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Abstract

The Asia–Europe–Pacific School of High-Energy Physics is intended to give

young physicists an introduction to the theoretical aspects of recent advances

in elementary particle physics. These proceedings contain lecture notes on the

theory of quantum chromodynamics, neutrino physics, hadron spectroscopy

and practical statistics for particle physics.
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Preface

The fifth event in the series of the Asia–Europe–Pacific School of High-Energy Physics took place in

Pyeongchang, South Korea, from 5 to 18 October 2022. The event was organized in collaboration be-

tween a team around Prof. Tae Jeong Kim from Hanyang University, Seoul, and members of the Interna-

tional Organization Committee from CERN and KEK. The school had been delayed by two years due to

the COVID-19 pandemic and for many students the school was one of the first opportunities during their

studies to travel abroad and meet fellow students.

The staff and students were housed in comfortable accommodation at the Alpensia Resort in

Pyeongchang, which also provided excellent conference facilities in a neighbouring building. The stu-

dents shared accommodation, mixing nationalities to foster cultural exchange between participants from

different countries. A total of 96 students of 29 different nationalities attended the school. About 50%

of the students were from Asia–Pacific countries, most of the others coming from Europe with a few

students from Africa or the US, with 39% female students overall. The majority of the participants were

working towards a PhD, while the others were advanced Masters students and a few young postdocs.

A total of 33 lectures were complemented by daily discussion sessions led by six discussion lead-

ers. The teachers (lecturers and discussion leaders) came from institutes all over the world: Austria,

France, Germany, India, Japan, Pakistan, Russia, Taiwan, South Korea, Spain, The Netherlands and the

USA. Each lecture was allocated 90 minutes including time for questions and discussion. The discus-

sion sessions were also of 90 minutes duration. Professor Fabiola Gianotti, Director-General of CERN,

participated in a Q&A Session with the students via video link, and Professor Takaaki Kajita, winner

of the 2015 Nobel Prize in Physics, delivered a special lecture about Super Kamiokande by video. The

programme required the active participation of the students. In addition to the discussion sessions that

addressed questions from the lecture courses, there was an evening session in which about 50% of the

students presented posters about their own research work to their colleagues and the teaching staff.

Collaborative student projects in which the students of each discussion group worked together

on an in-depth study of a published experimental data analysis were an important activity. This required

interacting, outside of the formal teaching sessions, with colleagues from different countries and different

cultures. A student representative of each of the six groups presented a short summary of the conclusions

of the group’s work in a special evening session.

In addition to the academic side of the School, the participants had the occasion to experience

many aspects of the South Korean culture, including visits to cultural sites in and around Woljeongsa

Temple, and excursion to a visitor centre offering views of the demilitarized zone between North and

South Korea, and free time in the beach town Gangneung. During the excursions students, lecturers and

organizers had the opportunity to appreciate excellent South Korean food.

Our special thanks go to the excellent local-organization team in Korea under the co-chairmanship

of Tae Jeong Kim, Hanyang University, and Pyungwon Ko, Korea Institute for Advanced Study, which

were supported by Hanna Park and JeongEun Yoon, for all their work and assistance in preparing the

School, on both scientific and practical matters, and for their presence throughout the event.

It was a pleasure to welcome Shohei Nishida (KEK) and Pyungwon Ko (KIAS) as members of
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the International Organizing Committee. Their interest and support for the teaching of fundamental

science, and, more generally, international collaboration and cultural exchange, were greatly appreciated.

Feedback from the participants after the school was extremely positive in terms of the appreciation of the

scientific programme, the quality of the teaching, the beautiful location and practical organization, and

the aspects of cultural exchange and building working relationships between promising young scientists

from different countries.

We would like to express our special appreciation to Professor Fabiola Gianotti, Director General

of CERN, for participating in a Q&A Session with the students via video link.

We are very grateful to Kate Ross from CERN for her untiring efforts on administration for the

School. We would also like to thank the members of the International Committees.

Sponsorship from numerous bodies in many countries covered the cost of travel and/or local ex-

penses of their staff and students who attended the School. In addition, general sponsorship is gratefully

acknowledged from: the Center for Extreme Nuclear Matters (CENuM), Hanyang University, Institute

for Basic Science (IBS), the Korea-Alice (KoALICE) and Korea-CMS (KCMS) collaborations, the Ko-

rea Institute For Advanced Study (KIAS), and the University of Seoul; CNRS/IN2P3, France; CERN;

DESY, Germany; and KEK, Japan.

Martijn Muldersa

(Chair of the International Organizing Committee)

aCERN
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Lecture summaries

Statistical techniques

This course covers the main statistical methods used in high-energy physics, focusing in particular

on the techniques currently used in LHC experiments. The proceedings cover the following: first, the

methods used to describe an experimental setup in probabilistic terms (i.e. to write down a statistical

model describing the measurement) are discussed; second, the usage of such a model to produce the usual

statistical results in high-energy physics is presented; lastly, as examples, the discovery significances for

new signals, confidence intervals for model parameters, and upper limits on signal yields are discussed.

The lectures will focus on the use of frequentist techniques.

Neutrino physics

In this lecture, I start with presenting the history of the neutrino from its invention to what we have

discovered about its properties till now. I explain how we can observe neutrinos produced both naturally

and artificially. Naturally produced neutrinos come to the Earth from the Sun, supernovae, collisions of

cosmic rays with nuclei in the atmosphere, natural radioactivity, etc. On the other hand, those produced

in accelerators and nuclear reactors are the examples of artificial neutrinos. I also illustrate what neutrino

oscillations are and how such phenomena could be observed from various experiments to detect neutrinos

produced in the aforementioned ways. Thanks to the discovery of neutrino oscillations, we are forced

to modify the Standard Model, so as to accommodate the masses of neutrinos and lepton flavor mixing,

which are essential to make neutrino flavor change. In fact, neutrinos can come in three different flavors,

electron, muon and tau, and can change from one flavor to another. The origin of the tiny neutrino

masses is still unknown, although we now know a few nice mechanisms capable of generating them. The

generation of neutrino masses signifies physics beyond the Standard Model and can, therefore, be related

to some of the unresolved fundamental issues, such as the origin of flavors, the unification of forces,

the matter-antimatter asymmetry, etc. Some physicists believe that CP violation in neutrinos may be a

missing piece in the understanding of the origin of the matter-antimatter asymmetry. I pedagogically

explain how we can probe CP violation through neutrino oscillation experiments.

QCD

The structure of strong interaction dynamics, namely Quantum Chromodynamics, is discussed

within the framework of perturbation theory. After a brief introduction to the historical developments,

we will discuss in detail the role of perturbative QCD to understand the physics at various high energy

colliders involving hadrons. We will discuss how certain large threshold logarithms that show up at

every order in perturbation theory can be resummed to all orders. We will also discuss some of the recent

advances in performing higher order perturbative corrections.
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Hadron spectroscopy

If you query the arXiv electronic database of preprints and look at the topics of published articles,

you can see that roughly one in five deals with hadron spectroscopy. During its development, this area

of particle physics has experienced several rises and falls. Today, it is a rapidly developing branch of

science, which comprises a significant part of the research program of almost every accelerator exper-

iment. It is especially valid for B-, cτ -factories and, certainly, the LHC, where exciting results have

been obtained. The purpose of this lecture is to try giving an overview of the current state of hadron

spectroscopy through the eyes of an experimentalist.

6



STATISTICAL TECHNIQUES

Statistical techniques

Nicolas Berger

LAPP, Annecy, France

This course covers the main statistical methods used in high-energy physics, focusing in particular
on the techniques currently used in LHC experiments. The proceedings cover the following: first, the
methods used to describe an experimental setup in probabilistic terms (i.e. to write down a statistical
model describing the measurement) are discussed; second, the usage of such a model to produce
the usual statistical results in high-energy physics is presented; lastly, as examples, the discovery
significances for new signals, confidence intervals for model parameters, and upper limits on signal
yields are discussed. The lectures will focus on the use of frequentist techniques.

1 Introduction

In high-energy physics, as in other fields, experimental processes involve an irreducible random com-

ponent. For instance, when counting events originating from collider experiments, one can see that the

arrival times of these events are randomly distributed. Similarly, measurements of continuous variables

are affected by experimental resolution effects that can never be completely removed from the measure-

ment process. This randomness has two underlying sources:

– Experimental noise originating either from the surrounding environment or from imperfections in

the measurement apparatus. Reducing its impact is a crucial part of experimental physics, but this

cannot be completely achieved.

– Quantum randomness that is inherent to the quantum nature of high-energy physics processes.

The impact of these effects, that manifest themselves for instance as the width of a resonance peak,

cannot be accounted for in a deterministic manner: they are described using random processes which

account for statistical fluctuations in the description of the measurement.

These lectures will first cover the methods used to describe an experimental setup in probabilistic

terms, i.e. to write down a statistical model describing the measurement. Secondly, they will present how

to use this model to produce the usual statistical results in high-energy physics: discovery significances

for new signals, confidence intervals for model parameters, and upper limits on signal yields. The lectures

will focus on the use of frequentist techniques. Alternative methods based on Bayesian techniques can

be found, e.g., in Ref. [1].

2 Statistical modeling

We start by presenting the techniques used to build the statistical model of the measurement. This model

consists of two components:

This article should be cited as: Statistical techniques, Nicolas Berger, DOI: 10.23730/CYRSP-2024-001.7, in: Proceedings of
the 2022 Asia–Europe–Pacific School of High-Energy Physics,
CERN Yellow Reports: School Proceedings, CERN-2024-001, DOI: 10.23730/CYRSP-2024-001, p. 7.
© CERN, 2024. Published by CERN under the Creative Commons Attribution 4.0 license.
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NICOLAS BERGER

– the probability distribution function (PDF) of the measurement, which describes the random pro-

cess that is assumed to produce the experimental data;

– the observed data, i.e. the dataset that was obtained when the measurement was performed.

The PDF of the measurement is the key component of the model. It can generally be written as P (n;α),

where n is the set of measured quantities, denoted as the observables of the measurement (or random

variables in mathematical parlance), and α is a set of parameters that are needed to write down the

model. The parameters α include, for instance, theory quantities such as the value of Standard Model

(SM) constants, and experimental quantities such as resolutions, systematic uncertainties and background

levels. These parameters are usually separated into two classes:

– Parameters of interest (POIs), which are the parameters that the experiment is designed to measure.

These are often, but not always, theory quantities. They will be denoted as µ in the rest of these

notes.

– Nuisance parameters (NPs), which are parameters that need to be included in the model to fully

describe the measurement process, but are not of interest per se. A typical example would be

parameters describing properties of background processes. They will be denoted as θ in the rest of

these notes.

The rest of these lectures will be focused on how to obtain information on the POIs µ based on the

knowledge of P (n;µ, θ) and the observed data nobs. Building P (n;µ, θ) is the key step in this process,

and this will be the focus of the rest of this section.

2.1 Building blocks

2.1.1 Counting events

In many cases, experiments consist in counting events that pass a given selection. This is particularly

true in high-energy physics, where a selection (often a series of “cuts") is applied to a set of input events

produced in a particle collider or another source process.

In general, each step of the selection can be described using a binomial process. The PDFs for each

of these, together with the PDF of the source process, can then be used to describe the full measurement.

However, in many cases a much simpler description can be used, based on the Poisson approximation.

This applies when:

– the number of input events N to the binomial process is large (N ≫ 1);

– the probability p to pass the selection is small (p≫ 1).

In this case, each binomial process can be approximated by a Poisson distribution

P (n;λ) = e−λλ
n

n!
(1)

where n is the measured event count and λ = Np is the expected yield. Furthermore, it can be shown

that two successive Poisson processes can be described as a single Poisson process, and that the same
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also applies to the combination of a binomial and a Poisson process. If the Poisson approximation holds,

the entire counting process can therefore usually be conveniently described as a single Poisson PDF.

Fortunately, this approximation is often valid in high-energy physics. In the specific example of

LHC experiments, the production rate of events in pp collisions is of order 109 Hz, of which 103 Hz

are recorded by the experiments, and among which interesting signal events typically make up (much)

less than 1Hz. The Poisson approximation of very large input event rates and a very small selection

probability is therefore well verified in this case.

Finally, let us recall that the mean and the variance of P (n;λ) are both equal to λ. Its root-mean-

square (RMS), the square root of its variance, is therefore
√
λ. An illustration of the Poisson distribution

for λ = 1 is shown in Fig. 1a.

0 1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

(a)

10− 8− 6− 4− 2− 0 2 4 6 8 100
0.02
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0.12
0.14
0.16
0.18
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(b)

Fig. 1: (a) Poisson distribution for an expected yield of 1 and (b) Gaussian distribution for a mean of 1
and a width of 2.

2.1.2 The Gaussian distribution and the central-limit theorem

2.1.2.1 The Gaussian distribution

The Gaussian distribution is a PDF for a single continuous observable x, defined as

G(x;x0;σ) =
1

σ
√
2π
e
− 1

2

(
x−x0

σ

)2

(2)

It takes the shape of a symmetric peak with central value x0 and a width characterized by σ. Its mean is

given by x0, and its RMS by σ. The shape of the distribution is shown in Fig. 1b.

The Gaussian distribution will play a critical role in much of the rest of these notes. An important

feature to keep in mind is the values of its quantiles, i.e. the fraction of outcomes that fall within a given

interval of the distribution. One can define the pull z = (x − x0)/σ of an observable x taken from the

distribution G(x;x0;σ): this quantifies the separation between x and the mean x0 of the distribution, in

units of the width σ. Simple algebra shows that z follows a normal distributionG(z; 0, 1), i.e. a Gaussian

with mean 0 and width 1, independently of the parameters of the original Gaussian for x. This allows

us to define quantiles for any Gaussian distributions in terms of z, and these are shown in Table 1. Key

9
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Table 1: Selected quantiles of the Gaussian distributionG(x;x0, σ), in terms of the pull z = (x−x0)/σ.

Z
Two-sided One-sided

p
(∣∣x−x0

σ

∣∣ ≤ Z
)

p
(∣∣x−x0

σ

∣∣ ≥ Z
)

p
(
x−x0
σ ≤ Z

)
p
(
x−x0
σ ≥ Z

)
1 0.683 0.317 0.841 0.159
2 0.954 0.046 0.977 0.023
3 0.997 0.0027 0.999 0.0013
5 ∼ 1 5.7× 10−7 ∼ 1 2.9× 10−7

takeaways include the fact that observations fall within the [−1σ,+1σ] interval around the mean about

68.3% of the time, and within [−2σ,+2σ] about 95.5% of the time. Gaussians also have "thin tails" so

that only 0.3% of outcomes fall beyond the ±3σ interval, and only about 6×10−7 of the time beyond the

±5σ interval. These numbers will all be useful later in these notes. They can all be expressed in terms

of the cumulative distribution function (CDF) of the normal distribution,

Φ(z) =

z∫
−∞

G(z; 0, 1) dz. (3)

For instance the 68.3% quantile corresponding to the ±1σ can be obtained as Φ(+1)− Φ(−1).

2.1.2.2 The central-limit theorem

Gaussian distributions occur frequently in experimental settings, in particular to describe resolution ef-

fects and uncertainties. The main reason for their ubiquity is a property of the mean of a large number

of identical measurements. Let’s consider a random process with an observable x, described by a PDF

P (x;α), with mean ⟨x⟩ and RMS σx. Say that we repeat this process a large number of times N , and

compute the average of x̄ = 1
N

∑N
i=1 xi of the observations xi in each case. Then the central-limit

theorem states that for large N

x̄ =
1

N

N∑
i=1

xi ∼ G

(
x̄, ⟨x⟩, σx√

N

)
. (4)

In other words, if we average enough measurements together, then the average will be distributed as a

Gaussian no matter what the distribution was for individual measurements. The only residual feature

of this distribution is its mean, which is carried over as the mean of the Gaussian, and its RMS, which

together with a factor 1/
√
N gives the width of the Gaussian. The factor 1/

√
N encodes the fact that

our knowledge of the mean improves with more measurements, as one would naively expect.

The central-limit theorem is very often applicable in high-energy physics, as long as the measure-

ments involve a sufficiently large number of events. In particular, Poisson distributions tend towards a

Gaussian limit for a sufficiently large expected event yield, so that P (n;λ) ≈ G(n;λ,
√
λ). As we will

see later, this Gaussian regime is reached for relatively small yields, typically O(5–10), which motivates

the use of Gaussian approximations in a wide range of experimental settings.
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2.1.3 The χ2 distribution

Suppose that we produce a histogram of data events, by categorizing events into Nbins independent bins

and counting the number of events ni that fall in each bin i. We also define an expected event count

µi in each bin, for example using Monte Carlo simulation. Illustrative examples with a flat expectation

are shown in Figs. 2a and 2b. In this situation, it is often useful to quantify the agreement between the

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

n = 10
 = 12.92χ

) = 23 %2χp(

(a)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

n = 10
 = 38.82χ

) = 0.0027 %2χp(

(b)

Fig. 2: Measurement histograms in a simple 10-bin measurement in which the expected yields in each
bin are identical. The measurements are shown as points with error bars, and the expectation by shaded
regions. The histogram in (a) was randomly generated from the expectation, while the one in (b) was
produced from a different expectation with decreasing yields at high bin numbers. The χ2 and χ2 prob-
ability values for each case are overlaid on the figures, and show that the χ2 indicates good agreement in
(a) and poor agreement in (b).

observed event counts and the prediction. If one assumes that the measurement in each bin is represented

by an independent Gaussian distribution with width σi, then the discrepancy between observed and

expected counts in each bin can be expressed by the pull zi = (ni − µi)/σi. To quantify the overall

agreement over the entire distribution, one then defines the χ2 of the observed with respect to the expected

yields as

χ2 =

Nbins∑
i=1

(
ni − µi
σi

)2

. (5)

This is a positive quantity, and its value is exactly 0 in the case where the observed yields exactly match

the expectations. Conversely, large values of the χ2 indicate a disagreement between the two.

The observed yields are, however, affected by statistical fluctuations, which lead to small but non-

zero values of the χ2. In fact, one can expect on the order of a 1σ deviation in each bin, i.e. zi ∼ 1,

which leads to χ2 ∼ Nbins overall.

This can be quantified more precisely by introducing the distribution fχ2(Nbins) of the χ2, under the

hypothesis where the observed yields are produced from the expectation. These distributions are shown

in Fig. 3a and show the expected behavior of a peak near Nbins and a decreasing tail of probabilities to

reach high values. These functions are implemented numerically in frameworks such as ROOT and scipy,

and allow us to compute the χ2 probability as the tail integral of the relevant distribution above the
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measured χ2 value. Large values of the χ2 probability indicate good agreement (since the data is likely

for the given expectation), while small values indicate disagreement (since producing this data from the

expectation is unlikely). One can also use a rule of thumb based on the reduced χ2, defined as χ2/Nbins:

as shown in Fig. 3b, the distribution of the reduced χ2 is roughly independent from Nbins, with values

of about 1 being fairly typical, and values of 2 being increasingly unlikely. One can therefore gauge

agreement by computing the reduced χ2 and comparing to a given threshold. For instance a threshold

of 1.5 corresponds to a probability of 10–20%, depending on Nbins. Of course, a more quantitative

assessment can be performed by computing the exact χ2 probability from the relevant distribution.

0 1 2 3 4 5 6 7 8 9 10
2χ

0

0.05

0.1

0.15

0.2

0.25
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0.35
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(a)
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 n = 2

 n = 3

 n = 5

 n = 8

(b)

Fig. 3: Distributions of (a) χ2
n and (b) χ2

n/n for selected values of the number of degrees of freedom n.

2.2 Describing data

Having introduced a few of the basic PDF building blocks, we now turn to how to use this knowledge to

model data. The first step is defining the observables, i.e. the measured quantities. These often consist of

one or more real numbers that allow us to distinguish signal from background: for instance an invariant

mass, or more complex quantities such as the output of a neural network trained to identify the signal

process. In other cases, the measured quantities can be one or more event yields, for events passing

suitable selection cuts. Some usual modeling choices are described in the following sections.

2.2.1 Single-bin counting

The simplest type of measurement is the case where one counts the number of events passing a selection.

The observable is then that single number of events n. As discussed in Section 2.1.1, the counting process

can usually be described using a Poisson distribution that is parameterized in terms of an expected event

yield (λ in the notation above), which usually receives contributions from both signal and background

processes. Assuming we have only one signal process with yield S and one background process with

yield B, one can write the PDF as

p(n;S,B) = e−(S+B) (S +B)n

n!
. (6)
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Note that, in the formula above, n is the observable, which is associated with random fluctuations, while

S and B are model parameters, which have a fixed value (which can be either known or unknown).

S is typically a parameter of interest (POI), while B is usually a nuisance parameter (NP). The single

observable n cannot be used to determine both S and B, so one needs further assumptions to make this

a valid measurement. Typically one assumes that B can be fixed to a predefined value, possibly up to

systematic uncertainties (see Section 5.2 for details on how to do this). Recall that for large S + B, the

Poisson distribution can be well-approximated by a Gaussian distribution with mean S + B and width
√
S +B, so one can also use a Gaussian description in this case.

2.2.2 Multiple-bin counting

One can go one step further and define a measurement with multiple counting bins. This can occur in

two common situations: first, these bins can correspond to several signal regions sensitive to different

features of the targeted signal; for instance different final states of the same process. Secondly, one can

use a set of contiguous bins to describe the distribution of a continuous observable: one just slices the

range of the observable into discrete bins to get a discrete approximation to the distribution.

In both scenarios, the bins should be non-overlapping, i.e. a selected event should be assigned to

exactly one bin. The bins are then statistically independent, so that the total PDF for the measurement

is the product of the measurements in each bin. Assuming as before that the per-bin measurements can

each be described by a Poisson distribution, the total PDF can be written as

p({ni};S,B) =

Nbins∏
k=1

e−(SfS,i+BfB,i)
(SfS,i +BfB,i)

ni

ni!
. (7)

The observed event yields are denoted as ni, for i running from 1 to the number of bins, Nbins. As

before, this assumes a single signal process and a single background process, with overall expected

yields (summed over all bins) respectively S and B. The expected yields in each bins are described

using the bin fraction fS,i and fB,i (with
∑

i fS,i =
∑

i fB,i = 1). One could also have expressed the

PDF in terms of per-bin yields, but often one is interested in the overall signal yield, so that the form

above is more directly useful. Note that in the case where the bins span a continuous distribution, the

fractions fS,i and fB,i provide a discretized description of the distribution of the observable for signal

and background.

Multiple-bin measurements offer a compromise between the simpler single-bin measurements de-

scribed above and the unbinned measurements that will be covered below, and are therefore very com-

monly used in high-energy physics experiments. Compared to the single-bin case, they typically provide

more sensitive measurements thanks to the extra available information. This information can also allow

us to measure the NPs of the model: for instance, with two or more bins one can in principle measure

both S and B, so that external assumptions on B are not required. This data-driven approach can be

built into the design of the measurement, for instance by adding “control region" bins that are specifically

designed to constrain the backgrounds. We will come back to this when discussing nuisance parameters

in Section 5.
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2.2.3 Unbinned description

In the case of continuous observables, one can also describe the measurement using a continuous PDF.

This is in principle the most sensitive approach, since it avoids the information loss that inevitably oc-

curs when performing a discretization into bins (although this loss can be kept quite small by choosing

sufficiently fine bins).

Specializing for simplicity to the case of one signal and one background component, and one

observable x, we need to specify how the events of each type are distributed. This is provided by the

signal PDF fS(x) and the background PDF fB(x), each describing the distribution in x of a single event

of the respective type.

One then defines the total PDF

fS+B(x) =
S

S +B
fS(x) +

B

S +B
fB(x) (8)

which describes the expected single-event distribution in x for the case of a mixture of signal and back-

ground events with total yields S and B, respectively.

Since we typically consider datasets consisting of several (and often many!) events, one more

ingredient is needed: one needs to describe the random distribution of the total number of events n in

the dataset, which can vary from experiment to experiment. In keeping with the arguments made above,

this can be described using the Poisson distribution Pois(n;S + B). Finally, one can put it all together,

making use of the fact that events can usually be considered uncorrelated (since e.g. what happens in one

collision at the LHC is independent of what may or may not have happened in the previous collisions).

The total PDF for the dataset {xi}1≤i≤n can then be written as

p({xi};S,B) = e−(S+B) (S +B)n

n!

n∏
i=1

fS+B(x) (9)

= e−(S+B) (S +B)n

n!

n∏
i=1

[
S

S +B
fS(x) +

B

S +B
fB(x)

]
(10)

=
e−(S+B)

n!

n∏
i=1

[S fS(x) +B fB(x)] . (11)

This unbinned PDF provides more information than a binned description, but is often more complex to

implement. In particular, describing fS(x) and fB(x) can be technically difficult, relying for instance on

sampling the distributions using large samples of simulated signal and background events. Computing

p({xi};S,B is also more computationally demanding than a binned approximation, since the product

runs over the number of events rather than the number of bins, and the latter is typically much smaller.

In realistic high-energy physics cases, one almost always uses one the three descriptions above to

model the data. The multi-bin description is probably the one used most often, since it often provides

a good compromise between the simplicity of the one-bin counting case and the complexity of the un-

binned description. Several frameworks have been developed to implement multi-bin cases, for instance

the HistFactory package [5] available within the ROOT [6] framework and the pyhf [7, 8] tool. How-

ever, the single-bin case is used in some cases, such as measuring total cross-sections [9]. The unbinned
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description is often useful in situations where the shape of the signal and background are simple to pa-

rameterize, for instance for smooth backgrounds. A well-known example is the study of the H → γγ

decay by the ATLAS and CMS collaborations [10, 11].

3 Introduction to statistical results: the simple Gaussian case

In the previous section we have learned how to build a statistical model for a given experimental setup,

using one of the different options described. The next step is to use this model to obtain information

about the parameters of interest, for instance on the event yield S, in the examples given above. The

good news is that building the model was the hard part; obtaining these statistical results on the POIs

will just involve some mathematics.

Before moving to the general methods of obtaining these statistical results, this section will intro-

duce basic concepts in the context of a simple case: the single-bin counting experiment. For simplicity,

we assume that the measurement is Gaussian, and that only a single signal process (with yield S) and a

single background process (with yield B) are present. The measurement PDF is

p(n;S,B) = G(n;S +B,
√
S +B). (12)

The goal is to determine whether the signal is present or not, and in what amounts, by measuring the

parameter of interest S. As noted before, we need to assume that B is known a priori in this simple

example. We can assume, for instance,B = 100, which by the central limit theorem (see Section 2.1.2.2)

is large enough to give a measurement that is well within the Gaussian regime. Assume now that we

measure n = 120, as is illustrated in Fig. 4a. What can we conclude about S?

3.1 Estimating S

Very naively, we can compute S as

Ŝ = n−B, (13)

since B is known exactly. Note the hat on S: this will be used in the following to refer to estimators

for parameters, i.e. quantities we use to give information on its true value S. Whereas S is fixed (but

unknown), the estimator Ŝ is a function of the data: a different experimental result would lead to a

different Ŝ.

Here, obviously, we have Ŝ = 20, which is in some way an exciting result: we have observed a

positive Ŝ, which seems to indicate that a signal is actually present.

3.2 Significance and p-value

Before getting too excited about this, we need to remember that Ŝ is only an estimator, whose values

reflect the fluctuations that can occur in the measured n. It could well be that S = 0 (note that this is

S without the hat, since here we refer to the true value); i.e. there is in fact no signal and the positive Ŝ

could come from an upward fluctuation in the background, compared to the B = 100 expectation.

How likely is this? Suppose we are indeed in the background-only case, S+B = B = 100. Then

the width of the Gaussian distribution of n is given by
√
S +B =

√
B = 10, and this gives the typical
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size of the fluctuations of n around its mean value of 100. This is very relevant to our decision as to

whether a true signal is indeed present: the observed value of Ŝ is twice the typical size of fluctuations,

which seems to indicate an outcome that is at least somewhat unusual.

(a) (b)

Fig. 4: Distribution of the G(n;S + B,
√
S +B) Gaussian PDF, where S and B are respectively the

signal and background yields and n the observable. (a) Discovery scenario where the S = 0 case is
presented (orange line). The p-value for the case nobs = 120 is the area of the red shaded region. (b)
Upper limit scenario, where nobs = 100. The distribution for the S95+B case is shown (red line), where
S95 corresponds to the 95% CL upper limit on S (here S ≈ 116). The area of the red shaded region is
the corresponding p-value, which is 5% by definition.

More generally, one can define the Gaussian significance as

z =
Ŝ√
B

=
n−B√

B
(14)

i.e. the ratio of the observed Ŝ to the size of its statistical fluctuations. This has an intuitive meaning:

|z| < 1 corresponds to values of Ŝ well within the statistical noise, while large values of |z| indicate that

the observed Ŝ likely cannot be explained by statistical fluctuations alone.

We can be a bit more precise by recalling the Gaussian quantiles shown in Table 1. From these,

we can conclude that 90 ≤ n ≤ 110 corresponds to the ±1σ interval around the mean, and therefore

should occur about 68.3% of the time. Similarly, we should have 80 ≤ n ≤ 120 about 95.5% of the

time. In other words, observing |n− 100| ≥ 20 (i.e. |Ŝ| ≥ 20) should occur about 4.5% of the time.

This probability is called the p-value with respect to the S = 0 hypothesis. Generally, it is defined

as the probability to get a result at least as extreme as the one that was observed, under the hypothesis

one wishes to test (the null hypothesis). It is illustrated for the case Ŝ > 0 as the shaded region in Fig. 4a.

This p-value provides a very quantitative way to decide whether signal is present or not: here it indicates

that while Ŝ = 20 is not a typical outcome in the S = 0 case, it is also not particularly rare, occurring

about once every 20 attempts.

Table 1 gives the corresponding numbers for a few other values of n, both in terms of the signifi-

cance and p-value p0 for the S = 0 hypothesis. In the Gaussian case, the two are closely related through

the Gaussian quantiles, since p0 corresponds to the tail probabilities of the normal distribution beyond

±Ŝ/
√
B. In terms of the CDF Φ of the normal distribution introduced earlier in these lectures, we have
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therefore

p2-sided
0 = 1−

[
Φ

(
Ŝ√
B

)
− Φ

(
− Ŝ√

B

)]
= 2Φ

(
− Ŝ√

B

)
. (15)

The p-value is denoted as two-sided for reasons that will be explained in the next section.

3.3 One-sided and two-sided tests

So far we have treated positive and negative values of Ŝ on the same footing: i.e. we have defined p-

values that apply both to n fluctuating aboveB (i.e. positive Ŝ) and belowB (negative Ŝ). In high-energy

physics, one can often assume that signal will give a positive contribution to the expected event yields

(although negative signal yields can occur in some cases, e.g. due to interference effects).

If one knows a priori that S > 0, then one can restrict the considerations above to only the positive

half of the Gaussian; i.e. consider that only Ŝ > 0 is a bona fide signal, while Ŝ < 0 is just another

manifestation of the background-only hypothesis.

In this case, we consider only the upper tail of the Gaussian in the p-value is calculation, which

now reads

p1-sided
0 = 1− Φ

(
Ŝ√
B

)
= Φ

(
− Ŝ√

B

)
. (16)

This p-value is now denoted as one-sided, by opposition to the expression above, since we consider only

one side of the Gaussian. This one-sided definition of the p-value corresponds to the shaded region in

Fig. 4a. Compared to the two-sided case, one sees a simple factor-of-2 difference. Note also that the

significance is defined in the same way as before. One- and two-sided p-values for specific significance

levels are listed in Table 1.

We will use the one-sided definition of discovery p-values in the rest of the lectures, unless indi-

cated otherwise.

3.4 Significance thresholds

In this Gaussian example, we can now determine how likely a given value of Ŝ is to occur in the

background-only hypothesis: either in terms of the p-value (smaller values indicating lower likelihood

to occur) or significance (higher values indicate lower likelihood to occur).

In principle, this can be used to decide if one has observed a real signal or not, but there is some

arbitrariness on what threshold is used for this purpose. In high-energy physics, one usually defines two

thresholds:

– 3σ threshold (z ≥ 3), corresponding to evidence for new phenomena;

– 5σ threshold (z ≥ 5), corresponding to the observation (or discovery) of new phenomena.

In each case, one can also define the threshold in terms of the corresponding p-value: about 0.3% for

evidence, and 3 × 10−7 for discovery. These thresholds are quite demanding: discovery corresponds

to phenomena that only have about a chance in 3 million to occur in the background-only case. There

are several reasons for these high thresholds [4]. The main one is the look-elsewhere effect: searches

often target a range of signal configurations, for instance by looking for bumps over a range of mass
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values. The probability for a fluctuation to occur anywhere in a spectrum can be much higher than at

one given location, since mass positions separated by an interval larger than the experimental resolution

can be considered largely uncorrelated. For this reason, the global significance accounting for these

possibilities is lower than the local significance computed as described here, and fake “discoveries" due

to fluctuations are more likely than one could naively estimate. One therefore needs to set a relatively

high threshold for the local significance to avoid this. In any case, one should keep in mind that there

always remains a chance (however small) that the observed signal is actually due to a very unlikely

fluctuation.

Coming back to our example, we can conclude that while Ŝ = 20 is an intriguing result, it does

not meet the criterion for evidence (which would require Ŝ ≥ 30), nor the one for discovery (Ŝ ≥ 50).

3.5 Confidence intervals

So far we have discussed the significance of a measured signal, with the aim of establishing a discovery.

Another important class of results is confidence intervals, where we add an uncertainty band around the

best-fit value of a parameter. This usually takes the form µ = µ̂
+ϵ+
−ϵ− , where µ̂ is the best-fit value of

the measurement of µ and ϵ± are the positive and negative uncertainties. This statement is made for a

particular confidence level (CL). For a single parameter this is often set at the “1σ" level, i.e. the 68.3%

CL that corresponds to the 1σ interquantile of a Gaussian distribution. The confidence interval is then

defined as

p(µ̂− ϵ− ≤ µ ≤ µ̂+ ϵ+) = 68.3%. (17)

This states that there is a 68.3% chance that the true value µ is contained in the confidence interval ob-

tained in the measurement. A very important point is that the probability statement is about the interval,

and not the true value µ: recall that µ is a fixed (unknown) value, with no associated probability distribu-

tion. What changes randomly from experiment to experiment is the data, and therefore the interval that

we compute. Another way to state Eq. (17) is therefore that if we repeat our measurement many times,

then the confidence intervals that we computed from each set of observed data will contain the true µ

68.3% of the time.

Consider a simple Gaussian case where we measure a parameter µ using the observable m. The

measurement PDF is G(m;µ, σ), and the Gaussian width σ is a known fixed value. Suppose that we

observe m = mobs, what is the 1σ confidence interval on µ?

One knows from Gaussian quantiles that

p(µ− σ ≤ mobs ≤ µ+ σ) = 68.3%. (18)

This can be rewritten as

p(|µ−mobs| ≤ σ) = 68.3%, (19)

which one can re-expand in the other direction as

p(mobs − σ ≤ µ ≤ mobs + σ) = 68.3%. (20)
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This is exactly the statement we were looking for: from mobs we have computed the interval mobs −σ ≤
µ ≤ mobs + σ, which covers µ 68.3% of the time. In the usual notation, we can write it as µ = mobs ± σ

at 68.3% CL.

3.6 Upper limits on a signal yield

The last class of results covered in these lectures is upper limits on signal yields. This is usually reported

in the case where a search for new phenomena finds no evidence of its targeted signal, so that reporting a

significance is not particularly useful. It allows us to set constraints on physics models that predict such

signals, by stating that the true signal cannot be very large since we have not seen evidence of it. These

upper limits are in fact one-sided confidence intervals on the true signal yield, with no lower bound. By

convention, they are usually reported with a confidence level of 95%.

We can obtain such an upper limit by modifying slightly the example described in the previous

section. First, we perform a small computation to determine the point at which the cumulative integral

of a normal distribution reaches 5%. Using Φ−1, the inverse function of the Gaussian CDF, we find that

Φ−1(0.05) ≈ −1.64, which means that the integral from a point located about 1.64σ below the Gaussian

mean corresponds to 5% of the total integral. We can write this statement as

p(mobs ≥ µ− 1.64σ) = 95% (21)

which can be flipped into

p(µ ≤ mobs + 1.64σ) = 95%. (22)

This corresponds to the desired upper limit, i.e. µ ≤ mobs+1.64σ at 95% CL. In other words, if we set an

upper limit on the signal yield µ at a value of mobs plus 1.64 times the uncertainty σ, then we know that

the true value µ will be below this upper limit 95% of the time on average. This is illustrated graphically

in Fig. 4b: the Gaussian distribution for the S95 + B scenario, where S95 is the 95% CL upper limit,

is shown in red. The shaded region on the left side of the curve amounts to 5% of the outcomes in this

scenario, and this shows graphically that this S95 does correspond to a 95% CL upper limit as advertised.

4 Computing statistical results

In the previous section, we introduced the main classes of statistical results: parameter estimation (i.e.

computing Ŝ); discovery significances and p-value; confidence intervals; and upper limits on signal

yields. We also showed that in the simple one-bin Gaussian case, these quantities can be computed rather

intuitively. However, we have seen in Section 2 that measurements are often described using much more

complex statistical models, for instance with multiple bins and non-Gaussian behavior. The objective

of this section is to present a general framework for computing these results, in principle applicable

to models of arbitrary complexity. Of course, we will also check that it does give the same results as

obtained above for the simple one-bin Gaussian case! The first two sub-sections below will present

the general computation framework, while the rest of this section will focus on how to apply this to

computing significances, confidence intervals and upper limits.
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4.1 Maximum-likelihood estimation

4.1.1 Likelihood

The statistical models described in Section 2 consist in two quantities: the PDF P (n;α) for the measure-

ment, where n represents the observables and α the parameters; and the observed data nobs. From these

inputs, we would like to obtain an estimator α̂ of the true parameter value α.

We start by defining the likelihood function of α as

L(α) = P (nobs;α). (23)

This is in a sense purely formal: the likelihood function is the same as the PDF but seen as a function

only of the parameters (here α), and for the observables set to their observed values (here n = nobs). It

is however an extremely useful quantity that will be used throughout the rest of these lectures.

The likelihood L(α0) can be understood as the probability to obtain the data that was observed,

if the parameters have the value α = α0. As illustrated in Figs. 5a and 5b, this allows us to assign a

probability to the parameter values: some parameter values are likely in the sense that in this scenario

would give rise to nobs with a high probability; and other values are unlikely in the sense that nobs would

have a small probability of occurring in this case.
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Fig. 5: (a) Poisson distributions Pois(n, λ) for expected yields λ = 0.5 (orange), λ = 5 (blue) and
λ = 20 (red), highlighting that the probability to obtain n = 5 (i.e. the likelihood L(λ;n = 5)) is highest
for λ = 5. (b) Graph of L(λ;n = 5) as a function of λ.

4.1.2 Maximum-likelihood estimator

This suggests a general method for estimating α: simply pick the value that gives the highest possible

L(α). More formally,

α̂ = arg max L(α). (24)

This defines the maximum-likelihood estimator (MLE) for α, which we denote again with a hat.1 Intu-

itively, we can already guess that the MLE will have good properties: by definition the nobs that occur

1There is no ambiguity with the previous usage of the hat notation since, as we will see, those instances were, in fact, MLEs.
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often are the ones with high P (nobs;αtrue) for the true values αtrue of the parameters. The likelihood

L(αtrue) will therefore be high in general and therefore α̂ should generally come out quite close to αtrue.

The cases where this works less well are those where the observed data is atypical due to a large sta-

tistical fluctuation, which translates into low values of P (nobs;αtrue). However, these cases are rare by

definition, so that the MLE α̂ remains a good guess on average.

More formally, the MLE has good statistical properties for very general classes of likelihoods.

One can show, in particular, that in the limit of sufficiently large event samples, the MLE is efficient, in

the sense that its uncertainty is as small as it can get (i.e. matches the limit given by the Cramér-Rao

bound); and it is also unbiased, i.e. its average over many trials tends toward the true parameter values.

More details on the properties of MLEs can be found, for instance, in Ref. [3].

Given these good properties, we will use MLEs to estimate parameter values throughout the rest

of these lectures. Before moving to the next topic, we provide examples of MLEs in two simple cases.

4.1.3 Application to the one-bin Gaussian example

Going back to the one-bin Gaussian example of Section 2.1.2.1, the likelihood is defined in this case as

L(S) = P (nobs;S,B) = G(nobs;S +B,
√
S +B). (25)

Since the Gaussian has a maximum at S + B = nobs, one concludes that the MLE corresponds to the

value Ŝ such that

Ŝ = nobs −B, (26)

which matches the naive estimation in this case. In other words, the general framework of the MLE

provides the same numerical answer as obtained in Section 3.1.

4.1.4 Application to multi-bin Gaussian measurements

We now consider the case of a measurement in Nbins independent bins. Each bin i consists in a Gaussian

measurement with an observed value ni, a width σi and an expected value given by νi(α) as a function

of the model parameters α. The total PDF is

P ({ni};α) =
Nbins∏
i=1

G(ni; νi(α), σi). (27)

It is often useful to define the negative twice log-likelihood (N2LL) as

λ(α) = −2 logL(α). (28)

Since −2 log is a monotonically decreasing function, the MLE can be equivalently obtained by minimiz-

ing λ(α).

This is a useful procedure in particular for Gaussian PDFs such as the one considered here, since
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we have2

λ(α) = −2 logL(α) = −2 logP ({ni};α) (29)

=

Nbins∑
i=1

−2 logG(ni; νi(α), σi) (30)

=

Nbins∑
i=1

(
ni − νi(α)

σi

)2

. (31)

The quantity on the last line is known as the χ2 of the ni with respect of the prediction νi(α), i.e. the

sum of the squares of the corresponding pulls, as defined in Section 2.1.2.1. It is often used in so-called

χ2 fits, in which one adjusts the model parameters to get the smallest χ2 with respect to the data.

We have seen that the MLE α̂ is the value that minimizes λ(α): it is therefore also the value that

minimizes the χ2, and thus corresponds to the χ2 best-fit value in this Gaussian situation. This illustrates

the notion that the MLE matches, in general, the best-fit values of the model parameters to the data.

For example, in the ROOT software, which is widely used in high-energy physics, fitting a histogram

to a model prediction is by default done using a χ2. For non-Gaussian cases, one can also use the

likelihood fit option, which performs a maximum-likelihood estimation based on a model where each bin

is described by a Poisson PDF. In ROOT, as in other similar software, fitting a model to data therefore

exactly corresponds to performing a MLE.

4.2 Testing hypotheses

Now that we have a well-defined method for estimating parameter values, we turn again to the problem

of determining whether or not an observed signal yield is in fact significant. This implies computing

significances and p-values as in Section 2.1.2.1, but now for arbitrary statistical models.

4.2.1 Tests and errors

What we want to do is in fact to test a hypothesis, defined as a set of values for the model parameters.

The hypothesis under test is usually referred to as the null hypothesis. In the case of discovery, we want

to test the null hypothesis H0 defined by S = 0, where S is the signal yield. This hypothesis can in fact

be true (i.e. the signal S does not actually exist) or false (there is actually a non-zero S).

Testing the hypothesis H0 means using the data to come to a decision as to whether it is true or

false. There can be, therefore, four possible outcomes. In two of them, the conclusion is correct:

– H0 is false (i.e., S exists) and from the data we decided that H0 was likely false. This is a very

positive outcome, where there was a signal to be found and it was successfully detected by the

experiment. If the signal is large enough, we have made a discovery.

– H0 is true (i.e., no S), and from the data we decided that H0 was likely true. This is not a very

exciting outcome since nothing was found, but we arrived to the correct conclusion that no signal

is present.
2Note that we have dropped the prefactor in the Gaussian, which would give an additive constant term in λ(α): since we
ultimately wish to minimize λ(α), this term is irrelevant.
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There are however two more outcomes, which correspond to errors, in the sense that the test reached the

wrong conclusion:

– H0 is true (no S) and from the data we decided that H0 was likely false (S exists). This is a

very embarrassing outcome, where the experimental result is the “discovery" of a signal that does

not actually exist. This can create some short-lived excitement but inevitably gets falsified when

eventually other experiments fail to reproduce the spurious discovery. This error is called a Type-I

error and the probability for it to occur if H0 is true is called the p-value3. Since Type-I errors are

often quite embarrassing for the experimenter, it is important to ensure that their rate (the p-value)

is small.

– H0 is false (S exists) and from the data we decided that H0 was likely true. This is another

incorrect conclusion, where there was signal to be found but the experiment missed it. This is

called a Type-II error and it is again best avoided.

Given these possible outcomes, our goal is to design an optimal test that will lead to minimal

rates for both Type-I and Type-II errors. In practice, this is usually done by defining a discriminant, i.e.

a function of the observables which has a different distribution in the cases when H0 is true or false.

Ideally, it also captures all or most of the information present in the data to separate these two cases. This

discriminant is called the test statistic. The result of the test is then based on the value of the test statistic,

as illustrated on the left panels of Fig. 6: for instance if a true H0 corresponds to larger values of a test

statistic q and vice-versa, one would declare that H0 is likely true if q > Qthresh for some threshold value

Qthresh.

The choice ofQthresh determines the Type-I and Type-II error rates. As illustrated on the left panels

of Fig. 6, raising Qthresh will tighten the test, making it less likely to find a signal whether it is there or

not: the Type-I rate will therefore decrease but the Type-II error rate will increase. Lowering Qthresh will

give a looser test and the opposite behavior. The relation between the two is given by the ROC curve

shown on the right side of Fig. 6: by changing the threshold one moves along the curve, but one cannot

reach arbitrarily small values for both error rates. An optimal test relies on an optimal test statistic, i.e.

a discriminant that achieves the best possible separation between the two cases. But this optimal test

still cannot yield arbitrarily small error rates of both kinds since lowering one rate raises the other. In

fact these rates are bounded from below by the information present in the data and an optimal test is one

where this information is captured by the discriminant.

4.2.2 The Neyman–Pearson lemma

At face value, finding such an optimal discriminant is a difficult problem: the test statistic should some-

how capture all the information present in the measurement, spanning all the measurement regions and

accounting for the distributions of the signals and backgrounds in each case. Fortunately, such a dis-

criminant is provided quite simply in many cases by the Neyman–Pearson lemma. This states that when

3We will see shortly that this coincides with the definition we gave earlier in the Gaussian example.
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Fig. 6: Representation of the performance of a hypothesis test. The test is defined in terms of the
hypotheses S = 0 (i.e. no signal present) and BSM (presence of a signal of physics beyond the Standard
Model). The distributions of a discriminant observable under each hypothesis are shown in the two plots
on the left. The shaded areas correspond to the Type-I error or p-value ϵType-I (red area) and the Type-II
error ϵType-II (blue area). In the top and bottom plots, these areas are shown for two different values of the
threshold which defines the test (i.e. the BSM hypothesis is chosen for values of the discriminant above
the threshold, and the S = 0 hypothesis for values below). The plot on the right shows the ROC curve of
the test (yellow line), i.e. the values of 1− ϵType-I as a function of 1− ϵType-II as the test threshold varies.
The situations shown in the plots on the left correspond to the leftmost (top plot) and rightmost (bottom
plot) markers on the curve. The orange and green lines correspond to hypothetical situations obtained
with, respectively, a less powerful and more powerful discriminant than the one shown here. The dotted
red line corresponds to the limiting case, where the discriminant has no sensitivity to the hypotheses.

choosing between two hypotheses H0 and H1, the optimal discriminant is in fact the likelihood ratio

L(αH0)

L(αH1)
(32)

where αH0 and αH1 are the parameter values that define H0 and H1, respectively. Note that one does not

test H0 in an absolute sense, but only with respect to an alternate hypothesis H1.

Just like for the MLE, the Neyman–Pearson lemma can be understood intuitively as following the

data: if the data was in fact generated for α = αH0 , then by definition there is a high probability that

L(αH0) is high and, therefore, that the likelihood ratio takes large values. Conversely, if α = αH1 then it

is L(αH1) that will take large values and the likelihood ratio will be small. In both cases data fluctuations

can lead to the opposite behavior, but these cases occur by definition with low probability. We will not

provide a formal proof of the Neyman–Pearson lemma here, but hopefully these arguments make it clear

that the likelihood ratio has the right properties for an optimal discriminant. The proof and more details

can be found, e.g., in Ref. [2].
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The likelihood ratio is optimal in the sense that if we choose a given rate of Type-I error (for

instance by adjusting the threshold for the test), then the rate of Type-II errors will be the smallest

possible, given the information present in the measurement. In the rest of these lectures we will therefore

mostly ignore Type-II error rates: we will instead focus on the Type-I rate (the p-value), and trust that the

Type-II rate is as small as can be thanks to the optimality guaranteed by the Neyman–Pearson lemma.

4.3 Discovery testing

4.3.1 The likelihood ratio test statistic

Having established the general framework for hypothesis testing, we can now go back to more practical

matters and apply it to the case of discovery testing already covered in Section 3.2 for the special case of

a one-bin Gaussian measurement. Here we make a much more general assumption that the measurement

is described by a PDF p(n;S), in terms of the observables n and a signal yield parameter S, and that we

have observed n = nobs. We define as usual the likelihood as L(S) = p(nobs, S).

Since we want to test for the presence of signal, we define our null hypothesis H0 to be the case

S = 0. To use the Neyman–Pearson lemma, we need to also define an alternate hypothesis H1 that will

be tested against H0. Here we take H1 to correspond to S > 0, using a one-sided definition that assumes

positive signals.4

To compute the numerator of the likelihood ratio, we can simply use L(S = 0). For the denomi-

nator, we need to choose the value of S that will represent the S > 0 hypothesis: an obvious choice is to

select Ŝ, in the case where Ŝ > 0. If Ŝ < 0, then in keeping with our one-sided assumption we take this

to be identical with Ŝ = 0 (no evidence of signal). Since this is the same as the numerator, the likelihood

ratio is simply 1 in this case.

We add one final ingredient: as mentioned in Section 2.1.3, it is often practical to consider

−2 logL instead of just L, in particular in the often-seen cases where L is approximately Gaussian.

We therefore define our discriminant as

q0 =


−2 log

L(S = 0)

L(Ŝ)
if Ŝ > 0

0 if Ŝ ≤ 0.
(33)

One can see immediately that q0 ≥ 0: since Ŝ is the MLE, by definition L(Ŝ) > L(S = 0), so that

the likelihood ratio in Eq. (33) is negative and q0 is positive. Furthermore, q0 = 0 indicates the absence

of signal: in this case L(S = 0)/L(Ŝ) = 1, so that the best-fit likelihood L(Ŝ) is identical to that of

the background-only hypothesis. Conversely, large values of q0 indicate the presence of signal: large

q0 means small L(S = 0)/L(Ŝ), which in turns means L(Ŝ) ≫ L(S = 0): this indicates a strong

preference of the data for a Ŝ away from 0, and therefore that a signal seems to be present. Setting

q0 = 0 for Ŝ ≤ 0 identifies this case with the absence of signal S = 0, as mentioned above.

4This hypothesis is composite, in the sense that it encompasses a range of values of S. The proof of the Neyman–Pearson
lemma applies only simple hypotheses corresponding to a single point in parameter space, so that the likelihood ratio is not
guaranteed to be optimal in this case [2]. However, in practice this is seen to remain close to being true in many cases.
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4.3.2 The discovery p-value

The test statistic q0 discriminates between signal and background, but like in any test we can sometimes

come to the wrong conclusion based on the observed data. For the discovery case, the main issue is the

case of a spurious discovery, when in fact S = 0 (i.e., H0 is true), but a large value of q0 leads to the

incorrect conclusion that signal is in fact present. Looking back at the definitions in Section 4.2.1, we

see that this corresponds to a Type-I error, and the probability for it to occur under the S = 0 hypothesis

is the p-value.

Graphically, the p-value can be seen as the tail integral of the PDF of q0 under the S = 0 hypoth-

esis, as illustrated in Fig. 7. Under S = 0, the value qobs
0 observed in data will be usually close to 0, but

will occasionally reach higher values if signal-like fluctuations are present. The probability to observe a

false discovery at the level of qobs
0 or higher is given by the tail integral

p0 =

∞∫
qobs
0

f(q0;S = 0) dq0 (34)

where f(q0;S = 0) is the distribution of q0 under the S = 0 hypothesis. This provides the general

definition of the p-value p0.

Fig. 7: PDF f(q0;S = 0) of the test statistic q0 defined by Eq.( 33) under the S = 0 hypothesis, in the
asymptotic approximation. Values of q0 are on the x-axis, while the y-axis gives the values of the half-χ2

distribution 1
2fχ2(n=1). The hatched region near q0 = 0 represents the delta function δ(q0) corresponding

to the case Ŝ ≤ 0. The p-value for the case of qobs
0 = 5 is the area of the red shaded region.

4.3.3 The distribution of q0

We are missing a critical ingredient to compute the p-value (and therefore the significance), namely the

distribution f(q0;S = 0). In general, this is a difficult problem since q0 derives from the usually complex

expression for L. However, one can show that if the measurement is Gaussian, then f(q0;S = 0) can be

simply expressed in terms of the χ2 distribution fχ2(nf ) introduced in Section 2.1.3, with a number of

degrees of freedom nf equal to the number of parameters used to defineH0 (i.e., one parameter, S, in the
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case we consider here). This result is called Wilks’ theorem [13]. In a two-sided situation, the distribution

of the test statistic would be exactly fχ2(nf ). In the one-sided situation shown here, the distribution is a

“half-χ2", with the Ŝ > 0 half of Eq. (33) described by a fχ2(nf ) while the Ŝ ≤ 0 half is represented by

a delta function at 0. The distribution is illustrated in Fig. 7.

It is an asymptotic approximation, in the sense that it becomes valid in the limit of large event

yields, since by the central-limit theorem PDFs generally tend to the Gaussian limit in this case. How-

ever, this does not mean that this only applies to the Gaussian case: the key point is that this Gaussian

assumption only applies to one part of the computation, namely the distribution f(q0;S = 0). The com-

putation of qobs
0 itself is performed using the exact form of L, and therefore accounts for non-Gaussian

behavior. For this reason, the asymptotic approximation remains valid over a surprisingly wide range of

situations. We will see in Section 4.3.6 that this limit is in fact often already valid for small yields, of

order 5 to 10 events.

In the cases where the measurements are so non-Gaussian that Wilks’ theorem does not provide

a sufficient approximation (e.g. for very small expected event yields), other methods are required to

obtain f(q0;S = 0). One solution is to sample f(q0;S = 0) using pseudo-experiments: in this case the

PDF p(n;S = 0) is used to generate random datasets, for which the computation of q0 is performed in

the same way as for real data. The distribution of the resulting q0 values provides an approximation to

f(q0;S = 0), which improves as more pseudo-experiments are generated. This procedure can however

be quite CPU-intensive, especially to determine the tail of f(q0;S = 0) when computing small p-values.

4.3.4 The p-value and significance under the asymptotic approximation

If we assume that qobs
0 follows its asymptotic half-χ2 distribution, then one can compute the p-value p0

of a positive signal Ŝ with respect to the S = 0 hypothesis as [12]

p0 =
1

2

[
1− Fχ2(nf )(q

obs
0 )
]

(35)

and its significance z as

z = Φ−1(1− p0). (36)

In Eq. (35), Fχ2(nf ) is the cumulative distribution function Fχ2(nf )(q0) =
∫ q0
0 fχ2(nf )(q)dq, which is

directly related to the tail integral of fχ2(nf ). The factor 1/2 is due to the half-χ2 nature of the distribution

discussed above and ultimately comes from the one-sided nature of the test.

These formulas take a simpler form in the case of a single parameter of interest, nf = 1: a χ2

observable for a single degree of freedom is by definition the square of a normal observable, so that one

has Fχ2(1)(q0) = Φ(
√
q0). Therefore, for nf = 1,

p0 = 1− Φ

(√
qobs
0

)
(37)

and

z =
√
q0. (38)

The asymptotic expression for z in terms of q0 is, therefore, particularly simple in this case: one simply
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needs to take the square root of q0 to obtain z.

4.3.5 The one-bin Gaussian example

We consider the case of a one-bin Gaussian measurement with fixed background B, where a measured

event count n is used to obtain the signal yield S. The measurement PDF is p(n;S) = G(n;S +

B,
√
S +B) and we assume that we measured n = nobs.

In Section 4.1.3, we have already computed Ŝ, the p-value p0 of the S = 0 hypothesis and the

significance Ŝ of the signal using elementary methods. We now check that the general methods described

in this section give the same results.

For simplicity, we will work with the N2LL

λ(S) = −2 logL(S) =
(n− (S +B))2

S +B
(39)

The MLE Ŝ is obtained by finding the minimum of λ(S), i.e. by solving ∂λ(Ŝ)/∂S = 0. A simple

computation yields

Ŝ = nobs −B (40)

as expected. We can now compute q0, which is simply expressed in terms of λ as

qobs
0 = λ(S = 0)− λ(Ŝ) (41)

for Ŝ > 0. Plugging in the expressions for λ and Ŝ, one obtains

qobs
0 =

(nobs −B)2

B
=

(
Ŝ√
B

)2

, (42)

again assuming Ŝ > 0. Using Eqs. (37) and (38), one recovers the expressions

p0 = 1− Φ

(
Ŝ√
B

)
(43)

z =
Ŝ√
B

(44)

that were already obtained in Section 3.2. Reassuringly, the general framework therefore yields in this

simple situation the same results as those obtained using more pedestrian methods.

4.3.6 Asympototic significance for a Poisson measurement

We can apply the same treatment as in the previous section to a measurement described by a Poisson

measurement, p(n;S) = Pois(n;S +B). Repeating the same computation in this case, we obtain

z =

√√√√2

[
(Ŝ +B) log

(
1 +

Ŝ

B

)
− Ŝ

]
. (45)
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Note that this is obtained using the asymptotic formula z =
√
q0, which assumes Gaussian behavior for

this particular step of the computation, but q0 itself is computed using the Poisson expression. This proce-

dure illustrates the principle behind the asymptotic approximation: the exact (potentially non-Gaussian)

PDF of the measurement is used to compute q0, but the Gaussian approximation is used to convert q0
into a significance or a p-value.

In this particular example, we can check the validity of the asymptotic approximation. Figure 8

shows a comparison of the significance computed using Eq. (45), the fully Gaussian version of Eq. (44),

and the exact value (obtained using pseudo-experiments, as discussed in Section 4.3.3), for different

values of S and B. The results show that the asymptotic Eq. (45) provides a much closer approximation

to the exact result than the fully Gaussian form of Eq. (44), and that the approximation remains excellent

even for small yields of 5 events or so.
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Fig. 8: Median significance for a counting experiment with varying numbers of signal and background
events. Results are computed using Eq. (44) (dotted red) and Eq. (45) (solid blue), and compared to the
exact results computed from pseudo-experiments (black dots). Figure taken from Ref. [12].

4.4 Confidence intervals on a model parameter

4.4.1 Definition

As already mentioned in Section 3.5, an important class of physics results is confidence intervals set on

a model parameter µ. For a single parameter, they are usually written as in the form µ = µ̂
+ϵ+
−ϵ− , where

the best-fit value µ̂ is the central value of the interval and ϵ± are the positive and negative errors.

Before moving to computations, it is useful to first clarify what we mean exactly by these inter-

vals. First, intervals are accompanied by a probability value called a confidence level (CL). For a single

parameter this is often set at the "1σ" level, i.e. a confidence level of 68.3% that corresponds to the 1σ

inter-quantile of a Gaussian distribution.
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We write for instance µ = µ̂
+ϵ+
−ϵ− at 68.3% CL, which is the statement that

p(µ̂− ϵ− ≤ µ ≤ µ̂+ ϵ+) = 68.3%, (46)

i.e. that there is a 68.3% chance that the true value µ is contained in the stated interval. It is worth noting

that the probability statement is about the interval and not µ itself: recall that µ is a fixed (unknown)

value, with no associated probability distribution. What changes from experiment to experiment is the

data and therefore the interval that we compute. Another way to state Eq. (46) is, therefore, that the

confidence interval that we built for a given observed data will cover the true value µ in 68.3% of cases,

if we perform the same experiment many times.

4.4.2 The likelihood ratio for intervals

Several methods can be used to compute confidence intervals. A popular one is the Neyman construction

which is elegant and works very well for small numbers of parameters. It is however difficult to use for

larger parameter counts, so we will focus on a different method based on similar principles as those used

for discovery testing, namely likelihood ratios.

The basic idea is that defining a confidence interval amounts to finding a range of parameter values

that are compatible with the observed data. This in turn can be expressed as a hypothesis test: we define

H0(µ0) as the hypothesis that µ = µ0 and test this against the alternate hypothesis µ ̸= µ0, for an

arbitrary value µ0. The values µ0 for which H0(µ0) is likely true will be part of the confidence interval,

and vice versa.

The test is naturally two-sided: values of µ away from µ0 can be either above it or below (µ

is not necessarily an event yield and can in principle take arbitrary positive or negative values). As

before, we will perform the test using the likelihood ratio test statistic. The alternate hypothesis µ ̸= µ0

corresponds to a range of values and we need to decide which representative value to use to compute

the corresponding likelihood. As before, we choose the best-fit value µ̂ for this purpose. With the usual

−2 log modification, the test statistic is then

t(µ0) = −2 log
L(µ = µ0)

L(µ̂)
. (47)

Its values are always positive, with a minimum at µ0 = µ̂. Small values indicate good agreement with

the µ = µ0 hypothesis. This agreement is maximal at µ0 = µ̂ and typically gets worse as µ0 moves away

from µ̂. It therefore seems sensible to define the confidence interval with CL c as the range of values µ0
such that t(µ0) ≤ T (c), where T (c) is a suitable threshold that rises with the confidence level c.

4.4.3 Asymptotic approximation

To define T (c), we go back to the one-bin Gaussian case discussed in Section 3.5. The likelihood for µ

is L(µ) = G(mobs;µ, σ) and a short computation shows that, in this case,

t(µ0) =

(
µ0 − µ̂

σ

)2

. (48)
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Therefore t(µ0) follows a parabolic shape with a minimum at µ0 = µ̂ and the condition t(µ0) ≤ T (c)

leads to the confidence interval µ̂±
√
T (c)σ.

We know from the computation of Section 3.5 that, in this simple Gaussian case, the 1σ intervals

should be µ̂ ± σ, and this suggests to use a threshold of T (68.3%) = 1 in this case: the 1σ confidence

interval is therefore defined as the range of µ0 for which t(µ0) ≤ 1. Similarly, a 2σ interval would be

defined by t(µ0) ≤ 4, and so on.

This is a suitable generalization of the results of Section 3.5, which matches the simple computa-

tion in the Gaussian case but is applicable to arbitrary forms of L. These likelihood intervals are another

example of an asymptotic approximation, in the sense that the computation is exact only in the Gaus-

sian limit. However, this again only applies to the distribution of t(µ0), since t(µ0) itself is computed

from the exact form of L including non-Gaussian effects. For this reason, the computation remains valid

for a wide range of non-Gaussian situations. In practice, this means likelihood scans that are not quite

parabolic, as they would be in the Gaussian case, but for which one can still compute confidence inter-

vals by computing the intersections of the scan with the appropriate threshold T (c). An example of the

application of this method to a real-life example is shown in Fig. 9.
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Fig. 9: Likelihood scans for the measurement of a Higgs boson production cross-section, taken from
Ref. [14]. The scan corresponds to scenarios in which various combinations of measurements uncer-
tainties are considered. The intersections of the scan with horizontal dotted lines at y-values of 1 and 4
define the endpoints of, respectively, the 1σ and 2σ confidence intervals on the parameter.

The method can also be extended for larger numbers of parameters, as illustrated in Figs. 10a

and 10b for the case of a confidence contour in two dimensions. Since the relevant asymptotic distribution

is now a χ2 with two degrees of freedom, the thresholds T (c) differ from the case of a single parameter:
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for instance 1σ contours correspond to a threshold of about 2.30.
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Fig. 10: (a) Illustration of the method used to obtain two-dimensional likelihood contours for two model
parameters denoted as σggF and σVBF. The N2LL t(σggF, σVBF) defines a surface that has a paraboloid
shape for Gaussian likelihoods. Likelihood contours are obtained by intersecting this shape with a plane
t(σggF, σVBF) = Z at the appropriate level Z. For 1σ intervals, this level is about 2.30. (b) Example of a
real application of this method, taken from Ref. [14].

4.5 Upper limits on a signal yield

Finally, we come back to the question of setting upper limits, as already introduced in Section 3.6. These

are in fact just one-sided confidence intervals set on a quantity such as a signal yield S, which is known to

be positive. They are typically set in the case where the observed signal is small: in this case, rather than

reporting a small significance, or a signal yield with a large uncertainty, it is often more useful to frame

the result as the exclusion of some large signal hypotheses. Our goal is therefore to be able to state that

we can exclude S < S1−α at a confidence level 1−α, i.e. that if in fact S > S1−α then the probability to

have observed a signal as small as the one that we did obtain is no more than α. In high-energy physics,

these limits are often set at 95% CL, i.e. α = 5%.

4.5.1 Hypothesis test

Upper limits are computed in a similar way to confidence intervals, using an hypothesis test. Suppose

that the parameter of interest is a signal yield S and that we are considering an upper limit S < S0: then

obviously our null hypothesis will be S = S0. What is the alternate hypothesis that we should exclude

against? For an upper limit, this is the case S < S0 where the true signal is below the limit, since this

is the case where the limit would be invalid. If on the other hand S > S0, then this does not invalidate

our limit, and we can consider this case as part of the good outcomes, together with our S = S0 null

hypothesis.
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Therefore the test is naturally one-sided, as for discovery, and we define our test-statistic as5

q(S0) =


−2 log

L(S = S0)

L(Ŝ)
if Ŝ < S0

0 if Ŝ ≥ S0.
(49)

As usual, we use the value Ŝ as the representative value for the alternate hypothesis S < S0. We do this

only in the case Ŝ < S0, due to the one-sideness discussed above; for Ŝ < S0 we set the test-statistic to

0, the same value as for S = S0. This one-sided definition mirrors quite closely the situation of discovery

testing in Section 4.3 (compare with Eq. (33)).

4.5.2 Computing p-values and upper limits

We can see from Eq. (49) that values of q(S0) that are close to 0 indicate that Ŝ is close to S0 (or above

it, in which case q(S0) = 0 by construction). Conversely, large values of q(S0) point to Ŝ ≪ S0, i.e.

that the observed result is too small to be compatible with S = S0 or above. As usual, one can quantify

this agreement using a p-value. Assuming as before the asymptotic approximation of a near-Gaussian

measurement, the p-value for an observed test value q(S0) = qobs(S0) of the test statistic is

p(S0) = 1− Φ

(√
qobs(S0)

)
, (50)

following the same steps as for Eq. (37).

There is however a last twist in the case of upper limits: what the p-value provides is the level of

exclusion for a given S0, which directly translates into the confidence level for the limit. For instance, if

p(S0) = 9% then the p-value for S < S0 is 9%, which we can reformulate as the fact that S0 defines a

91% CL upper limit on S. However, typically what we want is not this, but instead the value of S0 that

corresponds to a predefined CL, usually 95%. This means that to get the (1 − α) CL upper limit, one

generally needs to find the right value S0, by solving the equation p(S0) = α for S0. In simple examples

this can be done in closed form, as we will see below, but generally one needs a numerical procedure that

iteratively searches for the solution S0.

4.5.3 The one-bin Gaussian example

As usual, we now apply the general method to the case of our simple one-bin Gaussian measurement

with fixed background B. Recall that this is defined by the PDF p(n;S) = G(n;S + B, σ)6 and the

observed yields n = nobs.

As before, we have Ŝ = nobs − B. Obviously the upper limits that we will set are above Ŝ (we

cannot exclude the value that is preferred by the data!), so we consider S0 hypotheses above Ŝ: we are

5Alternative definitions, such as the q̃µ of Ref. [12], can also be used.
6Note that we are “cheating" a bit here by using a constant Gaussian width σ, since in principle we should use σ =

√
S +B,

which depends on S. This is a reasonable assumption in the case where S ≪ B, so that σ ≈
√
B, and we adopt it here since

removing the dependence on S simplifies the computation.
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on the “good" side of the one-sided test defined in Eq. (49). We then have

qobs(S0) = −2 log
L(S0)

L(Ŝ)
=

(
S0 − Ŝ

σS

)2

, (51)

with the same calculation as the one that led to Eq. (48). Assuming that the asymptotic approximation

applies, we have

p(S0) = 1− Φ

(√
qobs(S0)

)
= 1− Φ

(
S0 − Ŝ

σ

)
. (52)

Note that we can remove the square root without ambiguity, since we know that S0 > Ŝ. To set the 95%

CL upper limit S95, we therefore need to solve

p(S95) = 1− Φ

(
S95 − Ŝ

σ

)
= 5%, (53)

which gives

S95 = Ŝ +Φ−1(0.95)σ ≈ Ŝ + 1.64σ. (54)

Recall that Φ and Φ−1 are implemented in e.g. ROOT and scipy, and we can use either to find that

Φ−1(0.95) ≈ 1.64. The computed limit has the expected properties: it rises and decreases with Ŝ, so that

observing a smaller signal leads to setting a lower upper limit and vice versa; and the upper limit is always

above the best-fit signal, by an amount that is proportional to the uncertainty σ in the measurement. The

only slightly non-trivial ingredient is the factor 1.64, which corresponds to the desired 95% CL.

4.5.4 CLs upper limits

We close the discussion of upper limits by briefly discussing the CLs modification to upper limits on

signal yields, since this procedure is widely used in high-energy physics.

The motivation behind this extra wrinkle can be seen from Eq. (54), in the one-bin Gaussian case:

suppose that the true signal value is S = 0, i.e. that we are looking for a signal that does not actually exist

(although we are not aware of this fact!) and that Ŝ < 0 due to a statistical fluctuation in the background.

We see that if Ŝ is negative enough, the limit itself will go negative. For a 95% CL limit, this will occur

if we are unlucky enough that Ŝ < −1.64σ.

This is in fact completely normal: we know that when setting a 95% CL upper limit, that limit

will by definition be wrong in 5% of the cases: this means that if S = 0, then in 5% of cases we will in

fact set a negative limit S95 < 0 that wrongly excludes the true value. While this is a basic property of

statistical results, it is also somewhat counter-intuitive. Furthermore, if we assume that we know a priori

that S > 0, then we also know that the cases where S95 < 0 fall within the 5% of times where the limit

fails. This motivates “fixing" the upper limit computation to avoid these cases.

The CLs fix consists in modifying the definition of the p-value: instead of basing the test on p(S0)

as defined in Eq. (50) we use, instead,

pCLs(S0) =
p(S0)

p0
, (55)
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where p0 is the p-value for the S = 0 hypothesis. Without going into the technical details of why this

particular modification is used, one can check that it has the intended effect: if Ŝ is strongly negative,

then this excludes S = 0, which means that the p-value p0 is small. Then pCLs(S0) ≫ p(S0) and

this larger p-value leads to a weaker limit, which almost always avoids spuriously excluding S = 0.

However, if Ŝ is compatible with 0 (or positive), then p0 ≈ 1 (a large p-value indicating no exclusion of

S = 0) and therefore pCLs(S0) ≈ p(S0): in this case the result is unchanged compared to before. This

behavior is illustrated in Fig. 11, where we see that the CLs limit coincides with the usual frequentist

CLs+b (defined by Eq. (50)) for large Ŝ; and for Ŝ < 0 the CLs case deviates so as to avoid negative

limits. While this CLs technique avoids “unphysical" negative limits, the price to pay for this is loss of
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95% CL limit, CL

s95% CL limit, CL

Fig. 11: Value of the 95% CL upper limit on the mean µ of a Gaussian PDF with width 1, as a function
of its best-fit value µ̂. The CLs+b limit computed from Eq. (54) (red line) is shown alongside the CLs

limit computed from Eq. (56) (blue line).

coverage: this is still advertised as a 95% CL limit, but for Ŝ ≈ 0 and below it corresponds in fact to a

higher CL, and is therefore over-conservative.

Applying the CLs computation to the simple Gaussian example of Section 4.5.3, one finds

SCLs
95 = Ŝ +Φ−1

[
1− 0.05Φ

(
Ŝ

σ

)]
σ, (56)

and one can check that one recovers the result of Eq. (54) in the case of Ŝ ≫ σ, while for |Ŝ| ≪ σ one

has

SCLs
95 ≈ Ŝ + 1.96σ (|Ŝ| ≪ σ). (57)

This relation is quite useful since the scenario |Ŝ| ≪ σ, where no significant signal is found, is particu-

larly relevant to setting upper limits.

We conclude by stating without proof another very useful result: suppose that we perform a single-

bin counting experiment and that we observe nobs = 0. Then the exact value of the 95% CLs upper limit
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is

SCLs
95 (nobs = 0) = log(20) ≈ 3. (58)

This is a remarkable result for two reasons: first, it is independent of the background level B or, equiva-

lently, of the uncertainty σ of the measurement; and secondly, it is exact in the sense that it does not rely

on the asymptotic approximation: it is, in fact, based solely on properties of the Poisson distribution. For

this reason, the result cannot be obtained as a limiting case of Eq. (57), but it is relatively easy to derive

by going back to the Poisson definition of the p-values entering Eq. (55).

4.6 Expected results

So far we have covered the computation of so-called observed results, i.e. those obtained from a particular

observed dataset. It is also often useful to compute expected results, i.e. the median expected outcome

under a particular hypothesis.

A common use-case for this is to choose between two analysis options: if the choice is done used

the observed results, then one may end up picking an option that seems more sensitive due to a lucky

fluctuation in the data. While this may be beneficial for this particular dataset, it may not remain so when

more data is collected, and such a choice would also systematically overestimate the analysis sensitivity.

This is related to the concept of blind analysis, where analysis choices are made only based on expected

outcomes, without looking at the observed data, in order to avoid biases towards a particular result

(e.g. the result found by previous measurements). Another typical use-case for expected results is the

projection of analysis sensitivity to as-yet hypothetical situations, for instance to estimate the expected

performance at future experimental facilities.

Expected results are computed under a given hypothesis; for instance, the Standard Model expec-

tations. There are two main techniques for this: pseudo-experiments (also often called “toy datasets")

and Asimov datasets. For pseudo-experiments, one uses the measurement PDF to generate random data,

i.e. datasets which have not been actually observed in the experimental apparatus, but are randomly

generated using the PDF. Recall that the PDF is exactly the tool needed to do so, since it provides the

probabilities for different outcomes. Defining the generation hypothesis simply corresponds to setting

the PDF parameters to the appropriate values. Technically, tools for random generation are provided by

the usual statistics toolkits (e.g. RooFit, ROOT, or pyhf). Statistical results are then computed from each

pseudo-dataset, exactly in the same way as for real observed data. The expected result is then reported as

the median of these results, as shown in Fig. 12a. One can also compute, e.g., 1σ and 2σ bands around

the median using the corresponding quantiles of the distribution. These bands are useful to test the agree-

ment of the observed result with the expected result. They are often shown in particular for limits, as in

Fig. 12b.

The other method of computing expected results is the so-called Asimov dataset technique: in

this case, one constructs a single dataset that corresponds exactly to the desired scenario, the Asimov

dataset.7 The expected results are then obtained by simply performing the computation on this dataset.

The Asimov dataset is formally defined as a dataset for which the best-fit values of all model parameters

are exactly equal to their hypothesis values. So, if the desired scenario is µ = µ0, then an Asimov dataset

7The name originates from a short story by Isaac Asimov, Franchise, featuring a form of government based on a similar premise.

36



STATISTICAL TECHNIQUES

should verify µ̂ = µ0. For a counting experiment, one can construct such a dataset by simply setting the

observed yield in all bins to their expectations. For unbinned cases there is no similar technique, but one

can get a suitable approximation by building a binned dataset with sufficiently fine bins, where the bin

yields again match the expectation from the model.
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Fig. 12: (a) Illustration of the computation of an expected result from an ensemble of pseudo-
experiments. The pseudo-experiment results (µ95) are shown as a histogram (black line). The expected
result is computed as the median of the histogram (central blue line), and the 1σ and 2σ bands (green and
yellow areas) as the corresponding quantiles around the median. (b) Example computation of expected
and observed upper limits taken from Ref. [16]. Limits on the production cross-section of a resonance
are shown as a function of its mass mX . Each position in mX corresponds to a separate result, for
which both observed (solid black line) and expected (dotted black lines) upper limits are shown. The
green and yellow areas show respectively the 1σ and 2σ bands around the expected result, as in panel
(a). The computation is performed using the Asimov dataset technique at lower values of mX , where the
measurement is quasi-Gaussian due to large event yields. At higher mX the smaller yields invalidate the
Gaussian approximation, and the results are instead obtained using the pseudo-experiments technique.

The Asimov dataset technique has the advantage that the expected result can be obtained from

a single computation, whereas the pseudo-experiments technique typically requires processing tens to

hundreds of datasets. It does not however provide the bands around the results, and these need to be

computed using asymptotic formulas [12]. The Asimov dataset technique is therefore usually the pre-

ferred choice in Gaussian settings, while pseudo-experiments are required in non-Gaussian cases, where

the asymptotic approximation does not apply.

5 Profiling and systematic uncertainties

A careful reader may have noticed that the “general" methods presented in Section 4 did not include

the treatment of the nuisance parameters of the model, discussed in Section 2. The central concept of

systematic uncertainties was also not yet introduced. We will show in this section that both are in fact

closely related, and that their treatment can be included as a simple modification of the methods described

in Section 4.
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5.1 Profile likelihood method

5.1.1 Definition of the profile likelihood ratio

In Section 4.2, we have considered hypothesis tests in the case of a PDF p(n;µ) with a single parameter

of interest. We have seen that, according to the Neyman–Pearson lemma, we can use the likelihood ratio

L(µ0)/L(µ1) to make a decision between two hypotheses µ = µ0 and µ = µ1. We have extended this

to test µ = µ0 against µ ̸= µ0 by using L(µ0)/L(µ̂), where the best-fit value µ̂ is used as a stand-in for

the µ ̸= µ0 case.

What if now we have P (n;µ, θ), with nuisance parameters θ also present? In principle, the

Neyman–Pearson lemma applies in the same way to this case as well, and we can test hypotheses defined

by values of both µ and θ. However, we are not interested in the values of θ (by definition,these are not

parameters of interest!); the hypotheses we want to test are only defined by values of µ. So, to use the

Neyman–Pearson lemma, we need to “fill in" some θ values to fully specify the hypotheses.

Following the principles already laid out earlier, the obvious values to use are the ones provided

by the data, i.e. the best-fit values:

– For the null hypothesis defined by µ = µ̂, we can just add θ̂ to the definition so that this becomes

the (µ = µ̂, θ = θ̂) hypothesis.

– For the alternate µ = µ0 hypothesis, we need to account for the fact that we restrict ourselves

to a particular value of µ, so that for consistency the best-fit value of θ should also be computed

under this restriction. We therefore introduce the conditional best-fit value ˆ̂
θ(µ0), which is the

best-fit value of θ under the condition µ = µ0. The alternate hypothesis is then defined in full by

(µ = µ0, θ =
ˆ̂
θ(µ0)).

One can see immediately that ˆ̂θ(µ̂) = θ̂, but for other values of µ the conditional best-fit value

may not necessarily match the overall best-fit value θ̂. This conditional best-fit value is also called the

profiled value of θ as a function of µ0. Putting it all together, this gives a new definition of the likelihood

ratio, which with the usual −2 log operation reads

t(µ0) = −2 log
L(µ0,

ˆ̂
θ(µ0))

L(µ̂, θ̂)
. (59)

This is the profile likelihood ratio, and corresponds to a generalization of Eq. (47) in the presence of

nuisance parameters θ.

5.1.2 Wilks’ theorem for the profile likelihood ratio

One can see immediately that, thanks to the use of best-fit values, t(µ0) remains a function of µ0 only,

without reference to the θ. The θ are of course always there in the background, but their impact is baked

into t(µ0) through the best-fit values and not explicitly apparent.

Furthermore, there is a truly amazing result on the asymptotic distribution of t(µ0) : in the µ = µ0

hypothesis, t(µ0) follows a χ2 distribution with a number of degrees of freedom equal to the number of

parameters of interest. This result is known as Wilks’ theorem [13].
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This shouldn’t come as too much of a surprise since the same result was already presented in Sec-

tion 4.3.3 for the case of a simple likelihood ratio without nuisance parameters, defined by Eq. (47). The

full version of Wilks’ theorem that is stated above generalizes this to the case where nuisance parameters

are present, and are profiled as shown in Eq. (59). The fact that it remains true also in this case is some-

what miraculous (it relies on a subtle interplay between the best-fit values of µ and θ in the Gaussian

case), but the upshot is that things do not change very much when nuisance parameters are also included.

With the new definition of t(µ0) from Eq. (59) (and the related test statistics of Eqs. (33) and (49)), all

the techniques and formulas presented in Section 4 remain applicable as long as the asymptotic approxi-

mation is valid.

So, for example, one can still compute the discovery significance as z =
√
q0, following Eq. (36),

provided that the definition of q0 in Eq. (33) is updated to include the conditional (under S = 0) and

unconditional best-fit values of the nuisance parameters, similarly to Eq. (59). Confidence intervals and

upper limits can also still be computed as described in Section 4, with the profiled values of the nuisance

parameters included in the definition of the test statistics.

5.1.3 Application to a simple Gaussian example

To illustrate the use of the profile likelihood, we consider a measurement where the signal yield S and

background yieldB are both free parameters. The goal is to demonstrate how to deal withB using profil-

ing, in order to measure S. Since we need to measure two parameters, we need at least two measurement

bins. We therefore now include two independent Gaussian measurements: in one bin, we measure S+B

with uncertainty σ, using an event count n; in the other we assume that only background is present so

that we measure B only with uncertainty ϵ using an event count m. This is in fact a fairly standard

experimental setup, where the measurement mainly occurs in a signal region (SR) where both signal and

background is present, and the background is obtained through a separate control region (CR) which is

sensitive to background only. The full measurement PDF is

p(n,m;S,B) = G(n;S +B, σ)G(m;B, ϵ). (60)

Assuming that we observe nobs and mobs, we define as usual the likelihood L(S,B) =

P (nobs,mobs;S,B) and the N2LL λ(S,B) = −2 logL(S,B). We have

λ(S,B) =

(
S +B − nobs

σ

)2

+

(
B −mobs

ϵ

)2

. (61)

The best-fit values of S and B are obtained from minimizing λ, and we have

Ŝ = n−m (62)

B̂ = m (63)

ˆ̂
B(S) = m+

ϵ2

σ2 + ϵ2
(Ŝ − S) (64)
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As expected, the best-fit values of S and B are the ones that best match the data. The profile value ˆ̂
B(S)

also has the expected properties: for S ̸= Ŝ, one can see that ˆ̂
B(S) deviates from B̂ = m in a way that

partially compensates for the deviation of S from Ŝ: if S > Ŝ then ˆ̂
B(S) < m and vice versa, which

in both cases tends to soften the discrepancy between the prediction and the data. Plugging these values

into Eq. (59), we then obtain

t(S0) =

(
S0 − (n−m)

σ2 + ϵ2

)2

. (65)

We can then obtain a confidence interval on S from the intersections t(S) = 1 as described in Sec-

tion 4.4.3. We get

S = (n−m)±
√
σ2 + ϵ2 at 68.3% CL (66)

with an uncertainty of
√
σ2 + ϵ2 that is the sum in quadrature of the uncertainties coming from the SR

(σ) and from the CR (ϵ). This illustrates that although t(S) remains a function of S only, the profiling

accounts for the impact of the nuisance parameters behind the scenes, and the uncertainty from the

measurement of B in the CR was correctly propagated to the estimation of S.

5.2 Systematic uncertainties

5.2.1 Statistical and systematic uncertainties

We finally come to one of the central issues of statistical analysis in high-energy physics: systematic

uncertainties. First, what are they? Recall that the measurement PDFs that we have been working with

are a way to describe uncertainties about the data, as discussed in Section 2. For instance, we use Poisson

distributions to encode the fact that the number of events observed in a counting experiments fluctuates,

if we repeat the experiment several times. These uncertainties, which are provided by the measurement

PDFs, are called statistical uncertainties. They are the uncertainties that we have been dealing with up

to now.

There is however another class of uncertainties: uncertainties in the form of the PDF itself. For

instance, in the counting example studied in Section 4.1.3 we have assumed that the background yield B

is known exactly and this is a critical input to the analysis; e.g. to extract the signal as Ŝ = nobs − B.

However, in a real-life situation B is never known exactly: there is an uncertainty on its value. This

uncertainty isn’t captured by the PDF itself (Eq. (25) in this example) since it is an uncertainty on the very

form of the PDF. These uncertainties on the definition of the PDF are known as systematic uncertainties.

There is an alternate definition of statistical uncertainties based on their behavior as the measure-

ment dataset increases: we have seen that, according to the central-limit theorem, the combined precision

of N measurements scales as 1/
√
N (see Eq. (4)). By the same argument, statistical uncertainties scale

as the inverse square root of the size of the dataset, as more data makes the measurement more precise.

Systematic uncertainties on the other hand usually remain constant even as the dataset size increases

(unless one makes clever use of the new data to improve the measurement!): they represent a fixed bias

between the actual measurement process and its imperfect statistical model, which more data does not

help to reduce. This can be illustrated by coming back again to the simple Gaussian example of Sec-

tion 4.1.3, where the signal yield is obtained as Ŝ = nobs − B: the statistical uncertainty comes from

nobs and a larger dataset will lead to increased relative precision on this term. However, if B is off from
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its true value, then this will lead to a systematic bias on Ŝ that more data cannot help to reduce. This bias

then needs to be covered by a separate systematic uncertainty.

5.2.2 Systematic uncertainties as nuisance parameters

Since systematic uncertainties affect the measurement PDFs themselves, they lie outside the scope of the

techniques we have presented in Section 4. We therefore need to find a way to expand our description of

the PDFs to also account for these effects. The simplest way to do this is to add more free parameters

into the description. For instance, the background yield B in the example above can be promoted from a

fixed value to a floating parameter that can be adjusted from the data itself.

Sometimes it is possible to just do this: we arrange to obtain B from a data-driven estimate, as

in the example shown in Section 5.1.3, and remove the source of systematic bias. However, this is not

always possible: for instance in the one-bin Gaussian example of Section 4.1.3, we estimate the signal

from a single bin yield using Ŝ = nobs − B, and this assumes that we know B a priori. If both S and

B are free parameters, then we cannot estimate both their values from just the knowledge of the single

yield nobs.

The way out is to assume that we have some external knowledge of B, coming from outside

the current measurement. In general this is what happens in realistic situations: B is not completely

unknown but can be estimated from previous experiments, MC simulation, or a combination of the two.

We will generally frame this knowledge as the results of auxiliary measurements that are independent

of the measurement that we are describing: either using a separate dataset or a completely different

apparatus.

This is a sensible approach for the background yield B, but and can be adapted to less obvious

cases such as theory predictions. Of course, the output of a theory computation can hardly be viewed as

the result of a measurement (theory errors do not represent fluctuations in the result of the computation!).

However, one can still represent the knowledge on the corresponding theory parameter using, e.g., a

Gaussian distribution with a width corresponding to the theory uncertainty.

The general framework is then as follows: suppose that we have a measurement Pmain(n;µ),

where as usual n represents the observables and µ the measurement parameters. To describe systematic

uncertainties in Pmain, we augment µ with the parameters {θsyst
i }1≤i≤Nsysts , which are additional nuisance

parameters describing the systematic uncertainties. We assume that we have external knowledge on each

θ
syst
i , encoded in the PDF Pi(θ

obs
i ; θ

syst
i ). This PDF represents an auxiliary measurement with observable

θobs
i that provides information on θsyst

i . Since the auxiliary measurements are assumed to be independent

from the main measurement, we can combine all of them together with Pmain by taking the product

P (n, {θobs
i };µ, {θsyst

i }) = Pmain(n;µ, {θsyst
i })

∏
i

Pi(θ
obs
i ; θ

syst
i ). (67)

Remember that in Pmain(n;µ, {θsyst
i }) alone, we typically would not have enough measurement infor-

mation to constrain all the θsyst
i . But this is now possible in P (n, {θobs

i };µ, {θsyst
i }), thanks to the extra

information coming from the observables θobs
i . We can therefore now treat this PDF using the profile

likelihood techniques described in Section 5.1 to compute the results in the presence of systematic un-
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certainties.

In practice, the Pi will often be represented as simple Gaussians, with a central value correspond-

ing to the nominal value of the nuisance parameter and a width corresponding to the value of its un-

certainty. This can be considered as a simplified description of the auxiliary measurement, in the cases

where one actually exists, or as a mathematical tool to convey the uncertainty in other cases (e.g. for the-

ory uncertainties). However, it is also possible in principle to provide Pi as the full PDF of an auxiliary

measurement, obtained e.g. as described in Section 2.

5.2.3 The simple one-bin Gaussian example

We illustrate the treatment of systematics by returning one last time to our one-bin Gaussian counting

example, Pmain(n;S,B) = G(n;S + B, σ). Instead of assuming that B is known exactly, we will now

assume that there is some uncertainty in this value, so that we have B = Bnom ± σB . We represent this

systematic uncertainty as a Gaussian auxiliary measurement with PDF PB(Bnom;B) = G(Bnom;B, σB).

Including this extra information, the full measurement PDF is now

P (n,Bnom;S,B) = Pmain(n;S,B)PB(Bnom;B) = G(n;S +B, σ)G(Bnom;B, σB). (68)

We can now obtain a confidence interval on S by profiling B and defining the profile likelihood t(S) as

in Eq. (59). The profiling of B will then account for the impact of its uncertainty on the measurement of

S, as we saw already in Section 5.1.3. In fact one can check that the computations in this example are

formally identical to those in Section 5.1.3: by a simple change of notation, we can obtain immediately

S = (n−Bnom)±
√
σ2 + σ2B at 68.3% CL. (69)

So, the systematic uncertainty σB on the background level gets added in quadrature to the statistical

uncertainty σ to form the total uncertainty on S, as one would have naively expected. The implementation

of the systematic uncertainty as a nuisance parameter and its treatment using profiling therefore fully

accounts for its effect on the measurement.

The similarity of the computation here and the one in Section 5.1.3 is not completely accidental:

as mentioned above, a systematic uncertainty on a model parameter can be seen as information coming

from an auxiliary experiment that is sensitive to this parameter. The control region (CR) measurement in

Section 5.1.3 can be seen as such an auxiliary measurement: if one considers only the signal region (SR)

measurement as the measurement, then the CR is an auxiliary measurement and B is associated with a

systematic uncertainty, as in this section. If, however, one considers the measurement as encompassing

both the SR and the CR, then both S and B are measured simultaneously from data, in a measurement

without systematic uncertainties. In this second case, the statistical uncertainty on B still propagates

to the uncertainty on S in the same way as for a systematic uncertainty, so the two cases are formally

equivalent.

Note, however, that in the case of a systematic uncertainty, an increase in the dataset would a priori

apply only to the SR and not to the auxiliary measurement, while for a combined measurement, both SR

and CR datasets would be expected to increase. This difference reflects the different scaling behaviors
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of statistical and systematic uncertainties with luminosity that were described in Section 5.2.1.

5.3 Profiling: caveats and pitfalls

As described in Section 5.2.2, there are two types of nuisance parameters: parameters associated with

an auxiliary observable, as in Section 5.2.3, which represent systematic uncertainties, and data-driven

parameters which are determined fully from the data without additional external information, as in Sec-

tion 5.1.3. Profiling provides a general way to deal with nuisance parameters of both types. Thanks to

the Neyman–Pearson lemma and Wilks’ theorem, the resulting profile likelihood ratio tests statistics are

guaranteed (with some caveats) to be optimal, i.e. they make use of all the information in the data to

provide statistical results with maximal sensitivity.

There can be some interplay between auxiliary measurements and data-driven constraints: for

instance, in a complex measurement with a large number of bins the data can provide constraints on the

systematics nuisance parameters. If the constraint from the data is stronger that the one provided by the

auxiliary measurement, then the data itself provides a better estimate of the parameter than what was

provided externally: the magnitude of the systematic uncertainty is therefore reduced, compared to the

value that was given as input in the model.

This property of profiling is particularly useful in LHC experiments, where large datasets allow

one to set strong constraints that can help to reduce systematic uncertainties. Profiling therefore provides

a powerful tool to improve the measurement precision. However, it must also be used with caution,

since it relies on the assumption that the systematic parameters provide a complete description of the

uncertainties.

To illustrate where this can fail, suppose that a measurement is sensitive to the energy calibration of

an experimental observable, say the jet energy, and that the associated systematic uncertainty is described

using a single nuisance parameter. Assume further that large amounts of data are available at low jet

energies, but that the measurement is performed at higher energies. If profiling is applied, the low-energy

data can provide a strong constraint on the parameter, which then translates into a reduced systematic

uncertainty that also applies in the high-energy region. In terms of physics modeling this is often wrong:

the calibration of high-energy objects is often decorrelated from the low-energy region, so that one

should have separate uncertainties described by different parameters. The reduction of the uncertainty in

the high-energy region is therefore likely invalid. The issue is not related directly to the profiling itself,

but rather to the description of the uncertainties using model parameters. While profiling is a powerful

tool, it requires a careful treatment of this point, to avoid spurious reductions in systematic uncertainty.

A realistic example of a case where a systematic uncertainty is heavily reduced is shown in Fig. 13.

While such cases can correspond to legitimate uses of the data to improve on the knowledge of systematic

effects, they should be checked carefully to ensure this improvement is justified.

6 Conclusion

Statistical methods are an essential part of high-energy measurements. Modern tools implemented within

the ROOT toolkit or the python ecosystem allow one to describe complex measurements using binned

or unbinned PDFs, as well as the associated systematic uncertainties. Frequentist techniques based
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Fig. 13: Pull and impact plot taken from Ref. [15]. The rows correspond to nuisance parameters de-
scribing the leading systematic uncertainties in the analysis. The black bars and dot show the normalized
best-fit values and uncertainties (pulls) of the parameters. Uncertainties smaller than 1 indicate that the
parameter is constrained by the data. In this case the effective impact of the systematic uncertainty (red
hashes) is reduced compared to its input value (green bands).

on the use of profile likelihood ratios can then be used to obtain statistical results, such as discovery

significances, confidence intervals for model parameters, and upper limits on signal yields. These results

can be obtained using arbitrarily complex likelihoods (limited only by computing power) and make

generally optimal use of the information present in the data.

A set of jupyter notebooks providing examples and exercises based on the contents of

these lectures can be found at https://github.com/fastprof-hep/stats-tutorial/tree/main/

AEPSHEP2022. Further reading on these techniques can be found in standard textbooks on statistics, such

as Refs. [1, 17, 18].
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NEUTRINO PHYSICS

Neutrino physics

Sin Kyu Kang

Seoul National University of Science and Technology, Seoul, Korea

In this lecture, I start with presenting the history of the neutrino from its invention to what we have
discovered about its properties till now. I explain how we can observe neutrinos produced both
naturally and artificially. Naturally produced neutrinos come to the Earth from the Sun, supernovae,
collisions of cosmic rays with nuclei in the atmosphere, natural radioactivity, etc. On the other hand,
those produced in accelerators and nuclear reactors are the examples of artificial neutrinos. I also
illustrate what neutrino oscillations are and how such phenomena could be observed from various
experiments to detect neutrinos produced in the aforementioned ways. Thanks to the discovery of
neutrino oscillations, we are forced to modify the Standard Model, so as to accommodate the masses
of neutrinos and lepton flavor mixing, which are essential to make neutrino flavor change. In fact,
neutrinos can come in three different flavors, electron, muon and tau, and can change from one flavor
to another. The origin of the tiny neutrino masses is still unknown, although we now know a few
nice mechanisms capable of generating them. The generation of neutrino masses signifies physics
beyond the Standard Model and can, therefore, be related to some of the unresolved fundamental
issues, such as the origin of flavors, the unification of forces, the matter-antimatter asymmetry, etc.
Some physicists believe that CP violation in neutrinos may be a missing piece in the understanding
of the origin of the matter-antimatter asymmetry. I pedagogically explain how we can probe CP
violation through neutrino oscillation experiments.

1 Introduction

1998 is the historic year in which neutrinos aroused great interest among not only physicists but also the

public. The Super-Kamiokande (SK) Collaboration announced the first evidence of neutrino oscillations

in that year [1]. This was the first experimental observation supporting the theory that the neutrino has

non-zero mass, a possibility that theorists had speculated about for years. The discovery of neutrino

oscillations was expected to bring fundamental changes to our knowledge of physics and astronomy.

Though, many more discoveries about neutrinos have yet to be made.

1.1 Advent of neutrinos

Neutrinos were postulated by Pauli in 1930 to resolve the puzzle of the electron energy spectrum ob-

served in beta decays, which show a continuous distribution instead of all electrons having the same

energy. It seemed to contradict the principle of the conservation of energy. The puzzle can be solved if

another unseen particle is emitted along with the electron in beta decay. Pauli originally called this parti-

cle the “neutron”, but it was renamed the “neutrino” by Fermi in 1933. After the discovery of the neutron

by Chadwick in 1932 [2], Fermi developed the theory of beta decay by proposing that four fermions di-

rectly interact with one another at one vertex [3]. By this interaction, the neutron decays directly to a

proton, an electron and the proposed neutrino (what we now know to be an electron-antineutrino). The

theory developed by Fermi, which proved to be successful, was the precursor to the theory of the weak
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interaction. Fermi first submitted his “tentative” theory of beta decay to the journal Nature, which re-

jected it “because it contained speculations too remote from reality to be of interest to the reader” [4].

Later, Nature admitted the rejection to be one of the great editorial blunders in its history.

1.2 Discovery of neutrinos

Neutrinos were first discovered by Reines and Cowan in 1956, who conducted the experiment to observe

neutrinos through inverse beta decay (ν̄e + p → n + e+) by using neutrinos from the Savannah River

nuclear reactor [5]. In 1962, Lederman, Schwartz and Steinberger discovered a second neutrino by

proving that the “muon” appeared to be accompanied by a neutrino that should be different from the

neutrino appearing in beta decays [6]. The third generation charged lepton, called the “tau” lepton, has

been discovered by Perl in 1975 [7]. As soon as the discovery of the tau lepton was announced, particle

physicists speculated from experience that it would have a neutrino partner, the tau neutrino. It remained

elusive until July 2000, when the DONUT experiment from Fermilab announced its discovery [8]. These

three species of neutrinos are named electron-neutrino (νe), muon-neutrino (νµ) and tau-neutrino (ντ ),

associated to the charged leptons electron, muon and tau, respectively. Thanks to those experiments,

the Standard Model (SM) of particle physics has been established to have six leptons consisting of three

families, similarly to the quark sector.

1.3 Neutrinos in the Standard Model

In the SM, neutrinos are the only massless particles. There are exactly three neutrinos, one for each of the

three charged leptons, as explained before and as confirmed by the observation of e+ + e− → Z0 → ff̄

at LEP experiments, withNν = Γinv
Γνν̄

= 2.984±0.008 [10]. All neutrinos are left-handed and all antineu-

trinos are right-handed in the SM. Since there are no right-handed (left-handed) neutrinos (antineutrinos),

neutrinos have no mass. In the SM, neutrinos interact with matter only through weak interactions, which

occur in two types, charged-current (CC) interactions and neutral-current (NC) interactions. The CC

interactions occur through the exchange of a W±, where the neutrino converts into the corresponding

charged lepton (e.g. inverse beta decay, ν̄e + p → n + e+). The NC interactions occur through the ex-

change of a Z0, where the neutrino remains a neutrino, but transfers energy and momentum to whatever

it interacted with.

2 Detection of neutrinos

2.1 Neutrino sources

Neutrinos are produced in the stars, the sky, nuclear reactors, human bodies, and even food like bananas.

When we consider scientific research, there are several interesting sources that can help physicists study

neutrinos: the sun, the atmosphere, reactors, accelerators, earth, the Big Bang, Supernovae, Extragalatic

sources, etc. Huge numbers of neutrinos (about 1020 per second) are emitted in nuclear reactors, and

also artificially produced in man-made accelerators delivering intense neutrino beams. But the main

source of neutrinos is the Universe itself. The relic neutrinos from the Big Bang have been wandering

for more than 13.6 billion years, with a density of 330 per cm3 everywhere. Starting with the fusion of

two protons, nuclear reactions in the core of the Sun produce about 2×1038 νe per second, which means
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65 billions of neutrinos per second per cm2 on Earth. Supernova explosions emit about 1058 neutrinos in

a few seconds and the central engines of active galactic nuclei produce them abundantly.

2.2 How to detect neutrinos

Neutrinos rarely interact with ordinary matter, so they are very hard to detect. We can only detect

the presence of a neutrino in our laboratory when it interacts through CC or NC interactions. Since a

neutrino turns into its partner lepton via a CC interaction, the detection of a charged lepton is considered

as a sign of a neutrino event. But, if the neutrino does not have sufficient energy to create its partner

lepton, CC interaction is effectively unavailable to it. The neutrino enters and then leaves the detector

after having transferred some of its energy and momentum to a target particle via NC interactions. The

by-product created by the target particle hit by the neutrino is considered as a sign of a neutrino event.

All three neutrinos can participate in NC interactions, regardless of the neutrino energy. In principle,

CC interactions are easier to work with, because electrons and muons have characteristic signatures in

particle detectors and are thus fairly easy to identify. They also have the advantage that they “flavor-tag”

the neutrino. Various different detector technologies have been used in neutrino experiments over the

years, depending on the requirements of the particular study. Among them, the following three are the

most popular ones widely used.

– Radiochemical experiments: The lowest energy thresholds are provided by radiochemical exper-

iments, in which the neutrino is captured by an atom which then (through inverse beta decay, a CC)

converts into another element. The classic example is the chlorine solar neutrino experiment. Even

lower thresholds were achieved by using gallium as the target: the reaction 71Ga+ν → 71Ge+e−

has a threshold of only 0.233 MeV, and is even sensitive to pp neutrinos from the Sun. The pro-

duced isotope is unstable, and will decay back to the original element: neutrinos are counted by

extracting the product and observing these decays. Examples of radiochemical experiments are

Homestake (Ray Davis; chlorine); SAGE (gallium); GALLEX/GNO (gallium).

– Liquid scintillator (LS) experiments: LS has an impressive pedigree as neutrino detectors, since

the neutrino was originally discovered using a LS detector. They are primarily sensitive to ν̄e’s,

which initiate inverse beta decay of a proton. Being organic compounds, LS is rich in hydrogen

nuclei which act as targets for this reaction. The positron promptly annihilates, producing two

gamma rays; the neutron is captured on a nucleus after a short time (a few microseconds to a

few hundred microseconds), producing another gamma-ray signal. This coincidence of a prompt

signal and a delayed signal allows the experiment to reject background effectively. LS detectors

have good time and energy resolution, but do not preserve directional information. Examples of

LS experiments are Borexino, KamLAND, MiniBooNE and SNO+.

– Water Cherenkov experiments: A particle travelling through a transparent medium at faster than

the speed of light in that medium emits a kind of “light boom” – a coherent cone of blue light

known as Cherenkov radiation. The particle is travelling down the axis of the cone, so if the cone

can be reconstructed the direction of the particle can be measured. In a water Cherenkov detector,

the Cherenkov radiation is detected, usually by photomultiplier tubes, and the cone of emission

reconstructed. The axis of the cone gives the direction of the particle, and the light yield gives the
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particle energy. Only charged particles with β > 1/n can be detected, which gives a threshold total

energy of about 0.8 MeV for electrons, 160 MeV for muons and 1.4 GeV for protons and neutrons.

Neutrinos are detected in the detectors when they interact by W exchange, converting into muon

or electron for νµ or νe respectively, or when they elastically scatter off electrons (when the recoil

electron can be detected). Examples of densely instrumented water Cherenkov experiments are

SK, far detector for the K2K and T2K experiments, and IMB.

3 Neutrino oscillation

3.1 History of neutrino oscillation

The idea of neutrino oscillation was first put forward in 1957 by Bruno Pontecorvo, who proposed that

neutrino–antineutrino transitions may occur in analogy with neutral kaon mixing [11]. Although such

a matter–antimatter oscillation had not been observed, this idea formed the conceptual foundation for

the quantitative theory of neutrino flavor oscillation, which was first developed by Maki, Nakagawa, and

Sakata (MNS) in 1962 [12] and further elaborated by Pontecorvo in 1967 [13], who developed the mod-

ern theory of neutrino oscillation in vacuum where the new ingredient is the mixing of different families

of neutrinos introduced by MNS. One year later the solar neutrino deficit was first observed in Homes-

take in 1968 [14], and that was followed by the paper by Gribov and Pontecorvo published in 1969 [15].

Atmospheric neutrino experiments, IMB [17] and Kamiokande-II [18], found an anomaly in the ratio of

the flux of muon to electron neutrinos. The SK reported the first evidence of the atmospheric neutrino

oscillations in 1998 [1], and SNO experiments provided clear evidence of solar neutrino oscillations in

2001 [16]. Thanks to the discovery of neutrino oscillations, Kajita (SK) and McDonald (SNO) received

the Nobel prize in 2015.

3.2 Neutrino mixing

To understand what neutrino oscillation is and how it occurs, we need to discriminate two kinds of

neutrino quantum eigenstates: one is the flavor eigenstate and the other is the mass eigenstate. Flavor

eigenstates, denoted by (νe, νµ, ντ ), are the quantum states produced or detected via weak interactions

together with charged leptons with the same flavor (e, µ, τ). Mass eigenstates, denoted by (ν1, ν2, ν3),

are the states of definite masses that are created by the interactions with Higgs boson or other mecha-

nisms. The mismatch between flavor states and mass states of neutrinos gives rise to neutrino mixing.

Then, a specific flavor state of a neutrino is given by a superposition of three mass eigenstates having

definite masses, written as

νl =
N∑
i=1

Uliνi , (1)

where l = e, µ, τ and i = 1, 2, 3, and Uli denotes a 3 × 3 unitary matrix, the so-called Pontecorvo–

Maki–Nakagawa–Sakita mixing matrix. The neutrino mixing elements mean how much each flavor can

contribute to the composition of each mass states, and how much each flavor is accompanied by a certain

mass eigenstate in the weak interaction. The 3 × 3 unitary mixing matrix is generally represented by 3

mixing angles and 6 phases. However, not all phases are physical observables. Let us see how many
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phases are physical by assuming neutrinos are Dirac particles. Under global phase transformations of

the leptons, neutrinos (νk) and charged leptons (lα) are transformed as νk → eiφkνk (k = 1, 2, 3) and

lα → eiφα lα (α = e, µ, τ). Then, the terms of the Lagrangian for the CC interactions in the mass basis,

Lcc =
g√
2
νkU

†γµlαW
+
µ , become

3∑
k=1

∑
α=e,µ,τ

νkLe
−iφkU∗

αke
iφαγρlαL ⇒ e−i(φ1−φe)

3∑
k=1

∑
α=e,µ,τ

νkLe
−i(φk−φ1)U∗

αke
i(φα−φe)γρlαL . (2)

In the right-handed side of Eq. (2), 5 phases can be eliminated by redefining lepton fields. Finally, we

see that the 3 × 3 unitary mixing matrix can be expressed in terms of 3 mixing angles and 1 phase. In

the standard parameterization, the lepton mixing matrix can be expressed as

U =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 ,

(3)

where cij and sij denote cos θij and sin θij , respectively, and δCP is a Dirac CP violating phase. If

neutrinos are Majorana particles, then there exist two extra CP violating phases. As will be shown

later, the mixing angles θ23, θ12 and θ13 are associated with oscillations of atmospheric neutrinos, solar

neutrinos and reactor neutrinos, respectively.

3.3 Neutrino oscillations in vacuum

Neutrino oscillations are quantum mechanical phenomena where flavor and mass eigenstates mis-

match. Then, flavor eigenstates of neutrinos are superpositions of mass eigenstates, written as |να⟩ =∑
k Uαk|νk⟩ with α = (e, µ, τ), k = (1, 2, 3). The time evolution of flavor eigenstates is given by

|να(t, x)⟩ =
∑
k

Uαke
−i(Ekt+pkx)|νk⟩ =

∑
β

(∑
k

Uαke
−i(Ekt+pkx)U∗

βk

)
|νβ⟩

=
∑
β

Aνα→νβ (t, x)|νβ⟩ ,

(4)

where Aνα→νβ (t, x) denotes the amplitude of the neutrino flavor transition and Ek, pk are neutrino en-

ergy and momentum. From Eq. (4), one can easily obtain the probability of the neutrino flavor transition,

Pνα→νβ (t, x) =
∣∣Aνα→νβ (t, x)

∣∣2 = ∣∣∣∣∣∑
k

Uαke
−i(Ekt+pkx)U∗

βk

∣∣∣∣∣
2

. (5)
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In natural units, t = x, we can make an approximation as follows:

Ekt− pkx ≃ (Ek − pk)L =
E2

k − p2k
Ek + pk

L =
m2

k

Ek + pk
L ≃

m2
k

2E
L , (6)

where L is the distance of neutrino propagation. Then, the probability is given by

Pνα→νβ (t, x) =

∣∣∣∣∣∑
k

Uαke
−im2

kL/2EU∗
βk

∣∣∣∣∣
2

=
∑
k,j

UαkU
∗
βkUαjU

∗
βjExp

(
−i

∆m2
kjL

2E

)
, (7)

where ∆m2
kj ≡ m2

k −m2
j .

As an example, let us consider the two-flavor oscillation with νe and νµ, for which the states produced

and detected are supposedly |νµ⟩ = − sin θ|ν1⟩+cos θ|ν2⟩ and |νe⟩ = cos θ|ν1⟩+sin θ|ν2⟩, respectively.

For this case, the transition (appearance) probability is given by

Pνµ→νe(L,E) = 2 sin2 θ cos2 θ

(
1− cos

(
∆m2

21L

2E

))
= sin2 2θ sin2

(
∆m2

21L

4E

)
. (8)

In the above expression, there are two fundamental parameters, θ and ∆m2
21, which are determined

from neutrino oscillation experiments for given L and E. The neutrino oscillation length is defined by

Losc ≡ 4πE
∆m2 . The so-called survival (disappearance) probability is given by

Pνµ→νµ(L,E) = 1− Pνµ→νe(L,E) = 1− sin2 2θ sin2
(
∆m2

21L

4E

)
. (9)

Figure 1 shows how the transition probability evolves along with L/E. The maximum height of the

Fig. 1: Plot of the transition probability Pνα→νβ (L,E) in terms of L/E (figure taken from Ref. [19]).

curve corresponds to sin2 2θ, and the horizontal distance between the first and second peak is 4π/∆m2.

At very long distances, it is averaged out to be half of the maximum height.
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Extending to the three-flavor paradigm, the probability of neutrino oscillation is given explicitly by

Pνα→νβ = δαβ − 4

3∑
i<j

Re(UαiUβiU
∗
αjU

∗
βj) sin

2

(
∆m2

jiL

2E

)
︸ ︷︷ ︸

CP conserving part: = PCPC
να→νβ

+ 2

3∑
i<j

Im(UαiUβiU
∗
αjU

∗
βj) sin

(
∆m2

jiL

2E

)
︸ ︷︷ ︸

CP violating part : = PCPV
να→νβ

,

(10)

where the first two terms correspond to the CP conserving part (≡ PCPC
να→νβ

), whereas the last one to the

CP violating part (≡ PCPV
να→νβ

= 8J
∑

γ ϵαβγ sin
∆m2

21L
4E sin

∆m2
31L

4E sin
∆m2

32L
4E ). In the limit that ∆m2

21 =

∆m2
sol ≪ |∆m2

atm| = |∆m2
31| ≃ |∆m2

32|, the survival and transition probabilities are approximately

given by

Pνα→να ≃ 1− 4|Uα1|2|Uα2|2 sin2
(
∆m2

21L

4E

)
− 4(1− |Uα3|2)|Uα3|2 sin2

(
∆m2

31L

4E

)
,

Pνα→νβ ≃ −4(Uα1Uβ1U
∗
α2U

∗
β2) sin

2

(
∆m2

21L

4E

)
+ 4|Uα3|2|Uβ3|2 sin2

(
∆m2

31L

4E

)
.

(11)

In addition, since the mixing angle θ13 is small compared with the two others, |Ue3|2 ≪ |Ue1|2, |Ue2|2,

and Ue1 ≃ cos θ12, Ue2 ≃ sin θ12. Adopting those approximations, the electron neutrino survival proba-

bility is simply given by

Pνe→νe ≃ 1− sin2 2θ12 sin
2

(
∆m2

21L

4E

)
. (12)

This result shows that the effect of solar neutrino oscillations is decoupled from that of atmospheric

neutrino oscillations. So, the formula (12) is good at probing solar neutrinos. On the other hand, in the

case that we can ignore the oscillating terms involving ∆m2
21, the oscillation probabilities are given by

Pνα→να ≃ 1− 4(1− |Uα3|2)|Uα3|2 sin2
(
∆m2

31L

4E

)
,

Pνα→νβ ≃ 4|Uα3|2|Uβ3|2 sin2
(
∆m2

31L

4E

)
.

(13)

These expressions are relevant to the atmospheric and short baseline reactor neutrino experiments.

3.4 Neutrino oscillations in matter

Wolfenstein for the first time studied a matter effect that may convert the flavor of a neutrino into another

one [20]. When neutrinos pass through matter, they experience forward scattering, mostly from electrons

they encounter along the way, which represents a contribution to the Hamiltonian with a potential pro-

portional to the density of electrons in matter. Similarly to optics, the net effect of this coherent elastic

scattering is the appearance of a phase difference, a refractive index, or equivalently, a neutrino effective

mass. As a result, the oscillation probability can be rather different from that in vacuum. For the case of
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the two-flavor scenario, the 2× 2 Hamiltonian in matter is given by

HM = Hvac +

(
Ve 0

0 Vµ

)
=

(
V 0

0 0

)
+ λ′′I , (14)

where Vα(=e,µ) denotes the potential energy associated with να and the term proportional to the unit

matrix I is irrelevant for flavor evolution. V is defined by Ve − Vµ =
√
2GFNe, where GF and Ne are

the Fermi constant and electron number density in matter, respectively. Hvac is given by

Hvac =
∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
, (15)

where we have used p ≃ E, with E being the average energy of the neutrinos. If Ne is constant,

diagonalizing HM leads us to modifications of the mixing angle and of the mass-squared difference,

denoted by θM and ∆m2
M , respectively. The explicit forms of θM and ∆m2

M are given as

tan 2θM =
tan 2θ

1− ACC
∆m2 cos 2θ

,

∆m2
M =

√
(∆m2 cos 2θ −ACC)2 + (∆m2 sin 2θ)2 ,

(16)

where ACC = 2
√
2GFNeE and (θ,∆m2) are the parameters in vacuum. Such a modification of the

parameters in matter leads to a shift of the mass eigenstates, which are related to flavor eigenstates as

follows:

|νe⟩ = cos θM |ν1m⟩+ sin θM |ν2m⟩ ,

|νµ⟩ = − sin θM |ν1m⟩+ cos θM |ν2m⟩ ,
(17)

where |νim⟩ denotes the mass eigenstate in matter. Mikheyev and Smirnov found that when ACC =

∆m2 cos 2θ, resonance occurs and neutrino mixing becomes maximal, with θM = π/4 [21]. In a

medium with constant density, there is no transition between ν1m and ν2m, which are the eigenstates

of propagation, so oscillation probability is simply given by Pνe→νµ ≃ sin2 2θM sin
(
∆m2

ML
4E

)
, which is

similar to the probability in vacuum.

In case that matter density varies with time, it is hard to solve the time-dependent Schrödinger equa-

tions for neutrinos analytically. In this case, ν1m and ν2m are not propagation eigenstates any longer

and transition between them occurs. Let us suppose that νe is produced in matter and detected later in

vacuum. Then, the flavor eigenstates in the production and detection are given by

production : |νe⟩ = cos θM |ν1m⟩+ sin θM |ν2m⟩ ,

detection : |νe(x)⟩ = cos θ|ν1(x)⟩+ sin θ|ν2(x)⟩ .
(18)

Neglecting the interference term, the average survival (appearance) probability is given by [22]

P̄νe→νµ(x) =
1

2
+

(
1

2
− Pc

)
cos 2θM cos 2θ , (19)
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where Pc represents the transition probability between ν1m and ν2m. An interesting limit exists, which

is called “adiabatic limit”, where the time evolution of the neutrino state is sufficiently slow, and then

each state evolves independently and transitions between ν1m and ν2m can be neglected. In the adiabatic

limit, Pc = 0 and then the probability P̄νe→νµ becomes

P̄νe→νµ(x) = cos2 θ cos2 θM + sin2 θ sin2 θM . (20)

There are two interesting limits. In the limit that ∆m2/2E ≪
√
2GFNe, θM goes to π/2 and then the

probability becomes P̄νe→νµ ≃ sin2 θ. In the limit that ∆m2/2E ≫
√
2GFNe, θM goes to the vacuum

angle and then the probability becomes P̄νe→νµ ≃ 1− 1
2 sin

2 2θ. These results are useful to interpret the

flux deficits of solar neutrinos observed at various experiments, as will be discussed later.

4 Neutrino experiments

4.1 Atmospheric neutrino experiments

Neutrino oscillation was discovered for the first time through the studies of atmospheric neutrinos, which

are produced by cosmic-ray interactions with nuclei in the atmosphere. Electron-neutrinos and muon-

neutrinos are produced mainly by the decay chain of charged pions to muons and to electrons. The event

ratio of νµ to νe, Rµ/e = (Nνµ + Nν̄µ)/(Nνe + Nν̄e), is expected to be nearly 2 below about 1 GeV,

based on the calculations of neutrino fluxes produced from interactions in the atmosphere, as shown in

Ref. [23]. Above this energy, the ratio increases due to the increasing probability of muons reaching

the ground before their decay. So, whether the ratio remains 2 in the detection of atmospheric neutrinos

or not is a good indicator for neutrino oscillation. In early-stage experiments such as Soudan 2 [24],

IMB [17] and Kamiokande [18], a deficit of Rµ/e was observed, but it was unclear whether this was

due to neutrino oscillations or not. Another important hint toward the understanding of the atmospheric

neutrino flux deficit was given in Ref. [25]. The atmospheric neutrinos enter the spherical Earth at a point

Fig. 2: Schematic figure of the production of atmospheric neutrinos (left) and a neutrino trajectory that
enters a spherical Earth with a zenith angle θdown and exits with θup (right). These figures are taken from
Ref. [26].
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with a zenith angle θdown and should exit the Earth at a point with θup. Obviously, θdown and θup are

related by θdown = π − θup, as can be seen in Fig. 2. Since cosmic rays enter into the atmosphere with

approximately equal rate in every position in the Earth, the numbers of downward-going and upward-

going neutrinos must be the same. Thus the flux is expected to be up-down symmetric. The Kamiokande

data [18] showed that the deficit of µ-like events depended on the zenith angle, but with relatively poor

event statistics.

In 1996, a much larger detector, SK, started taking data. The SK experiment used a 50 kt water

Cherenkov detector, and has obtained data with substantially improved statistics in 1998. The events

observed in SK are classified by 4 types. Events where vertex positions are located inside the fiducial

volume of the detector and all visible secondary particles stop in the detector are called “fully-contained”

(FC) events. The “partially-contained” (PC) events are νµ events with multi-GeV neutrino energies,

producing energetic muons which do not stop in the detector. High-energy νµ interactions in the rock

below the detector produce high-energy muons, which enter into the detector. Some of them stop in the

detector and are called “upward stopping muons”, others penetrate through the detector and are called

“upward through-going muons”. Figure 3 shows several plots of zenith angle dependence for the results

Fig. 3: Zenith angle distributions of µ- and e-like events at sub-GeV and multi-GeV scales from the SK
92 kt·year data for various data samples [26]. cos θ = 1(−1) corresponds to down(up)-going. The solid-
line histograms show the prediction without neutrino oscillations. The dashed-line histograms show the
prediction with oscillation (νµ → ντ ) for ∆m2

32 = 2.1× 10−3 eV2 and sin2 2θ23 = 1.0.

obtained by SK [26]. From the results, we see that the deficit of upward-going µ-like events depends

on the zenith angle in the multi-GeV energy range, the νµ to νe event ratio is smaller than what was

expected, the ratio of upward-going stopping/through-going muons is smaller than what was expected,
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and the zenith angle distribution for the upward through-going muons is distorted. These results represent

an evidence of the neutrino oscillation for which muon-neutrinos convert to other flavors of neutrinos

through their flight inside the Earth.

According to the neutrino oscillation formulae, the neutrino survival probability should follow the

sinusoidal function. The νµ survival probability should have a minimum at a certain L/E value, come

back to unity after traveling twice the distance, and continue oscillating. Using high L/E resolution

events only, SK found that the νµ survival probability shows a dip at a position corresponding to the first

minimum of the survival probability. Figure 4 shows the updated plot based on the 220 kt·yrs data of

Fig. 4: The ratio of data to MC events without oscillation as a function of the reconstructed L/E, together
with the best-fit 3-flavor expectation for neutrino oscillation and two alternative hypotheses with similar
shape. The dashed (blue) and dotted (green) lines show the best-fit expectations for neutrino decay and
neutrino decoherence, respectively. Figure taken from Ref. [27].

SK-I through SK-IV [27]. This was the first evidence that the νµ survival probability is represented by a

sinusoidal function as predicted by neutrino oscillations. In Fig. 4, the expected νµ survival probabilities

by neutrino oscillations as well as those from alternative models, which were able to explain the zenith

angle distributions, are shown with the detector L/E resolution taken into account. It is clear that

the alternative models cannot reproduce the dip seen near L/E = 500 km/GeV. Thanks to this result,

alternative hypotheses for the atmospheric neutrino flux deficit, such as neutrino decay (blue dashed) and

neutrino decoherence (green dotted), are ruled out.

Figure 5 shows the allowed regions of neutrino oscillation parameters (∆m2, sin2 2θ) at 68% (dashed

curves) and 90% (solid curves) C.L. from several experiments [27]. The thick-black and thick-gray

curves represent the allowed regions based, respectively, on the zenith angle analysis and the L/E anal-

yses in SK. Results from K2K (thin-gray) and MINOS (thin-black) experiments are plotted. The mixing

angle is consistent with the maximum mixing (sin2 2θ = 1.0). These parameters are much more accu-

rately measured compared with those in 1998.
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Fig. 5: Allowed regions of (∆m2 and sin2 2θ) at 68 (dashed lines) and 90% (solid lines) C.L. from
various experiments (figure taken from Ref. [27]). Thick-black and thick-gray lines show the allowed
regions based on the zenith-angle analysis and L/E analyses in SK, respectively. Also shown are the
allowed regions from K2K (thin-gray lines) and MINOS (thin-black lines) experiments.

4.2 Accelerator based neutrino experiments

One of the ways physicists can study neutrinos effectively is by making intense neutrino beams using

proton accelerators. The neutrinos produced in accelerators are typically muon neutrinos, and the ma-

chine can be tuned to create either neutrinos or antineutrinos. Figure 6 represents an overview of the

neutrino beam production from NuMI (Neutrinos at Main Injector), which is used at Fermilab to create

an intense beam of neutrinos aimed toward detectors in experiments such as MINOS, MINERνA, NOνA

etc. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advan-

Fig. 6: Overview of neutrino beam production from NuMI [28].
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tage of high-intensity neutrino beams, as well as a possibility of controlling and understanding their type

and kinematic properties to a much larger extent than for neutrinos from other sources. Neutrino beams

can be used for two different kinds of experiments, distinguished by how far away the detectors are from

where the neutrinos are made: short baseline (SBL) and long baseline (LBL) experiments. In the case

of SBL experiments using accelerator neutrinos, the detector sits close to the neutrino source, so that the

beam is very concentrated when it reaches the detector. The experiments are good for characterizing the

beam and learning about the neutrinos before they oscillate, and are also a good place to hunt for sterile

neutrinos and see how neutrinos interact with other particles. In the case of LBL experiments, they focus

on the oscillations while traveling a long distance through the Earth. Neutrinos have many opportunities

to interact with matter and have sufficient distance to change flavors. They are a good place to figure out

mass ordering (MO) and CP violation in the neutrino sector.

The off-axis neutrino beam results in a narrow band energy distribution of the produced neutrinos,

due to the correlation between the off-axis angle and neutrino energy [29]. The accelerator neutrino

beam is primarily a wide beam that has no clear boundaries, because the neutrinos in it do not move in

parallel, but have a certain angular distribution. The further away from the axis of the beam, the smaller

the number of neutrinos, and the distribution of energy also changes. The energy spectrum becomes

narrower and its maximum moves to lower energy. The off-axis angle can be optimized to maximize

the neutrino oscillation probability or to select an energy range in which the desired type of neutrino

interaction is dominant.

Fig. 7: νµ survival probability at 295 km (up) and νµ flux (down) versus Eν at T2K. Back, blue and red
regions correspond to the flux for axis angles of 0◦, 2.0◦, 2.5◦, respectively [32].

The first experiment with an off-axis neutrino beam was the T2K experiment, a LBL experiment

located in Japan [30]. The main components of T2K include a neutrino beam line, muon monitors, a

near detector complex ND280 located at 280 m from the proton interaction target, and the far detector of

SK (295 km from the neutrino source), at a 2.5 degree off-axis angle from the beam. The physics goals
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of T2K are (1) to improve the measurement of ∆m2
32 and sin2 θ23 using the νµ disappearance analysis,

and (2) to measure for the first time the θ13 oscillation parameter through the νe appearance analysis.

As illustrated in the lower panel of Fig. 7, the peak energy of the neutrino beam varies with different

off-axis angles. For T2K, the off-axis angle is at 2.5◦, so that the neutrino beam at SK has a peak energy

at about 0.6 GeV, close to the expected first oscillation maximum [32]. In 2011, T2K first announced the

observation of νe appearance events in a νµ beam [31]. It also provided the world’s best measurement of

the oscillation parameter θ23 and the first hint of CP violation in neutrino oscillations.

The MINOS experiment is designed to study the phenomena of neutrino oscillations by making pre-

cision neutrino oscillation measurements using the neutrino beam produced by NuMI [33]. Neutrinos

are observed in two detectors, one very close to where the beam is produced (near detector), and an-

other much larger detector 735 km away from northern Minnesota (far detector). MINOS measures the

difference in neutrino beam composition and energy distribution in both detectors for the purpose of

precision measurements of ∆m2
23 and θ23. In addition, MINOS looks for the appearance of νe in the far

detector, and will either measure or set a limit on the oscillation probability of νµ into νe. By observing

the disappearance of νµ, MINOS has made the world’s most precise measurement of the larger neutrino

mass splitting and has measured θ23 [34]. Using a dedicated antineutrino beam, MINOS has also made

the first direct precision measurements of the corresponding antineutrino parameters [34]. A search for

νe and ν̄e appearance has enabled a measurement of the mixing angle θ13. MINOS has performed the

first search for ν̄e appearance in a νµ beam and the first search for νe and ν̄e appearance with significant

matter effects. MINOS will continue as MINOS+ [35] using an upgraded beam with higher energy and

intensity, allowing precision tests of the three-flavour neutrino oscillation picture, in particular a very

sensitive search for the existence of sterile neutrinos.

The NOνA experiment [36] is designed to mainly observe the oscillation of νµ to νe by using the

NuMI beam and consists of two detectors, one in Fermilab and the other in northern Minnesota, allowing

neutrinos to travel more than 810 km. It is also capable of measuring δCP through the comparison

between the νµ → νe and ν̄µ → ν̄e oscillation channels. Recently, NOνA [37] provided a less precise

measurement of δCP, which is in slight tension with the T2K result (as will be shown later). Figure 8

shows the allowed regions of oscillation parameters (∆m2
32, sin

2 θ23) at 90% C.L. We note that the

contours overlap. NOνA, T2K and IceCube prefer the upper octant of θ23, while SK prefers the lower

one.

4.3 Solar neutrino experiments

Solar neutrinos are produced by nuclear fusion in the Sun’s core and are the most common type of

neutrinos passing through any source observed on Earth. The vast majority of neutrinos are produced

through the pp chain, a process in which four protons are combined to produce two protons, two neutrons,

two positrons, and two electron neutrinos, but their energy is so low (< 0.425 MeV) [13] that they are

very difficult to detect [39]. The electron capture of 7Be produces neutrinos at either roughly 0.862 MeV

(∼ 90%) or 0.384 MeV (∼ 10%). A rare side branch of the pp chain produces the 8B neutrinos with

a maximum energy of roughly 15 MeV, and these are the easiest neutrinos to detect [39]. A very rare

interaction in the pp chain produces the “hep” neutrinos, the highest energy neutrinos (up to 18 MeV)

predicted to be produced by the Sun [39]. Neutrinos are also produced by the CNO cycle, but that process
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Fig. 8: Allowed regions of (∆m2
32, sin2 θ23) at 90% C.L. from various experiments (figure taken from

Ref. [38]).

is considerably less important in the Sun than in other stars [39].

The timeline of solar neutrinos and their discovery dates back to the 1960s, beginning with the two

astrophysicists John N. Bahcall and Raymond Davis Jr. The experiment, known as the Homestake ex-

periment, aimed to count the solar neutrinos arriving on Earth. Using the standard solar model (SSM),

Bahcall was able to calculate the number of neutrinos arriving on Earth from the Sun [40]. At the same

time, Davis had proposed an idea to detect solar neutrinos by using a radioactive chemical process:

νe +
37 Cl →37 Ar + e− [41]. By conducting the experiment deep underground, they were able to avoid

cosmic ray interactions which could affect the process and results. As a surprise, the experimental value

of observed solar neutrinos was less than 20% of the theoretical prediction calculated by Bahcall [14]. It

was unknown at the time whether there were errors in the experiment or calculations, or whether Bahcall

and Davis did not explain all variables, but this discrepancy gave birth to what became known as the solar

neutrino problem. Later, the deficits of the solar neutrino flux were observed in some other experiments

such as GALLEX [42], SAGE [43] and SK [44], with numbers ranging from one half to two thirds. One

year after the discovery of neutrino oscillation at SK, the Sudbury Neutrino Observatory (SNO) started

collecting data [45]. That experiment aimed at observing the 8B solar neutrinos with around 10 MeV en-

ergy, and was designed to employ a large quantity of heavy water as the detection medium, which could

make it possible to observe both the electron neutrinos produced in the core of the Sun and all flavors

of neutrinos. The experiment was able to observe two separate reactions on deuteron, a CC reaction that

was sensitive only to νe and a NC that was equally sensitive to all flavors. Also, SNO could observe

neutrinos of all flavors via the elastic scattering (ES) of electrons by neutrinos. The neutrino flux in each
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Fig. 9: Flux of 8B solar neutrinos from SNO, measured via CC, NC and ES interactions. The axes
represent the inferred fluxes of νµ + ντ and νe. The sensitivity to NC and ES interactions give the slopes
of the bands. The solar neutrino flux predicted by the SSM [49] is indicated as ϕSSM (dashed line). The
intercepts of these bands with the axes represent the ±1σ errors. The dashed ellipses represent the best
estimates of ϕ(νe) and ϕ(νµτ ) at 1σ, 2σ and 3σ C.L.

reaction is parameterized in terms of the flux of each flavor as follows [46]:

ϕCC = ϕ(νe) ,

ϕES = ϕ(νe) + 0.1559 ϕ(νµτ ) , (21)

ϕCC = ϕ(νe) + ϕ(νµ,τ ) ,

where ϕ(νµτ ) = ϕ(νµ) + ϕ(ντ ) and the factor of 0.1559 is the ratio of the ES cross sections for νµτ
and νe above Teff = 5.0 MeV. Making this change of variables and fitting directly for the flavor content,

the null hypothesis test of no-oscillation is reduced to a test of the condition ϕ(νµτ ) = 0. With the

measurements of the systematic uncertainties on both acceptance and detector response, the results of

the flux for the constrained fit are given in units of 106 cm−2s−1 by [47]

ϕCC = 1.76+0.06
−0.05(stat)

+0.09
−0.09(syst) ,

ϕES = 2.39+0.24
−0.23(stat)

+0.12
−0.12(syst) , (22)

ϕNC = 5.09+0.44
−0.43(stat)

+0.46
−0.43(syst) .

The physical interpretation of the “flux” for each interaction type is that it is the equivalent flux of 8B νe’s

produced from an undistorted energy spectrum that would yield the same number of events inside the

signal region from that interaction as was seen in the data. It turns out that about 1/3 of solar νe survived

while 2/3 are transformed into the combined νµ and ντ . The inequality of the fluxes determined from

the CC, ES, and NC reactions strongly supported the evidence for the existence of non-νe components to

the 8B solar neutrinos. Figure 9 shows the constraints on the νe flux ϕ(νe) versus the combined νµ and
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ντ fluxes ϕ(νµτ ), derived from the CC, ES, and NC rates. Both measurements of the total active fluxes

ϕNC , as well as the sum of ϕ(νe)+ϕ(νµτ ), were in good agreement with SSM predictions, which could

confirm the validity of the SSM predictions on the solar neutrino fluxes.

Fig. 10: Measurements of the νe survival probability, obtained by Borexino, as well as SNO and SK
(figure taken from Ref. [51]). The shaded regions represent the MSW-LMA predictions.

The phenomenon of solar neutrino transition is complicated by the matter effect, as neutrinos prop-

agate outwards from their production point inside the Sun. As discussed before, the so-called “MSW”

effect, proposed by Mikheyev, Smirnov and Wolfenstein, enhances oscillation in an energy-dependent

fashion. As a result, neutrinos produced in different fusion reactions are affected to a different extent,

due to their different energies. While the MSW effect is negligible at sub-MeV energies, where vacuum

oscillation dominates, it becomes significant above about 5 MeV. The former case is relevant for the

results from the gallium experiments such as GALLEX and SAGE, which were sensitive to low energy

pp neutrinos, resulting in P̄νe→νµ ≃ 1− 1
2 sin

2 2θ ≃ 0.6. The latter condition is assumed to explain the

results from SK and SNO, which mostly detected 8B neutrinos, resulting in P̄νe→νµ ≃ sin2 θ ≃ 0.32.

A transition is predicted in between these two regimes, where the survival probability falls from the

vacuum-averaged value to the additionally-suppressed matter oscillation value. It is worthwhile to note

that in both the vacuum- and matter-dominated regions the survival probability is determined by the value

of the mixing angle, θ12, and not by the details of the interaction of neutrinos with matter.

In 2011, the Borexino experiment [50] first confirmed the energy dependence of the oscillation prob-

ability as well as the transition between two regimes for solar neutrinos, as presented in Fig. 10, which

is taken from Ref. [51].
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4.4 Reactor based neutrino experiments

4.4.1 KamLAND experiment

This was the first experiment aiming to find evidence for neutrino oscillation using a terrestrial source of

νe produced from nuclear reactors in Japan. KamLAND detected hundreds of νe through the inverse beta

decay νe+p→ n+e+ with a νe energy threshold of 1.8 MeV, achieving an enormous improvement over

previous attempts from any other detectors. The 180 km baseline, together with the emitted νe spectrum,

made KamLAND sensitive to neutrino oscillation with large mixing angle (LMA) as a solution to the

solar neutrino problem. Figure 11 shows the ratio of the measured to the expected flux for KamLAND, as

well as for previous reactor experiments, as a function of the average distance from the source. The solid

red circle corresponds to the KamLAND result obtained at a flux weighted average distance of 180 km.

The shaded region indicates the range of flux predictions corresponding to the 95% C.L. LMA region

from a global analysis of the solar neutrino data. Earlier measurements have seen no trace of anomaly,

whereas the first data from KamLAND [52] give a lower ratio, exactly as expected by the LMA solution

to the solar neutrino problem. The dotted curve, drawn with sin2 2θ = 0.833 and ∆m2 = 5.5×10−5 eV2,

is representative of a best-fit LMA prediction. The L0/E distribution plotted in Fig. 12 shows the

oscillatory behavior of the KamLAND data [53]. The solid (blue), dash (red) and dash-dot (green)

histograms are the expectations from the best-fit oscillations, best-fit decay and best-fit decoherence,

taking into account the individual time-dependent flux variations of all reactors and detector effects. It

turns out that the data from KamLAND follow the oscillatory shape of reactor νe’s arising from the

neutrino oscillation.

Fig. 11: The ratio of measured to expected ν̄e flux for reactor experiments (figure taken from Ref. [52]).

Compatibility of KamLAND with solar neutrino experiments: Figure 13 presents the allowed

region of parameter space (∆m2
21, sin

2 θ12) from solar neutrino experiments (green region) and from

KamLAND (blue region). The two results are compatible at the 1.1σ level, and the tension between

solar global result and KamLAND data is significantly reduced compared with the old data from solar

neutrinos. Combining both results, we obtain the region in red.
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Fig. 12: Ratio of the background- and geoneutrino-subtracted ν̄e spectrum to the expectation for no-
oscillation, as a function of L0(= 180km)/E [53]. The solid (blue), dashed (red) and dot-dashed (green)
histograms are the expectations from the best-fit oscillations, best-fit decay and best-fit decoherence.
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Fig. 13: Allowed regions of parameter space (∆m2
21, sin

2 θ12) from solar neutrino experiments (green
contours and green region) and from KamLAND (blue region) (figure taken from Ref. [54]). The red
region is the combined result. The filled regions give the 3σ C.L. results, the other contours shown are
at the 1 and 2σ C.L.

4.4.2 Measuring θ13

The mixing angle θ13 is a key parameter to understand the underlying structure of neutrino mixing

as well as to explore whether CP is violated in the lepton sector. There are lots of different ways to

learn about θ13. Two of the most popular involve particle accelerators and nuclear reactors. The best

measurements of θ13 come from nuclear reactor experiments such as Double Chooz [55], RENO [56]

and Daya Bay [57]. Detectors located near nuclear reactors provide such wonderful readings of θ13
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because reactors produce an extremely pure fountain of ν̄e’s, and θ13 is closely tied to how νe’s mix.

Reactor experiments look for the disappearance of ν̄e in the flux from the operating fission reactors. This

provides an intense source of neutrinos, in the energy range of a few MeV. The signal channel is the

inverse beta decay reaction on protons. The coincidence signal from the prompt positron and the delayed

neutron capture allows the unique identification of ν̄e events. For neutrinos in this energy range we can

ignore Earth’s matter effect and the survival probability is quite simply given by

Pν̄e→ν̄e ≃ 1− sin2 2θ13 sin
2 ∆m

2
31L

4E
− cos4 θ13 sin

2 2θ12 sin
2 ∆m

2
21L

4E
. (23)

𝜽𝜽𝟏𝟏𝟏𝟏

𝜽𝜽𝟏𝟏𝟏𝟏
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Fig. 14: Pν̄e→ν̄e in terms of L for short baseline (L = 1–2 km) and medium baseline(L ∼ 60 km) reactor
neutrinos.

Fig. 15: Comparison of the recent published results for θ13 from Daya Bay, RENO, Double Chooz, and
T2K, as well as the expected sensitivities of future experiments released by Daya Bay.

Figure 14 shows how Pνe→νe evolves with L for short baseline and medium baseline neutrinos. On

a 1–2 km baseline, the third (solar scale) term is around 1% of the second (atmospheric scale) term, so

66



NEUTRINO PHYSICS

it contributes very little uncertainty to the probability. As a result the survival probability gives direct

access to sin2 2θ13. Unlike the LBL experiments, the measurement of θ13 through the reactor experiment

is theoretically clean but, by the same token, they cannot determine the MO or find CP violation. On

the other hand, the third term is dominant over the second one for about 60 km baseline, such as for the

JUNO experiment [58]. Based on clear deficits of νe fluxes compared with the no-oscillation predictions

as well as the energy dependence of the oscillation probability, Daya Bay, RENO and Double Chooz

have measured the values of θ13 in 2012 [59–61], which turned out to be surprisingly large. Figure 15

presents the comparison of the recent published results for θ13 from Daya Bay, RENO, Double Chooz

and T2K, as well as the expected sensitivities of future experiments released by Daya Bay.

4.5 Global fit to neutrino data

Three-flavor oscillation parameters from the global fit to data as of November 2022 are presented in

Fig. 16 [62]. The results shown in the upper (lower) section are obtained without (with) the inclusion

of the tabulated χ2 data on atmospheric neutrinos provided by SK (SK-atm). The numbers in the 1st

and 2nd column are obtained by assuming the neutrino mass spectrum to be normal ordering (NO) and

inverted ordering (IO), respectively. The minimization with respect to IO provides the same results as

NO, except for the 3σ range of ∆m2
3l in the analysis without SK-atm. Note that ∆m2

3l = ∆m2
31 > 0

for NO and ∆m2
3l = ∆m2

32 < 0 for IO. Figure 17 shows the results of the χ2 analysis for the 3-flavor

oscillation [62]. The red (blue) curves are for NO (IO). The solid (dashed) lines are obtained without

(with) the inclusion of SK-atm χ2 data. For atmospheric ∆m2, we use ∆m2
31 for NO and ∆m2

32 for IO.

From the results, we see that θ13, θ12,∆m2
21, |∆m2

31| are well-measured, whereas the MO, the octant of

θ23 and CP phase have yet to be determined.

5 Neutrino mass

Neutrinos were presumed to be massless. Despite decades of experimental efforts, the only evidence

we have that neutrino masses are not zero comes from neutrino oscillation experiments. The masses of

neutrinos are still a mystery. It is a fundamental and important question, “how much mass do neutrinos

have?”. Measuring their masses would help point toward new physics beyond the SM. What we know

from the neutrino oscillation experiments are the two square-mass differences ∆m2
21 ∼ 7.5 × 1−5 eV2

and |∆m2
31| ∼ 2.5× 10−3 eV2. A recent combination of Planck data with Type Ia supernova luminosity

distances, Baryon Acoustic Oscillcation (BAO), and determinations of the growth rate parameter set the

most constraining bound to date,
∑

imi < 0.12 eV at 95% C.L. [63], which is based on the assumption

of the Λ (cosmological constant) cold dark matter model of the Big Bang theory. Although such con-

straint from cosmic surveys is indirect, it is safe to say that all three neutrino masses are smaller than

1 eV.

5.1 Neutrino mass ordering

Since the sign of the atmospheric mass splitting (|∆m2
31| ∼ 2× 10−3 eV2) remains unknown, there are

two options for the neutrino MO: normal and inverted. On the other hand, since ∆m2
21 turned out to

be positive from the solar neutrino experiments considering the matter effect, ν2 is always assumed to

be heavier than ν1. In the NO (IO), ν3 is the heaviest (lightest) neutrino. Figure 18 shows the pictorial
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−0.011 0.270→ 0.341 0.303+0.012

−0.011 0.270→ 0.341

θ12/
◦ 33.41+0.75

−0.72 31.31→ 35.74 33.41+0.75
−0.72 31.31→ 35.74

sin2 θ23 0.572+0.018
−0.023 0.406→ 0.620 0.578+0.016

−0.021 0.412→ 0.623

θ23/
◦ 49.1+1.0

−1.3 39.6→ 51.9 49.5+0.9
−1.2 39.9→ 52.1

sin2 θ13 0.02203+0.00056
−0.00059 0.02029→ 0.02391 0.02219+0.00060

−0.00057 0.02047→ 0.02396

θ13/
◦ 8.54+0.11

−0.12 8.19→ 8.89 8.57+0.12
−0.11 8.23→ 8.90

δCP/
◦ 197+42

−25 108→ 404 286+27
−32 192→ 360

∆m2
21

10−5 eV2 7.41+0.21
−0.20 6.82→ 8.03 7.41+0.21

−0.20 6.82→ 8.03

∆m2
3`

10−3 eV2 +2.511+0.028
−0.027 +2.428→ +2.597 −2.498+0.032

−0.025 −2.581→ −2.408
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 6.4)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.303+0.012
−0.012 0.270→ 0.341 0.303+0.012

−0.011 0.270→ 0.341

θ12/
◦ 33.41+0.75

−0.72 31.31→ 35.74 33.41+0.75
−0.72 31.31→ 35.74

sin2 θ23 0.451+0.019
−0.016 0.408→ 0.603 0.569+0.016

−0.021 0.412→ 0.613

θ23/
◦ 42.2+1.1

−0.9 39.7→ 51.0 49.0+1.0
−1.2 39.9→ 51.5

sin2 θ13 0.02225+0.00056
−0.00059 0.02052→ 0.02398 0.02223+0.00058

−0.00058 0.02048→ 0.02416

θ13/
◦ 8.58+0.11

−0.11 8.23→ 8.91 8.57+0.11
−0.11 8.23→ 8.94

δCP/
◦ 232+36

−26 144→ 350 276+22
−29 194→ 344

∆m2
21

10−5 eV2 7.41+0.21
−0.20 6.82→ 8.03 7.41+0.21

−0.20 6.82→ 8.03

∆m2
3`

10−3 eV2 +2.507+0.026
−0.027 +2.427→ +2.590 −2.486+0.025

−0.028 −2.570→ −2.406

Fig. 16: Three-flavor oscillation parameters from the fit to global data as of November 2022. The
numbers in the 1st (2nd) column are obtained assuming NO (IO), i.e., they are relative to the respective
local minimum.
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Fig. 17: Resulting χ2 distributions for the global 3ν oscillation analysis of Fig. 16. The red (blue) curves
are for NO (IO). The solid (dashed) lines are obtained without (with) the inclusion of SK-atm χ2 data.

representations of the two MO possibilities [65]. While recent T2K [66], NOνA [67] and SK [68]

experiments report individually that their data favor mildly NO, a study [69] shows no favor in that

indication with the combined data from the experiments. This ambiguity in determining the neutrino

MO is worthy of further investigation. Measurements of |∆m2
31| are carried on in three main chain

channels: (i) νµ → νµ (or ν̄µ → ν̄µ) with accelerator-based LBL (A-LBL) neutrino experiments and

atmospheric neutrino experiments; (ii) νµ → νe (or ν̄µ → ν̄e) with A-LBL neutrino experiment; and

(iii) ν̄e → ν̄e with the reactor-based SBL(R-SBL) neutrino experiments. The probabilities for the two

cases, NO and IO, as function of the neutrino energies for the first two channels are shown in Fig. 19.
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Fig. 18: Pictorial representations of two possible neutrino mass orderings (figure taken from Ref. [64]).

It is deduced from Fig. 19 that the sensitivity to the neutrino MO is marginal in the νµ → νµ (or

ν̄µ → ν̄µ) disappearance channels. The effect of the neutrino MO, on the other hand, is much stronger

in the νµ → νe (or ν̄µ → ν̄e) appearance channels. The relatively large modification of the oscillation

probabilities in this channel is due to the coherent scattering of electron (anti-) neutrinos on the electrons

present in the matter—the MSW effect. However, one must consider the fact that the νµ → νe (or

ν̄µ → ν̄e) appearance probability is just a few percentage, limiting the statistics of the collected data

sample. Moreover, extracting the neutrino MO effect from the appearance probabilities is non-trivial

since the sign of ∆m2
31 is tangled severely with δCP and the mixing angle θ23 (it also depends on the

mixing angle θ13, which we know with 3% precision), which have been measured with relatively large

uncertainty. In addition, it is important to note that the modifications of the νµ → νe and ν̄µ → ν̄e

appearance probabilities due to matter effects are not the same.

Fig. 19: Neutrino oscillation probabilities for νµ (or νµ) disappearance (left) and νe appearance (right)
for the T2K and NOνA experiments with two possible MO hypotheses (figure taken from Ref. [70]).

Due to the mutual dependence of the considered parameters in the neutrino oscillation probabilities,

determining the neutrino MO will apparently enhance the sensitivity of the CP-violation search and vice
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Fig. 20: The νe survival probabilities in the reactor-based neutrino experiments with short (left) and
medium (right) experimental baselines (figure taken from Ref. [70]).

versa. As a result, the program to elucidate the neutrino MO and the search for CP violation in the A-LBL

neutrino experiments are inextricably linked. So far, in the case of the R-SBL neutrino experiments, we

have investigated with detectors placed relatively close to the reactor core, a few hundred meters to a few

kilometers from the neutrino source. As shown on the left side of Fig. 20, the sensitivity to the neutrino

MO is marginal. However, JUNO [58], with a medium-baseline of 50 km, can improve the sensitivity

to the neutrino MO thanks to the interference between two oscillation terms [71], which are driven by

∆m2
21 and ∆m2

31, respectively.

For JUNO, the most challenging thing to achieve is an excellent resolution of the reconstructed neu-

trino energy to unravel the neutrino MO effect from the detector response effect. The recent progress

on the JUNO calibration [72] demonstrates that this unprecedented achievement in energy resolution is

viable. In addition, it is important to note that, unlike when measuring the neutrino MO with an A-LBL

experiment, the sensitivity to the neutrino MO in the reactor-based medium baseline (R-MBL) neutrino

experiments is independent of the value of δCP. Thus, resolving the neutrino MO with A-LBL and

R-MBL neutrino experiments is complementary [73].

5.2 Dirac or Majorana masses ?

5.2.1 Dirac masses

For a Dirac field given by ψ =

(
φ

χ

)
, we can separate left-handed and right-handed fields by using

projection operators, PL(R), as follows:

ψL = PLψ =
1

2
(1− γ5)ψ =

(
φ

0

)
,

ψR = PRψ =
1

2
(1 + γ5)ψ =

(
0

χ

)
.

(24)
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Similarly, ψL = ψPR, ψR = ψPL. Then a Dirac field is composed of two fields ψL and ψR as ψ =

ψL + ψR. The fermion mass term is written as ψψ = ψRψL + ψLψR, and the coefficients of the terms

correspond to the mass of the fermion ψ. This result shows that a fermion mass can be thought of as a

L ↔ R transition. For an electron (or positron), eL (or ēR ≡ (ec)R: a short bar (-) on top stands for an

antiparticle) is a component of an iso-doublet with I3 = −(+)12 , whereas eR(ēL) is an iso-singlet. Then,

a Dirac mass of electrons (positrons) is constructed by combining both eL(ēR) and eR(ēL). But the

combination of eL(eR) and ēR(ēL) is not allowed due to violation of conservation of electric charge. In

order to make neutrinos massive, a new degree of freedom with an iso-singlet is required. A very simple

possibility is to postulate the existence of new Weyl fermions, NR, with no SM quantum numbers. They

do not affect SM gauge anomaly cancellations and are only modestly constrained by experiments. SM

gauge singlet fermions couple to the SM only via neutrino – Higgs boson Yukawa interactions;

LνY uk = yνLHNR + h.c. , (25)

where yν is the Yukawa coupling, L is a lepton doublet and H is a SM Higgs. After electroweak

symmetry is broken, the left-handed neutrino ν in L and a singlet NR combine into a massive neutrino

with mass mD = yνv, where v is the vacuum expectation value of H , which is called a neutrino Dirac

mass. This type of neutrino mass is similar to that of other charged leptons. In order to make the

neutrino Dirac mass tiny, of order 0.1 eV, the Yukawa coupling yν must be around 10−12. The size

of yν is very small compared with other Yukawa couplings in the SM. Such a small Yukawa coupling

may serve as a hint of new physics beyond the SM. In general, mD is a N × N complex matrix when

we consider N generation of leptons. Then, mD is diagonalized by a bi-unitary transformation like

mD = UMDV †, where U corresponds to the rotation matrix of left-handed neutrinos and V to that of

right-handed neutrinos.

5.2.2 Majorana masses

In 1937, Majorana formulated a new theory of neutrinos, whereby the neutrino and the antineutrino are

indistinguishable, and suggested the antineutrino-induced β-decay as an experimental verification of this

hypothesis [74]. To understand the properties of Majorana neutrinos, let us consider some basic relations.

The charge conjugation of the field ψ is defined by

ψc ≡ ψ̄ = Cψ
T
, C = iγ2γ0 , (26)

where C is the charge conjugation operator and γi is the gamma matrix . Then, the following relations

hold:

(ψR)
c = ψ̄L , (ψL)

c = ψ̄R . (27)

Let ψL =

(
φ

0

)
, then its charge conjugate becomes (ψL)

c = Cγ0ψ∗
L =

(
0

−iσ2φ∗

)
. Combining both

gives a fermion satisfying the relation ψ = ψ̄, which is the condition for a Majorana neutrino. We need
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only φ to describe a Majorana neutrino, as follows:

ψM = ψL + (ψL)
c =

(
φ

−iσ2φ∗

)
= ψ̄M . (28)

Note that, in the same representation for a Majorana neutrino, a Dirac fermion can be written as ψD =(
φ

−iσ2χ∗

)
, (φ ̸= χ). Then, if φ = χ, it becomes a Majorana fermion. Using Eq. (27), a Majorana

fermion can be written as

ψM =

{
ψL + (ψL)

c = ψL + ψ̄R

ψR + (ψR)
c = ψR + ψ̄L

. (29)

Then, the Majorana mass term becomes

L = ψMMψM + h.c. = ψLM(ψL)
c + ψ̄LMψL + h.c. (30)

Note that the Majorana mass matrix is symmetric, and can therefore be diagonalized by an unitary mixing

matrix such as U †MU∗ = Mdiag. The Majorana mass terms are not invariant under ψ → eiαψ. So,

lepton number is not conserved in the Majorana mass term.

If the nature of the neutrinos is Majorana, then they can be emitted and absorbed in the same process

without showing up in the corresponding final state [75]. The neutrinoless double beta decay (0νββ),

(A,Z) → (A,Z+2)+2e−, is a commonly proposed and experimentally pursued theoretical radioactive

decay process that would prove a Majorana nature of the neutrinos, as shown in Fig. 21. It would also

indicate the first ever signal of non-conservation of total lepton number. The amplitude for the decay rate

depends on the effective neutrino mass, defined by ⟨mββ⟩ =
∑

i U
2
eimi. Experimentally of interest and

thus measured is the sum of the kinetic energies of the two emitted electrons. It should equal the total

released kinetic energy of the respective nucleus for neutrinoless double beta emission. To search for

neutrinoless double beta decay, there are currently a number of experiments underway and several future

experiments were proposed for increased sensitivity.

Fig. 21: Feynman diagram for neutrinoless double beta decay due to exchange of light Majorana neutrino
ν (figure taken from Ref. [76]).
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5.2.3 Seesaw mechanism

Once NR is introduced to make neutrinos massive, as far as the SM is concerned, there is no symmetry

to prohibit the mass term, MNRN̄L where M is the Majorana mass. Then, it is possible to consider the

Majorana neutrino N = NR + N̄L. Putting possible mass terms for neutrinos together, the mass terms

can be written in the matrix form as follows:

(νL, N̄L)

[
0 mD

mT
D M

](
ν̄R

NR

)
. (31)

Note that the mass term combining νL and ν̄R implies I3 = 1, Y + −2 and thus is forbidden by weak

isospin. But if a new scalar triplet with I3 = 1, Y = 2 is introduced, the mass term can be generated.

Assuming M ≫ mD, diagonalization of the mass matrix in (31) leads to two mass eigenvalues of which

the lighter one is given by mν = −mDM
−1mT

D. As M gets larger, mν gets smaller. Its behavior looks

like a seesaw, so we call it a seesaw mechanism [77–83] that successfully makes mν tiny when M is

large enough. There is no guide to determine the scale of mD as well as of M . Taking mD ∼ 100

GeV, we need M ∼ 1015 GeV to achieve mν ∼
√
∆m2

atm ∼ 0.05 eV. Alternatively, there are so-called

type-II [84–87] and type-III [88] seesaw models in which a new scalar triplet and a new fermion triplet

are introduced, respectively. There are also several models that realize tiny neutrino masses via quantum

effects [89,90]. The seesaw mechanisms, as well as the radiative generations of neutrino masses, provide

possible answers to why light neutrino masses are so tiny. However, there is no experimental hint for

them yet.

5.3 Determination of neutrino mass

As mentioned, we cannot determine the absolute values of neutrino masses through neutrino oscillation

experiments. Then, how can we determine them experimentally? One possible way is to use decay

kinematics. The simplest case is the 2-body at-rest-decay kinematics of π → µνµ, for which one can

easily obtain the relation

m2
ν = m2

π +m2
µ −

√
4m2

π(|p⃗µ|2 +m2
µ) . (32)

Using the relation, we can extract the value of mν . However, it is hard to do it with this method, mainly

because of uncertainties in measuring mπ,mµ and |p⃗µ|. Now, the most plausible method is to extract

information on the scale of neutrino mass from the endpoint spectrum of the 3H → 3He+ + e− + ν̄e,

beta decay, with energy threshold E0 = 18.6 keV. The idea that the neutrino mass can be deduced in that

way was already recognized by Fermi [3] in 1934, when he formulated the theory of beta decay. This

method is called a “direct measurement” since it is model independent and does only rely on energy and

momentum conservation. The number of events of the tritium beta decay depends on

m2(νe) =
∑

|Uei|2m2(νi) . (33)

The endpoint spectrum of the beta decay would be shifted along with the value of m2(νe). But, to

observe modification of the endpoint spectrum, we need an eV-scale E resolution, very high luminosity,
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very low background and an accurate theoretical prediction of the integral spectrum. There are a few

experiments to determine the absolute scale of neutrino mass.

The KATRIN experiment [91] addresses these challenges by combining a high-activity molecular

tritium source with a high-resolution spectrometer of the magnetic adiabatic collimation and electrostatic

(MAC-E)-filter type16. Recently, KATRIN reported a new upper limit on the neutrino mass of 0.8 eV, by

using the Lokhov–Tkachov or Feldman–Cousins technique, which is the first time that a direct neutrino

mass experiment has entered the sub-eV mass range [92]. Figure 22 presents the evolution of the best fit

m2(νe) results from various neutrino-mass measurements to date. Compared with other measurements,

the result from the KATRIN experiment has narrowed the statistical and systematic uncertainties.

Fig. 22: Evolution of the m2(νe) best-fit values and total uncertainties from neutrino mass experi-
ments [92].

6 CP violation in neutrino oscillations

Charge conjugation is the transformation associated with the exchange between a particle and an an-

tiparticle, whereas parity changes a left-handed state into a right-handed state, and vice-versa. Under CP

transformation, left-handed and right-handed fermion fields become, respectively,

(ψL)
CP = iσ2ψ∗

L , (ψR)
CP = −iσ2ψ∗

R . (34)
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An important observable concerned with CP symmetry is the so-called Jarlskog invariant defined by

Im[U∗
αkUβkUαjU

∗
βj ] = ±J = ±Ĵ sin δCP, with Ĵ = c12s12c23s23c

2
13s13 for the lepton sector. Under

CP transformation, the mixing element U and J go to U∗ and −J , respectively. As can be seen from

Eq. (10), the oscillation probability is composed of a CP conserving part (second term) and a CP violating

part (third term). Since the CP violating part vanishes for α = β, CP violation can be explored through

the appearance channels, να → νβ . Under CP transformation, the transition probability Pνα→νβ (=

PCPC
να→νβ

+ PCPV
να→νβ

) goes to Pν̄α→ν̄β (= PCPC
να→νβ

− PCPV
να→νβ

). CP violation shows up as a difference

between Pνα→νβ and Pν̄α→ν̄β , which is called the CP asymmetry, ACP
αβ , defined by

ACP
αβ ≡

Pνα→νβ − Pν̄α→ν̄β

Pνα→νβ + Pν̄α→ν̄β

=
PCPV
να→νβ

PCPC
να→νβ

(α ̸= β) . (35)

Since the detection of νe and νµ is far easier than that of ντ , the golden channel for CP asymmetry is

ACP
µe . To leading order in ∆m2

21L/(2E) ≡ ∆21, the CP asymmetry ACP
µe approximately becomes

ACP
µe ≃ 4 sin∆21Ĵ sin δCP

sin2 θ23 sin
2 2θ13

≃ c23 sin 2θ12
s12s13

(
∆m2

21

∆m2
31

)
∆m2

31L

4E
∼ 0.26

(
∆m2

31L

4E

)
. (36)

We see from Eq. (36) that the asymmetry grows linearly with L, but for fixed detector size and neutrino

energy E, the flux of neutrinos decreases as ∼ 1/L2. The first oscillation maximum occurs at

L0 =
2πE

∆m2
31

≃ 495

(
E

GeV

)(
2.5× 10−3

∆m2
31

)
km . (37)

For an example, the detector of the T2K experiment is located at 295 km away from the accelerator, so

as to observe the first oscillation maximum for neutrinos with E ∼ 0.6 GeV. The observation of CP

asymmetry is achievable at LBL experiments. Indeed, the measurement of CP violation can become

more complicated because of the fact that the oscillation probabilities for neutrinos and anti-neutrinos

are in general different in matter even if δCP = 0. The approximated form of the transition probability

in matter is given by Ref. [93]

Pνα→νβ ∼ sin2 θ23 sin
2 2θ13 sin

2 ∆31

2

(
1− 8a

∆m2
31

cos 2θ13

)
+ c213(c

2
23 sin

2 2θ12 + 4s213s
2
23s

4
12 − 2s13s

2
12 sin 2θ12 sin 2θ23 cos δ) sin

2 ∆21

2

+ c213(s
2
13 sin 2θ12 sin θ23 cos δCP − 4s223s

2
12s

2
13) sin

2 ∆31

2
sin

∆21

2
(38)

+ 8Ĵ sin
∆31

2
sin

∆21

2
sin

∆32

2
sin δCP

+ 2 cos 2θ13 sin
2 2θ13s

2
23

(
aL

4E

)
sin

∆31

2
cos

∆32

2
,

where a[eV2] = 2
√
2GFNeE = 7.6 × 10−3ρ[g/cm3]E[GeV] stands for the matter effect. GF , Ne

and ρ represent the Fermi constant, number density of electron and matter density of Earth, respectively.

Under CP transformation, a goes to −a, which mimics CP violation.

Figure 23 shows how Pνµ→νe and Pν̄µ→ν̄e differently evolve over E for fixed δCP and L. The left
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Fig. 23: Transition probabilities Pνµ→νe and Pνµ→νe as functions of neutrino energy for T2K baseline L
= 295 km (a) and NOνA baseline L = 810 km (b) [94].

Fig. 24: Bi-probability diagram in the space Pνµ→νe vs. Pνµ→νe for the NOνA experiment.

(right) panel corresponds to the T2K (NOνA) baseline. The solid (dashed) lines correspond to the neu-

trino (anti-neutrino) oscillation, and the red (blue) curves to δCP = 270◦(0◦). Figure 24 presents a CP

trajectory diagram in bi-probability space as a powerful tool for a pictorial representation of the genuine

CP and matter effects in neutrino oscillations [95]. If we vary δCP from 0 to 2π, we can draw a closed

trajectory, which becomes an ellipse, in the P − P̄ plane. How far the ellipse is away from the origin

is proportional to sin2 θ13. For δCP = 0 or π, there is no difference between the two probabilities. Tak-

ing into account matter effects, the ellipse is shifted to two different directions according to the sign of

∆m2
31, i.e. matter effects for (+)∆m2

31 enhance P , whereas for (−) they suppress P . The magnitude

of shift is larger as the matter effects, as well as the baseline, are larger. If the distance is short, the two

trajectories may overlap. The octant of θ23 can be distinguished using this diagram. Figure 25 shows
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Increasing Energy

0.6 GeV 2 GeV 3 GeV

Fig. 25: Comparison of bi-probabilities for the T2K, NoνA and DUNE experiments (figure taken from
Ref. [96]).

how the neutrino MO and CP violation can be disentangled for experiments with different L and E. As

expected, the chance to disentangle them would be increased as E and L get larger. There are some

implications on CP violation in the lepton sector coming from the results of NOνA [97] and T2K [98]

experiments. Figure 26 shows the favored regions of the parameter space (δCP, sin
2 θ23). The upper

(lower) panel corresponds to NO (IO). The colored regions are results obtained from NOνA, whereas

the regions surrounded by black contours are from T2K. We see that both results for IO are consistent,

whereas there is a tension between them for NO at 2 σ level. The NOνA and T2K experiments will

continue to take data till 2026 and 2027, respectively, and then the statistics of present analyses are ex-

pected to be double. The future experiments such as DUNE and Hyper-Kamiokande will achieve the

sensitivities to determine whether CP is violated in the lepton sector or not.

7 Conclusion

In the past few decades, a very important breakthrough in particle physics was made by the discovery

of neutrino oscillations, which has shown neutrino properties beyond the SM. In this lecture, a full un-

derstanding of the various aspects of the neutrino oscillations was provided. The various experiments

studying neutrinos from different sources were discussed, ranging from the pioneering ones to the ex-

periments still in operation and to those in preparation. I have shown how the parameters concerned

with neutrino oscillations were investigated and determined from the experiments. The most important

milestones and the results of neutrino experiments were presented. The origin of neutrino masses and the

principle behind the observed leptonic structure have been addressed. I have presented various attempts

to identify the nature of neutrinos, establish the absolute values of neutrino masses, determine their or-
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Fig. 26: Allowed regions of (δCP, sin2 θ23) from the T2K (black contours) and NOνA (colored regions)
experiments [97, 98]. The upper (lower) plot corresponds to NO (IO).

dering, and measure the CP violating phase. Despite being challenging, exciting experimental programs

are underway and planned for the future and will be able to address the unsolved issues.
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The structure of strong interaction dynamics, namely Quantum Chromodynamics, is discussed within
the framework of perturbation theory. After a brief introduction to the historical developments, we
will discuss in detail the role of perturbative QCD to understand the physics at various high energy
colliders involving hadrons. We will discuss how certain large threshold logarithms that show up at
every order in perturbation theory can be resummed to all orders. We will also discuss some of the
recent advances in performing higher order perturbative corrections.

1 Introduction

The question of what constitutes the visible matter around us has been there for several centuries. There

have been different answers at different times. Thanks to several experiments and theoretical studies, we

could probe distances that are of the order of less than a few fermi to unravel what constitutes the matter

and the dynamics that govern them. The Standard Model (SM) of particle physics is extremely successful

in explaining electromagnetic, weak and strong forces within a single framework. However, there are

several phenomena that we do not have explanations for within the SM and the efforts to understand

them in a single framework are still going on. The Large hadron collider (LHC) at Geneva is designed

not only to test the SM to unprecendental accuracy but also probe physics beyond the SM. At LHC, high

energetic protons are collided to shed light on the dynamics at the smallest legnth scale possible.

Among the four forces, the force that binds the nucleons inside the nucleus of every atom is the

strongest. In addition, it is blind to electric charges of the nucleons. Since the colliding particles at the

LHC are hadrons, the strong interaction plays an important role. Hence, it is important to understand this

force at short distances. In this article, we discuss how to apply QCD to test SM at high energies.

In order to set stage, we will give brief introduction to Quark Model that describes the structure of

hadrons in terms of its constituents called quarks and anti quarks. Then, we present how observables at

hadron colliders can be expressible in terms of these constituents. We exploit QCD factorisation of short

and large distance physics at high energies to study these observables. We show that the key property of

QCD, namely aymptotic freedom allows us to compute short distance part reliably. Often the fixed order

perturbative predictions are affected by large logarithms resulting from soft glons in the threshold region.

We show how resummation of such logarithms to all orders can be done to make sensible predictions.

Precision measurements at the LHC demand precise predictions from QCD. The later is difficult to obtain

due to prence of large number of Feynman diagrams and the corresponding multi loop and phase space

integrals. We present some of the modern technique to deal with these quantities.

This article should be cited as: QCD, Vajravelu Ravindran, DOI: 10.23730/CYRSP-2024-001.85, in: Proceedings of the 2022
Asia–Europe–Pacific School of High-Energy Physics,
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2 Quark model

In the 1950s [1], large numbers of strongly interacting particles, called hadrons, were discovered. It was

a challenging task not only to classify them in a systematic fashion but also to look for constituents that

act as building blocks of these composite objects. The hadrons can be classified in two classes based on

their spin quantum numbers. Those with half integral spins are called baryons and the ones with integral

spins are called mesons. Hadrons such as the proton, neutron, Λ and Σ are baryons, while π±, π0, K±

and K0 are mesons.

Symmetry transformations play an important role in physics and strong interaction is no exception.

One finds that the interchange of protons with neutrons does not affect the strong interaction dynamics.

Hence, it was proposed that these two hadrons can form a basis for isospin transformations, in particular

the isospin doublets of the continuous group SU(2) and the strong interaction is said to be invariant

under SU(2) transformations. The symmetry group SU(2) allows to accommodate other hadrons. For

example, charged as well as neutral pions, π± and π0, form an isotriplet of the same SU(2). Similarly the

Σ baryons, Σ± and Σ0, form an isotriplet. Hadrons such as η, ω, Λ, etc. are simply isosinglets. Among

the particles,K mesons and Λ baryons showed a peculiar behaviour, namely, they were produced in large

numbers through the strong interaction, while their life times were longer and their decays proceeded

through weak interactions. This led to the introduction of a new quantum number called ‘strangeness’,

akin to the electric charge. One finds that the strong interaction preserves strangeness, while the weak

interaction violates it. The symmetry transformation was found to be a U(1) symmetry and the conserved

charge is called hypercharge Y , where Y is sum of baryon number and strangeness. Remarkably, the

electric charge of every hadron that was observed was found to satisfy a relation, called the Gell-Mann–

Nishijima relation, Q = T3+Y/2, where T3 is the generator of SU(2). In summary, both isospin SU(2)

and strangenessU(1) symmetries enormously simplified the classification of baryons in terms of a pair of

quantum numbers (T3, Y ). Gell-Mann proposed a larger symmetry group SU(3), where the symmetry

group SU(2)⊗ U(1) is a subgroup, and arranged the mesons and baryons in a scheme called the eight-

fold way. Using the higher-dimensional representations of SU(3), a large number of baryons and mesons

were classified and, interestingly, this led to the prediction of so far unobserved hadrons that were later

discovered. While this approach was successful, the mere proliferation of the number of hadrons posed

a serious challenge that was eventually resolved thanks to a proposal made by Gell-Mann and Zweig

independently. It states that all known hadrons can be thought of as composite particles made of point-

like spin-1/2 fermions, called quarks. The model assumes that there are three types of quarks, called

up, down and strange quarks, which form a multiplet that transform in the fundamental representation of

SU(3). The anti-quarks are in the conjugate representation. According to this model, mesons are made

up of a pair of quark and anti-quark, and they come in both singlet and octet representations, because

8 × 8 = 1 + 8. Similarly, the baryons are made of three types of quarks and they show up in one of

the representations of 3 × 3 × 3 = 1 + 8 + 8 + 10. While the quark model was enormously successful

in explaining most of the hadronic phenomena, the existence of hadronic states having Jp = 3/2+

posed a serious problem, as it apparently violates the spin-statistics theorem. The reason is that the wave

functions of these spin-3/2 hadrons remain symmetric under the interchange of their constituents, as a

result of their spins being aligned and the spatial part of the wave function being in the symmetric zero-

angular-momentum state. The solution to this problem was the introduction of a new quantum number,
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called color, for each of the quark states. An additional SUc(3) symmetry group corresponding to the

color quantum number was introduced. Each type of quark can come in three different colors and, hence,

each of them transforms in the fundamental representation of SUc(3). Before we study the role of this

symmetry group in strong interaction physics, we will discuss two developments that played an important

role in understanding the structure of the hadrons [2].

3 Form factors and structure functions of hadrons

Scattering experiments provide valuable information on both the structure of the particles involved and

the dynamics that govern the various interactions. In the following we will discuss two distinct scattering

processes involving hadrons.

3.1 Form factors

In elastic electron–proton scattering one can explore the spatial structure of the proton in terms of electric

and magnetic form factors. For example, one finds, for e−(k) + P (P ) → e−(k′) + P (P ′),

dσ

dΩ
=

α2

4ω2 sin4(θ/2)

ω′

ω

{
A cos2(θ/2) +B sin2(θ/2)

}
, (1)

where α is the fine structure constant, omega and omega′ are the energies initial and final state leptons

resepectively,A = (G2
E+τG

2
M )/(1+τ) andB = 2τG2

M . HereGE = F1−τκF2 andGM = F1+κF2,

with τ = Q2/4/M2, Q2 = −q2. Here q = k′ − k and M is the mass of the hadron. The angle θ is

the scattering angle in the rest frame of the hadron. κ defines the anomalous magnetic moment of the

proton, related to it by µp = (1 + κ)e/2/M . The form factors Fi capture the spatial structure of

the hadrons and can be extracted from experiments. The best fit to the data leads, for the proton, to

GE = [1 + Q2/(0.71 GeV2)]−2 up to Q2 = 10 GeV2. There exist several fits demonstrating the

non-trivial structure of the hadrons through the Q2 dependence of the form factors.

3.2 Deep inelastic scattering

When the energy transfer in the scattering is large, the scattered electrons loose a lot of energy, leading to

deep inelastic scattering events [3]. This leads to breaking up the proton into pieces, which then fragment

into a bunch of hadrons in the final state. The inclusive cross section, where the hadronic final states (X)

are summed over, can be used to study the structure of hadrons at very high energies. The dominant

contribution arises from the scattering involving a single photon exchange and the corresponding cross

section factorises into leptonic and hadronic pieces. That is,

dσ =
1

4k.P

[
4πe4

Q4
Lµν(k, q)W

µν(q, P )

]
d3k′

2ω′(2π)3
, (2)

where we have dropped the mass of the lepton. The lepton tensor is given by Lµν =

2(kµk
′
ν + kνk

′
µ − Q2/2gµν). The hadronic tensor is found to be Wµν = (8πM)−1

∑
X(P ′),s <

P (P, s)|jµ,em(0)|X(P ′) >< X(P ′)|jν,em(0)|P (P, s) > ×(2π)4δ(4)(P + q − P ′). Here s stands for

the spin of the hadron P and subscript em indicates the current is electromagnetic. Unlike the leptonic
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tensor, the hadronic tensor is not calculable perturbatively, however, using Lorentz covariance and the

invariance of the strong interaction under parity and time reversal transformations, it can be decom-

posed as Wµν = (−gµν + qµqν/q
2)W1(q, P ) + (Pµ − P · q/q2qµ)(Pν − P · q/q2qν)W2(q, P ), where

Wi(q, P ) = Wi(P · q,Q2,M2), with i = 1, 2, are unknown scalar functions, called structure functions.

The inclusive cross section is found to be

dσ

dQ2dν
=

πα2

4ω2 sin4(θ/4)

1

ωω′

(
W2(ν,Q

2) cos2(θ/2) + 2W1(ν,Q
2) sin2(θ/2)

)
. (3)

Since we sum over all the final state hadrons, it is straightforward to show that the structure functions

are related to the hadronic matrix elements of the commutator of a pair of electromagnetic currents at

different space-time points. Applying the ideas of current algebra, Björken found a remarkable scaling

behaviour of the structure functions whenQ2 and P ·q/M = ν are taken to be infinity while keeping their

ratio xBj = Q2/(2Mν) fixed. These limits are called Björken limits. The scaling here means that the

structure functions in the Björken limit (limBj) depend only on the Björken variable xBj , irrespectively

of Q2. In particular, Wi(ν,Q
2) satisfy limBj [MW1(ν,Q

2)] = F1(xBj) and limBj [νW2(ν,Q
2)] =

F2(xBj). The scaling behaviour of the structure functions was confirmed in a series of deep inelastic

scattering experiments.

3.3 Parton model

Let us try to find out the consequence of the scaling [4]. We find that if we compute the differential

cross section dσ/dQ2dν for the elastic scattering of an electron on a point-like object, then the elastic

cross section takes exactly the same form as in Eq. (3), with W1(µ,Q
2) replaced by Q2/(4M2)δ(ν −

Q2/(2M)) and W2(ν,Q
2) by δ(ν − Q2/(2M)). This implies that F2(xBj) =

∫ 1
xBj

dzF2(z)
ν
z δ(ν −

Q2/(Mz)). This can be interpreted as the incoherent sum of elastic scatterings on point-like objects,

each one carrying a momentum fraction z of the parent hadron. Along this line, Feynman and Björken

proposed a model to explain the observed Björken scaling of the structure functions in terms of point-

like objects, called partons. It is called the parton model. The salient features of the parton model are

easy to understand in the infinite-momentum frame of the target hadron. The model assumes that, for

an observer at rest, a fast-moving hadron will appear like a collection of weakly interacting point-like

particles, called partons. Inspired by the success of the quark model, one assumes that the partons have

spin 1/2 and carry fractional charges like quarks. Due to time dilation, the time scale of the interactions

among partons will be much longer than that of the scattering against the highly energetic probe: the

partons look almost free. Hence, the inelastic scattering can be thought of as an incoherent sum of elastic

scatterings on point-like particles, each one weighted by a probability function. Naively, we can write,

dσ(xBj , Q
2) =

∑
a

∫ 1

xBj

dzf̂a/P (z) dσ̂a

(xBj

z
,Q2

)
, (4)

where f̂a/P (z) is the probability of finding a parton of type ‘a’ with a momentum fraction z of the parent

hadron (i.e., the parton momentum is p = zP ) and is called parton distribution function (PDF), while

dσ̂a represents the elastic scattering of an electron on a parton of type a. Remarkably, the hadronic
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cross section factorises into process-independent but target-dependent PDFs and target-independent but

parton-dependent cross sections. Note that the partonic cross section depends on the parton-level Björken

variable given by zBj = Q2/2p · q = xBj/z. Using this parton model, one finds 2xBjF1(xBj) =

F2(xBj) =
∑

i e
2
ixBjfi(xBj), where ei is the electric charge of the parton of type i. Measurements of

these structure functions using charged- as well as neutral-current probes can be used to extract PDFs

of different types for a wide range of xBj . Note that the PDFs contain the long-distance physics and

hence they are not computable within the framework of perturbation theory. The PDFs satisfy various

sum rules: for example, the energy momentum conservation leads to the momentum sum rule given by∑
i

∫ 1
0 dz zfi(z) = 1. Such sum rules can be used to constrain the fits of PDFs from various experiments.

The parton model can be used to study other high-energy scattering processes, involving hadrons in both

the initial and final states. For example, within the parton model, the cross section for the production of

a pair of leptons in proton–(anti)proton scattering experiments can be expressed in terms of two PDFs as

dσ

dQ2
=
∑
ab

∫ 1

τ
dx1f̂a/P1

(x1)

∫ 1

x1

dx2f̂b/P2
(x2)dσ̂ab

(
τ

x1x2
, Q2

)
. (5)

Here the PDFs fc/Pi
(xi), where c = a, b are the parton types, are process independent and dσ̂ab are

parton-level cross sections. Semi-inclusive DIS processes, where one tags a specific hadron with mo-

mentum P ′ in the final state, can be described in the parton model as

dσ(xBj , zF , Q
2) =

∑
a,b

∫ 1

xBj

dz1f̂a/P (z1)

∫ 1

zF

dz2D̂P ′/b(z2)dσ̂ab

(
xBj

z1
,
zF
z2
, Q2

)
. (6)

Here, DP ′/b(z2) is called the fragmentation function and describes the probability that a parton of type

b fragments into a hadron P ′ that carries away a fraction z2 of the parent parton momentum. zF =

2P ′·q/Q2 is the scaling variable corresponding to the final-state hadron. It is worth emphasising that both

PDFs and fragmentation functions are process independent and, hence, can be used to predict various

observables at hadron colliders. In summary, the parton model provides an elegant framework to compute

a variety of observables in high-energy hadronic scattering experiments.

4 Quantum chromodynamics

While the parton model is enormously successful, one can not ignore the effect of strong interactions

among partons. Hence, the next task was to look for a suitable quantum field theory that captures the

underlying dynamics of the strong interactions among the partons [5]. Gross, Wilzcek and Politzer

independently found the right gauge theory that correctly describes the interaction among the partons.

It is called Quantum Chromodynamics. The underlying gauge group turned out to be SUc(3), where

the subscript ‘c’ denotes the color quantum number. It contains quark fields, ψi(x), and anti-quarks,

ψi(x), that come in three different colors, i = 1, 2, 3, and transform in the fundamental representation of

SUc(3). Indicating with ψ the colum vector of components ψi, one finds ψ(x) → ψ′(x) = U(α⃗(x))ψ(x)

where U(α⃗(x)) = exp(iα⃗(x) · T⃗ ) is an element of the SUc(3) group and α⃗(x) is the space-time-

dependent angle and T⃗ is the short-hand notation for the eight generators T a of SUc(3). Similarly,

the anti-quarks transform in the conjugate representation of SU(3). The gauge fields in this theory
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are called gluons (Aa
µ, a = 1, . . . , 8) and transform in the adjoint representation of SUc(3). Denoting

Aµ = Aa
µT

a, one finds that under SUc(3) Aµ transforms as Aµ → A′
µ = U(α⃗)(Aµ − i/gs∂µ)U

†(α⃗).

These transformations are gauge transformations. The gauge-invariant Lagrangian takes the following

form:

LQCD = ψj (i/Djk −mδjk)ψk −
1

4
F a
µνF

µνa +G.F. (7)

where /D =
(
I − igsT

aAa
µ

)
and Fµν = F a

µνT
a = ∂µAν − ∂νAµ − igs [Aµ, Aν ]. The parameter gs in the

gauge transformation as well as in the covariant derivative Dµ is the strong coupling constant and m is

the mass of the quark field. While the gauge symmetry provides the right framework to understand the

interaction between quarks and anti-quarks, in order to remove the two unphysical degrees of freedom

associated with gluons a gauge-fixing term (G.F.) is introduced. We choose the Lorenz gauge, i.e.,

−1/2ξ(∂µA
µa)2. Within the framework of perturbation theory, this introduces additional scalar fields in

the formalism. These scalar fields, unlike the standard scalar field operators, do not commute, but they

anti-commute like fermions and hence they are called ghost fields. They are denoted by ca (for ghost

field operators) and ca (anti-ghost field operators). Since the ghost fields are introduced to deal with

unphysical degrees of freedom of the gluons, they are merely a mathematical construction and hence do

not correspond to any real physical particle. In the Lagrangian, the terms that are bilinear in the fields

describe their propagation:

LK.E. = ψi(i/∂ −m)ψi −
1

2
(∂µA

a
ν − ∂νA

a
µ)

2 − 1

2ξ
(∂µA

νa)2 + (∂µc
a)(∂νca) . (8)

The terms that describe the interactions of quark, anti-quark and gluon fields in the Lagrangian are found

to contain the following terms:

Lint = gsA
a
µψγ

µT aψ − gsf
abc(∂µA

a
ν)A

µbAνc − g2sf
eabfecdAa

µA
b
νA

µcAνd . (9)

The first term describes the vectorial interaction of quarks and anti-quarks with gluons, the second and

third terms describe self interactions of three and four gluons. These are present due to the non-Abelian

nature of the underlying gauge group SUc(3). The G.F. part of the Lagrangian takes the following form

in the Lorenz gauge:

LG.F. = ∂ca∂νca − gsf
abc(∂µc

a)Aµbcc . (10)

The first term describes the propagation of ghost particles and the second term their interaction with the

gauge fields.

4.1 Ultraviolet renormalisation

As mentioned previously, we use perturbation theory to compute various quantities from the Lagrangian

and the strong coupling constant is assumed to be small enough to treat it as an expansion parameter. We

use Feynman’s diagrammatic approach throughout. Feynman rules for propagators of the fields and for

the interaction terms are obtained from LK.E. and Lint, LG.F., respectively. The standard perturbative

90



QCD

techniques along with the Feynman rules, n-point Green’s functions of the fields, on-shell amplitudes

etc. can be computed in powers of the coupling constant gs. Explicit calculations show that the Green’s

functions as well as the on-shell amplitudes diverge. These divergences come from loop integrals of

virtual diagrams. When the momentum circulating in the loop approaches ±∞, the corresponding loop

integral develops divergences. They are called ultra-violet (UV) divergences. Consider, for example,

the quark propagator at one-loop level. It is easy to show that in 4 dimensions the Feynman integral

that appears in the computation is proportional to a divergent integral of the form
∫
d4k(k2(k − p)2)−1,

which behaves as log(k2) for large k2 and diverges when k → ±∞. Here p is the momentum of the

external quark propagator.

The presence of UV divergences in these quantities poses a serious problem beyond leading order

in perturbation theory. This can be solved using the technique of renormalisation. To apply this tech-

nique, we first need to regularise the theory so that the Feynman integrals are rendered finite. While

there exist several ways to regularise the theory, dimensional regularisation (DR) turns out to be the most

elegant as well as convenient one. In DR, the space-time dimension is extended to n dimensions, where

n is not only a continuous parameter but also a complex number. If we parametrise n as n = 4 + ε,

then the integrals diverge in the limit n → 4, or equivalently ε → 0. In 4 + ε dimensions, the mass

dimensions of the fields will start depending on the variable ε. In addition, the dimensionless coupling

constant develops non-zero mass dimension in the regularised theory. We use an arbitrary mass µ to

define a dimensionless coupling constant in the regularised theory: i.e., the coupling in n dimensions,

denoted by gs,n, can be written as ĝs/µε/2, where ĝs is dimensionless. Here, µ is called regularisation

scale. In addition, the computations involving contraction of Lorentz indices as well as traces of Dirac

matrices are performed in n dimensions.

Having regularised the theory, the next step is to renormalise the fields, coupling and the mass

by performing a set of transformations involving re-scaling, as explained in the following. We first de-

note quark, anti-quark, gluon and ghost fields in the regularised theory collectively by {Φα}. Then,

the renormalised fields {Φα,R} are defined by Φα = Z
1
2
Φα

(µ2R) Φα,R(µ
2
R). Similarly, the coupling

constant is renormalised as gs/µ
ε
2S

1
2
ε = Z

1
2
as(µ

2
R) gs,R(µ

2
R)/µ

ε
2
R and the mass is renormalised by Zm.

The Z’s are called renormalisation constants. The constant Sε = exp(ε/2(γE − log(4π)), with γE
is Euler–Mascheroni constant. The re-scaling can be interpreted as a factorisation of the unregularised

quantity into the renormalisation constant and the renormalised quantity. Hence, renormalisation is mul-

tiplicative in nature.

Note that there is an arbitrariness in defining the renormalisation constants. The scale µR is intro-

duced to quantify the arbitrariness. In other words, the choice of µR uniquely defines the divergent part

of the renormalised term. It is called renormalisation scale. Like the coupling constant, the mass m can

also be expressed in terms mR using the mass renormalisation constant.

Finally, one can substitute these relations in the Lagrangian to write it in terms of renormalised

fields, coupling and mass and their renormalisation constants. One can easily show that the Lagrangian

for 4 + ε dimensions takes the following form:

LQCD(Φα, gs,n,mn, µ, ε) = LR(Φα,R, gs,R,mR, µR, ε) + LCT(Φα,R, gs,R,mR, {Z}, µR) , (11)
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where the first term on the right hand side is identical to the original Lagrangian except that it contains

only the renormalised fields, coupling and mass. The second term depends, in addition, on the renormal-

isation constants and is called counter term (CT).

Given this Lagrangian in terms of renormalised quantities and renormalisation constants, our next

task is to obtain finite n-point Green’s functions and on-shell amplitudes in the limit ε → 0. This is

possible provided that the renormalisation constants can be adjusted in such a way that they contain all the

UV divergences at every order in perturbation theory, without any introduction of new renormalisation

constants. These divergences show up as poles in ε in the limit n → 4. While the renormalisation

scale parameterises the scale at which divergences are factored into the renormalisation constant, the

arbitrariness associated with the finite part of each constant remains, and can be fixed by defining a

suitable scheme, called renormalisation scheme. We choose the MS scheme, in which we combine the

Euler constant γE and Sε with the poles in the renormalisation constants.

Given any scheme, the renormalisation scale plays an important role in the understanding of the

underlying dynamics of the quantum field theory. The unrenormalised fields, coupling and mass or,

equivalently, the corresponding Green’s functions or on-shell amplitudes do not depend on the renormal-

isation scale. For example, the n-point unrenormalised Green’s function ⟨0|T
∏n

i=1 Φi(pi)|0⟩, where T

is the time-ordering operator, satisfies µ2Rd/dµ
2
R⟨0|T

∏n
i=1 Φi(pi)|0⟩ = 0, which leads to

µ2R
d

dµ2R
ln⟨0|T

∏n
i=1 Φi(pi)|0⟩ = −µ2R

d

dµ2R
lnZΦ(as(µ

2
R), ε) = ΓΦ(as(µ

2
R)) , (12)

where as = g2s(µ
2
R)/16π

2 and ΓΦ(as(µ
2
R)) is called the anomalous dimension. The above equation is

called the renormalisation group equation (RGE). The solution to the RGE provides a relation among

the Green’s functions at different scales. In addition, using RGE and the fixed-order results for ΓΦ

and as(µ
2
R) one can systematically sum up the large logarithms of physical scale(s) to all orders in

perturbation theory. In the following we show how the coupling constant can be renormalised in the MS

scheme and its consequences. The unrenormalised âs = g2s/16π
2 is related to renormalised as(µ2R) =

g2s(µ
2
R)/16π

2 through âs = Zas(as(µ
2
R), ε)(µ

2/µ2R)
ε/2S−1

ε as(µ
2
R). The fact that µ2R(d/dµ

2
R)âs = 0

leads to

µ2R
d

µ2R
as(µ

2
R) = β(as(µ

2
R), ε) = −as(µ2R)µ2R

d

dµ2r
logZas(as(µ

2
R), ε)−

ε

2
as(µ

2
R) . (13)

With the knowledge of the renormalisation constant Zas , we can determine β(as(µ2R), ε) order by order

in as. In the limit ε → 0, we find that β0(as) = −β0a2s − β1a
3
s + . . .. To leading order, we have

µ2R(d/dµ
2
R)as(µ

2
R) = −β0a2s(µ2R) +O(a3s). The solution to the RGE for as is found to be

as(µ
2
f ) =

as(µ
2
i )

1 + as(µ2i )β0 log

(
µ2
f

µ2
i

) +O(a2s) , (14)

where µi and µf are initial and final scales. The constant β0 in QCD is found out to be β0 = 11/3 CA −
2/3 nf , where CA is the Casimir of SU(N). For QCD, CA = 3. nf is the number flavours of quarks.

Because β0 > 0, one sees that the coupling constant falls off as the scale increases. This implies that
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at high energies quarks (anti-quarks), gluons and ghost particles will behave like free particles. This

phenomenon is called asymptotic freedom. This property allows one to use perturbative techniques to

study strong interaction at high energies. At low energies, we find that particles confine to form hadrons

through the phenomenon called confinement.

4.2 QCD improved parton model

Our next task is to apply perturbative QCD (pQCD) to study high-energy scattering processes involving

hadrons. We consider the DIS process discussed already using the parton model. Recall that in the

parton model the cross section can be expressed in terms of two structure functions Fi, with i = 1, 2,

which are related to tree-level scattering cross sections of leptons off the quarks as well as the anti-

quarks, convoluted with the PDFs of the respective quark or anti-quark. This is called the leading-order

prediction. This result will get modified if the strong interaction dynamics are included. In pQCD,

the parton-level cross section σ̂a(ε) admits the expansion in powers of the strong coupling constant

as: σ̂a(ε) =
∑∞

i=0 a
i
s(µ

2
R)σ̂

(i)
a (as(µ

2
R), ε). Here the subscript a can be q , q, or g. The perturbative

corrections resulting from the order-as term are called next-to-leading-order contributions; similarly,

those from the a2s term are called next-to-next-to-LO (NNLO) corrections, and so on. At as order we

encounter scattering processes, such as one-loop corrections to e− + q(p) → e− + qf(p′), and real

emission processes, namely e−+q(p)(q(p)) → e−+q(p′)(q(p′))+g(k) and e−+g(p) → q(p1)+q(p2).

These contributions are UV finite. However, they are sensitive to infrared (IR) divergences in 4 space-

time dimensions. There are two types of IR divergences: soft and collinear. The soft divergences show

up in both real and virtual diagrams when the momentum of the gluon vanishes, i.e., kµi → 0. Collinear

divergences arise whenever two massless partons become collinear to each other.

We illustrate below the origin of soft and collinear divergences at as level. Let us begin with pure

virtual contributions to quark/anti-quark initiated processes. We find that there will be QCD corrections

to the quark–anti-quark–photon vertex as well as self-energy corrections to the quark/anti-quark legs. Let

us consider, for example, the vertex correction within the dimensionally regularised set up. If we restrict

ourselves to the region where the momentum of the gluon approaches zero, the leading contribution

results from the integral ∫
dnk

1

k2(k + p)2(k + p′)2
, (15)

where k is the loop momentum and p and p′ are the momenta of the incoming quark and the outgoing

quark, respectively. Note that the above integral diverges in 4 dimensions when k → 0. In addition, we

observe that, due to the presence of the propagators 1/(k + p)2 and 1/(k + p′)2, we encounter collinear

divergences. For example when k is parallel to p or p′ and in the centre of mass frame of the quarks, in

4 dimensions, the angular part of the integral, namely
∫ 1
−1 d cos(θ)1/(1± cos(θ)), diverges. We observe

that in 4 + ε dimensions the soft and collinear divergences appear as poles in ε. Often, there will be

configurations in which both soft and collinear divergences appear together, giving rise to double-pole

terms in ε.

Like virtual contributions, the real emission processes also develop soft and collinear divergences

through the phase space integrals [6]. For example, the one corresponding to the parton-level process
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e−+q(q) → q(q)+g+g contains an integral of the form
∫
dn−1k/(2k0)

∫
dn−1p′/(2p0)(k−p)−2(k+

p′)−2δ(4)(q + p − p′ − k). This integral diverges when k → 0; similarly, when k is parallel to p or p′

it gives rise to collinear divergences in n = 4 dimensions and develops poles in ε when ε → 0. We

also find configurations containing both soft and collinear divergences simultaneously. They are, again,

represented by double-pole terms in ε.

According to to the Kinoshita–Lee–Nauenberg (KLN) theorem, the soft divergences cancel be-

tween pure virtual corrections and those with at least one real parton emission. Similarly, the final-state

collinear divergences also cancel among themselves when they are summed up. However, those resulting

from configurations involving an initial-state parton do not vanish. According to the KLN theorem, if

we sum over degenerate states the resulting cross section will be free of collinear divergences. In DIS, as

we do not integrate inclusively over the momentum of the initial-state parton, the collinear singularities

arising between initial- and final-state partons remain at every perturbative order.

In summary, the higher-order contributions to parton-level subprocesses always develop initial-

state collinear divergences due to the presence of massless partons. This is consistent with the KLN

theorem and hence not unexpected. In the following we discuss how these initial-state collinear diver-

gences go away when we perform a sum over the momenta and quantum numbers of initial-state partons,

as we expect from the KLN theorem. We demonstrate this using the mass factorisation theorem.

The mass factorisation theorem encapsulates the factorisation properties of parton-level cross sec-

tions that develop initial-state collinear divergences due to the presence of massless partons. As per the

theorem, the collinear divergences factor out from the parton-level process in a way that only depends

on the state of the incoming parton before it scatters off the electron state. The result depends on how

the initial-state parton undergoes the QCD dynamics to become another parton that eventually scatters

with the electron. According to the factorisation theorem, we can express in DIS a generic parton-level

subprocess involving a parton type “a” as

σ̂a(z,Q
2, ε)

z
= σ̂(0)(Q2)

∑
b=q,q,g

∫ 1

z

dz1
z1

∆b

(
z
z1
, Q2, µ2F , ε

)
(z/z1)

Γba(z1, µ
2
F , ε) . (16)

Here, ∆a is called coefficient function, which is finite when ε→ 0, and Γba is called the Altarelli–Parisi

kernel, which contains the collinear divergences present in σ̂a. Note that the collinear divergences are

factored out from σ̂a at the scale µ2F , called factorisation scale. Γba in the MS scheme only contains the

poles in ε. Since the collinear divergences are purely due to the QCD dynamics among the partons, they

are process independent. In other words, the kernels Γba(z, µ
2
F , ε) do not depend on the interaction of

the partons with the leptons. Both ∆a and Γba are normalised in such a way that they can be expanded in

powers of as(µ2F ): X =
∑∞

i=0 a
i
s(µ

2
F )X

(i)(z,Q2, µ2F , ε), where X = ∆a,Γba, with X(0) = δ(1− z).

In the above expression, we have arranged the integrand in such a way that the integral is a Mellin

convolution of two functions, namely ∆a(x)/x and fb(x). The Mellin convolution of “n” functions

f1(x), f2(x) . . . fn(x) is defined by

f1(x)⊗ f2(x)⊗ . . .⊗ fn(x) =

n∏
i=1

(∫ 1

0
dxifi(xi)

)
δ

(
x−

n∏
i=1

xi

)
. (17)
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Note that the convolution is symmetric under interchange of the functions. In addition, under Mellin

transformation the above convolution results in a simple product of Mellin moments of fi(x). If we

define the Mellin transformation by fN =
∫ 1
0 dxx

N−1f(x), then

∫ 1

0
dxxN−1f1(x)⊗ f2(x)⊗ . . .⊗ fn(x) =

n∏
i=1

fi,N . (18)

Note that the right hand side contains simple products of Mellin moments of the functions fi(xi).

In the notation of convolutions, the mass factorisation formula reads as

σ̂a(z,Q
2, ε)

z
= σ̂0(Q

2, ε)
∑

b=q,q,g

∆b(z,Q
2, µ2F , ε)

z
⊗ Γba(z, µ

2
F , ε) . (19)

Expressing the parton model result for DIS in the convolution form and substituting the mass factorised

result, we obtain

1

xBj
σ(xBj , Q

2) = σ̂0(Q
2, ε)

∑
a,b=q,q,g

f̂a(xBj)⊗ Γba(xBj , µ
2
F , ε)⊗

1

xBj
∆b(xBj , Q

2, µ2F , ε) . (20)

Since the left hand side is finite, one expects that the convolution of f̂a and Γba should be finite. Since

the convolution between fa and Γba sums up the initial state configurations, the collinear divergences

contained in Γba cancel against those in f̂a in accordance with the KLN theorem. Hence, we can relate

their convolution to a finite function, fb(z, µ2F ), as

fb(z, µ
2
F ) =

∑
a=q,q,g

f̂a(z)⊗ Γba(z, µ
2
F , ε) . (21)

We call fb the mass-factorised parton distribution function, which is defined at the factorisation scale µ2F
and is finite when ε→ 0. In terms of fb, the hadronic cross section reads

1

xBj
σ(xBj , Q

2) = σ̂0(Q
2)

∑
a,b=q,q,g

fa(xBj , µ
2
F )⊗

1

xBj
∆b(xBj , Q

2, µ2F ) . (22)

The fact that f̂a is independent of µ2F leads to the renormalisation group equation in the infrared

(collinear) sector of QCD:

µ2F
d

dµ2F
fa(z, µ

2
F ) =

1

2
Pab(z, µ

2
F )⊗ fb(z, µ

2
F ) , (23)

where Pab is the matrix element of P (z, µ2F ) = µ2Fd log Γ(z, µ
2
F , ε)/dµ

2
F are finite and are called

Altarelli–Parisi (AP) splitting functions. They are computable in perturbative QCD as: P =∑∞
i=0 a

i
s(µ

2
F )P

(i)(z). Few comments are in order: while fb and ∆b depend on the scale µF , the con-

volution of them is independent of µF , provided that the AP splitting functions P and the coefficient

functions ∆a are known to all orders in as(µ2F ). Since these perturbative results are known only to few

orders in as, the predictions will always be sensitive to µF . However, by varying the scale around the

hard scale Q2, we can estimate the theoretical uncertainty due to the truncation of the perturbative series.
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The other source of theoretical uncertainty is from ultraviolet renormalisation. Note that ∆b is com-

putable in perturbative QCD as a power series in as(µ2R). While ∆b is µR-independent, the truncated

result will be sensitive to µR. Like µF , we can vary µR to estimate the error resulting from the truncation

of the perturbative series of ∆b. In addition to these dependences, the predictions will depend on the hard

scaleQ2 even if the series is summed to all orders. Explicit calculations reveal that the Q2 dependence is

through certain logarithms whose coefficients are controlled by the β function as well as by AP splitting

functions. Due to the presence of these logarithms, the hadronic cross section will depend on the hard

scale Q2, leading to a violation of the Björken scaling. The fact that the coefficients of these log(Q2)

terms, namely beta and the AP splitting functions, are computable order by order in as, one can predict

the exact dependence of the hadronic cross section on Q2. Remarkably, precise measurements of DIS

cross sections at various Q2 values confirm the predictions of perturbative QCD.

4.3 Threshold resummation

So far, we studied the factorisation of collinear divergences in the partonic cross sections and their

universal/process-independent structure in terms of β and AP splitting functions. Our next task is to

study the factorisation properties of σ̂a in the threshold limit [8]. The threshold limit in DIS is defined

by the limit when z → 1. We restrict ourselves to quark or anti-quark initiated processes. The threshold-

enhanced terms in the mass factorised cross sections ∆q(q) take the following form:

∆q(q)(z, as) = ∆δ
q(q)(as) δ(1− z) +

∞∑
j=0

[
∆D

q(q), j(as) Dj(z)

+ ∆log z
q(q), j(as) log

j(1− z)

]
+∆bNSV

q(q) (z) .

(24)

The upperscript labels δ and D indicate the terms proportional to δ(1 − z) and to the distributions

Dj (defined below). Both terms, which are the leading ones, are called “soft-plus-virtual” (SV). The

label log z indicates the “next-to-SV” (NSV) terms, proportional to logj(1 − z), while the last term

describes the remaining “beyond NSV” (bNSV) processes. The D terms contain the “+” distributions

Dj(z) = (logj(1− z)/(1− z))+, defined by∫ 1

0
dzDj(z)f(z) =

∫ 1

0
dz

(
logj(1− z)

1− z

)(
f(z)− f(1)

)
. (25)

In the threshold region, these distributions can become dominant. In addition, at a given order “n”

in as, these distributions will be as big as the inverse of 1/ans , resulting in order-one terms of the form

asβ0 logN . These terms can spoil the reliability of the perturbative approach in the threshold region. The

solution to this problem is to sum up these order-one terms in a systematic fashion, so that the modified

perturbative expansion provides reliable predictions. This was achieved independently by Sterman and

by Catani and Trentedue in the Mellin “N” space. The result takes the form

log∆res
q(q),N (as) = log g̃0(as) + log(N)g1(w) +

∞∑
i=0

aisgi+2(w) , (26)
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where w = asβ0 log(N). In the above equation g0 is independent of N and they result from δ(1 − z)

terms in the threshold limit, while gi(w) are from Dj(z) terms. The SV limit in the N space corresponds

to taking the large-N limit. In the large-N limit, being as small, w becomes order-one and, hence, we

need to rearrange the perturbative series in such a way that the sum over “w” terms is performed to all

orders, as in the above equation.

In the following, see Ref. [7], we study the all-order perturbative structure of the coefficient func-

tion in terms of Q2 and z, by setting up a Sudakov-type differential equation in the kinematic region

where z is closer to the threshold limit z = 1. We begin with the mass factorisation of σ̂q and restrict

ourselves only to D and log z terms in σ̂q and Γbq, with a, b = q, q, g; then we find that in Γbq only b = q

will contribute. Note that Γgq does not contain any “+” distributions or terms that can lead to SV or NSV

terms for ∆q in the limit z → 1. Similar arguments can easily convince one that ∆g does not contain

any SV terms. You will recall that the partonic cross section σ̂q beyond leading order gets contributions

from processes of three different sources: pure virtual, pure real emissions and real emission-virtual to-

gether. The pure virtual contribution to σ̂q is found to be |F̂q(âs, µ
2, Q2, ε)|2 where Fq is nothing but the

form factor of the vector-boson–quark–anti-quark vertex. We factor out |F̂q|2 from σ̂q and define the “jet

function” SJ,q as the following quotient:

SJ,q(âs, µ
2, q2, z, ε) = |F̂q(âs, µ

2, Q2, ε)|−2δ(1− z)⊗ σ̂SV+NSV(q2, z, ε) . (27)

Note that SJ,q is computable order by order in as and is also renormalisation group invariant with respect

to the scale µR. A great deal of understanding is provided about the infrared and UV structure of the

form factors (FF) by the Sudakov "K + G" equation (see below), and about the AP kernels by the AP

evolution equation in terms of universal anomalous dimensions. The factorisation of the IR singularity in

a form factor implies that F̂q(Q
2) = ZF̂q

(Q2, µ2s) Fq,fin(Q
2, µ2s), where ZF̂q

is IR singular, while Fq,fin

is IR finite, and the scale µs is the IR factorisation scale. The peculiar IR singularity structure of ZF̂q

implies that the kernel defined by Kq = 2d logZF̂q
/d logQ2 is independent of Q2 and contains only IR

poles in ε, while Gq = 2d log F̂q/d logQ
2 is finite, as well as dependent on Q2. This implies that F̂q

satisfies theK+G equation, namely d log F̂q/d logQ
2 = 1/2(Kq(µ

2
s, ε)+Gq(Q

2, µ2s, ε)). The solution

to the K +G equation is given by

F̂q(Q
2, ε) = exp

(∫ Q2

0

dλ2

λ2
ΓF̂q

(λ2, ε)

)
, (28)

where F̂q(Q
2 = 0, ε) = 1 and ΓF̂q

= (Kq + Gq)/2. In terms of SJ , the mass-factorised cross section

reads as

∆q(z,Q
2, ε) = |F̂q(Q

2, ε)|2δ(1− z)⊗ SJ,q(q
2, z, ε)⊗ Γ−1

qq (z, µ
2
F , ε) . (29)

Differentiating the above equation with respect to logQ2 and using theK+G equation for F̂q, we obtain

a (K +G)-like equation for SJ,q:

q2
dSJ,q

dq2
= ΓSJ,q

(q2, z)⊗ SJ,q(z, q
2) , (30)
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where ΓSJ,q
= q2d∆q/dq

2
(
C log∆q − log |F̂q|2δ(1− z)

)
. Here C means that in the perturbative ex-

pansion of log∆q in powers of as, the product of z dependent functions should be understand as convolu-

tion of z dependent functions. We find that ΓSJ,q
admits a remarkable structure, namely, it can be written

as the sum of a q2-independent IR-divergent term and a q2-dependent IR-finite term. If we identify the

former as a “K-type” term and the latter as a “G-type” term, then the jet function SJ,q does satisfy a

(K + G)-type equation. This implies that the jet function SJ,q can be factorized into an IR-divergent

renormalisation constant Zq(z, q
2, µ2s, ε) and a finite quotient SJ,q,fin(z, q

2, µ2s, ε), where µs is the fac-

torisation scale. That is, SJ,q(z, q
2, ε) = Zq(z, q

2, µ2s, ε) SJ,q,fin(z, q
2, µ2s, ε). The solution to the above

differential equation takes the following form:

SJ,q(q
2, z, ε) = C exp

(∫ q2

0

dλ2

λ2
ΓSJ,q

(λ2, z, ε)

)
. (31)

The general structure of the exponent can be derived from the explicit perturbative results for the mass

factorisation coefficient function ∆q, the form factor F̂q and the AP factorisation kernel Γqq, the latter

being known to the third order in as. In particular, the divergent part of the jet function can be deter-

mined by noting that SJ,q should contain the right singularities to cancel those from the form factor and

the AP kernel. You will recall that the singularity structures of the form factor and the AP kernel are

controlled by universal anomalous dimensions such as Aq, Bq, fq, Cq,Dq and the β function of QCD.

We also observe that in dimensional regularisation both the form factor and ∆q show certain structures

related to transcendentality at every order in perturbation theory. Using the fact that ∆q is finite and its

transcendentality structure, we propose a solution for the jet function SJ,q to all orders:

logSJ,q =
∞∑
i=1

âis

(
q2(1− z)

µ2

)i ε
2

Si
ε

(
iε

2(1− z)

)(
Φ̂SV,(i)
q (ε) +

2

iε
(1− z) φ̂(i)

q (z, ε)

)
. (32)

In the above equation, Φ̂SV(ε) encodes all contributions from the pure distributons, while φ̂(i)
q (z, ε)

encodes z dependent next-to-SV terms. The AP kernels Γqq satisfy the AP evolution equation and, in the

approximation we work with, they are controlled only by the diagonal AP slitting functions Pqq. Hence,

the all-order solution takes the simple form:

Γqq(µ
2
F , z, ε) = C exp

(
1

2

∫ µ2
F

0

dλ2

λ2
Pqq(λ

2, z, ε)

)
. (33)

The AP splitting function is known to the third order in perturbation theory and the SV distributions and

NSV logarithms present in them are controlled by universal cusp and collinear anomalous dimensions.

Putting all of them together we obtain

∆q(Q
2, z, ε) = C exp

(∫ Q2(1−z)

µ2
F

dλ2

λ2
P

′
qq(as(λ

2), z) +Qq(as(Q
2(1− z)), z)

)
, (34)
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where

Qq =

(
1

2(1− z)
G

SV
q,J

(
as(Q

2(1− z))
))

+

+ φf,q(as(Q
2(1− z)), z)

+ lnC0,q(as(µ
2
R), Q

2, µ2R, µ
2
F ) .

(35)

In the above equation, we have decomposed Qq in terms of pure SV and z dependent contributions

denoted by GSV
q,J , next to SV φf,q and z independent matching term C0,q. Expanding the exponent in

powers of as, we can obtain both SV and NSV terms. For example, if we know the exponent to order as,

the expansion of the exponential will provide leading SV terms (D3,D2), (D5,D4), . . . , (D2i−1,D2i−2)

and leading NSV terms log3(1 − z), log5(1 − z), . . . , log2i−1(1 − z) at a2s, a
3
s, . . . , a

i
s, respec-

tively, for all i. Similarly, from the knowlege of a2s results, we can provide coefficients of

(D2,D1), (D4,D3), . . . , (D2i−3,D2i−4) and leading NSV terms log4(1−z), log6(1−z), . . . , log2i−2(1−
z) at a3s, a

4
s, . . . , a

i
s, respectively, for all i. This can be generalised for an arbitrary order in as for the

exponent. In Mellin space, after reorganising the exponent according to the logarithmic accuracy we

obtain

log∆q(Q
2, N, ε) = log gq0(as(µ

2
R)) + g̃q1(ω) logN +

∞∑
i=0

ais(µ
2
R)g̃

q
i+2(ω)

+
1

N

∞∑
i=0

as(µ
2
R)h

q
i (ω,N) ,

(36)

where

g̃qi (ω) = gqi (ω) +
1

N
gqi (ω), ω = as(µ

2
R)β0 logN (37)

and

hq0(ω,N) = hq00(ω) + hq01(ω) logN, hqi (ω,N) =

∞∑
i=0

hqik logN . (38)

In the above equation, the result of the Mellin integrals are decomposed into z dependent SV, NSV terms

and z indpendent matching terms. Using the above equation, one can predict resummed contributions to

leading logarithmic (LL) accuracy, next-to-leading logarithmic accuracy etc. in a systematic fashion for

the inclusive cross section at various Q2 values.

In summary, we find that the perturbative results not only help us to make precise predictions from

the theory but also unravel universal structures of the theory. The comparison of the predictions against

experimental observations can put the theory on firm footing. In addition, they can put stringent bounds

on the parameters of physics beyond the SM. Similarly, understanding the UV and IR structures of the

theory can provide ingredients to sum up potentially important contributions from all orders and also

shed light on the power corrections. For example, the resummation of threshold and next-to-threshold

logarithms was possible due to the universal structure in the perturbative predictions.
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4.4 Multi-leg and multi-loop Feynman diagrams

In the following we will discuss various methods of obtaining perturbative results [9]. Let us restrict

ourselves to the computation of scattering cross sections at hadron colliders. The task reduces to writing

down on-shell scattering amplitudes, squaring their moduli, performing loop integrals and then phase-

space integrals, taking into account the constraints from experiments. One begins with setting up Feyn-

man rules and then using the rules to write down the amplitudes. Often, one finds that the number

of Feynman diagrams becomes very large as we increase the number of legs or the order of the per-

turbative expansion. For example, the number of Feynman diagrams is four for the tree-level process

g + g → g + g, while for g + g → 5g it becomes 2485, and 10525900 for g + g → 8g. These numbers

will increase if we include loop corrections to the tree-level amplitudes. One often resorts to computer

programs to generate these diagrams and obtain the corresponding amplitudes in the analytical form.

Packages such as FeynArts and QGRAF are found to be very useful for this purpose. Next, we need

to compute the square of the modulus of the total amplitude. Note that the amplitudes are made up of

Dirac spinors, ui(p, s), vi(p, s), ui(p, s), vi(p, s), chains of Dirac matrices, polarisation vectors of gauge

fields, ϵµ(q, λ), ϵ∗ν(q, λ). Here, p is the momentum, s is the spin of the Dirac particle, while q is the

momentum and λ is the polarisation of the gauge field. In addition, the amplitude will contain chains

of Dirac matrices and generators and structure constants of the SU(N) group. Note that the index i in

the Dirac spinor is due to SU(N). The modulus of the sum of the amplitudes involves the computa-

tion of a large number of traces of Dirac matrices and also the simplification of the SU(N) generators

and structure constants. Again, one can set up computer codes to perform this task, if we have a small

number of amplitudes. For processes with larger numbers of amplitudes, it is desirable to simplify the

amplitudes so that the evaluation of their moduli is manageable. One can make the simplification at the

amplitude level if the properties of Dirac spinors and the freedom of gauge choice are exploited. The

documentation of a powerful technique using helicity amplitudes can be found in the celebrated book

“The Ubiquitous photon: Helicity method for QED and QCD” by R. Gastmans and T.T. Wu. The modern

versions of this approach provide a set up suitable for faster computer codes. For example, one defines

simpler notations for helicity amplitudes, namely (1± γ5)u(ki) ≡ u±(ki), (1± γ5)v(ki) ≡ v∓(ki) and

u±(ki) = v∓(ki) ≡ ⟨i±| ≡ ⟨k±i |. Furthermore, we can define |i⟩ = |i+⟩ and |i] = |i−⟩ and obtain

u−(ki)u+(kj) = ⟨ijj⟩ and u+(ki)u−(kj) = [ij]. In addition, the Gordon identity [pγµp⟩ = 2pµ, the

Fierz identity ⟨pγµq|rγµs⟩ = 2⟨ps⟩[rq] and the Schouten identity ⟨pq⟩⟨rs⟩ + ⟨pr⟩⟨sq⟩ + ⟨ps⟩⟨qr⟩ = 0

can be used to simplicity the expressions at the amplitude level. For gluon polarisations, one uses

ϵ+µ (p, q) = ⟨q|γµp]/(
√
2⟨qp⟩) and ϵ−µ (p, q) = −[q|γµ|p⟩/(

√
2[qp]) with pµϵµ = 0 and q being any

light-like vector.

Like Dirac spinors and gamma matrices, the generators and structure constants of the SU(N)

group in the vertices of the amplitudes pose additional complexity. However, a remarkable simplification

is achieved by stripping them off from each amplitude. Using the SU(N) algebra [T a, T b] = ifabcT c,

or, equivalently, ifabc = 2(Tr(T aT bT c) − Tr(T bT aT c)), one can replace all the ifabc terms by the

latter identity, to obtain a color-stripped amplitude. One finds a tree-level amplitude involving n gluons,

A(0)
n (g1, g2, . . . , gn) = gn−2

s

∑
α∈Sn/Zn

2Tr(T aσ(1) . . . T aσ(n))A(0)
n (gσ(1), ..., gσ(n)) , (39)
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where A(0)
n are called partial amplitudes. They do not contain any SU(N) factors and, in addition,

each of them is gauge invariant. By repeatedly applying the trace identity one can simplify the origi-

nal Feynman rules to obtain a new set of Feynman rules for the partial amplitudes. The advantage of

this approach is the reduction of the number of independent amplitudes. For example, one gets 12925

amplitudes instead of 10525900. Several approaches were developed in order to improve the speed of

the computation. For example, using off-shell currents, Berends and Giele constructed recursion rela-

tions, which not only give enormous simplifications, but also reduce the computation time significantly.

Thanks to these approaches, the computation of tree level amplitudes is now an accessible task. In addi-

tion, the results of certain amplitudes show remarkable simplifications. For example, a certain class of

amplitudes, called Parke–Taylor amplitudes, describing n gluons with specific polarisation assignments,

reduces to a single term. The mysterious simplification in the Parke–Taylor amplitudes was explained by

Britto, Cachazo, Feng and Witten (BCFW) through their recursion relations, which use Cauchy’s residue

theorem together with the analytical structure of the SU(N) gauge theory amplitudes. Further progress

was made by working in twistor space. In addition, there are also efforts to apply some of these methods

to amplitudes with loops. Finally, it is worth mentioning that, while all these approaches provide enor-

mous simplification, as well as insights in the theory, each one presents disadvantages when dealing with

amplitudes having a large number of legs.

Having obtained the amplitudes, the next task is to perform Feynman loop and phase space inte-

grals [10]. As we had seen in the lectures, the Feynman integrals are sensitive to UV and IR divergences.

We use dimensional regularisation regulate them and then proceed to compute them. Often we need

to deal with large number of multi loop and many-body phase space integrals, each of them is highly

complicated to solve. The standard text book methods do not work and hence one resorts to alternate

ones. We present two important developments that revolutionized the computation of Feynman diagrams.

Note that loop integrals and phase integrals differ as the later contain delta functions from on-shell ex-

ternal legs. Replacing the delta functions by the imaginary part of the corresponding propagator, we can

evaluate phase space integrals the way we evaluate loop integrals. We relate each δ(p2i −m2
j ) with the

imaginary part of 1/(p2i − m2
j + iϵ) where ϵ is infinitesimally small and positive number in the Feyn-

man prescription. This approach is called the method of reverse unitarity. The method of integration

by parts (IBP) identities reduces a set of large number of Feynman integrals to fewer integrals, called

master integrals (MI). The method of differential equations (DE) solves the MIs in a most efficient way.

The results of these master integrals can often be expressed in terms of certain class of special functions

namely classical polylogarithms, multiple polylogarithms, Nielsen integrals, generalised polylogarithms

or Goncherov polylogrithms or Chen integrated integrals. One finds cases where more complicated

integrals such as elliptic integrals. We give brief account on both IBP and DE in the following.

The typical L loop Feynman integral in n space time dimensions with pj , j = 1, · · · , ne external

momenta takes the following form ∫
ΠL

i=1d
nli

N (li, pj)

Dα1
1 · · ·DαM

M

(40)

where Di are propagators involving the momenta {li} and {pj} and masses {mk}. The number of scalar

products here at the most is L(ne+L/2−1/2). Beyond one loop, this number is always greater than M
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and hence we can introduce auxiliary propagators so that the extra scalar products are expressed in terms

of them. This way we can express any loop integral in terms of the expanded set of N propagators where

the exponent of the propagator can be negative. Since the loop integrals are invariant under the shift of the

loop momenta namely li → li+
∑

k ckpk for some constants ck, we can relate many integrals and reduce

number of integrals that we deal with. Similarly, integrals are invariant under Lorentz transformation of

external momenta, i.e pµj → pµj + ωµνpj,ν , giving

ωµν
ne∑
j

pj,ν
∂

∂pµj

∫ L∏
i=1

dnli
1

Dα1
1 · · ·DαN

N

= 0 (41)

for arbitrary antisymmetric constant ωµν

ne∑
j

(
pj,ν

∂

∂pµj
− pj,µ

∂

∂pνj

)∫ L∏
i=1

dnli
1

Dα1
1 · · ·DαN

N

= 0 . (42)

The generalisation of the above two transformations is given by li → qi = cijlj + dijpj . The invariance

under this transformation gives

∫ L∏
i=1

dnli
∂

∂li,µ

(
qµt

Dα1
1 · · ·DαN

N

)
= 0 . (43)

The above equation is called integration by parts identity (IBP). Since the exponents are arbitrary, we can

generate infinite of IBP identities, of which most of them are redundant. One can show that a finite set

of integrals can solve these identities, we call these integrals the Master Integrals. This process reduces

the task of computing too many integrals.

Given the set of MIs, our next task to compute each one of them efficiently. The standard approach

is to apply Feynman’s trick or Schwinger parameterization to the integrands which allows to perform

integration over loop momenta. However, the standard approach brings in parametric integrals which

are hard to perform beyond one loop integrals. The method of DE is the alternate approach to solve MIs

beyond one loop ones. Here, we first make set of Lorentz scalars out of all the external momenta and their

masses. Let this set be {sij} = {x1, · · · , xm} = x⃗ where m is the number of scalars sij = (pi + pj)
2

constructed out of pj , including their masses. Then construct a set {∂/∂sij} = ∂/∂x⃗ and apply them on

all the MIs. Denoting MIs by I⃗({sij/ε}) = I1(x⃗, ε), · · · , INm (⃗,ε, where Nm is the number of MIs, we

obtain

∂

∂x⃗
I⃗ (⃗,ε) = B̂(x⃗, ε) · J⃗(x⃗, ε) = Â(x⃗, ε) · I⃗(x⃗, ε) . (44)

In the above we used IBP identities to express J⃗ in terms of I⃗ which converts B̂ to Â. The coupled

differential equations being first order ones are straightforward to solve provided A⃗ has fewer entries and

the boundary integrals are known. Often, the later are easy to obtain for certain choice of x⃗ = x⃗0. There

are several ways to solve the system of DEs depending on the structure of Â. In fact one can transform

I⃗ → I⃗ ′ = U · I in such a way that Â′ = U · Â · U−1 − U · ∂/∂x⃗ · U−1 takes the simple form. For the

case when Â′(x⃗, ε) = εÃ(x⃗), the solution demonstrates a peculiar all order structure in ε. One finds the
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solution of I⃗ ′ is a set of iterated integrals with uniform transcendentality:

I ′(x⃗, ε) = P exp

(
ε

∫
C
dx⃗ · Ã(x⃗)

)
· I⃗ ′(x⃗0, ε) , (45)

where P is path ordering along the curve C. If we assign transcendentality weight i for ε−i and logi(g(x)),

the terms in the expansion will have uniform weight.

5 Conclusion

We have demonstrated how the theory of strong interaction, namely quantum chromodynamics, plays

an important role to understand physics at subatomic level in high energy experiments. We have shown

that QCD can be applied in a systematic way using its factorisation properties. The perturbative methods

demonstrate that various observables can be computed reliably. In addition we have discussed how large

logarithms show up at the threshold region and how resummation of them to all orders can be performed.

We have also discussed few modern techniques that are available to perform various computations effi-

ciently.
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HADRON SPECTROSCOPY

Hadron spectroscopy

Alexey Zhemchugov

JINR

If you query the arXiv electronic database of preprints and look at the topics of published articles, you
can see that roughly one in five deals with hadron spectroscopy. During its development, this area
of particle physics has experienced several rises and falls. Today, it is a rapidly developing branch
of science, which comprises a significant part of the research program of almost every accelerator
experiment. It is especially valid for B-, cτ -factories and, certainly, the LHC, where exciting results
have been obtained. The purpose of this lecture is to try giving an overview of the current state of
hadron spectroscopy through the eyes of an experimentalist.

1 Introduction: why do we call it spectroscopy?

The term ‘spectroscopy’ was coined by Robert Bunsen and Gustav Kirchhoff in the 1860s, when they

built the first spectroscope. The idea of the device was to use a prism to split the light into a spectrum and

study the resulting picture at the screen. Pretty soon it became clear that the atom of a chemical element is

capable of emitting and absorbing light of only a definite frequency (or photon energy, as we say today).

In the experiment, this was expressed as the presence in the spectrum of clear emission lines (for heated

substances) or absorption lines (for white light going through a cold gas), with a unique line pattern

for each element. As a result, the victorious march of atomic spectroscopy began with the discovery

of several new chemical elements and the study of the chemical composition of stars. Further, it led to

the emergence of the Bohr model of the atom, which made it possible to describe in detail the spectrum

of the hydrogen atom and became a keystone of quantum mechanics. At present, atomic spectroscopy

remains a powerful and sensitive method of chemical analysis used in almost every laboratory.

After the discovery of radioactivity, the method of spectroscopy was applied to the investigation

of nuclear radiation. Naturally, the technique of the experiment has changed a lot. The energy of the

radioactive decay made it possible to abandon the use of a gas burner, and more complex instruments

began to be used to detect radiation instead of a prism and a screen. The radiation energy was measured

either by deflecting charged rays by a magnetic field (so-called mass spectrometry) or by measuring

the energy released during the absorption of radiation in a scintillator. It is curious that both methods,

although with much more sophisticated equipment, are used in the experiment even today. Nuclear

spectroscopy made it possible to ‘weigh’ various nuclei and study their energy levels. The problem

turned out to be difficult, and the study of the spectra of nuclei and their theoretical description remain

on the agenda of nuclear physics till now.

Advances in the study of atomic nuclei led, by the end of the Second World War, to a clear and

consistent picture of the structure of matter. The nucleus consists of nucleons (protons and neutrons)

bound by the strong nuclear force, carried by the exchange of pions. The weak force is responsible for

This article should be cited as: Hadron spectroscopy, Alexey Zhemchugov, DOI: 10.23730/CYRSP-2024-001.105, in: Pro-
ceedings of the 2022 Asia–Europe–Pacific School of High-Energy Physics,
CERN Yellow Reports: School Proceedings, CERN-2024-001, DOI: 10.23730/CYRSP-2024-001, p. 105.
© CERN, 2024. Published by CERN under the Creative Commons Attribution 4.0 license.
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the beta decay. Indeed, the remaining problems were the lack of a detailed theoretical description of

the nuclear force and the problem of the existence of the muon. The role of the muon in the structure

of matter was unclear. The development of technology during the war opened up opportunities for

the construction of new, much more powerful accelerators and the start of a series of experiments on

them. However, contrary to expectations, instead of solving existing problems, new experiments have

brought new mysteries. A large number of new elementary particles was discovered, including a great

many short-lived resonances. Among the new particles, analogs of nucleons (antiprotons, antineutrons,

hyperons) and interaction carrier particles (kaons, ρ, η and ω mesons, etc.) were found. It became

evident that nuclear matter has a much more complicated structure. Note that the Particle Data Group

counts over 250 established particles now, of which more than 50 have been detected in the past two

decades.

It is this reason that led to the appearance of hadron spectroscopy. By analogy with atomic and nu-

clear spectroscopy, hadron spectroscopy aims to study the possible quantum states of strongly interacting

particles – hadrons. The purpose of hadron spectroscopy is essentially to find answers to the questions:

which hadrons exist? What properties do they possess? What reactions can they undergo? Just like

atomic spectroscopy for atoms or nuclear spectroscopy for nuclei, hadron spectroscopy is a key source

of experimental data for understanding the structure of hadrons and, ultimately, the strong interaction.

2 What are we really measuring?

Since we are talking about an experiment, we should start by discussing what exactly we want and can

measure. First of all, we can experimentally establish the very existence of the particle. Then, we can

determine its electric charge, mass and lifetime (or particle width). Finally, we can study its possible

decays, the relative probabilities of different decay channels, and the angular and energy distributions of

the decay products.

From the decay information, one can extract the P-symmetry and C-symmetry of the particle, its

total angular momentum J , as well as the quantum numbers associated with its internal composition:

the flavor numbers (strangeness, charm, beauty, isospin), as well as the baryon number (that is, the

difference between the number of quarks and antiquarks). Already difficult, these measurements are

further complicated by the quantum nature of the experiment: we are measuring a state that can be a

superposition of several or many quantum states, and we usually have no way to distinguish them.

Now let us consider the most important experimental techniques.

The invariant mass spectrum of a system of particles is perhaps the simplest and most powerful

tool for hadron spectroscopy. Indeed, by registering particles, measuring their energies or momenta, and

identifying (or assuming) their types, we can easily calculate the mass of a hypothetical parent particle.

Having plotted the distribution of this mass, it is easy to detect peaks in the resulting spectrum if the

parent particle really exists. At the same time, the spectrum of the invariant mass gives the mass of the

particle and, if the resolution of the detector allows it, its width.

The Dalitz plot, invented by R. H. Dalitz [1], is a more sophisticated technique used in the analysis

of multiparticle decays. The Dalitz plot is constructed as a correlation of the momenta and energies of

product particles in the decay. Thus, in the case of a decay into three particles, each decay event is
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represented in the Dalitz plot by a point, the position of which is determined by the invariant mass of two

pairs of particles in this event. Obviously, the area populated by decay events is confined according to

the energy and momentum conservation laws.

Analyzing the population of the Dalitz plot by events, one can establish the presence of interme-

diate states during the decay of the parent particle to the final state under study, derive their quantum

numbers, and quantify the probabilities of individual decay channels (that is, measure the decay matrix

elements). It is important to emphasize that all variations in the event density distribution are due to the

dynamics, which defines the dependence of the decay matrix elements on the momenta (or energies) of

the decay particles, and not by their particular kinematics. This is one of the most important properties

of the Dalitz plot.

However, the most complex technique is the partial-wave analysis, or PWA. This technique is

based on the idea that the interaction of particles is modeled by a coherent sum of resonances. The

resulting set of partial waves is fitted to the experimental data, and the energy and angular information

are used simultaneously in the fit. As a result of the fit, the individual contributions of partial waves to the

final state are determined. This method allows one to deal with broad and overlapping resonances that

cannot be separated, for example, in the invariant mass spectrum. An important advantage of partial wave

analysis is the proper accounting for the interference between different states with the same quantum

numbers. Nevertheless, the PWA is not at all a simple and easy method. Its great technical complexity,

heavy computation, and the need for strong theoretical support are the main obstacles to starting to use

it. In many cases, you have to work with sets of dozens of waves, which leads to the need to adjust

up to hundreds of free parameters in the fit. Therefore, as in any multi-parameter fit, in PWA one has

to overcome the instability of the fit, to solve the problem of finding a global minimum, and also deal

with the ambiguity due to the inevitable presence of multiple solutions. Interpretation of PWA results is

often hampered by rescattering effects, although some methods like using the K-matrix formalism and

simultaneous analysis of several complementary reactions may, of course, help. Lastly, experimental

conditions, such as background processes or detector resolution, often present a serious problem.

Finally, note that even simple methods should be used with care. As an illustration, we can con-

sider the observation of the X̃(3872) state in the COMPASS experiment [2]. The experiment studied the

hadron production by a virtual photon in the reaction µ+N → µ+(J/ψπ+π−)π±N ′, using COMPASS

data collected with incoming muons of 160 GeV/c and 200 GeV/c momentum. In the invariant mass

spectrum of the system (J/ψπ+π−), a peak with a mass of 3860.0 ± 10.4 MeV/c2 and width of less

than 51 MeV/c2 was found near the ψ(3686) resonance with a statistical significance of 4.1 σ. While

the mass and width were compatible with the X(3872) state observed in other experiments before, this

turned out to be not enough to draw a conclusion that it was the same particle. The reason was the fact

that the shape of the π+π− mass distribution from the observed decay into J/ψπ+π− had shown dis-

agreement with previous observations for X(3872). The observed state was designated as X̃(3872) and

interpreted as a possible evidence of a new charmonium state. Its nature is still not clear.
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3 Conventional hadron spectra

The first successful attempt to describe the spectrum of hadrons using a simple model was made by

M. Gell-Mann [3] and independently by G. Zweig [4] in 1964. The basis of the model is the assumption

about the constituent parts of hadrons, which Gell-Mann called quarks. It turned out that three varieties

(flavors) of quarks – u (up), d (down) and s (strange) – were enough to describe all hadrons known at

that time as their various combinations and even to predict a few yet unknown. Quarks have a fractional

electric charge. In the quark model, all baryons are combinations of three quarks, and all mesons are

combinations of a quark and an antiquark. The quark model explained the whole variety of particles.

From the three constituents you can add up not so many combinations. However, the same combination

of quarks can form particles of different masses. These are ‘excited states’, where quarks move around

each other in a higher orbit. Over time, the number of quarks that make up hadrons increased to five:

c (charm) and b (beauty, or bottom) quarks were discovered, along with entire families of charmed and

beautiful particles. In the beginning, the quark model was just a convenient way to classify particles.

However, after the experimental observation of partons inside the nucleon, and especially after the suc-

cessful construction of the fundamental theory of the strong interaction – quantum chromodynamics, it

is difficult to doubt the reality of quarks, despite their astonishing properties, such as confinement and

fractional electric charge.

The mesons are classified in JPC multiplets. The states with orbital angular momentum equal

to zero are the pseudoscalars (0−+) and the vectors (1−−), depending on the quark spins. The orbital

excitations with orbital angular momentum equal to 1 are the scalars (0++), the axial vectors (1++ and

1+−), and the tensors (2++). The mesons in the multiplet have different quark compositions and are

close in mass and in their properties. Thus, light mesons form multiplets of nine states each (nonets):

– JPC = 0−+ : (π, K, η, η′)

– JPC = 1−− : (ρ, K⋆, ω, ϕ)

– JPC = 1+− : (b1, K1, h1, h′1)

and so on.

Introducing the heavier charm and beauty quarks makes this scheme more involved. For instance,

including the charm quark transforms the meson nonet into a 16-plet, which includes both mesons with

open charm (D, Ds) and charmonium states (cc̄), where the charm quantum number is hidden. Taking

into account the b quark makes this picture even more complicated, though keeping the general principle

untouched.

Mesons consisting of two heavy quarks – charmonium (cc̄) and bottomonium (bb̄) – deserve special

attention. The large mass of quarks makes it possible to use various potential models or effective theories,

like HQET or NRQCD, to calculate the spectrum of such a system. It turns out that these calculations

are in excellent agreement with experiment, at least up to the production threshold of mesons with an

open charm or beauty. This makes it possible to rely on a good understanding of the excited states of

quarkonium in order to use them, for example, to verify calculations using lattice QCD, or to search for

unconventional hadrons.

The mechanism for baryons is the same as for the mesons. Of course, for baryons, a much larger
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number of combinations is obtained. In the ground state, only for light quarks, multiplets of 8 baryons

(octet) with JP = 1/2+ and 10 baryons (decuplet) with JP = 3/2+ are formed. With the addition of

heavy b or c quarks, the number of combinations increases even more. All baryons of the ground state

multiplets are known. Many of their properties, in particular their masses, are in good agreement even

with the most basic versions of the quark model. The picture for excited states is much less clear.

The conventional hadron spectra, derived from the quark model, make it possible to describe the

properties of hundreds of hadrons and do not contradict the available experimental facts. However, today

hadronic spectroscopy is as far as possible from drawing a conclusion about a complete understanding

of the structure of hadrons and from limiting itself to a compilation of reference books with higher and

higher precision. Fortunately, the existing mysteries in the spectrum of long-known particles and the dis-

coveries made in recent decades do not give grounds for such conclusions and turn hadron spectroscopy

into a rapidly developing and fascinating field of research.

4 Exotic hadrons

The assumption that hadrons can be formed not only by combinations of two or three quarks but also

by a larger number of them, was made by Gell-Mann in the very first work devoted to the quark model.

Subsequently, in the framework of QCD, it was shown that the existence of hadrons including one or

more valence gluons is possible. Such particles are called hybrids, and the ones consisting only of

gluons are called glueballs. Naturally, such particles, called exotic ones, have been sought and tried

to be discovered experimentally for more than 30 years. The main problem faced in this search by

experimentalists concerns not so much the discovery itself of new particles, as the proof of their ‘exotic’

nature.

Indeed, how can we identify exotic hadrons? Unfortunately, there are not many distinct signatures.

Essentially, there are only three main ways to go. First, we can search for particles with quantum numbers

that are not compatible with the assumption of two- or three-quark composition. For instance, for mesons

it could be JPC = 0−−, 0+−, 1−+, 2+−, 3−+, etc. which cannot be constructed having only a quark

and an antiquark.

Secondly, we can look for superfluous states. That is, those particles whose existence does not

match theoretical predictions, or several particles found instead of one predicted. In the latter case, it

will be necessary to find out which of the extra states is a conventional hadron and which is an exotic

one. Unfortunately, we are on shaky ground here, as theoretical predictions are still not accurate enough,

especially for excited states.

Finally, one can look for unexpected decay patterns. For example, in a decay X+ → J/ψπ+, we

need charm quark and antiquark to form charmonium, as well as at least two more light quarks to get the

unit electric charge of a pion. That is, such decay can be interpreted as the decay of a multiquark state of

four or more quarks.

The lack of experimental findings over the decades has been exacerbated several times by reports

of false observations. The most striking case was the report of the observation of a narrow pentaquark

state Θ+(1530) in 2002. The first indication of a pentaquark in the nK+ system in the photoproduction

on nuclei received more than ten independent confirmations within two years before it was proved that
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this was an erroneous result [6]. All this, together with the undoubted successes of QCD in explaining

the spectrum of conventional hadrons, gave every reason to doubt the existence of anything other than

generally accepted mesons and baryons.

4.1 Light hadrons: hunt for glueballs, search for diquarks

The relatively poor theoretical understanding of hadrons at low energies is not particularly surprising,

since it is known that QCD becomes nonperturbative at low energies and does not allow one to calculate

the spectrum of light hadrons. The progress of lattice QCD calculations is impressive and encouraging,

but the results have not yet reached sufficient precision and reliability either. Combined with the exper-

imental difficulties of studying broad mixing resonances, this explains why there are still quite a few

unsolved problems in the spectrum of light hadrons. Let’s consider some of them.

Among the light hadrons, the lightest f0(500) meson, also known as the σ meson, attracts special

attention. The existence and properties of this meson have been controversial for almost six decades. The

existence of this meson was suggested in 1955, even before the quark model was formulated, to explain

short-range nucleon-nucleon interactions by two-pion exchange. Experimental difficulties of studying

the light and broad state in a ππ system, together with the model-dependent interpretation, resulted in a

highly uncertain mass range, from 400 to 1200 MeV, and a similarly large range, from 500 to 1000 MeV,

for the width, for a long time. General agreement on the σ meson properties was reached only in the mid-

2000s after extensive theoretical and experimental efforts. However, the composition of this resonance

in terms of quarks and gluons is still a puzzle. It is well established that it cannot be interpreted as

predominantly made of a quark and an antiquark. Whether it is a glueball or a tetraquark, there is a lot

of controversies, but no firm conclusion is made yet. More details can be found in an excellent review

paper, see Ref. [7]. Similar difficulties, theoretical and experimental, exist when considering the light

strange meson, K⋆(700) or κ, showing up as an S-wave in πK scattering. However, unlike the f0(500),

they have not yet been finally resolved [8].

Among the light mesons, the search for possible glueballs and other exotic hadrons has been going

on for a long time. In particular, among scalar mesons with masses less than 1 GeV, the mesons a0(980)

and f0(980) are known, which have almost identical masses, just below the KK̄ production threshold,

but different isospin. These two particles have long been considered as candidates for exotic hadrons –

tetraquarks, meson molecules, etc. or a mixture of exotic and ordinary mesons. In the spectrum of light

hadrons above 1 GeV, the same can be said about the f0(1370), f0(1500) and f0(1710) mesons, at least

one of which looks as a surplus state and possibly a glueball. This corresponds, among other things, to

predictions by lattice QCD calculations that the mass of the lightest scalar glueball lays the range 1500 to

1800 MeV. Just below the pp̄ production threshold, the BES experiment observed the X(1835) state [9],

later confirmed by BESIII in several different reactions, which is also rather difficult to interpret within

the framework of the classical quark model. These are just some examples of the existing difficulties in

interpreting the spectrum of light mesons.

As regards the light baryons, there is an opposite problem. There is a great inconsistency between

theoretical predictions and the experimentally observed spectrum of baryons [10–12]. The number of

experimentally discovered baryons is much smaller than those predicted. Of course, this can be ex-
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plained by the lack of experimental data and the difficulty of their interpretation. Indeed, the number of

established excited states of light baryons increases with time. An alternative explanation for the prob-

lem of missing baryons is that our ideas about the structure of baryons need to be refined. There is an

assumption that two valence quarks can combine into a colored correlation, or diquark, which leads to a

decrease in possible combinations in the construction of excited baryons. The experimental verification

of this assumption is complicated, since diquarks are not a color singlet and, like quarks, cannot exist as

free particles.

4.2 Heavy hadrons: multiquarks and other exotics

The revolution in the study of exotic hadrons began rather quietly, with the discovery of the X(3872)

state. This state was found in the BELLE experiment and appeared as a clear peak in the spectrum of

invariant masses of the system (π+π−J/ψ) during the study of the decay B+ → K+π+π−J/ψ. The

mass of the new state was M = 3872.0 ± 0.6(stat) ± 0.5(syst) MeV and the width was narrow, less

than 2.3 MeV at 90% C.L. This state did not fit into the conventional charmonium spectrum and became

a vivid example of an extra, unexpected particle. Of course, a great many assumptions have been made

about the nature of the X(3872) since then, but none of them was confirmed or rejected. After 20 years,

we know more. The quantum numbers of the X(3872) have been measured: JPC = 1++ [14]. The

mass is suspiciously (within 1 MeV) close to the mass of a D⋆D pair, but the comparable decay rate to

D⋆D and γψ(3686) tells us that the X(3872) is unlikely to be a D⋆D bound state. The decay rates of

X(3872) to ωJ/ψ and ρJ/ψ are approximately the same, which suggests a large violation of isospin.

A charged partner of the X(3872) is not found. So, despite all these findings, we still do not know the

nature of this mysterious state.

After the X(3872), the epoch of charged charmonium-like and bottomonium-like states began.

These are resonances decaying into charmonium or bottomonium and a charged meson, which hints at

their multiquark nature. It was the BELLE experiment at the B-factory that made the first observations of

states like these. Charged charmonium-like states, Z±
c (4430), Z±

c (4050), Z±
c (4250), and bottomonium-

like states, Z±
b (10610) and Z±

b (10650), have been reported [15–17]. However, this evidence was not

confirmed by the BaBar experiment in similar conditions and remained contradictory. The first charged

charmonium-like state beyond doubt was the Z±
c (3900) in the BESIII experiment, discovered in 2013

and quickly confirmed by the BELLE and CLEO-c experiments [18]. Since then, the existence of a large

number of exotic charmonium-like and bottomonium-like states has been firmly established, mainly in

the BELLE, BESIII, and LHCb experiments [19]. Since the new states did not fit into the traditional

charmonium and bottomonium spectra, they were named X , Y , or Z, depending on their electrical

charges and quantum numbers, and they were collectively referred to as the XY Z states.

Pentaquarks have been found in a similar way, in decays to charmonium and baryons. In 2015, at

the LHCb experiment, the P+
c (4450) and P+

c (4380) pentaquarks were discovered in Λ0
b → J/ψpK−

decays in the invariant mass spectrum of the (J/ψp) system [20]. Later, also at the LHCb experiment,

when analyzing samples of increased statistics, another pentaquark, P+
c (4312), was found, and the pen-

taquark P+
c (4450) was reinterpreted as two separate states, P+

c (4440) and P+
c (4457) [21]. In addition

to pentaquarks, more than 10 candidates for other exotic states, including two possible tetraquarks, and

about 50 excited states of ordinary mesons and baryons were discovered at the LHC [22].
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Thus, the existence of a large number of hadrons that are not mesons nor baryons is now firmly

established. They are not ‘exotic’ any more. No doubt that the number of such hadrons will increase

in the coming years, both among heavy and light hadrons. Discussions whether these particles are

multiquarks, diquark molecules, hybrids or some more complicated structures are still ongoing and it

will probably take a long time before the nature of the new states becomes clear. However, we can say

right now that these discoveries once again confirmed the validity of the quark model and provided rich

material for refining our understanding of hadronic spectra. Ultimately, the discovery of new hadronic

states does not simply aim at adding the properties of more particle to the set of particles known to us.

The main result is the verification and refinement of the theory that describes the properties of these

particles, based on fundamental concepts of nuclear matter, and a deeper understanding of the laws of

strong interaction.

5 Where do we stand?

Currently, the data accumulated in the B factory experiments (Belle, BaBar), the τ -charm experiment

(BESIII), and the LHC experiments (LHCb, ATLAS, CMS) are the main source of knowledge about

new hadrons. In 2017, the GlueX experiment began, aimed at high-sensitivity searches for pentaquarks

and other exotic mesons in photoproduction processes. The Belle II experiment started data taking in

2019 after a major upgrade. There is no doubt that it is the Belle II, BESIII, GlueX, LHCb and other

experiments at the LHC that will determine the future of hadron spectroscopy in the next 10–15 years.

In addition, some new experiments are expected to join exotic hadron research efforts in the near future:

the PANDA experiment in Darmstadt, Germany, the AMBER experiment at CERN, the τ -charm Super

Factories STCF in Hefei, China, and the SCTF in Sarov, Russia. Later, experiments at the planned

electron-ion collider EIC might also contribute a lot to our understanding of baryon structure and hadron

spectra.

As a final note, we can add that, throughout the history of particle physics, hadron spectroscopy

has repeatedly led to significant changes in our understanding of the structure of matter. It remains

a unique tool for gaining knowledge about the intrinsic properties and composition of hadrons today.

There is no doubt that the discovery of a large number of exotic, supposedly multiquark states is one

of the most exciting events in hadron physics recently, perhaps comparable to the discovery of the J/ψ

meson. To understand the nature of exotic states, and to solve the problem of extra mesons and missing

baryons, both more accurate and high-quality experimental data and new theoretical insights are needed.

Special hopes are placed here on lattice QCD, which is making impressive progress; but there is still a

long way to go before constructing a theory that fully describes hadronic spectra.
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