorem (Radon(1913), Nikodym(1930)) : If v and p are two o-additive measures
on the measurable space (2, B ) such that v is absolutely continuous with respect to p (v << p; that
is, for every set A€Bg for which u(A) = 0 it is v(A) = 0), then there exists a py-integrable function
p(x) such that

= v\w) = dl/<w) w) = w w
o) = [ avtw) = [ T dutw) = [ plwduw) (69)

and, conversely, if such a function exists then v << pu (see appendix 1.3 for the main properties).

The function p(w) = dv(w)/du(w) is called Radon density and is unique up to at most a set of measure
zero; that is, if

wmzﬁmwwwzﬁﬂwww (70)

then then p{z|p(x) # f(x)} = 0. Furthermore, if v and p are equivalent (v~pu; p << v and v << 1)
then dv/du > 0 almost everywhere. In consequence, if we have a probability space (R, B, P) with
P equivalent to the Lebesgue measure, there exists a non-negative Lebesgue integrable function (see
Appendix 2) p : R — [0, c0), unique a.e., such that

P(A) = P(XeA) = / p(z)dx VAeB (71)
A
The function p(z) is called probability density function and satisfies:
i) p(x) >0Ver € R;

ii) at any bounded interval of R, p(z) is bounded and is Riemann-integrable;
iii) [T p(z)dz = 1.

Thus, for an absolutely continuous random quantity X, the Distribution Function F'(x) can be ex-
pressed as

F(z) = P(X<x) = /I p(w) dw (72)

—00
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Usually we shall be interested in random quantities that take values in a subset D C R. It will then be
understood that p(x) is p(x)1p(x) so it is defined for all z € R. Thus, for instance, if supp{p(x)} =
[a, b] then

400 400 b
/ p(z)dx = / p(x) Lgp)(x) do = / p(z)dr =1 (73)
and therefore
F(z) = P(X<2) = 1(4,00) (%) 1p o0y (z) + 1[a,b)(ﬂf)/ p(u) du (74)

Note that from the previous considerations, the value of the integral will not be affected if we
modify the integrand on a countable set of points. In fact, what we actually integrate is an equivalence
class of functions that differ only in a set of measure zero. Therefore, a probability density function p(z)
has to be continuous for all z€R but, at most, on a countable set of points. If F'(x) is not differentiable
at a particular point, p(z) is not defined on it but the set of those points is of zero measure. However, if
p(z) is continuous in R then F’(z) = p(x) and the value of p(z) is univocally determined by F'(x). We
also have that

P(X<z)=F(z) = /w pw)dw — PX>z)=1—-F(z)= /+oop(w)dw (75)

—0o0

and therefore:
T2
Par < X<o2) = Flaa) = F(a) = [ plu)du (76)
X1

Thus, since F'(x) is continuous at all z€R:
P(x1 < X<z3) = P(z1 < X <22) = P(11<X < 19) = P(x1<X<x9) a7

and therefore P(X = z) = 0Vz € R (A([z]) = 0) even though X = =z is a possible outcome of
the experiment so, in this sense, unlike discrete random quantities “probability” 0 does not correspond
necessarily to impossible events. Well known examples absolutely continuous Distribution Functions are
the Normal, Gamma, Beta, Student, Dirichlet, Pareto, ...

Last, if the continuous probability measure P is not absolutely continuous with respect to the
Lebesgue measure A in R, then the probability density function does not exist. Those are called singular
random quantities for which F'(z) is continuous but F'(z) = 0 almost everywhere. A well known
example is the Dirac’s singular measure d,,(A) = 14(x0) that assigns a measure 1 to aset AcBif zoc A
and 0 otherwise. As we shall see in the examples 1.9 and 1.20, dealing with these cases is no problem
because the Distribution Function always exists. The Lebesgue’s General Decomposition Theorem
establishes that any Distribution Function can be expressed as a convex combination:

Nac

Nd N
F(z) =Y a; Fa(x) + Y bj Faclz) + Y e Fy(x) (78)
i=1 j=1 k=1

of a discrete Distribution Functions (F(x)), absolutely continuous ones (F,.(x) with derivative at every
point so F'(z) = p(x)) and singular ones (Fs(x)). For the cases we shall deal with, ¢, = 0.

Example 2.7: Consider a real parameter 1 > 0 and a discrete random quantity X that can take values {0, 1,2,...}
with a Poisson probability law:

k

_ 1%
P(X = =et—" =0,1,2,... 7
(X =k =" pagy s k=012, (79)
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The Distribution Function will be
m=|[x] k

Flalp) = P(X<zlp) = ¢ " g F(,j‘ﬁ

80
) (80)

where m = [z] is the largest integer less or equal to x. Clearly, for e — 07:
F(z+elp) = F(lz+dlp) = F([z]lp) = Fz|p) (81)

so it is continuous on the right and for £ = 0,1,2, ...

k
Flklp) — Flk—1lp) = P(X = klu) = e_”ﬁ (82)

Therefore, for reals x5 > x1 > 0 such that zo — x1 < 1, P(z1 < X<w3) = F(z2) — F(x1) = 0.

Example 2.8: Consider the function g(z) = e~ with a > 0 real and support in (0, co). It is non-negative and
Riemann integrable in R so we can define a probability density

—axr

€ —axr
1(0700)(1’) = ae 1(0’00)(‘%) (83)

—Qx
o € dr

p(zla) = =
and the Distribution Function

F(x) = P(X<z) = /

—00

xT

0 z <0
sayia = { w250

Clearly, F'(—o0) = 0 and F(+oc0) = 1. Thus, for an absolutely continuous random quantity X ~p(z|a) we have
that for reals o > x1 > 0:

(84)

P(X<z) = F(x1) =1—-e (85)
P(X>zy) = 1—-F(z) =e* (86)
P(x; < X<x9) = F(xg) — F(xy) = e %% — 7972 (87)

Example 2.9: The ternary Cantor Set C's(0, 1) is constructed iteratively. Starting with the interval C'sg = [0, 1],
at each step one removes the open middle third of each of the remaining segments. That is; at step one the interval
(1/3,2/3) is removed so C's; = [0,1/3]U[2/3, 1] and so on. If we denote by D,, the union of the 2"~ disjoint
open intervals removed at step n, each of length 1/3", the Cantor set is defined as C's(0,1) = [0, 1]\ US>, D,,. It
is easy to check that any element X of the Cantor Set can be expressed as

N X'IL
X = Z:l 371

with supp{X,} = {0,2} ° and that Cs(0,1) is a closed set, uncountable, nowhere dense in [0, 1] and with zero
measure. The Cantor Distribution, whose support is the Cantor Set, is defined assigning a probability P(X,, =
0) = P(X,, = 2) = 1/2. Thus, X is a continuous random quantity with support on a non-denumerable set
of measure zero and can not be described by a probability density function. The Distribution Function F'(x) =

(88)

P(X <z) (Cantor Function; Figure ??) is an example of singular Distribution.

2.3.2 Distributions in more dimensions

The previous considerations can be extended to random quantities in more dimensions but with some
care. Let’s consider the the two-dimensional case: X = (X7, X3). The Distribution Function will be
defined as:

F(z1,20) = P(X1<z1, Xo<w3) ; Y(zr1,22) € R (89)

and satisfies:

“Note that the representation of a real number r€[0, 1] as (a1, az, ...) : >ooe, @n3™" with a; = {0, 1,2} is not unique. In
factz = 1/3€C's(0, 1) and can be represented by (1,0,0,0,..) or (0,2,2,2,...).
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02 |_ 02//
0.1 J 0.1
0 v b b b b b b b b b b b L L1

1
U..{]
e b b b b b b b b e

0 01 02 03 04 05 06 07 08 09 1

Fig. 1: Empiric Distribution Functions (ordinate) form a Monte Carlo sampling (10° events) of the Poisson
Po(z|5) (discrete; upper left), Exponential Fz(x|1) (absolute continuous; upper right) and Cantor (singular; bot-
tom) Distributions.

i) monotonous no-decreasing in both variables; that is, if (z1, z2), (¥}, 25) € R?:
n<r] — F(x1,22)<F(2],72) and x9<zh — F(x1,20)<F(11,7%) (90)
i) continuous on the right at (z1, 75) € R%:
F(x1+ €,x9) = F(x1,29+€) = F(x1,x2) (2]
iii) F'(—o0,x2) = F(x1,—00) =0 and F'(+00,400) = 1.
Now, if (21, z2), (2], 75) € R? with x1 < 2 and x5 < x, we have that:
P(ry < X1<a!, 29 < Xo<abh) = F(2),2%) — F(z1,25) — F(2),22) + F(x1,72) >0 (92)
and

P(x1<X1 <], 29<Xo<ah) = F(2},25) — F(x1 — e,25) — F(2, 10 — €) + F(21 — €, 29 — €) > 0(93)
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so, for discrete random quantities, if 21 = 2} and xo = z):
P(X) =x1,X9 =x9) = F(x1,22) — F(z1 — €1,22) — F(x1,22 —€) + F(x1 — €,20 — €) >0 (94)

will give the amplitude of the jump of the Distribution Function at the points of discontinuity.
As for the one-dimensional case, for absolutely continuous random quantities we can introduce a
two-dimensional probability density function p(x) : R? — R:
i) p(x)>0; Vxe R2;
ii) Atevery bounded interval of R?, p(x) is bounded and Riemann integrable;
i) [ p(x)dx =1
such that:
82
- 8%1 8x2

X1 o
F(-’Bl,m)—/ dul/ dug p(ui,uz) < p(z1,12) F(z1,29) 95)
—00 —00

2.3.2.1 Marginal and Conditional Distributions

It may happen that we are interested only in one of the two random quantities say, for instance, X;. Then
we ignore all aspects concerning X9 and obtain the one-dimensional Distribution Function

Fi(x1) = P(X1<z1) = P(X1<z1,X9< +00) = F(21,+00) (96)

that is called the Marginal Distribution Function of the random quantity X;. In the same manner, we
have F5(z2) = F(+00, x2) for the random quantity Xo. For absolutely continuous random quantities,

x1] “+o00 1
Fi(z1) = F(x1,+00) = / duy / p(u1, uz) dug = / p(ur) duy 97
— 00 — 00 —0o0
with p(z1) the marginal probability density function '° of the random quantity X:
0 too
p1(w1) = . Fi(x) = / p(x1, uz) dug (93)
X1 —00
In the same manner, we have for X
0 oo
pa(z2) = I Fy(x2) = / p(u1, x2) duy 99)
o —00

As we have seen, given a probability space (€2, Bq, P), for any two sets A, B€ B, the conditional
probability for A given B was defined as
def. P(A N B) P(A, B)

P(A|B) & B = PO (100)

provided P(B) # 0. Intimately related to this definition is the Bayes’ rule:

P(A,B) = P(A|B) P(B) = P(B|A) P(A) (101)

Consider now the discrete random quantity X = (X1, X3) with values on QCR2. It is then natural
to define
def. P(X1 =x1,Xo = x2)

P(X1=x|Xo =22) = P(Xs = 13) (102)

191t is habitual to avoid the indices and write p(z) meaning “the probability density function of the variable =" since the
distinctive features are clear within the context.
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and therefore

P(X1<z1, X2 = x9)
P(XQ = xQ)

F(x1|r2) =

whenever P(Xo = x2)70. For absolutely continuous random quantities we can express the probability
density as

p(x1,22) = p(x1|re) p(x2) = plzalz1) p(21) (103)
and define the conditional probability density function as

def. p(a1,22) = 9 plarle) (104)

p(x2) O0xq

provided again that pa(w2) # 0. This is certainly is an admissible density ' since p(z1]|z2)>0
V(x1,22)€R? and [, p(w1|w2)day = 1.
As stated already, two events A, B € Bq are statistically independent ift:

p(z1]22)

P(A,B) = P(ANB) = P(A) P(B) (105)

Then, we shall say that two discrete random quantities X; and X, are statistically independent if
F(z1,22) = Fi(z1)Fa(x2); that is, if

P<X1 :xl,Xg :332> :P(Xl Z.Z‘l)P(XQ:a?Q) (106)
for discrete random quantities and

82

= 3o g, F@)Fw2) = plz)plze) = plaifaz) = plas) (107)
1 0T

p(l‘l,l‘g)

and for absolutely continuous random quantities.

Example 2.10: Consider the probability space (€2, Bo, A) with Q@ = [0, 1] and A the Lebesgue measure. If F' is
an arbitrary Distribution Function, X : w€[0, 1]— F~1(w)€R is a random quantity and is distributed as F'(w).
Take the Borel set / = (—oo, r] with r€R. Since F is a Distribution Function is monotonous and non-decreasing
we have that:

X HI) = {weQ | X(w)<r} = {we[0,1]| F~H(w)<r} = {weQ|w<F(r)} ==[0,F(r)]JeBq  (108)

and therefore X (w) = F~!(w) is measurable over B and is distributed as

F(z)
P(X(w)<e} = P(P(w)<a} = Pw<F@) = [ ar = P (109)

Example 2.11: Consider the probability space (R, B, i) with u the probability measure

u(A) = / dF (110)
AeB
"Recall that for continuous random quantities P(Xs = 22) = P(X; = x1) = 0). One can justify this expression with
kind of heuristic arguments; essentially considering X1 €A1 = (—o0, 1], Xo€A(z2) = [z2,72 + €] and taking the limit
e — 0T of

P(X1<z1, Xo€A(x2))  F(xi,22 +€) — F(x1,22)
P(XQEAE(IQ)) N Fg(irz-i—&) —FQ(]}Q)

P(X1§$1|X2€AE(I2)) =

See however [?]; Vol 2; Chap. 10. for the Radon-Nikodym density with conditional measures.
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The function X : weR— F(w)€(0, 1] is measurable on B. Take I = [a, b)€B|g 1]. Then
XY = {weR|a<F(w) < b} = {weR|F Y a)<w < F71(b)} = [wa, wp)EBR (111)
It is distributed as X ~Un(z[0,1):

F~l(x)
P(X(w)<z} = P(F(w)<z} = P(w<F\(z)} — / iF =z (112)
—00
This is the basis of the Inverse Transform sampling method that we shall see in Lecture 3 on Monte Carlo tech-
niques.

Example 2.12: Suppose that the number of eggs a particular insect may lay (X;) follows a Poisson distribution
X1 ~ Po(z1|p):

1

I

P(X; = e
( 1 xl‘/”’) € F(.’L'1+1) )

21 =0,1,2,... (113)

Now, if the probability for an egg to hatch is € and X, represent the number of off springs, given z; eggs the
probability to have x5 descendants follows a Binomial law Xo~ Bi(xs|z1, 6):

P(Xs = x3|71,0) = < 2 > 92 (1 — )™ 22 ;. 0<zy<ax (114)
In consequence
P(X) = 21,X0 = xa|p,0) = P(Xs = 22|X1 =21,0) P(X1 = 21|p) =
- ( 2 ) %2 (1 — g)=1—=2 eiur(;itn : 0<azo<mz (115

Suppose that we have not observed the number of eggs that were laid. What is the distribution of the number
of off springs? This is given by the marginal probability

o0
0)*2
P(Xo = 22|0, 1) = P(X) = 00 Xy = 19) = 0O 0 116
(X2 = 220, 1) I;z (X1 =21, X5 = 23) T(os 1 1) (w2|pf) (116)
Now, suppose that we have found x> new insects. What is the distribution of the number of eggs laid? This will be
the conditional probability P(X; = z1|X2 = 2,6, u) and, since P(X; = z1, X2 = x2) = P(X1 = 11| X2 =
x2)P(X3 = x2) we have that:

P(X, = 21| Xy = 22,1,0) =

P(X1 = X2 :.1‘2) 1 —xy _
’ = 1—0)" ™ e #(=0  (117
P(Xz = .2‘2) ($1 — .7,2)' ('u( )) ( )

with 0 < x5 < z1; that is, again a Poisson with parameter ;(1 — 6).

Example 2.13: Let X; and X5 two independent Poisson distributed random quantities with parameters j; and
pa. How is Y = X7 4 X5 distributed? Since they are independent:

xq T2
P(X) = a1, Xy = molpiy, pig) = e~ () _H1 H 118
(X1 =1, X = @211, 12) Tl £ 1) T(wa + 1) (118)

Then, since Xo =Y — X;:

(natps) M1 ﬂéyix)
PXi=z,Y=y)=PXi=x,Xo=y—a) = W17H2 119
(X1 y) = P(Xy 2=y —7) T+ Ty —25 1) (119)

Being Xo = y — >0 we have the condition y>x so the marginal probability for Y will be

Y x (y—z) 1

Y - E : - + p2)¥
P(Y = o) = e (mituz) H1 Ha — o~ (matu2) (1 + p2)? 120
( v) T+ Ly—z+1) T(y+1) (120)
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that is, Po(y|p1 + p2).

Example 2.14: Consider a two-dimensional random quantity X = (X7, X5) that takes values in R? with the

probability density function N (z1, 22| = 0,0 = 1, p):

1 x? — 2px129 + x2
W( 1 3)

1 1 -
p(r1,22lp) = - —F—= ¢
2 (/1 — p?

with p € (=1, 1). The marginal densities are:

+oo 1 1,
XlNP(Il) = p(xl,uQ) duy = Ee 1
Xople) = [ plunmdun = bl
~p(T = Uy, T U = ——e
2~p (T2 - plu1, T2 1 \/ﬂ

and since

) B ) 1 *ﬁ (z3p — 2x122 + 23p)
p(x1,22|p) = p(x1) p(ez2) N e

1—p?

both quantities will be independent iff p = 0. The conditional densities are

plrap) = PEem) L1 Ty )
1[{L42, p(l'2) \/ﬂm

PR {0 B S B ey
i)V T

and when p = 0 (thus independent) p(x1|z2) = p(x1) and p(z2|z1) = p(z2). Last, it is clear that

p(z1,22|p) = p(2|z1,p) p(21) = P(T1|72, P) P(72)

2.4 Stochastic Characteristics
2.4.1 Mathematical Expectation
Consider a random quantity X (w) : 2 — R that can be either discrete

X(w) = Z w1y, (w)
k=1

X (w) = Ly P(X = a3) = P(Ay) = /R 1, (w) dP(w)

[ee]
X(w) = Z zrla, (w)
k=1
or absolutely continuous for which

P(X(w)eA) = /

R

1a(w)dP(w) = [ aP() = [ pwyde

A

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

The mathematical expectation of a n-dimensional random quantity Y = g(X) is defined as '*:

def.

BIY] = ElgX)] [ gxdPe0 = [ gx)pix)dx

(129)

12 In what follows we consider the Stieltjes-Lebesgue integral so J — > for discrete random quantities and in consequence:

[ ware) = [ g@p@ds — Yo P =)

Yy
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In general, the function g(z) will be unbounded on supp{ X} so both the sum and the integral have to
be absolutely convergent for the mathematical expectation to exist.

In a similar way, we define the conditional expectation. If X = (X1,..., X ..., Xp), W =
(X1...,Xn)and Z = (X471 ..., X;) we have for Y = g(W) that
pb\w, z
Bz = [ atwiptwlandw = [ gt P (130)

2.4.2 Moments of a Distribution

Given a random quantity X ~p(z), we define the moment or order n () as:

def. o
an,=FE[X"] = / " p(z) dx (131)
—00

Obviously, they exist if "p(x)€L1(R) so it may happen that a particular probability distribution has
only a finite number of moments. It is also clear that if the moment of order n exists, so do the moments
of lower order and, if it does not, neither those of higher order. In particular, the moment of order 0
always exists (that, due to the normalization condition, is ag = 1) and those of even order, if exist, are
non-negative. A specially important moment is that order 1: the mean ( mean value) = E[X] that has
two important properties:

e Itisa linear operator since X =cy+ > ;" ;. X; — E[X] =c¢o + >, ¢ EX]]
o If X =T[" , ¢;X; with {X;}” ;| independent random quantities, then E[X]| = [[", ¢; E[X;].

We can define as well the moments (3,,) with respect to any point c€R as:

o0

Ba = E[(X — o)) & / (& — ¢)" plx) dx (132)

—0Q

SO ay, are also called central moments or moments with respect to the origin. It is easy to see that the
non-central moment of second order, 32 = E[(X — ¢)?], is minimal for ¢ = u = E[X]. Thus, of special
relevance are the moments or order n with respect to the mean

=B =) = [ (o= ) o) do (133)
—00
and, among them, the moment of order 2: the variance po = V[X } = g2, It is clear that po = 1 and, if
exists, 41 = 0. Note that:
e VIX]=0?=E[(X —p)? >0
e Itis not a linear operator since X = ¢y + ;X1 — V[X] = 0% = G V[X1] = cfo¥,
o If X =>""  ¢X,;and {X;}! , are independent random quantities, V[X] = Y.° , ¢? V[X;].

7

Usually, is less tedious to calculate the moments with respect to the origin and evidently they are
related so, from the binomial expansion

Gt =3 (1) et = = () et as

k=0 k=0

The previous definitions are trivially extended to n-dimensional random quantities. In particular,
for 2 dimensions, X = (X1, X5), we have the moments of order (n, m) with respect to the origin:

anm = BIXT X3 = /R? xt xy p(x1, x2) dry dxy (135)
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so that ag; = 1 and a2 = 2, and the moments order (n, m) with respect to the mean:

finm = E[(X1 — p1)" (X2 — p2)™] = /722 (1 — )" (22 — p2)™ p(21, 22) dvr dze  (136)
for which
poo = E[(X1—m)’] = V[X1] = of  and  pee = E[(Xa — p2)’] = V[Xa] = 05 (137)
The moment
pin = E[(X1 — ) (X2 —p)] = an — acwpanr = VX1, Xo] = V[Xo, X (138)

is called covariance between the random quantities X; and X and, if they are independent, p1; = 0.
The second order moments with respect to the mean can be condensed in matrix form, the covariance
matrix defined as:

20 M1l VX1, X1] VX1, X2 )
VIX] = = 139
X ( R ) ( VX1, Xa] VX2, Xo] (13
Similarly, for X = (X3, X, ..., X,,) we have the moments with respect to the origin
Oy g, = BIXT X% X0 5 (140)

the moments with respect to the mean

Pky g, = B[(X1 — p)™ (X = p12)™2- (X — pin)*™"] (141)
and the covariance matrix:
H120..0 M11.0 - H10..1 VX1, X1] VX, Xe] - VX1, X,
VIX] = Hn'...o ,LL02'...0 Mo%...1 _ V[Xl‘,Xg] V[X?7X2] e VX, Xy 142)
B10.1  f01.1 ct f00..2 VX1, Xpn] VI[X2, Xpn] -+ V[Xy, X5

The covariance matrix V[X] = E[(X — u)(X — )”] has the following properties that are easy
to prove from basic matrix algebra relations:

1) Itis a symmetric matrix (V = VT) with positive diagonal elements (V ;;>0);

2) Itis positive defined (xT'Vx>0; VxeR™ with the equality when Vi x; = 0);

3) Being V symmetric, all the eigenvalues are real and the corresponding eigenvectors orthogonal.
Furthermore, since it is positive defined all eigenvalues are positive;

4) If J is a diagonal matrix whose elements are the eigenvalues of V and H a matrix whose columns
are the corresponding eigenvectors, then V.= HJH~! (Jordan dixit);

5) Since V is symmetric, there is an orthogonal matrix C (CT = C~1) such that CVCT = D with
D a diagonal matrix whose elements are the eigenvalues of V;

6) Since V is symmetric and positive defined, there is a non-singular matrix C such that V.= CC”;

7) Since V is symmetric and positive defined, the inverse V! is also symmetric and positive defined;

8) (Cholesky Factorization) Since V is symmetric and positive defined, there exists a unique lower
triangular matrix C (C;; = 0; Vi < j) with positive diagonal elements such that V = cc”
(more about this in section 3).

Among other things to be discussed later, the moments of the distribution are interesting because
they give an idea of the shape and location of the probability distribution and, in many cases, the distri-
bution parameters are expressed in terms of the moments.
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2.4.2.1 Position parameters

Let X ~p(x) with support in QCR. The position parameters choose a characteristic value of X and
indicate more or less where the distribution is located. Among them we have the mean value

[ee]
p=a = E[X] = / xp(x)dx (143)
—0Q

The mean is bounded by the minimum and maximum values the random quantity can take but, clearly,
if QCR it may happen that u¢<. If, for instance, 2 = ;U5 is the union of two disconnected regions,
(4 may lay in between and therefore ¢€2. On the other hand, as has been mentioned the integral has
to be absolute convergent and there are some probability distributions for which there is no mean value.
There are however other interesting location quantities. The mode is the value xy of X for which the
distribution is maximum; that is,

To = Ssup,cqp(x) (144)

Nevertheless, it may happen that there are several relative maximums so we talk about uni-modal, bi-
modal,... distributions. The median is the value x,,, such that

F(zy,) = P(X<zp,) = 1/2 — /_xmp(:r)dx = /oop(az)d:v = P(X >uxp) = 1/2 (145)

For discrete random quantities, the distribution function is either a finite or countable combination of
,O0

indicator functions 14, () with {A;}°] a partition of 2 so it may happen that F(z) = 1/2 Vz€Ay.
Then, any value of the interval A can be considered the median. Last, we may consider the quantiles
« defined as the value ¢, of the random quantity such that F'(q,) = P(X <g¢,) = « so the median is

the quantile gy 5.

2.4.2.2 Dispersion parameters

There are many ways to give an idea of how dispersed are the values the random quantity may take.
Usually they are based on the mathematical expectation of a function that depends on the difference
between X and some characteristic value it may take; for instance F[|X — p|]. By far, the most usual
and important one is the already defined variance

VIX] = o = EI(X ~ BX)?) = [ (o= nPpla)do (146)

R
provided it exists. Note that if the random quantity X has dimension D[X] = dy, the variance has
dimension D[JZ] = dg( so to have a quantity that gives an idea of the dispersion and has the same

dimension one defines the standard deviation 0 = +./V[X] = +V/0? and, if both the mean value (1)
and the variance exist, the standardized random quantity

X —p
g

Y = (147)

for which E[Y] = 0and V[Y] = 02 = 1.

2.4.2.3 Asymmetry and Peakiness parameters

Related to higher order non-central moments, there are two dimensionless quantities of interest: the
skewness and the kurtosis. The first non-trivial odd moment with respect to the mean is that of order 3:
ps. Since it has dimension D[u3] = d3 we define the skewness (1) as the dimensionless quantity
def [3 3 E[(X —p)?
VI;%:%:M (148)
I o o
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The skewness is 73 = 0 for distributions that are symmetric with respect to the mean, v; > 0 if the
probability content is more concentrated on the right of the mean and v; < 0 if it is to the left of the
mean. Note however that there are many asymmetric distributions for which p3 = 0 and therefore
71 = 0. For unimodal distributions, it is easy to see that

v =0 mode = median = mean
71 >0 mode < median < mean
11 <0 mode > median > mean

The kurtosis is defined, again for dimensional considerations, as

s E[X )Y

= — 149

72 /.L% 0_4 0_4 ( )

and gives an idea of how peaked is the distribution. For the Normal distribution 3 = 3 so in order to
have a reference one defines the extended kurtosis as 7§*" = 5 — 3. Thus, 75** > 0 (< 0) indicates

that the distribution is more (less) peaked than the Normal. Again, v5** = 0 for the Normal density and
for any other distribution for which 4 = 3 0. Last you can check that Va, beR E[(X — p — a)?(X —
p — b)?] > 0 so, for instance, defining u = a + b, w = ab and taking derivatives, y2>1 + 2.

Example 2.15: Consider the discrete random quantity X ~Pn(k|\) with
/\k

P(X =k)=Pn(k|]\) = e ———~ NeRT; k=0,1,2,... 150
(X=B=Pn(k) = gy 1 ARTIE=012 (150)

The moments with respect to the origin are
an(N=E[X"] = e )k o (151)

k=0 ’
If ay, denotes the k" term of the sum, then
A \" . a
Okl = 7 (1 + k> ar  — limy e |t 0

so being the series absolute convergent all order moments exist. Taking the derivative of o, (A) with respect to A
one gets the recurrence relation

ap(A) = 1 (152)

a1 = A (@) + “A)

so we can easily get
a=1; a1 =2X; ax=MX\+1); a3 =AXN+3A+1); ay = AN +6A2+7A+1) (153)
and from them
po=1; 1 =0; p2=X; p3=2XA; s =A3A+1) (154)
Thus, for the Poisson distribution Po(n|\) we have that:

EX]=X ; VIX]=Xx ; p=ATE vy =34+ A" (155)

Example 2.16: Consider X ~Ga(z|a, b) with:

p(g/) = —— ¢ * :I,'bill(O’oo) (.7,))\ ; a, bRt (156)
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The moments with respect to the origin are

ab [ I'(b+n)
an = E[X"] = / em @ pbtnTlgy = 2 L (157)
I'(b) Jo I'(b)
being the integral absolute convergent. Thus we have:
1 ~ n _k
- R T(b + k 158
p anr(b)g(k)<> (b+) (158)
and in consequence
b b 2 6
EX]=- ; ViX]=—= = e 159
[ } a ’ [ ] a2 ) at \/B ’ Y2 b ( )
Example 2.17: For the Cauchy distribution X ~Ca(x|1,1),
1 1
) == — —1 1
p(.T) 1+ .%'2 (700,00)(1') ( 60)
we have that
1 [~ "
n = BE[X"] = — d 161
o= B = [ o (161)

and clearly the integral diverges for n > 1 so there are no moments but the trivial one c. Even for n = 1, the
integral

/_ %dm N 2/0 afiﬂ)dw = limg o0 In (1 +0a%) (162)

is not absolute convergent so, in strict sense, there is no mean value. However, the mode and the median are
xo = T, = 0, the distribution is symmetric about = 0 and for n = 1 there exists the Cauchy’s Principal Value
and is equal to 0. Had we introduced the Probability Distributions as a subset of Generalized Distributions, the
Principal Value is an admissible distribution. It is left as an exercise to show that for:

e Pareto: X~Pa(z|v, z,) with p(z|zym, v) oc 2=V, ) (2) 5 2, vERY
e Student: X ~St(x|v) with p(z|v) o< (1+ $2/1/)_(V+1)/2 1 wo0y() 5 vERT

the moments o, = E[X"] existiff n < v.

Another distribution of interest in physics is the Landau Distribution that describes the energy lost by a particle
when traversing a material under certain conditions. The probability density, given as the inverse Laplace Trans-
form, is:
1 c+ioo
p(z) = — eslogstas g (163)
2mi Jc—ioo

with ¢ € R and closing the contour on the left along a counterclockwise semicircle with a branch-cut along the
negative real axis it has a real representation

p(z) = f/ e~ (rlogr+ar) gin (1) dr (164)
T Jo

The actual expression of the distribution of the energy loss is quite involved and some simplifying assumptions have
been made; among other things, that the energy transfer in the collisions is unbounded (no kinematic constraint).
But nothing is for free and the price to pay is that the Landau Distribution has no moments other than the trivial
of order zero. This is why instead of mean and variance one talks about the most probable energy loss and the
full-width-half-maximum.
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2.4.2.4 Correlation Coefficient

The covariance between the random quantities X; and X; was defined as:
VIXi, Xj] = VIX;, Xi] = E[(Xi — i) (Xi — pj)] = E[X:X] — E[X]E[X;] (165)

If X; and X; are independent, then E[X;X;] = E[X;|E[X,] and V[X;, X;] = 0. Conversely, if
VI[X;, X;] # 0 then E[X;X;]#FE[X;|E[X;] and in consequence X; and X; are not statistically inde-
pendent. Thus, the covariance V[X;, X;] serves to quantify, to some extent, the degree of statistical
dependence between the random quantities X; and X;. Again, for dimensional considerations one de-
fines the correlation coefficient

VIXi, X;] E[Xi Xj| — E[Xi|E[X)]

i = — 166
Pi = VKV 710, (160

Since p(z;, ;) is a non-negative function we can write

V[Xi, X =/

RQ

{(wi — i) p(xiyl‘j)} {(xj — 1) p(lvmiﬂj)} dz;dz; (167)
and from the Cauchy-Schwarz inequality:
—1<p;; <1 (168)

The extreme values (41, —1) will be taken when E[X;X;| = E[X;]E[X;]+0;0; and p;; = 0 when
E[X;X;] = E[X;|E[X;]. In particular, it is immediate to see that if here is a linear relation between
both random quantities; that is, X; = aX; + b, then p;; = £1. Therefore, it is a linear correlation
coefficient. Note however that:

e If X; and X are linearly related, p;; = &1, but p;; = £1 does not imply necessarily a linear
relation;

e If X; and X are statistically independent, then p;; = 0 but p;; = 0 does not imply necessarily
statistical independence as the following example shows.

Example 2.18: Let X; ~ p(x;) and define a random quantity X5 as
X, = g(X1) = a + bX; + cX;? (169)
Obviously, X and X, are not statistically independent for there is a clear parabolic relation. However
V[X1,Xo] = E[X1X,] — E[X1] E[X3] = bo? + c(as — pu® — po?) (170)

with p, 02 and o3 respectively the mean, variance and moment of order 3 with respect to the origin of X and, if
we take b = co2(u® + po? — az) then V[Y, X] = 0 and so is the (linear) correlation coefficient.

NOTE 3: Information as a measure of independence. The Mutual Information (see [?]) serves also to quantify
the degree of statistical dependence between random quantities. Consider for instance the two-dimensional random
quantity X = (X7, Xo)~p(x1,x2). Then:

I(X1: Xs) = /

dzy dzap(z1,z2) In (M) (171
X

p(21) p(22)

and I(X; : X2)>0 with equality iff p(z1,22) = p(z1)p(z2). Let’s look as an example to the bi-variate normal
distribution: N (x|u, X):

p(xl6) = (27) " | det[S]| " exp {fé (x— )" =" (x— m)} (172)
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with covariance matrix

2
s = (p;:@ p‘zl%”?) and det[S] = 0202(1 — p)? (173)

Since X;~N (x;|pi, 0i); @ = 1,2 we have that:

—% In(1 — p?) (174)

I(X1: Xs) = /x day dza p(x|p, ) ln( p(xlp, %) ) —

p(x1|p1, 01) p(w2|p2, 02)
Thus, if X; and X5 are independent (p = 0), I(X; : X3) = 0 and when p—=+1, I(X; : X2)—00

2.4.3 The "Error Propagation Expression''

Consider a n-dimensional random quantity X = (X7, ..., X,,) with EF[X;] = p; and the random quantity
Y = ¢g(X) with g(z) an infinitely differentiable function. If we make a Taylor expansion of g(X) around
E[X] = u we have

Y =g(X +Z<

where Z; = X; — p;. Now, E[Z;] = 0and E[Z, Z;] = V[X;, X;] = Vij so

) + 5 Z Z <axza);> ZiZ;+ R (175)

=1 j=1

BIY) = BlgX)) = o) + +3 53 (5240 w4 176)
Ti=1 j=1 L
and therefore
(09 L, e (PP(x) P
Y —E[Y] = Z ( o, ) Zit+ 5 ZZ <8xi8x]—> (Z:iZj — Vij) + ... (177)
i=1 I3 =1 j=1 1
Neglecting all but the first term
VY] = E[(Y - E[Y))?] = ZZ( gi@) ( gi?) VX, X,] + ... (178)
i=1 j=1 vt "

This is the first order approximation to V' [Y'] and usually is reasonable but has to be used with care. On
the one hand, we have assumed that higher order terms are negligible and this is not always the case so
further terms in the expansion may have to be considered. Take for instance the simple case Y X 1 X 2
with X; and X5 independent random quantities. The first order expansion gives V[ |~p202 + uio?
and including second order terms (there are no more) V[Y| = p303 + p2o? + o303; the correct result.
On the other hand, all this is obviously meaningless if the random quantity Y has no variance. This is
for instance the case for Y = X 1X when X 5 are Normal distributed.

2.5 Integral Transforms

The Integral Transforms of Fourier, Laplace and Mellin are a very useful tool to study the properties
of the random quantities and their distribution functions. In particular, they will allow us to obtain the
distribution of the sum, product and ratio of random quantities, the moments of the distributions and to
study the convergence of a sequence { Fj;(x)} -, of distribution functions to F'(z).
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2.5.1 The Fourier Transform

Let f : R—C be a complex and integrable function (f€L1(R)). The Fourier Transform F(t) with teR
of f(x) is defined as:

F(t) = / h f(z) et dx (179)

The class of functions for which the Fourier Transform exists is certainly much wider than the probabil-
ity density functions p(z)€L1(R) (normalized real functions of real argument) we are interested in for
which the transform always exists. If X ~p(x), the Fourier Transform is nothing else but the mathemat-
ical expectation

Ft) = E["X]; teRr (180)

and it is called Characteristic Function ®(t). Thus, depending on the character of the random quantity
X, we shall have:

o if X is discrete: ®(t) = > ek P(X = xy)
Tk

+oo . +oo .
e if X is continuous: ®(t) = / T 4P (z) = / e p(z) da

—00 —0o0

Attending to its definition, the Characteristic Function ®(¢), with ¢t € R, is a complex function
and has the following properties:

1) &
2) ®
3) @
4) @

—~

0) =1;

t) is bounded: |®(t)| <1,

t) has schwarzian symmetry: ®(—t) = ®(t);
)

—~ o~

t) is uniformly continuous in R.

The first three properties are obvious. For the fourth one, observe that for any € > 0 there exists a
0 > O such that |®(t;) — ®(t2)| < € when |t; — ta] < ¢ with ¢ and ¢2 arbitrary in R because

“+o00 +o0o

11— e~ 90%|gp(z) = 2/ |sin 0z /2| dP(z) (181)

—00

<I><t+6>—<1><t>|§/

—0o0

and this integral can be made arbitrarily small taking a sufficiently small §. These properties, that clearly
hold also for a discrete random quantity, are necessary but not sufficient for a function ®(¢) to be
the Characteristic Function of a distribution P(x) (see example 2.19). Generalizing for a n-dimensional
random quantity X = (X,..., X,,):

B(tr, ... 1) = Bl tX] = Ele(tX1+ 4 Xn)) (182)

so, for the discrete case:

B(tr,...oty) = > ... > dhT ) Py — X, = 1) (183)
x1 Tn
and for the continuous case:
+oo +o0o .
D(ty,...,ty) = / dry ... / dxnez(tlxl+"'+t”x”)p(x1,...,xn) (184)
—00 —00

The n-dimensional Characteristic Function is such that:
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1) ®(0,...,0) = 1
2) [ P(t1,...,tn)] <1
3) (I)(_t177_tn> = 6(tl??tn)

NOTE 4: Laplace Transform. For a function f(x) : R*—C defined as f(z) = 0 for < 0, we may consider
also the Laplace Transform defined as

L(s) = /000 e % f(x) dx (185)

with s€C provided it exists. For a non-negative random quantity X ~p(z) this is just the mathematical expectation
E[e~*"] and is named Moment Generating Function since the derivatives give the moments of the distribution (see
5.1.4). While the Fourier Transform exists for f(z)€Lq(R), the Laplace Transform exists if e 5% f(z)€L1(R™)
and thus, for a wider class of functions and although it is formally defined for functions with non-negative support,
it may be possible to extend the limits of integration to the whole real line ( Bilateral Laplace Transform). However,
for the functions we shall be interested in (probability density functions), both Fourier and Laplace Transforms
exist and usually there is no major advantage in using one or the other.

Example 2.19: There are several criteria (Bochner, Kintchine, Cramer,...) specifying sufficient and necessary
conditions for a function ®(t), that satisfies the four aforementioned conditions, to be the Characteristic Function
of a random quantity X ~F(z). However, it is easy to find simple functions like

—4 1

gi(t) =e and 92(t) = T4 (186)

that satisfy the four stated conditions and that can not be Characteristic Functions associated to any distribution.
Let’s calculate the moments of order one with respect to the origin and the central one of order two. In both cases
(see section 5.1.4) we have that:

a1 =p=EX]=0 and pe = o0® = E[(X —p)? =0 (187)

that is, the mean value and the variance are zero so the distribution function is zero almost everywhere but for
X = 0 where P(X = 0) = 1... but this is the Singular Distribution Sn(z|0) that takes the value 1 if X = 0 and
0 otherwise whose Characteristic Function is ®(¢) = 1. In general, any function ®(¢) that in a boundary of ¢ = 0
behaves as ®(t) = 1+ O(t?7<) with € > 0 can not be the Characteristic Function associated to a distribution F'(z)
unless &(¢) = 1 for all teR.

Example 2.20: The elements of the Cantor Set C's(0, 1) can be represented in base 3 as:
o0
X
X =3 T (188)
n=1

with X,,€{0,2}. This set is non-denumerable and has zero Lebesgue measure so any distribution with support
on it is singular and, in consequence, has no pdf. The Uniform Distribution on Cs(0, 1) is defined assigning a
probability P(X,, = 0) = P(X,, = 2) = 1/2 (Geometric Distribution). Then, for the random quantity X,, we
have that

Dy (1) = B[N = (1 + e%t) (189)

1
2
and forY,, = X,,/3™:

By, (t) = Dy, (t/3") = % (1 + it/ 3”) (190)
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Being all X, statistically independent, we have that

17 ! 2it/3"\ _ 1T L it/3" _ it)2 T

Ox(t) = H 3 (1 + €2t/ ) = H 3¢ / cos(t/3") = e / H cos(t/3™) (191)
n=1 n=1 n=1

and, from the derivatives (section 2.5.1.4) it is straight forward to calculate the moments of the distribution. In

particular:

i 1
(I)Q(O) = % — E[X] = — and @?(0) = _g N E[XQ] _ g

192)
so V[X]=1/8.

2.5.1.1 Inversion Theorem (Lévy, 1925)

The Inverse Fourier Transform allows us to obtain the distribution function of a random quantity from
the Characteristic Function. If X is a continuous random quantity and ®(t) its Characteristic Function,
then the pdf p(z) will be given by

L [T ita
p(x) = 27T/—oo e O(t) dt (193)
provided that p(z) is continuous at x and, if X is discrete:
1 +o0 .
P(X =) = 27r/_oo e Tk B(t) dt (194)

In particular, if the discrete distribution is reticular (that is, all the possible values that the random
quantity X may take can be expressed as a + bn with a,b € R; b0 and n integer) we have that:

/b .
P(X =) = 2(;/ /be—mk (t) dt (195)

From this expressions, we can obtain also the relation between the Characteristic Function and the Dis-
tribution Function. For discrete random quantities we shall have:

F(ap) = Y P(X =a3) = ;ﬁ/joo S e (1) at (196)

<z} <z}

and, in the continuous case, for 1 < x2 € R we have that:

z2 1 +00 1 it it
F(x2) — F(x1) = / p(z)der = — O(t) = (e ML — T HE2) gt (197)
o1 21 J_ oo t
so taking 1 = 0 we have that (Lévy, 1925):
1 +oo 1 it
F(z) = F(0) + 5 (1) 7 (1 — e ") dt (198)
T J_oo

The Inversion Theorem states that there is a one-to-one correspondence between a distribution
function and its Characteristic Function so to each Characteristic Function corresponds one and only
one distribution function that can be either discrete or continuous but not a combination of both. There-
fore, two distribution functions with the same Characteristic Function may differ, at most, on their points
of discontinuity that, as we have seen, are a set of zero measure. In consequence, if we have two random
quantities X and Xy with distribution functions P; (x) and P2(x), a necessary and sufficient condition
for Pi(x) = Po(x) a.e. is that @1 (t) = Po(t) forall t € R.
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2.5.1.2 Changes of variable

Let X ~P(x) be a random quantity with Characteristic Function ® x (¢) and g(X) a one-to-one finite real
function defined for all real values of X . The Characteristic Function of the random quantity Y = g(X)
will be given by:

By (t) = Ey[etY] = Ex[et9(X)] (199)

that is:

—0o0

Dy (1) = / T itg(@) gp(a) or  By(t) = > M) p(X = zy) (200)

depending on whether X is continuous or discrete. In the particular case of a linear transformation
Y = aX + b with a and b real constants, we have that:

By (t) = Ex[ X +0)) = oy (at) (201)

2.5.1.3  Sum of random quantities

The Characteristic Function is particularly useful to obtain the Distribution Function of a random quantity
defined as the sum of independent random quantities. If X7, ..., X,, are n independent random quantities
with Characteristic Functions ®1 (¢1), . . . , ®,,(t,,), then the Characteristic Function of X = X +.. . +X,,
will be:

by (t) = E[X] = B+ + X)) = 9(1) - @,(0) (202)

that is, the product of the Characteristic Functions of each one, a necessary but not sufficient condition
for the random quantities X1, ..., X, to be independent. In a similar way, we have thatif X = X; — X5
with X; and X5 independent random quantities, then

Bx(t) = E[X1 = X)) = @,(1) @y(—t) = &1(1) Ta(t) (203)
Form these considerations, it is left as an exercise to show that:

e Poisson: The sum of n independent random quantities, each distributed as Po(x|uy) with k =
1,...,n is Poisson distributed with parameter ps = p1 + -+ - + fin.-

e Normal: The sum of n independent random quantities, each distributed as N (z|ug, o) with

k =1,...,nis Normal distributed with mean 1, = jt1 +- - - + 1, and variance o2 = O'% 4ol

S
e Cauchy: The sum of n independent random quantities, each Cauchy distributed Ca(zy|og, Ok)
with £k = 1,...,n is is Cauchy distributed with parameters oy = a1 + --- + «a, and Bs =
B1+ -+ Bn.
e Gamma: The sum of n independent random quantities, each distributed as Ga(zy|a, B;) with
k=1,...,nis Gamma distributed with parameters (c, 51 + - - - + (n).

Example 2.21: Difference of Poisson distributed random quantities.
Consider two independent random quantities X;~Po(X|u1) and Xo~Po(X3|u2) and let us find the distribution
of X = X7 — X5. Since for the Poisson distribution:

it
Xi~Po(us) — ®;(t) = e Hi(l =€) (204)
we have that
it )

Ox(t) = By () Bat) = e (b1 T 12) e’ + pae™ (205)
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Obviously, X is a discrete random quantity with integer support Qx = {...,—2,—1,0,1,2,...}; thatis, a retic-
ular random quantity with ¢ = 0 and b = 1. Then
1 " _itn ( et + e_it)
P(X=n)= —e Ms e e\ 2 dt (206)
2m .
being j15 = p11 + po. If we take:
2= [HLeit 207)
M2
we have
M1 n/2 1 w 1
P(X =n) = (> emhs () orlen (2 1/2) g, (208)
2 2mi Jo

with w = 2,/u1 12 and C the circle |z| = /1 /12 around the origin. From the definition of the Modified Bessel
Function of first kind

1 z
I(z) = 5 Ct—”—lez (t+1/0) g (209)

with C a circle enclosing the origin anticlockwise and considering that I_,,(z) = I,,(z) we have finally:

n/2
P(X =n) = (Z;) et 1) 1 (2 /inin) (210)

2.5.1.4 Moments of a distribution

Consider a continuous random quantity X ~ P(x) and Characteristic Function
it X +oo it
d(t) = Ele"*] = / " dP(x) (211)
—0o0

and let us assume that there exists the moment of order k. Then, upon derivation of the Characteristic
Function k times with respect to ¢t we have:
8k . +00 .
o 2(0) = E[i* X% it X = / (iz)* % 4P () (212)
—0o0

and taking t = 0 we get the moments with respect to the origin:
1 [0k
EXF = — (=0t 213
- % (5m00) @)

Consider now the Characteristic Function referred to an arbitrary point a € R; that is:

B(t,a) = EleitX —a)] = /

—0oQ

+oo . .
@ —a) gp(z) = e~ ag(y) 214)

In a similar way, upon k times derivation with respect to ¢ we get the moments with respect to an arbitrary
point a:

ak
okt

E[(X — a)"] = Zlk ( <I>(t,a)> 215)

t=0
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and the central moments if @ = FE(X) = p. The extension to n dimensions immediate: for a n
dimensional random quantity X we shall have the for the moment ay, .5, with respect to the origin that

1 ( 8k1+~-+kn

d(ty,...,t 216
Zk1++k?n akltl . e akntn ( ! n)>t1—..‘—tn—0 ( )

Example 2.22: For the difference of Poisson distributed random quantities analyzed in the previous example, one
can easily derive the moments from the derivatives of the Characteristic Function. Since

log@x (1) = —(p1 + pz) + (re' + ppe™ ) 217)
we have that
P (0) = i — p2) —  EX]=p1—p (218)
(0) = (P5(0)* — (1 +p2) —  VIX]=p +pe (219)
Problem 2.3: The Moyal Distribution, with density
(@) = — S@+e) b () (220)
n(x) = — —— (z+e _
p(x mexp 5 (@te (—o0,00) (T

is sometimes used as an approximation to the Landau Distribution. Obtain the Characteristic Function ®(¢) =
7~ 1/227%1(1/2 — it) and show that E[z] = v + In2 and V[X] = 7?/2.

2.5.2 The Mellin Transform

Let f : RT—C be a complex and integrable function with support on the real positive axis. The Mellin
Transform is defined as:

M(f;s) = My(s) = /000 f(z)z*tde (221)

with s€C, provided that the integral exists. In general, we shall be interested in continuous probability
density functions f(x) such that

lim, 04+ f(z) = O(x®) and limg oo f(z) = O(xﬁ) (222)
and therefore
00 1 0
Mo < [ @O e = [ @) e+ [ @) e <
0 0 1
1 [e’e]
< O / ghet) =1t ge 4 / o) =148 gy (223)
0 1

The first integral converges for —a < Re(s) and the second for Re(s) < —f so the Mellin Transform
exists and is holomorphic on the band —a < Re(s) < —p, parallel to the imaginary axis (s) and
determined by the conditions of convergence of the integral. We shall denote the holomorphy band
(that can be a half of the complex plane or the whole complex plane) by Sy =< —a, —f >. Last, to
simplify the notation when dealing with several random quantities, we shall write for X,,~p,,(z) M,(s)
of Mx(s) instead of M (py,;s).
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2.5.2.1 Inversion

For a given function f(¢) we have that

/ f Dt lage = / f (s 1)Int dt = / f 5% du (224)

assuming that the integral exists. Since s€C, we can write s = x + iy so: the Mellin Transform of f(¢)
is the Fourier Transform of g(u) = f(e")e™™. Setting now ¢ = e* we have that

1 00 (tiy) 1 o+100
) = — M(f;s= )t T dy = — M(f;s)t™°d 225
0 = 5= [ Mpis=a+iy =g [ Mrtas o @29)
where, due to Chauchy’s Theorem, o lies anywhere within the holomorphy band. The uniqueness of the
result holds with respect to this strip so, in fact, the Mellin Transform consists on the pair M (s) together
with the band < a,b >.

Example 2.23: It is clear that to determine the function f(z) from the transform F'(s) we have to specify the

strip of analyticity for, otherwise, we do not know which poles should be included. Let’s see as an example
f1(z) = e~%. We have that

Mi(z) = /OO e Pr* ldr = T'(2) (226)
0

holomorphic in the band < 0,00 > so, for the inverse transform, we shall include the poles z = 0, —1, -2, .. ..
For fo(z) = e=* — 1 we get Ma(s) = I'(s), the same function, but

lim, 04 f(2)~O(z") —a =1 and lim, o0 f(2)~O(z°)—B =0 (227)
Thus, the holomorphy strip is < —1, 0 > and for the inverse transform we shall include the poles 2 = —1, =2, .. ..
For f3(z) = e™® — 1 + x we get M3(s) = I'(s), again the same function, but

lim, o4 f(2)~O0(2?)—a =2 and lim, oo f(2)~O(z!)—B =1 (228)
Thus, the holomorphy strip is< —2, —1 > and for the inverse transform we include the poles z = —2, -3, .. ..

2.5.2.2  Useful properties

Consider a positive random quantity X with continuous density p(x) and z€[0, c0), the Mellin Trans-
form Mx (s) (defined only for >0)

o0
M(p;s) = / e p(x)de = B[ X5 (229)
0
and the Inverse Transform
1 c+i00
= — S M(p;s)d 230
p) = g [ M s ds (230)

defined for all 2z where p(z) is continuous with the line of integration contained in the strip of analyticity
of M(p;s). Then:

e Moments: E[X"] = Mx(n+ 1);

e For the positive random quantity Z = a X b (a,b€R and a > 0) we have that

My(s) = / 27 f(2)dz = / a* 1P p(2) de = a® 7 My (bs — b+ 1) (231)
0 0
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c+100
2rip(z) = / 27" Mx(bs —b+1)ds (232)

In particular, for Z = 1/X (a = 1 and b = —1) we have that

MZ:l/X(S) = MX(2 - 8) (233)

o If Z = X; Xy --X,, with {X;}" | n independent positive defined random quantities, each distributed
as p;(x;), we have that

n

My(s) = /0 p(2) dz—H/ 2 pi(a) doy = [[BIX; Y = [[ Mi(s) (234)
=1 =1
c+ioco

2rip(z) = / 27 My(s)-+-My(s)ds (235)
In particular, for n = 2, X = X; X5 itis easy to check that
oo 1 c+100
po) = [ piw)pale/w)dwjw = o [ e M () Mas) ds 236)
0

2mi c—100

Obviously, the strip of holomorphy is 51MN.S5.

e For X = X; /X5, with both X; and X3 positive defined and independent, we have that

Mx(s) = Mi(s) Ma(2 — s) (237)
and therefore
o) 1 c+1i00
p(z) = / p1(wz) pe(w)wdw = — x” % My(s) M2(2 — s) ds (238)
0 2mi c—100
e Consider the distribution function F'(z fo u)du of the random quantity X. Since dF(x) =
p(z)dz we have that
o o o
M(p(z);s) = / ¥ HdF (z) = [2°7 ' F ()] — (s — 1)/ 72 F(z) dz (239)
0 0

and therefore, if lim, o, [z F(2)] = 0 and lim,_,o [z F(2)] = 0 we have, shifting s—s — 1, that
r 1
M(F()s) = M( [ plw)duis) =~ Mp(e)is +1) (240)
0
2.5.2.3 Some useful examples

e Ratio and product of two independent Exponential distributed random quantities
Consider X1~FEz(z1]|a;) and Xo~Ex(z2]az). The Mellin transform of X ~Ex(z|a) is

o0 o0
Mx(s) = / 5 p(z)a) de = a/ e dy = — (241)
0 0

212



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICS

and therefore, for Z = 1/X:

I'2—-s
My(s) = Mx(2—s) = TG
In consequence, we have that
I(z)?
o X = X1X2 — MX(Z) = Ml(Z)MQ(Z) = W

c+1i00
p(z) = 9102 / (aras2) " T(2)? d
C

271—2 —i00
The poles of the integrand are at z, = —n and the residuals ' are
aijasx)"”
Res(f(2),2zn) = ((17;)2) (2¢(n+1) — In(ajagx))
and therefore
> (aragx)™
p(z) = araz Y R (2¢(n+ 1) — In(ajasz))
n=0 :

If we define w = 2,/ajasx
p(x) = 2a1 a2 Ko(2y/a1a27)1 (g o) (2)

from the Neumann Series expansion the Modified Bessel Function Ko (w).

(1l —z)
sin(zm)

-1 petico 1—
plz) = 2 / (ara;'e) ™ ———d=
20 Joioo sin(zm)

oV =X1X;' —  My(2) = Mi(2)Ma(2 - 2) = (%)H

Considering again the poles of My (z) at z, = —n we get the residuals

az

Res(f(2),2) = (14n)(=1)" <“1>n+1 "

and therefore:

plx) = 0314 (C1)" ("’”) - 1)

a a
2 = 2 az + a1

To summarize, if X1~Fxz(z1|a;) and Xo~FEx(x2|as) are independent random quantities:

X = X1X2 ~ 2(11 as K0(2\/a1a2x)1(1700)(:c)
al ag
Y =X1/Xo ~ ——= 140
1/ X (ag + a1x)? 0.00) (%)

e Ratio and product of two independent Gamma distributed random quantities

In the following examples, —w<arg(z) < .
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Consider Y ~Ga(z|a,b). Then X = aY ~Ga(x|1,b) with Mellin Transform

_ T(b+s—-1)
Mx(s) = TTh) (251)
The, if X1~Ga(z1]1,b1) and Xo~Ga(x2|1,be); b1 #ba:
_ I'by —1 T'(b 1-—
X =X1X;' —  Mx(z) = Mi(2)Ma(z) = £ T 2) I s 2)
c+i00
2 T'(by) T(bo)p(z) = / Ty —142)T(ba+1—2)dz (252)

Closing the contour on the left of the line Re(z) = ¢ contained in the strip of holomorphy < 0, 00 > we
have poles of order one at b; — 1 + z,, = —n withn = 0,1, 2, .. ., thatis, at z,, = 1 — b; — n. Expansion
around z = z, + € gives the residuals

Res(f(2),2n) = (—n1')n L(by 4 by +n) z"H01—1 (253)

and therefore the quantity X = X /X is distributed as

B xbl*l > (*1)“ n o F(b1+b2) xbl*l
P = T 2l LB S iy (e o) 259

by —14+2)T(by — 1+ 2)

L'(b1) I'(b2)
Without loss of generality, we may assume that by > b; so the strip of holomorphy is < 1 — by, 00 >.
Then, with ¢ > 1 — by real

e X =X1Xo — Mx(2) = My(2)My(z) =

c+100
(b1) T(by)plz) = —— 2 T(by — 14 2)T(by — 1+ 2) d2 (255)

27 c—100

Considering the definition of the Modified Bessel Functions

B = 1 X\ 2ntv ol (x) — I(v)
I(z) = ;—n!r e (5) and  Ky(e) = 5 G o (256)
we get that
2
— (b1+b2)/2—1

with v = by — by > 0.

To summarize, if X1~Ga(z1|a1,b1) and Xo~Ga(x2|asz, be) are two independent random quanti-
ties and v = by — b1 > 0 we have that

X=X1Xo ~ M a2 V/Qa;(lerb?)/z_lK (2y/ar1azx)1 (x)
F(bl) F(bg) al v (0,00)

Dby +by) abalpatr—?

X=X/Xa ~ TS0 Taa g g H0e0 (@ 2s8)
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e Ratio and product of two independent Uniform distributed random quantities

Consider X~Un(x|0,1). Then Mx(z) = 1/z with with S =< 0,00 >. For X = X;---

have

1 etiee (—Inz
- = —zlnz _—n dy = ~ 7/
p(x) 2mi c—100 ‘ ¢ ‘ F(n)

)n—l
1,1)()

being z = 0 the only pole or order n.

For X = X /X5 one has to be careful when defining the contours. In principle,

Mx(s) = Mi(s)M2(2 —s) = égis

(260)

so the strip of holomorphy is S =< 0,2 > and there are two poles, at s = 0 and s = 2. If Inz < 0—z <
1 we shall close the Bromwich the contour on the left enclosing the pole at s = 0 and if Inz > 0=z > 1
we shall close the contour on the right enclosing the pole at s = 2 so the integrals converge. Then it is

easy to get that

1 _
p(z) = 5 [Lo1(x) + 27211 o0)(2)] = Un(z|0,1) + Pa(x|1,1)
Note that
EIX" = Mx(m+1) = —— 1
- Axn C n+4+11-n

and therefore there are no moments for n>1.

Example 2.24: Show that if X;~ Be(z;|a;, b;) with a;,b; > 0, then

az—Q—bZ) F(s—l—ai — 1)

T
M;(s) = (
with S =< 1 — a;, 00 > and therefore:

o X :X1X2

p(z) = N, g0l 1- :r)b“"bz_1 F(a1 —ag +b1,b2,b1 4+ b2, 1 — x)1(0,1)(x)

with
N, — I‘(al + bl)F(ag + bg)
P F(al)F(ag)F(bl + bg)
o X = X]/X2
p(x) = N1 2 @) F(1—by,a1 +az,b1 + a1 + a2, 27 )11 o) (2) +
+ No 2 F(1—bi,a1 + as,bs + a1 + az, ) 1(g1)(2)
with

B(ay + a2, bi,)

N, =
k B(a1 +b1)B(a2+b2)

Example 2.25: Consider a random quantity

9 o(b+1)/2 )
X ~plala b) = . a —az” b

b/2+1/2) €

215

(261)

(262)

(263)

(264)

(265)

(266)
(267)

(268)

(269)



C. MANA

with a, b > 0 and 2€[0, c0). Show that

M(s) ~p(ela,b) = %ﬂ“ 1)/2 @70)

with § =< —b,00 > and, from this, derive that the probability density function of X = X; X5, with
X1~p(z1]a1, b1) and Xo~p(x2|az, be) independent, is given by:

4 \/a1a2

_ aiaye) B2 K (2 s 271
p(il]') F(bl/Q ¥ 1/2) F(b2/2 T 1/2) ( CL1€L21’) |v] ( a1a2x) ( 7 )
with v = (bg — bl)/2 and for X = Xl/XQ by
2T(b+1) 1/2 (ax?)0/?

P = S T T2+ 172 Y (0t a?) 272)

with a :al/ag and b = (bl +b2)/2

Problem 2.4: Show that if X; o~Un(z|0, 1), then for X = X;** we have that p(z) = —2~' Ei(Inz), with Ei(2)
the exponential integral, and E[X™] = m~!In(1 + m).

Hint: Consider Z = log X = X; log X5 = —X; W5 and the Mellin Transform for the Uniform and Exponential
densities.

2.5.2.4  Distributions with support in R

The Mellin Transform is defined for integrable functions with non-negative support. To deal with the
more general case X ~p(z) with supp{X} = Q>0 + Qz<0CR we have to

1) Express the density as p(x) = p(z) 1z>0(z) + p(x) 1g<o();
pt(z) p~(2)
2) Define Y7 = X when 2>0 and Yo = —X when 2 < 0 so supp{Y2} is positive and find My, (s)
and My, (s);
3) Get from the inverse transform the corresponding densities p; (z) for the quantity of interest Z; =
Z(Y1, Xo,...) with My, (s) and pa(z) for Zy = Z(Ya, Xo,...) with My, (s) and at the end for
p2(z) make the corresponding change for X — — X.

This is usually quite messy and for most cases of interest it is far easier to find the distribution for
the product and ratio of random quantities with a simple change of variables.

e Ratio of Normal and x? distributed random quantities Let’s study the random quantity X =
X1(X3/n)~1/2 where X1~N(z1]0,1) with sup{X;} = R and Xy~x?(z2|n) with sup{Xy} = R*.
Then, for X7 we have

p(z1) = p(*1) Lp,00)(21) + P(*1) L(—o0,0) (1) (273)
pT(z1) p~ (1)
and therefore for X
Xop(z) = p(a) Lo ,00) (%) + p(2) Loo0)(2) = pT(2) +p (2) (274)

Since

270 (n/2+5—1)
M) = =1 2)

(275)
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we have for Z = (Xy/n)~'/2 that
n\G6=1/2 T((n+1—15)/2)

My(s) = n=D/2 My((3 — 5)/2) = (5) ey (276)
for 0 < R(s) < n+ 1. For X;€[0, 00) we have that
o 297T(s/2)
M (s) = “oar 0 < R(s) (277)
and therefore
s/2 _
ME(s) = Mi(s) My(s) = n*“T(s/2)T((n+1—15s)/2) 278)

2/nm

with holomorphy stripe 0 < $(s) < n + 1. There are poles at s, = —2m with m = 0,1,2,... on the
negative real axis and s = n+ 142k with k = 0, 1,2, ... on the positive real axis. Closing the contour
on the left we include only s, so

@) = = SR A R L

= \/ﬁf(nﬂ)n;F(qul) <n> F( T ) = (279)
_ Dn+1)/2) 22 —(n+1)/2
= \/ﬁf(n/Q) (1+ n) 1[0700)(33) (280)

For X;€(—00,0) we should in principle define Y = — X with support in (0, c0), find My (s),
obtain the density for X’ = Y/Z and then obtain the corresponding one for X = —X’. However, in this
case it is clear by symmetry that p™ (x) = p~ (x) and therefore

I((n+1)/2) (1

Ko@) = )

n

L2 ~(nH)/2
) lemoofa) = Sl @s1)

e Ratio and product of Normal distributed random quantities Consider X;~N (z1|u1,01) and
Xo~N(z2|p2,02). The Mellin Transform is

2 2
e~ M /4o
My (s) = ————0*"'T(s) D_s(Fp/o 282
v(s) = 5= 0" Ts) Ds(F o) (2s2)
with D, (x) the Whittaker Parabolic Cylinder Functions. The upper sign (—) of the argument corre-
sponds to X €[0,00) and the lower one (+) to the quantity Y = —X€(0,00). Again, the problem is
considerably simplified if p1; = o = 0 because
M 2P et I'(z/2 283
z) = ——=0 z
with § =< 0, co > and, due to symmetry, all contributions are the same Thus, summing over the poles
atz, = —2nforn =0,1,2,... we have that for X = X; Xoanda™ " = 40102

”Z VAL (v o) - (valel) = 2L Kovale) s

Dealing with the general case of 1;70 it is much more messy to get compact expressions and life
is easier with a simple change of variables. Thus, for instance for X = X7 /X, we have that

p(z) = 7\/‘;”2 /oo ef{al(a:w —11)? + az(w — p2)?} w| dw (285)
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where a; = 1/(207) and if we define:

wo = ag + a1x?;  wy = ajag (wpe — p1)?  and  wo = (a1 + aspg)//wo (286)

one has:

A/ 1 _ a2
p(x) = Vaaz 2w fwo (e W2+ /7wy erf(w2)> 1(Zoo,00) () (287)
T
2.6 Ordered Samples

Let X~p(x|0) be a one-dimensional random quantity and the experiment e(n) that consists on n in-
dependent observations and results in the exchangeable sequence {z1, x2, ..., x,} are equivalent to an
observation of the n-dimensional random quantity X~p(x|6¢) where

n

p(x]0) = p(x1,x2,...,2,]0) = Hp(xl\e) (288)
i=1

Consider now a monotonic non-decreasing ordering of the observations

1w <. .1 ST S 41 S .S Tpo1 Sy

k—1 n—k

and the Statistic of Order k; that is, the random quantity X ;) associated with the k" observation
(1<k<n) of the ordered sample such that there are k — 1 observations smaller than = and n — k above
xy. Since

Tg
P(X<zy|0) = / p(z|0)dx = F(x|0) and P(X > ai|0) = 1— F(zg]6) (289)
we have that
Xy~p(ael@,n, k) = Chpplakld) [Flzp|0)) ™ [1 — F(ag0))" " (290)
Ty k—1 0o n—k
= Curtole) | [ seloyas] | [" el
—00 T
[P(X <zy))F ! [P(X>ap)]"F
The normalization factor
Cpi = k ( Z ) (291)

is is given by combinatorial analysis although in general it is easier to get by normalization of the final
density. With a similar reasoning we have that the density function of the two dimensional random
quantity X ;) = (X4, Xj); g > 1, associated to the observations x; and x; ( Statistic of Order i, j;1 < j)
14 1

will be:

T; T

y j—i-1
p(xw)dx]

—00

plab)i o) |

[PX <)) [P(ai<X <<ay)li=i=t

Xijy~plai w100 4,m) = oy V

i

'*If the random quantities X; are not identically distributed the idea is the same but one hast to deal with permutations and
the expressions are more involved
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L) n—j
p(16) [ / p<x|e>d:c] (292)

J

[P(z;<X)]"—

where (z;, ;) €(—00, x| x (—00, 00) or (z;, z;)€(—00,00) X [x;,00). Again by combinatorial analysis
or integration we have that

n!
Chrij = — — - 293
W DG —i— D =) 9
The main Order Statistics we are usually interested in are
e Maximum X,,) = max{Xy, Xo,..., Xy}
Ty n—1
planl) = npfanlo) | [ plalo)as] (294)
—0Q
e Minimum X ;) = min{X1, Xo,..., Xp, }:
o0 n—1
part) = np(arl6) | [~ plelo)de] 295
1
o Range R = X(n) - X(l)
Tn n—2
plersanl) = nn = 1)p(arl0)panl0) | [ plalp) ] (296)
£
If supp(X) = [a, b], then R€(0,b — a) and
b—r
p(r) = nin—1) {/ p(w+r)p(w) [F(w+7r) — F(w)]" > dw} (297)

There is no explicit form unless we specify the Distribution Function F'(z|9).
e Difference S = X(; 1) — X(;). If supp(X) = [a, b], then S€(0,b — a) and

n b—s . .
p(s) = (n+1) ) { / p(w+ s) p(w) [F(w)] 1 —F(w—l—s)}"’ldw} (298)

T(i)D(n —i

In the case of discrete random quantities, the idea is the same but a bit more messy because one
has to watch for the discontinuities of the Distribution Function. Thus, for instance:

e Maximum X,,) = max{Xy, Xo,..., X, }:
X(ny<wiff all z; are less or equal = and this happens with probability

P(z,<z) = [F(a)]" (299)
X(ny < xiff all z; are less than x and this happens with probability
P(x, <z) = [F(x—1)]" (300)
Therefore

P(z, =2) = P(xp<z) — P(xp, <z) = [F(2)]" = [F(z —1)]" (301)
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e Minimum X(l) = min{Xl, XQ, ce ey Xn}i
Xy iff all z; are grater or equal x and this happens with probability

P(x1>z) =1—Plx1 <z) = [1 - F(z—1)]" (302)

X(1) > z iff all z; are greater than x and this happens with probability

Plxy >xz) = 1—P(x1<z) = [1 — F(x)]" (303)
Therefore
Plxy=2) = Pxr1<z)—Px1<z)=[1—P(r1>z)]—[1—P(r1>2)] =
= = F—1) - [1- F)" (304)

Example 2.26: Let X~Un(x|a, b) and an iid sample of size n. Then, if L = b — a:

(-rn _ a)nfl

e Maximum: p(x,) = n b= a)” Lap)(n)

(b — Il)n_l

e Minimum: p(z1) = nwl(a,b)(gﬁl)

n(n— r n—2 r
o Range: R= X(,) — X : p(r) = "7 (1)" (1= 1) Loy(r)
. n s\n—1
e Difference: S = Xxi1) — Xy : p(s) = 2 (1= 2£)" "1(o,1)(s)

Example 2.27: Let’s look at the Uniform distribution in more detail. Consider a random quantity X ~Un(z|a, ),
the experiment e(n) that provides a sample of n independent events and the ordered sample

X, = {161 SiEQS...Siﬂkg...gl‘k+p§...§$n,1 an} (305)

Then, for the ordered statistics X}, Xj4p and Xy 4,11 with &, peN, 1<k<n — 1 and p<n — k — 1 we have that

k—1 p—1 n—(k+p+1)

a Tk .. Thip Thiptl b

n—(k+p+1)
} (306)

Tk k—1 Th+p p—1 b
P(Tk, Thtpla, byn,p) [/ dsl} {/ dSQ] / dss
a Tk T

k+p+1

Let’s think for instance that those are the arrival times of n events collected with a detector in a time window
[a=0,b=T]. If we define wy = xy4+, — z) and wy = Ty4p,41 — T We have that

P, wi, wa|Tyn, p) = af = wl ™ (T — g — wo)™ ™ P 110 1) (€1) 110 000] (w1) L0, 77 (w32) (307)
and, after integration of zy:

pon i) = (0 ) PPt

» Tn Wl (T = w2)" P g g (w1) 10,7y (w2) (308)

Observe that the support can be expressed also as 1 7)(w1)1f,,r)(w2) and that the distribution of (W3, Ws)
does not depend on k. The marginal densities are given by:

p(w1|T,n,p) = < Z > %U)Tl (T — w1)"™P 1o, (wn) (309)
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-
sl = () SRR (= w0 () 610)

and if we take the limit 7'— o0 and n—o0 keeping the the rate A = n/T constant we have

/\P+1

T\EI_I}OO p(wy, w2|T,n,p) = p(wr,wa|),p) = () e 2wl g ) (01) g 0y (w2) (311)
and
_ )\P —Aw;y ,,,p—1
p(w1|>\7p) - F(p) € wy 1[0,00)(w1) (312)

In consequence, under the stated conditions the time difference between two consecutive events (p = 1) tends to
an exponential distribution. Let’s consider for simplicity this limiting behaviour in what follows and leave as an
exercise the more involved case of finite time window 7.

Suppose now that after having observed one event, say xx, we have a dead-time of size a in the detector
during which we can not process any data. All the events that fall in (zx, . + a) are lost (unless we play with
buffers). If the next observed event is at time 3,41, we have lost p events and the probability for this to happen
is

(Aa)?

< >al\ _ —da _\")
P(wl_a7w2_a| >p) € P(p+1)

(313)

that is, Njosi~Po(p|Aa) regardless the position of the last recorded time (xj) in the ordered sequence. As one
could easily have intuited, the expected number of events lost for each observed one is E[N jo5t] = Aa. Last, it is
clear that the density for the time difference between two consecutive observed events when p are lost due to the
dead-time is

plwawi<a, A, p) = Ae M7 1y, ) (ws) (314)
Note that it depends on the dead-time window a and not on the number of events lost.
Example 2.28: Let X ~FExz(x|\) and an iid sample of size n. Then:
o Maximum: p(z,) = nAe 2 (1 — e 2™ )" 11 o (2y,)
e Minimum: p(z1) = nXe 11 oo (21)
e Range: R = X(,) — X(1) : p(r) = (n — 1)A" e [1 - e‘“]ni? 1(0,00)(7)

e Difference: S = X(j11) — X(x) 1 p(s) = (n— k) Ae =1 1 (s)

2.7 Limit Theorems and Convergence

In Probability, the Limit Theorems are statements that, under the conditions of applicability, describe the
behavior of a sequence of random quantities or of Distribution Functions. In principle, whenever we can
define a distance (or at least a positive defined set function) we can establish a convergence criteria and,
obviously, some will be stronger than others so, for instance, a sequence of random quantities {X;}3°,
may converge according to one criteria and not to other. The most usual types of convergence, their
relation and the Theorems derived from them are:
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Distribution —> Central Limit Theorem
T —> Glivenko-Cantelly Theorem (weak form)
i)
Probability = Weak Law of Large Numbers
()
f+  Almost Sure = Strong Law of Large Numbers
i)
L,(R) Norm — Convergence in Quadratic Mean
Uniform = Glivenko-Cantelly Theorem

so Convergence in Distribution is the weakest of all since does not imply any of the others. In principle,
there will be no explicit mention to statistical independence of the random quantities of the sequence nor
to an specific Distribution Function. In most cases we shall just state the different criteria for convergence
and refer to the literature, for instance [?], for further details and demonstrations. Let’s start with the very
useful Chebyshev’s Theorem.

2.7.1 Chebyshev’s Theorem

Let X be a random quantity that takes values in {2CR with Distribution Function F'(x) and consider the
random quantity Y = ¢(X) with g(X) a non-negative single valued function for all X €. Then, for
aeRT

(315)

In fact, given a measure space (€2, Bq, i), for any p-integrable function f(z) and ¢ > 0 we have for
A={x:|f(x)|>c} that 1 4(x)<|f(z)| for all  and therefore

cu(4) = / 14 (2)dpi< / f(@)ldu (316)

Let’s see two particular cases. First, consider g(X) = (X — p)?"® where p = E[X] and n a
positive integer such that g(X) > 0 VX € Q. Applying Chebishev’s Theorem:

E[(X — p)*
P(X — p)? > a) = P(X —p| > oty < ELE WLt (317)
@ @
For n = 1, if we take o = k%0 we get the Bienaymé-Chebishev’s inequality
P(|X — p| > ko) < 1/k? (318)

that is, whatever the Distribution Function of the random quantity X is, the probability that X differs
from its expected value ;2 more than k times its standard deviation is less or equal than 1/k2. As a second
case, assume X takes only positive real values and has a first order moment E[X| = p. Then (Markov’s
inequality):

P(X>a) < g =y P(X > kp) < 1/k (319)

The Markov and Bienaymé-Chebishev’s inequalities provide upper bounds for the probability
knowing just mean value and the variance although they are usually very conservative. They can be
considerably improved if we have more information about the Distribution Function but, as we shall see,
the main interest of Chebishev’s inequality lies on its importance to prove Limit Theorems.
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2.7.2 Convergence in Probability

The sequence of random quantities { X,,(w)}>°, converges in probability to X (w) iff:

liﬁm P(|Xp(w) = X(w)| > € =0 ; Ve>0; (320)
or, equivalently, iff:
li_>m P(|X,(w) = X(w)| <€) =1 Ve>0; (321)

Note that P(| X, (w) — X(w)| > €) is a a real number so this is is the usual limit for a sequence of
real numbers and, in consequence, for all ¢ > 0 and 6 > 0 Ing(e, d) such that for all n > ng(e, d) it
holds that P(| X, (w) — X(w)|>¢) < 4. For a sequence of n-dimensional random quantities, this can
be generalized to lim,, o, P(|| X, (w), X (w)]||) and, as said earlier, Convergence in Probability implies
Convergence in Distribution but the converse is not true. An important consequence of the Convergence
in Probability is the

e Weak Law of Large Numbers: Consider a sequence of independent random quantities { X;(w)}:2,,
all with the same Distribution Function and first order moment E[X;(w)] = p, and define a new random
quantity

1 n
Zn(w) = =3 Xiw) (322)

The, the sequence {Z,(w)}22; converges in probability to s; that is:

lim P(|Zp(w) —pl >€) =0 ; Ye>0; (323)
n—oo
The Law of Large Numbers was stated first by J. Bernoulli in 1713 for the Binomial Distribution, gen-
eralized (and named Law of Large Numbers) by S.D. Poisson and shown in the general case by A.
Khinchin in 1929. In the case X;(w) have variance V (X;) = o2 it is straight forward from Chebishev’s
inequality:
E((Zy, —p)?  o?
P20~ pl2e) = P (2 — pp2e) <PV V] 7 (324)
Intuitively, Convergence in Probability means that when n is very large, the probability that Z,, (w)
differs from p by a small amount is very small; that is, Z, (w) gets more concentrated around . But
“very small” is not zero and it may happen that for some k& > n Zj, differs from y by more than €. An
stronger criteria of convergence is the Almost Sure Convergence.

2.7.3 Almost Sure Convergence

A sequence { X, (w)}52, of random quantities converges almost sure to X (w) if, and only if:

lim X,(w) = X(w) (325)

n—oo

for all we) except at most on a set WS of zero measure (P(W) = 0 so it is also referred to as
convergence almost everywhere). This means that for all ¢ > 0 and all weW¢ = Q — W, Ing(e,w) > 0
such that | X, (w) — X (w)| < e for all n > ng(€, w). Thus, we have the equivalent forms:

P[le |Xn(w)—X(w)|Ze} =0 or P[lim X (w) — X (w)] < e} =1 (326
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for all € > 0. Needed less to say that the random quantities X, X5 ... and X are defined on the same
probability space. Again, Almost Sure Convergence implies Convergence in Probability but the converse
is not true. An important consequence of the Almost Sure Convergence is the:

e Strong Law of Large Numbers (E. Borel 1909, A.N. Kolmogorov....) : Let {X;(w)}>°, be a se-
quence of independent random quantities all with the same Distribution Function and first order moment
E[X;(w)] = p. Then the sequence {Z,(w)}>2 ; with

1 n
Zn(w) = ~ in(w) (327)
converges almost sure to y; that is:
P [ lim | Zp(w) — pl ze} =0 Ve >0 (328)
n—o0

Intuitively, Almost Sure Convergence means that the probability that for some k > n, Z;, differs
from p by more than € becomes smaller as n grows.

2.7.4 Convergence in Distribution

Consider the sequence of random quantities {X,(w)}>2, and of their corresponding Distribution
Functions {F},(z)}52 ;. In the limit n—o00, the random quantity X, (w) tends to be distributed as
X(w)~F(x) iff

li_>m F.(z) = F(z) < h_)m P(X,<z) = P(X<z) ; VzxeC(F) (329)

with C'(F') the set of points of continuity of F(z). Expressed in a different manner, the sequence
{Xn(w)}22, Converges in Distribution to X (w) if, and only if, for all ¢ > 0 and z€C(F'), Ino(e, x)
such that |F,(z) — F(x)| < €, Vn > no(e, ). Note that, in general, ng depends on x so it is possible
that, given an € > 0, the value of ng for which the condition |F},(x) — F(x)| < e is satisfied for certain
values of z may not be valid for others. It is important to note also that we have not made any statement
about the statistical independence of the random quantities and that the Convergence in Distribution is
determined only by the Distribution Functions so the corresponding random quantities do not have to be
defined on the same probability space. To study the Convergence in Distribution, the following theorem
it is very useful:

e Theorem (Lévy 1937; Cramer 1937) : Consider a sequence of Distribution Functions {F},(z)}72
and of the corresponding Characteristic Functions {®,,(¢)}2° ;. Then

> if limy oo F(z) = F(x), then limy,—o ®,,(t) = ®(¢) for all teR with ®(t) the Characteristic
Function of F'(z).
> Conversely, if @,,(t) "=3 ®(t) Vt€R and ®(t) is continuous at t = 0, then Fy,(z) "=3 F(x)

This criteria of convergence is weak in the sense that if there is convergence if probability or almost
sure or in quadratic mean then there is convergence in distribution but the converse is not necessarily true.
However, there is a very important consequence of the Convergence in Distribution:

e Central Limit Theorem (Lindberg-Levy) : Let {X;(w)}2, be a sequence of independent random
quantities all with the same Distribution Function and with second order moments so E[X;(w)] = p and
V[X;(w)] = 0. Then the sequence {Z,(w)}22; of random quantities

Zn(w) = - > Xi(w) (330)

n “—
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with

1w 1 <& 2
BlZ,) = S3 EX] = p and VIZ) = Y VX = (331)

tends, in the limit n—o0, to be distributed as N(z|u,o/+/n) or, what is the same, the standardized
random quantity

n
) B
> n— [ i=1
—— = 332

tends to be distributed as N (|0, 1).

Consider, without loss of generality, the random quantity W; = X; — p so that E[W;] = E[X;] —
p=0and V[W;] = V[X;] = o2. Then,

Dy (t) = 1 — %thQ + O(th) (333)

Since we require that the random quantities X; have at least moments of order two, the remaining terms
O(t*) are either zero or powers of ¢ larger than 2. Then,

1 1 o’
Zn:EZXi:EZWi—l-,u . ElZ) =p V[Zn}:a%nzz (334)
SO
Oy (1) = ™ [dy(t/n)]" — lim @z, (t) = eltr lim [®w (t/n)]" (335)
Now, since:
L otio o ko k 182 , ko k
@W(t/n):1—§(ﬁ) o+ 0" /n") =1 — igan"'O(t /n”) (336)
we have that:
12 " 1
lim [@w(t/n)]" = limye |1 — 5 —o% 4+ Ot*/n")| = exp{- §t20%n} (337)
n—o00 n
and therefore:
lim @y, (t) = et e 2t°0"/n (338)
n—oo

80, limy, 00 Zn~N (x|, 0 /\/n).

The first indications about the Central Limit Theorem are due to A. De Moivre (1733). Later, C.F.
Gauss and P.S. Laplace enunciated the behavior in a general way and, in 1901, A. Lyapunov gave the first
rigorous demonstration under more restrictive conditions. The theorem in the form we have presented
here is due to Lindeberg and Lévy and requires that the random quantities X; are:

i) Statistically Independent;
ii) have the same Distribution Function;
iii) First and Second order moments exist (i.e. they have mean value and variance).
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In general, there is a set of Central Limit Theorems depending on which of the previous conditions are
satisfied and justify the empirical fact that many natural phenomena are adequately described by the
Normal Distribution. To quote E. T. Whittaker and G. Robinson (Calculus of Observations):

"Everybody believes in the exponential law of errors;
The experimenters because they think that it can be proved by mathematics;
and the mathematicians because they believe it has been established by observation"

Example 2.29: From the limiting behavior of the Characteristic Function, show that:

o If X~Bi(r|n,p), in the limit p — 0 with np constant tends to a Poisson Distribution Po(r|u = np);
o If X~Bi(r|n,p), in the limit n — oo the standardized random quantity
X - X -
7z = X _ P ne N(z0,1) (339)
Ox vV 1pq

If X~Po(r|u), then

X - X - oo
7 - rx _ Boe N(z[0,1) (340)

ox Vi

o X~x?%(z|n), then n— oo the standardized random quantity

X — X - n—oo
7 — HX Yoo N((0,1) (341)
ox V2
The Student’s Distribution St(x|0, 1, ) converges to N (|0, 1) in the limit v—00;
The Snedecor’s Distribution Sn(z|vy,s) converges to x2(x|v1) in the limit vo—o00, to St(x]0,1,,) in
the limit 4 — 00 and to N (|0, 1) in the limit v1, vo—o0.

Example 2.30: It is interesting to see the Central Limit Theorem at work. For this, we have done a Monte Carlo
sampling of the random quantity X ~Un(z|0, 1). The sampling distribution is shown in the figure ?? (1) and the
following ones (2-6) show the sample mean of n = 2 (2), 5 (3), 10 (4), 20 (5) y 50 (6) consecutive values. Each
histogram has 500000 events and, as you can see, as n grows the distribution “looks” more Normal. For n = 20
and n = 50 the Normal distribution is superimposed.

The same behavior is observed in figure ?? where we have generated a sequence of values from a parabolic
distribution with minimum at 2 = 1 and support on £ = [0, 2].

Last, figure ?? shows the results for a sampling from the Cauchy Distribution X ~Ca(z|0,1). As you can
see, the sampling averages follow a Cauchy Distribution regardless the value of n. For n = 20 and n = 50 a
Cauchy and a Normal distributions have been superimposed. In this case, since the Cauchy Distribution has no
moments the Central Limit Theorem does not apply.

Example 2.31: Let {X;(w)}$°, be a sequence of independent random quantities all with the same Distribution
Function, mean value . and variance o and consider the random quantity

1 n
:ﬁ;&w (342)

What is the value of n such that the probability that Z differs from p more than € is less than § = 0.01?

From the Central Limit Theorem we know that in the limit n—o00, Z~N (x|, o /+/n) so we may consider
that, for large n:

P(|Z—pl>e) = Pu—e>Z>pu+e)~ (343)
~ /H SN(»T\M; dz + / N(z|p,0)de =1 — erf[f } <0 (344)
. p V2
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For 6 = 0.01 we have that

2
L RN L (345)
g €
2.7.5 Convergencein Ly, Norm
A sequence of random quantities { X, (w)}°2; converges to X (w) in L,(R) (p>1) norm iff,
X(w)€Ly(R), Xn(w)ELy(R)¥n and lim E[|X,(w) - X(w)|’] = 0 (346)

that is, iff for any real ¢ > 0 there exists a natural no(e) > 0 such that for all n>ng(e) it holds that
E[| X, (w) — X (w)[P] < e. In the particular case that p = 2 it is called Convergence in Quadratic Mean.

From Chebyshev’s Theorem

P(|Xp(w) = X(w)| > ') < E[(X”(w)a_ X(w))’] (347)
so, taking a = €?, if there is convergence in L,(R) norm:
lim P(Xn(w)— X(w)| > ¢) < lim SAKn) = X@P] 0oy g (348)

n—00 n—00 P

and, in consequence, we have convergence in probability.

2.7.6 Uniform Convergence

In some cases, point-wise convergence of Distribution Functions is not strong enough to guarantee the
desired behavior and we require a stronger type of convergence. To some extent one may think that, more
than a criteria of convergence, Uniform Convergence refers to the way in which it is achieved. Point-
wise convergence requires the existence of an ng that may depend on € and on z so that the condition
|fn(z) — f(z)| < € for n>ng may be satisfied for some values of = and not for others, for which a
different value of ng is needed. The idea behind uniform convergence is that we can find a value of ng
for which the condition is satisfied regardless the value of =. Thus, we say that a sequence { f,,(x)}22
converges uniformly to f(x) iff:

Ve >0, IngeN such that |f,(x)— f(z)]<e Vn>mng and Vaz (349)
or, in other words, iff:
sup, |fu(@) = f()] "3 0 (350)

Thus, it is a stronger type of convergence that implies point-wise convergence. Intuitively, one may
visualize the uniform convergence of f,,(x) to f(z) if one can draw a band f(x)+te that contains all f,, (z)
for any n sufficiently large. Look for instance at the sequence of functions f,,(z) = x(1 + 1/n) with
n=1,2,...and x€R. Itis clear that converges point-wise to f(z) = x because lim,_,o fn(z) = f(2)
for all z€R; that is, if we take ng(z, €) = z /¢, for all n > ng(z, €) it is true that |f,,(z) — f(x)| < € but
for larger values of « we need larger values of n. Thus, the the convergence is not uniform because

sup, |fu(z) = f(2)| = sup, |z/n| = oo VneN (351)

Intuitively, for whatever small a given e is, the band f(z)d+e = x=+e does not contain f,(x) for all n
sufficiently large. As a second example, take f,, (z) = =™ with z€(0, 1). We have that lim,,_, oo frn(z) =0
but sup,|gn(z)| = 1 so the convergence is not uniform. For the cases we shall be interested in, if a
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500 %MWWW 1000 [ 2
0 | 500 |-
i 1 :
0 | ‘ | | 0 | ‘ |
0 0.5 i 0 0.5 i
I 2000 |
1000 |-
I 1000 |-
0 oL
0 i 0 i
. 5 ; 6
i 4000
2000 | B
E 2000 |
o L 1 o L |
0 0.5 i 0 0.5 i

Fig. 2: Generated sample from Un(z|0, 1) (1) and sampling distribution of the mean of 2 (2), 5 (3), 10 (4), 20 (5)
y 50 (6) generated values.
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1000
1000

1000
1000

- 4000 [
2000 | i 6
- 2000
1000 - i
o L oL |
0 I 2 0 I 2

Fig. 3: Generated sample from a parabolic distribution with minimum at z = 1 and support on 2 = [0, 2] (1) and
sampling distribution of the mean of 2 (2), 5 (3), 10 (4), 20 (5) y 50 (6) generated values.
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- 1
2000 | 2000
0 L ‘ 0
10 0 10
2000 | 2000
0 - 0
10 10 :
- ) i 6
2000 | 2000 |
5 | o L |
10 0 10 10 0 10

Fig. 4: Generated sample from a Cauchy distribution C'a(z]0,1) (1) and sampling distribution of the mean of 2
(2),53), 10 (4),20 (5) y 50 (6) generated values.
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Distribution Function F'(z) is continuous and the sequence of {F,,(x)}°° converges in distribution to
F(x) (i.e. point-wise) then it does uniformly too. An important case of uniform convergence is the
(sometimes called Fundamental Theorem of Statistics):

e Glivenko-Cantelli Theorem (V. Glivenko-F.P. Cantelli; 1933) : Consider the random quantity
X ~F(z) and a statistically independent (essential point) sampling of size n {z1,x2, ..., x,}. The em-
pirical Distribution Function

n

Fu(z) = = > 1(Coom(i) (352)

i=1
converges uniformly to F'(z); that is (Kolmogorov-Smirnov Statistic):

lim,, 00 sup, |Fp(z) — F(z)| =0 (353)

Let’s see the convergence in probability, in quadratic mean and, in consequence, in distribution.
For a fixed value z = 20, Y = 1(_ 4] (X) is a random quantity that follows a Bernoulli distribution
with probability

p=PY =1 = PQaul®) = 1) = P(X<ao) = Flay) (354)
PY =0 = P(l(_oom](:z:) =0) = P(X>x9) =1 — F(x) (355)

and Characteristic Function
Dy (t) = E[e®™] = e'p + (1 — p) = e F(xo) + (1 — F(xp)) (356)

Then, for a fixed value of  we have for the random quantity

n

Zn() = D Voog)(@i) = nFy(z) — ®g,(t) = (¢"F(z) + (1 — F(x))) (357)
i=1

and therefore Z,,(x) ~ Bi(k|n, F(x)) so, if W = n F,(z), then

P(W = kln, F(z)) = ( Z ) F(x)* (1 — F(x))"* (358)
with
E[W] = nF(z) —  B[F,(2)] = F()
VW] =nF(x)(1-F(z)) — V[Fu(z)] = %F(fv)(l — F(z)) (359)
From Chebishev’s Theorem
P([Fu(x) — F(z)[ =€) < %F(x) (1-F(z)) (360)
and therefore
lim,,_yo0 P[|Fp(z) — F(z)|>€¢ =0 ; Ye>0 (361)

so the empirical Distribution Function F),(z) converges in probability to F'(x). In fact, since

Fa) (1 - F(z))

limn—o0 E[|Fp(z) — F(2)]?] = limp_oeo =0 (362)
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Fig. 5: Empirical Distribution Function of example 2.32 for sample sizes 10 (blue), 50 (green) and 100 (red)
together with the Distribution Function (black).

converges also in quadratic mean and therefore in distribution.
Example 2.32: Let X = X, /X with X;~Un(z|0,1); ¢ = 1,2 and Distribution Function

F(x) = glm,u(ﬂc) + (1 - g) 1(1,00)(2) (363)

that you can get (exercise) from the Mellin Transform. This is depicted in black in figure ??. There are no
moments for this distribution; that is E[X™] does not exist for n>>1. We have done Monte Carlo samplings of size
n = 10, 50 and 100 and the corresponding empirical Distribution Functions

1 n
Fo(z) = = > Lo (2:) (364)
=1

are shown in blue, read and green respectively.

"

.. some rule could be found, according to which we ought to estimate the chance that the
probability for the happening of an event perfectly unknown, should lie between any two
named degrees of probability, antecedently to any experiments made about it;..."

An Essay towards solving a Problem in the Doctrine of Chances.
. By the late Rev. Mr. Bayes ...
3 Bayesian Inference

The goal of statistical inference is to get information from experimental observations about quantities
(parameters, models,...) on which we want to learn something, be them directly observable or not.
Bayesian inference ' is based on the Bayes rule and considers probability as a measure of the the degree
of knowledge we have on the quantities of interest. Bayesian methods provide a framework with enough
freedom to analyze different models, as complex as needed, using in a natural and conceptually simple
way all the information available from the experimental data within a scheme that allows to understand
the different steps of the learning process:

15For a gentle reading on the subject see [?]
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1) state the knowledge we have before we do the experiment;

2) how the knowledge is modified after the data is taken;

3) how to incorporate new experimental results.

4) predict what shall we expect in a future experiment from the knowledge acquired.

It was Sir R.A Fisher, one of the greatest statisticians ever, who said that "The Theory of Inverse
Probability (that is how Bayesianism was called at the beginning of the XX century) is founded upon
an error and must be wholly rejected" although, as time went by, he became a little more acquiescent
with Bayesianism. You will see that that Bayesianism is great, rational, coherent, conceptually simple,...
"even useful",... and worth to, at least, take a look at it and at the more detailed references on the subject
given along the section. At the end, to quote Lindley, "Inside every non-Bayesian there is a Bayesian
struggling to get out". For a more classical approach to Statistical Inference see [?] where most of what
you will need in Experimental Physics is covered in detail.

3.1 Elements of Parametric Inference

Consider an experiment designed to provide information about the set of parameters § = {61,...,0;}
€O C RF and whose realization results in the random sample x = {x1,22,...,2,}. The inferential
process entails:

1) Specification of the probabilistic model for the random quantities of interest; that is, state the joint
density:

p(0,x) = p(61,0a,...,0k,x1,20,...,2,); 0=€cOCRF xeX (365)
2) Conditioning the observed data (x) to the parameters () of the model:
p(0,x) = p(x|0) p(0) (366)

3) Last, since p(0,x) = p(x|0) p(f) = p(f|x) p(x) and
b = [ poc0)d0 = [ px10)p(6) d0 (367)

we have ( Bayes Rule) that:

) - _2x0)0(0)
/e p(x|6) p(8)do

This is the basic equation for parametric inference. The integral of the denominator does not
depend on the parameters () of interest; is just a normalization factor so we can write in a general way;

(368)

p(0]x) o< p(x|0) p(6) (369)
Let’s see these elements in detail:
p(0|x) :  Thisisthe Posterior Distribution that quantifies the knowledge we have on
the parameters of interest 6 conditioned to the observed data x (that is, after

the experiment has been done) and will allow to perform inferences about
the parameters;
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p(x|0) :  The Likelihood; the sampling distribution considered as a function of the
parameters 6 for the fixed values (already observed) x. Usually, it is writ-
ten as £(0; x) to stress the fact that it is a function of the parameters.

The experimental results modify the prior knowledge we have on the pa-
rameters 6 only through the likelihood so, for the inferential process, we
can consider the likelihood function defined up to multiplicative factors
provided they do not depend on the parameters.

p(0) : This is a reference function, independent of the results of the experiment,
that quantifies or expresses, in a sense to be discussed later, the knowledge
we have on the parameters 6 before the experiment is done. It is termed
Prior Density although, in many cases, it is an improper function and there-
fore not a probability density.

3.2 Exchangeable sequences

The inferential process to obtain information about a set of parameters € © of a model X ~p(x|6)
with X €Qx is based on the realization of an experiment e(1) that provides an observation {z;}. The
n—fold repetition of the experiment under the same conditions, e(n), will provide the random sample
x = {x1,%2,...,z,} and this can be considered as a draw of the n-dimensional random quantity X =
(X1, Xo,...,X,) where each X;~p(z|0).

In Classical Statistics, the inferential process makes extensive use of the idea that the observed
sample is originated from a sequence of independent and identically distributed (iid) random quantities
while Bayesian Inference rests on the less restrictive idea of exchangeability [?]. An infinite sequence

of random quantities {X;}2°, is said to be exchangeable if any finite sub-sequence { X1, Xo,..., X, }
is exchangeable; that is, if the joint density p(x1, xo, ..., x,) is invariant under any permutation of the
indices.

The hypothesis of exchangeability assumes a symmetry of the experimental observations {1, z2,
..., &y} such that the subscripts which identify a particular observation (for instance the order in which
they appear) are irrelevant for the inferences. Clearly, if {X;, Xs,...X,,} are iid then the conditional
joint density can be expressed as:
n
p(r1, 22, .. xy) = H p(x;) (370)
i=1
and therefore, since the product is invariant to reordering, is an exchangeable sequence. The converse
is not necessarily true '° so the hypothesis of exchangeability is weaker than the hypothesis of indepen-
dence. Now, if {X;}?°, is an exchangeable sequence of real-valued random quantities it can be shown
that, for any finite subset, there exists a parameter /€ ©, a parametric model p(z|#) and measure dy(6)
such that '7:

p(x, @, ... 2y) = /@Hp(miﬂ)du(ﬁ) (371)
=1

Thus, any finite sequence of exchangeable observations is described by a model p(z|) and, if du(f) =
p(0)db, there is a prior density p(6) that we may consider as describing the available information on the

"It is easy to check for instance that if X, is a non-trivial random quantity independent of the X, the sequence {Xo +
X1, X0+ Xo,...Xo + X, } is exchangeable but not iid.

"This is referred as De Finetti’s Theorem after B. de Finetti (1930s) and was generalized by E. Hewitt and L.J. Savage in
the 1950s. See [?].
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parameter 6 before the experiment is done. This justifies and, in fact, leads to the Bayesian approach in
which, by formally applying Bayes Theorem

p(x,0) = p(x|0) p(0) = p(0]x) p(x) (372)

we obtain the posterior density p(f|x) that accounts for the degree of knowledge we have on the pa-
rameter after the experiment has been performed. Note that the random quantities of the exchangeable

sequence { X1, Xo, ..., X,,} are conditionally independent given 6 but not iid because
pap) = [ paforan) | ] [ sz, G73)
© i(A)=1"X
and
n
p(z1, T2y .., Ty) # H p(x;) (374)

=1

There are situations for which the hypothesis of exchangeability can not be assumed to hold. That
is the case, for instance, when the data collected by an experiment depends on the running conditions
that may be different for different periods of time, for data provided by two different experiments with
different acceptances, selection criteria, efficiencies,... or the same medical treatment when applied to
individuals from different environments, sex, ethnic groups,... In these cases, we shall have different
units of observation and it may be more sound to assume partial exchangeability within each unit (data
taking periods, detectors, hospitals,...) and design a hierarchical structure with parameters that account
for the relevant information from each unit analyzing all the data in a more global framework.

NOTE 5: Suppose that we have a parametric model p; (x|6) and the exchangeable sample x; = {x1, 2,
..., &y} provided by the experiment e;(n). The inferences on the parameters 6 will be drawn from the
posterior density p(0|x1)xp1(x1|0)p(0). Now, we do a second experiment ez(m), statistically indepen-
dent of the first, that provides the exchangeable sample xo = {11, Zn+2, - - -, Lntm } from the model
pa(x|0). Tt is sound to take as prior density for this second experiment the posterior of the first including
therefore the information that we already have about # so

p(0]x2)ocpa (x2]0)p(0]x1) ocp2 (x2|0)p1 (x1]0)p(0). (375)

Being the two experiments statistically independent and their sequences exchangeable, if they have the
same sampling distribution p(x|6) we have that p1(x1|0)p2(x2]0) = p(x|0) where x = {x1,x2} =
{z1,.. ., Tn, Tnt1, ..., Tntm} and therefore p(0|x2) x p(x|0) p(6). Thus, the knowledge we have on
including the information provided by the experiments e;(n) and e3(m) is determined by the likelihood
function p(x|#) and, in consequence, under the aforementioned conditions the realization of e;(n) first
and eo(m) after is equivalent, from the inferential point of view, to the realization of the experiment
e(n+m).

3.3 Predictive Inference

Consider the realization of the experiment e;(n) that provides the sample x = {z1,z2,...,2,} drawn
from the model p(x|f). Inferences about €© are determined by the posterior density

p(f]x) o< p(x|6)7(6) (376)
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Now suppose that, under the same model and the same experimental conditions, we think about
doing a new independent experiment ez(m). What will be the distribution of the random sample

y ={y1, 92, ..., Ym} not yet observed? Consider the experiment e(n + m) and the sampling density
p(0,x,y) = p(x,y]0) 7(6) 377)
Since both experiments are independent and iid, we have the joint density
p(x,yl0) = p(x[6) p(yl6) — p(0,x,y) = p(x|0) p(y|0) =(0) (378)

and integrating the parameter 6 € ©:
p(y,x) = plylx) p(x) = /@p(yl9)p(x9)ﬂ(9)d9 = p(x) /@p(ylﬂ)p(GIX) do (379)
Thus, we have that

p(ylx) = /@ p(y19) p(61x) db (380)

This is the basic expression for the predictive inference and allows us to predict the results y of
a future experiment from the results x observed in a previous experiment within the same parametric
model. Note that p(y|x) is the density of the quantities not yet observed conditioned to the observed
sample. Thus, even though the experiments e(y) and e(x) are statistically independent, the realization
of the first one (e(x)) modifies the knowledge we have on the parameters 6 of the model and therefore
affect the prediction on future experiments for, if we do not consider the results of the first experiment or
just don’t do it, the predictive distribution for e(y) would be

py) = /@ p(y|0) 7(0) do (381)

It is then clear from the expression of predictive inference that in practice it is equivalent to consider
as prior density for the second experiment the proper density m(0) = p(f|x). If the first experiment
provides very little information on the parameters, then p(f|x) ~ () and

p(ylx) =~ /@ p(y|6) (0) d8 ~ p(y) (382)

On the other hand, if after the first experiment we know the parameters with high accuracy then, in
distributional sense, < p(f|x), - >~< §(6p),- > and

p(ylx) =< d(60),p(y10) >= p(ylbo) (383)

3.4 Sufficient Statistics
Consider m random quantities { X7, Xo, ..., X, } that take values in 1 X. . .x 2, and a random vector
T @ Qx...xQy, — RF) (384)

whose k(m)<m components are functions of the random quantities {X;}",. Given the sample
{x1,29,...,2m}, the vector t = ¢(x1,...,2,,) is a k(m)— dimensional statistic. The practical in-
terest lies in the existence of statistics that contain all the relevant information about the parameters
so we don’t have to work with the whole sample and simplify considerably the expressions. Thus, of
special relevance are the sufficient statistics. Given the model p(x1, z2, ..., 2,|0), the set of statistics
t =t(z1,...,2m) is sufficient for 0 if, and only if, Vm>1 and any prior distribution 7 () it holds that

p(0|x1, 22, ..., xm) = p(O|t) (385)
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Since the data act in the Bayes formula only through the likelihood, it is clear that to specify the posterior
density of § we can consider

p(B|z1, 22, ..., xm) = p(O|t) xp(t|0) 7(0) (386)

and all other aspects of the data but ¢ are irrelevant. It is obvious however that t = {z1,..., 2} is
sufficient and, in principle, gives no simplification in the modeling. For this we should have k(m) =
dim(t) < m ( minimal sufficient statistics) and, in the ideal case, we would like that k(m) = k does not
depend on m. Except some irregular cases, the only distributions that admit a fixed number of sufficient
statistics independently of the sample size (that is, k(m) = k < m V¥m) are those that belong to the
exponential family.

Example 3.1:

1) Consider the exponential model X ~FEx(z|): and the iid experiment e(m) that provides the sample x =
{z1,...,Zm}. The likelihood function is:

p(x|0) = " =0 Tattom) — gt =0t (387)

and therefore we have the sufficient statistic t = (m, Z’:;l x;) s QX Xy, — Sy RE(m)=2

2) Consider the Normal model X ~N (x|u, o) and the iid experiment e(m) again with x = {z1,...,z,,}. The
likelihood function is:

—m 1 - 2 _ —t1 1 2
pxlp,0) o< o CXP{—%Q Z;(fﬂl - 1) } =0 CXP{—%Q(% — 2pty + p tl)} (388)

andt = (m, Y0t i, Sy 22) 1 Qpx. . xQy, — RFM=3 g sufficient statistic. Usually we shall consider
t = {m, T, s?} with

= %i and = %i (389)

the sample mean and the sample variance. Inferences on the parameters x and o will depend on t and all other
aspects of the data are irrelevant.

3) Consider the Uniform model X ~Un(z|0, #) and the iid sampling {x1, z2, . .., Z,, }. Then
t = (m, max{z;, i =1,...m}) : Qyx...xQ,, — R¥™=2 s a sufficient statistic for 6.

3.5 Exponential Family

A probability density p(z|0), with z€Q x and €O C R¥ belongs to the k-parameter exponential family
if it has the form:

k
p(z|0) = f(z)g(0) eXP{E ci ¢i(0) hi(ﬂ?)} (390)
=1
with
k
-1 = /Qz f(z) 21;[1 exp {c; ¢i(0) hi(z)} dw < oo (391)

The family is called regular if supp{ X} is independent of #; irregular otherwise.

If x = {1, x9,...,2,} is an exchangeable random sampling from the k-parameter regular expo-
nential family, then

p(xl6) = [[T_, f()] lo(®)" exp Zcmz Zlhz z;)) (392)
Pt o
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and therefore t(x) = {n,> """, hi(z;), ... > hi(z;)} will be a set of sufficient statistics.

Example 3.2: Several distributions of interest, like Poisson and Binomial, belong to the exponential family:

. g p—(u—ning)
1) Poisson Po(n|u): P(n|u) = Fe(nfl) = eF(n+1)

2) Binomial Bi(n|N,0): P(n|N,0) = ( Z ) m(1—-oN" = ( JZ ) en Inf+ (N—n) In(1-6)

However, the Cauchy Ca(x|c, §) distribution, for instance, does not because

i=1

p(z1,. ., Tmla, B) H (1 + B(= —oz)Z)_l = exp {Z log(1 + B(x; — Q)Q)} (393)
i=1

can not be expressed as the exponential family form. In consequence, there are no sufficient minimal statistics (in
other words t = {n, x1,...,z,} is the sufficient statistic) and we will have to work with the whole sample.

3.6 Prior functions

In the Bayes rule, p(0|x) o p(x|0) p(8), the prior function p(6) represents the knowledge ( degree of
credibility) that we have about the parameters before the experiment is done and it is a necessary element
to obtain the posterior density p(6|x) from which we shall make inferences. If we have faithful infor-
mation on them before we do the experiment, it is reasonable to incorporate that in the specification of
the prior density ( informative prior) so the new data will provide additional information that will update
and improve our knowledge. The specific form of the prior can be motivated, for instance, by the results
obtained in previous experiments. However, it is usual that before we do the experiment, either we have
a vague knowledge of the parameters compared to what we expect to get from the experiment or simply
we do not want to include previous results to perform an independent analysis. In this case, all the new
information will be contained in the likelihood function p(x|6) of the experiment and the prior density (
non-informative prior) will be merely a mathematical element needed for the inferential process. Being
this the case, we expect that the whole weight of the inferences rests on the likelihood and the prior
function has the smallest possible influence on them. To learn something from the experiment it is then
desirable to have a situation like the one shown in figure ?? where the posterior distribution p(f|x) is
dominated by the likelihood function. Otherwise, the experiment will provide little information com-
pared to the one we had before and, unless our previous knowledge is based on suspicious observations,
it will be wise to design a better experiment.

A considerable amount of effort has been put to obtain reasonable non-informative priors that can
be used as a standard reference function for the Bayes rule. Clearly, non-informative is somewhat mis-
leading because we are never in a state of absolute ignorance about the parameters and the specification
of a mathematical model for the process assumes some knowledge about them (masses and life-times
take non-negative real values, probabilities have support on [0, 1],...). On the other hand, it doesn’t make
sense to think about a function that represents ignorance in a formal and objective way so knowing little
a priory is relative to what we may expect to learn from the experiment. Whatever prior we use will
certainly have some effect on the posterior inferences and, in some cases, it would be wise to consider a
reasonable set of them to see what is the effect.

The ultimate task of this section is to present the most usual approaches to derive a non-informative
prior function to be used as a standard reference that contains little information about the parameters
compared to what we expect to get from the experiment '®. In many cases, these priors will not be
Lebesgue integrable ( improper functions) and, obviously, can not be considered as probability density
functions that quantify any knowledge on the parameters (although, with little rigor, sometimes we still

For a comprehensive discussion see [?]
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Fig. 6: Prior, likelihood and posterior as function of the the parameter 6. In this case, the prior is a smooth function
and the posterior is dominated by the likelihood.

talk about prior densities). If one is reluctant to use them right the way one can, for instance, define
them on a sufficiently large compact support that contains the region where the likelihood is dominant.
However, since

p(0]x) do o< p(x[0) p(0) dO = p(x|6) du(0) (394)

in most cases it will be sufficient to consider them simply as what they really are: a measure. In any case,
what is mandatory is that the posterior is a well defined proper density.

3.6.1 Principle of Insufficient Reason

The Principle of Insufficient Reason '° dates back to J. Bernoulli and P.S. Laplace and, originally, it
states that if we have n exclusive and exhaustive hypothesis and there is no special reason to prefer one
over the other, it is reasonable to consider them equally likely and assign a prior probability 1/n to each
of them. This certainly sounds reasonable and the idea was right the way extended to parameters taking
countable possible values and to those with continuous support that, in case of compact sets, becomes a
uniform density. It was extensively used by P.S. Laplace and T. Bayes, being he the first to use a uniform
prior density for making inferences on the parameter of a Binomial distribution, and is is usually referred
to as the “Bayes-Laplace Postulate”. However, a uniform prior density is obviously not invariant under
reparameterizations. If prior to the experiment we have a very vague knowledge about the parameter
0€a, b], we certainly have a vague knowledge about ¢ = 1/6 or ( = logf and a uniform distribution
for 0:

- 1
 b—ua

(0) do do (395)

1 Apparently, “Insufficient Reason” was coined by Laplace in reference to the Leibniz’s Principle of Sufficient Reason
stating essentially that every fact has a sufficient reason for why it is the way it is and not other way.
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implies that:
1
@

Shouldn’t we take as well a uniform density for ¢ or (?

() dp = — do and 7(¢)d¢ = €5 d¢ (396)

Nevertheless, we shall see that a uniform density, that is far from representing ignorance on a
parameter, may be a reasonable choice in many cases even though, if the support of the parameter is
infinite, it is an improper function.

3.6.2 Parameters of position and scale

An important class of parameters we are interested in are those of position and scale. Let’s treat them
separately and leave for a forthcoming section the argument behind that. Start with a random quantity
X ~p(x|p) with  a location parameter. The density has the form p(z|u) = f(x — u) so, taking a prior
function (1) we can write

p(x, p) dedp = [p(x|p) do] [7(p) dp] = [f(z — p) dz] [7(p) dp] (397)

Now, consider random quantity X’ = X + a with a€R a known value. Defining the new parameter
w' = p+ a we have

p(a' i) da' dp' = [p(2'|p') da'] [« (') dp'] = [f(a' — ') da'] [w(i — a) dp] (398)

In both cases the models have the same structure so making inferences on g from the sam-
ple {z1,71,...,2z,} is formally equivalent to making inferences on ' from the shifted sample
{2}, z},..., 2} }. Since we have the same prior degree of knowledge on x and 4/, it is reasonable to
take the same functional form for 7(-) and 7/ (-) so:

(' —a)dy == w(y)dy VaeR (399)
and, in consequence:

m(u) = constant (400)

If 0 is a scale parameter, the model has the form p(x|6) = 0 f(x0) so taking a prior function 7 (9)
we have that

p(z,0)dzdd = [p(x|0)dz] [7(0)dO] = [0f(x0)dx] [7(0) db] (401)
For the scaled random quantity X’ = a X with a€R™ known, we have that:
p(a’,0") da’ o' = [p(z'|0) da’] [x'(0")d0'] = [0'f(2'0') da'] [m(ab) adb)] (402)

where we have defined the new parameter 6’ = 6/a. Following the same argument as before, it is sound
to assume the same functional form for 7(-) and 7/(-) so:

m(ad)add = w(0')do’ VaeR

and, in consequence:
m(0) = = (403)
Both prior functions are improper so they may be explicited as

1
7(11,0) o 7 16(0) Lus(n) (404)
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with ©, M an appropriate sequence of compact sets or considered as prior measures provided that the
posterior densities are well defined. Let’s see some examples.

Example 3.3: The Exponential Distribution. Consider the sequence of independent observations
{z1,22,...,2,} of the random quantity X ~ FEx(z|f) drawn under the same conditions. The joint density
is

plar, @z, 2,]0) = 0" 0@ H T2 H - T0) (405)
The statistic t =n~' """ | x; is sufficient for § and is distributed as

(no)"
T'(n)

It is clear that 0 is a scale parameter so we shall take the prior function 7(f) = 1/6. Note that if we make the
change z = logt and ¢ = log # we have that

p(t0) = t" 1 exp{—nbt} (406)

n’ﬂ

" T

In this parameterization, ¢ is a position parameter and therefore 7(¢) = const in consistency with 7(6). Then, we
have the proper posterior for inferences:

p(z]0) exp{n ((¢+2) — %)} (407)

p(Olt,n) = (I?(?L; exp{—ntf} o7~ ; 0> 0 (408)

Consider now the sequence of compact sets Cy, = [1/k, k] covering R as k—o0. Then, with support on Cj, we
have the proper prior density

1 1

and the sequence of posteriors:

(nt)"
~v(n,ntk) — v(n,nt/k)

with (a, z) the Incomplete Gamma Function. It is clear that

exp{—ntd} 0" 11, () (410)

pr(0lt,n) =

lim pg(6ft,n) = p(6t,n) (411)
k—o0

Example 3.4: The Uniform Distribution. Consider the random quantity X ~ Un(z|0,¢) and the independent
sampling {x1, z2, ..., z, }. To draw inferences on 6, the statistics x5; = max{x1,x2, ...,z } is sufficient and is
distributed as (show that):

n—1

i
p(x|0) = nyTl[OﬂJ (zm) (412)

As in the previous case, 6 is a scale parameter and with the change ¢y, = log z s, ¢ = log 0 is a position parameter.
Then, we shall take 7(6) o< §~! and get the posterior density (Pareto):

-1

X
p(0lzar,n) = nan% L ps.00)(0) (413)

Example 3.5: The one-dimensional Normal Distribution. Consider the random quantity X ~N (z|u, o) and the
experiment e(n) that provides the independent and exchangeable sequence x = {1, T2, . .., T, } of observations.
The likelihood function will then be:
1
e

n 1 n
p(x|p, o) = H pailp, o) o =0 xp{— 252 Z(l'i - 1)} (414)
i=1 =1
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There is a three-dimensional sufficient statistic t = {n, , s*} where

1 < 1 <
7= ; z; and s = " 2 (z; —T)? (415)
SO we can write
1 n 2 — 2
p(xlp, o) oc — expl{=5—5 (s° + (@ —)*)} (416)

In this case we have both position and scale parameters so we take 7(j1,0) = 7(p)7(0) = o~ ! and get the proper
posterior

plps o) (el 0) w1, ) x —r expl{— 51 57 + (7~ )]} @)

202

e Marginal posterior density of o: Integrating the parameter ;,€R we have that:
+o0 n 82
o = [ ptmomduoco™ e {- 55 b 10000 @s)
—0o0

and therefore, the random quantity

n s>

7 = ?NXZ(zm— 1) (419)

e Marginal posterior density of 1: Integrating the parameter 0€[0, co) we have that:
+00 (n—7)? —n/2
p(u‘X) = / p(ILL,0|X) do (1 + 82> 1(700,00)(,“) (420)
0

so the random quantity

Vn—1(p—7)

S

T = ~ St(tln — 1) @21

It is clear that p(u, o|x)#p(u|x) p(o|x) and, in consequence, are not independent.
e Distribution of 1 conditioned to o: Since p(, o|x) = p(p|o,x) p(c|x) we have that

1
plulo,x) o<~ exp{~ 55 (- 7)) “22)

so o ~N (ufz, o/ /).

Example 3.6: Contrast of parameters of Normal Densities. Consider two independent random quantities

X1~N(z1, |p1,01) and Xo~N (22, |p2,02) and the random samplings x; = {z11,Z12,...,T1n, } and X9 =
{x21,%22, ..., Tan, } Of sizes ny and ny under the usual conditions. From the considerations of the previous
example, we can write

1 n; .
p(Xi|Mi,Ui)0<ﬁ eXP{*il (512 + (Tz‘*m)g)} ; 1=1,2 (423)

2
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Clearly, (p1, i2) are position parameters and (o1, 02) scale parameters so, in principle, we shall take the improper
prior function

1
(1,01, g, 02) = w(pa ) (p2)m(o1)w(09) o —— (424)
g1 02
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However, if we have know that both distributions have the same variance, then we may set 0 = 07 = o3 and, in
this case, the prior function will be

Ry 112,0) = g (i) (o) o (425)

Let’s analyze both cases.

e Marginal Distribution of 0; and o»: In this case we assume that 0; # o5 and we shall take the prior
7 (1,01, 2, 02) o (o109) L. Integrating iy and us we get:

—ny _—no 1 nls% n25%
p(o1,02]x1,%2) = plo1, [x1)p(02, [x2)oco; ™ 0y ™ exp s — >\ 2 + 2 (426)
i 2

Now, if we define the new random quantities

52 o1/51) nyss
7=y = (01/ 1)2 and W= 1 427)
1 (0’2/82) o1

both with support in (0, +00), and integrate the last we get we get that Z follows a Snedecor Distribution
Sn(z|na — 1,n; — 1) whose density is
(v /v2)""?

Be (11/2,15)2) L(0,00)(2) (428)

p(z|x1,X2) = Z(1/2)-1 <1 + 2,

V3

)(V1+V2)/2

e Marginal Distribution of 11; and p: In this case, it is different whether we assume that, although unknown,
the variances are the same or not. In the first case, we set 01 = 02 = o and take the reference prior 7(p1, 2, 0) =
o~ 1. Defining
A=n [S% + (fl — ,LL1)2} =+ no [8% + (Tg — '[LQ)Q:I 429)
we can write
1 1 9
p(pa, po, olx,y) pRTTESTPESY exp{— 3 AJo*} (430)
It is left as an exercise to show that if we make the transformation
w = pg — pg € (—00,+00) ; u = pa€(—o00,+o0) and z = o 2€(0,400) (431)

and integrate the last two, we get

_ _ —(n14+ngo—1)/2
ning [(T1 — Ta) — w)?
) 1 432
p(w|X1 X2)o< ( + ny+mng Ny S% + no S% ( )
Introducing the more usual terminology
2 2
2 n1 87 + no S5
= - == 433
s ny + ng — 2 ( )
we have that
_ _ —[(n14+no—2)+1]/2
ning [w— (T — Ta))?
w|xy,X2)ox (1 + 434
p(wfx1,x2) ( ny +ng 82 (ng +ng —2) 434)

and therefore the random quantity

(= p2) — (71 — )
T = S(Uny T 1/mg) 172 (435)
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follows a Student’s Distribution St(¢|v) with v = n; 4+ ny — 2 degrees of freedom.

Let’s see now the case where we can not assume that the variances are equal. Taking the prior reference
function 7(puy, pi2, 01,02) = (01 02) " we get

—(n1+1) _—(n2+1) 1 : 812 + (TZ 7/141)2 436
(1, ph2, 01, 02|X1,X2) X 0y ) eXpq — B} ;T (436)

After the appropriate integrations (left as exercise), defining w = p1 — p2 and u = po we end up with the density

— _ 2 —n1/2 — 2 —n2/2
p(w, ulxy,x2) x (1 + W) (1 + (56252u)> (437)
1 2

where integral over u€R can not be expressed in a simple way. The density

“+o00
p(w|x1,x2) x / p(w, ulx1,x2) du (438)
— 00
is called the Behrens-Fisher Distribution. Thus, to make statements on the difference of Normal means, we should
analyze first the sample variances and decide how shall we treat them.

3.6.3 Covariance under reparameterizations

The question of how to establish a reasonable criteria to obtain a prior for a given model p(x|6) that can
be used as a standard reference function was studied by Harold Jeffreys [?] in the mid XX'* century.
The rationale behind the argument is that if we have the model p(x|6) with #€QyCR"™ and make a
reparameterizations ¢ = ¢(6) with ¢(-) a one-to-one differentiable function, the statements we make
about 6 should be consistent with those we make about ¢ and, in consequence, priors should be related
by

70(0)d0 = m4(6(0)) ’ det Pg;(f)” df (439)

Now, assume that the Fisher’s matrix

1,(0) — Ex [8 logagfaﬂ&) 8log8199§w|9) ] (440)
exists for this model. Under a differentiable one-to-one transformation ¢ = ¢(6) we have that
Lj(¢) = gi’: ;ZIM(@ (441)
so it behaves as a covariant symmetric tensor of second order (left as exercise). Then, since
det [1()] = ‘ det { 09, } " et [1(6)] (442)
9o
Jeffreys proposed to consider the prior
7(6) o< [ det[I(0])"/2 (443)

In fact, if we consider the parameter space as a Riemannian manifold ( [?]) the Fisher’s matrix is the
metric tensor (Fisher-Rao metric) and this is just the invariant volume element. Intuitively, if we make
a transformation such that at a particular value ¢y = ¢(6p) the Fisher’s tensor is constant and diagonal,
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the metric in a neighborhood of ¢q is Euclidean and we have location parameters for which a constant
prior is appropriate and therefore

m(6)dé x dp = [ det [1(9)]1/2} o = w(0)do (444)

It should be pointed out that there may be other priors that are also invariant under reparameterizations
and that, as usual, we talk loosely about prior densities although they usually are improper functions.

For one-dimensional parameter, the density function expressed in terms of

¢~ / [1(0)]""* o (445)
may be reasonably well approximated by a Normal density (at least in the parametric region where the
likelihood is dominant) because I(¢) is constant and then, due to translation invariance, a constant prior
for ¢ is justified. Let’ see some examples.

Example 3.7: The Binomial Distribution. Consider the random quantity X ~Bi(x|0,n):

p(z|n,0) = < Z ) " (1 -0 F n,k€Ng; k<n (446)

with 0 < § < 1. Since E[X] = nf we have that:

2
100) = Fx [(_ 0 logge(zxm, 9))} _ 9(111_ - 447)
so the Jeffreys prior (proper in this case) for the parameter 6 is
m(0) o [0(1—0)]" /2 (448)
and the posterior density will therefore be
p(0lk,n) o OF71/2 (1 — g)nh=1/2 (449)

that is; a Be(z|k + 1/2,n — k + 1/2) distribution. Since
' de
= | ——— = 2 asin(#'/? 450)
o= [ i 7 (6'72) (
we have that # = sin?¢/2 and, parameterized in terms of ¢, I(¢) is constant so the distribution “looks” more

Normal (see figure ?7?).

Example 3.8: The Poisson Distribution. Consider the random quantity X ~Po(x|u):

x

I

) = et ——-— rEN; peR™ 451
p(zlp) = e Tetrl) TEN; pe 451)
Then, since F[X]| = u we have
9” log p(z| ) 1
so we shall take as prior (improper):
() = Mu]"? = p /2 (453)
and make inferences on p from the proper posterior density
pule) oce™ =12 (454)
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14 =

Fig. 7: Dependence of the likelihood function with the parameter # (upper) and with ¢ = 2 asin(§'/?) (lower) for
a Binomial process withn = 10 and £ = 1, 5 and 9.
that is, a Ga(z|1, z + 1/2) distribution.

Example 3.9: The Pareto Distribution. Consider the random quantity X ~Pa(z|0, z¢) with zo€ RT known and
density

0 i) 6+1
p(z|0, 1) = - (?) 1izg,00)(7) 0cR* (455)
Then,
0?log p(z|0, o) 1
1) = F _—— = — 456
- (-] - o
so we shall take as prior (improper):
m(0) oc [K(u)]'/* = 07 (457)

and make inferences from the posterior density (proper)
p(0)z,20) = v %logx (458)
Note that if we make the transformation ¢ = log x, the density becomes
p(t16, w0) = 025 €™ 1105 2 ,00) () (459)

for which @ is a scale parameter and, from previous considerations, we should take 7(#) oc #~! in consistency with
Jeffreys’s prior.
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Example 3.10: The Gamma Distribution. Consider the random quantity X ~Ga(z|«, 8) with a, 3R and

density
(sl §) = oo o P 1 (2) (460)
p(z|a, = e T oo (T
r(B) (0:2)
Show that the Fisher’s matrix is
B 604_2 70‘—1
(o, 8) = ( —al W(B) (461)

with W’ (z) the first derivative of the Digamma Function and, following Jeffreys’ rule, we should take the prior
(o, B) o™t [BY(8) — 1)/ (462)

Note that « is a scale parameter so, from previous considerations, we should take () a~L. Furthermore, if we
consider « and 3 independently, we shall get

(e, ) = m(a)m(B) cca™t [¥(8)]"/? (463)

Example 3.11: The Beta Distribution.
Show that for the Be(z|«, 3) distribution with density

I(a+pB)

T(@)T(3) (2711 — )Pt 1i(2) o, BERT (464)

p(zle, B) =
the Fisher’s matrix is given by

_(V@-T@th) W+
t0h) = ("oais” v it ) 03

with W/ (z) the first derivative of the Digamma Function.

Example 3.12: The Normal Distribution.

Univariate: The Fisher’s matrix is given by

o2 0
(o) = ( R ) (466)
SO

11, ) o [detfT(, o)/ ox (467)

However, had we treated the two parameters independently, we should have obtained

1
T2 7) = () ) ox (468)
The prior mooco ! is the one we had used in example 3.5 where the problem was treated as two one-dimensional
independent problems and, as we saw:

2

w ~Sttln—1) and Z = "o ~y2(zn—1) (469)
g

T —
with E[Z] = n—1. Had we used prior 7 xo~2, we would have obtained that Z~x?(z|n) and therefore E[Z] = n.
This is not reasonable. On the one hand, we know from the sampling distribution N (z|u, ) that E[ns?c~2] =
n — 1. On the other hand, we have two parameters (u, o) and integrate on one (o) so the number of degrees of
freedom should be n — 1.
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Bivariate: The Fisher’s matrix is given by

—2 —1
I , - (1 - 2\—1 %51 _p(o-l_UQ) ) 470
(H1,p2) = (1= p7) ( —p(or03)1 oy (470)

A e e T
I(o1,02,p) = (1 —p°)" —p*(o102)7! (2—P2)q5 —poy (471)
—poy —poy (1+p*)(1—p)!
_ I(/leﬂ?) 0
I(N17M2701a027p) - ( 0 1(0.170_27p) (472)
Form this,

1/2 1

(1, p, 01,02, p) o< | detl(py, pi2, 01,02, p)|/* = 5553 (473)

‘7102(1—P2)2

while if we consider 7(p1, p2, 01,02, p) = w(u1, po)m(o1, o2, p) We get

w(p1, o, 01,09, p) X ————— e 474
(1, p2, 01, 02, p) rroa(l = ) (474)
Problem 3.1: Show that for the density p(x|6); x€QQCR™, the Fisher’s matrix (if exists)
ol 0) 01 0
1,(0) — Bx | 218 p(x|0) dlog p(x]0) (475)

96 00,

transforms under a differentiable one-to-one transformation ¢ = ¢(f) as a covariant symmetric tensor of second
order; that is

06, 06,

Lj(¢) = 96: 06,

L (6) (476)

Problem 3.2: Show that for X~Po(z|u + b) with b€ Rt known (Poisson model with known background), we
have that I(11) = (4 b) ™! and therefore the posterior (proper) is given by:

p(plz, b) oce™WHY) (4 4 p)==1/2 477)

Problem 3.3: Show that for the one parameter mixture model p(z|A) = Ap1(x)+ (1 — A)p2(x) with p; (x)F#p2 ()
properly normalized and A € (0, 1),

_ v [T @)
IV = a3 {1 /,oo p(z|X) d} @

When pi(x) and pa(x) are "well separated”, the integral is << 1 and therefore I(\) ~ [A(1 — A)]~L. On the
other hand, when they "get closer” we can write pa(z) = p1(z) + n(z) with ffooo n(x)dx = 0 and, after a Taylor
expansion for |n(z)| << 1 get to first order that

~ > (pi(x) = p2(x))? "
I(\) ~ /_OO —p1(:1:) dr + ... 479)

independent of A. Thus, for this problem it will be sound to consider the prior w(A|a,b) = Be(\|a,b) with
parameters between (1/2,1/2) and (1,1).
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3.6.4 Invariance under a Group of Transformations

Some times, we may be interested to provide the prior with invariance under some transformations of the
parameters (or a subset of them) considered of interest for the problem at hand. As we have stated, from a
formal point of view the prior can be treated as an absolute continuous measure with respect to Lebesgue
so p(0|x) df x p(x|0) w(0) df = p(x|0) du(f). Now, consider the probability space (2, B, i) and a
measurable homeomorphism 7" : Q—(). A measure p on the Borel algebra B would be invariant by the
mapping 7 if for any AC B, we have that (T~(A)) = u(A). We know, for instance, that there is a
unique measure A on R" that is invariant under translations and such that for the unit cube ([0, 1]") = 1:
the Lebesgue measure (in fact, it could have been defined that way). This is consistent with the constant
prior specified already for position parameters. The Lebesgue measure is also the unique measure in R"
that is invariant under the rotation group SO(n) (see problem 3.5). Thus, when expressed in spherical
polar coordinates, it would be reasonable for the spherical surface S™ ! the rotation invariant prior

n—1

du(¢) = [[(singr) "7 dpy (480)
k=1
with ¢,,—1€[0, 27) and ¢;€[0, 7] for the rest. We shall use this prior function in a later problem.

In other cases, the group of invariance is suggested by the model
M : {p(X‘e), xeQ x, QGQ@} 481)

in the sense that we can make a transformation of the random quantity X—X’ and absorb the change
in a redefinition of the parameters 6—#’ such that the expression of the probability density remains
unchanged. Consider a group of transformations >’ G that acts

on the Sample Space: x—ax' =gox; geG;x, '€y

on the Parametric Space: 60— = gof; ¢€G;0,0'cQg

The model M is said to be invariant under G if VgeG and VH€Qg the random quantity X' = goX is
distributed as p(z’|0")=p(goxz|goh). Therefore, transformations of data under G will make no difference
on the inferences if we assign consistent “prior beliefs” to the original and transformed parameters. Note
that the action of the group on the sample and parameter spaces will, in general, be different. The
essential point is that, as Alfred Haar showed in 1933, for the action of the group G of transformations
there is an invariant measure x ( Haar measure; [?]) such that

flgox)du(z) = [ f(a")du(z") (482)
Qx Qx

for any Lebesgue integrable function f(x) on Qx. Shortly after, it was shown (Von Neumann (1934);
Weil and Cartan (1940)) that this measure is unique up to a multiplicative constant. In our case, the
function will be p(-|0)1g(#) and the invariant measure we are looking for is du(6)oxm(6)d6. Further-
more, since the group may be non-abelian, we shall consider the action on the right and on the left of the
parameter space. Thus, we shall have:

/ p(-1god) 71.(6) df — / p(16") 71 (8') dO’ (483)
© ©

if the group acts on the left and

/ p(-|00g) 7R (0) o = / p(10) 7R (0') dO! (484)
e ©

2In this context, the use of Transformation Groups arguments was pioneered by E.T. Jaynes [?].
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if the action is on the right. Then, we should start by identifying the group of transformations under
which the model is invariant (if any; in many cases, either there is no invariance or at least not obvious)
work in the parameter space. The most interesting cases for us are:

Affine Transformations: z—z' = gox = a + bz

Matrix Transformations: z—1’ = gox = Rx

Translations and scale transformations are a particular case of the first and rotations of the second. Let’s
start with the location and scale parameters; that is, a density

Pl o) de = = f (”C - “) da (485)
g g

the Affine group G = {g = (a,b); a€R;bER™} so 2’ = gox = a + bz and the model will be invariant
if

(Mlv OJ) = go(u,0) = (a,b)o(u,0) = (a+bu,bo) (486)

Now,
[ oClutso mutol oot dut do’ = [ pCigetn. ) muos ) didor =

= /p(-|u'70”) {melg ™ (W' o J(W 0", 0)} dp do’ =

'—a o'\ 1
= [oeutse) {me (B54.2) 1} it ao (487)
and this should hold for all (a,b)€Rx R™ so, in consequence:

1
dpr(pu,0) = mp(p,0) dpdo o< — dupdo (488)
o

However, the group of Affine Transformations is non-abelian so if we study the the action on the left,
there is no reason why we should not consider also the action on the right. Since

(:ulv 0/) = (N’» U)Og = (:uv J>O(a7 b) = (,LL +ao, bU) (489)

the same reasoning leads to (left as exercise):
1
dur(p, o) = mr(p, o) dpdo o< — dudo (490)
g

The first one (77,) is the one we obtain using Jeffrey’s rule in two dimensions while 7, is the one we get
for position and scale parameters or Jeffrey’s rule treating both parameters independently; that is, as two
one-dimensional problems instead a one two-dimensional problem. Thus, although from the invariance
point of view there is no reason why one should prefer one over the other, the right invariant Haar prior
gives more consistent results. In fact ( [?], [?]), a necessary and sufficient condition for a sequence of
posteriors based on proper priors to converge in probability to an invariant posterior is that the prior is
the right Haar measure.

Problem 3.4: As a remainder, given a measure space (2,3, 1) a mapping 7' : Q@ — € is measurable if
T~Y(A) € Bforall A € B and the measure y is invariant under T' if u(T~1(A)) = p(A) for all A € B.

Show that the measure du(d) = [0(1 — 0)]71/2 df is invariant under the mapping 7' : [0, 1]—0, 1] such that
T :0—6 =T(0) = 46(1 — 6). This is the Jeffrey’s prior for the Binomial model Bi(x|N, 0).
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Problem 3.5: Consider the n-dimensional spherical surface S,, of unit radius, x€S5,, and the transformation
x’ = Rx€S,, where ReSO(n). Show that the Haar invariant measure is the Lebesgue measure on the sphere.

Hint: Recall that R is an orthogonal matrix so RY = R™!; that | detR| = 1 so J(x/;x) = |0x/0x)| =
|OR™x'/0x')| = | detR| = 1 and that x"'x’ = x'x = 1.

Example 3.12: Bivariate Normal Distribution. Let X = (X7, X5)~N(x|0, ¢) with ¢ = {01, 02, p}; that is:
pixi6) = (o)~ a7 exp{ - L (x' 271w} o)
with the covariance matrix
> = ( p;‘iQ "‘;1%(’2 ) and det[X] = 0202(1 — p)? (492)

Using the Cholesky decomposition we can express X! as the product of two lower (or upper) triangular matrices:

1
1 2 _ oo 0
2 a2, AT ) A a7 | (493)
et[3] po102 1 o1/1—p2 02\/1—/)2
For the action on the left:
M_T_<Z 2) ja,b>0 — J(AA) = d’e (494)
and, in consequence
1
m(adly, aay + bagy, capy) ac? = m(ayy, ayy,ahy) — (@l ady, agy) 2 (495)
ayy G
and det[¥] = (det[E71])~! = (det[A])~2. Thus, in the new parameterization § = {ay1,az1, a2}
1
p(x|0) = (27)" | det[A]| exp {f 3 (x*A'A X)} (496)
Consider now the group of lower triangular 222 matrices
Gl = {T S LTQIQ ) 71” > 0} (497)
Since T~ 1€, inserting the identity matrix I = TT~! = T~!T we have: action
On the Left On the Right
Tox—Tx = x’ xoT—-T 'x =x'
[x! (THTH) ) A'A(T'T) x| [x' ((T*)~'T!) A'A (TT!)x|
M=T M=T71
Then
1
Mx=x ; x=M"1x ; x"=x'M! and dx = de/ (498)
SO
_1 | det[A]] 1/ _ _
l0:2 1|7 _7(/ AMltAMl /) 4
pOe10) = (2w~ e exp g — g (X (AMT) (AMT)x (499)
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and the model is invariant under G if the action on the parameter space is
G:A—A" = AM! ;. A =AM ; det[A] = det[A’] det[M] (500)
SO
v -1 l 1 NN,
p(x'|0") = (2r)7" | det[A']| exp -3 (x A”A x) (501)
Then, the Haar equation reads
/p(o|A’)7r(A')dA' = /p(o|goA)7r(A)dA = /p(o\A')ﬂ(A'M) J(A'; A)dA
e e e
and, in consequence, YMeG
7(A'M) J(A’; A) daydaby,dayy = T(A') da},dab,dab, (502)
For the action on the left:
a 0 / 2
M=T= b e ;a,b>0 — J(A;A) = a’c (503)

and, in consequence

1

m(adly, aay; + bagy, cahy) a’e = m(ayy, dyy,ahy) — w(ahy, ahy, ahy) 2, (504)
ayy G
For the action on the right:
M=T"= o 0 — J(AA) = (ac?)! (505)
B —\ =blae)7t 7t T
and, in consequence
al; cah, —baby al 1 1
ﬂ(%v%?%)@ = m(ahy, a9, ay) — m(ahy, g, a,) < )’ (506)
In terms of the parameters of interest {01, 02, p}, since
1
da11da21da22 = W da‘ld()'dp (507)
we have finally that for invariance under Gj:
h (01,09,p) = S and 7 (01,09,p) = o (508)
A 7102(1 = )/ e o3(1—p?)
The same analysis with decomposition in upper triangular matrices leads to
wi(o1,02,p) = S and 7wg(o1,092,p) = o (509)
o109(1 — p?)3/2 o (1—p?)

As we see, in both cases the left Haar invariant prior coincides with Jeffrey’s prior when {1, ©2} and {01, 02, p}
are decoupled.

At this point, one may be tempted to use a right Haar invariant prior where the two parameters o; and o9
are treated on equal footing
1

_ 510
o102(1 — p?) 10

7T(O'1, 027p) =

Under this prior, since the sample correlation

. 21 — T1) (2 — T2) (511)

(Zl(mlz —7)? (o — 52)2) 1/2
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is a sufficient statistics for p, we have that the posterior for inferences on the correlation coefficient will be

p(plx) o (1= p )" D2 F(n—1,n—1,n-1/2;(1+rp)/2) (512)
with F'(a, b, ¢; z) the Hypergeometric Function.
Example 3.13: If /€O — gof = ¢(6) = ¢’'€O with ¢(0) is a one-to-one differentiable mapping, then

ol )1 _ ol (1 (0 M r_
[ pteltmnas = [ pioipyatoo |20 a

/ p(o]6)dpa(0)
©

/ p(ol0)n(8')d0" = / p(ol8")du(®’) (513)
€] e

and therefore, Jeffreys’ prior defines a Haar invariant measure.

3.6.5 Conjugated Distributions

In as much as possible, we would like to consider reference priors 7(0|a, b, ...) versatile enough such that
by varying some of the parameters a, b, . . . we get diverse forms to analyze the effect on the final results
and, on the other hand, to simplify the evaluation of integrals like:

p(x) = / p(z0)p(6)d8  and  plylz) = / p(y]6)p(0]) do (514)

This leads us to consider as reference priors the Conjugated Distributions [?].

Let S be a class of sampling distributions p(x|6) and P the class of prior densities for the parameter
0. If

p(@lx)eP  for all p(z|f)eS and p(f)eP (515)

we say that the class P is conjugated to S. We are mainly interested in the class of priors P that have the
same functional form as the likelihood. In this case, since both the prior density and the posterior belong
to the same family of distributions, we say that they are closed under sampling. It should be stressed
that the criteria for taking conjugated reference priors is eminently practical and, in many cases, they
do not exist. In fact, only the exponential family of distributions has conjugated prior densities. Thus,
if x = {1, z2,...,2,} is an exchangeable random sampling from the k-parameter regular exponential
family, then

k n
p(x16) = f(x)g(8) expq > ¢; ¢;(6) (Z hj(%‘)) (516)
j=1 i=1
and the conjugated prior will have the form:
1 k
m(0]7) = K0 [9(0)]™ exp ; cj $(0) 7 (517)
where €0, 7 = {79, 71,..., 7%} the hyperparameters and K(7) < oo the normalization factor so

Jo ™(6|7)df = 1. Then, the general scheme will be *':

1) Choose the class of priors 7(6|7) that reflect the structure of the model,
2) Choose a prior function 7(7) for the hyperparameters;

2'We can go an step upwards and assign a prior to the hyperparameters with hyper-hyperparameters,...
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3) Express the posterior density as p(6, 7|x)oxp(x|0) 7w (0|7)7(7);
4) Marginalize for the parameters of interest:

(0195 | plxl8)n(6l)m(r)ar (518)
o
or, if desired, get the conditional density

p(x,0,7) _ px|0)m(0]7)
p(x,7) p(x|7)

p(f]x,7) = (519)

The obvious question that arises is how do we choose the prior 7(¢) for the hyperparameters.
Besides reasonableness, we may consider two approaches. Integrating the parameters 6 of interest, we
get

p(1,%x) = 7(7) /@p(XW)W(@lf) df = (1) p(x|7) (520)

so we may use any of the procedures under discussion to take 7(7) as the prior for the model p(x|7) and
then obtain

(0) :/Q w(0|7) 7(T) dr (521)

The beauty of Bayes rule but not very practical in complicated situations. A second approach, more ugly
and practical, is the so called Empirical Method where we assign numeric values to the hyperparameters
suggested by p(x|7) (for instance, moments, maximum-likelihood estimation,...); that is, setting, in a
distributional sense, 7(7) = 0.+ so < 7(7),p(0,%x,7) >= p(6,%,7*). Thus,

p(Olx, 77) o< p(x|0)7(6]7") (522)

Obviously, fixing the hyperparameters assumes a perfect knowledge of them and does not allow for
variations but the procedure may be useful to guess at least were to go.

Last, it may happen that a single conjugated prior does not represent sufficiently well our beliefs.
In this case, we may consider a k-mixture of conjugated priors

k
w0, ) = Y wim(0]7) (523)

i=1
In fact [?], any prior density for a model that belongs to the exponential family can be approximated
arbitrarily close by a mixture of conjugated priors.
Example 3.14: Let’s see the conjugated prior distributions for some models:
e Poisson model Po(n|u): Writing

e M Mn e—(,u/—nbg ®)
I'(n+1)  T(n+1)

p(nlp) = (524)

it is clear that the Poisson distribution belongs to the exponential family and the conjugated prior density for the
parameter s is

m(p|1, T2) oc e T8 o G|y, 7o) (525)
If we set a prior 7(71, 72) for the hyperparameters we can write

p(n, p, 71, 72) p(n|p) ©(p|mi, 72) = m(71,72) (526)
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and integrating u:

T 2
p(n,11,72) = { (;(;;—2) a +77-_11)n+72 } w(11,72) = p(n|r1, m2) 7(T1,72) (527)
e Binomial model Bi(n|N,#): Writing
P(”|N» 0) _ N " (1 _ Q)an _ N enlog@«k(an) log (1-0) (528)
n n

it is clear that it belong to the exponential family and and the conjugated prior density for the parameter 6 will be:
m(0|m1,72) = Be(r|m1,72) (529)

e Multinomial model Let X = (X3, X3, ..., X)~Mn(x|0); that is:

k ezi XiEN, Zle Xz =N
X~p(x[0) = Tn+1) [[ 57— (530)
A (s + 1) k
i=1 6;€0,1], > .6, =1
The Dirichlet distribution Di(6]a):
k a=(a,a,...,a), o >0, Zleai:a()
7(0la) = D(a) [] 05" (531)

-1
k
D(a) = T(ao) [IT, Ta)]
is the natural conjugated prior for this model. It is a degenerated distribution in the sense that

k—1 k-1 7oxl
7(0la) = D(a) [H 9?,.,1] [1 - Ze} (532)

=1

The posterior density will then be O~Di(6|x + «) with

' ‘ E[6;1(6;; — E[9;
El9;] = Tit+ o and  V[0;,60;] = [0:](6:; ) (533)
n—+ap ' n+ap+1
The parameters « of the Dirichlet distribution Di(6|«) determine the expected values E[;] = «a;/ap.

In practice, it is more convenient to control also the variances and use the Generalized Dirichlet Distribution
GDi(0|a, B):

Yi

k—1 i
F 3 3 o —
(0], 8 FO‘+5 ot |1-3 0 (534)
i=1 j =
where:
0<0; <1, Y 6;<1, O,=1-> 0 (535)
. 4  Bi— i1 = Biyr; i=1,2,.. k=2
a; >0, B; >0, and %{5k—1—1; i k1 (536)
When §; = a;4+1 + Bi+1 it becomes the Dirichlet distribution. For this prior we have that
Q; a; + 04
El0;] = LS d VI[4,,0;] = Ef;] | ———2L-T, — E[b; 537
6] = s Vi) = Bl (252 r - ) 3
where
i—1 3; i—1 8 41
S; = J and T; = -0 (538)
o; + B H1aj+[3’j+1

with S; = T7 = 1 and we can have control over the prior means and variances.
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3.6.6 Probability Matching Priors

A probability matching prior is a prior function such that the one sided credible intervals derived from
the posterior distribution coincide, to a certain level of accuracy, with those derived by the classical
approach. This condition leads to a differential equation for the prior distribution [?], [?]. We shall
illustrate in the following lines the rationale behind for the simple one parameter case assuming that
the needed regularity conditions are satisfied. Consider then a random quantity X ~p(z|#) and an iid
sampling * = {x1, 2, ..., z,} with 0 the parameter of interest. The classical approach for inferences
is based on the the likelihood

p(x|0) = p(x1, 22, .. .2al0) = [] plil6) (539)
=1

and goes through the following reasoning:

1) Assumes that the parameter 6 has the true but unknown value 6 so the sample is actually drawn
from p(z|0);
2) Find the estimator 6,,,(x) of 6 as the value of 6 that maximizes the likelihood; that is:

O = max{p(x|0)} — (8111]3(:0@) =0 (540)
0 00 0,

3) Given the model X ~p(x|6p), after the appropriate change change of variables get the distribution
p(0m|6p) of the random quantity 6,, (X1, X2, ...X,,) and draw inferences from it.

The Bayesian inferential process considers a prior distribution 7(#) and draws inferences on 6 from the
posterior distribution of the quantity of interest

p(flz) o p(x|0) 7 (0) (541)

Let’s start with the Bayesian and expand the term on the right around 6,,,. On the one hand:

p(xld) 1 (321np(w|9)) 92, 1 <5'31np(939)> 3
1 = (EEEETN) -0, o (ZEEEEY (g, )34 (542
Yol 2\ e ), OO (T ), OO G
Now,
1P lp(zd) 1 g~ P(=Inp(@ild)) nooo 9*(~Inp(z)0))] _
n 07 ni& 06° B [ 96 ] =1 )

SO we can substitute:

(PR = g wa (TREED) (2O
Om Om Om

062 063 06
to get
nl(6,) _ 2
p(alo) = mp(El0) o g (0= Om) (1 _r (‘W> (0 — 0,)3 + ) (545)
3! 00 0,
On the other hand:
. L@,
7(0) = 7(0p) (1 + (71- 8 a0 >9m 0 —0m) + ) (546)

256



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICS

so If we define the random quantity 7" = /nI(6,,)(60 — 6,,) and consider that

oI(0 or-1/2
1—3/2(0)% = —2—; (547)

we get finally:

_ exp(—t?/2) 1 [ 17Y2(6) o (6) 1 {0112

Let’s now find

+0(i)) (548)

P(T<zlz) = / p(t|x)dt (549)
— 00
Defining
Z(@) = —— e T2 and P(z) = / ’ Z(t)dt (550)
V2T PO
and considering that
/ Z(t)tdt = —Z(z) and / Z) 3 dt = —Z(2) (2* +2) (551)
—0oQ —0oQ
it is straight forward to get:
Z(2)

P(T<z|x) = P(z) —

+ 0(%) (552)

I-172(0) on(6) +22+2 or-1/2
n(0) o0 ) 3 00 ).

From this probability distribution, we can infer what the classical approach will get. Since he will
draw inferences from p(x|fy), we can take a sequence of proper priors 7 (6]6p) for k = 1,2, ... that
induce a sequence of distributions such that

Jn

limy 00 < mx(0]60), p(2|0) >= p(z|6o) (553)

In Distributional sense, the sequence of distributions generated by

k
T(0]00) = 5 Loo-1/k00+1/K k=1,2,... (554)

converge to the Delta distribution dg, and, from distributional derivatives, as k—oo,

d ~1/2 _ d 1) o oI~12(0))
< gk(0160), I775(0) > = — <m(0]00), 25 I 7(0) > = — | —— 0 (555)
0

But 6y = 0, + O(1/+/n) so, for a sequence of priors that shrink to y~6,,,

2 +1 (91712
3 Rl
Om

For terms of order O(1/+/n) in the equations (1) and (2) to be the same, we need that:
~1/2
( 1 19 ag)@) - <8Iae ) 557)
1(6) m(0) o o
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and therefore
m(0) = I'/%(6) (558)

that is, Jeffrey’s prior. In the case of n-dimensional parameters, the reasoning goes along the same lines
but the expressions and the development become much more lengthy and messy and we refer to the
literature.

The procedure for a first order probability matching prior [?], [?] starts from the likelihood
p(l‘l, Lo, .. .I‘n|91, 92, .. Qp) (559)
and then:

1) Get the Fisher’s matrix I(61, 05, .. .0,) and the inverse I~ (61, 0o, . ..0,);

2) Suppose we are interested in the parameter ¢ = t(6;, 62, ...0),) a twice continuous and differen-
tiable function of the parameters. Define the column vector

ot ot at\"
Vt—<891,892,...,89p) (560)

3) Define the column vector

v so that =1 (561)
T VI T
4) The probability matching prior for the parameter ¢t = ¢(@) in terms of 0y, 6>, .. .0, is given by the
equation:

> o (6)7(0)] = 0 (562)
k=1

Any solution (61, 62, . . .6,) will do the job.

5) Introduce ¢ = (@) in this expression, say, for instance 6; = 61 (t, 02, .. .6,), and the corresponding
Jacobian J(t,62,...0,). Then we get the prior for the parameter ¢ of interest and the nuisance
parameters 0y, . . .0, that, eventually, will be integrated out.

Example 3.15: Consider two independent random quantities X; and X such that
We are interested in the parameter ¢ = 1 /0 so setting p = uo we have the ordered parameterization {t, 1 }. The
joint probability is

ni, no

P - P P — o1+ p2) M1 fa 564
(n1, nalp1, 12) (ni|p1) P(nalpe) = e Tlmr + )0y +1) (564)

from which we get the Fisher’s matrix

Wi, ji2) = ( - /Om ) and T (g, o) = ( o 32 ) (565)

We are interested in the parameter ¢ = 1 /2, @ twice continuous and differentiable function of the param-
eters, so

ot ot \ " _ o\ T .
Vilp, p2) = (am’ %) = (uy" —mps?)” = ( _;‘12“2_2 ) (566)
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Therefore:
—1
v, = ( Hittz ) §— vl rty, = Ml e (567)
— 1y Ha
v, ( (pap2) /2 (py + po) /2 )
= —— = 568
T VIV, —(pap2)'? (1 + p2) =2 (568)

so that nT Iy = 1. The probability matching prior for the parameter ¢ = y; /12 in terms of p11 and po is given by
the equation:

> 8% [ (1) (1)) = 0 (569)
k=1

s, if (g1, o) = (p1p2) /% (1 + pa)~'/2, we have to solve

0 0
E [, p) o, p2) = Oa [, po) m(pa, o) (570
Any solution will do so:
- VH1 2
7, p2) oc f (i, po) = S —= (57D
V12
Substituting (11 = tus and including the Jacobian J = uo we have finally:
141
m(t, p2) o< /12 — (572)
The posterior density will be:
p(t, p2|na, n2) ocp(na, nalt, po)m(t, p2) o eH2(lH D)1/ (1+ )12 g2t (573)

and, integrating the nuisance parameter p2€[0, 00), we get the posterior density:

tn1*1/2
p(tlni,na) = Ni(l o (574)
with N7t = B(ny +1/2,n3 + 1/2).
Example 3.16: Gamma distribution. Show that for Ga(z|a, 3):
aﬁ —az ,,B—1

the probability matching prior for the ordering
o {B.a}ism(a,B) =52 [ VAV(E) 1]
o {a.B}ism(a,B) = [a7 VU(B)| VBV(H) 1

to be compared with Jeffrey’s prior 73 (a, ) = a~'1/BY/(3) — 1 and Jeffrey’s prior when both parameters are
treated individually 7{, | (o, B) = o=/’ (B)

Example 3.17: Bivariate Normal Distribution.

For the ordered parameterization p, o1, 02: the Fisher’s matrix (see example 3.12) is:

1+p)A=-p)"" —poy! —poy !
I(p,01,05) = (1—p*)7" —po;i (2-p*o;? —p*(0102)"! (576)
—poy —p*(0109)™ " (22— p?)oy
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and the inverse:

L[ 20=p%)? o1p(1=p?) o2p(1—p)
I Yp,01,00) = = | o1p(1—p?) o2 p2o10y (577)
aap(l=p?)  pPoios a3
Then
20 0 0
2 7 (1l = 02 — —_ =0 578
2 (=) + o] + (o 7)
for which
( ) . (579)
m(o1,00,p) = ————~
DO (1 )
is a solution.
Problem 3.6: Consider
inh[o(b — 1
X ~plzla,bo) = 20 [o(b— a)] 10,00 () (580)

2(b—a)  cosh[o(z — a)]cosh[o(b— z)]

where a < beR and 0€(0, c0). Show that

_b+ta

Blx] = 5

and Viz] = (581)

12 + 1202

and that, for known ¢ >>, the probability matching prior for a and b tends to ,,(a,b)~(b — a)~'/2. Show
also that, under the same limit, 7, (8)~0~1/2 for (a,b) = (=6, 6) and (a,b) = (0,6). Since p(x|a,b, o) =5
Un(x|a, b) discuss in this last case what is the difference with the example 3.4.

3.6.7 Reference Analysis

The expected amount of information ( Expected Mutual Information) on the parameter 6 provided by &
independent observations of the model p(x|0) relative to the prior knowledge on € described by 7(0) is

Ie(k), 7(0)] = / c@d0 [ plzelo) 1og PO gy (582)
© Qx m(0)
where z;, = {x1,...,x}. If limy_,o I [e(k), 7(6)] exists, it will quantify the maximum amount of

information that we could obtain on @ from experiments described by this model relative to the prior
knowledge 7(6). The central idea of the reference analysis [?], [?] is to take as reference prior for
the the model p(x|0) that which maximizes the maximum amount of information we may get so it
will be the Iess informative for this model. From Calculus of Variations, if we introduce the prior
7*(0) = w(f) + en(f) with w(0) an extremal of the expected information 7 [e(k), w(#)] and n(€) such
that

/ﬂ(&)d@ = /w*(&)d@ =1 — /n(ﬁ)dH:O (583)
e} e e}
it is it is easy to see (left as exercise) that
) o exp{ [ o) tog p(0lm) da b = 500 (584
X

This is a nice but complicated implicit equation because, on the one hand, fx(#) depends on 7(6) through
the posterior p(f|zy) and, on the other hand, the limit k— oo is usually divergent (intuitively, the more
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precision we want for 6, the more information is needed and to know the actual value from the experiment
requires an infinite amount of information). This can be circumvented regularizing the expression as

()
7(0) o 7(6p) klggo Fo(00)

with 6y any interior point of © (we are used to that in particle physics!). Let’s see some examples.

(585)

Example 3.18: Consider again the exponential model for which¢ = n=! 3" | «; is sufficient for 6 and distributed
as

(n6)"
I(n)

Taking 7(6) = 1(9,0c)(¢) we have the proper posterior

p(t|0) = t" 1 exp{—nft} (586)

(nt)”"‘l

™0 = 1o

exp {—ndt} 6" (587)

Then log 7*(0|t) = —(nd)t + nlogf + (n+1)logt + ¢g1(n) and

£a(0) = exp{ /Q p(t|0) log 7 (0]t) dt} - 922") — w(0) o< 7(0) lim J{:l((;o)) x % (588)

Example 3.19: Prior functions depend on the particular model we are treating. To learn about a parameter, we
can do different experimental designs that respond to different models and, even though the parameter is the same,
they may have different priors. For instance, we may be interested in the acceptance; the probability to accept an
event under some conditions. For this, we can generate for instance a sample of N observed events and see how
many (x) pass the conditions. This experimental design corresponds to a Binomial distribution

N
T

p(z|N, ) = ( ) 6% (1 —g)N-* (589)
with = {0,1,..., N'}. For this model, the reference prior (also Jeffrey’s and PM) is 7 () = 6~ /2(1 — §)~1/2
and the posterior §~Be(f|z + 1/2, N — x 4+ 1/2). Conversely, we can generate events until r are accepted and

see how many (z) have we generated. This experimental design corresponds to a Negative Binomial distribution
z—1 I T—r
alrdy = (171 ) oo (590)

where = r,r +1,... and r > 1. For this model, the reference prior (Jeffrey’s and PM too) is 7(6) = 6~ 1(1 —
6)~1/2 and the posterior ~Be(f|r, z — r + 1/2).

Problem 3.7: Consider

1) X ~ Po(z|0) = exp{fe}% and the experiment e(k) id {z1,22,... 21} Take 7°(6) = 1(0,00)(0),

and show that

. fi(0) —1/2
0 o) 1 0 591
w(0) o< 700 Jim 55 e
2) X ~Bi(z|N,0) = ( ];[ ) 6% (1 — 0)N—* and the experiment e(k) il {z1,29,...21}. Take
7*(0) o011 — 0)°~110,1)(A) with a,b > 0 and show that
. fx(9) —1/2 —1/2
0) o m(fy) lim x 0 1-6)~Y 592
m(0) o< m(fo) lim 72 (60) (1-0) (592)
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(Hint: For 1) and 2) consider the Taylor expansion of log I'(z, -) around E|[z] and the asymptotic behavior of the
Polygamma Function U™ (2) = @, 2™ + apy12~ ") + ).

3) X ~Un(x|0,0) and the iid sample {x1,2,...x}}. For inferences on 6, show that f;, = 6~ 'g(k) and in
consequence the posterior is Pareto Pa(0|x s, n) with 3 = max{x1, za, ...z} the sufficient statistic.

A very useful constructive theorem to obtain the reference prior is given in [?]. First, a permissi-
ble prior for the model p(x|0) is defined as a strictly positive function 7 () such that it renders a proper
posterior; that is,

VeeQx /p(x|0)7r(9) df < oo (593)
©

and that for some approximating sequence O;,CO; limy_,,, ©r = ©, the sequence of posteriors
i (0]x)xp(x|0) 1k (0) converges logarithmically to p(f|x)ocp(x|6)7(0). Then, the reference prior is
just a permissible prior that maximizes the maximum amount of information the experiment can pro-
vide for the parameter. The constructive procedure for a one-dimensional parameter consists on:

1) Take 7*(6) as a continuous strictly positive function such that the corresponding posterior

p(zx|0) 7(6)
(0 Zi) =
) = planlo) =(0) o
is proper and asymptotically consistent. 7*(6) is arbitrary so it can be taken for convenience to
simplify the integrals.
2) Obtain

(594)

i (0)

g~ 595
iy O

0 = exo{ [ @) tou w0la) dn | and n(oi60) =
Qx
for any interior point 6p€©;
3) If

3.1) each f}(0) is continuous;

3.2) for any fixed 6 and large k, is hy(0; 0p) is either monotonic in & or bounded from above by
h(6) that is integrable on any compact set;

3.3) w(6) = limg_00 hi(0;6p) is a permissible prior function

then 7(#) is a reference prior for the model p(x|6). It is important to note that there is no requirement
on the existence of the Fisher’s information I(#). If it exists, a simple Taylor expansion of the densities
shows that for a one-dimensional parameter 7(6) = [I(6)]'/? in consistency with Jeffrey’s proposal.
Usually, the last is easier to evaluate but not always as we shall see.

In many cases supp() is unbounded and the prior 7(6) is not a propper density. As we have seen
this is not a problem as long as the posterior p(6|z)xp(zx|0)7(0) is propper although, in any case, one
can proceed "more formally" considering a sequence of proper priors 7, (#) defined on a sequence of
compact sets ©,,CO such that lim,,_.~, ©,, = © and taking the limit of the corresponding sequence
of posteriors py,(0|zx)xp(zk|6) 7 (6). Usually simple sequences as for example ©,, = [1/m,m];
lim, 00 O = (0,00), or Oy, = [—m, m]; lim, 00 Oy = (—00, 00) will suffice.

When the parameter 6 is n-dimensional, the procedure is more laborious. First, one starts [?]
arranging the parameters in decreasing order of importance {61, 6s, . . . , 0,,} (as we did for the Probability
Matching Priors) and then follow the previous scheme to obtain the conditional prior functions

7T((9n|91, 92, e ,Gn,l) 7r(9n,1|01, 92, e ,Qn,Q) e 7T<92‘(91) 7'('(91) (596)

For instance in the case of two parameters and the ordered parameterization {6, A\}:
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1) Get the conditional 7(\|) as the reference prior for A keeping 6 fixed;
2) Find the marginal model

p(x]0) = A p(x10, A) w(A[6) dA (597)

3) Get the reference prior 7(6) from the marginal model p(x|6)

Then 7(0, \)oxm(A|@)7(6). This is fine if 7(A|#) and 7(6) are propper functions; seldom the case.
Otherwise one has to define the appropriate sequence of compact sets observing, among other things,

that this has to be done for the full parameter space and usually the limits depend on the parameters.
1—00

Suppose that we have the sequence ©; x A; — O x A. Then:
1) Obtain m;(A|0):
p(zk|0, M) (Al0)

x 1a,
T (A0)1p,(N) — m (N0, zi) = T oz, N (\JB) o —
feAA 0, ...)
— m(A|0 lim —m—= 598
0= B 5 ol 0,0) %9
2) Get the marginal density p;(x|0):
plxl6) = [ p(x6.0) m(N6) i (599)
Aq
3) Determine 7;(6):
pi(zk|0)m; (0) f£(0104, Ay, ...)
7(0)1e, (0) — 7 (02 () = lim ZETIE0 20 6o
(O016,(0) — miOlm) = 1= C rer@ras — ™0 = Fraie,an) O
4) The reference prior for the ordered parameterization {6, A} will be:
70,0 = lim MO mi(0) (601)

1—+00 m

In the case of two parameters, if A is independent of 6 the Fisher’s matrix usually exists and, if
1(6,)\) and S(0, \) = I71(0, \) are such that:

Ip(0,)) = a2(0)b3(\) and  S11(6,\) = ay2(6) by2(N\) (602)

then [?] m(0,\) = w(A|@)m(0) = ap(f) b1 (N) is a permissible prior even if the conditional reference
priors are not proper. The reference priors are usually probability matching priors.

Example 3.20: A simple example is the Multinomial distribution X~Mn(x|0) with dimX = & + 1 and proba-

bility
k
p(x|0) o 017 0272 -0, (1 — 6)"F+ 0= 0; (603)
j=1
Consider the ordered parameterization {61,602, . .., 0x}. Then
77(91, 92, ceey Qk) = w(9k|0k,1, 9]@,2 e 02, 01) W(0k71|9k72 e 02, 91) e 77(92‘91) 77(01) (604)

In this case, all the conditional densities are proper

T(Om| Oty 01) 0O Y2 (1 = 6,,) " /2 (605)

263



C. MANA

and therefore
k
7T(01,02,... Gk)oc HGi_l/Q (1—5¢)_1/2 (606)
i=1

The posterior density will be then

k
p(Olx) o [T 0:% 12 (1= 6i) 72| (1 = d)) "+ (607)

i=1

Example 3.21: Consider again the case of two independent Poisson distributed random quantities X; and X
with joint density density

niy, no

P =P P — o (1 + p2) i fa 608
(n1, nalp1, 12) (ni|p1) P(nalp2) = e Tlmr + )0 (ny +1) (608)

We are interested in the parameter 6 = 1 /9 S0 setting pn = po we have the ordered parameterization {6, 1} and:

g Mn

— o n(1+0)
P(ni,nl0,pn) = e T(ny + DI (ns + 1)

(609)

where n = nq + nq. Since E[X1] = u1 = Op and E[X3] = pe = p the Fisher’s matrix and its inverse will be

1—(“/9 1 ); det(I) = =1 and s—1—1—<9(1+9)/“ _f> (610)

1 (1+0)/u 0
Therefore
Si11 = 9(1+9)/u and Fy = (1—}—9)/,u (611)
and, in consequence:
- H 12 V1+0
2(0) fu(p) xS = VI 7 (ul0) fo(0) x LY = 612)
O) filw o si* =~ (10) £20) < Fof? = ¥
Thus, we have for the ordered parameterization {6, i1} the reference prior:
1
m(0,pn) = 7(ulf) 7(0) x — (613)
( 16) = (0) R
and the posterior density will be:
PO, plnynz) oo exp{—pu(l+0)} 02 (14 6)7Y2pn Tt (614)
and, integrating the nuisance parameter p€[0, c0) we get finally
0n1—1/2
0 =N-—— 615
p(Oln1,n2) (14 0y (615)
with 8 = i1 /o, n = ny +ng and N~! = B(ny + 1/2,ns + 1/2). The distribution function will be:
0
P(O|ny,ny) = / p(0'|n1,m) d0’ = I(0/(1+ 0);n1 +1/2,n2 +1/2) (616)
0
with I(z; a,b) the Incomplete Beta Function and the moments, when they exist;
r 1/2 r 1/2 —
pign) — Lt 1/24m) Tna +1/2 —m) o)

T(ny +1/2)T(ns + 1/2)
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It is interesting to look at the problem from a different point of view. Consider again the ordered parame-
terization {0, A} with § = p1 /o but now, the nuisance parameter is A = p1 + p2. The likelihood will be:

Pl nal0, ) = - +1)1F(n2 - 1)6_/\ '"(1‘179)” 618)
The domains are © = (0, 00) and A = (0, o), independent. Thus, no need to specify the prior for A since
o™ —Ain o™
p(0|n1,ma) xm(0) asor /Ae A W(A)d)\cxmﬂ'w) (619)
In this case we have that
1(0) % w(0) = __r (620)
6(1+0) 0'/2 (14 6)
and, in consequence,
gri—1/2
p(0ln1,ns) = NW (621)

Problem 3.8: Show that the reference prior for the Pareto distribution Pa(z|6,xo) (see example 3.9) is
(6, z9)x(0x9) ! and that for an iid sample x = {x1,..., 2, }, if 2, = min{z;}7; anda = Y7 In(z; /)
the posterior

na™ ! o nf—1
—afgn—1

is proper for a sample size n > 1. Obtain the marginal densities

n—1
_ a —af pn—2
p(flx) = 7F(n—1)e 0" "1(0,00)(f)  and (623)
wobo = M= [y T (2] g o) (624)
plaolx) = ——— Ll (©.2m) (0

and show that for large n (see section 10.2) E[f]~na~! and E[zo|~z,.

Problem 3.9: Show that for the shifted Pareto distribution (Lomax distribution):

0 - 41
p(x]0,z0) = ( : ) 10,00)(®) 0, zoeR" (625)

ro \ T+ g

the reference prior for the ordered parameterization {0, o} is 7,.(6,zg) o (2ef(6 + 1))~! and for {x¢, 0} is
7r(20,0) oc (zof) ™. Show that the first one is a first order probability matching prior while the second is not. In
fact, show that for {2, 0}, Tpm (0,0) o (200%/2v/@ + 2)~! is a matching prior and that for both orderings the

Jeffrey’s prior is 77 (60, 19) o< (z0(0 4+ 1)/0(6 +2))~L.
Problem 3.10: Show that for the Weibull distribution
p(zle, B) = afz’Texp {—cwcﬁ} 1(0,00) () (626)

with a, 5 > 0, the reference prior functions are

(B, @) = (af) ! and mo(a, B) = (ozﬁ\/((?) T (@2 - a)2> (627)

for the ordered parameterizations {3, a} and {«, 3} respectively being ((2) = 72 /6 the Riemann Zeta Function
and ¢(2) = 1 — ~ the Digamma Function.
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3.7 Hierarchical Structures

In many circumstances, even though the experimental observations respond to the same phenomena it
is not always possible to consider the full set of observations as an exchangeable sequence but rather
exchangeability within subgroups of observations. As stated earlier, this may be the case when the
results come from different experiments or when, within the same experiment, data taking conditions
(acceptances, efficiencies,...) change from run to run. A similar situation holds, for instance, for the
results of responses under a drug performed at different hospitals when the underlying conditions of the
population vary between zones, countries,... In general, we shall have different groups of observations

X1 = {x117l‘21)-'-7xn11}

X = {x1j7$2j,...,$njj}

x; = {T17, %25, Ty}
from J experiments e;(n1), e2(n2), . . ., €7(ns). Within each sample x;, we can consider that exchange-
ability holds and also for the sets of observations {xi,X2,...,x} In this case, it is appropriate to

consider hierarchical structures.

Let’s suppose that for each experiment e(j) the observations are drawn from the model
p(x;10;) j=1,2,..,J (628)

Since the experiments are independent we assume that the parameters of the sequence {61, 6,...,6;}
are exchangeable and that, although different, they can be assumed to have a common origin since they
respond to the same phenomena. Thus,we can set

J
p(61, 0a,....0400) = [] p(6ilo) (629)
i=1
with ¢ the hyperparameters for which we take a prior 7(¢). Then we have the structure (see figure ??)
J
p(X1, X, 01,0 00,0) = w(8) [ p(xil6:) w(6il6) (630)
i=1

This structure can be repeated sequentially if we consider appropriate to assign a prior 7w(¢|7) to the
hyperparameters ¢ so that

p(x,0,9,7) = p(x|6) 7(6|$) m($|7) m(7) (631)

Now, consider the model p(x, 6, ¢). We may be interested in 6, in the hyperparameters ¢ or in
both. In general we shall need the conditional densities:

5 m¢mmmw/¢wemw@d9 632)
R x o p(03$a¢>

p(@lz, p) = @ d) and (633)
. o) . p(l6)

pofe) = B2 pio) = ZEE [ 10/0)p(0) do (634)
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R ¢ 0

IM

m
1 m-1 xm

Fig. 8: Structure of the hierarchical model.

that can be expressed as

_ [p@0.9) T T
o) = [ P52 s — [ pola. o) n(@le) do (635)
and, since
p(6le) = plale) [ viele) 225 do (636
we can finally write
p(6,¢) _ p(P) _ (¢| )

In general, this conditional densities have complicated expressions and we shall use Monte Carlo
methods to proceed (see Gibbs Sampling, example 4.15, in section 3).

It is important to note that if the prior distributions are not proper we can have improper marginal
and posterior densities that obviously have no meaning in the inferential process. Usually, conditional
densities are better behaved but, in any case, we have to check that this is so. In general, the better
behaved is the likelihood the wildest behavior we can accept for the prior functions. We can also used
prior distributions that are a mixture of proper distributions:

p(0]¢) = Z w; pi(6]9) (638)

with w;>0 and > w; = 1 so that the combination is convex and we assure that it is proper density or,
extending this to a continuous mixture:

p(6]¢) = / w(o) p(Bl$, o) dor (639)

3.8 Priors for discrete parameters

So far we have discussed parameters with continuous support but in some cases it is either finite or
countable. If the parameter of interest can take only a finite set of n possible values, the reasonable
option for an uninformative prior is a Discrete Uniform Probability P(X = xz;) = 1/n. In fact,
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maximizing the expected information provided by the experiment with the normalization constraint (i.e.
the probability distribution for which the prior knowledge is minimal) drives to P(X = z;) = 1/nin
accordance with the Principle of Insufficient Reason.

Even though finite discrete parameter spaces are either the most usual case we shall have to deal
with or, at least, a sufficiently good approximation for the real situation, it may happen that a non-
informative prior is not the most appropriate (see example 3.22). On the other hand, if the the parameter
takes values on a countable set the problem is more involved. A possible way out is to devise a hierar-
chical structure in which we assign the discrete parameter 6 a prior (6| \) with A a set of continuous
hyperparameters. Then, since

= > pO)7(ON) 7(N) = px|A) 7(N) (640)

0co

we get the prior 7m(\) by any of the previous procedures for continuous parameters with the model p(x|\)
and obtain

m(f) x / m(OIN) w(N) dX (641)
A
Different procedures are presented and discussed in [?].

Example 3.22: The absolute value of the electric charge (Z) of a particle is to be determined from the number
of photons observed by a Cherenkov Counter. We know from test beam studies and Monte Carlo simulations that
the number of observed photons n-, produced by a particle of charge Z is well described by a Poisson distribution
with parameter ;1 = ngZ?; that is

—noZ? (nOZQ)n’Y

T(n, +1) (042)

P(nyng,2) = e
so E[ny|Z = 1] = no. First, by physics considerations Z has a finite support Qz = {1,2,...,n}. Second, we
know a priory that not all incoming nuclei are equally likely so a non-informative prior may not be the best
choice. In any case, a discrete uniform prior will give the posterior:

efnok2 k.2nﬂ,
P(Z = k|n77n07n) = Z:l efnokz k2ny (643)

3.9 Constrains on parameters and priors

Consider a parametric model p(x|#) and the prior 7y(#). Now we have some information on the param-
eters that we want to include in the prior. Typically we shall have say k constraints of the form

/ 9i(0)m(0)db = a; i=1,...,k (644)
(C]

Then, we have to find the prior 7(6) for which () is the best approximation, in the Kullback-Leibler
sense, including the constraints with the corresponding Lagrange multipliers \;; that is, the extremal of

F_ / ( / 9) (e)de—aZ) (645)

Again, it is left as an exercise to show that from Calculus of Variations we have the well known solution

k
w(0) o mp(H) exp{z Xigi(0)} where Ai | /@gi(ﬁ)w(Q) dé = a; (646)
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Quite frequently we are forced to include constraints on the support of the parameters: some
are non-negative (masses, energies, momentum, life-times,...), some are bounded in (0,1) (8 = v/c,
efficiencies, acceptances,...),... At least from a formal point of view, to account for constraints on the
support is a trivial problem. Consider the model p(x|0) with #€© and a reference prior 7y(6). Then,
our inferences on 6 shall be based on the posterior

p(x0) mo(6)

0lx) = (647)
POR) = T 1) w0 () d6
Now, if we require that 6€c©COg we define
g1(0) = 1e(0) — g1(0)7(0)do = / m(0)dd = 1—¢ (648)
SH) ©
92(0) = 1ee(0) — g2(0) m(0) df = / w(0)df = € (649)
O ¢
and in the limit e — O we have the restricted reference prior
mo(6)
) = —————1¢(0
as we have obviously expected. Therefore

= To p(@l0)w(6)d8 ~ o p(x]6) mo(6) df

that is, the same initial expression but normalized in the domain of interest ©.

3.10 Decision Problems

Even though all the information we have on the parameters of relevance is contained in the posterior
density it is interesting, as we saw in section 1, to explicit some particular values that characterize the
probability distribution. This certainly entails a considerable and unnecessary reduction of the available
information but in the end, quoting Lord Kelvin, “.. when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind”. In statistics, to specify a particular value of the
parameter is termed Point Estimation and can be formulated in the framework of Decision Theory.

In general, Decision Theory studies how to choose the optimal action among several possible
alternatives based on what has been experimentally observed. Given a particular problem, we have to
explicit the set 2y of the possible "states of nature”, the set {2x of the possible experimental outcomes
and the set {2 4 of the possible actions we can take. Imagine, for instance, that we do a test on an individual
suspected to have some disease for which the medical treatment has some potentially dangerous collateral
effects. Then, we have:

Qg = {healthy, sic}
Qx = {test positive, test negative}
Q4 = {apply treatment, do not apply treatment}

Or, for instance, a detector that provides within some accuracy the momentum (p) and the velocity (/3) of
charged particles. If we want to assign an hypothesis for the mass of the particle we have that 2y = R™
is the set of all possible states of nature (all possible values of the mass), 2x the set of experimental
observations (the momentum and the velocity) and €24 the set of all possible actions that we can take
(assign one or other value for the mass). In this case, we shall take a decision based on the probability

density p(m|p, 8).
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Obviously, unless we are in a state of absolute certainty we can not take an action without potential
losses. Based on the observed experimental outcomes, we can for instance assign the particle a mass m;
when the true state of nature is ma#my or consider that the individual is healthy when is actually sic.
Thus, the first element of Decision Theory is the Loss Function:

I(a,0) : (0,a)€QyxQs — RT+{0} (652)

This is a non-negative function, defined for all #€{2y and the set of possible actions a€f2 4, that quantifies
the loss associated to take the action a (decide for a) when the state of nature is 6.

Obviously, we do not have a perfect knowledge of the state of nature; what we know comes from
the observed data x and is contained in the posterior distribution p(6|x). Therefore, we define the Risk
Function ( risk associated to take the action a, or decide for a when we have observed the data x) as the
expected value of the Loss Function:

R(alz) = Egll(a,0)] = /Q l(a,8)p(OB|x)do (653)

Sound enough, the Bayesian decision criteria consists on taking the action a(x) ( Bayesian action)
that minimizes the risk R(a|x) ( minimum risk); that is, that minimizes the expected loss under the
posterior density function 2. Then, we shall encounter to kinds of problems:

e inferential problems, where Q24 = R y a(x) is a statistic that we shall take as estimator of the
parameter 6;

e decision problems (or hypothesis testing) where {24 = { accept, reject} or choose one among a
set of hypothesis.

Obviously, the actions depend on the loss function (that we have to specify) and on the posterior density
and, therefore, on the data through the model p(x|#) and the prior function 7(6). It is then possible
that, for a particular model, two different loss functions drive to the same decision or that the same loss
function, depending on the prior, take to different actions.

3.10.1 Hypothesis Testing

Consider the case where we have to choose between two exclusive and exhaustive hypothesis H; and

Hy(= H;°). From the data sample and our prior beliefs we have the posterior probabilities

P(data|H;) P(H;)
P( data) '

P(H;| data) = i=1,2 (654)

and the actions to be taken are then:
a1: action to take if we decide upon H;
ag: action to take if we decide upon Hy

Then, we define the loss function I(a;, H;); 4, j = 1,2 as:

ZThe problems studied by Decision Theory can be addressed from the point of view of Game Theory. In this case, instead
of Loss Functions one works with Utility Functions u(6, a) that, in essence, are nothing else but (9, a) = K — [(6,a)>0;
it is just matter of personal optimism to work with "utilities" or "losses". J. Von Neumann and O. Morgenstern introduced in
1944 the idea of expected utility and the criteria to take as optimal action hat which maximizes the expected utility.
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li1 =199 =0 if we make the correct choice; that is, if we
take action a; when the state of nature is H;
or as when it is Ho;

1(ai|Hj) = l19 >0 if we take action a; (decide upon H;) when
the state of nature is H»

log >0 if we take action a9 (decide upon Hs) when
the state of nature is Hq

so the risk function will be:

2
R(a;| data) = " I(a;|H;) P(H;| data) (655)
7j=1
that is:
R(a1| data) = i1 P(H1| data) + I1o P(H2| data) (656)
R((I2| data) = o P(H1| data) + 99 P(H2| data) (657)

and, according to the minimum Bayesian risk, we shall choose the hypothesis H; (action ay) if
R(ay| data) < R(ag|data) —  P(Hy|data)(l1; —l21) < P(Hs| data) (log — l12)  (658)

Since we have chosen [17 = l95 = 0 in this particular case, we shall take action a; (decide for hypothesis
Hy) if:
P<H1| data) l12

—_— — 659
P(H2| data) Io1 ( )
or action ay (decide in favor of hypothesis Hs) if:

P(H>| data) lo1
dat dat e > 0
R(as, data) < R(aj, data) — P(H, | data) > I (660)

that is, we take action a; (i = 1, 2) if:

P(H;| data) [ P(data|H;)| [ P(H;) - lij 661)
P(H;| data) | P(data|H;) | | P(H;) Lji
The ratio of likelihoods
P( data|H;)
Bijj = ————+ 662
Y P(datalH;) (662)

is called Bayes Factor B;; and changes our prior beliefs on the two alternative hypothesis based on the

evidence we have from the data; that is, quantifies how strongly data favors one model over the other.

Thus, we shall decide in favor of hypothesis H; against H; (i,j = 1,2) if
P(Hl‘ data) l” P(Hj) lﬂ

o B,
P(H,[data) ~ 1;: — 17 P(H;) |

(663)

If we consider the same loss if we decide upon the wrong hypothesis whatever it be, we have 15 = lo;
(Zero-One Loss Function). In general, we shall be interested in testing:
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1) Two simple hypothesis, H; vs Ho, for which the models M; = {X ~p;(z|0;)}; i = 1, 2 are fully
specified including the values of the parameters (that is, ©; = {6;}). In this case, the Bayes Factor
will be given by the ratio of likelihoods

_ palxlon) <usually P <X91>> (664)

By =
p2(x][62) p(x|02)
The classical Bayes Factor is the ratio of the likelihoods for the two competing models evaluated
at their respective maximums.

2) A simple (H;) vs a composite hypothesis H, for which the parameters of the model M, =
{X ~p2(x|62)} have support on O2. Then we have to average the likelihood under Hy and

Buy — p1(x|61)

~ Jo, p2(x|0)m2(6)d0 (665)

3) Two composite hypothesis: in which the models M7 and M have parameters that are not speci-
fied by the hypothesis so

o, pr(x[01)m1(61)d

By —
12 f@2 pz(X‘Hz)Wz(QQ)dGQ

(666)

and, since P(H;| data) + P(H2| data) = 1, we can express the posterior probability P(H| data) as

Bis P(Hy)
P(Hg) + Bijo P(Hl)

P(H,| data) = (667)
Usually, we consider equal prior probabilities for the two hypothesis (P(H;) = P(H2) = 1/2) but be
aware that in some cases this may not be a realistic assumption.

Bayes Factors are independent of the prior beliefs on the hypothesis (P(H;)) but, when we have
composite hypothesis, we average the likelihood with a prior and if it is an improper function they are
not well defined. If we have prior knowledge about the parameters, we may take informative priors
that are proper but this is not always the case. One possible way out is to consider sufficiently general
proper priors (conjugated priors for instance) so the Bayes factors are well defined and then study what
is the sensitivity for different reasonable values of the hyperparameters. A more practical and interesting
approach to avoid the indeterminacy due to improper priors [?], [?] is to take a subset of the observed
sample to render a proper posterior (with, for instance, reference priors) and use that as proper prior
density to compute the Bayes Factor with the remaining sample. Thus, if the sample x = {x1,...,Z,}
consists on iid observations, we may consider x = {x1, X2} and, with the reference prior 7 (), obtain
the proper posterior

p(x1|0) 7(6)

Olx1) = 668
The remaining subsample (x2) is then used to compute the partial Bayes Factor 23.
Xo|61) m1(01|x1) dO BF
Bufealey) = oM (PR x) 669
Jo, P2(x2|02) m2(02]x1) db2 BF(x1)

for the hypothesis testing. Berger and Pericchi propose to use the minimal amount of data needed to
specify a proper prior (usually max{ dim(6;)}) so as to leave most of the sample for the model testing
and dilute the dependence on a particular election of the training sample evaluating the Bayes Factors

23 Essentially, the ratio of the predictive inferences for x2 after x; has been observed.
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with all possible minimal samples and choosing the truncated mean, the geometric mean or the median,
less sensitive to outliers, as a characteristic value (see example 3.24). A thorough analysis of Bayes
Factors, with its caveats and advantages, is given in [?].

A different alternative to quantify the evidence in favour of a particular model that avoids the need
of the prior specification and is easy to evaluate is the Schwarz criteria [?] (or "Bayes Information Cri-
terion (BIC)"). The rationale is the following. Consider a sample x = {1, ..., z,} and two alternative
hypothesis for the models M; = {p;(x|6;); dim(0;) = d;}; i = 1,2. Under the appropriate conditions
we can approximate the likelihood as

d d
1(0]x) ~1(8]x) exp {; S50 -6 [nlkm(ﬁ)] (O — §m)} (670)

k=1m=1
so taking a uniform prior for the parameters 6, reasonable in the region where the likelihood is dominant,
we can approximate

J(x) = /@ p(x]0) w(0) dO ~ p(x|0) (27 /n)¥/? | det[1(6)]| /> (671)

and, ignoring terms that are bounded as n— oo, define the BIC(M;) for the model M; as
21In Ji(x) ~ BIC(M;) = 2 In p;(x|6;) — di Inn (672)

SO:

-~

Biyo PO | dp-aryz Aqp = 2InBiy~21n
pa(x|62

p1(x[61)

— (d1 —do)Inn  (673)
pz(X|92)> (=)

and therefore, larger values of A1y = BIC(M;) — BIC(M) indicate a preference for the hypothesis
Hy (M) against Ha(M>) being commonly accepted that for values grater than 6 the evidence is "strong"
% although, in some cases, it is worth to study the behaviour with a Monte Carlo sampling. Note that the
last term penalises models with larger number of parameters and that this quantification is sound when
the sample size n is much larger than the dimensions d; of the parameters.

Example 3.23: Suppose that from the information provided by a detector we estimate the mass of an incoming
particle and we want to decide upon the two exclusive and alternative hypothesis H; (particle of type 1) and
Ho(= H;°) (particle of type 2). We know from calibration data and Monte Carlo simulations that the mass
distributions for both hypothesis are, to a very good approximation, Normal with means m; and my variances o2

and o3 respectively. Then for an observed value of the mass mq we have:

_ 2 _ 2
By — p(mol|H1) _ N(mo|ma, 01) - 92 o {(mo 2m2) ~ (mo le) } (674)
p(m0|H2) N(mo|m270'2) g1 20’2 20’1

Taking (l12 = l21; 111 = l22 = 0), the Bayesian decision criteria in favor of the hypothesis H; is:

P(H,) (Ha)
B InB 1 7
12 > P(Hl) — Inbjo > nP(Hl) 675)
Thus,we have a critical value m,. of the mass:
P(H.
12 (me — mg)2 — 09 (me — m1)2 = 2012052 In (PEHQng) (676)
1) 02

such that, if mo < m, we decide in favor of H; and for H» otherwise. In the case that 01 = o2 and P(H;) =
P(Hs), then m. = (my + mg)/2. This, however, may be a quite unrealistic assumption for if P(Hy) > P(Hs),
it may be more likely that the event is of type 1 being B13 < 1.

2f P(H,) = P(Hz) = 1/2, then P(H,| data) = 0.95 — B1s = 19 — A12~6.
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Example 3.24: Suppose we have an iid sample x = {z1,...,x,} of size n with X~ = N(z|u,1) and the two
hypothesis H; = {N(z]0,1)} and Hy = {N(z|y,1); u#0}. Let us take {z;} as the minimum sample and, with
the usual constant prior, consider the proper posterior

1 2
m(plx;) = — exp{—(u —x;)°/2 677
(ul:) or p{—(n—zi)"/2} (677)
that we use as a prior for the rest of the sample x’ = {x1,...,2;—1,%it1,...,2Zn}. Then
P(H1|X/7£Ei) . P(Hl)
— 2 =B 678
P, o)~ 229 B, (678)
where
/
Bia(i) = p(x'[0) = 02 exp{—(n7* — 22)/2} (679)

[ p( ) (i) dpe

andZ =n"' Y ;_ x. To avoid the effect that a particular choice of the minimal sample ({z;}) may have, this is
evaluated for all possible minimal samples and the median (or the geometric mean) of all the B12(4) is taken. Since
P(H;|x) + P(H2|x) = 1, if we assign equal prior probabilities to the two hypothesis (P(Hy) = P(Hz) = 1/2)
we have that
Bis

1+ B
is the posterior probability that quantifies the evidence in favor of the hypothesis H;. It is left as an exercise to
compare the Bayes Factor obtained from the geometric mean with what you would get if you were to take a proper
prior w(u|o) = N (u[0, o).

P(H[x) =

= (1 + n % exp{(nz* - med{scf})/Z})_l (680)

Problem 3.11: Suppose we have n observations (independent, under the same experimental conditions,...) of en-
ergies or decay time of particles above a certain known threshold and we want to test the evidence of an exponential

fall against a power law. Consider then a sample x = {x1, ..., x,} of observations with supp(X) = (1, c0) and
the two models
M : pi(z]0) = Gexp{—0(z — 1)}1(1 00)(2) and My : pa(z|a) = az_(o""l)l(lm)(m) (681)

that is, Exponential and Pareto with unknown parameters 6 and «. Show that for the minimal sample {x;} and
reference priors, the Bayes Factor Bya(4) is given by

) 2o Inz,\" [ 2 —1 pl(xé\) z; — 1
Bia(i) = | Z—* = = 682
1209 ( -1 > (913Z lnxi> po(x|@) \z; Inz; (682)
where (T, ) are the arithmetic and geometric sample means and (6, @) the values that maximize the likelihoods
and therefore

med{ B2 (i)}, = (@) med{ zi 1 } (683)

T — x; Inx; |,y

Problem 3.12: Suppose we have two experiments e;(n;); ¢ = 1,2 in which, out of n; trials, x; successes have
been observed and we are interested in testing whether both treatments are different or not ( contingency tables).
If we assume Binomial models Bi(x;|n;, 0;) for both experiments and the two hypothesis Hy : {6, = 6>} and
H, : {6,#05}, the Bayes Factor will be

fe Bi(z1|n1,0)Bi(za|ng, 0)m(0)d0
f(_)l Bi(m1|n1,91)7r(91)d01 f(_)Q Bi(l‘g‘ﬂg,@)ﬂ'(@g)d@g

By = (684)
We may consider proper Beta prior densities Be(f|a,b). In a specific pharmacological analysis, a sample of
n1 = 52 individuals were administered a placebo and ny = 61 were treated with an a priori beneficial drug. After
the essay, positive effects were observed in x1 = 22 out of the 52 and x5 = 41 out of the 61 individuals. It is left as
an exercise to obtain the posterior probability P(Ho| data) with Jeffreys’ (a = b = 1/2) and Uniform (e = b = 1)
priors and to determine the BIC difference Ajs.
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3.10.2 Point Estimation

When we have to face the problem to characterize the posterior density by a single number, the most
usual Loss Functions are:

e Quadratic Loss: In the simple one-dimensional case, the Loss Function is
1(6,a) = (0 —a)? (685)

s0, minimizing the Risk:
min / (0 — a)® p(6|x) do — (0 —a)p(@z)dd = 0 (686)
Qg QF)

and therefore a = FE[6]; that is, the posterior mean.

In the k—dimensional case, if A = Qy = R* we shall take as Loss Function
1(0,a) = (a—0)TH(a—0) (687)

where H is a positive defined symmetric matrix. It is clear that:
min/ (a—0)" H(a—0)p@lx)dd — Ha = HE[H) (688)
RE

so, if H™1 exists, then a = E[0]. Thus, we have that the Bayesian estimate under a quadratic loss
function is the mean of p(f|x) (... if exists!).

e Linear Loss: If A = Qy = R, we shall take the loss function:
1(0,a) = c1(a—0)1g<q + c2(0 —a) Lp>, (689)

Then, the estimator will be such that

a

min /Qg l(a,0)p(0|x)d0 = min <cl /oo(a — 0)p(0|x)dd + c2 /:0(0 - a)p(@]w)d@) (690)

After derivative with respect to a we have (¢; + ¢2) P(6<a) — c¢2 = 0 and therefore the estimator will
be the value of a such that

P(#<a) = Cj . (691)

In particular, if ¢; = ¢g then P(#<a) = 1/2 and we shall have the median of the distribution p(6|x). In
this case, the Loss Function can be expressed more simply as (0, a) = |0 — a.

e Zero-One Loss: Si A = Qy = R*, we shall take the Loss Function
(6,a) =1 — 15, (a) (692)

where B.(a)€€y is an open ball of radius € centered at a. The corresponding point estimator will be:

min/ (1 — 1p,.(a)) p(O|x)dO = max/ p(O|x) do (693)
Qg B

(@)

It is clear than, in the limit e—0, the Bayesian estimator for the Zero-One Loss Function will be the mode
of p(#]x) if exists.
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As explained in section 1, the mode, the median and the mean can be very different if the distri-
bution is not symmetric. Which one should we take then? Quadratic losses, for which large deviations
from the true value are penalized quadratically, are the most common option but, even if for unimodal
symmetric the three statistics coincide, it may be misleading to take this value as a characteristic number
for the information we got about the parameters or even be nonsense. In the hypothetical case that the
posterior is essentially the same as the likelihood (that is the case for a sufficiently smooth prior), the
Zero-One Loss points to the classical estimate of the Maximum Likelihood Method. Other consider-
ations of interest in Classical Statistics (like bias, consistency, minimum variance,...) have no special
relevance in Bayesian inference.

Problem 3.13: The Uniform Distribution. Show that for the posterior density (see example 3.4)

'
p(Olzr,n) = n 9”% 120,00 (0) (694)
the point estimates under quadratic, linear and 0-1 loss functions are

n
Ogr = oy —— Opr = xp 2

1/n and 001L = Tnp (695)
n—1

and discuss which one you consider more reasonable.

3.11 Credible Regions

Let p(0|x), with 6eQCR™ be a posterior density function. A credible region with probability content
1 — avis a region of V,CO of the parametric space such that

P(oeV,) = / p(Ox)df = 1—« (696)

Va

Obviously, for a given probability content credible regions are not unique and a sound criteria is to
specify the one that the smallest possible volume. A region C' of the parametric space €2 is called
Highest Probability Region (HPD) with probability content 1 — « if:

1) P(eC) =1—a; CCO
2) p(01]-) > p(f2]-) for all §1€C and 03¢ C except, at most, for a subset of {2 with zero probability
measure.

It is left as an exercise to show that condition 2) implies that the HPD region so defined is of minimum
volume so both definitions are equivalent. Further properties that are easy to demonstrate are:

1) If p(6|-) is not uniform, the HPD region with probability content 1 — « is unique;
2) If p(01|-) = p(O2|), then O; and O are both either included or excluded of the HPD region;

3) If p(01]-)#p(h2-), there is an HPD region for some value of 1 — « that contains one value of § and
not the other;

4) C = {0€O|p(0|x)>ks} where k, is the largest constant for which P(0eC)>a;

5) If ¢ = f(0) is a one-to-one transformation, then
a) any region with probability content 1 — « for  will have probability content 1 — « for ¢ but...
b) an HPD region for 6 will not, in general, be an HPD region for ¢ unless the transformation

is linear.
In general, evaluation of credible regions is a bit messy task. A simple way through is to do a

Monte Carlo sampling of the posterior density and use the 4 ™ property. For a one-dimensional parameter,
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the condition that the HPD region with probability content 1 — o has the minimum length allows to write
a relation that may be useful to obtain those regions in an easier manner. Let [0, 62] be an interval such
that

02
/ p(0])dd =1 — « (697)
7]

1

For this to be an HPD region we have to find the extremal of the function

02
¢(61,02, 1) = (62 —61) + A (/ p(0]-)dd — (1 — a)) (698)
01
Taking derivatives we get:
0p(01, 02, A
8961, 52,2) =0 — p(01]) = p(02) (699)
90; i=1,2
02
99001, 62,%) _ — / p0)do =1 — « (700)
oA 0,

Thus, from the first two conditions we have that p(61]-) = p(62]-) and, from the third, we know that
01 #0-. In the special case that the distribution is unimodal and symmetric the only possible solution is
0o = 2E[0] — 6;.

The HPD regions are useful to summarize the information on the parameters contained in the
posterior density p(f|x) but it should be clear that there is no justification to reject a particular value
o just because is not included in the HPD region (or, in fact, in whatever confidence region) and that
in some circumstances (distributions with more than one mode for instance) it may be the union of
disconnected regions.

3.12 Bayesian (B) vs Classical (F) Philosophy

The Bayesian philosophy aims at the right questions in a very intuitive and, at least conceptually, simple
manner. However the "classical” (frequentist) approach to statistics, that has been very useful in sci-
entific reasoning over the last century, is at present more widespread in the Particle Physics community
and most of the stirred up controversies are originated by misinterpretations. It is worth to take a look
for instance at [?]. Let’s see how a simple problem is attacked by the two schools. "We" are 5, "they"

are F.

Suppose we want to estimate the life-time of a particle. We both "assume" an exponential model
X~FEx(z|1/7) and do an experiment e(n) that provides an iid sample x = {x,z2,...,2,}. In this
case there is a sufficient statistic t = (n,Z) with T the sample mean so let’s define the random quantity

_l n ) - . E n L B . -
X = n;X p(zn,7) = (T) ) exp{—nar™'} 2" 1o o) (2) (701)

What can we say about the parameter of interest 7?

F will start by finding the estimator (statistic) 7 that maximizes the likelihood (MLE). In this case
it is clear that 7 = T, the sample mean. We may ask about the rationale behind because, apparently, there
is no serious mathematical reasoning that justifies this procedure. F will respond that, in a certain sense,
even for us this should be a reasonable way because if we have a smooth prior function, the posterior
is dominated by the likelihood and one possible point estimator is the mode of the posterior. Beside
that, he will argue that maximizing the likelihood renders an estimator that often has “good” properties
like unbiasedness, invariance under monotonous one-to-one transformations, consistency (convergence
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Fig. 9: (1): 68% confidence level bands in the (7, X) plane. (2): 68% confidence intervals intervals obtained for
100 repetitions of the experiment.

in probability), smallest variance within the class of unbiased estimators (Cramer-Rao bound), approxi-
mately well known distribution,... We may question some of them (unbiased estimators are not always
the best option and invariance... well, if the transformation is not linear usually the MLE is biased), argue
that the others hold in the asymptotic limit,... Anyway; for this particular case one has that:

E[f]=r and V[F] = — (702)

and F will claim that “if you repeat the experiment” many times under the same conditions, you will get
a sequence of estimators {71, 72, ... } that eventually will cluster around the life-time 7. Fine but we shall
point out that, first, although desirable we usually do not repeat the experiments (and under the same
conditions is even more rare) so we have just one observed sample (x — T = 7) from e(n). Second, “if
you repeat the experiment you will get” is a free and unnecessary hypothesis. You do not know what you
will get, among other things, because the model we are considering may not be the way nature behaves.
Besides that, it is quite unpleasant that inferences on the life-time depend upon what you think you will
get if you do what you know you are not going to do. And third, that this is in any case a nice sampling
property of the estimator 7 but eventually we are interested in 7 so, What can we say about it?

For us, the answer is clear. Being 7 a scale parameter we write the posterior density function

— (nz)" — 1\ —(n+1
p(T|n,T) = ) exp {—n TT } (1) 1(0,00)(7) (703)
for the degree of belief we have on the parameter and easily get for instance:
_x (n—k) . n B n2
E[r*] = 2 Elf]= V= ———— ;... (704
™) = ) —fs =7 V=T gy ¢ 00

Cleaner and simpler impossible.

To bound the life-time, F proceeds with the determination of the Confidence Intervals. The
classical procedure was introduced by J. Neyman in 1933 and rests on establishing, for an specified
probability content, the domain of the random quantity (usually a statistic) as function of the possible
values the parameters may take. Consider a one dimensional parameter 6 and the model X ~p(x|6).
Given a desired probability content 5€]0, 1], he determines the interval [z, 22]CQx such that

P(X€frr,a3]) = / (i) de = (705)

x1
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for a particular fixed value of #. Thus, for each possible value of 6 he has one interval [z =
f1(0;8),x1 = f2(0; 8)]Clx and the sequence of those intervals gives a band in the QX x region
of the real plane. As for the Credible Regions, these intervals are not uniquely determined so one
usually adds the condition:

1) /gc1 p(z|0)dx = /Oop(xﬁ) der = % or (706)
o o 5

2) / p(z|0) dx —/ p(xz|0)dx = 5 (707)
T 0

or, less often, (3) chooses the interval with smallest size. Now, for an invertible mapping z;— f;(0) one
can write

B = P(fi(0)<X<fo(0)) = P(fy "(X)<0<f1 (X)) (708)

and get the random interval [f; *(X), f; *(X)] that contains the given value of § with probability 3.
Thus, for each possible value that X may take he will get an interval [f, *(X), f; *(X)] on the 6 axis
and a particular experimental observation {z} will single out one of them. This is the Confidence
Interval that the frequentist analyst will quote. Let’s continue with the life-time example and take, for
illustration, n = 50 and 8 = 0.68. The bands [x1 = fi(7),2z2 = fa(7)] in the (7, X) plane, in this
case obtained with the third prescription, are shown in figure ?? (1). They are essentially straight lines
so P[X€(0.8477,1.1267)] = 0.68. This is a correct statement, but doesn’t say anything about 7 so he
inverts that and gets 0.89 X < 7 < 1.18 X in such a way that an observed value {x} singles out an
interval in the vertical 7 axis. We, Bayesians, will argue this does not mean that 7 has a 0.68 chance
to lie in this interval and the frequentist will certainly agree on that. In fact, this is not an admissible
question for him because in the classical philosophy 7 is a number, unknown but a fixed number. If he
repeats the experiment 7 will not change; it is the interval that will be different because x will change.
They are random intervals and what the 68% means is just that if he repeats the experiment a large
number N of times, he will end up with N intervals of which ~68% will contain the true value 7
whatever it is. But the experiment is done only once so: Does the interval derived from this observation
contain 7 or not? We don’t know, we have no idea if it does contain 7, if it does not and how far is the
unknown true value. Figure ?? (2) shows the 68% confidence intervals obtained after 100 repetitions of
the experiment for 7 = 2 and 67 of them did contain the true value. But when the experiment is done
once, he picks up one of those intervals and has a 68% chance that the one chosen contains the true
value. WeB shall proceed in a different manner. After integration of the posterior density we get the
HPD interval P [r€(0.85x,1.13x)] = 0.68; almost the same but with a direct interpretation in terms
of what we are interested in. Thus, both have an absolutely different philosophy:

JF : "Given a particular value of the parameters of interest, How likely is the observed data?"
B : "Having observed this data, What can we say about the parameters of interest?"
. and the probability if the causes, as Poincare said, is the most important from the point of view of
scientific applications.
In many circumstances we are also interested in one-sided intervals. That is for instance the case
when the data is consistent with the hypothesis H : {§ = 6y} and we want to give an upper bound on

6 so that P(fe(—o0, 03] = . The frequentist rationale is the same: obtain the interval [—oo, 2] CQx
such that

2

P(X<zy) = / p(z]0)dx = (709)

—00

where 2o = f2(6); in this case without ambiguity. For the the random interval (—ooc, f, *(X)) F has
that

PO<f'(X)=1-P(0>f"'(X) =1-8 (710)
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Fig. 10: 95% upper bounds on the parameter 6 following the Bayesian approach (red), the Neyman approach
(broken blue) and Feldman and Cousins (solid blue line).

so, for a probability content v (say 0.95), one should set 5 = 1 — a (=0.05). Now, consider for instance
the example of the anisotropy is cosmic rays discussed in the last section 13.3. For a dipole moment
(details are unimportant now) we have a statistic

exp{—0?%/2}
V210

where the parameter 6 is the dipole coefficient multiplied by a factor that is irrelevant for the example.
It is argued in section 13.3 that the reasonable prior for this model is 7(6) = constant so we have the
posterior

X~p(x]0,1/2) = exp{—=z/2} sinh(0v/x) 19 ) () (711)

V2 2 1
Olz,1/2) = —6%/2} 67" sinh(0 1 0 712
POI1/2) = e exp{—%/21 07" Sinh(0V/5) 10, () 712)
with M (a, b, z) the Kummer’s Confluent Hypergeometric Function. In fact, # has a compact support
but since the observed values of X are consistent with Hy : {# = 0} and the sample size is very large
[AMS13] %, p(|x,1/2) is concentrated in a small interval (0, ¢) and it is easier for the evaluations
to extend the domain to R™ without any effect on the results. Then we, Bayesians, shall derive the

one-sided upper credible region [0, 0 95 ()] with o = 95% probability content as simply as:

00.95
/ p(0lz,1/2)d0 = a = 0.95 (713)
0

This upper bound shown as function of x in figure ?? under "Bayes" (red line). Neyman’s construction
is also straight forward. From

2
/ p(z|0,1/2)dr =1 — o = 0.05 (714)
0

(essentially a y? probability for » = 3), F will get the upper bound shown in the same figure under
"Neyman" (blue broken line). As you can see, they get closer as x grows but, first, there is no solution

B[AMS13]: Aguilar M. et al. (2013); Phys. Rev. Lett. 110, 141102.
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Fig. 11: (1) Dependence of 6,,, with x. (2) Probability density ratio R(x|6) for § = 2.

for z<z. = 0.352. In fact, E[X] = 6% + 3 so if the dipole moment is § = 0 (§ = 0), E[X] = 3 and
observed values below z. will be an unlikely fluctuation downwards (assuming of course that the model
is correct) but certainly a possible experimental outcome. In fact, you can see that for values of x less
than 2, even though there is a solution Neyman’s upper bound is underestimated. To avoid this "little"
problem, a different prescription has to be taken.

The most interesting solution is the one proposed by Feldman and Cousins [?] in which the region
A x CQy that is considered for the specified probability content is determined by the ratio of probability
densities. Thus, for a given value 6, the interval A x is such that
_ . _ p(=]6o) ,
p(x|bp) dx = B with R(z|6p) = > kg ; VeeAx (715)
Ax p(z(6h)
and where 6, is the best estimation of 6 for a given {z}; usually the one that maximizes the likelihood
(01)- In our case, it is given by:

g 10 if 2<V/3
" O + 0,1 — /T coth(f,/T) = 0 if > +/3

(716)

and the dependence with z is shown in figure ?? (1) (6,,~x for  >>). As illustration, function R(z|0)
is shown in figure ?? (2) for the particular value 6y = 2. Following this procedure %°, the 0.95 probability
content band is shown in figure ?? under "Feldman-Cousins" (blue line). Note that for large values of z,
the confidence region becomes an interval. It is true that if we observe a large value of X, the hypothesis
Hy : {0 = 0} will not be favoured by the data and a different analysis will be more relevant although, by
a simple modification of the ordering rule, we still can get an upper bound if desired or use the standard
Neyman’s procedure.

The Feldman and Cousins prescription allows to consider constrains on the parameters in a simpler
way than Neyman’s procedure and, as opposed to it, will always provide a region with the specified
probability content. However, on the one hand, they are frequentist intervals and as such have to be
interpreted. On the other hand, for discrete random quantities with image in {1, ..., xg,...} it may
not be possible to satisfy exactly the probability content equation since for the Distribution Function one
has that F'(zg4+1) = F(zg) + P(X = 2g41). And last, it is not straight forward to deal with nuisance
parameters. Therefore, the best advice: "Be Bayesian!".

%In most cases,a Monte Carlo simulation will simplify life.
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3.13 Some worked examples
3.13.1 Regression
Consider the exchangeable sequence z = {(z1, y1), (£2,42), - - -, (Tn, Yn) } of n samplings from the two-

dimensional model N (2, y;|-) = N (2i|pa,, 07, )N (yilty,, o7,). Then

plal) o exp{—;z l(yi_f ) | L “)QH a17)

i=1 in i

We shall assume that the precisions o,; and o,; are known and that there is a functional relation f1,, =
f(pz; 0) with unknown parameters 6. Then, in terms of the new parameters of interest:

U [(wi = Fpai 0)* | (@i — i)’
) _Z d : 718
(sl o exp{ D T 718
Consider a linear relation f(u.; a,b) = a + bu, with a, b the unknown parameters so:
1 (yi_a_bﬂx~)2 (xi_ﬂx')z
. - i : 719
p(al) o exp{ 22_;[ el o) 719)

and assume, in first place, that p,,, = x; without uncertainty. Then,

- ; —a — bx;)?
p(yla,b) o« exp{—;z [@021))” (720)

i=1
There is a set of sufficient statistics for (a,b):
n

1 22 N Ti =Y N Vil
t = {tla t21 t37 t4a t5} = {Z ga Z ;l'ga ?7 ?7 0_2 (721)
P P i i =

i=1

and, after a simple algebra, it is easy to write

1 [(aao)2 n (b—1bo)* zp(aiaO) (be)]} (722)

p(Y‘a?b) X exp{—2(1 _p2) 2 2

o2 o} O op
where the new statistics {aq, by, 04, 0p, p} are defined as:

toty — t3ts tits — t3ty
@ = AR p = 2 (723)
t1te — 13 t1te — 13
t t t
2 2 2 1 3
o, = —s, Op =-—75, = — 724
e tito — t% b tito — t% P Vit ( )
Both (a, b) are position parameters so we shall take a uniform prior and in consequence
—ap)? b—bp)? (a—ap) (b—bo)
e [ 2 -]
pla,bl) = L2 [ AT (725)

270,01 — p?

This was obviously expected.

When i, are n unknown parameters, if we take (i) = 1(0,00)(#42i) and marginalize for (a, b)
we have

1 (yi —a —bx;)?
p(a,b|-)xm(a,b) exp {—2 ‘:E —Uzz‘ ey | | (Jzi + b2 02) (726)

=1
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In general, the expressions one gets for non-linear regression problems are complicated and setting up
priors is a non-trivial task but fairly vague priors easy to deal with are usually a reasonable choice. In
this case, for instance, one may consider uniform priors or normal densities N(:|0,0 >>) for both
parameters (a,b) and and sample the proper posterior with a Monte Carlo algorithm (Gibbs sampling
will be appropriate).

The same reasoning applies if we want to consider other models or more involved relations with

. . b; . .
several explanatory variables like §; = Zle ajx;7. In counting experiments, for example, y; eN so we

may be interested in a Poisson model Po(y;|u;) where p; is parameterized as a simple log-linear form
In(p;) = ag + a1x; (so p; > 0 for whatever g, a1 €R). Suppose for instance that we have the sample
{(yi, zi) }iz,- Then:

n n
p(ylar, ag,x) o< J[exp{—pitp¥ = exp {a151 + sy — e Ze“m} (727)
=1 i=1

where s = Y i | y;and s = Y ;" y;z;. In this case, the Normal distribution N («;|a;, 0;) with o >>
is a reasonable smooth and easy to handle proper prior density for both parameters. Thus, we get the
posterior conditional densities

2 . n
plailay,y, x) o eXp{—;;g + o (ZZ - 5i> — ™ Zeam} ci=1,2 (728)
‘ i i=1

that are perfectly suited for the Gibbs sampling to be discussed in section 3.

Example 3.25: Proton Flux in Primary Cosmic Rays. For energies between ~20 and ~200 GeV, the flux
of protons of the primary cosmic radiation is reasonably well described by a power law ¢(r) = c¢r? where r is
the rigidity ?’ and v = dIng/ds, with s = Inr, is the spectral index. At lower energies, this dependence is
significantly modified by the geomagnetic cut-off and the solar wind but at higher energies, where these effects
are negligible, the observations are not consistent with a single power law (figure ?? (1)). One may characterize
this behaviour with a simple phenomenological model where the spectral index is no longer constant but has
a dependence (s) = a + (3 tanh[a(s — sp)] such that lims_,_ v(s) = 71 (r—0) and lims_, ¥(s) = 72
(r— 4+ 00). After integration, the flux can be expressed in terms of 5 parameters 6 = {¢g, V1,0 = ¥2 — V1, 70,0}
as:

oq6/0
¢(r;0) = dor™ [1 + (L> } (729)
o

For this example, I have used the data above 45 GeV published by the AMS experiment *® and considered only
the quoted statistical errors. Last, for a better description of the flux the previous expression has been modified to
account for the effect of the solar wind with the force-field approximation in consistency with [AMS15]. This is just
a technical detail, irrelevant for the purpose of the example. Then, assuming a Normal model for the observations
we can write the posterior density

p(0] data) = =(0) || exp{—%l_2 (: — ¢(n;e))2} (730)
i=1 ¢

I have taken Normal priors with large variances (o; >>) for the parameters -y, and ¢ and restricted the support to
R* for {¢o, ro, o }. The posterior densities for the parameters ; and § are shown in figure ?? (2,3) together with
the projection ?? (4) that gives an idea of correlation between them. For a visual inspection, the phenomenological
form of the flux is shown in figure ?? (1) (blue line) overimposed to the data when the parameters are set to their
expected posterior values.

Y'The rigidity (r) is defined as the momentum (p) divided by the electric charge (Z) so r = p for protons.
BIAMSI5]: Aguilar M. et al. (2015); PRL 114, 171103 and references therein.
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Fig. 12: (1): Observed flux multiplied by 27 in m=2sr"'sec 'GV!" as given in [AMS15]; (2): Posterior
density of the parameter ~y; (arbitrary vertical scale); (3): Posterior density of the parameter § = o — ~y; (arbitrary
vertical scale); (4): Projection of the posterior density p(v1, 9).

3.13.2 Characterization of a Possible Source of Events

Suppose that we observe a particular region () of the sky during a time ¢ and denote by A the rate
at which events from this region are produced. We take a Poisson model to describe the number of
produced events: k~Po(k|At). Now, denote by € the probability to detect one event (detection area,
efficiency of the detector,...). The number of observed events n from the region 2 after an exposure time
t and detection probability € will follow:

n~ Y Bi(kln,e) Po(k|\t) = Po(n|\te) (731)

k=n

The approach to the problem will be the same for other counting process like, for instance, events
collected from a detector for a given integrated luminosity. We suspect that the events observed in a
particular region €, of the sky are background events together with those from an emitting source. To
determine the significance of the potential source we analyze a nearby region, €, to infer about the
expected background. If after a time ¢;, we observe n; events from this region with detection probability
ep then, defining 5 = €,t;, we have that

nbNPo(nb|)\bB) = exp{—ﬁ/\b} 1_% (732)
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At Q, we observe n, events during a time ¢, with a detection probability ¢,. Since n, = nj + ne with
ni~Po(ni|\s«) signal events (v = €,t,) and no~Po(nz|A\par) background events (assume reasonably
that e; = e, = e, in the same region), we have that

N ~ Z Po(ni|Asa)Po(ne — ni|Xpa) = Po(ne|(As + A\p) ) (733)

n1=0

Now, we can do several things. We can assume for instance that the overall rate form the region
Q, is A, write n,~Po(n,|a\) and study the fraction A\/\, of the rates from the information provided by
the observations in the two different regions. Then, reparameterizing the model in terms of § = A/,
and ¢ = A\, we have

p(no,mp|-) = Po(no|aX)Po(ny|BXy) ~ e U0 gno gnotny (734)

where v = a/ 8 =(ests)/(epty). For the ordering {6, ¢} we have that the Fisher’s matrix and its inverse
are

18¢ o ) 0(1+10) 8
10,¢) = ‘jB B(14~6) and T '(pi,pe) = | ) (735)
K ¢ B B
Then
¢71/2
w(0,¢) = w(¢|0) m(0) X ——— (736)
(6.6) = 7(oI9) () x ———xs
and integrating the nuisance parameter ¢ we get finally:
’Yn°+1/2 enofl/Q
0 = 737
p( ‘n07nb77) B(no‘I‘ 1/2,nb+]—/2) (1_'_’}/9)”0_’_"1)_;’_1 ( )
From this:
1 T'(no+1/24+m)T(np+1/2—m) 1 n,+1/2
O = e T T 1/2) T £ 1/2) o =21 (738)
and
0o
P(6<80) = / (616 = 1 — IB(ny +1/2,n + 1/2; (1 +460) ") (739)
0

with I B(x,y; z) the Incomplete Beta Function. Had we interest in § = A5/ )\, the corresponding refer-
ence prior will be

¢—1/2 1 +

with 0= —~= (740)

m(6,9) o 10)(+0) 5

A different analysis can be performed to make inferences on A;. In this case, we may consider
as an informative prior for the nuisance parameter the posterior what we had from the study of the
background in the region {2;; that is:

p(Nslnp, B) oc exp{—Blp} N 1/2 (741)

and therefore:

p(As|) o< m(As) / P(ola(As + M) pPslne, B) dhpocm(As) e N A2 Y " ap AT (742)
0 k=0
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Fig. 13: 90% Confidence Belt derived with Feldman and Cousins (filled band) and the Bayesian HPD region (red
lines) for a background parameter u;, = 3.

where

o — ( N > L(k+npy+1/2) (743)

k (o + B)]F

A reasonable choice for the prior will be a conjugated prior m(\s) = Ga(\s|a,b) that simplifies the
calculations and provides enough freedom analyze the effect of different shapes on the inferences. The
same reasoning is valid if the knowledge on \; is represented by a different p(\p|-) from, say, a Monte
Carlo simulation. Usual distributions in this case are the Gamma and the Normal with non-negative
support. Last, it is clear that if the rate of background events is known with high accuracy then, with
i = aX; and 7(ps)o<(ps + pp) /2 we have

1

= = — z—1/2
= T 172 ) SPU s i) (s 4 4™ 1 0,00) (115) (744)

p(ﬂs|')
As an example, we show in figure ?? the 90% HPD region obtained from the previous expression (red
lines) as function of z for p; = 3 (conditions as given in the example of [?]) and the Confidence Belt
derived with the Feldman and Cousins approach (filled band). In this case, js , = max{0,z — u;} and
therefore, for a given pu:

xro x
S Poleli ) = 5 with Rlalp) = ctemoe) (SER T g as)
Hsm + Mo

1

for all z€[x1, 2.

Problem 3.14: In the search for a new particle, assume that the number of observed events follows a Poisson
distribution with p, = 0.7 known with enough precision from extensive Monte Carlo simulations. Consider the
hypothesis Hy : {us = 0} and Hy : {us7#0}. It is left as an exercise to obtain the Bayes Factor BFp; with the
proper prior m(ps|up) = po(pes + pp) 2 proposed in [?], P(Hi|n) and the BIC difference Ay as function of
n = 1,...7 and decide when, based on this results, will you consider that there is evidence for a signal.
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3.13.3 Anisotropies of Cosmic Rays

The angular distribution of cosmic rays in galactic coordinates is analyzed searching for possible
anisotropies. A well-behaved real function f(6, ¢)€L2(2), with (0, )€ = [0, 7] x[0,27], can be
expressed in the real harmonics basis as:

l

F0,0)=> "> amYim(0,¢) where ap, = /Q £(0,0)Yim (6, 6) dp. ; (746)
l

=0 m=—

aim€R and du = sin dfd¢. The convention adopted for the spherical harmonic functions is such that (
orthonormal basis):

/ Yin(0,8) Yo (0,6) dt = S e and / Yim(0,6)du = VAnd  (747)
Q Q

In consequence, a probability density function p(6, ¢) with support in €2 can be expanded as

0o l
p(0,¢) = cooYoo(0:0) + D> D cim Yim(6, ) (748)

=1 m=-1

The normalization imposes that cog = 1/+/47 so we can write

1
p(0,¢la) = — (1 + aim Yim (0, ¢)) (749)
where [>1,
aym, = 4mcy, = 477/917(0#25) Yim(&@ﬂ du = 4w Ep;,u[Ylm(H; ¢)] (750)

and summation over repeated indices understood. Obviously, for any (6, ¢)€€) we have that p(4, ¢|a)>0
so the set of parameters a are constrained on a compact support.

Even though we shall study the general case, we are particularly interested in the expansion up to
[ = 1 (dipole terms) so, to simplify the notation, we redefine the indices (I, m) = {(1,—-1), (1,0), (1,1)}
as ¢ = {1, 2,3} and, accordingly, the coefficients a = (a1_1, a19,a11) as @ = (a1, az, ag). Thus:

1
p(0,¢|a) = E (1 + a1Y1 + axYs + a3Y3) (751)

In this case, the condition p(6, ¢|a)>0 implies that the coefficients are bounded by the sphere a? + a3 +
ag <47 /3 and therefore, the coefficient of anisotropy

E
6 L (@t + ad+ ) < (752)
™

There are no sufficient statistics for this model but the Central Limit Theorem applies and, given
the large amount of data, the experimental observations can be cast in the statistic a = (a1, a2, as) such
that 2

3
plalu) = [ Nailui, o7) (753)

i=1

with V'(a;) = 47 /n known and with negligible correlations (p;;~0).

29Essentially, A = 47" ?:1 Yim (0:, ¢;) for a sample of size n.
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Consider then a k-dimensional random quantity Z = {71, . . ., Zx } and the distribution
k
(z|p, ) H (2jl15,07) (754)

The interest is centered on the euclidean norm ||u||, with dim{u} = k, and its square; in particular, in

2
:\IZ%HMH fork =3 and Cy = ||'L;€|| (755)
T

First, let us define X; = Z;/0; and p; = pj/o; so X;~N(xj|p;,1) and make a transformation
of the parameters p; to spherical coordinates:

p1 = pcosey
p2 = psingicos do
p3 = p singisinggcos @3
Prk—1 = psinegisings...sinor_ocosdp_1
P = psinegisings...sin@g_osingp_1 (756)

The Fisher’s matrix is the Riemann metric tensor so the square root of the determinant is the k-
dimensional volume element:

dvF = p*tdpdstt (757)

with

k—1
dSF = sin® 2 ¢y sin* ¥ gy - sin gp_a dpy doy -y = [ [ sin* D dg; (758)

Jj=1

the k£ — 1 dimensional spherical surface element, ¢_1 € [0,27) and ¢y, 2 € [0,7]. The interest
we have is on the parameter p so we should consider the ordered parameterization {p; ¢} with ¢ =
{¢1, b2, ..., dr—1} nuisance parameters. Being p and ¢; independent for all i, we shall consider the
surface element (that is, the determinant of the submatrix obtained for the angular part) as prior density
(proper) for the nuisance parameters. As we have commented in section 1, this is just the Lebesgue
measure on the £ — 1 dimensional sphere (the Haar invariant measure under rotations) and therefore the
natural choice for the prior; in other words, a uniform distribution on the k£ — 1 dimensional sphere. Thus,
we start integrating the the angular parameters. Under the assumption that the variances o2 are all the

same and considering that

‘/7r etBeost i 2vgag NS <Z> v+ %)Iy(ﬂ) for Re(v) > —% (759)
0

one gets p(¢| data) x p(¢,|¢)m(p) where

v/2
P(m|o,v) = be betom) (‘ZT) 1,(2b7/ém/9) (760)

is properly normalized,

v="k/2-1; ¢ = llull*; m = Ilal|?; b=5% =% (761)
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and dim{;} = dim{a} = k. This is nothing else but a non-central x? distribution.

From the series expansion of the Bessel functions it is easy to prove that this process is just a
compound Poisson-Gamma process

o0

p(Smld,v) = Po(klbd) Ga(m|b,v + k +1) (762)
k=0

and therefore the sampling distribution is a Gamma-weighted Poisson distribution with the parameter of
interest that of the Poisson. From the Mellin Transform:

be ¥ T'(s+v)

M(8)<—V,OO> - F(V"— 1) bs M(S+V7V+ 17b¢) (763)
with M (a, b, z) the Kummer’s function one can easily get the moments (E[¢]),| = M(n + 1)); in
particular

Elppn] = ¢ + b7 (v +1) and Vigm] = 2¢0b71 + b (v + 1) (764)

Now that we have the model p(¢,,,|®), let’s go for the prior function 7(¢) or 7(J). One may guess
already what shall we get. The first element of the Fisher’s matrix (diagonal) corresponds to the norm
and is constant so it would not be surprising to get the Lebesgue measure for the norm dA(d) = 7(§)dd =
cdé. As a second argument, for large sample sizes (n >>) we have b >> 50 ¢~ N (¢|p, 02 = 2¢/b)
and, to first order, Jeffreys’ prior is w(qﬁ)rv(b*l/ 2. From the reference analysis, if we take for instance

™(¢) = o1/ (765)

we end up, after some algebra, with

m(¢) o m(¢o) lim Je(9) x (%> v lim e 3b(¢ — 0)/2 + [[(¢,6) — I(¢0, b)] (766)

k—o00 fk(¢0) ¢ b—r00
where
I L,(207/ 0bi)
16.0) = [ plonlo) tox 25 00 o, (767)

and ¢ any interior point of A(¢) = [0, c0). From the asymptotic behavior of the Bessel functions one
gets

m(¢) x /2 (768)

and therefore, m(§) = c. Itis left as an exercise to get the same result with other priors like 7*(¢) = ¢
or T (¢) = ¢~ /2.

For this problem, it is easier to derive the prior from the reference analysis. Nevertheless, the
Fisher’s information that can be expressed as:

—bo oo _ 12 (2b Z(b)
) = B2 L bz w/2+11v+1\20V 20)
F(¢iv) = b { Lt b /0 ST~ dz} (769)

and, for large b (large sample size), F(\;v) — ¢! regardless the number of degrees of freedom v.
Thus, Jeffrey’s prior is consistent with the result from reference analysis. In fact, from the asymptotic
behavior of the Bessel Function in the corresponding expressions of the pdf, one can already see that
F(¢;v)~¢~1. A cross check from a numeric integration is shown in figure ?? where, for k = 3,5,7
(v = 1/2,3/2,5/2), F(¢;v) is depicted as function of ¢ compared to 1/¢ in black for a sufficiently
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Fig. 14: Fisher’s information (numeric integration) as function of ¢ for £ = 3,5,7 (discontinuous lines) and
f(¢) = ¢! (continuous line). All are scaled so that F'(¢) = 0.005,v) = 1.

large value of b. Therefore we shall use 7(¢) = ¢~ /2 for the cases of interest (dipole, quadrupole, ...
any-pole).

The posterior densities are

eFor ¢ = |12 p(dlém:v) = N e ¢~/ 1,(2b/Br /) with

T(v +1)b1/2 g?

N = R M/, 1, bgm) 7o
The Mellin Transform is
 I(s—1/2) M(s—1/2,v+1,bop,)
My(8)<1/2,00> = b T M(12,0 + 1 o) (771)
and therefore the moments
_— _ T(n+1/2)M(n+1/2,v+1,b¢y,)
Ele™] = Mn+1) = —— (12,0 + 1.bon) (772)
In the limit |bp,,|—o00, E[¢"] = ¢y,
o Forp=||pll : p(pldm,v) = 2N e p=" I,(2b\/@p) and
T 24+1/2)M 2+1/2 1, b0,
M,(s) = My(s/2+1/2) — E[p"] = (/24 1/2) M(n/2 4 1/2, v+ 1,b6m) 77

VEV2 M(1/2,v 4 1,bdy,)
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In the particular case that k = 3 (dipole; v = 1/2), we have for 6 = /3/4mp that the first two
moments are:

1
21
BP) = aM(1,3/2,—2z%) 77

erf (z)

Elo] = adM(1,3/2, —22)

with z = 20,,+/b7/3 and, when §,,—0 we get

E[6] = 2 138 E[0?] = é o5 —— (775)

ma  J/n NG
3.38

and a one sided 95% upper credible region (see section 12 for more details) of dg 95 = W

So far, the analysis has been done assuming that the variances O'JQ- are of the same size (equal in
fact) and the correlations are small. This is a very reasonable assumption but may not always be the case.
The easiest way to proceed then is to perform a transformation of the parameters of interest (x) to polar
coordinates y(p, 2) and do a Monte Carlo sampling from the posterior:

plp, 2z, =71 o [T N(zilui(p, ), 271 | w(p)dpds™ (776)
j=1

with a constant prior for & or 7(¢)ocp /2 for ¢.

“Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin”

J. Von Neumann

4 Monte Carlo Methods

The Monte Carlo Method is a very useful and versatile numerical technique that allows to solve a large
variety of problems difficult to tackle by other procedures. Even though the central idea is to simulate
experiments on a computer and make inferences from the “observed” sample, it is applicable to problems
that do not have an explicit random nature; it is enough if they have an adequate probabilistic approach.
In fact, a frequent use of Monte Carlo techniques is the evaluation of definite integrals that at first sight
have no statistical nature but can be interpreted as expected values under some distribution.

Detractors of the method used to argue that one uses Monte Carlo Methods because a manifest
incapability to solve the problems by other more academic means. Well, consider a “simple” pro-
cess in particle physics: ee—eepp. Just four particles in the final state; the differential cross section in
terms of eight variables that are not independent due to kinematic constraints. To see what we expect
for a particular experiment, it has to be integrated within the acceptance region with dead zones between
subdetectors, different materials and resolutions that distort the momenta and energy, detection efficien-
cies,... Yes. Admittedly we are not able to get nice expressions. Nobody in fact and Monte Carlo comes
to our help. Last, it may be a truism but worth to mention that Monte Carlo is not a magic black box and
will not give the answer to our problem out of nothing. It will simply present the available information
in a different and more suitable manner after more or less complicated calculations are performed but all
the needed information has to be put in to start with in some way or another.

In this lecture we shall present and justify essentially all the procedures that are commonly used in
particle physics and statistics leaving aside subjects like Markov Chains that deserve a whole lecture by
themselves and for which only the relevant properties will be stated without demonstration. A general
introduction to Monte Carlo techniques can be found in [?].
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4.1 Pseudo-Random Sequences

Sequences of random numbers {x1, 2, . . ., Z, } are the basis of Monte Carlo simulations and, in princi-
ple, their production is equivalent to perform an experiment e(n) sampling n times the random quantity
X ~p(x|f). Several procedures have been developed for this purpose (real experiments, dedicated ma-
chines, digits of transcendental numbers,...) but, besides the lack of precise knowledge behind the gen-
erated sequences and the need of periodic checks, the complexity of the calculations we are interested
in demands large sequences and fast generation procedures. We are then forced to devise simple and
efficient arithmetical algorithms to be implemented in a computer. Obviously neither the sequences pro-
duced are random nor we can produce truly random sequences by arithmetical algorithms but we really
do not need them. It is enough for them to simulate the relevant properties of truly random sequences
and be such that if I give you one of these sequences and no additional information, you won’t be able
to tell after a bunch of tests [2] whether it is a truly random sequence or not (at least for the needs of the
problem at hand). That’s why they are called pseudo-random although, in what follows we shall call
them random. The most popular (and essentially the best) algorithms are based on congruential relations
(used for this purpose as far as in the 1940s) together with binary and/or shuffling operations with some
free parameters that have to be fixed before the sequence is generated. They are fast, easy to implement
on any computer and, with the adequate initial setting of the parameters, produce very long sequences
with sufficiently good properties. And the easiest and fastest pseudo-random distribution to be generated
on a computer is the Discrete Uniform °.

Thus, let’s assume that we have a good Discrete Uniform random number generator ' although,
as Marsaglia said, “A Random Number Generator is like sex: When it is good it is wonderful; when
it is bad... it is still pretty good”. Each call in a computer algorithm will produce an output (z) that
we shall represent as xz<Un(0,1) and simulates a sampling of the random quantity X ~Un(z|0,1).
Certainly, we are not very much interested in the Uniform Distribution so the task is to obtain a sampling
of densities p(x|@) other than Uniform from a Pseudo-Uniform Random Number Generator for which
there are several procedures.

Example 4.1: Estimate the value of 7. As a simple first example, let’s see how we may estimate the value of
m. Consider a circle of radius r inscribed in a square with sides of length 2. Imagine now that we throw random
points evenly distributed inside the square and count how many have fallen inside the circle. It is clear that since
the area of the square is 472 and the area enclosed by the circle is 72, the probability that a throw falls inside the
circle is § = 7 /4.

If we repeat the experiment /N times, the number n of throws falling inside the circle follows a Binomial
law Bi(n|N,p) and therefore, having observed n out of N trials we have that

p(0ln, N) o« 6" Y/2(1 — g)yN—n—1/2 (777)

Let’s take 7* = 4E][0] as point estimator and ¢* = 40y as a measure of the precision. The results obtained for
samplings of different size are shown in the following table:

It is interesting to see that the precision decreases with the sampling size as 1/v/N. This dependence is a
general feature of Monte Carlo estimations regardless the number of dimensions of the problem.

A similar problem is that of Buffon’s needle: A needle of length | is thrown at random on a horizontal
plane with stripes of width d > [. What is the probability that the needle intersects one of the lines between the
stripes?. It is left as an exercise to shown that, as given already by Buffon in 1777, P.,; = 2l/wd. Laplace pointed
out, in what may be the first use of the Monte Carlo method, that doing the experiment one may estimate the value

of w “.. although with large error”.

30See [?] and [?] for a detailed review on random and quasi-random number generators.
31For the examples in this lecture I have used RANMAR [?] that can be found, for instance, at the CERN Computing
Library.
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Table 1: Estimation of 7 from a Binomial random process.

*

*

Throws (N) | Accepted (n) ™ o
100 83 | 3.3069 | 0.1500
1000 770 | 3.0789 | 0.0532
10000 7789 | 3.1156 | 0.0166
100000 78408 | 3.1363 | 0.0052
1000000 785241 | 3.1410 | 0.0016

4.2 Basic Algorithms

4.2.1 Inverse Transform

This is, at least formally, the easiest procedure. Suppose we want a sampling of the continuous one-
dimensional random quantity X ~p(z) 3* so
x
p(a')dz' = /
—00

L.

Now, we define the new random quantity U = F'(X') with support in [0, 1]. How is it distributed? Well,

P[X€(—o00, 2] dF(z') = F(z) (778)

F=(ul)

Fy(u) = P[U<u] = P[F(X)<u)] dF(z") = u

(779)

— Plx<F) = [

—00
and therefore U~Un(u|0, 1). The algorithm is then clear; at step i:

i1) u;<=Un(ul0,1)

19) T; = F_l(ui)

After repeating the sequence n times we end up with a sampling {x1, xo, ..., z,} of X~p(z).

Example 4.2: Let’ see how we generate a sampling of the Laplace distribution X ~La(z|a, 8) with a€R,
B€(0,00) and density

1 .
plala, B) = 5= e P o (x) (780)
273 ’
The distribution function is
” %exp(mga) if z<a
F(r)= / p(a'|e, B)dz" = (781)
- 1— % exp (f‘g‘)‘) if u>a
Then, if u<=Un(0, 1):
a+ B In(2u) if u<1/2
z = (782)
a— 21 —w)) if u>1/2

The generalization of the Inverse Transform method to n-dimensional random quantities is trivial. We
just have to consider the marginal and conditional distributions
F(xl,xg,.. .,$1>"-F2(£L'2|$1)-"Fl(xl)

32Remember that if supp(X) = QCR, it is assumed that the density is p(z)1q/(z).

o) = Fp(ap|zn_1,.. (783)

293



C. MANA

or, for absolute continuous quantities, the probability densities

p(x1, 22, .., Tn) = Pu(Tn|Tn-1,..,21) - p2(x2]z1) - P1(21) (784)
and then proceed sequentially; that is:
i21) w1<=Un(u|0,1) and z; = Ffl(ul);

in2) uz<=Un(u|0,1) and x5 = Fy *(ug|z1);
in1) uz<=Un(ul0,1) and x5 = Fy ' (usl|z1, 72);

i2n) Up<=Un(ul0,1) and z,, = Fo Y us|zn—1,...,71)

If the random quantities are independent there is a unique decomposition

n n

p(r1,22,. .., 2n) = H pi(z;) and  F(z1,29,...,2,) = H Fi(x;) (785)
i=1 i=1

but, if this is not the case, note that there are n! ways to do the decomposition and some may be easier to
handle than others (see example 4.3).

Example 4.3: Consider the probability density

p(z,y) = 2V 1(g,00)(2)1(0,11(¥) (786)

We can express the Distribution Function as F'(z,y) = F(z|y)F (y) where:

py) = /O pay)de =2y  —  Fy) = ¢ (787)
plaly) = p;f;i’):ie*“/y —  Flaly) =1 — e/ (788)

Both F(y) and F'(z|y) are easy to invert so:
i1) u<=Un(0,1) and gety = u'/?
i2) w<=Un(0,1)andgetz = —y lnw

Repeating the algorithm n times, we get the sequence {(z1,¥1), (z2,¥2),...} that simulates a sampling from
p(@,y).
Obviously, we can also write F'(z,y) = F(y|z)F(x) and proceed in an analogous manner. However

1 0o
p(z) = / p(z,y)dy = 2:6/ e " u?du (789)
0 T
is not so easy to sample.

Last, let’s see how to use the Inverse Transform procedure for discrete random quantities. If X
can take the values in Qx = {xg,x1,22,...} with probabilities P(X = x3) = pg, the Distribution
Function will be:

Fg = P(XS.I‘()) = Do

Fi = P(X<x1) = po + p1
Fy = P(X<x3) = po + p1 + p2 (790)

Graphically, we can represent the sequence {0, Fy, F1, Fa, ..., 1} as:
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Do D1 P2

Then, it is clear that a random quantity u; drawn from U (z|0, 1) will determine a point in the interval
[0, 1] and will belong to the subinterval [F}._1, Fj] with probability p = Fj — Fj,_1 so we can set up the
following algorithm:

i1) Getu; ~Un(ul0,1);

12) Find the value zj, such that Fj,_1 < u; < F}
The sequence {zg,x1,z2,...} so generated will be a sampling of the probability law P(X = xzj) =
pr. Even though discrete random quantities can be sampled in this way, some times there are specific

properties based on which faster algorithms can be developed. That is the case for instance for the
Poisson Distribution as the following example shows.

Example 4.4: Poisson Distribution Po(k|x). From the recurrence relation

M p

bk = € m = Epkfl (791)

i9) Find the value £ = 0, 1, ... such that Fj,_; < u;<F} and deliver x;, = k

For the Poisson Distribution, there is a faster procedure. Consider a sequence of n independent random
quantities { X1, X», ..., X,,}, each distributed as X;~Un(z|0, 1), and introduce a new random quantity

Wo = [T X« (792)
k=1
with supp{W,} = [0, 1]. Then
—1 - n—1 1 o]
Wi~ plwg|n) = (080" — P(W,<a) = —/ e~ ldt (793)

F(n) F(n) —loga

and if we take a = e~# we have, in terms of the Incomplete Gamma Function P(a, x):

n—1 k

- - 1
PWp<e™™) = 1—Pln,p) = ey —H = Po(X<n—1 4
(W<et) ) = 7 3 gy = Poxn =t (794)

Therefore,

19) Setw, = 1;
1) u;<=Un(0, 1) and set wy, = wpu;
12) Repeat step ¢; while w,<e™*, say k times, and deliver z;, = k — 1

Example 4.5: Binomial Distribution Bn(k|N, #). From the recurrence relation

o N k n—k __ 0 n—k—i—l
Pk = ( k >9 (1—‘9) = mTpk—l (795)

with pg = (1 — 0)*
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i1) u;<Un(0,1)
i2) Find the value K = 0,1, ..., N such that ;.| < u;<F} and deliver x;, = k

Example 4.6: Simulation of the response of a Photomultiplier tube.

Photomultiplier tubes are widely used devices to detect electromagnetic radiation by means of the external
photoelectric effect. A typical photomultiplier consists of a vacuum tube with an input window, a photocathode, a
focusing and a series of amplifying electrodes (dynodes) and an electron collector (anode). Several materials are
used for the input window (borosilicate glass, synthetic silica,...) which transmit radiation in different wavelength
ranges and, due to absorptions (in particular in the UV range) and external reflexions, the transmittance of the
window is never 100%. Most photocathodes are compound semiconductors consisting of alkali metals with a low
work function. When the photons strike the photocathode the electrons in the valence band are excited and, if they
get enough energy to overcome the vacuum level barrier, they are emitted into the vacuum tube as photoelectrons.
The trajectory of the electrons inside the photomultiplier is determined basically by the applied voltage and the
geometry of the focusing electrode and the first dynode. Usually, the photoelectron is driven towards the first
dynode and originates an electron shower which is amplified in the following dynodes and collected at the anode.
However, a fraction of the incoming photons pass through the photocathode and originates a smaller electron
shower when it strikes the first dynode of the amplification chain.

To study the response of a photomultiplier tube, an experimental set-up has been made with a LED as
photon source. We are interested in the response for isolated photons so we regulate the current and the frequency
so as to have a low intensity source. Under this conditions, the number of photons that arrive at the window of
the photomultiplier is well described by a Poisson law. When one of this photons strikes on the photocathode,
an electron is ejected and driven towards the first dynode to start the electron shower. We shall assume that the
number of electrons so produced follows also a Poisson law ngc,~Po(n|u). The parameter ;¢ accounts for the
efficiency of this first process and depends on the characteristics of the photocathode, the applied voltage and the
geometry of the focusing electrodes (essentially that of the first dynode). It has been estimated to be p = 0.25.
Thus, we start our simulation with

1) Ngen <= Po(n|p)

electrons leaving the photocathode. They are driven towards the the first dynode to start the electron shower but
there is a chance that they miss the first and start the shower at the second. Again, the analysis of the experimental
data suggest that this happens with probability p4s>~0.2. Thus, we have to decide how many of the n4.,, electrons
start the shower at the second dynode. A Binomial model is appropriate in this case:

2) ngz <= Bi(naz|ngen, paz) and therefore ngi = Ngen — Naz.

Obviously, we shall do this second step if nge,, > 0.

Now we come to the amplification stage. Our photomultiplier has 12 dynodes so let’s see the response of
each of them. For each electron that strikes upon dynode k& (k = 1,...,12), n electrons will be produced and
directed towards the next element of the chain (dynode k& + 1), the number of them again well described by a
Poisson law Po(ng|uy). If we denote by V' the total voltage applied between the photocathode and the anode and
by Ry, the resistance previous to dynode k& we have that the current intensity through the chain will be

_ 14
leil R;

where we have considered also the additional resistance between the last dynode and the anode that collects the
electron shower. Therefore, the parameters pi; are determined by the relation

ML = a(IRk)b

1

where a and b are characteristic parameters of the photomultiplier. In our case we have that N = 12,
a = 0.16459, b = 0.75, a total applied voltage of 800 V and a resistance chain of {2.4, 2.4, 2.4, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.2, 2.4} Ohms. It is easy to see that if the response of dynode k to one electron is modeled as
Po(ng|pk), the response to n; incoming electrons is described by Po(ng|n; iy ). Thus, we simulate the amplifica-
tion stage as:

3.1) If ngg >0: do from k=1 to 12:

L= ppng —> ngp < Po(n|p)
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Fig. 15: Result of the simulation of the response of a photomultiplier tube. The histogram contains 10® events and
shows the final ADC distribution detailing the contribution of the pedestal and the response to 1, 2 and 3 incoming

photons.

32) If ngs >0: do from k=2 to 12:
o= ppnge — ng2 < Po(n|u)

Once this is done, we have to convert the number of electrons at the anode in ADC counts. The electron charge is
Q. = 1.602176 10~ C and in our set-up we have f4pc = 2.110'* ADC counts per Coulomb so

ADCpm = (na1 + na2) (Qe fapc)

Last, we have to consider the noise ( pedestal). In our case, the number of pedestal ADC counts is well
described by a mixture model with two Normal densities

Pped(z]) = a N1(2[10.,1.) + (1 — a) N1(z|10.,1.5) (796)

with & = 0.8. Thus, with probability o we obtain ADCpeq<=N;(z|10,1.5), and with probability 1 — «,
ADCpeq<=N1 (2|10, 1) so the total number of ADC counts will be

ADCtot = ADCped + ADC]mn

Obviously, if in step 1) we get ngen, = 0, then ADCyor = ADCpeq. Figure ?? shows the result of the simulation
for a sampling size of 108 together with the main contributions (1,2 or 3 initial photoelectrons) and the pedestal.
From these results, the parameters of the device can be adjusted (voltage, resistance chain,...) to optimize the
response for our specific requirements.

The Inverse Transform method is conceptually simple and easy to implement for discrete distri-
butions and many continuous distributions of interest. Furthermore, is efficient in the sense that for each
generated value u; as Un(z|0,1) we get a value z; from F'(z). However, with the exception of easy
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distributions the inverse function F'~!(z) has no simple expression in terms of elementary functions and
may be difficult or time consuming to invert. This is, for instance, the case if you attempt to invert the Er-
ror Function for the Normal Distribution. Thus, apart from simple cases, the Inverse Transform method
is used in combination with other procedures to be described next.

NOTE 6: Bootstrap. Given the iid sample {x1,x2,...,z,} of the random quantity X ~p(z|0) we
know (Glivenko-Cantelly theorem; see lecture 1 (7.6)) that:

unr

Fu(@) =1/n) 1 sg(zk) == F(z]6) (797)
k=1

Essentially the idea behind the bootstrap is to sample from the empirical Distribution Function F), ()
that, as we have seen for discrete random quantities, is equivalent to draw samplings {z, 25, ..., 2} } of
size n from the original sample with replacement. Obviously, increasing the number of resamplings does
not provide more information than what is contained in the original data but, used with good sense, each
bootstrap will lead to a posterior and can also be useful to give insight about the form of the underlying
model p(z|#) and the distribution of some statistics. We refer to [?] for further details.

4.2.2 Acceptance-Rejection ( Hit-Miss; J. Von Neumann, 1951)

The Acceptance-Rejection algorithm is easy to implement and allows to sample a large variety of n-
dimensional probability densities with a less detailed knowledge of the function. But nothing is for free;
these advantages are in detriment of the generation efficiency.

Let’s start with the one dimensional case where X ~p(z|f) is a continuous random quantity
with supp(X) = [a,b] and p,, = max,p(x|f). Consider now two independent random quantities
Xi~Un(z1|e, B) and Xo~Un(z2|0, ) where [a,b] C supp(X1) = [«, 8] and [0, p;y] C supp(Xsz) =
[0, 6]. The covering does not necessarily have to be a rectangle in R? (nor a hypercube R"*1) and, in
fact, in some cases it may be interesting to consider other coverings to improve the efficiency but the
generalization is obvious. Then

1 1
plz1, za|) = 5=as (798)
Now, let’s find the distribution of X conditioned to Xo<p(X|0):
(16)
P(X1<z, Xo<p(x|6 [Zdxy [y p(x1, z2]) dxo
P(X1§x|X2§p(x|0)) = (P(X < 9( | >> = O,é Op(xl|9) N
2<p(z(0)) [ dxy [ (e, wo]-) day
xr
o P(@1]0) 144 (21) d1 ?
_ fﬁ 10)L a4 _ / p(x1|0) dzy = F(2]6)  (799)
I p(x110)1 1 4y (21) day a

so we set up the following algorithm:

i1) u;<=Un(u|a<a, $>b) and w;<=Un(w|0,0>pm,);
i9) If w;<p(u;|0) we accept z;; otherwise we reject x; and start again from 4,

Repeating the algorithm n times we get the sampling {z1, x2, . . ., x, } from p(z|0).
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Besides its simplicity, the Acceptance-Rejection scheme does not require to have normalized den-
sities for it is enough to know an upper bound and in some cases, for instance when the support of the
random quantity X is determined by functional relations, it is easier to deal with a simpler covering of
the support. However, the price to pay is a low generation efficiency:

def. accepted trials  area under p(x]6)

= 800
total trials area of the covering — (800)

Note that the efficiency so defined refers only to the fraction of accepted trials and, obviously, the more
adjusted the covering is the better but for the Inverse Transform e = 1 and it does not necessarily imply
that it is more efficient attending to other considerations. It is interesting to observe that if we do not
know the normalization factor of the density function, it can be estimated as

/ p(z]0) dx ~ (area of the covering) e (801)
X

Let’s see some examples before we proceed.

Example 4.7: Consider X ~Be(z|a, 8). In this case, what follows is just for pedagogical purposes since other
procedures to be discussed later are more efficient. Anyway, the density is

p(x|a, B ocz® L (1 — x)8~1 ze[0,1] (302)
Suppose that «v, 3 > 1 so the mode z, = (o — 1)(cv + 3 — 2) ! exists and is unique. Then

(a =1t (B—1)°~!
(a+ B —2)F02

pm=max, {p(x|a, B)} = p(xola, B) = (803)

so let’s take then the domain [a = 0, 8 = 1] x [0, p,,] and
i1) Getx; ~Un(z|0,1) and y; ~ Un(y|0, pm);
ig) If

a) y;<p(x;|a, B) we deliver ( accept) x;

1) y; > p(zi|a, B) we reject x; and start again from iy
Repeating the procedure n times, we get a sampling {z1, 2, ..., T, } from Be(z|a, ). In this case we know the
normalization so the area under p(z|«, 8) is Be(z|a, 3) and the generation efficiency will be:

(a+ B —2)2th=2
(=11 (B -1

e = B(a, ) (804)

Example 4.8: Let’s generate a sampling of the spatial distributions of a bounded electron in a Hydrogen atom. In
particular, as an example, those for the principal quantum number n = 3. The wave-function is ¥, (1,0, ¢) =
Rt (r)Yim (0, ¢) with:

R3gox (1 —2r/2 — 27‘2/27)e_r/3 ; R3; xr(1l — ’I“/6)6_T/3 and Rasxxr?e™ /3 (805)

the radial functions of the 3s, 3p and 3d levels and
[Vio|? oc c0s?0 ; |Yia1|? o sin®0 5 |Yag|? o< (3 cos?0 — 1)% 5 |Yagi|? o< cos? sin®6 ; |Yaio|? o sin*@806)
the angular dependence from the spherical harmonics. Since du = 2 sinfdrdfdg, the probability density will be
p(r,0,¢ln, L, m) = Ry (r) [Yim|* r? sind = pr(r|n, 1) po (0L, m) py () (807)

so we can sample independently 7, # and ¢. It is left as an exercise to explicit a sampling procedure. Note however
that, for the marginal radial density, the mode is at = 13,12 and 9 for [ = 0, 1 and 2 and decreases exponentially
so even if the support is 7€[0, o) it will be a reasonable approximation to take a covering 7€[0, 74z ) Such that
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Fig. 16: Spatial probability distributions of an electron in a hydrogen atom corresponding to the quantum states
(n,l,m) =(3,1,0), (3,2,0) and (3,2, £1) (columns 1,2,3) and projections (x,y) and (x, z) = (y, z) (rows 1 and
2) (see example 4.8).

P(r>rmaz) is small enough. After n = 4000 samplings for the quantum numbers (n,l,m) = (3,1,0), (3,2,0)
and (3,2, £1), the projections on the planes 7.y, 7, and 7, are shown in figure ??.

The generalization of the Acceptance-Rejection method to sample a n-dimensional density
X~p(x|0) with dim(x) = n is straight forward. Covering with an n+1 dimensional hypercube:

i1) Get a sampling {x}), x?), e m?); y; } where
{xf) “= Un(xf)|ozk, Bi)}i—1; vi<Un(y|0,k) and k> maxxp(x|6)

1 2 n)

i2) Accept the n-tuple x; = (x,7,x;,...,x; ) if y;<p(x;]0) or reject it otherwise.

4.2.2.1 Incorrect estimation of max,{p(x|-)}

Usually, we know the support [« 5] of the random quantity but the pdf is complicated enough to know
the maximum. Then, we start the generation with our best guess for max,p(x|-), say k1, and after having
generated N7 events ( generated, not accepted) in [a, 3] X [0, k1],... wham!, we generate a value x,,, such
that p(x,,) > k;. Certainly, our estimation of the maximum was not correct. A possible solution is to
forget about what has been generated and start again with the new maximum ks = p(z,,) > k; but,
obviously, this is not desirable among other things because we have no guarantee that this is not going to
happen again. We better keep what has been done and proceed in the following manner:

1) We have generated N; pairs (x1, z2) in [a, 5] X [0, k1] and, in particular, X uniformly in [0, k1].
How many additional pairs N, do we have to generate? Since the density of pairs is constant in
both domains [«, 8] x [0, k1] and [«, 8] x [0, ko] we have that

N1 Nl =+ Na k2

B-a)ki  (B-a)ks Na=N1<,ﬁ—1> (808)
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2) How do we generate them? Obviously in the domain [«, 5] X [k1, k2] but from the truncated density

pe(z]) = (p(z]) = k1) Lp(a)y >k, (7) (809)

3) Once the N, additional events have been generated (out of which some have been hopefully ac-
cepted) we continue with the usual procedure but on the domain [, 3] x[0, k2].

The whole process is repeated as many times as needed.

NOTE 7: Weighted events. The Acceptance-Rejection algorithm just explained is equivalent to:

i1) Sample x; from Un(z|a, 5) and w; from Un(u|0,1);
i2) Assign to each generated event x; a weight: w; = p(z;|-)/pm; 0<w; <1 and accept the event if
u; <w; or reject it otherwise.

It is clear that:

e Events with a higher weight will have a higher chance to be accepted;

e After applying the acceptance-rejection criteria at step 72, all events will have a weight either 1 if
it has been accepted or 0 if it was rejected.

e The generation efficiency will be

. N
accepted trials 1 .
_ - ;= 810
© 7 Total rials(N) N ; Wi = (810)

In some cases it is interesting to keep all the events, accepted or not.

Example 4.9: Let’s obtain a sampling {x1,xX2,...}, dim(x) = n, of points inside a n-dimensional sphere
centered at x° and radius . For a direct use of the Acceptance-Rejection algorithm we enclose the sphere in a
n-dimensional hypercube

Cn = H[xf—r,xf—i—r] 811)
i=1
and:
1) z;<=Un(x|zf —rxf+r)fori=1,...,n
2) Accept x; if p; = ||x; — x°|| < and reject otherwise.
The generation efficiency will be

volume of the sphere 2721

e(n) = (812)

volume of the covering B nT(n/2) 2"

Note that the sequence {x;/p; }_; will be a sampling of points uniformly distributed on the sphere of radius r = 1.
This we can get also as:

1) zz<=N(z|0,1)fori=1,...,n

2) p=llzillandx; =z;/p

Except for simple densities, the efficiency of the Acceptance-Rejection algorithm is not very
high and decreases quickly with the number of dimensions. For instance, we have seen in the previous
example that covering the n-dimensional sphere with a hypercube has a generation efficiency

27n/2  q

e(n) = ST T (813)
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and lim,_,~.€(n) = 0. Certainly, some times we can refine the covering since there is no need other
than simplicity for a hypercube (see Stratified Sampling) but, in general, the origin of the problem
will remain: when we generate points uniformly in whatever domain, we are sampling with constant
density regions that have a very low probability content or even zero when they have null intersection
with the support of the random quantity X. This happens, for instance, when we want to sample from a
differential cross-section that has very sharp peaks (sometimes of several orders of magnitude as in the
case of bremsstrahlung). Then, the problem of having a low efficiency is not just the time expend in the
generation but the accuracy and convergence of the evaluations. We need a more clever way to generate
sequences and the Importance Sampling method comes to our help.

4.2.3 Importance Sampling

The Importance Sampling generalizes the Acceptance-Rejection method sampling the density function
with higher frequency in regions of the domain where the probability of acceptance is larger (more
important). Let’s see the one-dimensional case since the extension to n-dimensions is straight forward.

Suppose that we want a sampling of X ~p(x) with support 2 x €[a, b] and F'(z) the corresponding
distribution function. We can always express p(x) as:

p(x) = cg(z) h(z) (814)
where:

1) h(z) is a probability density function, i.e., non-negative and normalized in Qx;
2) g(z)>0 ; VzeQx and has a finite maximum g,,, = max{g(z); x€Qx};
3) ¢ > 0 a constant normalization factor.

Now, consider a sampling {1, z9, ..., 2, } drawn from the density h(x). If we apply the Acceptance-
Rejection criteria with g(z), how are the accepted values distributed? It is clear that, if g, = max(g(z))
and Y~Un(y|0, gm)

f; h(x)dx fog(x) dy _ fam h(z) g(z) dz
ff h(x)dx fog(x) dy fab h(z) g(z) dx

and therefore, from a sampling of h(z) we get a sampling of p(x) applying the Acceptance-Rejection
with the function g(z). There are infinite options for h(z). First, the simpler the better for then the
Distribution Function can be easily inverted and the Inverse Transform applied efficiently. The Uniform
Density h(z) = Un(z|a,b) is the simplest one but then g(z) = p(z) and this is just the Acceptance-
Rejection over p(x). The second consideration is that i (z) be a fairly good approximation to p(x) so that
g(z) = p(x)/h(x) is as smooth as possible and the Acceptance-Rejection efficient. Thus, if h(x) > 0
Vzela,bl:

P(X<z[Y<g(z)) = = F(z) (815)

I C)) _
p(x)de = %h(:c) dx = g(x)dH(z) (816)

4.2.3.1 Stratified Sampling

The Stratified Sampling is a particular case of the Importance Sampling where the density p(x); x€Qx
is approximated by a simple function over 2x. Thus, in the one-dimensional case, if 2 = [a, b) and we
take the partition ( stratification)

Q = UL, = Ui[ai-1, a;) i ag=a, ap,=D> (817)

302



PROBABILITY AND STATISTICS FOR PARTICLE PHYSICS

with measure A\(€;) = (a; — a;—1), we have

n

hz) =Y W . /an h(z)dz = 1 818)
i=1 o

Denoting by p,,(i) = max,{p(z)|z€Q;}, we have that for the Acceptance-Rejection algorithm the
volume of each sampling domain is V; = A(€;) py,(¢). In consequence, for a partition of size n, if
Ze{1,2,...,n} and define

k
P(Z=k) = ZJ/IiV ; F(k) = P(Z<k) = Y _ P(Z =) (819)
1= ? j=1

we get a sampling of p(z) from the following algorithm:

i1) u;<=Un(u|0,1) and select the partition & = Int[ min{F; | F; > n-u;}|;
i2) xi<=Un(x|ag—1,ar), yi<=Un(y|0, pm(k)) and accept z; if y;<p(z;) (reject otherwise).

4.2.4 Decomposition of the probability density

Some times it is possible to express in a simple manner the density function as a linear combination of
densities; that is

k
plx) =Y ajpi(x) 5 a; >0Vj =12 .k (820)
j=1

that are easier to sample. Since normalization imposes that

o0 k oo
/ p(x)der = Z a; / pj(x)dx = Z am = 1 (821)
9] j=1 —o0

we can sample from p(x) selecting, at each step 4, one of the k densities p;(z) with probability p; = a;
from which we shall obtain z; and therefore sampling with higher frequency from those densities that
have a higher relative weight. Thus:

i1) Select which density p;(z) are we going to sample at step i2 with probability p; = a;;
i9) Get x; from p;(z) selected at 4;.

It may happen that some densities p;(x) can not be easily integrated so we do not know a priory the
relative weights. If this is the case, we can sample from f;(z) o pj(x) and estimate with the generated
events from f;(z) the corresponding normalizations ; with, for instance, from the sample mean

1 n
Ii =~ filn) (822)
k=1
Then, since p;(z) = fi(z)/I; we have that
K K f(l‘) K
pal) = Y aifizl) = Y aili=— =) ailipi(x) (823)
i=1 i=1 ¢ i=1

so each generated event from f;(x) has a weight w; = a;1;.
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Example 4.10: Suppose we want to sample from the density

p(z) = 2(1 +2?)  ; zel-1,1] (824)

Then, we can take:

pr(z) x1 pi(z) = 1/2

po(z) o 2 } — normalization — { po(z) = 322 (825)
s0:
3 1
p(z) = Zm(x) + sz(x) (826)
Then:

i1) Get u; and w; as Un(u|0, 1);
i9) Get x; as:
ifu;<3/4thenz; = 2w; — 1
if u; > 3/4thenz; = (2w; — 1)Y/3

In this case, 75% of the times we sample from the trivial density Un(z| — 1,1).

4.3 Everything at work
4.3.1 The Compton Scattering

When problems start to get complicated, we have to combine several of the aforementioned methods; in
this case Importance Sampling, Acceptance-Rejection and Decomposition of the probability density.

Compton Scattering is one of the main processes that occur in the interaction of photons with
matter. When a photon interacts with one of the atomic electrons with an energy greater than the binding
energy of the electron, is suffers an inelastic scattering resulting in a photon of less energy and different
direction than the incoming one and an ejected free electron from the atom. If we make the simplifying
assumptions that the atomic electron initially at rest and neglect the binding energy we have that if the

!

incoming photon has an energy E. its energy after the interaction (E,Y) is:

_ 5 ! (827)
‘= E, 1+ a(l- cosd)

where 6€[0, 7] is the angle between the momentum of the outgoing photon and the incoming one and
a = E./me.. Itis clear that if the dispersed photon goes in the forward direction (that is, with § = 0), it
will have the maximum possible energy (¢ = 1) and when it goes backwards (that is, § = 7) the smallest
possible energy (e = (1 + 2a)~!). Being a two body final state, given the energy (or the angle) of the
outgoing photon the rest of the kinematic quantities are determined uniquely:

cotf/2
1+a

/ 1
E,=E,(1+—-—¢) and  tanf, = (828)
a

The cross-section for the Compton Scattering can be calculated perturbatively in Relativistic Quantum
Mechanics resulting in the Klein-Nishina expression:

doy 3or

dr Tf(m) (829)

where z = cos(f), or = 0.665 barn = 0.665- 1072 c¢m? is the Thomson cross-section and

B 1 a’(1—x)?
)= it (1) =
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Fig. 17: Functions f(z) (left) and g(z) (right) for different values of the incoming photon energy.

has all the angular dependence. Due to the azimuthal symmetry, there is no explicit dependence with
¢€]0, 27r] and has been integrated out. Last, integrating this expression for z€[—1, 1] we have the total
cross-section of the process:

or [(1—1—@) (2(1—|—a) ln(1+2a)> L In(1+20) 1+ 3a

oo(Ey) =

- - 831
4 a? 1+ 2a a 2a (1 + 2a)? (831)

For a material with Z electrons, the atomic cross-section can be approximated by o = Z o9 cm?/atom.

Let’s see how to simulate this process sampling the angular distribution p(x)~ f(x). Figure ??
(left) shows this function for incoming photon energies of 10, 100 and 1000 MeV. It is clear that it is
peaked at z values close to 1 and gets sharper with the incoming energy; that is, when the angle between
the incoming and outgoing photon momentum becomes smaller. In consequence, for high energy photons
the Acceptance-Rejection algorithm becomes very inefficient. Let’s then define the functions

1
fu(x) = T a(—a)" (832)
and express f(z) as f(z) = (fi() + fa@) + falx)) - g(x) where
g@) =1 - (2-2?) filz) (833)

1+ fi(z) + fa(z)
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The functions f,(z) are easy enough to use the Inverse Transform method and apply afterward the
Acceptance-Rejection on g(x) > 0 Vx€[—1, 1]. The shape of this function is shown in figure ?? (right)
for different values of the incoming photon energy and clearly is much more smooth than f(z) so the
Acceptance-Rejection will be significantly more efficient. Normalizing properly the densities

1 1
pi(z) = — fi(z) such that / pi(z)de =1 ;1=1,2,3 (834)
w; -1
we have that, with b = 1 + 2a:
1 2 2b
=gt 2w B 1) (839)
and therefore
fl@) = (A@) + falz) + f3(x)) -9(x) = (wipi(z) + w2pa(x) + wsps(z)) -g(z) =
= w (api(z) + azpa(z) + azps(x)) - g(x)
(836)
where w; = wy + w2 + ws,
W =3
aj=—>0 ;i=123 and Y a;=1 (837)
W i=1
Thus, we set up the following algorithm:
1) Generate u<=Un(ul0, 1),
1.1) if u<ay we sample x4 ~ p1(x);
1.2) if oy < u<aq + ap we sample x4 ~ po(x) and
1.3) if a1 + ap < u we sample x4 ~ pa(z);
2) Generate w<=Un(w|0, gpr) where
= max[g(z)] = gz =-1) =1 — b
gM = g\l = 9\w = - 1+b+ b2
If w<g(x4) we accept x4; otherwise we go back to step 1).
Let’s see now to to sample from the densities p;(z). If u<=Un(u|0,1) and
xT
Fi(z) = / pi(s)ds 1=1,2,3 (838)
~1
then:
In(1+ a(l —x)) 14+a— 0"
x p1(x) Fi(z) in(b) —  xy " (839)
b -1 1 a(b?®—1)
~ - B - - 9 = - —— 7
v pa() s Fola) 2(b—z) 2a Y 1+ 2au
1 (b+1)2 ) b+1
x ~p3(x): F3(z) = -1 — x4 =0
pS( ) 3( ) 4a(1+a) ((b_x)Z g [1+4a(1+a)u]1/2
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Once we have x, we can deduce the remaining quantities of interest from the kinematic relations. In
particular, the energy of the outcoming photon will be

Ey ! (840)
€ = —=—= —
g E 1+ a(l —zy)
Last, we sample the azimuthal outgoing photon angle as ¢ < Un(u|0, 27).

Even though in this example we are going to simulate only the Compton effect, there are other
processes by which the photon interacts with matter. At low energies (essentially ionization energies:
< E, <100 KeV) the dominant interaction is the photoelectric effect

v + atom — atom® + e~ ;

at intermediate energies (E, ~ 1 — 10 MeV') the Compton effect

v + atom — v + e + atom™

and at high energies (E, > 100 MeV’) the dominant one is pair production
v 4+ nucleus — et 4+ e~ 4 nucleus

To first approximation, the contribution of other processes is negligible. Then, at each step in the evolu-
tion of the photon along the material we have to decide first which interaction is going to occur next. The
cross section is a measure of the interaction probability expressed in cm? so, since the total interaction
cross section will be in this case:

Ot = Ophot. + O Compt. T O pair (841)

we decide upon the process i that is going to happen next with probability p; = o;/0; that is,
u<=Un(0,1) and

1) if u<p phor. we simulate the photoelectric interaction;
2) if p phot. < U=<(P phot. + P compt.): We simulate the Compton effect and otherwise
3) we simulate the pair production

Once we have decided which interaction is going to happen next, we have to decide where. The
probability that the photon interacts after traversing a distance x (cm) in the material is given by

Fipg = 1 — 72/ (842)

where )\ is the mean free path. Being A the atomic mass number of the material, N4 the Avogadro’s
number, p the density of the material in g/ cm?, and o the cross-section of the process under discussion,
we have that

A
- 843
pNyo [ em] (843)
Thus, if u<Un(0, 1), the next interaction is going to happen at x = —Alnu along the direction of the

photon momentum.

As an example, we are going to simulate what happens when a beam of photons of energy £, = 1
MeV (X rays) incide normally on the side of a rectangular block of carbon (Z = 6, A = 12.01, p = 2.26)
of 10 x 10 c¢m? surface y 20 cm depth. Behind the block, we have hidden an iron coin (Z = 26, A =
55.85, p = 7.87) centered on the surface and in contact with it of 2 cm radius and 1 cm thickness. Last,
at 0.5 cm from the coin there is a photographic film that collects the incident photons.
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Fig. 18: The upper figure shows an sketch of the experimental set-up and the trajectory of one of the simulated
photons until it is detected on the screen. The lower figure shows the density of photons collected at the screen for
a initially generated sample 10° events.

The beam of photons is wider than the block of carbon so some of them will go right the way
without interacting and will burn the film. We have assumed for simplicity that when the photon energy
is below 0.01 MeV, the photoelectric effect is dominant and the ejected electron will be absorbed in the
material. The photon will then be lost and we shall start with the next one. Last, an irrelevant technical
issue: the angular variables of the photon after the interaction are referred to the direction of the incident
photon so in each case we have to do the appropriate rotation.

Figure ?? (up) shows the sketch of the experimental set-up and the trajectory of one of the traced
photons of the beam collected by the film. The radiography obtained after tracing 100,000 photons is
shown in figure ?? (down). The black zone corresponds to photons that either go straight to to the screen
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or at some point leave the block before getting to the end. The mid zone are those photons that cross the
carbon block and the central circle, with less interactions, those that cross the carbon block and afterward
the iron coin.

4.3.2 An incoming flux of particles

Suppose we have a detector and we want to simulate a flux of isotropically distributed incoming particles.
It is obvious that generating them one by one in the space and tracing them backwards is extremely
inefficient. Consider a large cubic volume V' that encloses the detector, both centered in the reference
frame Sy. At time ¢o, we have for particles uniformly distributed inside this volume that:

1
p(ro) duo = v dxo dyo dzo (844)
Assume now that the velocities are isotropically distributed; that is:

p(v)du, = % sinf df do f(v) dv (845)

with f(v) properly normalized. Under independence of positions and velocities at ¢y, we have that:
1 1.
p(ro, v) dug dp, = v dxq dyo dzg 7 St 6dode f(v)dv (846)
7

Given a square of surface S = (21)2, parallel to the (z,y) plane, centered at (0, 0, z.) and well inside the
volume V', we want to find the probability and distribution of particles that, coming from the top, cross
the surface .S in unit time.

For a particle having a coordinate zj at tg = 0, we have that 2(¢) = zg + v,t. The surface S is
parallel to the plane (x,y) at z = z. so particles will cross this plane at time t. = (2. — z9)/v, from
above iff:

0) zo>zc; obvious for otherwise they are below the plane S at ¢y = 0;

1) 6€[n/2,7); also obvious because if they are above S at ¢y = 0 and cut the plane at some ¢ > 0,
the only way is that v, = vcosf < 0 — cosf < 0 — f€[n/2, 7).

But to cross the squared surface S of side 2] we also need that
2) —li<a(te) =x0+vete <l and =1 <y(t.) = yo + vyt <1

Last, we want particles crossing in unit time; that is t.€[0, 1] so 0<t. = (2. — 20)/v,<1 and therefore
3) 20€[z¢, 2e — v cos 0]

Then, the desired subspace with conditions 1), 2), 3) is
Qe = {0€[n/2,m); 20€[2¢, 2 — v cosb]; xo€[—1 — vate, | — vite]; Yo€[—1 — vyte, I — vytc]} (847)

After integration:

Ze—v cos 0 l—vgte l—vyte
/ dzp / dxg / dyo = —(20)%v cos (848)
Ze —l—vgtc —l—vytc
Thus, we have that for the particles crossing the surface S = (21)? from above in unit time
2n? 1 .
p(0,¢,v)dbdpdv = — 1 Sin 0 cosfdfde f(v)vdv (849)
T
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with fe[r /2, 7) and ¢€[0, 27). If we define the average velocity

Ev] = / v f(v)dv (850)
the probability to have a cut per unit time is
SE
Palte<t) = [ p(0.6.0) dvaoay = 221 (851)
Qex 9y 4V
and the pdf for the angular distribution of velocities (direction of crossing particles) is
1 1
p(0,¢)dfdp = —— sinf cosfdfdp = o d(cos?6) do (852)
™ T

If we have a density of n particles per unit volume, the expected number of crossings per unit time due
to the ny = n 'V particles in the volume is

n E[v]

Ne = Ny Pcut(tcél) = S (853)

so the flux, number of particles crossing the surface from one side per unit time and unit surface is

0o _ Ne _ n Efv]
o, = S (854)

Note that the requirement that the particles cross the square surface S in a finite time (¢.€[0, 1])
modifies the angular distribution of the direction of particles. Instead of

p1(0, ) o sin ¢ ;0€[0,7); ¢€l0,2m) (855)
we have
p2(0,¢) x —sinf cosé ;0€[n/2,m); ¢€[0,2m) (856)

The first one spans a solid angle of

T 27
| a0 [ dom(o.0) = am (857)
0 0

while for the second one we have that

w/2 2
| as [ domio.0) = = (858)
0 0

that is; one fourth the solid angle spanned by the sphere. Therefore, the flux expressed as number of
particles crossing from one side of the square surface .S per unit time and solid angle is
9 n.  nE[]

T TS  Ar

Thus, if we generate a total of n = 6n, particles on the of the surface of a cube, each face of area .S,
with the angular distribution

o, (859)

p(0,¢) dodep = %d(COSQH) dé (860)

for each surface with 0€[r/2,7) and $<€[0,27) defined with k normal to the surface, the equivalent
generated flux per unit time, unit surface and solid angle is &7 = ny /67 S and corresponds to a density
of n = 2n7 /35S Ev] particles per unit volume.
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NOTE 8: Sampling some continuous distributions of interest.

These are some procedures to sample from continuous distributions of interest. There are several
algorithms for each case with efficiency depending on the parameters but those outlined here have in
general high efficiency. In all cases, it is assumed that u<=Un/(0, 1).

e Beta: Be(z|a, 8); a, f€(0, 00):

1 -
p(z]-) = B(a,ﬁ)x 1(1—$)B 11(071)($) — = ﬁ (861)
where z1 < Ga(z|1/2, o) and 9 < Ga(z|1/2, B)
e Cauchy: Ca(z|a, B); a€R; 5€(0,00):
p _
p(z]) = (1+/32(/x7r leme(@  — w=a+ 5T n(r(uo1/2) G0

e Chi-squared: For x?(z|v) see Ga(x|1/2,v/2).

e Dirichlet Di(x|a); dim(x, a) = n, a;€(0,00), z;€(0,1) and >°7_; ;5 = 1

n

F(Od +. + Otn
Moy Tan) 1%

p(x|a) = 1(0 1) (zj) — A{z;= Zj/ZO}?:l (863)

where zj<=Ga(z|1, a;) and zg = Y77 2

Generalized Dirichlet GDi(x|c, §); dim(5) = n, 5;€(0, o0), Z;:ll xj <1

; Yi
az—I— Z i ‘
p(z1,. .. T, B) H o /B xy" ! (1 - Zxk> (864)
k=1

with

N = { Bi — aiy1 — Biy1 fori=1,2,...,n—2 (865)

Bn_1—1 fori=n-—1

When ; = «;41+ fB+1 reduces to the usual Dirichlet. If z;< Be(z|ay, k) then z, = 2z (1 —Zf 11:15])
fork=1,...,n—1landz, =1 —Z?:_llxi.

e Exponential: Fz(x|a); ag(0,00):

p(z]) = aexp{—az}lp)(z) — =z = —a tnu (866)

e Gamma Distribution Ga(z|«, 8); a, B€(0, 00).
The probability density is

p(zle, B) =

FC(“ g€ e o (@) (867)

Note that Z = a X ~Ga(z|1, B) so let’s see how to simulate a sampling of Ga(z|1, 8) and, if a#1, take
x = z/a. Depending on the value of the parameter § we have that

311



C. MANA

> B = 1: This is the Exponential distribution Ex(z|1) already discussed;

> B = meN: As we know, the sum Xg = X; + ... + X,, of n independent random quantities
Xi~Ga(zila, B;);i = 1,...,nis arandom quantity distributed as Ga(|xs|c, 51+ - -+ 5). Thus,
if we have m independent samplings z;<=Ga(z|1,1) = Ex(z|1), that is

r1 = —Inuy, ... ,Tm = — Inuy, (868)
with u;<=Un(0, 1), then
T =a1 + T3 + 2m = —In [Jus (869)
i=1

will be a sampling of Ga(xs|1, 8 = m).
> B > 1€R: Defining m = [5] we have that 5 = m + ¢ with 6€[0, 1). Then, if u;<=Un(0,1); i =
1,...,mand w<Ga(wl1,d),

z = —lnHﬁlui + w (870)

will be a sampling from Ga(z|1,3). The problem is reduced to get a sampling w<=Ga(w|1,6)
with 6€(0, 1).

> 0 < B < 1: In this case, for small values of x the density is dominated by p(z) ~ 2°~1 and for
large values by p(z) ~ e~ *. Let’s then take the approximant

g(x) = 27 1) (@) + e 100 (2) (871)

Defining
pi(z) = B2’ Mgy —  Fz) =2 (872)
po(z) = 6_(:”_1)1[1700)(90) — FBr) =1-—¢ @1 (873)

w1 =e/(e+ B) and we = /(e + ) we have that

g(z) = wipi(z) + w2 pa(x) (874)

and therefore:
1) w;<Un(0,1);i=1,2,,3

2) Ifug <wq,2etx = u;/ﬁ and accept x if uz<e~7"; otherwise go to 1);
Ifu; > wy,setx = 1 — Inug and accept z if U3§x5_1; otherwise go to 1);

The sequence of accepted values will simulate a sampling from Ga(z|1,3). It is easy to see that the
generation efficiency is

(&

() = 5 B+ (875)

and €, (8 ~ 0.8) ~0.72.
e Laplace: La(z|a, B); a€R, (0, 0):
a+ [ In(2u) if u<1/2

p(zla, B) = 2i e_‘z_o‘l/ﬁl(_oqoo) () — x= (876)
p a—BIn(2(1—w) if u>1/2
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e Logistic: Lg(z|a, 8); a€R; SE(0,00):

p(z]) = 5(1 f’;i;f(;(;_o‘)a})})z1(_00700)(35) — z=a+ ' <1ﬁu> (877)

e Normal Distribution N (x|u, V).

There are several procedures to generate samples from a Normal Distribution. Let’s start with
the one-dimensional case X~ N (z|u, o) considering two independent standardized random quantities
Xi~N(z;]0,1); i = 1,2 [?] with joint density

1
p(z1,29) = %e’(ﬁ”@” (878)

After the transformation X1 = R cos® and X2 = R sin® with R€[0, 00); ©€[0, 27r) we have

p(r,0) = %e—”/% (879)

Clearly, both quantities R and © are independent and their distribution functions

F(r)=1—¢"/2 and Fy0) = zi (880)
T

are easy to invert so, using then the Inverse Transform algorithm:

1) u1<=Un(0,1) and up<=Un(0, 1);
2) r =+/—2 Inuq and 6 = 27us;

3) 21 = r cosf and w9 = r sind.
Thus, we get two independent samplings x; and x5 from N (|0, 1) and
4) z1 = p1 + o121 and 29 = o + 0222

will be two independent samplings from N (x|pu1,01) and N (z|pe, 02).

For the n-dimensional case, X~N (x|u, V) and V the covariance matrix, we proceed from the
conditional densities

pX|p, V) = plenltn-1,2n-2. .. 215°) p(@n-1ltn-2...,21;-) - plaa]) (881)

For high dimensions this is a bit laborious and it is easier if we do first a bit of algebra. We know from
Cholesky’s Factorization Theorem that if VER"™*™ is a symmetric positive defined matrix there is a
unique lower triangular matrix C, with positive diagonal elements, such that V.= CC”. Let then Y be
an n-dimensional random quantity distributed as N (y|0, I) and define a new random quantity

X=p+CY (882)
Then V™! = [C~1]T C~! and
Y'Y = (X —p)'[C[C(X-—p) =X -p'[V(X-p) (883)

After some algebra, the elements if the matrix C can be easily obtained as

1<i<n (884)
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c; = -4 C’j;l gk < j<i<n

i1 1/2
Ci = (Viz' - Z ka> 1<i<n
k=1

and, being lower triangular, C;; = 0 Vj > i. Thus, we have the following algorithm:

1) Get the matrix C from the covariance matrix V;
2) Get n independent samplings z;<=N(0,1) withi = 1,...,n;
3) Getx; = p; + Z?:l Ciij

In particular, for a two-dimensional random quantity we have that

V = 0’% pPoO102
pPO102 O’%

and therefore:

Vi
Cn = = 01 ; Ci2 =0
Vi
A%
Coa = \;1 = po2 Ca = (Voo — C3)Y2 = 09/1 — p?
11

SO:

(5 )
poy oa/1 — p?

Then, if 21 2<=N (2|0, 1) we have that:

<2> N (Z; > * <02(Z1p —i—lezUl\/W))

e Pareto: Pa(z|a, 3); a, f€(0, 00):

p(z]) = af @15 () — == Bu

e Snedecor: Sn(z|a, 8); a, f€(0, 00):

) o 2271 (B + az) @821 o u/e
pz|) <z (8 + ax) (0,00) () T = )
where z1 < Ga(x|1/2,«/2) and x9 < Ga(x|1/2, 3/2).
e Student St(z|v); ve(0,00):
p(z|) ! 1 (z) — =z = V(u_Q/V — 1) sin(27us)
(1 + 22/u)F D27 (7200 1

where w1 2 <= Un(0,1).
e Uniform Un(z|a,b);a < beR

p(z|) = (b—a)fll[mb](m) — z=(0b-1)+au
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e Weibull: We(z|a, 5); o, B€(0, 00):

pla] = afa®Lexp{—(2/8) o oy(@) — z=f (- Inu)/® (896)

4.4 Markov Chain Monte Carlo

With the methods we have used up to now we can simulate samples from distributions that are more or
less easy to handle. Markov Chain Monte Carlo allows to sample from more complicated distributions.
The basic idea is to consider each sampling as a state of a system that evolves in consecutive steps of
a Markov Chain converging (asymptotically) to the desired distribution. In the simplest version were
introduced by Metropolis in the 1950s and were generalized by Hastings in the 1970s.

Let’s start for simplicity with a discrete distribution. Suppose that we want a sampling of size n
from the distribution

P(X=k) =m, with k=1,2,...,N (897)

that is, from the probability vector
N
m = (m,m..omy) 3 mE[01Vi=1...,N and Y m=1 (898)
i=1

and assume that it is difficult to generate a sample from this distribution by other procedures. Then, we
may start from a sample of size n generated from a simpler distribution; for instance, a Discrete Uniform
with

P(X =k) = N vk (899)
and from the sample obtained {ni,ns,...,ny}, where n = Zf\; 1 ni, we form the initial sample
probability vector

w0 = (ﬂgo),ﬂéo), .. .,7'['](\(;)) = (n1/n,na/n,...,nx/n) (900)
Once we have the n events distributed in the NV classes of the sample space 2 = {1,2,..., N} we just

have to redistribute them according to some criteria in different steps so that eventually we have a sample
of size n drawn from the desired distribution P(X = k) = 7.

We can consider the process of redistribution as an evolving system such that, if at step ¢ the system
is described by the probability vector (!, the new state at step i + 1, described by 7(i*1), depends only
on the present state of the system (z) and not on the previous ones; that is, as a Markov Chain. Thus,
we start from the state 7(?) and the aim is to find a Transition Matrix P, of dimension N x N, such that
7+ = 7() P and allows us to reach the desired state 7. The matrix P is

Py Po - Pin
Py Py - Py

P = ) ) ) (901)
Py1 Pn2 -+ Pnn
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where each element ( P);; = P(i—j)€[0, 1] represents the probability for an event in class i to move to
class j in one step. Clearly, at any step in the evolution the probability that an event in class ¢ goes to any
otherclass j =1,...,Nis1so
N N
D (P =Y Pli—j) =1 (902)
j=1 j=1
and therefore is a Probability Matrix. If the Markov Chain is:

1) irreducible; that is, all the states of the system communicate among themselves;
2) ergodic; that is, the states are:
2.1) recurrent: being at one state we shall return to it at some point in the evolution with proba-
bility 1;
2.2) positive: we shall return to it in a finite number of steps in the evolution;
2.3) aperiodic: the system is not trapped in cycles;

then there is a stationary distribution 7 such that:
HDrmr=xnP;
2) Starting at any arbitrary state 7 of the system, the sequence
70
0 = 0 p
72— () p— 0 p2

20 — (0) pn

converges asymptotically to the fix vector T;

3)
T T2 e TN
limp oo P = | . . (903)
T T2 s TN

There are infinite ways to choose the transition matrix P. A sufficient (although not necessary)
condition for this matrix to describe a Markov Chain with fixed vector 7 is that the Detailed Balance
condition is satisfied (i.e.; a reversible evolution); that is

7Ti<P)ij = Fj(P)ji R T P(Z—)j) = T P(j—>Z) (904)

It is clear that if this condition is satisfied, then 7 is a fixed vector since:

N N N
w P = (Zﬁi(P)ilazﬂi(P)z’Za-~'Z7ri(P)iN> = (905)
=1 =1 =1
due to the fact that

N N
> mi(Pp = m (P =m, for k=12 N (906)
=1 i=1
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Imposing the Detailed Balance condition, we have freedom to choose the elements ( P);;. We can
obviously take ( P);; = ; so that it is satisfied trivially (m;7; = m;7;) but this means that being at
class 7 we shall select the new possible class j with probability P(i—j) = 7; and, therefore, to sample
directly the desired distribution that, in principle, we do not know how to do. The basic idea of Markov
Chain Monte Carlo simulation is to take

(P)ij = q(jli) - ay (907)

where

q(jl7): is a probability law to select the possible new class j = 1,..., N
for an event that is actually in class ¢;

ajj;: is the probability to accept the proposed new class j for an event
that is at ¢ taken such that the Detailed Balance condition is
satisfied for the desired distribution 7.

Thus, at each step in the evolution, for an event that is in class ¢ we propose a new class j to go
according to the probability ¢(j|¢) and accept the transition with probability a;;. Otherwise, we reject the
transition and leave the event in the class where it was. The Metropolis-Hastings [?] algorithm consists
in taking the acceptance function

R 7; q(2]5)
a;; = min {1, 7Ti£](j|i)} (908)

It is clear that this election of a;; satisfies the Detailed Balance condition. Indeed, if m;q(j|i) > m;q(i|7)
we have that:

%,mm@ﬁ”W@—“WW md%ﬁmm%mﬁm}ﬂ (909)
i q(j7) T

™ q(37)

and therefore:

m(P)y = malli)a; = mall) A0 ©10
= miqili) = 759(ilj) aji = m; (P)ji (911)

The same holds if m;q(j]7) < m;q(i|j) and is trivial if both sides are equal. Clearly, if ¢(i|j) = m; then
a;j = 1 so the closer ¢(i]7) is to the desired distribution the better.

A particularly simple case is to choose a symmetric probability ¢(j]i) = q(i|j) [?]

a;; = min {1, 7”} 912)

TG

In both cases, it is clear that since the acceptance of the proposed class depends upon the ratio 7; /7;, the
normalization of the desired probability is not important.

The previous expressions are directly applicable in the case we want to sample an absolute con-
tinuous random quantity X ~7(z). If reversibility holds, p(2’|z)m(z) = p(x|z’)m(x’) and therefore

/Xp(:r |lx)de’ =1 — /Xp(x |x)7(x) dx = W(x)/xp(x|a: Ydx = w(x') (913)
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The transition kernel is expressed as
p('lz) = p(z—a’) = q('|z) - a(z—a) 914)

and the acceptance probability given by

a(r—x') = min {1, (915)

Let’s see one example.

Example 4.11: The Binomial Distribution. Suppose we want a sampling of size n of the random quantity
X~Bi(x|N,0) Sincex = 0,1,...,N wehave i = 1,2,..., N + 1 classes and the desired probability vector, of
dimension N + 1, is

R Qo) whee o= POC=H) = () )00-0Y o1

Let’s take for this example N = 10 (that is, 11 classes), § = 0.45 and n = 100,000. We start from a sampling
of size n from a uniform distribution (figure ??-1). At each step of the evolution we swap over the n generated
events. For and event that is in bin j we choose a new possible bin to go j = 1,..., 10 with uniform probability
q(j]2). Suppose that we look at an event in bin ¢ = 7 and choose j with equal probability among the 10 possible
bins. If, for instance, 7 = 2, then we accept the move with probability

ary = a(7—2) min (1, 2 _p2> = 0.026 917)
7 =P
if, on the other hand, we have j = 6,
are = a(7—6) min (1, M) =1 (918)
M7 = P1

so we make the move of the event. After two swaps over all the sample we have the distribution shown in figure
??-2 and after 100 swaps that shown in figure ??-3, both compared to the desired distribution:

7 = (0.091,0.090,0.090,0.092,0.091,0.091, 0.093, 0.089, 0.092, 0.090, 0.092)
2 = (0.012,0.048,0.101,0.155,0.181,0.182, 0.151, 0.100, 0.050, 0.018, 0.002)
7100 = (0.002,0.020,0.077,0.167,0.238,0.235,0.159, 0.074, 0.022, 0.004, 0.000)

r = (0.000,0.021,0.076,0.166,0.238, 0.234, 0.160, 0.075, 0.023, 0.004, 0.000)

The evolution of the moments, in this case the mean value and the variance with the number of steps is
shown in figure ?? together with the Kullback-Leibler logarithmic discrepancy between each state and the new
one defined as

10 n)
1) xlaM) = 7 In T 919)
kr{m|m"} ]; P

As the previous example shows, we have to let the system evolve some steps (i.e.; some initial
sweeps for “burn-out” or “thermalization”) to reach the stable running conditions and get close to the
stationary distribution after starting from an arbitrary state. Once this is achieved, each step in the
evolution will be a sampling from the desired distribution so we do not have necessarily to generate a
sample of the desired size to start with. In fact, we usually don’t do that; we choose one admissible state
and let the system evolve. Thus, for instance if we want a sample of X ~p(z|-) with €2 x, we may start
with a value xo€Q x. Ata given step ¢ the system will be in the state {x} and at the step 7 + 1 the system
will be in a new state {2’} if we accept the change = — 2/ or in the state {x} if we do not accept it. After
thermalization, each trial will simulate a sampling of X ~p(z|-). Obviously, the sequence of states of the
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Fig. 19: Distributions at steps 0, 2 and 100 (figs. 1,2,3; blue) of the Markov Chain with the desired Binomial
distribution superimposed in yellow.

system is not independent so, if correlations are important for the evaluation of the quantities of interest,
it is a common practice to reduce them by taking for the evaluations one out of few steps.

As for the thermalization steps, there is no universal criteria to tell whether stable conditions
have been achieved. One may look, for instance, at the evolution of the discrepancy between the desired
probability distribution and the probability vector of the state of the system and at the moments of the
distribution evaluated with a fraction of the last steps. More details about that are given in [?]. It is
interesting also to look at the acceptance rate; i.e. the number of accepted new values over the number
of trials. If the rate is low, the proposed new values are rejected with high probability (are far away from
the more likely ones) and therefore the chain will mix slowly. On the contrary, a high rate indicates that
the steps are short, successive samplings move slowly around the space and therefore the convergence is
slow. In both cases we should think about tuning the parameters of the generation.

Example 4.12: The Beta distribution.
Let’s simulate a sample of size 107 from a Beta distribution Be(z|4, 2); that is:

m(z)oca® (1—2)  with  2€[0,1] (920)

In this case, we start from the admissible state {x = 0.3} and select a new possible state =’ from the density
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Fig. 20: Distributions of the mean value, variance and logarithmic discrepancy vs the number of steps. For the first
two, the red line indicates what is expected for the Binomial distribution.

q(x'|x) = 22'; not symmetric and independent of . Thus we generate a new possible state as

’ ’

F,(z") =/ q(s|a:)ds=/ 2sds =2 — o' =u'?  with u<Un(0,1) (921)
0 0

The acceptance function will then be

a(z—z') = min {1, %} = min {1, M} (922)

depending on which we set at the state ¢ + 1 the system in x or x’. After evolving the system for thermalization,
the distribution is shown in figure ?? where we have taken one = value out of 5 consecutive ones. The red line
shows the desired distribution Be(x|4, 2).

Example 4.13: Path Integrals in Quantum Mechanics.
In Feynman’s formulation of non-relativistic Quantum Mechanics, the probability amplitude to find a par-
ticle in ¢ at time ¢y when at ¢; was at x; is given by
K(wp tylot;) = / e /MSEW] Dla(t)] (923)

paths
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Fig. 21: Sampling of the Beta distribution Be(z|4, 2) (blue) of the example 4.12 compared to the desired distribu-
tion (continuous line).

where the integral is performed over all possible trajectories x(t) that connect the initial state x; = x(t;) with the
final state ¢ = x(tf), S[x(t)] is the classic action functional

tf
Sla(t)] = / L(d, ) dt (924)
t;

that corresponds to each trajectory and L(i, z,t) is the Lagrangian of the particle. All trajectories contribute to
the amplitude with the same weight but different phase. In principle, small differences in the trajectories cause
big changes in the action compared to /i and, due to the oscillatory nature of the phase, their contributions cancel.
However, the action does not change, to first order, for the trajectories in a neighborhood of the one for which the
action is extremal and, since they have similar phases (compared to }t) their contributions will not cancel. The set
of trajectories around the extremal one that produce changes in the action of the order of }i define the limits of
classical mechanics and allow to recover is laws expressed as the Extremal Action Principle.

The transition amplitude ( propagator) allows to get the wave-function U(z,t) from ¥(x;,1;) as:
\I/(xf,tf) = / K(xf7tf|1“i7ti)\Il(:vi,ti)dmi for tr >t (925)

In non-relativistic Quantum Mechanics there are no trajectories evolving backwards in time so in the definition of
the propagator a Heaviside step function 6(¢; —t;) is implicit. Is this clear from this equation that K (z s, t|z;,t) =
Oz — ;).

For a local Lagrangian (additive actions), it holds that:
K(xyp, tplwi,t;) = / K(xp, trlz,t) K(z, |z, t;) de (926)

analogous expression to the Chapman-Kolmogorov equations that are satisfied by the conditional probabilities of
a Markov process. If the Lagrangian is not local, the evolution of the system will depend on the intermediate
states and this equation will not be true. On the other hand, if the Classical Lagrangian has no explicit time
dependence the propagator admits an expansion ( Feynman-Kac Expansion Theorem) in terms of a compete set of
eigenfunctions {¢,, } of the Hamiltonian as:

K(xptyloit) =Y e HE Gt 6 (20) o () (927)
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where the sum is understood as a sum for discrete eigenvalues and as an integral for continuous eigenvalues. Last,
remember that expected value of an operator A(x) is given by:

<A>= [ Ala(] WSO Dlate))/ [ ) Date) (928)

Let’s see how to do the integral over paths to get the propagator in a one-dimensional problem. For a
particle that follows a trajectory x(t) between x; = z(t;) and x5 = x(t) under the action of a potential V (z(t)),
the Lagrangian is:

1
L(i,x,t) = §ma'c(t)2 — V(z(t)) (929)
and the corresponding action:
ty 1
S[z(t)] = / (2 m(t)? — V(m(t))) dt (930)
ti
so we have for the propagator:
Kaptilont) = [ M50 plagy)] -
Tr

_ /T exp{; /tjf (;mi:(t)Q - V(x(t))) dt} Dla(t)] ©31)

where the integral is performed over the set T'r of all possible trajectories that start at ; = x(¢;) and end at
xy = x(ty). Following Feynman, a way to perform this integrals is to make a partition of the interval (¢;,¢s) in N
subintervals of equal length e (figure ??); that is, with

tr — t;
e:$ sothat t; —t;_1 =¢; j=1,2,..,N (932)

Thus, if we identify tg = ¢; and ¢y = ¢y we have that
[tirty) = N [, t41) (933)

On each interval [t},¢;41), the possible trajectories x(t) are approximated by straight segments so they are defined
by the sequence

{(L‘O =T; = CL‘(ti), T = l‘(tl)7 To = .r(tg), N1 = x(tN,1)7 TN =Tf = x(tf)}

Obviously, the trajectories so defined are continuous but not differentiable so we have to redefine the velocity. An
appropriate prescription is to substitute &(t;) by

Ty — Tj-1

(t;) — . (934)
so the action is finally expressed as:
1 z; — xi1\°
Snlz(t)] = € Z [2m <j631> — Vi(x;) (935)
j=1

Last, the integral over all possible trajectories that start at xp and end at x is translated in this space
with discretized time axis as an integral over the quantities 1, 2, ...,zxy—1 so the differential measure for the
trajectories D[x(¢)] is substituted by

D[z(t)] — An Hj jfl da (936)

with Ay a normalization factor. The propagator is finally expressed as:

Kn(zyp,ty|ei,t;) =
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Fig. 22: Trajectory in a space with discretized time.

' i N 1 T, — T; 2
:AN/ d:cl---/ dry_q1 exp hz [2m<J€J_1> — Vi(xj)

— j=1

€ (937)

After doing the integrals, taking the limit e—0 (or N—oo0 since the product Ne = (t; — t;) is fixed) we get the
expression of the propagator. Last, note that the interpretation of the integral over trajectories as the limit of a
multiple Riemann integral is valid only in Cartesian coordinates.

To derive the propagator from path integrals is a complex problem and there are few potentials that can
be treated exactly (the “simple” Coulomb potential for instance was solved in 1982). The Monte Carlo method
allows to attack satisfactorily this type of problems but before we have first to convert the complex integral in a
positive real function. Since the propagator is an analytic function of time, it can be extended to the whole complex
plane of ¢ and then perform a rotation of the time axis ( Wick’s rotation) integrating along

T =¢e™2t =it ;thatis, t— —iT (938)

Taking as prescription the analytical extension over the imaginary time axis, the oscillatory exponentials are con-
verted to decreasing exponentials, the results are consistent with those derived by other formulations (Schrodinger
or Heisenberg for instance) and it is manifest the analogy with the partition function of Statistical Mechanics.
Then, the action is expressed as:

Tf

Sla(t)] — i /

Ti

(émi’(t)z + V(m(t))) dt (939)

Note that the integration limits are real as corresponds to integrate along the imaginary axis and not to just a simple
change of variables. After partitioning the time interval, the propagator is expressed as:

1
KN(.I'f7t.f|l‘i7ti) = AN/ diEl/ dl‘N71 exp{—h SN(Z‘o,Il,...,CEN)} (940)
T TN-1
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where

N 2
1 D w
Sn(zo,x1,..,xN) = E {Qm <"T76$]1) + Vi(zj)| -€ 941)
=1

and the expected value of an operator A(x) will be given by:

il H;jlvfl dzj A(zg, x1,...,TN) €xp {f% Sn(zo, 1, TN) }

<A>= : (942)
S H;jlvfl dzj exp {;l Sn(z0, 1, .- xN)}
Our goal is to generate N, trajectories with the Metropolis criteria according to
1
p(zo, X1, ..., TN) X €Xp —% Sn(zo, %1, TN) (943)
Then, over these trajectories we shall evaluate the expected value of the operators of interest A(x)
1 Ngen
<A>=o— 3 Azo, 220 ) (944)
gen k':l

Last, note that if we take (77, z5) = (7, 2) and (7;, z;) = (0, z) in the Feynman-Kac expansion we have that

K(z,7|2,0) = Y e ET ¢ () ¢} (x) (945)

n

and therefore, for sufficiently large times
K(z,7|z,0) e VBT oo () ¢ () + - - (946)

so basically only the fundamental state will contribute.

Well, now we have everything we need. Let’s apply all that first to an harmonic potential
L, o
Viz) = Sk (947)

(see figure ??-left) so the discretized action will be:

€

N 2
1 = X 1
Sn(zo,x1,...,xN) = E [2m (M) + 2k1‘?:| € (948)
j=1

To estimate the energy of the fundamental state we use the Virial Theorem. Since:

1 -
<T>y= 3 < ZVV(E) >g¢ (949)
we have that < T >g=< V >y and therefore
<E>y=<T>y +<V>y=Fk <z?>y (950)

In this example we shall take m = k£ = 1.

We start with an initial trajectory from zy = x(t;) = 0to x5 = z({y) = 0 and the intermediate values
x1,T2,...,xNn—1 drawn from Un(—10.,10.), sufficiently large in this case since their support is (—oo, 00). For the
parameters of the grid we took € = 0.25 and N = 2000. The parameter € has to be small enough so that the results
we obtain are close to what we should have for a continuous time and NV sufficiently large so that 7 = Ne is large
enough to isolate the contribution of the fundamental state. With this election we have that 7 = 2000-0.25 = 500.
Obviously, we have to check the stability of the result varying both parameters. Once the grid is fixed, we sweep
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Fig. 23: Potential wells studied in the example 4.13.

over all the points 1, 3, . . ., zy—1 of the trajectory and foreach x;, j = 1, ..., N — 1 we propose a new candidate
x; with support A. Then, taking Ji = 1 we have that:

P(asj*m:;-) :exp{fSN(zg,a:h...a:;-,...,xN)} 951)
and
P(.%’j—).??j) :exp{—SN(:co,wl,...xj,...,y;N)} (952)

so the acceptance function will be:

P(x; —m;) } ©53)

a(z;j—sz:) = min {1
(25—25) { ' Pla—ra)
Obviously we do not have to evaluate the sum over all the nodes because when dealing with node j, only the
intervals (z;_1,z;) and (x;, z;41) contribute to the sum. Thus, at node j we have to evaluate

a(:cj—m;-) = min {Lexp{fSN(acj,l,x;,xjH) + SN(:Uj,l,:rj,ij)}} (954)

Last, the trajectories obtained with the Metropolis algorithm will follow eventually the desired distribution
p(zo,x1,...,2N) in the asymptotic limit. To have a reasonable approximation to that we shall not use the first
Nierm trajectories ( thermalization). In this case we have taken N..,, = 1000 and again, we should check the
the stability of the result. After this, we have generated Ng.,, = 3000 and, to reduce correlations, we took one
out of three for the evaluations; that is N, s.q = 1000 trajectories, each one determined by N = 2000 nodes. The
distribution of the accepted values x;will be an approximation to the probability to find the particle at position
for the fundamental state; that is, | ¥ (z)|. Figure ?? shows the results of the simulation compared to

o ()2 oce™ (955)

together with one of the many trajectories generated. The sampling average < 22 >= 0.486 is a good approxima-
tion to the energy of the fundamental state Ey = 0.5.

As a second example, we have considered the potential well

a? 2

Vie) = % [(m/a)z - 1} (956)
(see figure ??-right) and, again from the Virial Theorem:
3 4 9 a®
<E>\1;:72<:13 >y — <z >y +— 957)
4a 4
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Fig. 25: Squared norm of the fundamental state wave-function for the quadratic potential and one of the simulated
trajectories.

We took a = 5, a grid of N = 9000 nodes and ¢ = 0.25 (so 7 = 2250), and as before Nier, = 1000,
Nyen = 3000 and N seq = 1000. From the generated trajectories we have the sample moments < 2% >= 16.4264
and < z* >= 361.4756 so the estimated fundamental state energy is < Eq >= 0.668 to be compared with the
exact result £y = 0.697. The norm of the wave-function for the fundamental state is shown in figure ?? together
with one of the simulated trajectories exhibiting the tunneling between the two wells.

4.4.1 Sampling from Conditionals and Gibbs Sampling
In many cases, the distribution of an n-dimensional random quantity is either not known explicitly or
difficult to sample directly but sampling the conditionals is easier. In fact, sometimes it may help to
introduce an additional random quantity an consider the conditional densities (see the example 4.14).
Consider then the n-dimensional random quantity X = (Xj,..., X,,) with density p(x1,...,z,), the
usually simpler conditional densities

p(x1|z2, 3. . .y Tp) p(za|z1, 3. . .y 20 p(zn|z1, T2,y oy Tp—1) (958)
and an arbitrary initial value x0) = {x?),mg), .. .,xg)} € Qx. If we take the approximating density
q(z1,x2,...,2,) and the conditional densities

q(x1|x2, 3. . .y ) q(xa|x1, 3. .y ) q(xn|1, 2, . o Tp1) (959)
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we generate for x; a proposed new value :v}) from q(ac1|acg), a:g), e a:g)) and accept the change with
probability
0) 1) p(x})va 7xg)7~- )q(xl y Lo ,l‘g),.. .flﬁ‘%))
a(xy’ — ;) = min o) ) (=
p(ml,x2,m3,... )q(zl,xg,:r3,.. )
1) 0) 0) 0) 0)
_ mln{ p(x; )|x2 ,xg),...,xg))q( )|x2 ,a:g),...,xg))} (960)
p(x; |x2 N e L €2} |91:2 L'y Ty

After this step, let’s denote the value of z; by 2 (thatis, 2} = xi) orz} = mg) if it was not accepted).

Then, we proceed with z2. We generate a proposed new value :c;) from q(x2 |z}, :cg), e 1:2)) and accept
the change with probability
/ 0) / 0) 0)
a(acg) —)i';)) — mln{l (.ZC17$2 7$(3))7"'7 )Q(‘rhx% 7$(3))7" :Eg))} —_
(ac’l,:rz,xg,... )q(a:’ xQ,x3,...,xn)
) ) 0)
(x2 |$1,x3,...,x )q (:U2 |zhzs, . xn)
After we run over all the variables, we are in a new state {z, x, . .., 2, } and repeat the whole procedure

until we consider that stability has been reached so that we are sufficiently close to sample the desired
density. The same procedure can be applied if we consider more convenient to express the density

p(x1, 2, 3. .., Tn) = D(XTn|Tpn—1,...,22...,21) -+ p(z2|z1) D(21) (962)
Obviously, we need only one one admissible starting value :U(l)).

Gibbs sampling is a particular case of this approach and consists on sampling sequentially all the
random quantities directly from the conditional densities; that is:

q(xilzy, - i1, Tigt, - ) = P(T|T, . T, T, - Tp) (963)

so the acceptance factor a(z—z’) = 1. This is particularly useful for Bayesian inference since, in more
than one dimension, densities are usually specified in conditional form after the ordering of parameters.

Example 4.14: Sometimes it may be convenient to introduce additional random quantities in the problem to ease
the treatment. Look for instance at the Student’s distribution X ~St(z|v) with

—(v41)/2

plzlv) < (1 + 2°/v) (964)

Since
/ eyt tdy = T(b)a™" (965)
0

we can introduce an additional random quantity U~Ga(ula, b) in the problem with a = 1+2? /v and b = (v+1)/2
so that

p(z,ulv)occe”™ub™t  and  p(x) o / plz,uly)du < o’ = (1+ mQ/V)_(V+1)/2 (966)
0

The conditional densities are

p(z, uly)

p(zlu,v) = ) - N(zl0,0) ; o*=v(2u)! (967)
p(ulz,v) = % = Ga(ula,b) ; a=1+2%/v, b= (v+1)/2 (968)

so, if we start with an arbitrary initial value x€R, we can
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Fig. 26: Sampling of the Student’s Distribution St(x|2) (blue) compared to the desired distribution (red).

1) Sample U|X: u<=Ga(ula,b) witha =1+ 2?/vand b= (v +1)/2
2) Sample X|U: z<=N(z|0,0) with 02 = v(2u)~!

and repeat the procedure so that, after equilibrium, X ~St(x|v). We can obviously start from u€R and reverse the
steps 1) and 2). Thus, instead of sampling from the Student’s distribution we may sample the conditional densities:
Normal and a Gamma distributions. Following this approach for » = 2 and 102 thermalization sweeps (far beyond
the needs), the results of 10° draws are shown in figure ?? together with the Student’s distribution St(z|2).

Example 4.15:: We have j = 1,...,J groups of observations each with a sample of size n;; that is x; =
{®15,225,...,,2n,;}. Within each of the J groups, observations are considered an exchangeable sequence and
assumed to be drawn from a distribution z; j~N (z|p;,0%) where i = 1,...,n;. Then:

n;

p(x;] HN s oy (o= ) 969
jlHg, 0 731]|M]> O<U €xp Z 952 ( )

=1

Then, for the J groups we have the parameters = {p1,...u7} that, in turn, are also considered as an ex-
changeable sequence drawn from a parent distribution f;~N (u; 1, 2) We reparameterize the model in terms of
n=o, 2 and ¢ = 02 and consider conjugated priors for the parameters considered independent; that is

m(p,n, ¢) = N(plpo, o5) Ga(nle,d) Ga(d|a, b) (970)

Introducing the sample means T; = n;l S wy, T = J! ijl Z; and defining g = J~! ijl w; and
defining After some simple algebra it is easy to see that the marginal densities are:

n-JQ?-—I— o? o202
o~ N(J £ ” 971)
nJJ + 02 nja + 02
o2ug+odJu  olod
~ N|-2£ , —L 972
K (ai—l—Jog or+ Jog ©72)
J
_ 1 J
n=0,2 ~ EZ te Gt (973)
j=1
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n;

J
¢ =02 (; S°S (s — ) an n b) 974)
Jj=11=

1

Thus, we set initially the parameters {10, 0o, a, , b, ¢, d} and then, at each step

1 Get {p1,...,ps}eachas p;~N(-,-)
2 Get u~N(-,")

3 Geto, =~ /% with p~Ga(-, ")

4 Geto = ¢~'/? with p~Gal(-, )

and repeat the sequence until equilibrium is reached and samplings for evaluations can be done.

4.5 Evaluation of definite integrals

A frequent use of Monte Carlo sampling is the evaluation of definite integrals. Certainly, there are many
numerical methods for this purpose and for low dimensions they usually give a better precision when
fairly compared. In those cases one rarely uses Monte Carlo... although sometimes the domain of inte-
gration has a very complicated expression and the Monte Carlo implementation is far easier. However, as
we have seen the uncertainty of Monte Carlo estimations decreases with the sampling size N as 1/ VN
regardless the number of dimensions so, at some point, it becomes superior. And, besides that, it is fairly
easy to estimate the accuracy of the evaluation. Let’s see in this section the main ideas.

Suppose we have the n-dimensional definite integral
I = / flx1, 2, ..., 2pn) dry das . . . day (975)
Q

where (z1, xa, ..., 2,)EQ and f(x1, 9, ..., 2,) is a Riemann integrable function. If we consider a ran-
dom quantity X = (X1, Xo, ..., X,,) with distribution function P(x) and support in 2, the mathematical
expectation of Y = ¢(X)=f(X)/p(X) is given by

BY) = [ gareo = [ Iapeg = [ jeax ©76)
Q Q p(
Thus, if we have a sampling {x1,Xa2,...,Xn}, of size N, of the random quantity X under P(x) we

know, by the Law of Large Numbers that, as N — oo, the sample means

N N

1 1

Iy = 5290k ad 1P = 53 g(x) 977)
i=1 =1

converge respectively to E[Y] (and therefore to I) and to E[Y 2] (as for the rest, all needed conditions for
existence are assumed to hold). Furthermore, if we define

1
SI? = — (12 - a?) 978)
we know by the Central Limit Theorem that the random quantity
19—
7 =K~ 979
57 979)

is, in the limit N — o0, distributed as N (|0, 1). Thus, Monte Carlo integration provides a simple way to
estimate the integral I and a quantify the accuracy. Depending on the problem at hand, you can envisage
several tricks to further improve the accuracy. For instance, if g(x) is a function “close” to f(x) with
the same support and known integral I, one can write

I = /Q f(x)dx = /Q (f(x) —g(x))dx + I, (980)
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and in consequence estimate the value of the integral as

~ 1 N
I=+ ;(f(xz-) —g(xi)) + I (981)

reducing the uncertainty.
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