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Abstract
These lectures cover the basic ideas of frequentist and Bayesian analysis and
introduce the mathematical underpinnings of supervised machine learning. In
order to focus on the essentials, we illustrate the ideas using two simple exam-
ples from particle physics.
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1 Introduction
Statistics and physics are similar in that each starts from sets of basic principles. They are similar also in
the fact that physicists and statisticians from time to time engage in vigorous debate about the foundations
of their respective disciplines. These disciplines, of course, also differ in significant ways. For example,
physicists are forced, at some point, to bury the hatchet. Why? Because there is an ultimate judge
of the correctness of a proposed principle, namely, Nature. If a principle yields results that contradict
observations then the former does not apply to Nature and is, in that sense, wrong. For statisticians,
alas, their many judges are other statisticians. Consequently, they are not compelled to reach, and for
some basic questions have not reached, a consensus. Happily, however, for the typical applications in
particle physics the debate and disagreements among statisticians can usually be ignored. But this is a
poor excuse for dismissing these disagreements as even a modicum of understanding of them can avert
hours of fruitless arguments that prove, ultimately, to be about intellectual taste and therefore cannot be
adjudicated by appealing to a third party such as Nature. Therefore, while these lectures focus on the
practical, we occasionally comment on some of these disagreements.

The remainder of the introduction, presents a birds eye view of statistical analysis. For detailed
expositions on statistical analysis aimed at physicists, we recommend the books: [1–4]. For historical
perspectives see [5, 6].

1.1 Samples
The result of an experiment is a sample of N data X = x1, x2, · · · , xN , which can be characterized
with quantities called statistics1. A statistic is number that can be computed from the sample alone and
known parameters. Here are a few well-known statistics:

the sample moments xr =
1

N

N∑

i=1

xri , (1)

the sample average x̄ =
1

N

N∑

i=1

xi, (2)

and the sample variance s2 =
1

N

N∑

i=1

(xi − x̄)2. (3)

1Statisticians tend to use upper case letters to denote random variables and lower case letters to denote actual values. We do
not follow this convention.
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The sample moments give detailed information about the sample, while the sample average and variance
are measures of the center of the data and their spread. Statistics that characterize the data are called
descriptive statistics. In these lectures, we shall encounter statistics that provide more sophisticated
information about samples.

1.2 Populations
An infinitely large sample is called a population, which physicists usually refer to as an ensemble. Like
other abstractions, populations can be studied mathematically and can be characterized with numbers,
such as those listed below. (The symbol E[∗] means ensemble average, that is, the average over the
population of the quantity within the brackets.)

Ensemble average E[x]

Mean µ

Error ε = x− µ
Bias b = E[x]− µ
Variance V = E[(x− E[x])2]

Standard deviation σ =
√
V

Mean square error MSE = E[(x− µ)2]

Root MSE RMS =
√

MSE (4)

However, unlike the statistics of a sample, the numbers that characterize a population are abstractions.
After all, no one has ever amassed an infinity of anything. In practice, a population is approximated
by a large sample. Such “populations" are the basis of a statistical method called the bootstrap, in
which various quantities can be approximated by treating the sample as if it were a population. Large,
typically simulated, samples are used in physics analyses to assess, for example, the effect of systematic
uncertainties or to confirm that an analysis method performs as claimed. In a simulated “population"
some quantities can be computed exactly, for example the error associated with each element of the
“population" because x and µ are known. Quantities such as bias, however, can only be approximated.

While it may not be possible to calculate a population quantity exactly, it often possible to relate
one population quantity to another, which can sometimes provide useful insight. Take for example the
mean square error (MSE), whose square root is called the root mean square (RMS)2. The MSE can be
written as

MSE = V + b2. (5)

Exercise 1: Show this

This is an instructive result. Suppose, for example, that µ is the true Higgs boson mass and x is a
measurement of it. If the MSE is used as a measure of the accuracy of the mass measurements, then the
result in Eq. (6) shows that correcting a measurement of the mass for bias makes sense only if, on the
average, the bias-corrected results yield a smaller MSE than that of the uncorrected result. Making a bias
correction may not always be the correct thing to do if the goal is to arrive at mass measurements, which,
on average, are as close to the true value of the mass in the MSE sense. Using simulations to study
and understand the characteristics of a population is both useful and educational. It is good practice to
do lots of simple simulations (sometimes called toy experiments) in order to develop an intuition about
statistical quantities and the behavior of statistical procedures as well as to decide whether a particular
manipulation of a measurement—e.g., a bias correction—makes sense.

2The RMS and standard deviation are sometimes used interchangeably. The two quantities are identical only if the bias is
zero.

2

H. B. PROSPER

262



Another example of the ability (and utility) of mathematical analysis with respect to a population
is the calculation of the bias in the variance of a sample. When we speak of “bias in a measurement
x", say a measurement of the Higgs boson mass, we should remember that this phrasing is a shortcut.
There is very likely an error in x, which in the real world is unknown. But, strictly speaking, bias does
not apply to x, but rather to the ensemble to which x is presumed to belong. However, it would quickly
become horribly pedantic not to use the shortcut "bias in x", so it is perfectly reasonable to use it so long
as we remember what the phrase means. The ensemble average of the sample variance, Eq. (3), is given
by

E[s2] = E[x2]− E[x̄2],

= V − V

N
.

Exercise 2: Show this

and has a bias of b = −V/N . The result shows that the bias can be calculated exactly only if the variance
V is known exactly.

1.3 Statistical Inference
The main goal of a theory of statistical inference is to use a sample to infer something about the associated
population. We may wish to estimate (that is, measure) a parameter associated with the population, for
example, the mean Higgs boson signal in the proton-proton to 4-lepton channel. Then, in order to make
this estimate meaningful, we need to quantify its accuracy. Finally, we may wish to assess to what degree
we can claim the signal is real and not an apparent signal caused by a fluctuation of the background. We
shall consider each of these tasks using the two most commonly used theories of inference, frequentist
and Bayesian. In both theories, the foundational concept is probability, albeit interpreted in two different
ways:

– Degree of belief in, or assigned to, a proposition, e.g.,

– proposition: it will rain in Maratea tomorrow
– probability: p = 5× 10−2

– Relative frequency of given outcomes in an infinite set of trials, e.g.,

– trial: a proton-proton collision at the Large Hadron Collider (LHC)
– outcome: creation of a Higgs boson
– probability: p = 5× 10−10

Since each theory of inference uses a different interpretation of probability, it is not surprising that
the interpretation of their results differ. This can cause confusion, especially when both theories give
numerically identical results. When data are plentiful, these interpretation typically do not affect how the
results are subsequently used. The difficulties arise when sample sizes are small and when each approach
can yield substantially different results. This is when intellectual taste becomes the main arbiter of which
approach is considered the more reasonable.

The next two sections cover the application of frequentist and Bayesian theories of statistical anal-
ysis in particle physics using a simple real-word example, while the last section provides an introduction
to supervised machine learning.

2 Frequentist Analysis
In 2014, the CMS Collaboration published its measurement of the properties of the Higgs boson in the
4-lepton final states [7]. We shall analyze the summary results of this analysis, namely,N = 25 observed
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4-lepton events with a background estimate ofB±δB = 9.4±0.5 events. The goal is to make statements
about the mean Higgs boson event count s—that is, the signal, where d = b+ s is the mean event count
and b is the mean background count. Although these data are very simple, they are sufficient to illustrate
the essential ideas of frequentist analysis.

Whether the data are to be analyzed using a frequentist or Bayesian approach, the starting point is
the same: the first task is constructing an accurate probability model for the mechanism that generates
the data.

2.1 The Probability Model
Given the observed count N = 25 events, a particle physicist would immediately model the data gener-
ation mechanism with a Poisson distribution,

Poisson(n, d) =
e−ddn

n!
,

because everyone knows that is the distribution for a counting experiment. If the data comprised M
counts Nm,m = 1, · · · ,M that are considered independent, the model would be a product of Poisson
distributions. But, why is a Poisson appropriate? Let us start at the very beginning.

2.1.1 Bernoulli trial
A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is an experiment
with only two possible outcomes: S, a success or F, a failure. Each collision between protons at the
LHC is a Bernoulli trial in which either a Higgs boson is created (S) or is not (F ). Here is a sequence of
collisions results

F F S F F F F S F · · ·
What is the probability of this sequence of results? There is no answer. Unless that is we are prepared to
make assumptions, such as the following.

1. Let p be the probability of a success.
2. Let p be the same for every collision (trial).
3. Let S and F be exhaustive (the only possible outcomes) and mutually exclusive (one outcome

precludes the occurrence of the other).

Assumption 3 implies that the probability of F is 1− p. Therefore, for a given sequence O of n proton-
proton collisions, the probability P (k|n, p,O) of exactly k successes and exactly n− k failures is

P (k|n, p,O) = pk(1− p)n−k. (6)

The specific sequence O of successes and failures is unknown at the LHC. Whenever, we have a pa-
rameter that is either irrelevant or whose value is unknown, the rules of probability theory imply that
the unknown can be eliminated from the problem by summing over all possible values of the unknown,
here the orders of successes and failures O. This rule is called marginalization and is one of the most
important procedures in probability calculations. Applied to our problem this yields,

P (k|n, p) =
∑

O

P (k|n, p,O) =
∑

O

pk(1− p)n−k. (7)

Notice that every term in Eq. (7) is identical and there are
(
n
k

)
of them. Therefore,

P (k|n, p) =

(
n

k

)
pk(1− p)n−k, (8)
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that is, we arrive at the binomial distribution, Binomial(k, n, p). If a is the mean number of successes
in n trials, then

a =

n∑

k=0

kBinomial(k, n, p),

= pn. (9)

Exercise 4: Show this

For the Higgs boson outcomes, p ∼ 10−10 and n � 1012. Therefore, it is reasonable to consider the
limit p→ 0 and n→∞, while keeping a constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (10)

Exercise 5: Show this

We conclude that a Poisson distribution is an appropriate model when the probability of individual events
is extremely small. Indeed, the distribution can be derived from a stochastic model in which that assump-
tion is made explicit. Therefore, it is indeed reasonable to take

p(n|s, b) = Poisson(n, s+ b) =
(s+ b)ne−(s+b)

n!
, (11)

as the probability to obtain a count n given mean event count s+ b.

We now turn to the probability model for the background data. In principle, the model should
encode in detail how the background estimate was obtained. But, in order to keep matters as simple
as possible, let us assume that the background estimate was obtained from an accurate Monte Carlo
simulation, which yields a count m. The mean count in the simulation is kb, where k is a known scale
factor that relates the mean count in the simulation to that in the signal region of the experiment that
yielded N events. Therefore, the probability model for the background shall be taken to be

p(m|kb) = Poisson(m, kb). (12)

Since the counts n and m are independent, the full model is

p(n,m|s, b) = Poisson(n, s+ b)Poisson(m, kb). (13)

2.2 The Likelihood Function
The likelihood function is the probability function—either a probability density function (pdf) if the
random variables are continuous, or a probability mass function (pmf) if they are discrete—into which
observations, that is, data have been inserted. Since the data are constants, the likelihood, p(N,M |s, b)
in our example, is a function of the parameters only. Sometimes, p(N,M |s, b) is written as L(s, b) to
emphasize this point.

In this example, we are given B ± δB, not M and k. But, we can infer M and k from B and δB
using a plausible model, namely, that B and δB are M and

√
M scaled down by k, that is,

B = M/k, (14)

δB =
√
M/k. (15)

Inverting these equations yields

M = (B/δB)2 = 353.4, (16)
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k = B/δB2 = 37.6. (17)

Therefore, the likelihood for the count M is

(kb)Me−kb/Γ(M + 1), (18)

which we have written in a form that allows for non-integral values of M . Writing D = N,M , the full
likelihood can be written as

p(D|s, b) =
(s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
. (19)

In a more realistic analysis, a probability model for the scale factor k would also be included. But, to
keep things simple, we shall neglect the uncertainty in k.

Now that we have the likelihood function, several questions can be answered, including the fol-
lowing.

1. How is a parameter to be estimated?
2. How is its accuracy to be quantified?
3. How can an hypothesis be tested?
4. How is the statistical significance of a result to be quantified?

2.3 The Frequentist Principle
The goal of a frequentist analysis is to construct statements such that it can be guaranteed, a priori, that a
fraction f ≥ p of them are true over an ensemble of similarly constructed statements. This stipulation is
called the frequentist principle (FP) and was championed by the Polish statistician Jerzy Neyman [8].
The fraction f is called the coverage probability, or coverage for short, and p is called the confidence
level (C.L.). An ensemble of statements that obey the frequentist principle is said to cover.

Points to Note
1. The FP applies to real ensembles 3, not just the virtual ones we simulate on a computer. Moreover,

the ensembles can contain statements about different quantities. Example: all published measure-
ments x, since the discovery of the electron in 1897, of the form θ ∈ [l(x), u(x)], where θ is a
parameter of interest, that is, the parameter to be measured.

2. Coverage is an objective characteristic of ensembles of statements. However, in order to verify
whether an ensemble of statements covers, we need to know which statements are true and which
ones are false. Alas, since this information is generally not available in the real world there is no
operational way to compute the coverage. The fact that we can do so in a simulation may give us
confidence that the actual coverage of published statements is as the simulation reports, but does
not prove that it is so.

Example

Consider an ensemble of different experiments, each with a different mean count θ, and each yielding a
count N . Each experiment makes a single statement of the form

N +
√
N > θ,

3Strictly speaking, we mean real samples because, as we have defined it, an ensemble is a synonym for a population, which
by definition contains infinitely many elements
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Fig. 1: Plotted is the tensor product of the parameter space, with parameter s, and the space of observations with
potential observations n. For a given value of s, the observation space is partitioned into three disjoint intervals,
labeled L, M , and R, such that the probability to observe a count n in M is f ≥ p, where p = is the desired
confidence level.

which is either true or false. If these were real experiments, we would not be able to determine which
statements are true and which are false and, therefore, determine the coverage. Suppose that each mean
count θ is randomly sampled from uniform(0, 10), with range [0, 10], and suppose that these means are
known as would be the case in a simulation. Since the numbers are known, we can compute the coverage
probability f .

Exercise 7: Compute the coverage of these statements; repeat the exercise using uniform(0, 1000)

In the next section, we discuss the important concept of the confidence interval, which is the classic
exemplar of the frequentist principle.

2.4 Confidence Intervals
In 1937, Neyman [8] introduced the concept of the confidence interval, a way to quantify uncertainty
in estimates that respects the frequentist principle. Confidence intervals are a concept best explained
through an example. Consider an experiment that observes n = N events with mean signal count s and
no background. A confidence interval [l(N), u(N)], with confidence level CL = p, permits a statement
of the form

s ∈ [l(N), u(N)], (20)

with the a priori guarantee that a fraction f ≥ p of statements will be true over an ensemble of such
statements, not necessarily about the same quantity or the same kind of experiment. For simplicity,
however, we shall consider experiments of the same kind, but which differ by their mean signal count s.

Consider Fig. 1, which shows the tensor product of the parameter space {s} and the space of po-
tential observations {N} as well as the potential observations, represented by the dots, of an experiment
with mean count s. The two vertical lines divide the space of observations into the three regions labeled
L, M , and R. The region M is chosen so that the probability to obtain a count in that region is f ≥ p,
where p is the desired confidence level (CL). The probabilities to obtain a count in region L or region R
are αL and αR, respectively. Since the three regions span the space of observations, αL + f + αR = 1.
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Fig. 2: The algorithm for defining region M (see Fig. 1), must be repeated for every value of s that is possible a
priori. For the experiment whose mean s is represented by the thick horizontal line, the figure shows three possible
outcomes, labeled A, B, and C, and their associated confidence intervals [l(n), u(n)]. Only outcomes, such as B,
which lie within the region M of the experiment will yield intervals that bracket s. The probability to obtain such
an interval is f ≥ p, by construction.

For a given coverage f , the choice of region M is not unique and different methods have been
suggested to define it. The first method was devised by Neyman [8], which we shall consider shortly.
Another method was suggested by Feldman and Cousins [9]. We shall use that method to explain the
general construction of confidence intervals.

Feldman-Cousins Method

In the Feldman-Cousins method, every potential count n is associated with a pair of numbers: a weight
p(n|s) / p(n|ŝ), where ŝ = n is the maximum likelihood estimate of s, together with the probability
p(n|s) to obtain the count n. The counts are placed in descending order of their weights. Starting with
the first count in the ordered list, a set of counts (n(1), n(2), · · · ) is accumulated one by one until their
summed probabilities f =

∑
(i) p(n(i)|s) ≥ p. The symbol (i) denotes the ordinal value of a count in

the ordered list. The set of counts (n(1), n(2), · · · ) defines an interval in the space of observations whose
lowest (leftmost) and highest (rightmost) counts nL and nR are given by nL = min(n(1), n(2), · · · )
and nR = max(n(1), n(2), · · · ), respectively. This construction (for this single parameter problem)
guarantees that the probability to obtain a count within region M is f ≥ p 4.

There is, however, a snag with any algorithm to define M . The latter can only be defined if the
mean count associated with an experiment is known. This may well be true within a simulation, but it is
not so in the real world. Therefore, any algorithm for defining the region M must be repeated for every
value of s that is considered possible a priori, as illustrated in Fig. 2. The repetition produces regions
Ms, labeled by the mean count s, that define two curves, labeled l(n) and u(n), in the product space
{s} ⊗ {n}. For a given n, these curves define the confidence intervals [l(n), u(n)]. Over an ensemble

4We write f ≥ p rather than f = p because, in general, for a discrete distribution it is not possible to satisfy the equality
except at specific values of s.
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Fig. 3: The Neyman method. For every n, an interval [l(n), u(n)] is computed by solving the equations in the plot.
See text for details.

of experiments—and irrespective of their associated mean count s, the fraction of statements of the form
s ∈ [l(n), u(n)] that are true is f ≥ p, by construction. To see this, consider again Fig. 2. It shows three
possible outcomes for the experiment defined by the thick horizontal line together with the three possible
confidence intervals (the vertical lines terminated with dots). If an observation lands in the region M
for that experiment, the interval [l(n), u(n)] will bracket the mean count s, as shown in the figure. If
a count lands in region L, then the upper limit u(n) will lie below s and, consequently, the interval
[l(n), u(n)] will exclude s. If n lands in region R, then the lower limit l(n) will lie above s and the
interval will exclude s. Therefore, the interval [l(n), u(n)] will include s only if n lies in M , for which
the probability is f ≥ p. A procedure for constructing confidence intervals in this manner is called a
Neyman construction.

Neyman Method

The algorithm described above requires that a regionM be constructed for each value of s. An alternative
algorithm was devised by Neyman in his 1937 paper and is illustrated in Fig. 3. For every n, the upper
and lower limits are found by solving

P (x ≤ n|u) = αL, (21)

P (x ≥ n|l) = αR. (22)

Equation (21) yields a curve u(n) for which the probability to obtain a count x ≤ n, for a given s, is αL,
while Eq. (22) yields a curve l(n) for which the probability to obtain a count x ≥ n, for a given s, is αR.
These curves can also be made using the Neyman construction described above for the Feldman-Cousins
method, but the solution using Eqs. (21) and (22) is computationally more efficient. Figure 4 shows
the coverage probability over the parameter space for the Neyman intervals, in which we have chosen
αL = αR = (1 − p)/2. This choice, the one made by Neyman, define central confidence intervals.
As advertised, these confidence intervals satisfy the frequentist principle. Also shown is the coverage
for intervals of the form [N −

√
N,N +

√
N ] and [N −

√
N,N +

√
N + exp(−N)]. These intervals

are approximate confidence intervals in that they do not satisfy the frequentist principle exactly. Notice,
however, that for s > 2.5 the coverage of these intervals bounces around the p = 0.683 line. Therefore,
over a large sample of experiments, with a distribution of Poisson means, it is plausible that the coverage
could turn out to be close to the desired confidence level.
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Fig. 4: Coverage probability f as a function of the Poisson mean s. As expected, the central intervals satisfy the
frequentist principle, namely, f ≥ p, where p = 0.683 is the confidence level. The coverage for two other sets of
intervals are shown for which the frequentist principle is not satisfied.

A notable feature of Fig. 4 is the jaggedness of the coverage probabilities over the parameter space.
The jaggedness is caused by the discreteness of the Poisson distribution. For a discrete distribution,
coverage equal to the desired confidence level is possible only at specific values of s. Therefore, if we
insist on the frequentist principle, f ≥ p, the price to be paid is over-coverage in subsets of the parameter
space.

2.5 The Profile Likelihood
The likelihood function,

p(D|s, b) =
(s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
, (23)

contains two parameters, the mean signal count s and mean background count b. However, the parame-
ter of interest is the mean signal. The mean background count is needed to define the probability model,
but inferences about it are not of interest. The parameter b is an example of a nuisance parameter. One
way or another, we must rid a probability model of all nuisance parameters if we wish to make infer-
ences about the parameter(s) of interest, here the mean Higgs boson signal count s. A widely accepted
method for doing so is to convert the likelihood function into a function called the profile likelihood. But,
before discussing this, we briefly describe the most common frequentist method to arrive at estimates of
parameters.

Given the likelihood function L(s, b) ≡ p(D|s, b), its parameters can be estimated by maximizing
L(s, b), or, equivalently, maximizing lnL(s, b), with respect to s and b,

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,
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∂ ln p(D|s, b)
∂b

= 0 leading to b̂ = B,

as expected. Estimates found this way (first done by Karl Gauss and systematically developed by
Fisher [10]) are called maximum likelihood estimates (MLE). This method generally leads to rea-
sonable estimates, but, as is true of other procedures in statistical analysis, the method has its good and
bad features, as noted below.

– The Good

– Maximum likelihood estimates are consistent, that is, the RMS of estimates goes to zero as
more and more data are included in the likelihood. This basically says that acquiring more
data makes sense because the accuracy of results is expected to improve.

– If an unbiased estimate of a parameter exists, the maximum likelihood procedure will find it.
– Given the MLE for s, the MLE for any function y = g(s) of s is ŷ = g(ŝ). This useful

feature means that it possible to maximize the likelihood using any parameterization of it,
say s, because, at the end, we can transform to the parameter of interest using ŷ = g(ŝ).

– The Bad

– In general, MLEs are biased.

Exercise 7: Show this
Hint: Taylor expand ŷ = g(s + ŝ − s) about s and
consider its ensemble average.

– The Ugly

– Most MLEs are biased, which, unfortunately, encourages the routine application of bias cor-
rection. But correcting for bias only makes sense if the RMS of an unbiased result is less
than or equal to the RMS of a biased result. Recall that the RMS =

√
V + b2, where V is

the variance and b is the bias.

We now return to the profile likelihood. In order to make an inference about the signal, s, the 2-
parameter model L(s, b) must be reduced to one involving s only. In principle, this must be done while
respecting the frequentist principle, that is, f ≥ p, where f is the coverage probability of an ensemble
of statements and p is the desired confidence level. In practice, all nuisance parameters are replaced by
their MLEs conditional on given values of the parameters of interest. For the Higgs boson example, an
estimate of b is found as a function of s, b̂ = f(s), and b is replaced by ŝ in L(s, b). This leads to a
function Lp(s) = L(s, f(s)) called the profile likelihood. For the likelihood in Eq. (23),

b̂ = f(s) =
g +

√
g2 + 4(1 + k)Ms

2(1 + k)
,

where g = N +M − (1 + k)s. (24)

Figure 5 shows a density plot of the likelihood L(s, b) with the function b̂ = f(s) superimposed. Notice
that b̂ = f(s) goes through the mode of L(s, b), which occurs at s = ŝ = N−B = 15.6 events. Figure 6
shows the profile likelihood.

Replacing the (unknown) true value of b with an estimate thereof is clearly an approximation.
Therefore, it should come as no surprise that inferences based on the profile likelihood are not guaran-
teed to be satisfy the frequentist principle exactly. However, it is found that for the typical applications
in particle physics (as will be evident below), the procedures based on the profile likelihood work sur-
prisingly well. Moreover, the use of the profile likelihood has a sound theoretical justification.
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Fig. 5: The likelihood L(s, b) and the graph of the func-
tion b̂ = f(s).

Fig. 6: The profile likelihood Lp(s) ≡ L(s, f(s)).

Consider the profile likelihood ratio

λ(s) = Lp(s)/Lp(ŝ), (25)

where ŝ is the MLE of s. Taylor expand the asso-
ciated quantity

t(s) = −2 lnλ(s) (26)

about ŝ,

t(ŝ+ s− ŝ) = t(ŝ) + t′(ŝ)(s− ŝ)
+ t′′(ŝ)(s− ŝ)2/2 + · · ·
≈ (s− ŝ)2/2/σ2 + · · · ,

where σ2 ≈ 2/t′′(ŝ). (27)

The quadratic approximation is called the Wald
approximation (1943) (see Cowan et al. [11]). If
ŝ does not occur on the boundary of the parame-
ter space (in which case the derivative of t at ŝ is
zero), the sample is large enough (that is, when the
density of ŝ is approximately Gaussian(ŝ, s, σ)),
and if s is the true value of the signal, then the
density of t(s) converges to a χ2 density of one
degree of freedom. The result, which is impor-
tant because of its generality, is a special case of
Wilks’ theorem (1938) (Cowan et al. [11]).

Since t(s) ≈ χ2, we can compute an ap-
proximate 68% confidence interval by solving

t(s) = −2 lnλ(s) = 1, (28)

for the lower and upper limits of the interval.
Given N = 25 observed 4-lepton events, a back-
ground estimate of B ± δB = 9.4 ± 0.5, we can
state that

s ∈ [10.9, 21.0] @ 68% C.L. (29)

Exercise 8: Verify this interval.

As noted, intervals constructed using the profile likelihood are not guaranteed to satisfy the fre-
quentist principle. However, for applications in particle physics the coverage of these intervals is usually
very good even for small amounts of data.

2.6 Hypothesis Tests
In the previous section, we concluded that s ∈ [10.9, 21.0] @ 68% C.L. This result strongly suggests
that a signal exists in the N = 25 4-lepton events observed by CMS. But, a qualitative statement such as
this is generally considered insufficient. The accepted practice is to perform an hypothesis test. Indeed,
in particle physics, a discovery is declared only if a certain quantitative threshold has been reached in an
hypothesis test.

An hypothesis test, in the frequentist approach, is a procedure for rejecting an hypothesis, which
adheres to the following protocol.
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1. Decide which hypothesis is to be rejected. This is called the null hypothesis. At the LHC, this is
usually the background-only hypothesis.

2. Construct a function of the data called a test statistic with the property that large values of it would
cast doubt on the veracity of the null hypothesis.

3. Choose a test statistic threshold above which we are inclined to reject the null. Do the experiment,
compute the statistic, and reject the null if the threshold is breached.

We consider two related variants of this protocol, one by Fisher [10] and the other by Neyman, both de-
veloped in the 1930s. Fisher and Neyman disagreed strenuously about hypothesis testing, which suggests
that the topic is rather more subtle than it seems. Fisher held that an hypothesis test required considera-
tion of the null hypothesis only, while Neyman argued that a proper test required consideration of both
a null as well as an alternative hypothesis. Physicists ignore these disagreements and see utility in an
amalgam of the approaches of Fisher and Neyman. The is eminently sensible and pragmatic, whereas
our quasi-religious adherence to a 5σ threshold before declaring a discovery is not always sensible.

We first illustrate Fisher’s theory of hypothesis testing and follow with a description of Neyman’s
theory.

p(x | H
0
)

x x
0

Fig. 7: The p-value is the tail-probability, P (x >

x0|H0), calculated from the probability density under
the null hypothesis, H0. Consequently, the probabil-
ity density of the p-value under the null hypothesis is
uniform(0, 1).

Fisher’s Approach

We take the null hypothesis, which is denoted by
H0, to be the background-only model, that is, the
Standard Model without a Higgs boson and com-
pute a measure of the incompatibility of H0 with
the observations, called a p-value, defined by

p-value(x0) = P (x > x0|H0), (30)

where x is a test statistic, designed so that large
values indicate departure from the null hypothe-
sis, and x0 is the observed value of the statistic.
Figure 7 shows the location of x0. The p-value is
the probability that x could have been higher than
the x0. Fisher argued that a sufficiently small p-
value implies that either the null hypothesis is false or something rare has occurred. If the p-value is
extremely small, say ∼ 3 × 10−7, then of the two possibilities the response of the particle physicist is
to reject the null hypothesis and declare that a discovery has been made. The p-value for our example,
neglecting the uncertainty in the background estimate, is

p-value =
∞∑

k=N

Poisson(k, 9.4) = 1.76× 10−5, with N = 25.

Since the p-value is a bit non-intuitive, it is conventional to map it to a Z-value, that is, the number
of standard deviations the observation is away from the null if the distribution were a Gaussian. The
Z-value can be computed using 5.

Z =
√

2 erf−1(1− 2p-value). (31)

A p-value of 1.76 × 10−5 corresponds to a Z of 4.14σ. The Z-value can be calculated using the Root
function

Z = TMath::NormQuantile(1-p-value).

If the p-value is judged to be small enough, or the Z-value is large enough, the background-only hypoth-
esis is rejected.

5erf(x) = 1√
π

∫ x
−x exp(−t

2) dt is the error funtion.
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1 

p(x | H0 )
p(x | H1)

x

 

x!

Alternative hypothesis 

Fig. 8: Distribution of a test statistic x for two hypothe-
ses, the null H0 and the alternative H1. In Neyman’s
approach to testing, α = P (x > xα|H0) is a fixed proba-
bility called the significance of the test, which for a given
class of experiments corresponds the threshold xα. The
hypothesis H0 is rejected if x > xα.

Neyman’s Approach

As noted, Neyman insisted that a correct hypothe-
sis test required two hypotheses to be considered,
the null hypothesis H0 and an alternative hypoth-
esis H1. This is illustrated in Fig. 8. The null is
the same as before but the alternative hypothesis
is the Standard Model with a Higgs boson, that
is, the background plus signal hypothesis. Again,
the statistic x is constructed so that large values
would cast doubt on the validity of H0. How-
ever, the Neyman test is specifically designed to
respect the frequentist principle. A fixed probabil-
ity α called the significance (or size) of the test
is chosen, which corresponds to some threshold
value xα defined by

α = P (x > xα|H0). (32)

Should the observed value x0 > xα, or equivalently, p-value(x0) < α, the hypothesis H0 is rejected in
favor of the alternative. By construction, a repeated application of this test will reject a fraction α of true
null hypotheses. Since these are false rejections, we say that these are Type I errors. Neyman’s test
discards the p-value and reports only α and whether or not the null was rejected. However, in particle
physics, in addition to reporting the results of the test, perhaps announcing a discovery, we also report
the observed p-value. This makes sense because there is a more information in the p-value than merely
reporting the fact that a null hypothesis was rejected at a significance level of α.

1 

x

 

x!

p(x | H0 ) p(x | H1)

Fig. 9: See Fig. 8 for details. Unlike the case in Fig. 8,
the two hypotheses H0 and H1 are not that different. It is
then not clear whether it makes practical sense to reject
H0 when x > xα only to replace it with an hypothesis
H1 that is not much better.

Given that Neyman’s test requires an alter-
native hypothesis there is more that can be said
than simply reporting the result of the test and the
observed p-value. Figure 8 shows that we can also
calculate

β = P (x ≤ xα|H1), (33)

which is the relative frequency with which we re-
ject true alternative hypotheses H1. This mistake
is called a Type II error. The quantity 1 − β
is called the power of the test and is the rela-
tive frequency with which we would accept the
true alternative hypotheses. The defining feature
of the Neyman test is that, in accordance with the

Neyman-Pearson lemma (see for example Ref. [2]), the power is maximized subject to the constraint that
α is fixed. The Neyman-Pearson lemma asserts that given two simple hypotheses—that is, hypotheses in
which all parameters have specified values—the optimal test statistic t for conducting an hypothesis test
is the likelihood ratio t = p(x|H1)/p(x|H0).

Maximizing the power seems like a reasonable procedure. Consider Fig. 9, which shows that the
significance of the test in this figure is the same as that in Fig. 8. Therefore, the Type I error rates are
identical. However, the Type II error rate is much greater in Fig. 9 than in Fig. 8 because the power of
the test is considerably weaker in the former. Consequently, it is debatable whether rejecting the null
is a wise course of action since the alternative hypothesis is not that much better. This insight was one
source of Neyman’s disagreement with Fisher. Neyman objected to the possibility that one might reject
a null hypothesis regardless of whether it made sense to do so. He argued that the goal of hypothesis

14

H. B. PROSPER

274



testing is always one of deciding between competing hypotheses. Fisher’s counter argument was that an
alternative hypothesis may not be available, in which case we either give up or we have a method to test
the only hypothesis that is available in order to decide whether it is worth keeping. In a Bayesian analysis
an alternative hypothesis is also needed, in agreement with Neyman viewpoint, but is used in a way that
neither he nor Fisher agreed with.

So far we have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Alas,
most of the hypotheses that arise in realistic particle physics analyses are not of this kind. In the Higgs
boson example, the probability models depend on a nuisance parameter for which only an estimate is
available. Consequently, neither the background-only nor the background plus signal hypotheses are
fully specified. Such hypotheses are examples of compound hypotheses. In the following, we illustrate
how hypothesis testing proceeds in this case using the 4-lepton example.

Compound Hypotheses

In Sec. 2.5, we reviewed the standard way nuisance parameters are handled in a frequentist analysis,
namely, their replacement by their conditional MLEs, thereby converting the likelihood function to the
profile likelihood. In the 4-lepton example, this yielded the function Lp(s) = L(s, f(s)). The justifi-
cation for this is that the statistic t(s) = lnλ(s), where λ(s) = Lp(s)/Lp(ŝ) and ŝ is the MLE of s
can be used to compute (approximate) confidence intervals in light of Wilks’ theorem, which essentially
states that t(s) ≈ χ2. Therefore, the same statistic can also be used as a test statistic with the associated
p-values calculated using the χ2 density. Moreover, since, by definition, Z =

√
χ2, the p-value calcu-

lation can be sidestepped altogether. Using N = 25 and s = 0, we find
√
t(0) = 4.13, which is to be

compared with Z = 4.14, the value found neglecting the ±0.5 event uncertainty in the background.

In summary, the statistic t(s) can be used to test null hypotheses as well as compute confidence
intervals and, therefore, provides a unified way to deal with both tasks. If s is the true value of the mean
signal, then the distribution of t(s) under that hypothesis is a χ2 density with one degree of freedom,
p(χ2|ndf = 1). Sometimes, however, it is necessary to consider t(s) when the value of s in the argument
differs from the value s, say s0, which determines the density of t(s). For example, suppose that a model
of new physics predicts a mean count s0 and an analysis is planned to test this model. We may be
interested to know, for example, what value of t(s) we might expect for a given amount of data. If s = 0,
the goal may be to determine the average or median significance with which we may be able to reject the
background-only hypothesis. Since the predicted signal s0 differs from s = 0, the density of t(s, ŝ)—
where for clarity, the dependence on the estimate ŝ is made explicit—will no longer be χ2, but rather a
non-central χ2 density, p(χ2|ndf = 1, nc) with non-centrality parameter nc, an approximate value for
which is nc = t(s, s0); that is, it is the test statistic computed using an Asimov6 data set [11] in which
the “observed" count N is set equal to the true mean signal count, s0 + b.

3 Bayesian Analysis
Bayesian analysis is merely applied probability theory with the following significant twist: a method is
Bayesian if

– it is based on the degree of belief interpretation of probability and
– it uses Bayes’ theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (34)

6The name of this special data set is inspired by the short story Franchise by Isaac Asimov describing a futuristic United
States in which, rather than having everyone vote in a general election, a single (presumably representative) person is chosen
to answer a series of questions whose answers are analyzed by an AI system. The AI system then decides the outcome of the
election by determining what would have been the outcome had the general election been held!
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where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(D|θ, ω) = likelihood,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density,

for all inferences. The posterior density is the final result of a Bayesian analysis from which, if desired,
various summaries can be extracted. The posterior density assigns a weight to every hypothesis about the
values of the parameters of the probability model, which, in addition to the likelihood, also includes a
function called the prior density or prior for short. The parameters can be discrete, continuous, or both,
and nuisance parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (35)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The prior π(θ, ω) encodes whatever assumptions we make and information we have about the parameters
θ and ω independently of the data D. A key feature of the Bayesian approach is recursion: the use of the
posterior density p(θ, ω|D) as the prior in a subsequent analysis.

These rules are simple, yet they yield an extremely powerful and general inference algorithm.
However, particle physicists remain wedded to the frequentist approach because of the still widespread
perception that the Bayesian algorithm is too subjective to be useful for scientific work. However, there
is considerable published evidence to contrary, including in particle physics, witness the successful use
of Bayesian analysis in the discovery of single top quark production at the Tevatron [16,17] and searches
for new physics at the LHC [18–20].

So, why do particle physicists, for the most part, remain skeptical about Bayesian analysis? For
many, the Achilles heel of the Bayesian approach is the difficulty of specifying a believable prior over
the parameter space of the likelihood function. In our example, in order to make an inference about the
mean event count s using the data N = 25 events with a background of B ± δB = 9.4 ± 0.5 events, a
prior density π(s, b) must be constructed. Even after more than two centuries of effort, discussion, and
argument, however, statisticians have failed to reach a consensus about how to do this in the general case.
Nevertheless, Bayesian analysis is widely and successfully used, and used even within particle physics.
This strongly suggests that we should refrain from overstating the difficulties. After all, physics is replete
with approximations, both of a technical and conceptual nature. The same is true of statistical analysis.
But, of course, this is no excuse for sloppiness. Rather it is a reminder not to make perfection the enemy
of the good.

The particle physicists who have given this topic some thought seem to agree with the statisticians
who argue that the following invariance property should hold for any prior, at least ideally,

πφ(φ)dφ = πθ(θ)dθ, (36)

where φ = f(θ) is a one-to-one mapping of the parameter vector θ, e.g., θ = (s, b), to the new parameter
vector φ and πφ and πθ are, in general, different functions of their arguments. If the above invariance
holds, then the posterior density will likewise be reparametrization invariant in the same sense as the
prior. Suppose we have a rule for creating a prior π(∗) and we apply this rule to create the density πφ.
The same rule is now used to create πθ after which we transform from πθ(θ)dθ to π(φ)dφ. Invariance
with respect to the choice of parametrization demands that π = πφ. It surely ought not to matter whether
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we parametrize the likelihood p(D|s, b) in terms of s and b or in terms of s and u =
√
b. After all, the

likelihood hasn’t really changed, therefore, it would be odd if this “non-change" changed the posterior
density. But, whether or not a change occurs depends on the nature of the prior, as the following example
shows.

Consider the probability function p(D|s) = Poisson(D|s), written in two different ways: p(D|s) =
exp(−s)sD/D! and p(D|σ) = exp(−σ2)σ2D/D!, where σ =

√
s. In order to compute the posterior

densities p(s|D) and p(σ|D) priors must be specified. The most widely used rule for doing so is: choose
the prior to be flat, that is, uniform, e.g., π(s) = 1 and π(σ) = 1 in the parameter space. Notice that
for an unbounded parameter space

∫
π(s) ds =

∫
π(σ) dσ = ∞. Yes, this has a bad look, but it is not

necessarily a problem [12]! The posterior density in the s parametrization is p(s|D) = exp(−s)sD/D!,
while it is p(σ|D) = exp(−σ2)σ2D/Γ(D + 1/2) in the σ parametrization.

Now, if we transform p(σ|D)dσ to p′(s|D)ds the result is p′(s|D) = exp(−s)sD−1/2/Γ(D +
1/2), which clearly differs from p(s|D). But, this is not surprising given that the flat prior is not
reparametrization invariant. Some regard this as a serious problem, one that worsens as the dimen-
sionality of the parameter space increases. Others point to the numerous successful uses of the uniform
prior, even in problems with high dimensional parameter spaces, and accept the lack of invariance as a
price worth paying in order to avoid the not inconsiderable effort of constructing an invariant prior.

A general method to create invariant priors was suggested by Jeffreys in the 1930s [15], which in
the intervening years has received considerable mathematical validation through many different lines of
reasoning (see, for example, [22]). The Jeffreys prior is given by

π(θ) =
√

det I(θ), (37)

where Iij = −E
[
∂2 ln p(x|θ)
∂θi ∂θj

]
is the Fisher information matrix,

and where the average is with respect to potential observations x sampled from the density p(x|θ). When
the Jeffreys rule is applied to p(x|µ, σ) = Gaussian(x, µ, σ) it yields

π(µ, σ)dµ dσ =
dµ dσ

σ2
. (38)

Exercise 9: Show this

Ironically, the resulting posterior density was rejected by Jeffreys, and subsequently by statisticians be-
cause it yielded unsatisfactory inferences! The preferred prior for the Gaussian is

π(µ, σ)dµ dσ =
dµ dσ

σ
, (39)

because it leads to excellent results.

So, what is a confused physicist to make of this? One possibility is to reject the whole Bayesian
omelette and stick to the frequentist gruel. It may be a tad thin for some, but it is at least relatively easy to
make. The other is to dismiss the arguments that yield Eq. (37) in favor of reasoning that yields Eq. (39)
(see, for example, [21]). Yet another way forward is to take seriously the many persuasive arguments
that lead to Eq. (37) and try to understand what the reported failures of the Jeffreys prior for problems
involving more than one parameter is telling us. Here is a hint of some understanding. Note that Eq. (39)
can be written as

π(µ, σ)dµ dσ = σ

[
dµ dσ

σ2

]
,

= σ0 exp(lnσ/σ0)

[
dµ dσ

σ2

]
. (40)
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This suggests, in the spirit of [22], that it is better to interpret the Jeffreys prior as simply an invariant mea-
sure on the parameter space of the associated likelihood function, one that assigns equal weight to every
probability density labeled by θ. Assigning equal weight to every probability density is a reparametriza-
tion invariant procedure, while, as we saw above, assigning equal weight to every parameter is not. If
this interpretation is accepted, then the prior density is actually given by

π(θ) = g(θ)
√

det I(θ), (41)

where g(θ) is a function that could assign non-equal weights to the probability densities, such as the term
before the brackets in Eq. (40). That term is essentially the exponential of the entropy of the Gaussian
density, which assigns a weight ∝ σ to every density indexed by µ, σ. What is missing is a convincing
theoretical framework for choosing g(θ), a challenge that we leave to the reader.

For our example, we shall forego invariance in order to keep things simple and use a flat prior
in both s and b. But, before delving back into the example, we review hypothesis testing in Bayesian
analysis.

3.1 Model Selection
Hypothesis testing (also known as model selection) in Bayesian analysis requires the calculation of an
appropriate posterior density or probability, as is true of all fully Bayesian calculations,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (42)

where we have explicitly included the index H to identify the different hypotheses. By marginalizing
p(θ, ω,H|D) with respect to all parameters except the ones that label the hypotheses or models, H , we
arrive at

p(H|D) =

∫
p(θ, ω,H|D) dθ dω, (43)

that is, the probability of hypothesis H given observed data D. In principle, the parameters ω could also
depend on H . For example, suppose that H labels different parton distribution function (PDF) models,
say CT14, MMHT, and NNPDF, then ω would depend on the PDF model and should be written as ωH .
Like a Ph.D., it is usually convenient to arrive at the end-point, here the probability p(H|D), in stages.

1. Factorize the prior, e.g.,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H). (44)

In many cases, we can assume that the parameters of interest θ are independent, a priori, of
both the nuisance parameters ωH as well as the model label H , in which case we can write,
π(θ, ωH , H) = π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ωH |H) dθ dωH . (45)

3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (46)
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Clearly, in order to calculate the probabilities p(H|D) it is necessary to specify the priors π(θ, ω|H) and
π(H). With some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly
unlikely that consensus could ever be reached on the prior π(H). At best, we would have to make do with
a convention. For example we could, by convention, assign equal probabilities to the two hypotheses H0

and H1, a priori, that is, π(H0) = π(H1) = 0.5. But, do we really believe that the Standard Model and
the MSSM are equally probable models?

One way to sidestep the polemics of assigning π(H) is to compare probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
, (47)

but use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.
The Bayes factor is the factor by which the relative probabilities of two hypotheses changes as a result of
incorporating the data, D. The word global indicates that we have marginalized over all the parameters
of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (48)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (49)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ
and ωH1 . We have further assumed that the marginal likelihood H0 is independent of θ, which is a very
common situation. For example, θ could be the expected signal count s, while ωH1 = ω could be the
expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it is the same
as H1 with s = 0. An hypothesis that is a special case of another is said to be nested within the more
general hypothesis. All this will become clearer when we work through the Bayesian analysis of the
4-lepton data.

There is a notational subtlety that may be missed: because of the way we have defined p(D|θ,H),
we need to multiply p(D|θ,H) by the prior π(θ) and then integrate with respect to θ in order to calculate
p(D|H).

3.2 Bayesian Analysis of 4-lepton Data
In this section, we shall

1. compute the posterior density p(s|D),
2. compute a 68% credible interval [l(D), u(D)], and
3. compute the global Bayes factor B10 = p(D|H1)/p(D|H0),

as a way to illustrate a Bayesian analysis of the 4-lepton data.

Probability model

The likelihood is the same as that used in the frequentist analysis, namely, Eq. (23). However, the
likelihood is only part of the model; we also need a prior π(s, b) that encodes what we know, or assume,
about the mean background and signal independently of the observations D. How exactly that should be
done remains an active area of debate and research. Below, we shall take the easy way out!

One point that should be noted is that the prior π(s, b) can be factorized in two ways,

π(s, b) = π(s|b)π(b),
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= π(b|s)π(s). (50)

It is worth noting because π(s, b) is routinely written as π(s, b) = π(s)π(b), which is not true, in general.
The a priori independence of s and b is an assumption, one that we shall make. What do we know about
s and b? We know that s and b are ≥ 0. We also know the probability function and how s and b enter it.
Given this information, there are well founded methods to construct π(s, b). However, for simplicity, for
b, we shall use the improper prior π(b) = k, where k is the scale factor in the likelihood p(D|s, b), and
either the improper prior π(s) = 1, or the proper prior π(s) = δ(s − 15.6). An improper prior is one
that integrates to infinity, which as noted above is not necessarily problematic [12].

Marginal likelihood

Having completed the probability model, the rest of the Bayesian analysis proceeds in a routine manner.
First, it is convenient to eliminate the nuisance parameter b, using the improper prior π(b) = k,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b) db,

=
1

M
(1− x)2

N∑

r=0

Beta(x, r + 1,M) Poisson(N − r|, s), (51)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1). The symbol H1 has been introduced to repre-
sent the hypothesis that the signal is non-zero.

Posterior density

Given the marginal likelihood p(D|s,H1) and π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (52)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Setting π(s) = 1 yields,

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1,M) Poisson(N − r|s)

∑N
r=0 Beta(x, r + 1,M)

. (53)

Exercise 11: Derive an expression for p(s|D,H1) assuming
π(s) = Gamma(qs, 1, U + 1) where q and U are known con-
stants.

The posterior density p(s|D,H1) completes the inference about the mean signal s. In principle, we could
stop there, but, in practice, summaries of the posterior density are furnished, such as a credible interval,
the analog of a confidence interval. But, like confidence intervals, credible intervals, [l(D), u(D)] with
credible level p, defined by

∫ u(D)

l(D)
p(s|D,H1) ds = p (54)

are not unique. The analog of Neyman’s central interval is the central credible interval defined by
∫ l(D)

0
p(s|D,H1) ds = (1− p)/2,
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Fig. 10: Posterior density for 4-lepton data. The shaded area is the 68% central credible interval.

∫ ∞

u(D)
p(s|D,H1) ds = (1− p)/2. (55)

For the 4-lepton data this leads to the central credible interval [11.5, 21.7] for s with p = 0.683, which
is shown in Fig. 10. The statement s ∈ [11.5, 21.7] at 68% C.L. means there is a 68% probability
that s lies in the specified interval. Unlike the analogous frequentist statement, this one is about this
particular interval and the 68% is a degree of belief, not a relative frequency. Statements of this form
do, of course, have a coverage probability. However, a priori, there is no reason why the coverage
probability of credible intervals should satisfy the frequentist principle. In practice, it is found that
credible intervals with appropriately chosen priors can moonlight as approximate confidence intervals.
But when this happens if does not mean that their interpretations somehow merge, it simply means that
a misinterpretation of the intervals is likely to be benign.

Bayes factor

We noted above that
p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Furthermore, p(D|H1) < ∞ even with the improper prior π(s) = 1. However, another arbitrary
constant besides unity could have been chosen, for example, π(s) = C. That constant would not have
altered the posterior density p(s|D,H1) and therefore choosing C = 1 as a matter of convenience was
fine. However, here we wish to compute the global Bayes factor B10 = p(D|H1) / p(D|H0). The
background-only hypothesis, H0, is nested in H1 and has marginal likelihood p(D|H0) ≡ p(D|0, H1).
Since the constant k in the background prior π(b) = k scales both p(D|H1) and p(D|H0) the constant
cancels and no issue arises from using an improper background prior. However, since for H1 π(s) = C
and the parameter s appears only in the calculation of p(D|H1), the Bayes factor is scaled by the arbitrary
constantC. Consequently, the Bayes factor can be assigned any value merely by choosing an appropriate
value for C. This is clearly unsatisfactory. The upshot is that while improper priors may yield reasonable
results for the posterior density p(s|D,H1), albeit ones that are not reparametrization invariant, that is
not the case for Bayes factors. To arrive at a satisfactory Bayes factor, a proper prior must be used. The
simplest such prior is, for example, π(s) = δ(s− ŝ), where ŝ = N − B = 15.6 events. With this prior,
the Bayes factor is

B10 =
p(D|H1)

p(D|H0)
= 4967.
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We conclude that the 4-lepton observations increase the probability of hypothesis s = 15.6 events relative
to the probability of the hypothesis s = 0 by ≈ 5000. In order to avoid large numbers, the Bayes factor
can be mapped into a measure akin to the frequentist “n-sigma",

Z =
√

2 lnB10, (56)

which gives Z = 4.13.

The Bayesian and frequentist results are approximately the same, which is typically the case when
the data are sufficient. This is because the influence of the prior is smaller than when the data are sparse.

4 Supervised Machine Learning
The project of creating artificial beings that mimicked some characteristics of humans has been a dream
of visionaries for millennia. But, during the Second World War, dreams gave way to a desperate focus on
matters of life and death when latter day visionaries sought to create algorithms that could solve difficult
problems such as cracking military codes in real-time. After the war, the pursuit of artificially intelligent
agents was revived. In 1950, the great English mathematician Alan Turing, whose genius helped save
millions of lives and shortened the most calamitous war in history, proposed an operational definition
of such an agent, a test now known as the Turing test [23]. The test cuts to the chase regarding what it
means to be intelligent: if it is impossible to tell whether one is conversing with a person or a machine
and you are in fact conversing with a machine then the latter is intelligent. In the decades following
the publication of the Turing test, progress towards creating such agents was slow, in part because the
required conceptual breakthroughs were lacking and in part because the available computing power was
severely limited.

However, an enormous change has occurred during the last decade or so, driven in part by algo-
rithmic breakthroughs, but mostly by the exponential growth in the size of data sets and the available
computing power. In just a few years, the field of machine learning, that is, the use of computer-based
algorithms to construct useful models of data, has gone from research lab to everyday commercial ap-
plications. To be sure, there are many things humans do that seem far beyond current machine learning
capabilities. It is still the case that we are unable to replicate a young child’s ability to intuit the fact
that the noises she hears from the people around her have meaning. Nor can we replicate the extraor-
dinary human ability to be “trained" on a relatively small number of instances of, say, pictures of the
Golden Gate bridge, and yet be able to identify the Golden Gate in other pictures of the bridge taken
from perspectives that may never have been seen before. Nevertheless, impressive progress has been
made recently. Arguably, the most notable is the breakthrough by the Google subsidiary DeepMind in
creating an agent that taught itself to play to superhuman levels the ancient Chinese game of Go, as well
as Chess and Shogi (Japanese chess) tabula rasa. These self-teaching feats were achieved in a mere 24
hours [24]!

Our purpose here is considerably more modest; it is to emphasize something that can easily get
lost in the hype, namely, that these systems are, for the most part, “simply" highly non-linear high-
dimensional parameter space functions that provide mappings from one space to another. The break-
through has been the ability to fit these enormously complicated functions on practical timescales. In
order to avoid complications that merely obfuscate, we consider a simplified version of the following
problem: separating Higgs boson events in which the Higgs boson is produced via vector boson fusion
(VBF) from events in which the Higgs boson is created via gluon gluon fusion (ggF). But, first, we give
an overview of a few key ideas of machine learning.

Most machine learning algorithms fall into five broad categories:

1. supervised learning,
2. semi-supervised learning,
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3. unsupervised learning (i.e., pattern detection)
4. reinforcement learning, and
5. generative learning.

The simplest category of algorithm is supervised learning in which the data for fitting models, i.e.,
training them, consist of labeled objects. If the labels define the class to which objects belong, for
example, −1, or 0, for gluon gluon fusion events and +1 for vector boson fusion events, then, as shown
below, the resulting function will be a classifier. If the labels form a continuous set, then the resulting
function will be a regression function (sometimes called a “regressor"). For example, suppose the objects
are jets characterized by their transverse momentum pT and pseudo-rapidity η and possibly other detailed
characteristics, such as the electromagnetic fraction, while the labels are the true jet transverse momenta.
The regressor will be a correction function that maps the jet characteristics to an approximation of the
true jet pT . Our example will be a simple VBF/ggF classifier.

4.1 A Bird’s Eye View of Supervised Learning
Supervised machine learning can be construed as a game in which winning means picking the best
function (or functions) from a function space. The game includes three elements:

1. a function space F = {f(x,w)} containing parametrized functions f(x,w), where x are object
characteristics—features in machine learning jargon—and w are the parameters;

2. a loss function L(y, f), which measures the cost of making a bad function choice, and where y are
labels associated with the features x, and

3. a constraint C(w) that places some restriction on the choices.

The best function f(x,w∗) is found by minimizing the constrained empirical risk,

R(f) =
K∑

i=1

L(yi, fi) + C(w), where fi = f(xi, w), (57)

with respect to the choice of function f , which in practice means with respect to the parameters w.

Minimization via Gradient Descent

A loss function, through the empirical risk, defines a “landscape" in the space of parameters, or equiva-
lently in the space of functions. The goal is to find the lowest point in that landscape, usually by moving
in the direction of the local negative gradient,

wj ← wj − ρ
∂R

∂wj
, j = 1, · · · J, (58)

where ρ is called the learning rate and J is the dimensionality of the parameter space, which, in some
recent commercial applications can be in the millions. As is, the algorithm in Eq. (58) would fail mis-
erably because of the complexity of the landscape and the possibility that the minimizer could get stuck
in a local minimum or diverge away from the minimum because of the instability caused by a saddle
point. To alleviate this problem, the standard approach is to replace the exact derivatives ∂R/∂wj by
noisy estimates thereof. This is usually achieved by replacing R by an approximation that uses a small
subset—that is, batch—of the training data in the sum that defines R. Typically, a new batch is used at
every step of the minimization algorithm. This minimization algorithm is called stochastic gradient de-
scent, of which there are many variations. The addition of noise increases the chance that the minimizer
will escape from an unfavorable location in the parameter space.
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To Infinity and Beyond

It is intuitively clear that a successful minimization of the empirical risk, Eq. (57), will yield a solution
f(x,w∗) that is as close as possible to the labels, or targets, y. But, in mathematics, as in physics, we
can gain a a clearer understanding of a construct by taking a suitable limit of it. To that end, consider the
limit of R(f)/K, that is, the average loss, as K → ∞. Writing the average loss in that limit as E, and
assuming that the effect of the constraint goes to zero in that limit, we can write

E[f ] =

∫
dx

∫
dy L(y, f) p(y, x),

=

∫
dx p(x)

[∫
dy L(y, f) p(y|x)

]
, (59)

where we have used p(y|x) = p(y, x)/p(x). The function p(y, x) is the (typically unknown) joint
probability density of the targets and features (y, x). Whether the features x represent an event, a jet,
an image, or piece of writing, and y represents useful known data about each instance of x, all the
information about the mapping from x to y is contained in the joint probability density p(y, x). This
is an important point because the failures of machine learning are almost always due to an object with
known characteristics x′, but unknown label y′, not being a member of the population {(y, x)} that
defines p(y, x). If an agent is trained on a million images of dogs and cats, it is not surprising that it
will classify a horse as either a dog or a cat because the probability density p(y, x) does not encompass
images of horses. The point is that the function f(x,w) will do what it is designed to do. But, what
exactly is f(x,w) designed to do? To answer this question concretely, let us consider the minimization
of Eq. (59) with the widely used quadratic loss,

L(y, f) = (y − f)2. (60)

If we change the function f by an arbitrary amount δf this induces a change

δE = 2

∫
dx p(x) δf(x,w)

[∫
dy (y − f) p(y|x)

]
, (61)

in the mean loss E, which, in general, is not zero. If, however, the function f(x,w) is sufficiently
flexible, it will be possible to reach the minimum of E, where δE = 0. But, we want this to hold for
all variations δf—because these variations are, after all, arbitrary—and for all values of x in order that
the function f not fail—that is, perform poorly—for some subset of the space of features. This can be
assured provided that the quantity in brackets in Eq. (61) is zero, that is, if

f(x,w∗) =
∫
y p(y|x) dy. (62)

Equation (62) is an important result because it tells us precisely what the function f(x,w∗) approximates.
If one uses the quadratic loss, then the function f(x,w∗) approximates the conditional average of the
targets. This result was first derived in the context of neural networks [25–27], however, the result holds
irrespective of the details of the function f(x,w). In particular, the function does not have to be a neural
network. The result holds provided that

1. we use sufficient training data T = {(y, x)},
2. we use a sufficiently flexible function f(x,w) and
3. we use an appropriate loss function.

Moreover, if we choose targets in the discrete set y ∈ {0, 1}, the general result reduces to

f(x,w∗) = p(y = 1|x) (63)
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We conclude that if we minimize the average quadratic loss using training data in which one class of ob-
jects is labeled with y = 0 and the other with y = 1, the function f(x,w∗) approximates the probability
that the object with features x belongs to the class labeled with y = 1; that is, f(x,w∗) is a classifier that
approximates the class probability. From Bayes theorem, this class probability, p(1|x), can be written as

p(1|x) =
p(x|1) p(1)

p(x|1) p(1) + p(x|0) p(0)
, (64)

where p(1) and p(0) are the prior probabilities associated with the two classes. Typically, one trains with
p(1) = p(0), in which case p(1|x) is referred to as a discriminant, D(x), and is given by

D(x) =
p(x|1)

p(x|1) + p(x|0)
. (65)

Boosted Decision Trees

Boosted decision trees (BDT) [28] are, currently, the most popular machine learning method in particle
physics; and for good reason. They perform well, they are faster to train than neural networks, they
are insensitive to poorly performing variables, and they are resistant to overfitting. In view of their
widespread use, it is worth taking the time to understand exactly what this machine learning model
entails. We shall highlight key features of BDTs using a simple example in which we seek to separate
Higgs boson events produced via vector boson fusion (VBF) from gluon gluon fusion (ggF) produced
events. In this section, we first discuss decision trees (DT) and then the notion of boosting, that is,
enhancing the performance of a machine learning model by averaging over many models.

A decision tree is a nested sequence of if then else statements, which can also be viewed as a
histogram whose bins are created recursively through binary partitioning. The VBF/ggF example uses
two discriminating variables (features) |∆η|jj and mjj , the absolute pseudo-rapidity difference between
the two most forward (i.e., largest rapidity) jets in the event and the associated di-jet mass, respectively.
Figure 11 shows two representations of a decision tree for our VBF/ggF discrimination example.

At face value, decision trees do not seem to fit into the mathematical ideas about loss functions
discussed above. In particular, it is far from clear what loss function, if any, is being minimized when
a decision tree is grown. However, all successful uses of decision trees entail averaging over many of
them. As we shall see, it is the averaging that provides the connection to a loss function. Averaging
also mitigates a serious problem with decision trees, namely, their instability. Even minor changes to the
training data can radically alter the structure of a tree.

The first successful averaging algorithm, called AdaBoost, was published by AT&T researchers
Freund and Schapire in 1997 [29] who showed that it was possible to create high performance classifiers
by averaging ones (called weak learners) that perform only marginally better than classification via a
coin toss. The algorithm builds a classifier using training data labeled by the discrete labels y = −1 or
y = +1. In the VBF/ggF example below, y = −1 is assigned to ggF events and +1 is assigned to VBF
events. The algorithm, for N training events and K decision trees, proceeds as follows:

1. initialize event weights ω1,n = 1/N, n = 1, · · · , N
2. repeat for k ∈ 1, · · ·K

(a) fit a tree fk(x) that returns either −1 or +1, using the current event weights {wk,n}
(b) compute error rate εk =

∑N
n=1 ωk,nI[−ynfk(xn)], I(z) = 1 if z > 1, 0 otherwise

(c) compute coefficient αk = 1
2 ln[(1− εk)/εk]

(d) update weights wk+1,n = wk,n exp(−αkynfk(xn))/Zk,
where Zk =

∑N
n=1 ωk,n exp(−αkynfk(xn))

3. classifier f(x) =
∑K

k=1 αk fk(x)
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Fig. 11: Two representations of a decision tree to separate VBF from ggF events based on the variables |∆η|jj
and mjj . On the right, the decision tree is represented as a branching structure in which the circles, called nodes,
represent if then else decisions, that is, binary decisions. The boxes terminate the tree and are referred to, appropri-
ately, as leaves. On the left, the decision tree is represented as a 2D histogram in which the bins, which correspond
to the leaves, have been defined by recursive binary partitioning. The bin boundaries, that is, the binary partitions,
correspond to the decisions. At a given node, the left branch is taken if x < xcut otherwise the right branch is
taken; xcut is an optimal cut on the variable x ∈ {|∆η|jj ,mjj}. The numbers within the leaves are the VBF purity
p = S/(S +B), where S and B are the VBF and ggF event counts in a given bin, that is, leaf.

In step 2(d), the weight of incorrectly classified events, for which ynfk(xn) = −1, is increased, while
that of correctly classified events, for which ynfk(xn) = +1, is decreased.

AdaBoost is a rather cryptic algorithm, which, like decision tree classifiers, does not seem to fit
into the general discussion about average loss given above. However, subsequent to the publication of the
AdaBoost algorithm, Friedman, Hastie, and Tibshirani [30] showed that this algorithm can be viewed as
a way to minimize the average loss function

E[f ] =

∫
dx

∫
dy exp[−yf(x)] p(y, x), (66)

whose minimum occurs at

f(x) =
1

2
ln
p(y = +1|x)

p(y = −1|x)
. (67)

To see this consider the problem of minimizing the error rate on the training sample,

ε =
1

N

N∑

n=1

I[ynf(xn)].

Minimizing the error rate directly in a reasonable amount of time is extremely difficult, therefore, in
practice, a proxy for the error rate is minimized instead. Noting that exp(−ynf(xn)) > 1 when
ynf((xn) < 0, one such proxy is the righthand side of the following

ε =
1

N

N∑

n=1

I[ynf(xn)],
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≤ 1

N

N∑

n=1

e−ynf(xn)I[ynf(xn)],

≤ 1

N

N∑

n=1

e−ynf(xn). (68)

Note that in the limit N → ∞, the righthand side of the above equation, which is an upper bound on
the error rate, converges to Eq. (66). Furthermore, from the recursive definition of the normalized event
weights wk+1,n = wk,n exp(−αkynfk(xn))/Zk in the AdaBoost algorithm, we conclude that

ε ≤ 1

N

N∑

n=1

e−ynf(xn) =

K∏

k=1

Zk,

=
K∏

k=1

N∑

n=1

ωk,n exp(−αkynfk(xn)) ≡ ε′. (69)

If we regard the coefficients αk as free parameters (by neglecting the dependence of the event weights
on αk), we can minimize ε′ with respect to αk by solving

∂ε′

∂αk
= −


∏

j 6=k
Zj




N∑

n=1

ωk,nynfk(xn) exp(−αkynfk(xn)) = 0,

that is,
N∑

n=1

ωk,nynfk(xn) exp(−αkynfk(xn)) = 0. (70)

Since y ∈ {−1,+1}, we can write

e−αk
N∑

n=1

ωk,nI[ynfk(xn)]− eαk
N∑

n=1

ωk,nI[−ynfk(xn)] = 0,

e−αk(1− εk)− eαkεk = 0,

where, recall, εk =

N∑

n=1

ωk,nI[−ynfk(xn)], (71)

is the weighted error rate. We therefore conclude that the upper bound on the error rate ε′ is minimized if
we choose the coefficients to be αk = 1

2 ln[(1− εk)/εk], which is indeed the choice made in AdaBoost.

Therefore, in spite of appearances, boosted decision trees fit into the mathematical framework
sketched above. In particular, AdaBoost can be viewed as a clever way to minimize the average expo-
nential loss given in Eq. (66). Moreover, while the boosted decision tree f(x) cannot be interpreted as a
probability, it can be mapped to a probability by inverting Eq. (67),

p(y = +1|x) =
1

1 + exp(−2f(x))
. (72)

Below, we illustrate the use of the AdaBoost algorithm using the Toolkit for Multivariate Analysis
TMVA [31], which is released with the ROOT [32] package from CERN. Note, in the TMVA implemen-
tation, αk is defined omitting the factor of 1/2, therefore, in order to convert the unnormalized BDT,
f(x), in TMVA to a probability, the appropriate mapping is

p(y = +1|x) =
1

1 + exp(−f(x))
(TMVA). (73)
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Fig. 12: Simulated distributions of the discriminating variables (|∆ηjj |,mjj) for VBF and ggF events. As ex-
pected, there is a larger rapidity gap between the jets inVBF events than those in ggF, which arise from gluon
radiation.

VBF/ggF discrimination
In this example, a BDT is trained using the AdaBoost algorithm in TMVA to discriminate between events
in which the Higgs boson is created via vector boson fusion (VBF) and events in which the Higgs boson
is created via gluon gluon fusion (ggF). The key difference between VBF events and ggF events is that
the former features a pair of forward (i.e., large rapidity) jets that is absent from the latter. It is found
that the two most discriminating variables between these two classes of events are the absolute pseudo-
rapidity difference |∆η|jj between the two jets and the associated di-jet mass mjj and. The predicted
distributions of the two variables is shown in Fig. 12.

We use a training sample size of N = 20, 000 events, split equally between VBF and ggF
events with assigned targets of y = +1 and y = −1, respectively. The TMVA training parameters are
BoostType=AdaBoost, NTrees=800—the number of trees K, nEventsMin=100—the minimum num-
ber of events per bin, and nCuts=50—the number of binary partitions per variable to search for the
optimal partition, i.e., cut. The optimal cut is the one which gives the greatest decrease in impurity as
measured by the Gini index7, defined by p(1−p) where p = S/(S+B) is the purity and S andB are the
signal and background counts, respectively, in a given bin. A bin is maximally pure, either pure signal
or pure background, when the Gini index is zero.

Figure 13 shows the first six decision trees as histograms, each with its associated coefficient
αk = ln[(1 − εk)/εk]8 printed on the histogram. A decision tree is a piecewise constant function in
which each bin (i.e., leaf) is assigned a value. In the AdaBoost algorithm, the values are y = ±1; in our
example, y = −1 for bins in which B > S (i.e., ggF bins) and +1 for bins in which S > B (i.e., VBF
bins). A given feature vector x = |∆η|jj ,mjj , characterizing an event, will fall in a bin in each of the
six decision trees of Fig. (13) and the BDT is equal to the average

∑6
k=1 fk(x) where each tree fk(x)

7After Italian statistician Corrado Gini, 1884-1965.
8As noted, TMVA omits the factor of 1/2.
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Fig. 13: The first six of the 800 decision trees, displayed as 2D histograms, showing the coefficients α1, · · · , α6

associated with the threes.

Fig. 14: The outputs of boosted decision trees averaged over differing numbers of decision trees, 25, 50,...,800.
Each BDT (x), with x = |∆η|jj ,mjj , is mapped to the probability p(y = +1 |x) = 1/[1 + exp(−BDT (x))].

29

PRACTICAL STATISTICS FOR PARTICLE PHYSICISTS

289



Fig. 15: The distributions of the discriminant D(x) = 1/[1 + exp(−BDT (x))], where BDT (x) is a boosted
decision tree with K = 800 trees.

Fig. 16: Receiver operating characteristic (ROC) curve. The area under the curve (AUC) is a commonly used
global measure of the discrimination power of a classifier.

returns either +1 or −1 depending on the bin in which x falls. In other words, a BDT is an average
over histograms, each with different set of bins. While the piecewise constant nature remains, the more
histograms (that is, trees) are averaged, the smoother one expects the BDT output to become. This is
illustrated in Fig. 14, which shows the effect of averaging over an increasing number of trees. Finally,
Figs. 15 and 16 show the distribution of the BDT, in which the output has been mapped to the probability
p(VBF |x) ≡ p(y = +1 |x) = 1/[1+exp(−BDT (x))], and the receiver operating characteristic (ROC)
curve of the BDT.

The ROC curve, and the area underneath it (AUC), are often used as simple measures of the
performance of a binary classifier. The larger the AUC the better the performance of the classifier.
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Summary
We have given an overview of the frequentist and Bayesian approaches to statistical inference and a brief
survey of the main mathematical ideas that underpin supervised machine learning. Frequentist analysis
is based on the relative frequency interpretation of probability and, ideally, adheres to the frequentist
principle: repeated application of a statistical procedure will yield statements a fraction f ≥ p of which
are guaranteed to be true, where p is the desired confidence level. The Bayesian approach uses the
degree of belief interpretation of probability and Bayes theorem as the primary inference algorithm. In
both approaches, the key task is building an accurate probability model.

A brief introduction to supervised machine learning was given in which the emphasis was clarify-
ing the critical role of the loss function. We noted the mathematical fact that the quantity approximated
by a machine learning model is determined by the loss function and not by the particulars of the model
provided that sufficient training data are used, the model is sufficiently flexible, and a good approxima-
tion to the minimum of the average loss can be found.
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