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Abstract
The 2022 European School of High-Energy Physics (ESHEP) took place in

Israel. ESHEP is intended to give young physicists an introduction to recent

theoretical and experimental advances in elementary particle physics. These

proceedings contain lecture notes on field theory and the electro-weak Stan-

dard Model, on neutrino physics and on flavour physics and CP violation.
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Preface

Martijn Muldersa

aCERN

The twenty-eighth event in the series of the European School of High-Energy Physics took place in

Ma’ale Hachamisha (near Jerusalem), Israel, from 30 November to 13 December 2022. It was organized

by CERN, with support from the Weizmann Institute, Tel Aviv University, Ben Gurion University, Tech-

nion, the Hebrew University of Jerusalem and the Azrieli Foundation. The local organization team was

chaired by Gilad Perez (Weizmann Institute).

A total of 71 students of 21 different nationalities attended the school, mainly from institutes in

member states of CERN, but also some from other regions. The participants were generally students in

experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the Yearim Hotel, in the Jerusalem hills. According to the tradition of

the School, the students shared twin rooms mixing participants of different nationalities. A total of 31

lectures were complemented by daily discussion sessions led by five discussion leaders. The students

displayed their own research work in the form of posters in an evening session in the first week, and the

posters stayed on display until the end of the School. The full scientific programme was arranged in the

on-site conference facilities.

The School also included an element of outreach training, complementing the main scientific pro-

gramme. This consisted of a two-part course from the Inside Edge media training company. Additionally,

students had the opportunity to act out radio interviews under realistic conditions based on a hypotheti-

cal scenario. The students from each discussion group subsequently carried out a collaborative project,

preparing a talk on a physics-related topic at a level appropriate for a general audience. The talks were

given by student representatives of each group in an evening session in the second week of the School. A

jury, chaired by Dana Bernstein (Weizmann), judged the presentations; other members of the jury were

Yossi Nir (Weizmann), and Guy Wilkinson (University of Oxford). We are very grateful to all of these

people for their help.

Our thanks go to the local-organization team for all of their work and assistance in preparing the

School, on both scientific and practical matters, and for their presence throughout the event. Our thanks

also go to the efficient and friendly hotel management and staff who assisted the School organizers and

the participants in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the

School and for making the scientific programme so stimulating. The students, who in turn manifested

their good spirits during two intense weeks, appreciated listening to and discussing with the teaching

staff of world renown.

In addition to the rich academic programme, the participants enjoyed leisure and cultural activities

in Israel. There was a half-day excursion to Jerusalem, including a fascinating guided tour around the

historical sites of the city. A full-day excursion to Masada, an impressive archaeological site in the

Judean Desert, was followed by a visit to the Dead Sea. On the final Saturday afternoon, the students

vii



were able to make use of the hotel facilities during free time or visit the city of Jerusalem independently.

The excursions provided an excellent environment for informal interactions between staff and students.

We are very grateful to the School Administrator, Kate Ross (CERN) and Administrator for the LOC,

Adi Zehavi (Weizmann), for their untiring efforts in the lengthy preparations for and the day-to-day

operation of the School. Their continuous care of the participants and their needs during the School was

highly appreciated.

The success of the School was to a large extent due to the students themselves. Their poster

session was very well prepared and highly appreciated, their group projects were a big success, and

throughout the School they participated actively during the lectures, in the discussion sessions and in the

different activities and excursions.

Martijn Mulders

(On behalf of the Organizing Committee)
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Lecture summaries

Field theory and the Standard Model: A symmetry-oriented approach

The Standard Model of particle physics represents the cornerstone of our understanding of the

microscopic world. In these lectures we review its contents and structure, with a particular emphasis

on the central role played by symmetries and their realization. This is not intended to be an exhaustive

review but a discussion of selected topics that we find interesting, with the specific aim of clarifying

some subtle points and potential misunderstandings. A number of more technical topics are discussed in

separated boxes interspersed throughout the text.

Neutrino physics

This is an update of the lectures previously published in arXiv:1708.01046. The topics discussed

in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and

mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview

of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We

also briefly comment on the relevance of neutrinos in leptogenesis and in beyond-the-Standard-Model

physics.

Flavour physics

We explain the reasons for the interest in flavor physics. We describe flavor physics and the re-

lated CP violation within the Standard Model, with emphasis on the predictions of the model related

to features such as flavor universality and flavor diagonality. We describe the flavor structure of fla-

vor changing charged current interactions, and how they are used to extract the CKM parameters. We

describe the structure of flavor changing neutral current interactions, and explain why they are highly

suppressed in the Standard Model. We explain how the B-factories proved that the CKM (KM) mecha-

nism dominates the flavor changing (CP violating) processes that have been observed in meson decays.

We explain the implications of flavor physics for new physics, with emphasis on the “new physics flavor

puzzle”, and present the idea of minimal flavor violation as a possible solution. We explain the “Standard

Model flavor puzzle”, and present the Froggatt–Nielsen mechanism as a possible solution. We show that

measurements of the Higgs boson decays may provide new opportunities for making progress on the var-

ious flavor puzzles. We briefly discuss two sets of measurements and some of their possible theoretical

implications: R(K(∗)) and R(D(∗)).

xiii
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1 Preliminaries

Quantum field theory (QFT) is the language in which we codify our knowledge about the fundamental

laws of nature in a manner compatible with quantum mechanics, relativity, and locality. Its most signif-

icant achievement has been formulating the Standard Model (SM) of strong, weak, and electromagnetic

interactions. This theory summarizes what we know about the physics of the fundamental constituents of

matter. It also delineates our ignorance, providing a glimpse of the known unknowns that will motivate

future research. The story of QFT and the SM has been told many times with various degrees of detail

and depth (see Refs. [1–18] for a necessarily incomplete sample of books on both topics). In the pages

reserved for these lecture notes, it is utterly impossible to provide a detailed account of the towering

achievements accumulated since the discovery of the electron by J. J. Thomson in 1897, whose most

recent milestone was the announcement in 2012 of the discovery of the Higgs boson at CERN. Gener-

ations of physicists and engineers have made possible the formulation of a theory describing the most

fundamental laws of nature known so far.

High energy physics is not the only arena in which QFT has shown its powers. In the nonrel-

ativistic regime, it leads to quantum many body theory, a mathematical framework used in condensed

matter physics to study phenomena such as superconductivity, superfluidity, and metals’ thermal and

electronic properties [21–23]. Furthermore, in the last few decades QFT has also played a central role in

understanding the formation of the large scale structure of the universe [24–26].

Exciting as all these developments are, these lectures will focus on the applications of QFT to

particle physics and particularly the construction of the SM. We will highlight symmetry arguments to

show how virtually all known forms of symmetry realizations play a role in it. But even within this
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restricted scope, space limitations require choosing not just the material to include but also the viewpoint

to adopt. In explaining some of the ideas and techniques in our study of the SM, it is useful to focus on

several key concepts, many of which are related to implementing symmetries in a quantum system with

infinite degrees of freedom. In doing so, we will encounter many surprises and some misconceptions to

be clarified. Explaining physics can be compared to the performance of a well-known piece of music.

Often the performer surprises the audience by accentuating some features of the work that only then are

sufficiently appreciated. In such a vein, we will highlight some important fundamental aspects of the SM

the reader may not have encountered previously, some of which also point to the limitations of the theory.

Although we will not shy away from diving into calculations when needed, our aim here is less giving

a detailed account of the technicalities involved than providing the reader with both essential conceptual

tools and inspiration to further deepen in the study of the topics to be presented.

Having set our plan of action, we turn to physics and begin by reviewing the system of units to be

used throughout the lectures. Since we are dealing with quantum relativistic systems, it is natural to work

with natural units, where the speed of light and the Planck constant are both set to c = ℏ = 1. Doing a bit

of dimensional analysis, it is easy to see that setting these two fundamental constants to 1 means that of

the three fundamental dimensions L (length), T (time), and M (mass) only one is independent. Indeed,

from [c] = LT−1 and [ℏ] = ML2T−1 it follows that T = L and M = L−1, meaning that time has the

dimension of length and masses of (length)−1. Alternatively, we may prefer to use energy (E) as the

fundamental dimension, as we will actually do in the following. In this case, from [energy] =ML2T−2

we see that both lengths and times have dimensions of (energy)−1, while masses are measured in units

of energy.

Using natural units simplifies expressions by eliminating factors of ℏ and c and brings other ad-

vantages. The most relevant for us is that it provides a simple classification of the operators, or terms,

appearing in the action or Hamiltonian defining a theory. As an example, let us consider the scalar field

action

S =

∫
d4x

(
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ4

4!
ϕ4 − λ6

6!
ϕ6
)
. (1.1)

Action is measured in the same units as ℏ (not by chance historically known as the quantum of action)

and is therefore dimensionless in natural units. Taking into account that [d4x] = E−4 and [∂µ] = E, we

find from the kinetic term that [ϕ] = E, which in turn confirms that [m] = E as behooving a mass. As

for the coupling constants, λ4 is dimensionless while [λ6] = E−2.

Terms such as ϕ6, whose coupling constants have negative energy dimension, are called higher-

dimensional operators. In the modern (Wilsonian) view of QFT to be discussed in Section 10, they are

seen as induced by physical processes above some energy scale Λ, much higher than the energy at which

we want to describe the physics using the corresponding action. The presence of higher-dimensional

operators in the action signals that we are dealing with a theory that is not fundamental, but some effective

description valid at energies E ≪ Λ, that should eventually be replaced (completed) by some more

fundamental theory at higher energies.

Although the action of an effective field theory (EFT) may contain an infinite number of higher-

dimensional operators of arbitrary high dimension, this does not make it any less predictive at low en-
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ergies [27, 28]. To understand this, let us look at a higher-dimensional operator On, with [On] = En−4

for n > 4, entering in the action as

S ⊃ gn
Λn−4

∫
d4xOn, (1.2)

where gn is a dimensionless coupling. The correction induced by this term to processes occurring at

energy E scales as (E/Λ)n−4, so for E ≪ Λ there is a clear hierarchy among the infinite set of higher-

dimensional operators. The upshot is that using our EFT to ask physical questions at sufficiently low

energies, and taking into account the limited sensitivity of our detectors, only a small number of higher-

dimensional operators have to be considered in the computation of physical observables.

Applying the philosophy of EFT to the action (1.1) leads to identify the theory as an effective

description valid at energies well below the scale set by λ6, namely Λ ∼ 1/
√
λ6. Nature offers more

interesting implementations of this scheme, some of which we will encounter later on in the context of

the SM. A particularly relevant case is that of general relativity (GR), that we discuss now in some detail.

We start with the Einstein–Hilbert action

S =
1

16πGN

∫
d4x
√−gR, (1.3)

and consider fluctuations around the Minkowski metric (nonflat background metrics can also be used)

gµν = ηµν + 2κhµν , (1.4)

where

κ ≡
√
8πGN . (1.5)

Inserting (1.4) into (1.3) and expanding in powers of hµν we get an action defining a theory of interacting

gravitons propagating on flat spacetime [29–31]. Its interaction part contains an infinite number of terms

with the structure

Sint =
∞∑

n=3

κn−2

∫
d4xOn+2[h, ∂], (1.6)

where the operator On+2[h, ∂], which has energy dimension n + 2, contains n graviton fields and two

derivatives, while from Eq. (1.5) we see that the coupling constant has dimension [κ] = E−1. In the

spirit of EFT, this indicates that Einstein’s gravity is not fundamental, but an effective description valid

at energies below its natural energy scale set by the dimensionful gravitational constant, the so-called

Planck scale

ΛPl ≡
√

ℏc5
8πGN

= 2.4× 1018 GeV, (1.7)

where we have restored powers of ℏ and c. To get an idea of the size of this scale, let us just say it is

about 1014 times the center-of-mass energy at which LHC currently operates.
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FIELD THEORY AND THE STANDARD MODEL: A SYMMETRY-ORIENTED APPROACH

The statement is occasionally encountered in the literature and the media that GR is impossible to

quantize. This needs to be qualified. The effective action (1.6) can be consistently quantized provided

we restrict our physical questions to the range of energies where it can be used, namely E ≪ ΛPl. In

this regime, the quantum fluctuations of the background metric shown in (1.4) are of order E/ΛPl and,

therefore, small. Furthermore, powers of this same quantity suppress the induced corrections and, at the

level of accuracy set by our experiments, only a small number of operators in (1.6) need to be retained

to compute physical observables. In other words, below the Planck energy scale quantum gravity is just

a theory of weakly coupled gravitons propagating on a regular background spacetime.

This state of affairs breaks down when the energy gets close to ΛPl. At this point the quantum

fluctuations of the geometry become large and the hierarchy of terms in (1.6) breaks down. Physically,

what happens is that our gravitons become strongly coupled and therefore cease to be the appropriate

degrees of freedom to describe a quantum theory of gravity. Thus, the correct statement is not that

there is no consistent theory of quantum gravity, but that we lack one which remains valid at arbitrarily

high energies. The difference is crucial, since it is precisely the latter kind of theory needed to analyze,

for example, what happens close to spacetime singularities, where quantum effects are so large as to

override the semiclassical description provided by GR. Viewed as an EFT, Einstein’s (quantum) gravity is

expected to be subsumed near ΛPl into another theory, its ultraviolet (UV) completion, which presumably

remains valid to arbitrarily high energies. Among the particle physics community string theory continues

to be the favored candidate for such a framework (see, for instance, Ref. [32, 33] for a modern account).

The previous digression on EFTs leads us to the related issue of renormalizability, on which we

will further elaborate in Section 10. All QFTs used in describing elementary particles, particularly the

SM, lead to infinities when computing quantum corrections (terms of order ℏ or higher) to classical

results. The origin of these divergences lies in the behavior of the theory at very high energies. Quantum

fluctuations of very short wavelength actually dominate the result, driving them to infinity. This problem

was tackled already in the 1940s by the procedure of renormalization. To make a long story short,

one begins by regularizing the theory by setting a maximum energy Λ, a cutoff, so fluctuations with

wavelength smaller than Λ−1 are ignored. This makes all results finite, albeit dependent on the otherwise

arbitrary cutoff. The key observation now is that the parameters in the action (field normalizations,

masses, and coupling constants) can depend on Λ, so physical observables are cutoff independent. For

this to work, a further ingredient is needed: an operational definition of masses and couplings, which

serves to fix the dependence of the action parameters on the cutoff (for all the details see, for example,

Chapter 8 of Ref. [14] or any other of the QFT textbooks listed in the references).

In carrying out this program, two things may happen. One is that divergences can be removed

with a finite number of operators in the action (most frequently, just those already present in the classical

theory). This is the case of a renormalizable theory. The second situation arises when it is necessary

to add an infinite number of new operators in order to absorb all the divergences in their corresponding

couplings. The theory is then said to be nonrenormalizable. The SM belongs to the first type, while

GR is an example of the second. As a rule of thumb, actions containing operators of dimension equal

or smaller than four define renormalizable theories, while the presence of higher-dimensional operators

renders the theory nonrenormalizable, at least when working in perturbation theory.
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For decades, renormalizability was considered necessary for any decent theory of elementary par-

ticles. The very formulation of the SM and, most particularly, its implementation of the Brout–Englert–

Higgs (BEH) mechanism [34–36] through the Higgs boson was guided by making the theory renormal-

izable. As a token of how important this requirement was perceived to be at the time, let us mention

that the electroweak sector of the SM developed by Sheldon L. Glashow, Steven Weinberg, and Abdus

Salam [37–39] only started to be taken seriously by the particle physics community after Gerard ’t Hooft

and Martinus Veltman mathematically demonstrated its renormalizability [40, 41].

From a modern perspective, however, the condition that a theory must be renormalizable is re-

garded as too restrictive, equivalent to requiring that it remains valid at all energies. As a matter of fact,

there is no reason to exclude nonrenormalizable theories from our toolkit. They can be interpreted as

EFTs whose natural energy scale is set by the cutoff Λ, giving accurate results for processes involving

energies E ≪ Λ. Furthermore, from this viewpoint, the cutoff ceases to be a mere mathematical artefact

to eventually be hidden in the action parameters. Instead, it acquires a physical significance as the energy

threshold of the unknown physics encoded in the higher dimensional operators of our EFTs. Otherwise

expressed, nonrenormalizability has lost its bad reputation and now is taken as a hint that some unknown

physics is lurking at higher energies.

To make the previous discussion more transparent, let us look at the important case of quantum

chromodynamics (QCD), the theory describing the interaction of quarks and gluons. QCD is not just a

renormalizable theory that can be extrapolated to arbitrary energies, but asymptotically free as well. This

means that its coupling constant approaches zero as we go to higher energies, thus making perturbation

theory more and more reliable. The issue, however, is that when studying its low energy dynamics, the

QCD coupling grows as we decrease the energy and the theory becomes strongly coupled. This has to

be handled in a way somehow reminiscent of what we explained when discussing quantum GR near the

Planck scale: below a certain energy scale ΛQCD we need to abandon the perturbative QCD (pQCD)

description in terms of quarks and gluons, now strongly coupled, and find the “right”, weakly coupled,

degrees of freedom to build an operative QFT. But, simultaneously, we have a huge advantage w.r.t.

the gravity case. There, the trouble arose in the unexplored region of extremely high energies, where

identifying the appropriate degrees of freedom, their interactions, or just the right framework remains

anybody’s guess (strings? spin foam? causal sets?). By contrast, life is much easier in QCD. The

problematic regime happens at low energies, so to identify the weakly coupled degrees of freedom, we

only need to “look”, i.e., do experiments. From them, we learn that the physics has to be described in

terms of mesons and baryons, whose interactions are largely fixed by symmetries (an issue to which

we will come back later). What is relevant for the present discussion is that the appropriate framework,

chiral perturbation theory (χPT), is a nonrenormalizable QFT whose action contains a plethora of higher-

dimensional operators. Its cutoff, however, is not some arbitrary energy Λ whose role is just to make the

theory finite, but the physical scale ΛQCD at which quarks and gluons get confined into hadrons. The

theory of hadron interactions should then be understood as an EFT valid at energies E ≪ ΛQCD.

The existence of the Planck scale at which quantum gravity is expected to become the dominant

interaction has led to the realization that all quantum field theories have to be regarded as EFTs with a

limited range of validity. This includes even renormalizable theories that, like the SM, are well-defined

in a wide range of energies. However, explaining some experimental facts, such as nonzero neutrino

6



FIELD THEORY AND THE STANDARD MODEL: A SYMMETRY-ORIENTED APPROACH
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QED

<latexit sha1_base64="eap6F8RrNO/TbFotQrl5CPd6vMQ=">AAAB7nicZU/LSsNAFJ3UV62vqLhyU+xCF6EkUnVbFMRlBfuAtpSZ5LYZOpMZZqbSEPob7kTcif6Ff+HfmNRsYs/icu7jcO4hklFtXPfHKq2tb2xulbcrO7t7+wf24VFHi5nyoe0LJlSPYA2MRtA21DDoSQWYEwZdMr3L9t1nUJqK6MnEEoYcTyI6pj426Whknww4EfPkHhSn57pqQhAqXozsmlt3l6iuEi8nNZSjNbK/B4HwZxwi4zOsdd/zpHFwQ2IJaphgZajPYFGtDGYaJPaneAIJ5nosIqOdlOiYE4dhA/OUZQOOTehkRenx8oLoeFGQE17sdWocQuAQIlhQWPXDkKcWwyRIDQzlUBQGyzey0N7/iKukc1n3rutXj41a8zaPX0an6AxdIA/doCZ6QC3URj5K0Dv6RF+WtF6sV+vt77Rk5ZpjVID18QtnRJE8</latexit>

Fermi’s theory
<latexit sha1_base64="l1j2VurSS42oXGhIZuA6P8w6Zkk=">AAAB8nicZU/LSsNAFJ34rPUVdSVuit24CCWRqtuiCC4r2Ae0pcxMbpuhM5kwM9WGUPwPdyLuRP/Bv/BvTGo2sWdxOfdxOPeQiDNtXPfHWlldW9/YLG2Vt3d29/btg8O2llNFoUUll6pLsAbOQmgZZjh0IwVYEA4dMrnJ9p1HUJrJ8MHEEQwEHodsxCg26WhoH/cFkbPklgM1Sj4BnlRMAFLF86FddWvuApVl4uWkinI0h/Z335d0KiA0lGOte54XGQfXIxyBGiRYGUY5zCvl/lRDhOkEjyHBQo9kaLSTEh0L4nBsYJaybCCwCZysKD1aXBAdzwtyIoq9To0D8B1CJPcLq14QiNRikPipgWECikJ/8UYW2vsfcZm0z2veZe3ivl5tXOfxS+gEnaIz5KEr1EB3qIlaiKJn9I4+0ZdlrBfr1Xr7O12xcs0RKsD6+AXp7ZNN</latexit>

Electroweak theory

<latexit sha1_base64="KQEIhEd5VY4eE+57uaHgIXro4jg=">AAAB4nicZU/LTsJAFL3FF+ILdemGyMZFQ1qDupToQpeYUCABQmamFzphptN0BgNp+AF3xrgz+i/+hX9ji2wqZ3Fz7uPk3EMjwbVxnB+rsLG5tb1T3C3t7R8cHpWPT9paTWOGHlNCxV1KNAoeome4EdiNYiSSCuzQyX227zxjrLkKW2Ye4UCScchHnBGTjnp9SdUsefBat4thuerUnCUq68RdkSqs0ByWv/u+YlOJoWGCaN1z3cjYpB6RCONBQmLDmcBFpdSfaowIm5AxJkTqkQqNtlOi55LaghicpSwbSGICOyuxHi0vqJ4vcnIq871OjQP0bUqV8HOrXhDI1GKQ+KmB4RLzQn/5Rhba/R9xnbQva+517eqpXm3creIX4QzO4QJcuIEGPEITPGCg4B0+4cvyrRfr1Xr7Oy1YK80p5GB9/AJOJIyO</latexit>

GUT?

<latexit sha1_base64="/rNO8b6o/jownyXQbkB9ZGfs4l4=">AAAB6XicZU/LSsNAFL2pr1pfUZduit24CCURH9uiCC5cVLAPaEqYSW6boTNJmJkWS+hHuBNxJ/oh/oV/Y1KziT2L4dx7z+HMoQlnStv2j1FZW9/Y3Kpu13Z29/YPzMOjroqn0seOH/NY9ilRyFmEHc00x34ikQjKsUcnt/m9N0OpWBw96XmCQ0HGERsxn+hs5Zmm+5CJA+KlrhT1u97CMxt2016ivkqcgjSgQNszv90g9qcCI+1zotTAcRJtkYuEJCiHKZGa+RwX9Zo7VZgQf0LGmBKhRnGklZURNRfU4kTjc8byhSA6tPJHqtFSQdV8UbJTUZ5VFhxiYFEa86B0GoShyCKGaZAFaCawbAyW38hLO/8rrpLuedO5al4+XjRaN0X9KpzAKZyBA9fQgntoQwd8mME7fMKXMTFejFfj7U9aMQrPMZRgfPwCCpGOow==</latexit>
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<latexit sha1_base64="Tc/SlX602DsRa0ck4IFf0AUrQhk=">AAAB6nicZU+7TsMwFHXKq5RXCiNLRReGqEpQgbWiDAwMrUQfUlNFtnPbWLWTyHaBKupPsCHEhuA/+Av+hqRkCT2Dde695+j4kJgzpW37xyhtbG5t75R3K3v7B4dHZvW4r6K5pNCjEY/kkGAFnIXQ00xzGMYSsCAcBmTWzu6DR5CKReGDXsQwFngasgmjWKcrz6y696nYx17iSlHrtm+Xnlm3G/YKtXXi5KSOcnQ889v1IzoXEGrKsVIjx4m1hZsxjkGOEyw1oxyWtYo7VxBjOsNTSLBQkyjUykqJWghicazhOWXZQmAdWNkj1WSlIGqxLNiJKM4qDQ7AtwiJuF84jYJApBHjxE8DNBNQNPqrb2Slnf8V10n/ouFcNS67zXrrJq9fRqfoDJ0jB12jFrpDHdRDFD2hd/SJvgxuvBivxtuftGTknhNUgPHxC4yAjuk=</latexit>
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<latexit sha1_base64="bsP/IlmAs/HDp8iglpjZcGmUYw4=">AAAB4nicZU/LTsJAFL3FF+ILdemGyMZFQ1qDuiXiwiUk8kiAkJn2QifMdCadwUAafsCdMe6M/ot/4d/YYjeVs7g593Fy7qGKM20c58cqbG3v7O4V90sHh0fHJ+XTs66W88jDjie5jPqUaOQsxI5hhmNfRUgE5dijs2a67z1jpJkMn8xS4UiQacgmzCMmGQ2GgspFrNrNh9W4XHVqzhqVTeJmpAoZWuPy99CX3lxgaDxOtB64rjI2qSuiMBrFJDLM47iqlIZzjYp4MzLFmAg9kaHRdkL0UlCbE4OLhKUDQUxgpyXSk/UF1ctVTk5FvteJcYC+Tankfm41CAKRWIxiPzEwTGBe6K/fSEO7/yNuku51zb2t3bTr1cZ9Fr8IF3AJV+DCHTTgEVrQAQ8kvMMnfFm+9WK9Wm9/pwUr05xDDtbHL3LzjKc=</latexit>

pQCD

Fig. 1: Simplified cartoon showing the network of EFTs behind our understanding of subatomic physics.

masses, might require adding higher-dimensional operators to the theory, setting the energy scale for

new physics to be explored in future high-energy facilities. At this energy, the SM will be superseded,

maybe by some grand unified theory (GUT), which in turn is expected to break down at ΛPl. It is in

this sense that EFTs provide the foundational framework to understand nature at the smallest length

scales (see Fig. 1).

2 From symmetry to physics

Symmetry is a central theme of contemporary physics, although its tracks go back a long way in history.

More or less in disguise, symmetry-based arguments can be found in natural philosophy since classical

times. In his refutation of vacuum in the fourth book of Physics (215a), Aristotle used the homogeneity

of empty space to conclude the principle of inertia, that he however regarded as an inconsistency since it

contradicted his first principle of motion: whatever moves has to be moved by something else. Galileo

Galilei’s assumption that reversing the velocity with which a free-rolling ball arrives at the basis of an

inclined plane would make it climb exactly to the height from which it was released can be also regarded

as an early de facto application of time reversal symmetry.

Although the origins of the mathematical study of symmetry are traced back to the first half of

the 19th century with the groundbreaking works on group theory of Evariste Galois and Niels Henrik

Abel, its golden age was ushered in by Felix Klein’s 1872 Erlangen Program [42, 43]. Its core idea

is that different geometries can be fully derived from the knowledge of the group of transformations

preserving its objects (points, angles, figures, etc.). This establishes at the same time a hierarchy among

geometries, determined by the relative generality of their underlying symmetry groups. In this way,

Euclidean, affine, and hyperbolic geometries can be retrieved from projective geometry by restricting its

group of transformations.

As an example, the whole plane Euclidean geometry emerges from the invariance under the com-

bined action of rotations and rigid translations

x′i = Rijx
j + ai, (2.1)

where Rij ∈ SO(2) and ai is an arbitrary two-dimensional vector. These two transformations build

together the Euclidean group E(2) ≡ ISO(2), leaving invariant the Euclidean distance between two
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Fig. 2: Euclidean distance between two points on the plane.

points A and B with Cartesian coordinates A = (xA, yA) and B = (xB, yB),

d(A,B) =
√

(xB − xA)2 + (yB − yA)2, (2.2)

which is just an application of the Pythagorean theorem (see Fig. 2). In a similar fashion, the geometry on

the complex projective line CP1 (a.k.a. the Riemann sphere) follows from the invariance of geometrical

objects under the projective linear group PGL(2,C), acting through Möbius transformations on C∪{∞}

z′ =
az + b

cz + d
, (2.3)

where a, b, c, d ∈ C and ad − bc ̸= 0. Among the invariants in this case are the four-point cross ratios

associated with four points with complex coordinates z1, z2, z3, and z4

CR(z1, z2, z3, z4) ≡
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

, (2.4)

as well as the chordal distance between two points A and B on the Riemann sphere

d(A,B)chordal =
2|zA − zB|√

(1 + |zA|2)(1 + |zB|2)
. (2.5)

Möbius transformations preserve angles and maps circles to circles, so from a Kleinian point of view

they are bona fide geometrical objects on CP1.

Klein’s association of geometry and symmetry (i.e., group theory) revolutionized mathematics

and became a game changer in physics. Beyond all early tacit uses, the systematic implementation of

symmetry in physics had to wait until the end of the 19th century. In 1894 Pierre Curie used group

theoretical methods to study the role of spatial symmetries in physical phenomena [44], thus introducing

mathematical tools so far only applied in crystallography. This inaugurated a trend taken up later by

the emerging fields of relativity and atomic physics, that led to key results like Emmy Noether’s two

celebrated theorems linking symmetries with conserved charges [45] (see Section 5.2).
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2.1 Relativity from geometry

A beautiful example of geometry emerging from symmetry is provided by the geometrization of special

relativity carried out in 1908 by Hermann Minkowski1. Einstein’s formulation of special relativity in

terms of events occurring in some instant t at some position r (as measured by some inertial observer)

leads naturally to introducing the four-dimensional space of all potential events, each represented by

a point with spacetime coordinates (t, r). Although switching from one inertial observer to another

changes the individual coordinates of the events, the invariance of the speed of light implies the existence

of an invariant. Given two arbitrary events taking place at points r and r+∆r, and separated by a time

lapse ∆t, their “spacetime separation”

∆s2 ≡ ∆t2 − (∆r)2 (2.6)

remains the same for all inertial observers. The existence of this invariant with respect to the reference

frame transformations introduced by Lorentz, Poincaré, and Einstein (and named after the first one)

makes it natural to endow the space of events, or spacetime for short, with the metric

ds2 = dt2 − dx2 − dy2 − dz2. (2.7)

This is how spacetime geometry originates from the postulate of invariance of the speed of light.

We can take advantage of the language of tensors and write the line element (2.7) in the form

ds2 = ηµνdx
µdxν , (2.8)

where (x0, x1, x2, x3) ≡ (t, x, y, z) and ηµν ≡ diag(1,−1,−1,−1) is the Minkowski metric. The most

general linear transformation leaving invariant (2.8) [or (2.7)] is written as

x′µ = Λµνx
ν + aµ, (2.9)

where Λµν satisfies

ηµν = ηαβΛ
α
µΛ

β
ν , (2.10)

and aµ is an arbitrary constant vector. The linear coordinate change (2.9) generates the Poincaré

group, ISO(1, 3), that includes all transformations Λµν in the Lorentz group SO(1, 3) in addition to rigid

translations. Notice that Λµν is a 4× 4 matrix with 16 real components, so that the ten conditions (2.10)

reduce to six independent ones. They correspond to the three parameters of a three-dimensional rotation

(e.g., the Euler angles) plus the three velocity components of a generic boost. Adding the four real num-

bers determining a spacetime translation, we conclude that the Poincaré transformation (2.9) depends on

ten independent real parameters.

Besides the invariance of the speed of light, Einstein’s special relativity is also based on a second

postulate, that all laws of physics take the same form for any inertial observer. This can also be recast in

1Einstein actually dubbed Minkowski’s idea überflussige Gelehrsamkeit (superfluous erudition) [46], although geometrization
later turned out to be the basis of his general theory of relativity.
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geometric language by demanding that all equations of physics be expressed as tensor identities with the

structure

Tµ1...µkν1,...,νn(x) = 0. (2.11)

Under the generic Poincaré transformation (2.9), the previous equation changes as

T ′µ1...µk
ν1...νn (x′) = Λµ1α1

. . .Λµkαk
Tα1...αk
β1...βn

(x)Λβ1ν1 . . .Λ
βn
νn = 0, (2.12)

thus preserving the form T ′µ1...µk
ν1,...,νn (x

′) = 0 it had for the original observer.

Box 1. Retrieving Lorentz transformations

It is a trivial exercise to recover the standard expression of Lorentz transformations from the invari-

ance of the line element (2.7). For simplicity we consider a two-dimensional spacetime, equivalent

to restricting to boosts along the x-axis so the coordinates y′ = y and z′ = z remain unchanged.

Implementing the coordinate change

(
t′

x′

)
=

(
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)(
t

x

)
. (2.13)

with the condition dt′2 − dx′2 = dt2 − dx2 implies

(Λ1
0)

1 − (Λ1
0)

2 = 1,

(Λ2
1)

1 − (Λ0
1)

2 = 1, (2.14)

Λ0
0Λ

0
1 − Λ1

0Λ
1
1 = 0.

Using the properties of the hyperbolic functions, we easily see that the first two identities are solved

by Λ0
0 = coshα, Λ1

0 = ± sinhα and Λ0
1 = ± sinhβ, Λ1

1 = coshβ, for arbitrary α and β, with

the third one requiring β = α. The sought transformation is therefore parametrized as

(
t′

x′

)
=

(
coshα − sinhα

− sinhα coshα

)(
t

x

)
, (2.15)

where the parameter α is called the boost rapidity. A comment on the signs is in order. First, we

have taken Λ0
0 > 0 so the arrow of time points in the same direction for both observers (later in

page 41 we will assign a Greek name to this and call these transformations orthochronous). On the

other hand, as we will see right away, the parameter α is related to the boost velocity. Choosing a

negative sign for the off-diagonal components of the matrix in (2.15) means that α > 0 corresponds

to a boost in the direction of the positive x-axis.

To find the standard expression of the Lorentz transformation, we notice that the hyperbolic
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functions can be alternatively parametrized as

coshα =
1√

1− V 2
, sinhα =

V√
1− V 2

, (2.16)

where the relation between the boost velocity and its rapidity is given by V = tanhα. Plugging

these expressions into (2.15), we arrive at the well-known formulae

t′ =
t− V x

c2√
1− V 2

c2

, x′ =
x− V t√
1− V 2

c2

, (2.17)

where exceptionally we have restored powers of c.

Whereas the Euclidean distance (2.2) tells us about how far apart in space two points lie, the

spacetime geometry (2.7) contains information about the causal relations between events. Let us consider

an arbitrary event that, without loss of generality, we place at the origin of our coordinate system xµ0 =

(0,0). The question arises as to whether some other event xµ = (t, r) may either influence what happens

at xµ0 or be influenced by it. Since the speed of light is a universal velocity limit, the question is settled by

checking whether it is possible for a signal propagating with velocity v ≤ 1 to travel from (t, r) to (0,0),

if t < 0, or vice-versa for positive t. The condition for this to happen is

|r|
|t| ≤ 1 =⇒ t2 − r2 ≥ 0. (2.18)

The set of events satisfying this condition defines the interior and the surface of the light-cone associated

with the event at (0,0), that we have depicted in Fig. 3 for a (2+1)-dimensional spacetime. Points in the

causal past of the origin lie inside or on the past light-cone (t < 0), whereas those on or inside the future

light-cone (t > 0) are causally reachable from (0,0). By contrast, events outside the light-cone cannot

influence or be influenced by the event at the origin, since this would require superluminal propagation.

What we have said about the origin applies to any other event: every point of the spacetime is endowed

with its light-cone, defining its area of casual influence.

Thus, if two events lie outside each other’s light-cones, they cannot influence one another. Math-

ematically this is characterized by their spacetime separation satisfying ∆s2 < 0, so they are said to be

spatially separated. Interestingly, there always exists a reference frame in which both events happen at

the same t, i.e. they are simultaneous. This is not possible when one event is inside the other’s light-cone,

in which case ∆s2 > 0 and their separation is called timelike. Looking at (2.6) and remembering the

invariant character of ∆s2 we see that there can be no frame for which ∆t = 0. Nonetheless, it is always

possible to find an inertial observer for which both events happen at the same point of space, i.e. ∆r = 0.

In this case ∆s2 is just the (squared) time elapsed between both events, as measured by the observer who

is visiting both. Notice for two events lying on each others light-cone there is no such possibility, since

they can only be joined by signals propagating at the speed of light and no observer can travel at this

velocity.
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past light cone

Fig. 3: Representation of the light cone at the origin in a (2 + 1)-dimensional spacetime.

Box 2. There is no twin paradox

One of the most celebrated “paradoxes” associated with special relativity is that involving two iden-

tical twins, one of which starts a round trip from Earth at very high speed while the second remains

quietly behind. Relativistic time dilation implies that the clock carried by the traveling twin slows

down with respect to the time set by a second clock on Earth, so at the end of the trip the returning

twin looks younger than the remaining sibling. So far, so good. However, applying the same argu-

ment to the frame of reference moving with the spaceship, the conclusion seems to be the opposite:

that the clock of the twin staying on Earth, that is the one moving in the reference frame of the

rocket, ticks slower and after the reunion it is the Earth twin the one looking younger.

To clarify this apparent “paradox” we have to keep in mind that special relativity is about

inertial observers. Thus, we are going to work with the reference frame of the twin standing on

Earth, who follows the spacetime path (the worldline) indicated in the following graph as 1

There is no twin paradox
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2

The travelling twin, on the other hand, follows the worldline labelled as 2, that starts and finishes on

Earth, moving back and forth along the x direction. For simplicity, we restrict the movement of the
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rocket to this coordinate, with the Earth located at x = 0.

Physical observers move along wordlines xµ(λ) whose tangent at any point defines a timeline

vector ηµν ẋµ(λ)ẋν(λ) > 0. The time elapsed between two eventsA andB as measured by the clock

carried by the observer (called its proper time) equals the spacetime length along the worldline γAB

∆sAB =

∫

γAB

ds =

∫ λB

λA

dλ
√
ηµν ẋµ(λ)ẋν(λ). (2.19)

A particularly convenient parametrization of the curve is provided by the coordinate time, x0 ≡ t,

so writing xµ(t) =
(
t,R(t)

)
the previous equation becomes

∆sAB =

∫ tB

tA

dt′
√
1− v(t′)2, (2.20)

with v(t) = Ṙ(t) the observer velocity satisfying |v(t)| < 1.

Let us return to our twins. Both of them travel from A to B, as shown in the graph above, but

along different worldlines with different speeds. The one on Earth has v = 0, so the time elapsed

between the departure and arrival of the second twin is

∆s
(1)
AB = tB − tA. (2.21)

For the twin on the spaceship, by contrast, we do not even need to know anything about the details

of the varying speed. It is enough to notice that 0 <
√
1− v(t)2 < 1, implying

∆s
(2)
AB < ∆s

(1)
AB. (2.22)

Consequently, after reunion, the traveling twin will be the younger.

A basic difference between the twins is that the one at rest is precisely the inertial observer

for which the timelike separated events A and B happen at the same point of space. In fact, the

result (2.22) reflects a property of this particular frame: its worldline represents the path of the

longest proper time interpolating between two given events.

As announced, the reason why there is no paradox is because only one of the twins is an

inertial observer and their descriptions cannot be simply interchanged without further ado. Seeing

everything from the point of view of the spaceship leads us to give up the Minkowski metric (2.7).

Indeed, by changing the coordinates

t′ = t,

r′ = r+R(t), (2.23)

the worldlines of both twins are respectively parametrized by xµ1 (t
′) =

(
t′,−R(t′)

)
and xµ2 (t

′) =

13
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(
t′,0

)
, while the spacetime metric now reads

ds2 =
[
1− v(t′)2

]
dt′2 + 2v(t′) · dr′ dt′ − dr′2, (2.24)

which is no longer the Minkowski metric. To compute the proper time of both twins we use

Eq. (2.19), replacing ηµν by the line element (2.24). We then find

∆s
(1)
AB =

∫ t′B

t′A

dt′
√
1− v(t′)2 + 2v(t′)2 − v(t′)2 = tB − tA,

∆s
(2)
AB =

∫ t′B

t′A

dt′
√
1− v(t′)2 < ∆s

(1)
AB, (2.25)

which reproduce the results obtained above. The conclusion is that, if properly analyzed, the de-

scriptions from the points of view of both twins are absolutely consistent and no paradox arises.

As time and space coordinates combine to label a point (event) in the four-dimensional Minkowski

spacetime, so do energy and momentum build up an energy–momentum four-vector pµ = (E,p). For a

particle of massmmoving along an affinely paramerized worldline xµ(s), the four-momentum is defined

by

pµ(s) ≡ mẋµ(s) =
(

m√
1− v2

,
mv√
1− v2

)
, (2.26)

with v the particle’s velocity. A first thing to be noticed here is that the particle’s energy is nonzero even

when its velocity vanishes. Restoring powers of c

E −→ E

c
, m −→ mc v −→ v

c
, (2.27)

we get the famous equation Erest = mc2. On the other hand, the particle’s energy diverges as |v| → c.

This shows that the speed of light is a physical limiting velocity for any massive particle, since reach-

ing |v| = c would require pumping an infinite amount of energy into the system. The transformation of

energy and momentum among inertial observers is fixed by pµ being a four-vector, whose change under

a Lorentz transformation Λµν is given by p′µ = Λµνpν . Considering a boost along the x direction with

velocity V and using the expressions obtained in Box 1 in pages 10-11, we have

E′ =
E − V px√
1− V 2

, p′x =
px − V E√
1− V 2

, (2.28)

together with p′y = py and p′z = pz .

Equation (2.26) also implies the mass-shell condition2

E2 − p2 = m2. (2.29)

2In covariant terms, the mass-shell condition reads pµp
µ = m2 and follows from (2.26), remembering that the particle’s

worldline is affinely parametrized, ηµν ẋµ(s)ẋν(s) = 1.
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E = �|p|

Fig. 4: Energy–momentum hyperboloid for a particle of mass m ̸= 0 (orange). The energy-momentum
vector of a massless particle lies on the blue cone.

In the four-dimensional energy–momentum space spanned byE and p, the particle’s four-momentum pµ

lies on the two-sheeted hyperboloid E = ±
√

p2 +m2, with the two signs corresponding to the upper

and lower sheet. Interestingly, the mass-shell condition has a smooth limit as m → 0, where the hyper-

boloid degenerates into the cone E2 = p2, to which all massive hyperboloids asymptote for large spatial

momentum, |p| ≫ m (see Fig. 4). Unlike Newtonian mechanics, special relativity admits the existence

of zero-mass particles whose four-momenta have the form

pµ = (|p|,p), (2.30)

where we have chosen the positive energy solution. In terms of its energy and momentum, the velocity

of a massive particle is given by [cf. (2.26) and (2.29)]

v =
p√

p2 +m2
, (2.31)

which as m→ 0 gives |v| = 1. Thus, massless particles necessarily propagate at the speed of light.

2.2 Relativity and quantum mechanics

So far, our analysis has left out quantum effects. Special relativity can be combined with quantum

mechanics to formulate relativistic wave equations plagued with trouble. An immediate problem arises

from the energy hyperboloid depicted in Fig. 4. The existence of the lower sheet implies that the system

of a relativistic quantum particle coupled to an electromagnetic field has no ground state, since the

particle has infinitely many available states with arbitrary negative energy to which it could decay by

radiating energy. This fundamental instability of the system is impossible to solve in the context of the

Klein–Gordon wave equation, while in the Dirac equation it can be avoided by “filling” all states in the
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lower sheet of the hyperboloid (the Dirac sea). The Pauli exclusion principle now prevents electrons

from occupying negative energy states, and the system is stable.

The Dirac sea notwithstanding, the interpretation of the Dirac equation as a single-particle rela-

tivistic wave equation is problematic, leading to puzzling results such as the Klein paradox [14, 47]. In

fact, all the difficulties we run into when trying to marry quantum mechanics with special relativity stem

from insisting in a single-particle description, as can be seen from a simple heuristic argument. As we

know, Heisenberg’s uncertainty principle correlates quantum fluctuations in the position and momentum

of a particle

∆x∆px ≥
ℏ
2
. (2.32)

Looking at physics at small distances requires taming spatial fluctuations below the scale of interest,

which in turn leads to large fluctuations in the particle’s momentum. When the latter reaches the

scale ∆px ∼ mc, the corresponding energy fluctuations ∆E ∼ mc2 are large enough to allow the

creation of particles out of the vacuum and the single-particle description breaks down. Equivalently,

localizing a particle below its Compton wavelength,

∆x ≤ ℏ
2mc

, (2.33)

leads to a quantum state characterized by an indefinite number of them. Unlike what happens in non-

relativistic many body physics, in the quantum-relativistic domain particle number is not conserved and

creation-annihilation of particles is a central ingredient of the theory. Thus, the single-particle descrip-

tion inherent to the relativistic wave equation is fundamentally wrong, as indicated by the paradoxes and

inconsistencies it leads to.

Box 3. Antiparticles and causality

One of the consequences of the Klein paradox alluded to above is the impossibility of a consistent

formulation of relativistic quantum mechanics without the inclusion of antiparticles. We can reach

the same conclusion by showing that antiparticles are the unavoidable ingredient to preserve causal-

ity in a relativistic quantum theory. To do so, let us consider a relativistic particle of mass m that

at t = 0 is detected at the origin. Its quantum-mechanical propagator is given by

G(τ, r) ≡ ⟨r|e−iτ
√

p2+m2 |0⟩ = e−iτ
√

−∇2+m2
δ(3)(r). (2.34)

Physically, this quantity gives the probability amplitude of the particle being detected at a later

time t = τ at some location r. To explicitly evaluate the propagator, we Fourier transform the

Dirac delta function and compute the resulting integral in terms of a modified Bessel function of the

second kind

G(τ, r) =

∫
d3k

(2π)3
e−iτ

√
k2+m2+ik·r
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=
1

2π2|r|

∫ ∞

0
kdk sin(k|r|)e−iτ

√
k2+m2

(2.35)

= − i

2π2
m2t

τ2 − r2
K2

(
im
√
τ2 − r2

)
,

where, to write the last identity, we regularized the momentum integral by analytical contin-

uation τ → τ − iϵ. Naively, one would expect this propagator to vanish outside the light

cone, τ2 − r2 < 0, since otherwise the particle would have a nonvanishing probability of being

detected at points spacelike separated from the origin, its location at t = 0. Were this to happen, it

would imply a violation of causality.

Despite expectations, the modified Bessel function in (2.35) is nonzero for both real and imag-

inary values of the argument and the propagator spills out of the light-cone despite being derived

from a relativistic Hamiltonian. The key point to understand what is going on is that when r lies

outside the light-cone at the origin there are frames in which the detection of the particle at the po-

sition r precedes its detection at the origin. In computing the propagator we should take this into

account and consider the superposition of both processes outside and inside the light-cone

G(τ, r) =




⟨r|e−iτ

√
p+m2 |0⟩ when τ2 − r2 > 0

⟨r|e−iτ
√

p+m2 |0⟩+ ⟨0|eiτ
√

p+m2 |r⟩ when τ2 − r2 < 0
(2.36)

Now, from the explicit expression (2.35) we can check that ⟨r|e−iτ
√

p+m2 |0⟩ is purely imaginary

when τ2 − r2 < 0. Since, on the other hand,

⟨r|e−iτ
√

p+m2 |0⟩+ ⟨0|eiτ
√

p+m2 |r⟩ = 2Re ⟨r|e−iτ
√

p+m2 |0⟩, (2.37)

we conclude that

G(r, τ) = − i

2π2
m2t

τ2 − r2
K2

(
im
√
τ2 − r2

)
θ(τ2 − r2), (2.38)

and causality is consequently restored.

There exists an interesting interpretation of this cancellation mechanism due to Ernst Stueck-

elberg [48] and Richard Feynman [49, 50]. Our propagator can be seen as the wave function of the

particle of interest, ψ(τ, r) ≡ G(τ, r), satisfying the boundary condition ψ(0, r) = δ(3)(r). We

found that outside the light-cone there is a superposition of two processes: one in which the particle

is traveling from the origin to r forward in time, and a second described by the wave function

ψ(τ, r)⇓ ≡ ⟨0|eiτ
√

p2+m2 |r⟩ = ⟨r|e−iτ
√

p2+m2 |0⟩∗ ≡ ψ(τ, r)∗⇑, (2.39)

where the particle moves backwards in time from r to the origin. Furthermore, writing

ψ(τ, r)⇓ =

∫
d3k

(2π)3
eiτ

√
k2+m2−ik·r =

∫
d3k

(2π)3
e−iτ(−

√
k2+m2)+i(−k)·r (2.40)
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and comparing with the first line in Eq. (2.35), we reinterpretψ(τ, r)⇓ as describing a state of massm

and momentum −k, lying in the lower sheet of the energy hyperboloid, and propagating forward

in time. This represents a hole in the Dirac sea, i.e. an antiparticle of momentum k. Moreover,

from (2.39) we see that if our particle has charge q with respect to some global U(1) symmetry, the

antiparticle necessarily transforms with the opposite charge

ψ(τ, r)⇑ → eiqθψ(τ, r)⇑ =⇒ ψ(τ, r)⇓ → e−iqθψ(τ, r)⇓. (2.41)

Antiparticles are therefore a necessary ingredient in a relativist theory of quantum pro-

cesses if we want to avoid superluminal effects. They automatically imply the possibility of cre-

ation/annihilation of particle–antiparticle pairs, turning what was intended as single-particle rela-

tivistic quantum mechanics into a multiparticle theory where the number of particles is not even

well defined.

A fundamental consequence of the causal structure of spacetime is that measurement of observ-

ables in regions that are spacelike separated cannot interfere with each other. In quantum theory these

measurements are implemented by local operatorsO(x) smeared over the spacetime region R where the

measurement takes place

O(R) ≡
∫
d4xO(x)fR(x), (2.42)

where

fR(x) =





1 if x ∈ R

0 if x /∈ R
(2.43)

is the characteristic function associated with R. In mathematical terms, the noninterference of the mea-

surements carried out in spacelike separated regions R1 and R2 like those shown in Fig. 5 is expressed

by the vanishing of the commutator of the associated operators

[O(R1),O(R2)] = 0 if R1 and R2 are spacelike separated, (2.44)

or equivalently

[O(x),O(y)] = 0 if (x− y)2 < 0. (2.45)

This states the principle of microcausality, a profound form of locality that has to be imposed on con-

structing any admissible QFT. To date no consistent theory has been formulated violating this principle.

This is why all theories to be encountered later in these lecture will be local quantum field theories

(LQFTs) in the sense of Eq. (2.44).
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Fig. 5: The two spacelike-separated regions R1 and R2 cannot causally influence one another.

3 The importance of classical field theory

Maxwell’s electromagnetism is arguably the mother of all classical field theories. Despite its apparent

simplicity, the theory contains a number of symmetries and structures that underlie many other develop-

ments in QFT. This is the reason why it is worthwhile to spend some time extracting some lessons from

classical electromagnetism that we will find useful later in our study of the SM and other theories.

3.1 The symmetries of Maxwell’s theory

Using Heaviside units, and keeping c = 1 all the way, the Maxwell’s equations take the form

∇ ·E = ρe,

∇ ·B = ρm,

∇×E = −jm −
∂B

∂t
, (3.1)

∇×B = je +
∂E

∂t
.

Here we have introduced a color code signaling various layers of generality. Setting to zero all terms in

blue and red we get the vacuum Maxwell’s equations governing the evolution of electromagnetic fields

in the absence of any kind of matter. If we keep the terms in blue but remove those in red, the resulting

expressions describe the coupling of electric and magnetic fields to electrically charged matter, where ρe
and je, respectively, represent the electric charge density and current. These are the Maxwell’s equations

that can be found in most textbooks on classical electrodynamics (see, for example, Ref. [51]).

Let us postpone a little bit the discussion of the terms in red and concentrate on the second and
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third equations

∇ ·B = 0,

∇×E = −∂B
∂t
. (3.2)

They imply that the electric and magnetic fields can be written in terms of a scalar and a vector poten-

tial (ϕ,A) as

B = ∇×A,

E = −∇ϕ− ∂A

∂t
. (3.3)

These potentials, however, are not uniquely defined. The electric and magnetic fields remain unchanged

if we replace

ϕ −→ ϕ+
∂ϵ

∂t
,

A −→ A−∇ϵ, (3.4)

with ϵ(t, r) an arbitrary well-behaved function. This gauge invariance is probably the most important

of those structures of the electromagnetic theory that we said were of radical importance for QFT at

large. Although at a classical level it might seem a mere technicality, it has profound implications for the

quantum theory and is the cornerstone of the whole SM. We explore its significance in some detail in the

following. For computational purposes, it is convenient sometimes to (partially) fix the gauge freedom

by imposing certain conditions on ϕ and A. Two popular choices in classical electromagnetism are the

Coulomb gauge ∇ · A = 0 and the temporal (also called Weyl) gauge ϕ = 0. These conditions still

leave a residual invariance, generated in the first case by harmonic functions ∇2ϵ(t, r) = 0 and by time

independent functions ϵ(r) in the second. A covariant alternative is the Lorentz gauge

∇ ·A+
∂ϕ

∂t
= 0, (3.5)

preserved by gauge functions satisfying the wave equation, □ϵ(t, r) = 0.

Gauge invariance introduces a redundancy in the description in terms of the electromagnetic po-

tentials that however cannot be reflected in physically measurable quantities such as the electric and

magnetic fields. These are not the only gauge invariant quantities that can be constructed in terms of ϕ

and A. There is also the Wilson loop, defined by

U(γ) ≡ exp

(
−ie

∮

γ
dr ·A

)
, (3.6)

where γ is a closed path in space and e the electric charge. Implementing a gauge transformation on the
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vector potential and using the Stokes theorem, we see that it is indeed gauge invariant

exp

(
−ie

∮

γ
dr ·A

)
−→ exp

(
−ie

∮

γ
dr ·A+ ie

∮

γ
dr ·∇ϵ

)
= exp

(
−ie

∮

γ
dr ·A

)
, (3.7)

after taking into account that γ is closed. Whereas E and B are local observables depending on the

spacetime point where they are measured, the Wilson loop is nonlocal since it “explores” the whole

region enclosed by γ.

It is enlightening to study the consequences of gauge transformations for the dynamics of a quan-

tum particle coupled to an electromagnetic field. In quantum mechanics the prescription of minimal

coupling of a particle with electric charge e to the electromagnetic field

p −→ p− eA, H −→ H + eϕ, (3.8)

introduces an explicit dependence of the Schrödinger equation on the electromagnetic potentials

i
∂ψ

∂t
=

[
− 1

2m

(∇− ieA)2 + eϕ

]
ψ. (3.9)

To preserve the gauge invariance of this equation, the transformations (3.7) have to be supplemented by

a phase shift of the wave function

ψ(t, r) −→ e−ieϵ(t,r)ψ(t, r), (3.10)

which does not affect the probability density |ψ(t, r)|2. This shows that the gauge transformations in

electromagnetism belong to the Abelian group U(1) of complex rotations, parametrized by elements

U = e−ieϵ(t,r), (3.11)

in terms of which Eq. (3.4) reads

ϕ −→ ϕ+
i

e
U−1 ∂

∂t
U,

A −→ A− i

e
U−1∇U. (3.12)

Box 4. Wilson loops and quantum interference

At the classical level we can live with just local observables, like the electric and magnetic fields,

but not anymore when we introduce quantum effects. In this case the phase transformation of the

wave function may give rise to observable interference phenomena. As we will see now, these are

measured by a Wilson loop U(γ).

We work for simplicity in the temporal gauge ϕ = 0. The action of a classical charged particle

21



LUIS ÁLVAREZ-GAUMÉ AND MIGUEL Á. VÁZQUEZ-MOZO

propagating in the background of an electromagnetic potential A(t, r) is given by

S =
1

2

∫
dtmṙ2 − e

∫

γ
dr ·A, (3.13)

where γ is the particle trajectory and e is the electron charge. An interesting property of the second

term is that its value does not change if we smoothly deform the path γ across any region where the

magnetic field vanishes. Let us consider two paths γ1 and γ2 joining two points A and B as shown

here

There is no twin paradox
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B

Computing the difference between the contributions of both paths, we find a Wilson loop

∫

γ1

dr ·A−
∫

γ2

dr ·A =

∮

γ−1
2 γ1

dr ·A = 0, (3.14)

where γ−1
2 γ1 represents the closed path from A to B following γ1 and back to A along γ2. To

see why this term is zero, let us denote by S any surface bounded by γ−1
2 γ1. Applying the Stokes

theorem, we have
∮

γ−1
2 γ1

dr ·A =

∫

S
dS · (∇×A) = 0, (3.15)

since we assumed that B = ∇×A = 0 in the integration domain.

This topological property of the interaction term in (3.13) has an important consequence in

quantum mechanics, as pointed out by Yakir Aharonov and David Bohm [52]. Let us look at a

double slit experiment performed with electrons in which behind the slitted screen we place a vertical

solenoid confining a constant magnetic field B (see Fig. 6 in page 23). The amplitude for an electron

emitted from A at t = 0 to be detected at a point P of the detection screen at t = τ can be computed

as a coherent quantum superposition of all possible classical trajectories, expressed by the Feynman

path integral

G(τ ; rA, rP ) = N
∫

r(0)=rA
r(τ)=rP

Dr exp

(
i

2

∫ τ

0
dtmṙ2 − ie

∫

γ
dr ·A

)
, (3.16)

with N a global normalization. The modulus squared of G(τ ; rA, rP ) gives the probability of the

electron being detected at the point P at time τ .

Recall that the magnetic field outside the solenoid is equal to zero and we can thus apply the

topological property (3.14) to conclude that the second term in the exponential of (3.16) takes the
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same value for all trajectories γL passing through the left slit, and the same for all paths γR going

through the right one. The total propagator can then be written as

G(τ ; rA, rP ) = e
−ie

∫
γR

dr·A
GR(τ ; rA, rP )0 + e

−ie
∫
γL

dr·A
GL(τ ; rA, rP )0

= e
−ie

∫
γR

dr·A [
GR(τ ; rA, rP )0 + e

−ie
∫
γL

dr·A+ie
∫
γR

dr·A
GL(τ ; rA, rP )0

]
, (3.17)

where GR,L(τ ; rA, rP )0 are the propagators for the electrons going through the right (resp. left)

slit in the absence of the solenoid. Now, although the global phase disappears when computing the

probability amplitude, the relative phase inside the brackets of the second line of (3.17) contributes

to the interference pattern to be observed on the detection screen. Using the same arguments leading

to the result (3.14), we express this phase as the Wilson loop associated with the closed path γ−1
R γL

exp

(
−ie

∫

γL

dr ·A+ ie

∫

γR

dr ·A
)

= exp

(
−ie

∮

γ−1
R γL

dr ·A
)
≡ U(γ−1

R γL). (3.18)

It is important to keep in mind that γ−1
R γL represents any closed path going through both slits and

enclosing the solenoid. To evaluate this Wilson loop let us take a bird’s-eye view of the Aharonov–

Bohm experimental setup in Fig. 6, that we schematically represent as:

There is no twin paradox
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Should we apply the Stokes theorem to the calculation of U(γ−1
R γL) as we did in Eq. (3.15), the

resulting integral would not be zero anymore. As we see, the surface S enclosed by the loop is now

pierced by the solenoid, and the magnetic field B = ∇×A is not zero everywhere. Instead

∮

γ−1
R γL

dr ·A =

∫

S
dS ·B = Φ, (3.19)

where Φ is the magnetic flux inside the solenoid, and we have

U(γ−1
R γL) = e−ieΦ ̸= 1. (3.20)

Hence, the presence of the solenoid modifies the interference pattern on the screen, even if the elec-

trons never enter the region where the magnetic field is nonzero. The reason is that even if B = 0

outside, A is not. Although no force is applied to them, the electrons interact with the vector po-

tential whose global structure, codified in the nonlocal gauge-invariant quantity U(γ−1
R γL), contains

information about the confined magnetic field.

Going back to the Maxwell’s equations (3.1), we notice that the vacuum equations (with all blue

and red terms removed) exhibit an interesting symmetry. Combining the electric and magnetic fields into
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A

Fig. 6: Experimental setup to exhibit the Aharonov–Bohm effect explained in Box 4.

a single complex field E+ iB, the four equations can be summarized as

∇ · (E+ iB) = 0,

∇× (E+ iB)− i ∂
∂t

(E+ iB) = 0. (3.21)

Both identities remain invariant under the transformation

E+ iB −→ eiθ
(
E+ iB

)
, (3.22)

with θ a real global angle. To be more specific, splitting the previous equation into its real and imaginary

parts, we find

E −→ E cos θ −B sin θ,

B −→ E sin θ +B cos θ, (3.23)

which for θ = π
2 interchanges electric and magnetic fields (E,B)→ (−B,E).

This electric–magnetic duality of the vacuum equations is however broken by the source terms in

the “textbook” Maxwell’s equations [i.e., Eq. (3.1) without the terms in red]. The identities (3.21) are

then recast as

∇ · (E+ iB) = ρe,

∇× (E+ iB)− i ∂
∂t

(E+ iB) = ije. (3.24)

Since ρe and je are both real quantities, the only transformations preserving these equations are the trivial

ones which either leave invariant the electric and magnetic fields or reverse their signs (corresponding

respectively to θ = 0, π), the latter one also requiring the reversal of the sign of ρe and je. Physically this
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makes sense, since as far as we know there is a fundamental asymmetry in nature between electric and

magnetic fields. While the first are sourced by point charges (electric monopoles) at which field lines

either begin or end, magnetic fields are associated with the motion of electric charges and their field lines

always close on themselves. Restoring electric-magnetic duality in the Maxwell’s equations requires

treating the sources of both fields symmetrically, which means introducing magnetic charge density and

current. These are the terms in red in Eq. (3.1), that we rewrite now as

∇ · (E+ iB) = ρe + iρm,

∇× (E+ iB)− i ∂
∂t

(E+ iB) = i
(
je + ijm

)
. (3.25)

These equations remain invariant under electric–magnetic duality (3.22) when supplemented by a corre-

sponding rotation of the sources

ρe + iρm −→ eiθ
(
ρe + iρm

)
,

je + ijm −→ eiθ
(
je + ijm

)
. (3.26)

For θ = π
2 the interchange of electric and magnetic fields is accompanied by a swap of the electric and

magnetic sources, (ρe, je)→ (−ρm,−jm) and (ρm, jm)→ (ρe, je).

The consequences of having particles with magnetic charge were first explored by Dirac in

Ref. [53]. Let us assume the existence of a point magnetic source that for simplicity we locate at the

origin, ρm = gδ(3)(r). The second equation in (3.1) leads to

∇ ·B = gδ(3)(r) =⇒ B(r) =
1

4π

g

r2
ur, (3.27)

which would be a magnetic analog of the Coulomb field. An important point to consider is that, despite

the source’s presence, the magnetic field’s divergence still vanishes everywhere except at the monopole’s

position. As a consequence, away from this point we can still write B = ∇×A, which is solved by

A(r) =
1

4π

g

r
tan

(
θ

2

)
uφ, (3.28)

where we are using spherical coordinates (r, φ, θ). This vector potential is singular not only at the

monopole location at r = 0, but all along the line θ = π as well. The existence of this singular Dirac

string should not be a surprise. Were A(r) be regular everywhere outside the origin, we could apply the

Stokes theorem to the integral giving the magnetic flux across a closed surface S enclosing the monopole,

to find
∫

S
dS ·B =

∫

S
dS · (∇×A) =

∮

∂S
dℓ ·A = 0, (3.29)

since ∂S = ∅. This would contradict the calculation of the same integral applying Gauss’ theorem

∫

S
dS ·B =

∫

B3

∇ ·B = g ̸= 0, (3.30)
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Fig. 7: Left: Section of a sphere around a Dirac magnetic monopole with charge g, resulting from
cutting out a region around the south pole. Its boundary ∂S surrounds the singular Dirac string located
along θ = π (in red). Right: Closed path surrounding the Dirac string.

where B3 denotes the three-dimensional region bounded by S and containing the monopole. Notice that

this second calculation is free of trouble, since the magnetic field (3.27) is regular everywhere on S. The

catch, of course, is that the vector potential is singular at θ = π and the surface S in (3.29) cannot be

closed. As shown on the left of Fig. 7, its boundary is a circle surrounding the singularity and the integral

gives a nonzero result

∮

∂S
dℓ ·A =

1

2
g sin δ0 tan

(
δ0
2

)
δ0→0
−−−−→ g, (3.31)

where the last limit corresponds to shrinking the boundary to a point, reproducing the result of Eq. (3.30).

Even if mathematically unavoidable, the existence of a singularity is always a source of concern

in physics. A way to restore our peace of mind in this case might be to make the Dirac string an artefact

that somehow is rendered unobservable. One may think that a way to accomplish this is to apply a gauge

transformation, since the vector potential is not uniquely defined. This, however, does not eliminate the

Dirac string, just changes its location.

Let us look a bit closer at the vector potential (3.28) near the Dirac string. Denoting by ϱ the linear

distance to the string (see the right of Fig. 7), in the limit ϱ→ 0 we can write

A ≈ 1

2π

g

ϱ
uφ. (3.32)

This expression should be familiar from elementary electrodynamics, since it represents the vector poten-

tial outside an infinite solenoid. The Dirac string can be pictured then as an infinitely thin solenoid pump-

ing magnetic flux into the monopole which, according to the limiting value of the integral in Eq. (3.31),

is actually equal to the outgoing flux through a closed surface surrounding the monopole.

In Box 4 we learned a way to “detect solenoids” by their imprints on the wave function of charged

quantum particles detectable by interference experiments. The Wilson loop of a particle with electric
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charge e going around the Dirac string is computed from the vector potential (3.32) and gives [see also

Eq. (3.31)]

U(γ) = exp

(
−ie

∮

γ
dℓ ·A

)
= e−ieg. (3.33)

The absence of detectable interference requires this phase to be equal to one for any electrically charged

particle, which amounts to the condition

eg = 2πn =⇒ e =
2π

g
n. (3.34)

with n an integer. This is a very interesting result, stating that the existence of a single magnetic

monopole anywhere in the universe implies by consistency that electric charges have to be quantized.

The quantization condition (3.34) remains invariant under electric–magnetic duality with θ = π
2 .

Unconfirmed sightings in cosmic rays notwithstanding [54,55], no evidence exists of magnetically

charged particles at the energies explored. They are, however, an almost ubiquitous prediction of many

theories beyond the SM, where they usually emerge as solitonic objects resulting from the spontaneous

breaking in unified field theories leaving behind unbroken U(1)’s. Although they acquire masses of the

order of the symmetry breaking scale, magnetic monopoles should have been created in huge amounts at

the early stages of the universe’s history. One of the original aims of cosmological inflation models was

to dilute their presence in the early universe, thus accounting for their apparent absence.

Box 5. Magnetic monopoles from topology

The origin of all our troubles with the Dirac monopole was after all topological: although the vector

potential of the magnetic monopole is locally well defined anywhere away from the origin, it cannot

be extended globally to the sphere surrounding the monopole. There is however a way to avoid the

singular Dirac string, which was pointed out by Tai Tsun Wu and Chen Ning Yang [56]. When

computing the flux integral (3.30), instead of covering the sphere with a single patch cutting out the

region around the place where the Dirac string crosses the surface (in our case, the south pole), we

can be more sophisticated and use two patches, respectively centered at the north and south poles

and overlapping at the equator. This is what we represent in the picture below, with D± the upper

and lower hemispheres glued together along their respective boundaries S1
±

There is no twin paradox
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S1
+

On both D+ and D− we can write vector potentials whose curls reproduce the expression of the
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monopole field (3.27)

A(r)+ =
1

4π

g

r
tan

(
θ

2

)
uφ 0 ≤ θ ≤ π

2
,

A(r)− = − 1

4π

g

r
cot

(
θ

2

)
uφ

π

2
≤ θ ≤ π. (3.35)

The important point here is that both expressions are perfectly regular in their respective domains,

so our vector potential is regular everywhere on the sphere S2 = D+ ∪D−. An apparent obstacle

arises in their overlap at the equator θ = π
2 , where the two expressions do not agree

A(r)+

∣∣∣
S1
+

−A(r)−
∣∣∣
S1
−
=

1

2π

g

r
uφ. (3.36)

This is however not a problem since, as we know, the vector potential is not uniquely defined. It is

physically acceptable that the identification of the vector potentials at the equator is made modulo a

gauge transformation, which is indeed the case here

ϵ = − g

2π
φ =⇒ A(r)+

∣∣∣
S1
+

= A(r)−
∣∣∣
S1
−
−∇ϵ. (3.37)

The magnetic flux due to the magnetic monopole at its center can be evaluated using these expres-

sions as
∫

S2

dS ·B =

∫

D+

dS · (∇×A+) +

∫

D−
dS · (∇×A−)

=

∮

S1
+

dℓ ·A+ +

∮

S1
−

dℓ ·A− (3.38)

= ϵ(2π)− ϵ(0) = g,

correctly reproducing (3.30). Notice that the two boundaries S1
± = ∂D± have opposite orientations,

so using Eq. (3.37) the second line combines into a single integral of ϵ′(φ) from 0 to 2π.

The gauge function ϵ(φ) relating the vector potentials along the equator is not single-valued

on S1. This might pose a problem in the presence of quantum charged particles, since their wave

functions also change under gauge transformations [see Eq. (3.10)]. In order to avoid multivalued-

ness of the wave function, we must require

e−ieϵ(0) = e−ieϵ(2π) =⇒ eieg = 1, (3.39)

and the Dirac quantization condition (3.34) is retrieved. Alternatively, we can also notice that under

a gauge transformation the action of a particle moving along the equator changes by ∆S = −eg, as

can be easily checked from Eq. (3.13). This has no effect in the Feynman path integral provided eg =

2πn, with n ∈ Z, and the same result is obtained.

The Wu–Yang construction highlights the topological structure underlying the magnetic
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monopole. Implementing the quantization condition eg = 2πn, the U(1) transformation (3.37)

relating the vector potential of both hemispheres takes the form [cf. (3.11)]

U = einφ. (3.40)

Since U(1) is the multiplicative group of complex phases, it can be identified with the unit circle.

As we move once along the equator and the azimuthal angle φ changes from 0 to 2π, the gauge

transformation (3.40) wraps n times around U(1), as we illustrate here for the particular case n = 3

There is no twin paradox
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U(1)

More technically speaking, when mapping the circle S1 onto U(1) we encounter infinitely many

sectors that cannot be smoothly deformed into one another and are distinguished by how many

times the circle wraps around U(1). The corresponding integer is an element of the first homotopy

group π1[U(1)] = Z classifying the continuous maps U : S1 → U(1) (see, for example, Refs. [57–

60] for physicist-oriented overviews of basic concepts in differential geometry).

This should not come as a surprise. After all, at face value, our insistence in expressing the

magnetic field as the curl of the vector potential is incompatible with having a nonvanishing value

for ∇ ·B as in Eq. (3.27). To reconcile these two facts we have to assume that although B = ∇×A

is valid on a contractible coordinate patch, there is no vector field A globally defined on the sphere

with this property. This is why in our case the topologically trivial configuration n = 0 corresponds

to zero magnetic charge and a vanishing magnetic field.

Looking at the symmetries of classical electrodynamics, we notice one conspicuously absent from

the Maxwell’s equations (3.1): Galilean invariance. It is amusing that Maxwell composed a fully rela-

tivistic invariant field theory some forty years before Einstein’s formulation of special relativity. It took

the latter’s genius to realize that the tension between classical mechanics and electrodynamics was to be

solved giving full credit to the Maxwell’s equations and their spacetime symmetries. The price to pay

was to modify Newtonian mechanics to make it applicable to systems involving velocities close to the

speed of light.

3.2 Quantum electromagnetism

The easiest way to show the relativistic invariance of the Maxwell’s equations is to rewrite them as

tensor equations with respect to Poincaré transformations. To do so, we combine the scalar and vector

electromagnetic potentials into a single four-vector

Aµ ≡ (ϕ,A), (3.41)
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while electric and magnetic fields are codified in the field strength two-tensor

Fµν ≡ ∂µAν − ∂νAµ. (3.42)

The latter can be explicitly computed to be

Fµν =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx
−Ez −By Bx 0



, (3.43)

where E = (Ex, Ey, Ez) and B = (Bx, By, Bz). The gauge transformations (3.4) are now expressed in

the more compact form

Aµ −→ Aµ + ∂µϵ, (3.44)

which obviously leave Fµν invariant. It is also convenient to define the dual field strength

F̃µν =
1

2
ϵµναβF

αβ, (3.45)

whose components are obtained from (3.43) by replacing E → B and B → −E. Charge densities and

currents are also merged into four-vectors

jµe ≡ (ρe, je),

jµm ≡ (ρm, jm), (3.46)

in terms of which the four Maxwell’s equations (3.1) are recast as

∂µF
µν = jνe ,

∂µF̃
µν = jνm. (3.47)

Some comments about the magnetic current are in order here. It should be noticed that the defini-

tion (3.42) automatically implies the Bianchi identity

∂µF̃
µν =

1

2
ϵνσαβ∂σFαβ = ϵνσαβ∂σ∂αAβ = 0, (3.48)

contradicting the second equation in (3.47). In fact, we have already encountered this problem in its

noncovariant version when discussing magnetic monopoles: writing B = ∇ ×A is incompatible with

having ∇ ·B ̸= 0. The solution given there is also applicable here. What happens is that (3.42) is valid

locally but not globally. Magnetic monopoles can be described using the vector potential Aµ, but the

gauge field configuration needs to be topologically nontrivial.

The tensors Fµν and F̃µν can be used to construct quantities that are relativistic invariant. By
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contracting them, we find the two invariants

FµνF
µν = F̃µνF̃

µν = −2
(
E2 −B2

)
,

FµνF̃
µν = 2E ·B. (3.49)

This implies that the complex combinations

(
E± iB

)2
= E2 −B2 ± 2iE ·B, (3.50)

also remain invariant under the Lorentz group3. The present discussion is very relevant for building an

action principle for classical electrodynamics. In particular, noticing that FµνF̃µν = 2∂µ(AνF
µν) is a

total derivative, the obvious choice is

S =

∫
d4x

(
−1

4
FµνF

µν + jµAµ

)

=

∫
dtd3x

[
1

2

(
E2 −B2

)
+ ρϕ− j ·A

]
, (3.51)

which is also gauge invariant provided charge is conserved, ∂µjµ = 0. Since from now on we will

ignore the presence of magnetic charges, we drop the color code used so far, as well as the subscript in

the electric density and current.

Although obtaining the Maxwell field equations from the action in (3.51) is straightforward, the

canonical formalism is tricky. The reason is that ϕ̇ does not appear in the action and as a consequence

the momentum conjugate to A0 is identically zero. Thus, we have a constrained system that has to be

dealt with using Dirac’s formalism (see, for example, Ref. [14] for the details). At a practical level, we

regard A and E as a pair of canonically conjugated variables

{
Ai(t, r), Ej(t, r

′)
}
PB

= δijδ
(3)(r− r′). (3.52)

Using Ȧ = −E−∇ϕ, we construct the Hamiltonian

H =

∫
dtd3x

[
−Ȧ ·E− 1

2

(
E2 −B2

)
− ρϕ+ j ·A

]

=

∫
dtd3x

[
1

2

(
E2 +B2

)
+ ϕ

(∇ ·E− ρ)+ j ·A
]
, (3.53)

where the term −E ·∇ϕ has been integrated by parts and the substitution B = ∇ ×A is understood.

Gauss’ law ∇ ·E = ρ emerges as a constraint preserved by time evolution

{∇ ·E− ρ,H}
PB

= −∇ · j− ρ̇ ≈ 0, (3.54)

where we follow Dirac’s notation and denote by ≈ identities that are satisfied after the equations of

3They change however under electric–magnetic duality, which mixes the two quantities introduced in (3.49).
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motions are implemented. It also generates the gauge transformations of the vector potential

δA(t, r) =
{
A(t, r),

∫
d3r′ϵ(t, r′)

[∇ ·E(t, r′)− ρ(t, r′)
]}

PB
= −∇ϵ(t, r). (3.55)

Solving the vacuum field equations written in terms of the gauge potential

□Aµ − ∂µ∂νAν = 0, (3.56)

requires fixing the gauge freedom (3.44). To preserve relativistic covariance it is convenient to use the

Lorenz gauge ∂µAµ = 0 introduced in (3.5), so the gauge potential satisfies the wave equation □Aµ = 0.

Trying a plane wave ansatz

Aµ(x) ∼ εµ(k, λ)e−ikµx
µ
, (3.57)

the wave equation implies that the momentum vector kµ is null

kµk
µ = 0 =⇒ k0 = ±|k|. (3.58)

The parameter λ in εµ(k, λ) labels the number of independent polarization vectors, which the Lorentz

gauge condition force to be transverse

kµεµ(k, λ) = 0. (3.59)

Using this condition we eliminate the temporal polarization in terms of the other three

ε0(k, λ) =
1

|k|k · ε(k, λ). (3.60)

In addition, there is a residual gauge freedom preserving the Lorentz condition implemented on the plane

wave solutions by shifts of the polarization vector proportional to the wave momentum

εµ(k, λ) −→ εµ(k, λ) + α(k)kµ. (3.61)

Using this freedom to set ε0(k, λ) to zero, we are left with just two independent transverse polarizations

satisfying k · ε(k, λ) = 0. The plane wave solution then reads

A(t, r) ∼ ε(k, λ)e−i|k|t+ik·r, (3.62)

with A0 = 0 and λ = ±1 labelling the two transverse polarizations, that in the following we will

respectively identify with right–left circular polarizations4, ε(k, λ)∗ = ε(k,−λ). They moreover satisfy

ε(k, λ) ·
[
k× ε(k, λ′)

]
= iλ|k|δλ,−λ′ . (3.63)

4For a massive vector field the Lorentz condition ∂µA
µ = 0 is still satisfied as an integrability condition of the equations of

motion ∂µF
µν + m2Aν = 0 and Eq. (3.60) therefore holds. The key difference lies in that the residual freedom (3.61) is

absent and we have an additional longitudinal polarization (i.e., aligned with k) in addition to the two transverse ones.
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This identity will be useful later on.

Since the field equations are linear, a general solution can be written as a superposition of the plane

wave solutions (3.62) and their complex conjugates. Upon quantization the coefficients in this expansion

become operators and we can write a general expression for the gauge field operator

Â(t, r) =
∑

λ=±1

∫
d3k

(2π)3
1

2|k|
[
ε(k, λ)â(k, λ)e−i|k|t+ik·r + ε(k, λ)∗â(k, λ)†ei|k|t−ik·r

]
, (3.64)

where, with our gauge fixing, Â0(t, r) = 0. The integration measure appearing in this expression results

from integrating over all four-dimensional momenta lying on the upper light-cone in Fig. 4

∫
d4k

(2π)4
δ(kµk

µ)θ(k0)[. . .] =

∫
d3k

(2π)3
1

2|k| [. . .], (3.65)

and is by construction Lorentz invariant. The quantum states of the theory are vectors in the space of

states the operator (3.64) acts on. To determine it and therefore the excitations of the quantum field,

we establish first the algebra of operators and then find a representation. This is done by applying the

canonical quantization prescription replacing classical Poisson brackets with quantum commutators

i{·, ·}PB −→ [·, ·]. (3.66)

Using the definition Ê = ∂0Â, the electric field operator is computed to be

Ê(t, r) = − i
2

∑

λ=±1

∫
d3k

(2π)3

[
ε(k, λ)â(k, λ)e−i|k|t+ik·r − ε(k, λ)∗â(k, λ)†ei|k|t−ik·r

]
. (3.67)

Classically, the electric field is canonically conjugate to the vector potential [see Eq. (3.52)], so the

prescription (3.66) gives its equal-time commutator with the gauge field

[Ai(t, r), Ei(t, r
′)] = iδijδ

(3)(r− r′) (3.68)

that translates into the following commutation relations for the operators â(k, λ) and their Hermitian

conjugates

[â(k, λ), â(k′, λ′)†] = (2π)32|k|δλλ′δ(3)(k− k′),

[â(k, λ), â(k′, λ′)] = [â(k, λ)†, â(k′, λ′)†] = 0. (3.69)

This algebra is reminiscent of the one of creation–annihilation operators in the quantum harmonic oscil-

lator. Introducing a properly normalized vacuum state |0⟩ to be annihilated by all â(k;λ), we define the

vector

|k, λ⟩ = â(k, λ)†|0⟩, (3.70)

representing a one-photon state with momentum k and helicity λ. These states are covariantly normalized
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according to

⟨k, λ|k′, λ′⟩ = (2π)32|k|δλλ′δ(3)(k− k′), (3.71)

as can be seen from Eq. (3.69). Multiple photon states are obtained by successive application of creation

operators

|k1, λ1;k2, λ2; . . . ;kn, λn⟩ = â(k1, λ1)
†â(k2, λ2)

† . . . â(kn, λn)†|0⟩. (3.72)

From the commutation relation of creation operators given in (3.69) we see that the multi-photon state is

even under the interchange of whatever two photons, as it should be for bosons.

Although we have been talking about photons, we must check that the states (3.70) have the

quantum numbers corresponding to these particles. So, first we compute their energy by writing the

quantum Hamiltonian. Going back to Eq. (3.53), we set the sources to zero (ρ = 0 and j = 0) and

replace the electric and magnetic field for their corresponding operators. A first thing to notice is that the

electric field (3.67) satisfies the Gauss law ∇ · Ê = 0 as a consequence of the transversality condition of

the polarizations vectors. Computing in addition B = ∇×A and after some algebra, we find

Ĥ =
∑

λ=±1

∫
d3k

(2π)3
1

2|k| |k|â(k, λ)
†â(k, λ) +

1

2

∑

λ=±1

∫
d3k |k|δ(3)(0). (3.73)

The second term on the right-hand side represents the energy of the vacuum state

Ĥ|0⟩ =
(
1

2

∑

λ=±1

d3k |k|δ(3)(0)
)
|0⟩ (3.74)

and is doubly divergent. One infinity originates in the delta function and comes about because we are

working at infinite volume, a type of divergence that in QFT is designated as infrared (IR). It can be

regularized by setting our system in a box of volume V , which replaces (2π)3δ(3)(0). Proceeding in this

way, we write the energy density of the vacuum as

ρvac ≡
Evac

V
=

1

2

∑

λ=±1

∫
d3k

(2π)3
|k|. (3.75)

This expression has the obvious interpretation of being the result of adding the zero-point energies of

infinitely many harmonic oscillators, each with frequency ω = |k|. It is still divergent, and since the

infinity originates in the integration over arbitrarily high momenta, it is called ultraviolet (UV). A way

to get rid of it is assuming that |k| < ΛUV, so that after carrying out the integral, the vacuum energy

density is given by

ρvac =
1

16π2
Λ4
UV. (3.76)

In the spirit of effective field theory this UV cutoff is physically interpreted as the energy scale at which

our description of the electromagnetic field breaks down and has to be replaced by some more general
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theory.

The vacuum energy density (3.76) is at the origin of the cosmological constant problem. Due to its

strong dependence on the UV cutoff, when we add the contributions of all known quantum fields to ρvac
the result is many orders of magnitude larger than the one measured through cosmological observations.

The way to handle this mismatch is by assuming the existence of a nonzero cosmological constant Λc
contribution to the total vacuum energy of the universe as

ρvac =
Λc

8πGN
+
∑

i

ρvac,i, (3.77)

where the sum is over all quantum fields in nature. Identifying the UV cutoff with the Planck en-

ergy, ΛUV ≃ ΛPl, the cosmological constant has to be fine tuned over 120 orders of magnitude in order

to cancel the excess contribution of the quantum fields to the vacuum energy density of the universe (see,

for example, Refs. [61–63] for comprehensive reviews).

Let us get rid of the vacuum energy for the time being by subtracting it from the Hamilto-

nian (3.73). Acting with this subtracted Hamiltonian on the multiparticle states (3.72), we find they

are energy eigenstates

Ĥ|k1, λ1;k2, λ2; . . . ;kn, λn⟩ =
(
|k1|+ |k2|+ . . .+ |kn|

)
|k1, λ1;k2, λ2; . . . ;kn, λn⟩, (3.78)

with the eigenvalue giving the energy of n free photons with momenta k1,k2, . . . ,kn. The field momen-

tum, on the other hand, is given by the Poynting operator

P̂ =

∫
d3rE(t, r)×B(t, r)

=
∑

λ=±1

∫
d3k

(2π)3
1

2|k|k â(k, λ)
†â(k, λ), (3.79)

where, unlike for the Hamiltonian, here there is no vacuum contribution due to the rotational invariance

of |0⟩. Its action on the states (3.72) gives

P̂|k1, λ1;k2, λ2; . . . ;kn, λn⟩ =
(
k1 + k2 + . . .+ kn

)
|k1, λ1;k2, λ2; . . . ;kn, λn⟩, (3.80)

showing that the vector k labelling the one-particle states (3.70) is rightly interpreted as the photon

momentum. Finally, we compute the spin momentum operator

Ŝ =

∫
d3x Â× Ê

= i
∑

λ,λ′=±1

∫
d3k

(2π)2
1

2|k|ε(k, λ)× ε(k, λ
′)∗ â(k, λ)†â(k, λ). (3.81)
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Acting on a one-particle state (3.70), we find

Ŝ|k, λ⟩ = i
∑

λ,λ′=±1

ε(k, λ)× ε(k, λ′)∗|k, λ⟩. (3.82)

We now project this expression on the direction of the photon’s momentum, to find the helicity operator

acting on the single photon state

ĥ|k, λ⟩ ≡ k

|k| · Ŝ|k, λ⟩ =
i

|k|
∑

λ,λ′=±1

k ·
[
ε(k, λ)× ε(k, λ′)∗

]
|k, λ⟩. (3.83)

Using the relation (3.63) to evaluate the mixed product inside the sum, we arrive at

ĥ|k, λ⟩ = λ|k, λ⟩, (3.84)

which shows that λ is indeed the helicity of the photon. We have convinced ourselves that our interpreta-

tion of the quantum numbers describing the Hamiltonian eigenstates was correct, and they describe states

with an arbitrary number of free photons of definite momenta and helicities. Photons therefore emerge

as the elementary excitations of the quantum electromagnetic field.

3.3 Some comments on quantum fields

The previous calculation also teaches an important lesson: the space of states of a free quantum field (in

this case the electromagnetic field) is in fact a Fock space, i.e., the direct sum of Hilbert spaces spanned

by the n-particle states (3.72),

F =
∞⊕

n=0

Hn, (3.85)

where we take H0 = L{|0⟩}, the one-dimensional linear space generated by the vacuum state |0⟩. We

have shown that the canonical commutation relations (3.68) admit a representation in the Fock space.

Although we have done this for the free sourceless Maxwell’s theory, it is also the case for any other free

field theory, as we will see in other examples below. Including interactions does not change this, provided

they are sufficiently weak and to be treated in perturbation theory. Thus, the first step in describing a

physical system is to identify the weakly coupled degrees of freedom, whose multiparticle states span the

Fock space representing the asymptotic states in scattering experiments of the type carried out everyday

in high energy facilities around the world. This is well illustrated by the case of QCD discussed in the

Introduction (see page 6), where while the asymptotic states are described by hadrons, the fundamental

interactions taking place are described in terms of weakly coupled quarks and gluons5.

5A technical caveat: Haag’s theorem [64], however, states that for a general interacting QFT there exists no Fock space rep-
resentation of the canonical commutation relation. This is usually interpreted as implying that full interacting QFT is not a
theory of particles [65–67].
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Box 6. Complex fields and antiparticles

The analysis presented for electrodynamics carries over to the quantization of other free fields. A

simple but particularly interesting example is provided by a complex scalar field, with action

S =

∫
d4x

(
∂µφ

∗∂µφ−m2φ∗φ
)
. (3.86)

Life is now simpler since there is no gauge freedom and the Hamiltonian formalism is straightfor-

ward. We compute the conjugate momentum and the canonical Poisson brackets

π(t, r) =
δS

δ∂0φ(t, r)
= ∂0φ(t, r)

∗ =⇒
{
φ(t, r), π(t, r′)

}
PB

= δ(3)(r− r′), (3.87)

with the corresponding expression for the complex conjugate fields, φ(t, r)∗ and π(t, r)∗. The

Hamiltonian is then given by

H =

∫
d3r

[
π∗π + (∇φ∗) · (∇φ) +m2φ∗φ

]
. (3.88)

The equation of motion derived from the action (3.86) is the Klein–Gordon equation

(
□+m2

)
φ = 0, (3.89)

which admits plane wave solutions of the form

φ(x) ∼ eipµxµ , (3.90)

with pµ satisfying the mass-shell condition

pµp
µ = m2 =⇒ p0 ≡ ±Ep = ±

√
p2 +m2. (3.91)

As with the electromagnetic field, the corresponding quantum fields are an operator-valued super-

position of plane waves

φ̂(t, r) =

∫
d3p

(2π)3
1

2Ep

[
α̂(p)e−iEpt+ip·r + β̂(p)†eiEpt−ip·r

]
,

φ̂(t, r)† =
∫

d3p

(2π)3
1

2Ep

[
β̂(p)e−iEpt+ip·r + α̂(p)†eiEpt−ip·r

]
, (3.92)

while the operator associated to the canonically conjugate momentum is given by

π̂(t, r) = − i
2

∫
d3p

(2π)3

[
β̂(p)e−iEpt+ip·r − α̂(p)†eiEpt−ip·r

]
,

π̂(t, r)† =
i

2

∫
d3p

(2π)3

[
α̂(p)e−iEpt+ip·r − β̂(p)†eiEpt−ip·r

]
. (3.93)

37



LUIS ÁLVAREZ-GAUMÉ AND MIGUEL Á. VÁZQUEZ-MOZO

The key observation here is that, since φ̂ is not Hermitian, the two operators α̂(p) and β̂(p) cannot

be identified, as it was the case with the electromagnetic field. Imposing the equal-time canoni-

cal commutation relations induced by the canonical Poisson brackets [see Eq. (3.87)] leads to the

following algebra of operators

[α̂(p), α̂(p′)†] = (2π)32Epδ
(3)(p− p′),

[α̂(p), α̂(p′)] = [α̂(p)†, α̂(p′)†] = 0, (3.94)

and corresponding expressions for β̂(p) and β̂(p)†, with both types of operators commuting with

each other. As with the photons, the Fock space of states is built by acting with α̂(p)†’s and β̂(p)†’s

on the vacuum state |0⟩, which is itself annihilated by α̂(p)’s and β̂(p)’s

|p1, . . . ,pn;q1, . . . ,qm⟩ = α̂(p1)
† . . . α̂(pn)†β̂(q1)

† . . . β̂(q1)
†|0⟩, (3.95)

where we have distinguished the momenta associated with the two kinds of creation operators. No-

tice that, since the operators on the right-hand side of this expression commute with each other, the

order in which we list the momenta p1, . . . ,pn and q1, . . . ,qm is irrelevant, signalling that both

types of excitations are bosons.

The states constructed in (3.95) in fact diagonalize the Hamiltonian

Ĥ =

∫
d3p

(2π)3
1

2Ep
Ep

[
α̂(p)†α̂(p) + β̂(p)†β̂(p)

]
, (3.96)

where we have subtracted a UV and IR divergent vacuum contribution similar to the one encountered

in Eq. (3.73). Indeed, it is not difficult to show that

Ĥ|p1, . . . ,pn;q1, . . . ,qm⟩

=
(
Ep1 + . . .+ Epn + Eq1 + . . .+ Eqm

)
|p1, . . . ,pn;q1, . . . ,qm⟩, (3.97)

from where we conclude that the elementary excitations of the quantum real scalar field are free

scalar particles with well-defined energy and momentum. These particles come in two different

types depending on whether they are created by α̂(p)† or β̂(p)†, since they share the same dispersion

relation, they have equal masses.

The obvious question is what distinguishes physically one from the other. To answer, we have

to study the symmetries of the classical theory. A look at the action (3.86) shows that it is invariant

under global phase rotations of the complex field

φ(x) −→ eiϑφ(x), φ(x)∗ −→ e−iϑφ(x), (3.98)

with ϑ a constant real parameter. Noether’s theorem (see page 57) states that associated to this
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symmetry there must be a conserved current, whose expression turns out to be

jµ = iφ∗←→∂ µφ ≡ iφ∗∂µφ− i(∂µφ∗)φ =⇒ ∂µj
µ = 0. (3.99)

In particular, the conserved charge is given by

Q =

∫
d3r

(
φ∗π∗ − πφ

)
, (3.100)

and once classical fields are replaced by their operator counterparts (and complex by Hermitian

conjugation), we have the following form for the charge operator:

Q̂ =

∫
d3p

(2π)3
1

2Ep

[
α̂(p)†α̂(p)− β̂(p)†β̂(p)

]
. (3.101)

By acting with it on one-particle states, we get

Q̂|p; 0⟩ = |p; 0⟩,

Q̂|0;q⟩ = −|0;q⟩, (3.102)

showing that the conserved charge distinguishes the excitations generated by α̂(p)† from those gen-

erated by β̂(p)†. Moreover, the complex scalar field can be coupled to the electromagnetic field by

identifying the current (3.99) with the one appearing in the Maxwell action (3.51), its conservation

guaranteeing gauge invariance of the combined action. Thus, the two kinds of particles with the

same mass and spin have opposite electric charges and are identified as particles and antiparticles.

The complex (i.e., non-Hermitian) character of the scalar field is crucial to have both particles and

antiparticles. In the case of the gauge field Â, hermiticity identifies the operators associated with

positive and negative energy plane wave solutions as conjugate to each other, making the photon its

own antiparticle.

It is time we address another symmetry present in Maxwell’s electrodynamics that is of pivotal

importance for QFT as a whole: scale invariance. Looking at the free electromagnetic action

SEM = −1

4

∫
d4xFµνF

µν , (3.103)

we notice the absence of any dimensionful parameters, unlike in the case of the complex scalar field

action (3.86), where we have a parameter m that turns out to be the mass of its elementary quantum

excitations. It seems that the free Maxwell’s theory should be invariant under changes of scale.

To formulate the idea of scale invaraince in more general and precise mathematical terms, let us

assume a scale transformation of the coordinates

xµ −→ λxµ, (3.104)
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with λ a nonzero real parameter, combined with the following scaling of the fields in the theory

Φ(x) −→ λ−∆ΦΦ(λ−1x), (3.105)

where ∆Φ is called the field’s scaling dimension. Applying these transformations to the particular case

of the action (3.103), we find

SEM −→ λ2−2∆ASEM, (3.106)

so that by setting ∆A = 1 the action remains invariant under scale transformations.

We will explore now whether the scale invariance of the free Maxwell’s theory is preserved by

the coupling of the electromagnetic field to charged matter. As an example, let us consider the complex

scalar field we studied in Box 6, but now coupled to an electromagnetic field

S =

∫
d4x

{
∂µφ

∗∂µφ−mφ∗φ− 1

4
FµνF

µν + ie
[
φ∗∂µφ− (∂µφ

∗)φ
]
Aµ + e2φ∗φAµAµ

}

=

∫
d4x

[(
∂µ + ieAµ

)
φ∗(∂µ − ieAµ

)
φ−m2φ∗φ− 1

4
FµνF

µν

]
. (3.107)

Here, besides the coupling jµA
µ suggested by the Maxwell’s equations, we also have the

term e2φ∗φAµAµ, that has to be added to preserve the invariance of the whole action under the gauge

transformations6

φ→ eieϵ(x)φ∗, φ∗ → e−ieϵ(x)φ∗, Aµ → Aµ + ∂µϵ(x). (3.108)

Setting the scaling dimension of the scalar field to one, ∆φ = 1, we easily check that the scale invariance

of the action (3.107) is only broken by the mass term of the scalar field

m

∫
d4xφ∗φ −→ λ2m

∫
d4xφ∗φ. (3.109)

This confirms our intuition that classical scale invariance is incompatible with the presence of dimen-

sionful parameters in the action. It also shows that taking m = 0 the photon can be coupled to scalar

charged matter preserving the classical scale invariance of the free Maxwell theory. Several essential

field theories share this property besides the example just analyzed, most notably QCD once all quark

masses are set to zero.

The discussion above has emphasized the term classical whenever referring to scale invariance.

The reason is that this is a very fragile symmetry once quantum effects are included. For example, let us

go back to the action (3.107) but now take m = 0. The classical scale invariance is broken by quantum

effects in the sense that, once the quantum corrections induced by interactions are taken into account,

physics depends on the energy scale at which experiments are carried out. One way in which this happens

is by the electric charge of the elementary excitations of the field depending on the energy at which it is

6Notice that the combination (∂µ − ieAµ)φ appearing in the second line of Eq. (3.107) transforms as the complex scalar field
itself. It defines the gauge covariant derivative of φ, its name reflecting its covariant transformation under gauge transforma-
tions, Dµφ → eieϵ(x)Dµφ.
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measured7. We will further elaborate on this phenomenon in Section 10.

4 Some group theory and some more wave equations

Scalars and vectors are relatively intuitive objects, which is why we did not need to get into sophisticated

mathematics to handle them. In nature, however, elementary scalar fields are rare (as of today, we know

just one, the Higgs field) and vector fields only describe interactions, not matter. To describe fundamental

physics we need fields whose excitations are particles with spin-12 , such as the electron, the muon, and

the quarks. We have to plunge into group theory before we can formulate these objects rigorously.

4.1 Special relativity and group theory

Let us begin by giving a more technical picture of the Lorentz group. We have defined it as the set

of linear transformations of the spacetime coordinates x′µ = Λµνxν satisfying (2.10) and therefore

preserving the Minkowski metric. The first thing to be noticed is that this condition implies the inequality

(Λ0
0)

2 −
3∑

i=1

(Λi 0)
2 = 1 =⇒ |Λ0

0| ≥ 1. (4.1)

The sign of Λ0
0 indicates whether or not the transformed time coordinate “flows” in the same direction

as the original one, this being why transformations with Λ0
0 ≥ 1 are called orthochronous. At the same

time, Eq. (2.10) also implies

(detΛ)2 = 1 =⇒ detΛ = ±1. (4.2)

Since it is not possible to change the signs of Λ0
0 or detΛ by continuously deforming Lorentz transfor-

mations, the full Lorentz group is seen to be composed of four different connected components:

L↑
+ : proper, orthochronous transformations with Λ0

0 ≥ 1 and detΛ = 1,

L↓
+ : proper, non-orthochronous transformations with Λ0

0 ≤ −1 and detΛ = 1,

L↑
− : improper, orthochronous transformations with Λ0

0 ≥ 1 and detΛ = −1, (4.3)

L↓
− : improper, non-orthochronous transformations with Λ0

0 ≤ −1 and detΛ = −1.

The set of proper orthochronous transformations L↑
+ contains the identity, while the remaining ones

respectively include the time reversal operation (T : x0 → −x0), parity (P : xi → −xi), and the com-

position of both. As indicated in Fig. 8, these discrete transformations also map the identity’s connected

component to the other three,

T : L↑
+ −→ L↓

−, P : L↑
+ −→ L↑

−, PT : L↑
+ −→ L↓

+. (4.4)

7Incidentally, most scale invariant QFTs are also invariant under the full conformal group, i.e., the group of coordinate trans-
formations preserving the light cone.
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Fig. 8: The four connected components of the Lorentz group. The matrices indicate the transforma-
tions P , T , and PT mapping the connected component of the identity L↑

+ to the other three.

Thus, to study the irreducible representations (irreps) of the Lorentz group it is enough to restrict our

attention to L↑
+ ≡ SO(1,3).

As discussed in page 9, the proper group Lorentz SO(1,3) is composed by two kinds of transfor-

mations: rotations with angle 0 ≤ ϕ < 2π around an axis defined by the unit vector u and boosts with

rapidity λ along the direction set by the unit vector e. Since we are on the connected component of the

identity, the transformations can be written by exponentiation of the Lie algebra generators

R(ϕ,u) = e−iϕu·J,

B(λ, e) = e−iλe·M, (4.5)

where J = (J1, J2, J3) and M = (M1,M2,M3) are the generators of rotations and boost, respectively.

They satisfy the algebra8

[Ji, Jj ] = iϵijkJk,

[Ji,Mj ] = iϵijkMk, (4.6)

[Mi,Mj ] = −iϵijkJk.

Although the calculation leading to them is relatively easy, the previous commutation relations can also

be heuristically understood. The first commutator reproduces the usual algebra of infinitesimal rotations

familiar from elementary quantum mechanics. The second one is the simple statement that the generators

of the boost along the three spatial directions transform as vectors under three-dimensional rotations. The

8The six generators (Ji,Mi) of the proper Lorentz group can be fit into a rank-2 antisymmetric tensor with components J0i =
Mi and Jij = ϵijkJk, satisfying the algebra [Jµν ,Jαβ ] = iηµαJνβ − iηµβJνα + iηνβJµα − iηναJµβ .
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third identity is the less obvious. It amounts to saying that if we carry out two boosts along the directions

set by unit vectors e1 and e2, the ambiguity in the order of the boost is equivalent to a three-dimensional

rotation with respect to the axis defined by e1 × e2.

We could now try to find irreducible representations of the algebra (4.6). Life gets simpler if we

relate this algebra to the one of a group we are more familiar with. This can be done in this case by

introducing the new set of generators

J±
i =

1

2

(
Ji ± iMi

)
, (4.7)

in terms of which, the algebra (4.6) reads

[J+
i , J

+
j ] = iϵijkJ

+
k ,

[J−
i , J

−
j ] = iϵijkJ

−
k , (4.8)

[J+
i , J

−
j ] = 0.

One thing we gain with this is that we have decoupled an algebra of six generators into two algebras

of three generators each commuting with one another. But the real bonus here is that the individual

algebras are those of SU(2), whose representation theory can be found in any quantum mechanics group.

Thus, SO(1,3) = SU(2)+ × SU(2)− and its irreps are obtained by providing a pair of irreps of SU(2),

labeled by their total spins (s+, s−), with s± = 0, 12 ,1,
3
2 , . . . Since Ji is a pseudovector, it does not

change under parity transformations, whereas the boost generators Mi do reverse sign

P : Ji −→ Ji, P :Mi −→ −Mi. (4.9)

As a consequence, parity interchanges the two SU(2) factors

P : (s+, s−) −→ (s−, s+). (4.10)

Finally, the generators of the group SO(3) ≈ SU(2) of spatial rotations are given by

Ji = J+
i + J−

i , (4.11)

so the irrep (s+, s−) decomposes into those of SU(2) with j = s+ + s−, s+ + s− − 1, . . . , |s+ − s−|.
Let us illustrate this general analysis with some relevant examples. We begin with the trivial

irrep (s+, s−) = (0,0), whose generators are J±
i = 0. Fields transforming in this representation are

scalar, which under a Lorentz transformation x′µ = Λµνxν change according to

φ′(x′) = φ(x). (4.12)

Another parity invariant representation is (s+, s−) = (12 ,
1
2), with generators J+

i = J−
i = 1

2σ
i. Decom-

posing this irrep with respect to those of spatial rotations, we see that they include a scalar (j = 0) and

a three-vector (j = 1). These correspond respectively to the zero and spatial components of a spin-one
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vector field V µ(x) transforming as

V µ(x′) = ΛµνV
ν(x). (4.13)

Finally, we look at (s+, s−) = (1,1). This is decomposed in terms of three irreps of SU(2) ≈
SO(3) with j = 2, 1, 0. Together, they build a rank-two symmetric-traceless tensor field hµν(x) =

hνµ(x), ηµνhµν(x) = 0, transforming as

h′µν(x′) = ΛµαΛ
ν
βh

αβ(x), (4.14)

the three irreps of SU(2) corresponding respectively to hij − 1
3δ
ijh00, h0i = hi0, and h00. This is a

spin-two field like the one used to describe a graviton.

We look next at parity-violating representations, starting with (s+, s−) = (12 ,0). Its generators

are

J+
k =

1

2
σk, J−

k = 0. (4.15)

Hence, objects transforming in this representation have two complex components changing under rota-

tions and boost according to

χ+ −→ e−
i
2
(ϕu−iλ)·σχ+, (4.16)

where λ = (λ1, λ2, λ3) is the boost’s rapidity. In particular, we see that χ+ transforms as a SO(3) spinor.

A field transforming in this representation is a positive helicity Weyl spinor. Very soon we will learn the

reason for its name.

4.2 Chiral (and also nonchiral) fermions

After all these group-theoretical considerations, it is time to start thinking about physics. To construct

an action principle for Weyl spinors, we need to build Lorentz invariant quantities from these fields. To

begin with, we notice that the Hermitian conjugate spinor u†+ also transforms in the (12 ,0) representation

of the Lorentz group, since the representations of SU(2) are real. A general bilinear χ†
+Aχ+, on the

other hand, transforms under the group SO(3) ≈ SU(2) of three-dimensional rotations in the product

representation 1
2 ⊗ 1

2 = 1⊗ 0. Computing the appropriate Clebsh–Gordan coefficients, we find

χ†
+χ+ =⇒ j = 0,

χ†
+σ

iχx =⇒ j = 1. (4.17)

They represent the time and spatial components of a four-vector

χ†
+σ

µ
+χ+, (4.18)
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where σµ+ ≡ (1, σi). With this, we construct an action for the Weyl field as

S+ =

∫
d4x iχ†

+σ
µ
+∂µχ+. (4.19)

Notice that although χ†
+χ+ is invariant under rotations it does transform under boosts. Therefore it is

not a Lorentz scalar and cannot be added to the action as a mass term.

As for the (s+, s−) = (0, 12) irrep of SO(1,3), a negative helicity Weyl spinor, the analysis is

similar to the one just presented and the corresponding expressions are obtained from the ones derived

above by applying a parity transformation. In particular, we find its transformations under rotations and

boosts to be

χ− −→ e−
i
2
(ϕu+iλ)·σχ−, (4.20)

showing that they also transform as SO(3) spinors. Their free dynamics is derived from the action

S− =

∫
d4x iχ†

−σ
µ
−∂µχ−, (4.21)

where σµ− ≡ (1,−σi).
Let us analyze in some more detail the physics of Weyl spinor fields. The equations of motion

derived from the actions (4.19) and (4.21) are

iσµ±∂µχ± = 0 =⇒
(
∂0 ∓ σ ·∇

)
χ± = 0. (4.22)

As in other cases, we search for positive energy (k0 > 0) plane wave solutions of the form

χ±(x) ∼ u±(k)e−ik·x, (4.23)

where u±(k) are (12 ,0) and (0, 12) spinors normalized according to

u±(k)†σ
µ
±u±(k) = 2kµ1. (4.24)

Using this Ansatz, the wave equations (4.22) then take the form

(
k0 ∓ k · σ

)
u±(k) = 0. (4.25)

Multiplying by k0 ± k · σ on the left and using kikjσiσj = k2
1, we obtain the dispersion relation of a

massless particle, k0 = |k|. Equation (4.25) implies the condition

(
1∓ k

|k| · σ
)
u±(k) = 0 =⇒

(
k

|k| · s
)
u±(k) = ±

1

2
u±(k), (4.26)

where s ≡ 1
2σ is the spin operator. Helicity is defined as the projection of the particle’s spin on its

direction of motion and the previous identity shows that u±(k) are spinors with positive and negative

helicity, respectively. Since the generic Weyl spinors χ± can be written as a superposition of the plane
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wave solutions (4.23), this explains the terminology introduced above.

To write a general positive (resp. negatively) helicity Weyl spinor, we also need to consider nega-

tive energy plane waves v±(k)e−ik·x, where k0 < 0. Imposing this to solve Eq. (4.22), we find that v±(k)

satisfies

(
k0 ± k · σ

)
v±(k) = 0, (4.27)

where we set the normalization

v±(k)†σ
µ
±v±(k) = 2kµ1. (4.28)

In addition, it can also be shown that the positive and negative energy solutions satisfy the orthogonality

relations

u(−k)†v(k) = v(−k)†u(k) = 0. (4.29)

These identities will be important later in determining the spectrum of excitations of the free quantum

Weyl spinor field.

Classical Weyl spinors are complex fields and their actions (4.19) and (4.21) are invariant under

global phase rotations χ± −→ eiϑχ±. The associated Noether currents (see page 57) are the bilinear

Lorentz vector constructed in Eq. (4.18), and the corresponding expression for negative helicity,

jµ± = χ†
±σ

µ
±χ±. (4.30)

Plugging this current into Eq. (3.51) we couple the Weyl spinors to the electromagnetic field

S± =

∫
d4x

(
iχ†

±σ
µ
±∂µχ± + eχ±σ

µ
±χ±Aµ −

1

4
FµνF

µν

)

=

∫
d4x

[
iχ†

±σ
µ
±
(
∂µ − ieAµ

)
χ± −

1

4
FµνF

µν

]
, (4.31)

where in the second line we find again the gauge covariant derivative first introduced in Eq. (3.107).

This action is invariant under gauge transformations, acting on the Weyl spinor by local phase rota-

tions χ± −→ eieϵ(x)χ±. Moreover, given the absence of any dimensionful parameter in the action, we

can expect the classical theory to be scale invariant. This is indeed the case, with the Weyl spinors having

scaling dimension ∆χ = 3
2 .

To quantize the Weyl field, we begin with the computation of the canonical Poisson algebra. The

momentum canonically conjugate to the spinor is given by

π± ≡
δS±
δ∂0χ±

= iχ†
±, (4.32)
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leading to

{
χ±,a(t, r), χ±,b(t, r

′)†
}
PB

= −iδabδ(3)(r− r′), (4.33)

where a, b denote the spinor indices and all other Poisson brackets are equal to zero. The Hamiltonian

then reads

H± = ±i
∫
d3xχ†

±(σ ·∇)χ±. (4.34)

So much for the classical theory. Quantum Weyl spinor fields are written as operator-valued

superpositions of positive- and negative-energy plane wave solutions

χ̂±(t, r) =
∫

d3k

(2π)3
1

2|k|
[
b̂(k,±)u±(k)e−i|k|t+ik·r + d̂(k,±)†v±(k)∗ei|k|t−ik·r

]
. (4.35)

It is important to remember that the previous operator is not Hermitian. Similarly to what we learned

from the analysis of the complex scalar field, this implies that the operators b̂(k,±) and d̂(k,±) are

independent and unrelated to each other by Hermitian conjugation. However, we need to be careful

when constructing the algebra of field operators. For example, the spin-statistics theorem states that

particles with half-integer spin are fermions, and their quantum states should be antisymmetric under

the interchange of two of them. To achieve this, the prescription (3.66) has to be modified and Poisson

brackets are replaced by anticommutators instead of commutators

i{·, ·}PB −→ {·, ·}. (4.36)

Accordingly, we impose

{
χ̂±,a(t, r), χ̂±,b(t, r

′)†
}
PB

= δabδ
(3)(r− r′), (4.37)

which, using the normalization u±(k)†u±(k) = 2|k| [cf. (4.24)], leads to the operator algebra

{
b̂(k,±), b̂(k′,±)†

}
= (2π)32|k|δabδ(3)(r− r′),

{
d̂(k,±), d̂(k′,±)†

}
= (2π)32|k|δabδ(3)(r− r′), (4.38)

with all remaining anticommutators equal to zero. As in the case of the complex scalar field analyzed in

Box 6, here we also get two types of particles generated by the two kinds of creation operators acting on

the vacuum

|k1, . . . ,kn;p1, . . . ,pm⟩± = b̂(k1,±)† . . . b̂(kn,±)†d̂(p1,±)† . . . d̂(pm,±)†|0⟩. (4.39)

As expected, the state is antisymmetric under the interchange of two particles of the same type, due to

the anticommutation of the creation operators. Similarly to the complex scalar field, the two types of
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particles are distinguished by the charge operator defined by the conserved current (4.30),

Q̂ =

∫
d3r χ̂±(t, r)†χ̂±(t, r) =⇒





Q̂|k; 0⟩± = |k; 0⟩±
Q̂|0;k⟩± = −|0;k⟩±

, (4.40)

so the states |0;k⟩± are naturally identified as the antiparticles of |k; 0⟩∓.

The calculation of the Hamiltonian operator follows the lines outlined in previous cases. Replac-

ing classical fields by operators in the Hamiltonian (4.34), and using the properties of the positive and

negative energy solutions u(k) and v(k), we find after some algebra

Ĥ± =

∫
d3k

(2π)3
1

2|k|
[
|k|̂b(k,±)†b̂(k,±) + |k|d̂(k,±)†d̂(k,±)

]
−
∫
d3k |k|δ(3)(0). (4.41)

We see from the first term on the right-hand side that the multiparticle states (4.39) diagonalize the

Hamiltonian, with particles and antiparticles having zero mass, Ek = |k|. In this Hamiltonian we find

once more the UV and IR divergent zero-point contribution, that once regularized gives a vacuum energy

density

ρvac = −
1

8π2
Λ4
UV. (4.42)

Although it will eventually be subtracted, it is worthwhile to stop a moment and compare this with the

expression (3.76). A first thing meeting the eye is the relative factor of two in the Weyl spinor case.

This reflects that while a real scalar field has a single propagating degree of freedom, here we have two,

associated with the complex field’s real and imaginary parts. The second and physically very relevant

feature is the different sign, boiling down to having anticommutators rather than commutators. It implies

that bosons and fermions contribute to the vacuum energy with opposite signs. This is the reason why

supersymmetric theories, which have as many bosonic as fermionic degrees of freedom and therefore

zero vacuum energy, have been invoked to solve the problem of the cosmological constant mentioned in

page 35, or at least to ameliorate it9.

Box 7. Dirac spinors

Although the theory of a single Weyl spinor violates parity, it is possible to construct a parity-

invariant theory by taking together two Weyl spinors with opposite chiralities. They can be combined

into a single object, a Dirac spinor

ψ ≡
(
χ+

χ−

)
, (4.43)

which obviously transforms in the parity-invariant reducible representation (12 ,0) ⊕ (0, 12). The

corresponding free action is obtained by adding the ones already written in eqs. (4.19) and (4.19)

9Since supersymmetry must be broken at low energies (after all, we do not “see” the same number of bosons as fermions),
there is still a nonvanishing contribution to the vacuum energy proportional to the fourth power of the scale of supersymmetry
breaking, ΛSUSY , rather than the much higher ΛPl.
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for Weyl spinors of different chiralities, namely

S =

∫
d4x

(
iχ†

+σ
µ
+∂µχ+ + iχ†

−σ
µ
−χ−

)
= i

∫
d4xψ†

(
σµ+ 0

0 σµ−

)
∂µψ. (4.44)

An important point to be taken into account now is that u± and u∗± do have opposite helicities. This

is the reason why u†±σ
µ
±u± ≡ u∗±,a(σ

µ
±)abu±,b defines a Lorentz vector, since (12 ,0) ⊗ (0, 12) =

(12 ,
1
2) and (σµ±)ab are the Clebsh–Gordan coefficients decomposing the product representation into

its irreps. As a consequence, whereas ψ∗ does not transform in the same representation as ψ, the

spinor

ψ
T ≡

(
u∗−
u∗+

)
=

(
0 1

1 0

)
ψ∗ (4.45)

does. This suggests recasting the action (4.44) as

S = i

∫
d4xψ

(
0 1

1 0

)(
σµ+ 0

0 σµ−

)
∂µψ = i

∫
d4xψ

(
0 σµ−
σµ+ 0

)
∂µψ, (4.46)

It seems natural to introduce a new set of 4× 4 matrices, the Dirac matrices, defined by

γµ ≡
(

0 σµ−
σµ+ 0

)
, (4.47)

and satisfying the Clifford algebra

{
γµ, γν

}
= 2ηµν1, (4.48)

as can be easily checked using the anticommutation relations of the Pauli matrices. The generators

of the representation of (12 ,0) ⊕ (0, 12) are then given in terms of the Dirac matrices by (see the

footnote in page 42)

J µν = − i
4
[γµ, γν ] ≡ σµν . (4.49)

Denoting by U(Λ) the matrix implementing the Lorentz transformation Λµν on Dirac spinors and

using the property γµ† = γ0γµγ0, it is easy to show that U(Λ)† = γ0U(Λ)−1γ0. This implies that,

while ψ → U(Λ)ψ, the conjugate spinor transforms contravariantly, ψ → ψ U(Λ)−1, and the Dirac

matrices themselves satisfy U(Λ)−1γµU(Λ) = Λµνγν . Let this serve as a posteriori justification of

the introduction of the conjugate field ψ.

The previous discussion shows that ψψ is a Lorentz scalar that can be added to the Dirac

action (4.46), that we now write in a much more compact form

S =

∫
d4x
(
iψγµ∂µψ −mψψ

)
. (4.50)
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The associated field equations admit positive energy plane wave solutions of the form ψ(x) ∼
u(k, s)e−ik·x, with s = ±1

2 labelling the two possible values of the spin third component

(
iγµ∂µ −m

)
ψ(x) = 0 =⇒

(
k/−m

)
u(k, s) = 0. (4.51)

Here we have introduced the Feynman slash notation a/ ≡ γµaµ that we will use throughout these

lectures. Acting on the equation to the right of (4.51) with k/+m and implementing the identity k/k/ =

k21, we find the massive dispersion relation k0 ≡ Ek =
√
k2 +m2.

To get a better idea about the role played by the mass term in the Dirac equation, it is instruc-

tive to write the equation
(
k/−m

)
u(k, s) = 0 in terms of the two helicity components of the Dirac

spinor

(
Ek1− k · σ

)
u+(k, s) = mu−(k, s),

(
Ek1+ k · σ

)
u−(k, s) = mu+(k, s). (4.52)

These expressions show that the mass terms mix the two helicities. Introducing the chirality matrix

γ5 ≡ −iγ0γ1γ2γ3 =
(
1 0

0 −1

)
, (4.53)

the previous identity is recast as

(
k
|k| · s 0

0 k
|k| · s

)
u(k, s) =

1

2

(
Ek

|k|1−
m

|k|γ
0

)
γ5u(k, s), (4.54)

with s = 1
2σ the spin, so the matrix on the left-hand side of this expression is the helicity operator h

acting on a four-component Dirac spinor.

The chirality matrix satisfies γ25 = 1 and anticommutes with all Dirac matrices, {γ5, γµ} = 0.

As a consequence, its commutator with the Lorentz generators vanishes, [γ5, σµν ] = 0, and by

Schur’s lemma this means that the spinors P+ψ and P−ψ transform in different irreps of the Lorentz

group, with P± = 1
2(1±γ5) the projector onto the two chiralities. The spinor’s chirality is therefore

a Lorentz invariant.

A look at Eq. (4.54) shows that for a massive Dirac, spinor helicity (the projection of the

spin onto the direction of motion) and chirality (the eigenvalue of the chirality matrix) are very

different things. The former is not even a Lorentz invariant, since for a massive fermion with posi-

tive/negative helicity we can switch to a moving frame overcoming the particle and make the helicity

negative/positive. Taking, however, the massless limit m → 0 we have Ek → |k| and chirality and

helicity turn out to be equivalent

h =
1

2
γ5 (m = 0). (4.55)
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This is why, when dealing with massless spin-12 fermions, both terms can be used indistinctly, al-

though in the case of massive particles one should be very careful in using the one appropriate to the

physical situation under analysis.

To quantize the theory, we write an expansion of the Dirac field operator into its positive and

negative energy solutions

ψ̂(t, r) =
∑

s=± 1
2

∫
d3k

(2π)3
1

2Ek

[
b̂(k, s)u(k, s)e−i|k|t+ik·r + d̂(k, s)†v(k, s)∗ei|k|t−ik·r

]
, (4.56)

where the negative energy solutions v(k, s) are defined by the equation (k/ + m)v(k, s) = 0.

The canonical anticommutation relations of the Dirac field with its Hermitian conjugate imply

that b̂(k, s) and b̂(k, s)† are a system of fermionic creation–annihilation operators for particles,

while d̂(k, s) and d̂(k, s)† respectively annihilate and create antiparticles out of the vacuum. The

multiparticle states obtained by acting with creation operators on the Fock vacuum are eigenstates

of the Dirac Hamiltonian, with the elementary excitations b̂(k, s)†|0⟩ and d̂(k, s)†|0⟩ representing

spin 1
2 particles (resp. antiparticles) of momentum k, energy Ek =

√
k2 +m2, and spin third com-

ponent s. The details of this analysis are similar to the ones presented above for Weyl fermions and

can be found in any of the QFT textbooks listed in the references.

Finally, let us mention that Dirac spinors can be coupled to the electromagnetic field as we did

in Eq. (4.31) for the Weyl spinors. The Dirac action (4.50) is invariant under a global phase rotation

of the spinor, ψ → eiαψ, leading to the existence of a conserved current due to the first Noether

theorem (see page 57)

jµ = ψγµψ. (4.57)

We can use this conserved current to couple fermions to the electromagnetic field and write the QED

action

S =

∫
d4x

[
−1

4
FµνF

µν + ψ
(
i∂/−m

)
ψ + eAµψγ

µψ

]

=

∫
d4x

[
−1

4
FµνF

µν + ψ
(
iD/−m

)
ψ

]
, (4.58)

where once again we encounter the covariant derivative Dµ = ∂µ − ieAµ and the slash notation

introduced in Eq. (4.51) is used. This action describes the interaction of spinors with the electro-

magnetic field, that upon quantization is called quantum electrodynamics (QED). It is an interacting

theory of charged particles (e.g., electrons) and photons that, unlike the free theories we have been

dealing with so far, cannot be exactly solved. One particularly effective way to extract physical in-

formation is perturbation theory. This assumes that the coupling is sufficiently weak, so that physics

can be reliably described in terms of the interaction among the excitations of the free theory.

Before closing our discussion of the irreps of the Lorentz group, let us mention some more rel-

evant examples. The representations (s+, s−) = (1,0) and (s+, s−) = (0,1) correspond to rank-2
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Representation Field Parity

(0,0) Scalar ✓
(12 ,0) Positive helicity Weyl spinor ×
(0, 12) Negative helicity Weyl spinor ×
(12 ,

1
2) Vector ✓

(12 ,0)⊕ (0, 12) Dirac spinor ✓
(1,0) Self-dual rank-2 antisymmetric tensor ×
(0,1) Anti-self-dual rank-2 antisymmetric tensor ×

(1,0)⊕ (0,1) Antisymmetric rank-2 tensor ✓
(1,1) Symmetric-traceless rank-2 tensor ✓

Table 1: Summary of some relevant representations of the Lorentz group and their parity properties.

antisymmetric tensor fields Bµν = B[µν] respectively satisfying self-dual (+) and anti-self-dual (−)
conditions

Bµν = ±1

2
ϵµναβB

αβ. (4.59)

An example of the (1,0) and (0,1) irreps are the complex combinations E± iB that we encountered in

our discussion of electric–magnetic duality in page 24. The two irreps can be added to form the parity-

invariant reducible representation (1,0)⊕(0,1), corresponding to a generic rank-2 antisymmetric tensor

field such as the electromagnetic field strength10.

Finally, multiplying together two vector representations we have

(
1

2
,
1

2

)
⊗
(
1

2
,
1

2

)
= (1,1)⊕

[
(1,0)⊕ (0,1)

]
⊕ (0,0). (4.60)

This is just group theory lingo to express the decomposition of the product VµWν of two four-vectors

into its symmetric-traceless, antisymmetric, and trace pieces

VµWν =

(
V(µWν) −

1

4
ηµνVαW

α

)
+ V[µWν] +

1

4
ηµνVαW

α. (4.61)

This leads to identify the (1,1) irrep as corresponding to a symmetric-traceless rank-2 tensor field. For

the reader’s benefit, we have summarized in Table 1 the different representations of the Lorentz group

discussed in this section, indicating as well whether or not they preserve parity.

10Rank-2 antisymmetric tensor fields are ubiquitous in string theories, including those satisfying the (anti-)self-dual condi-
tion (4.59).
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4.3 Some more group theory

Having got some practice with the language of group theory, we close this section by enlarging our

vocabulary with many important group-theoretic concepts that will become handy later on (see Refs. [68,

69] for some physics oriented textbooks on group theory, or Appendix B of Ref. [14] for a quick survey

of basic facts). Next, we focus on the relevant groups for the SM, namely SU(3), SU(2), and U(1)

associated with the strong and electroweak interactions. We have encountered the Abelian group U(1)

when discussing electromagnetism and learned there that it has a single generator, let us call it Q, so its

elements are written as U(ϑ) = eiϑQ. This is the only irrep of this group, all others being reducible to a

diagonal form.

Concerning SU(2), its properties are well know from the theory of angular momentum in quantum

mechanics and we have already used many of them in our analysis of the representations of the Lorentz

group. Its three generators satisfy the algebra

[T aR, T
b
R] = iϵabcT cR, (4.62)

where the subscript R denotes the representation. Up to this point, we have labelled the irreps of SU(2)

by their spin s = 0, 12 ,1, . . ., although they are also frequently referred to by their dimension 2s+ 1, as

it is customary for all unitary groups SU(N ). As an example, the fundamental representation s = 1
2 is

denoted by 2 and the adjoint s = 1 by 3. In the former case the generators are written in terms of the

three Pauli matrices as T a2 = 1
2σa, a fact we used when studying Weyl spinors.

As for the group SU(3), less familiar from elementary physics, it has eight generators satisfying

the Lie algebra

[T aR, T
b
R] = ifabcT cR (a, b, c = 1, . . . , 8), (4.63)

where the structure constants are given by

f123 = 1, f147 = −f156 = f246 = f257 = f345 = −f367 = 1

2
, f458 = f678 =

√
3

2
, (4.64)

the remaining ones being either zero or fixed from the ones just given by antisymmetry. The group

elements are written as exponentials of linear combinations of the algebra generators

U(α)R = eiα
aTa

R , (4.65)

where the condition detU(α)R = 1 implies trT aR = 0 and the generators can be chosen to satisfy the

orthogonality relations

tr
(
T aRT

b
R

)
= T2(R)δab. (4.66)

Although similar in many aspects, there are however important differences between SU(2)

and SU(3) concerning the character of their irreps. For any Lie algebra representation with genera-

tors T aR it is very easy to check that −T a∗R satisfies the same Lie algebra, defining the complex conjugate
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representation denoted by R. A representation is said to be real or pseudoreal whenever it is related to

its complex conjugate irrep by a similarity transformation

T a
R
≡ −T a∗R = S−1T aRS, (4.67)

with S either symmetric (real representation) or antisymmetric (pseudoreal representation). For SU(2)

all irreps are real or pseudoreal. This is the reason why we only have one independent irrep of a given

dimension labelled by its spin. The group SU(3), on the other hand, has complex irreps. This is the case

of the fundamental and an antifundamental representations, 3 and 3, whose generators are given by

T a3 =
1

2
λa and T a

3
= −1

2
λTa , (4.68)

where λa are the eight Gell-Mann matrices, given by

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i
0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 , (4.69)

λ7 =




0 0 0

0 0 −i
0 i 0


 , λ8 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 .

Two instances of the group SU(3) exist in the SM. One is the color gauge symmetry of QCD,

which we will study in some detail in later sections. The second is the global SU(3)f flavor symmetry

of the eightfold way, originally formulated by Murray Gell-Mann [70] and Yuval Ne’eman [71]. With

the hindsight provided by the quark model, this classification scheme is based on the assumption that the

strong nuclear force does not distinguish among different quark flavors11. Let us consider the action for

three quark flavors qi (i = 1, 2, 3),

S =
∑

i=u,d,s

∫
d4x qi

(
i∂/−mi

)
qi + Sint

=

∫
d4x q

(
i∂/1−m

)
q + Sint, (4.70)

where Sint represents interaction terms that we will not care about for the time being and in the second

line we have grouped the quarks into a triplet q and rewrote the action in matrix notation, with m =

11Quarks were proposed as hadron constituents in Refs. [72,73], some three years after the formulation of the eightfold way. The
name, as with quarks, was invented by Gell-Mann drawing this time not from James Joyce but from the Noble Eightfold Path
of Buddhism: Right View, Right Intention, Right Speech, Right Conduct, Right Livelihood, Right Effort, Right Mindfulness,
and Right Meditation.
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diag(mu,md,ms). Under SU(3)f the quark triplet transforms in the fundamental irrep 3 as q → Uq.

This results in the following transformation of the free action

∫
d4x q

(
i∂/1−m

)
q −→

∫
d4x q

(
i∂/1− U †mU

)
q, (4.71)

where m = diag(mu,md,ms). Since all three quark masses are different, m is not proportional to the

identity and U †mU ̸=m, and the mass term breaks the global SU(3)f invariance. Moreover, the strong

interaction does not distinguish quark flavors and Sint remains invariant. Thus, we conclude that SU(3)f
is an approximate symmetry of QCD that becomes exact in the limit of equal, in particular zero, quark

masses (also called, for obvious reasons, the chiral limit).

Mesons are bound states of a quark and an antiquark, the later transforming in the antifundamen-

tal 3 irrep. Their classification into SU(3)f multiplets follows from decomposing into irreps the product

of the fundamental and the antifundamental

3⊗ 3 = 8⊕ 1. (4.72)

The octet contains the π0, π±, K0, K0, K±, and η8 mesons, while the singlet is the η1 meson. In fact,

the η1 and η8 mesons mix together into the η and the η′ mesons, which are the interaction eigenstates

in the electroweak sector of the SM. A similar classification scheme works for the baryons. Being com-

posed of three quarks, the baryon multiplets emerge from decomposing the product of three fundamental

representations

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (4.73)

The proton and the neutron are in one of the octets, together with the Σ0, Σ±, Ξ0, and Ξ− particles of

nonzero strangeness. Were SU(3)f an exact symmetry, the masses of all hadrons within a single multiplet

would be equal. However, the differences in the quark masses induce a mass split, which in the case of

the octet containing the proton and the neutron is about 30% of the average mass. By contrast, the mass

split between the proton and the neutron is only 0.1% of their average mass. The wider mass gap with

the other octet members results from the larger mass of the strange quark, ms > mu ∼ md.

5 A tale of many symmetries

Symmetry is probably the most important heuristic principle at our disposal in fundamental physics.

The formulation of particle physics models starts with selecting those symmetries/invariances to be im-

plemented in the theory, which usually restrict drastically the types of interactions allowed. In the SM

gauge, for example, invariance plus the condition that the action only contains operators of dimension

four or less fixes the action, up to a relatively small number of numerical parameters to be experimentally

measured in high energy facilities.
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5.1 The symmetries of physics

Our approach to symmetry up to here has been rather casual. It is time to be more precise, beginning

with a discussion of the types of symmetries we encounter in QFT and how they are implemented.

i) Kinematic (or spacetime) symmetries. They act on the spacetime coordinates and field indices.

This class of symmetries includes Lorentz, Poincaré, scale, and conformal transformations that we

already encountered in previous sections.

ii) Discrete symmetries. They include parity P, charge conjugation C, time reversal T, and the com-

positions CP and CPT. If gravity and electromagnetism were the only interactions in nature, the

universe would be invariant under C, P, and T separately. However, nuclear (both weak and strong)

interactions break P, C, T and CP in different degrees.

CPT, however, turns out to be a symmetry of QFT forced upon us by the basic requirements of

Poincaré invariance and locality. Moreover, it is a completely general result that can be demon-

strated without relying on the specific form of any Hamiltonian (for a detailed proof of this result,

called the CPT theorem, see Chapter 11 of [14]).

iii) Global continuous symmetries. These are transformations depending on a continuous constant

parameter. One example is the invariance of the complex scalar field action (3.86) under spacetime

constant phase rotation (3.98). The current view in QFT is that global symmetries are accidental

properties of the low energy theories, whereas, in the UV, all fundamental symmetries should be

local (see next).

iv) Local (gauge) invariance. Unlike the previous case, the theory is invariant under a set of contin-

uous transformations that vary from point to point in spacetime. The archetypical example is the

gauge invariance of the Maxwell’s equations found in (3.4). Unlike standard quantum mechani-

cal symmetries, gauge invariance does not map one physical state into another, but represents a

redundancy in the labeling of the physical states. This is the price we pay to describe fields with

spin one and two in a way that manifestly preserves locality and Lorentz invariance. To highlight

this fundamental feature, we will refrain from talking about gauge symmetry and stick to gauge

invariance (we will qualify this statement below).

v) Spontaneously/softly broken symmetries. In all instances discussed above, we have assumed

that the symmetries/invariances are realized at the action level and in the spectrum of the quantum

theory. Classically, it is possible that the symmetries of the action are not reflected in their solu-

tions which implies that in the quantum theory, the spectrum does not remain invariant under the

symmetry. When this happens, we say that the symmetry (or invariance) is spontaneously broken.

Since the breaking takes place by the choice of vacuum, it does not affect the UV behavior of the

theory. Another situation when this also happens is when adding terms to the action that explicitly

break the symmetry but do not modify the UV behavior of the theory (e.g., mass terms). In this

case, the symmetry is softly broken.

vi) Anomalous symmetries. Usually, symmetries are identified in the classical action and then im-

plemented in the quantum theory. This tacitly assumes that all classical symmetries remain after

quantization, and this is not always the case. Sometimes, the classical symmetry is impossible to

implement quantum mechanically, and it is said to be anomalous. Anomalies originate in very
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profound mathematical properties of QFT and they have important physical consequences.

Let us see now how symmetries are implemented in QFT. We know from quantum mechanics

that symmetries are maps among rays in the theory’s Hilbert space that preserve probability amplitudes.

More precisely, for two arbitrary states |α⟩ and |β⟩, a symmetry is implemented by some operator U

acting as

|α⟩ −→ |Uα⟩, |β⟩ −→ |Uβ⟩, (5.1)

and satisfying the condition that probability amplitudes are preserved

|⟨α|β⟩| = |⟨Uα|Uβ⟩|. (5.2)

There are two ways in which this last condition can be achieved. One is that

⟨α|β⟩ = ⟨Uα|Uβ⟩, (5.3)

implying that the operator U is unitary. But there also exists a second alternative to fullfil Eq. (5.2),

⟨Uα|Uβ⟩ = ⟨α|β⟩∗. (5.4)

In this case the operator U is said to be antiunitary. Notice that consistency requires that in this case the

operator U implementing the symmetry should be antilinear:

U
(
a|α⟩+ b|β⟩

)
= a∗|Uα⟩+ b∗|Uβ⟩, (5.5)

for any two states |α⟩ and |β⟩, and a, b ∈ C.

Our discussion has led us to Wigner’s theorem [74]: symmetries are implemented quantum-

mechanically either by unitary or antiunitary operators. In fact, continuous symmetries are always imple-

mented by the first kind. This can be understood by thinking that a family of operators U(λ), depending

on a continuous parameter, can always be smoothly deformed to the identity, a linear and not an antilin-

ear operator. On the other hand, there are two critical discrete symmetries implemented by antiunitary

operators: time reversal T and CPT.

5.2 Noether’s two theorems

In the case of continuous symmetries, we have the celebrated theorem due to Noether linking them to the

existence of conserved quantities [45]. What is often called “the” Noether theorem is actually the first of

two theorems, dealing with the consequences of global and local symmetries respectively. Let us begin

with the first one considering a classical field theory of n fields whose field equations remain invariant

under infinitesimal variations ϕi → ϕi+ δϵϕi linearly depending on N continuous parameters ϵA. There

are two essential things about the transformations we are talking about. First, they form a group, as

can be seen by noticing that the composition of two symmetries is itself a symmetry and, that for each

transformation, there exists its inverse obtained by reversing the signs of ϵA. The second fact is that the
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infinitesimal transformations can be exponentiated to cover all transformations that can be continuously

connected to the identity. The latter statement is rather subtle in the case of diffeomorphisms (i.e.,

coordinate transformations), but we will not worry about them here.

Since the transformations leave invariant the field equations, the theory’s Lagrangian density must

change at most by a total derivative, namely

S =

∫
d4xL(ϕi, ∂µϕi) =⇒ δϵS =

∫
d4x ∂µK

µ, (5.6)

where Kµ is linear in the ϵA’s. At the same time, a general variation of the action can be written as

δϵS =

∫
d4x

{[
∂L
∂ϕi
− ∂µ

(
∂L

∂ ∂µϕi

)]
δϵϕi + ∂µ

(
∂L

∂ ∂µϕi
δϵϕi

)}
, (5.7)

so equating expressions (5.6) and (5.7), we find

∫
d4x

{[
∂L
∂ϕi
− ∂µ

(
∂L

∂ ∂µϕi

)]
δϵϕi + ∂µ

(
∂L

∂ ∂µϕi
δϵϕi −Kµ

)}
= 0, (5.8)

which is valid for arbitrary ϵ. From this equation we identify the conserved current

jµ(ϵ) =
∂L

∂ ∂µϕi
δϵϕi −Kµ =⇒ ∂µj

µ(ϵ) =

[
∂µ

(
∂L

∂ ∂µϕi

)
− ∂L
∂ϕi

]
δϵϕi ≈ 0, (5.9)

where again we used the Dirac notation first introduced in page 31. Notice that since the expression

of the current is linear in the parameters ϵA the current can be written as jµ(ϵ) = ϵAj
µ
A, and (5.9) is

satisfied for arbitrary values of ϵA, we conclude that there are a total of N conserved currents ∂µj
µ
A. An

important point glaring in the previous analysis is that current conservation happens on-shell, i.e., once

the equations of motion are implemented.12

The second Noether theorem deals with local symmetries depending on a number of point-

dependent parameters ϵA(x). It is important to keep in mind that the first theorem remains valid in

this case, in the sense that there exists a current jµ whose divergence is proportional to the equations of

motion. To simplify expressions, let us denote the latter as

Ei(ϕ) ≡ ∂µ
(

∂L
∂ ∂µϕi

)
− ∂L
∂ϕi

, (5.10)

and consider that our theory is invariant under field transformations involving only ϵA(x) and their first

derivatives

δϵϕi = Ri,a(ϕk)ϵA +Rµi,A(ϕk)∂µϵA. (5.11)

This includes, for example, the gauge transformations of electromagnetism, δϵAµ = ∂µϵ (the argument

12A note of warning: the term on-shell is employed in physics with at least two different meanings. In the one used here we
say that an identity is valid on-shell whenever it holds after the equations of motion are implemented. The second use applies
to the four-momentum of a particle with mass m. The momentum pµ (or the particle carrying it) is said to be on-shell if it
satisfies p2 = m2. As an example, particles running in loops in Feynman diagrams are off-shell in this sense.
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here can be easily generalized to include transformations depending up to the k-th derivative of the gauge

functions). The general variation of the action δϵS has the structure shown in Eq. (5.8),

∫
d4x

[
− Ei(ϕ)δϵϕi + ∂µj

µ(ϵ)
]
= 0, (5.12)

with δϵϕi given in (5.11) and jµ the Noether current implied by the first theorem and defined in Eq. (5.9).

A crucial difference now is that, since jµ(ϵ) is linear in ϵA, when these parameters vanish at infinity the

boundary term on the right-hand side appearing when integrating by parts is zero

δϵS = −
∫
d4x ϵA(x)

{
Ri,A(ϕk)Ei(ϕk)− ∂µ

[
Rµi,A(ϕk)Ei(ϕk)

]}
. (5.13)

Thus, if this is a symmetry, δϵS = 0 for any ϵA(x), we obtain the identities

Ri,A(ϕk)Ei(ϕk)− ∂µ
[
Rµi,A(ϕk)Ei(ϕk)

]
= 0, (5.14)

where we should remember that A = 1, . . . , N , with N the number of gauge functions (i.e., the di-

mension of the symmetry’s Lie algebra). This result is Noether’s second theorem: invariance of a field

theory under local transformations implies the existence of several differential identities among the field

equations, meaning that some are redundant.

As to the existence of conserved currents associated with local invariance, using Eq. (5.14) it can

be shown that

∂µ

[
ϵA(x)R

µ
i,A(ϕk)Ei(ϕk)

]
= Ei(ϕk)δϵϕi, (5.15)

from where we read the conserved current

Sµ(ϵ) ≡ ϵA(x)Rµi,A(ϕk)Ei(ϕk) =⇒ ∂µS
µ(ϵ) = Ei(ϕk)δϵϕi ≈ 0. (5.16)

This quantity is however trivial, in the sense that it vanishes on-shell, Sµ(ϵ) ≈ 0. Notice, however, that

the conserved current obtained as the result of the first Noether theorem also applies to the gauge case.

Indeed, considering transformations such that ϵA(x) does not vanish at infinity, we find from (5.12)

∂µj
µ(ϵ) = Ei(ϕk)δϵϕi ≈ 0, (5.17)

where jµ is explicitly given by the expression on the left of Eq. (5.9). This shows that for theories with

local invariances the only nontrivial conserved currents are the ones provided by Noether’s first theorem,

associated with transformations that do not vanish at infinity (see also the discussion in Box 9 below).

Together with the conserved current from the first Noether theorem, there exists a conserved charge

defined by its time component,

Q(ϵ) =

∫

Σ
d3r j0(ϵ), (5.18)

where Σ is a three-dimensional spatial section of spacetime. Using current conservation it is easy to see
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that the time derivative of the charge vanishes on-shell

Q̇(ϵ) ≈ −
∫

Σ
d3r∇ · j(ϵ) =

∫

∂Σ
dS · j(ϵ) = 0, (5.19)

provided the spatial components of the current j(ϵ) are zero at ∂Σ or, equivalently, there is no flux of

charge entering or leaving the spatial sections at infinity.

Applying the first Noether theorem to different symmetries, we get a number of conserved quan-

tities:

- The energy–momentum tensor Tµν is the conserved current associated with the invariance of field

theories under spacetime translations, xµ → xµ + aµ. Its general expression is

Tµν =
∂L

∂ ∂µϕi
∂νϕi − δµνL, (5.20)

with ∂µT
µ
ν = 0. Notice that this canonical is not necessarily symmetric as, for example, in

Maxwell’s electrodynamics

Tµν = −Fµα∂νAα +
1

4
δµνFαβF

αβ. (5.21)

It can nevertheless be symmetrized by adding a term of the form ∂σK
σµ
ν , with Kσµ

ν = −Kµσ
ν ,

that does not spoil its conservation [75, 76]. In the case of the electromagnetism, the resulting

Belinfante–Rosenfeld energy-momentum tensor reads

Kµν
σ = FµνAσ =⇒ T̃µν = −FµαFνα +

1

4
δµνFαβF

αβ. (5.22)

This modified energy–momentum tensor not only is symmetric but, unlike (5.21), also gauge in-

variant. Notice that since conserved currents are quantities evaluated on-shell, we can apply the

vacuum field equations ∂µFµν = 0.

- Invariance under infinitesimal Lorentz transformations δxµ = ωµνxν , with ωµν = −ωνµ, implies

the conservation of the total angular momentum

Jµνσ = Tµνxσ − Tµσxν + Sµνσ, (5.23)

where Jµνσ = −Jµσν and ∂µJ
µ
νσ = 0. The first two terms on the right-hand side represent the

“orbital” contribution induced by the Lorentz variation of the spacetime coordinates, while Sµνσ is

the “intrinsic” angular momentum (or spin) coming from the spacetime transformation properties

of the field itself. For a scalar field this last part vanishes13.

- As a further application, let us mention the invariance of complex fields under phase rotation,

already anticipated in various examples in previous pages. For instance, in the case of the complex

scalar field studied in Box 6, applying (5.9) to infinitesimal variations δϑϕ = iϑϕ, δϑϕ∗ = −iϑϕ∗
13To connect with the notation employed in our discussion of the first Noether theorem, let us indicate that the conserved

current (5.9) associated to the invariance under spacetime translations is written by jµ(aσ) = Tµ
νa

ν , whereas jµ(ωαβ) =
Jµ

νσω
νσ is the current whose conservation follows from Lorentz invariance.
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leads to the conserved current (3.99). The corresponding analysis for Weyl spinors gives (4.30).

5.3 Quantum symmetries: to break or not to break (spontaneously)

In the quantum theory symmetries are realized on the Hilbert space of physical states. In particular, the

charge (5.18) is promoted to a Hermitian operator Q̂(ϵ) implementing infinitesimal transformations on

the fields

δϵϕ̂k = −i[Q̂(ϵ), ϕ̂k], (5.24)

whereas, due to the conservation equation (5.19), it commutes with the Hamiltonian, [Q̂(ϵ), Ĥ] = 0.

In the case of rigid transformations, the parameters ϵA can be taken outside the integral in (5.18) to

write Q̂(ϵ) = ϵAQ̂
A. Finite transformations in the connected component of the identity are obtained

then by exponentiating the charge operator

Û (ϵ) = eiϵAQ̂
A

=⇒ Û (ϵ)†ϕ̂k(x)Û (ϵ) = Ukℓ(ϵ)ϕ̂ℓ(x), (5.25)

where Ukℓ(ϵ) is the representation of the symmetry group acting on the field indices and the Hermiticity

of Q̂ guarantees the unitarity of Û (ϵ). The implication for the free theory is that the creation–annihilation

operators transform covariantly under the symmetry. Consequently, to determine the action of Û (ϵ) on

the Fock space of the theory, we need to know how the charge acts on the vacuum. Here, we may have

two possibilities corresponding to different realization of the symmetry.

Wigner–Weyl realization: the vacuum state is left invariant by the symmetry

Û (ϵ)|0⟩ = |0⟩ =⇒ Q̂a|0⟩ = 0. (5.26)

If this is the case, the symmetry is manifest in the spectrum, falling into representations of the symmetry

group. Since the whole Fock space is generated by successive application of the fields ϕ̂k(x) on the

vacuum, it is enough to know how the symmetry acts on the states |ϕk⟩ ≡ ϕ̂k(x)|0⟩,

Û (ϵ)|ϕk⟩ = Ukℓ(ϵ)|ϕℓ⟩, (5.27)

where Ukℓ(ϵ) is the representation of the symmetry group introduced in (5.25).

This is what happens, for example, in the hydrogen atom. Its ground state has j = 0 and therefore

remains invariant under a generic rotation labelled by the Euler angles ϕ, θ, and ψ,

R̂(ϕ, θ, ψ)|0, 0, 0⟩ = |0, 0, 0⟩, (5.28)

while the other states transform in irreps of the rotation group SO(3) ≃ SU(2),

R̂(ϕ, θ, ψ)|n, j,m⟩ =
j∑

m′=−j
D

(j)
mm′(ϕ, θ, ψ)|n, j,m′⟩, (5.29)
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where D
(j)
mm′(ϕ, θ, ψ) is the spin j rotation matrix [77]. From this point of view, the angular momentum

and magnetic quantum numbers introduced to account for certain properties of atomic spectra are just

group theory labels indicating how the atomic state transforms under spatial rotations. Symmetries in

quantum mechanical systems with finite degrees of freedom are usually realized à la Wigner–Weyl,

since tunneling among different vacua results in an invariant ground state. We will return to this issue on

page 64.

Nambu–Goldstone realization: the vacuum state is not invariant under the symmetry. This means that

the conserved charge does not annihilate the vacuum

Q̂(ϵ)|0⟩ ≠ 0. (5.30)

Whenever this happens, the symmetry is said to be spontaneously broken. Notice that the previous

equation does not imply that Q̂a|0⟩ ≠ 0 for all a. There might be a subset of charges satisfying Q̂A|0⟩ =
0, with {A} ⊂ {a} that we refer to as unbroken generators. It is easy to see that, since [Q̂A, Q̂B]|0⟩ = 0,

they must form a closed subalgebra under commutation.

Let us illustrate this mode of realization of the symmetry with the example of N real scalar

fields φi with action

S =

∫
d4x

[
1

2
∂µφ

i∂µφi − V (φiφi)

]
. (5.31)

This theory is invariant under global infinitesimal transformations

δϵφ
i = ϵa(T

a
f )
i
jφ

j , (5.32)

with T af the generators in the fundamental representation of SO(N ). Using the standard procedure, we

compute the associated Hamiltonian

H =

∫
d3x

[
1

2
πiπi +

1

2
(∇φi) · (∇φi) + V (φiφi)

]
, (5.33)

with πi = ∂0φ
i the conjugate momenta. From this expression we read the SO(N )-invariant potential

energy

V (φi) =

∫
d3x

[
1

2
(∇φi) · (∇φi) + V (φiφi)

]
. (5.34)

Its minimum is attained for spatially constant configurations ∇φi = 0 lying at the bottom of the poten-

tial V (φiφi). This is known as the vacuum expectation value (vev) of the field and is represented as ⟨φi⟩.
Its value is determined by

∂V

∂φi

∣∣∣∣
φk=⟨φk⟩

= 0. (5.35)

Once the vev ⟨φi⟩ is known, we can expand the fields around it by writing φi = ⟨φi⟩+ ξi. Substituting
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in (5.31) we obtain the action for the fluctuations ξi whose quantization gives the elementary excitations

(particle) of the field in this vacuum.

Here we may encounter two possible situations. One is that the vev of the field is SO(N ) invari-

ant, (Tf )i j⟨φj⟩ = 0. In this case the action of the fluctuations ξi inherits the global symmetry of the

parent theory that is then realized à la Wigner–Weyl. Here we want to explore the second alternative, the

vev breaks at least part of the symmetry. Let us split the SO(N ) generators into T af = {Kα
f , H

A
f }, such

that

(Kα
f )
i
j⟨φj⟩ ≠ 0, (HA

f )
i
j⟨φj⟩ = 0, (5.36)

and the global symmetry SO(N ) is spontaneously broken. As argued after Eq. (5.30), the generators

preserving the symmetry must form a Lie subalgebra generating the unbroken subgroup H ⊂ SO(N )

and we have the spontaneous symmetry breaking (SSB) pattern SO(N )→ H .

Generically, the action for the field fluctuations around the vev can be written as

S =

∫
d4x

(
1

2
∂µξ

i∂µξi − 1

2
M2
ijξ

iξj + . . .

)
, (5.37)

where the ellipsis stands for interactions terms and the mass-squared matrix M2
ij is given by

M2
ij ≡

∂2V

∂φi∂φj

∣∣∣∣
φk=⟨φk⟩

. (5.38)

The SO(N ) invariance of the potential δϵV = 0 implies

ϵa
∂V

∂φi
(T af )

i
jφ

j = 0 =⇒ ϵa
∂2V

∂φk∂φi
(T af )

i
jφ

j + ϵa
∂V

∂φi
(T af )

i
k = 0, (5.39)

where in the equation on the right we have taken a further derivative with respect to φk. Evaluating this

expression at the vev, and taking into account eqs. (5.35) and (5.38), we find

Mik(T
a
f )
k
j⟨φj⟩ = 0. (5.40)

This equation is trivially satisfied for the unbroken generatorsHA
f , but has very nontrivial physical impli-

cations forKα
R. It states that there are as many zero eigenvalues of the mass matrix as broken generators,

i.e., the theory contains one massless particle for each generator not preserving the vacuum. This result is

the Goldstone theorem [78,79], and the corresponding massless particles emerging as the result of spon-

taneous symmetry breaking are known as Nambu–Goldstone (NG) modes [80, 81]. Although obtained

here using a particular example and in a classical setup, the result is also valid quantum mechanically

and applicable to any field theory with a global symmetry group G spontaneously broken down to a

subgroup H ⊂ G, where the broken part of the symmetry is the coset space G/H . One way to prove the

Goldstone theorem in the quantum theory is by considering instead of the classical action the quantum

effective action and replacing V (φiφi) with the effective potential, including all interactions among the

scalar fields resulting from resumming quantum effects. It can also be shown that the NG modes always
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have zero spin, also known as NG bosons.

Although we are mostly concerned with applications to particle physics, the idea of SSB, in gen-

eral, and the Goldstone theorem, in particular, have critical applications to nonrelativistic systems, partic-

ularly in condensed matter physics.14 In particular, the notion of SSB is intimately related to the theory

of phase transitions [82–84]. It is frequently the case that the phase change is associated with the system

changing its ground state. For example, the translational symmetry present in a liquid is spontaneously

broken at its freezing point when the full group of three-dimensional translation is broken down to the

crystalographic group preserving the lattice in the solid phase. The corresponding NG bosons are the

three species of acoustic phonons. These are massless quasiparticles in the sense that their dispersion

relation at low momentum takes the form Ek ≃ cs|k|, with cs the speed of sound, so it has no mass

gap. Another well-known example is a ferromagnet below the Curie point. The rotationally symmetric

ground state at high temperature is replaced by a lowest energy configuration where atomic magnetic

moments align, generating a macroscopic magnetization that spontaneously breaks rotational symmetry.

Magnetic waves, called magnons, are the associated NG gapless modes.

Besides their intrinsic physical interest, these condensed matter examples are useful in bringing

home a very important aspect of NG bosons: they do not need to be elementary states. Indeed, phonons

and magnons are quasiparticles and, therefore, collective excitations of the system. But also in high

energy physics we encounter situations where the NG bosons are bound states of elementary constituents.

The most relevant example are the pions, appearing as NG bosons associated with the spontaneous

breaking of chiral symmetry in QCD (see Box 8 below).

It is frequently stated that systems with SSB present vacuum degeneracy. Although technically the

theory might possess various vacua, there are important subtleties involved in the infinite volume limit

preventing quantum transitions among them, that would restore the broken symmetry through tunneling.

Let us consider a theory at finite volume V and with a family of degenerate vacua labelled by a prop-

erly normalized real parameter ξ. It can be shown that the overlap between any two of these vacua is

exponentially suppressed but nonzero (see Chapter 7 of Ref. [14] for a more detailed analysis)

|⟨ξ′|ξ⟩| = e−
1
4
(ξ′−ξ)2V 2

3 |⟨ξ|ξ⟩|. (5.41)

This means that transitions among Fock states built on different vacua are allowed, resulting in a unique

ground state invariant under the original symmetry. As a consequence, no SSB can happen at finite

volume and symmetries are usually realized à la Wigner–Weyl.

The situation is radically different in the V → ∞ limit when the overlap between any two vacua

vanishes, ⟨ξ′|ξ⟩ → 0. This means that the Fock space of states builds on different vacua are mutually

orthogonal, and no transition among them can occur. At a more heuristic level, what happens is that at

infinite volume switching from one vacuum to another requires a nonlocal operation acting at each space-

time point. Notice, however, that at a practical level if the volume is “large enough” compared with the

system’s microscopic characteristic scale we can consider the vacua as orthogonal for all purposes. This

14It should be stressed that historically the very notion of SSB and of NG bosons was inspired by solid state physics, as it is
clear in the seminal works by Yoichiro Nambu [80] and Jeffrey Goldstone [78]. Another example of this cross-fertilization
between the fields of condensed matter and high energy physics can be found in the formulation of the Brout–Englert–Higgs
mechanism to be discussed in Section 5.4.
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is why we see SSB in finite samples, as illustrated by the examples of ferromagnets and superconductors.

Box 8. Of quarks, chiral symmetry breaking, and pions

The SM offers a very important implementation of SSB as a consequence of quark low-energy

dynamics. Let us consider a generalization of the action in Eq. (4.70), now with Nf different quark

flavors. Writing qT = (q1, . . . , qNf
), the action reads

S =

∫
d4x q

(
i∂/1−m

)
q + Sint

=

∫
d4x

(
iqR∂/qR + iqL∂/qL − qRmqL − qLmqR

)
+ Sint, (5.42)

where in the second line we split the quark fields into its right- and left-handed chiralities and in Sint
we include all interaction terms. This theory is invariant under global U(Nf ) transformations acting

on the fermion fields as

qR,L → U (α)qR,L where U (α) = eiα
ATA

R , (5.43)

and (TAR)i j , with A = 1, . . . , N2
f , are the U(Nf ) generators in the representation R with dimen-

sion N . We observe that it is the presence of the mass term, mixing right- and left-handed quarks,

that forces the two chiralities to transform under the same transformation of U(Nf ). This is why

in the chiral limit (i.e., zero quark masses m → 0) the global symmetry is enhanced from U(Nf )

to U(Nf )R × U(Nf )L, acting independently on the two chiralities

qR → U (αR)qR, qL → U (αL)qL, (5.44)

where αaR and αaL are independent. Thus, there are two independent Noether currents

jµR(α) = αARqRγ
µTARqR, jµL(α) = αALqLγ

µTARqL (5.45)

as well as 2×N2
f conserved charges

QAR =

∫
d3x q†RT

A
RqR, QAL =

∫
d3x q†LT

A
RqL. (5.46)

Upon quantization, these charges are replaced by the corresponding operators Q̂AR,L, whose commu-

tator realizes the algebra of generators of U(Nf )R × U(Nf )L.

Taking into account that U(Nf ) = U(1) × SU(Nf ), the theory’s global symmetry group can

be written as

U(Nf )R × U(Nf )L = U(1)B × U(1)A × SU(Nf )R × SU(Nf )L. (5.47)
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The first two factors on the right-hand side act on the quark fields respectively as

q → eiαq, q → eiβγ5q, (5.48)

the former symmetry leading to baryon number conservation (hence the subscript). The U(1)A factor

is an axial vector transformation acting on the two chiralities with opposite phases and is broken by

anomalies (more on this in Section 7). The action of the two SU(Nf )R,L factors, on the other hand,

is defined by

SU(Nf )R :




qR → URqR

qL → qL

SU(Nf )L :




qR → qR

qL → ULqL

(5.49)

with

UR,L ≡ eiα
I
L,Rt

I
f (5.50)

and tIf (I = 1, . . . , N2
f − 1) the generators of the fundamental irrep of SU(Nf ).

At low energies the strong quark dynamics triggers quark condensation, giving a non-zero

vev to the scalar quark bilinear qiqj

⟨0|qiqj |0⟩ ≡ ⟨0|
(
qi,Rqj,L + qi,Lqi,R

)
|0⟩ = Λ3

χSBδij , (5.51)

where ΛχSB is the energy scale associated with the condensation. This vev, however, is only invariant

under the “diagonal” subgroup of the SU(Nf )R × SU(Nf )L transformations (5.49) consisting of

transformations with UR = UL. What happens is that the global SU(Nf )R × SU(Nf )L chiral

symmetry is spontaneously broken down to its vector subgroup

U(1)B × SU(Nf )R × SU(Nf )L −→ U(1)B × SU(Nf )V . (5.52)

Goldstone’s theorem implies that associated with each spontaneously broken generator there should

be a massless NG boson. In our case there are N2
f − 1 broken generators corresponding to

the SU(Nf )A factor. Excitations around the vev (5.51) are parametrized by the field Σij(x) defined

by

qi(x)qj(x) = Λ3
χSBΣij(x). (5.53)

This in turn can be written in terms of the NG matrix field π(x) ≡ πA(x)tAf as

Σ(x) ≡ e
i
√
2

fπ
π(x)

, (5.54)

with fπ a constant with dimensions of energy called the pion decay constant for reasons that will
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eventually become clear. Mathematically speaking, the field Σ parametrizes the coset

SU(Nf )R × SU(Nf )L
SU(Nf )V

, (5.55)

leading to the following transformation under SU(Nf )R × SU(Nf )L:

Σ −→ URΣU
†
L. (5.56)

We specialize the analysis now to the case Nf = 2, with only the u and d quarks. The

unbroken SU(2)V symmetry is just the good old isospin interchanging both quarks, while the NG

bosons are the three pions π± and π0

π =
1√
2

(
π0

√
2π+√

2π− −π0

)
. (5.57)

The objection might be raised that pions are not massless particles as the Goldstone theorem re-

quires. Our analysis has ignored the nonvanishing quark masses, explicitly breaking the SU(2)R ×
SU(2)L global chiral symmetry. Since the u and d quarks are relatively light, we have instead three

pseudo-NG bosons whose masses are not zero but still lighter than other states in the theory. It is

precisely the strong mass hierarchy between the pions and the remaining hadrons what identifies

them as the pseudo-NG bosons associated with chiral symmetry breaking. In the Nf = 3 case,

where we add the strange quark to the two lightest ones, SU(3)V is Gell-Mann’s eightfold way dis-

cussed on page 54 and the set of pseudo-NG bosons is enriched by the four kaons and the η-meson

in the octet appearing on the right-hand side of Eq. (4.72).

As mentioned in the introduction, quarks and gluons do not exist as asymptotic states and

QCD at low energies is a theory of hadrons. The lowest lying particles are the pion triplet, whose

interactions can be obtained from symmetry considerations alone playing the EFT game. The ques-

tion is how to write the simplest action for NG bosons containing operators with the lowest energy

dimension and compatible at the same time with all the symmetries of the theory. For terms with

just two derivatives, the solution is

SNG =
f2π
4

∫
d4x tr

(
∂µΣ

†∂µΣ
)

=

∫
d4x

[
1

2
tr
(
∂µπ∂

µπ
)
− 1

3f2π
tr
(
∂µπ[π, [π, ∂

µπ]
)
+ . . .

]
. (5.58)

This chiral effective action contains an infinite sequence of higher-dimensional operators suppressed

by increasing powers of the dimensionful constant fπ. It determines how pions couple among them-

selves at low energies. Its coupling to the electromagnetic field is obtained by replacing ∂µΣ by the

adjoint covariant derivativeDµΣ = ∂µΣ−iAµ[Q,Σ] where the charge matrix is given byQ = eσ3.

This, however, does not exhaust all their electromagnetic interactions. Neutral pions couple to pho-

tons as a consequence of the anomalous realization of the U(1)A symmetry, resulting in the π0 → 2γ
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Fig. 9: Illustration from Ref. [88] depicting the celebrated Mexican hat potential shown in Eq. (5.61).

decay (see Section 7).

In our analysis of chiral symmetry breaking we encountered two energy scales: ΛχSSB ap-

pearing in (5.51) as a consequence of the quark condensate having dimensions of (energy)3, and fπ
needed to give the pion fields their proper dimensions in Eq. (5.54). Both of them have to be exper-

imentally measured. In the pion EFT it is fπ that determines the relative size of the infinite terms in

the effective action (5.58). Operators weighted by f−nπ typically give contributions or order (E/fπ)n

with E the characteristic energy of the process under study. In the spirit of EFT, working at a given

experimental precision, only a finite number of terms in the chiral Lagrangian have to be retained,

making the theory fully predictive (see Refs. [85, 86] for comprehensive reviews of chiral perturba-

tion theory).

5.4 The Brout–Englert–Higgs mechanism

Besides the ones already discussed, a further instance of SSB in condensed matter connecting with one

of the key concepts in the formulation of the SM is the Brout–Englert–Higgs (BEH) mechanism. In

the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity the transition from the normal to

the superconductor phase is triggered by the condensation of Cooper pairs, collective excitations of two

electrons bound together by phonon exchange. Having net electric charge, the Cooper pair wave function

transforms under electromagnetic U(1) phase rotations and their condensation spontaneously breaks this

invariance. The physical consequence of this is a screening of magnetic fields inside the superconductor,

the Meissner effect, physically equivalent to the electromagnetic vector potential A(t, r) acquiring an

effective nonzero mass [87].

The main difference between the BCS example and the ones discussed above is that this is not

about spontaneously breaking some global symmetry, but gauge invariance itself. This might look like

risky business, since we know that preserving gauge invariance is crucial to get rid of unwanted physical

states that otherwise would pop up in the theory’s physical spectrum destroying its consistency. As we

will see, due to the magic of SSB gauge invariance is in fact not lost, only hidden. That is why, even if

not manifest, it still protects the theory.

Let us analyze spontaneous symmetry breaking triggered by a complex scalar coupled to the elec-
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tromagnetic field. We start with the action

S =

∫
d4r

[
−1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)− λ

4

(
ϕ∗ϕ− v2

2

)2
]
, (5.59)

where Dµ = ∂µ − ieAµ is the covariant derivative already introduced in the footnote of page 40. This

action is invariant under U(1) gauge transformations acting as

ϕ(x) −→ eieϵ(x)ϕ(x), ϕ(x)∗ −→ e−ieϵ(x)ϕ(x)∗, Aµ(x) −→ Aµ(x) + ∂µϵ(x). (5.60)

As shown in Fig. 9, the scalar field potential

V (ϕ∗ϕ) =
λ

4

(
ϕ∗ϕ− v2

2

)2

, (5.61)

has the celebrated Mexican hat shape with a valley of minima located at ϕ∗ϕ = v2

2 . When the scalar field

takes a nonzero vev

⟨ϕ⟩ = v√
2
eiϑ0 , (5.62)

U(1) invariance is spontaneously broken, since ⟨ϕ⟩ does not remain invariant, ⟨ϕ⟩ → eieϵ⟨ϕ⟩. The

dynamics of the fluctuations around the vev (5.62) is obtained by plugging

ϕ(x) =
1√
2

[
v + h(x)

]
eiϑ(x) (5.63)

into (5.59). The resulting action is

S =

∫
d4x

[
−1

4
FµνF

µν +
e2v2

2

(
Aµ +

1

e
∂µϑ

)(
Aµ +

1

e
∂µϑ

)
+

1

2
∂µh∂

µh− λv2

4
h2

− λv

4
h3 − λ

16
h4 +

e2

2

(
Aµ +

1

e
∂µϑ

)(
Aµ +

1

e
∂µϑ

)
(2vh+ h2)

]
, (5.64)

which remains invariant under U(1) gauge transformations, now acting as

Aµ −→ Aµ + ∂µϵ, ϑ −→ ϑ− eϵ, h −→ h. (5.65)

In fact, the phase field ϑ(x) is the NG boson resulting from the spontaneous breaking of the U(1) sym-

metry by the vev in Eq. (5.62).

At this stage, we still keep a photon with two polarizations while the two real degrees of freedom

of the complex field ϕ have been recast in terms of the field h and the NG boson ϑ. We can fix the

gauge freedom (5.65) by setting ϑ = 0. In doing so, the disappearing NG boson transmutes into the

longitudinal component of Aµ, as befits a massive gauge field (see the footnote on page 32). We then

69



LUIS ÁLVAREZ-GAUMÉ AND MIGUEL Á. VÁZQUEZ-MOZO

arrive at the gauge-fixed action

S =

∫
d4x

(
−1

4
FµνF

µν +
e2v2

2
AµA

µ +
1

2
∂µh∂

µh− λv2

4
h2

− λv

4
h3 − λ

16
h4 + e2vAµA

µh+
e2

2
AµA

µh2
)
, (5.66)

where the photon has acquired a nonzero mass15

mγ = ev. (5.67)

The real scalar field h gets massive as well,

mh = v

√
λ

2
, (5.68)

and has cubic and quartic self-interactions terms, besides coupling to the photon through terms involving

two gauge fields and one scalar and two gauge fields and two scalars. As we see, no degree of freedom

has gone amiss. We ended up with a massive photon with three physical polarizations and a real scalar,

making up for the four real degrees of freedom we started with. SSB has just rearranged the theory’s

degrees of freedom.

Here we have been only concerned with giving mass to the photon. Imagine now that we would

have two chiral fermions ψR, ψL such that they transform differently under U(1)

ψL(x) −→ eieϵ(x)ψL(x), ψR(x) −→ ψR(x). (5.69)

Due to the theory’s chiral nature, a mass term of the form ψLψR + ψRψL would not be gauge invariant,

so it seems that we need to keep our fermions massless for the sake of consistency. Using the Higgs field,

however, there is a way to construct an action where the fermions couple to the complex scalar field in a

gauge invariant way,

Sfermion =

∫
d4x

(
iψRD/ψR + iψLD/ψ+ − cϕψLψR − cϕ∗ψRψL

)
, (5.70)

where c is some dimensionless constant. This particular form of the coupling between ϕ and the fermions

is called a Yukawa coupling, since it is similar to the one introduced by Hideki Yukawa in his 1935 theory

of nuclear interactions between nucleons and mesons [89]. The interest of this construction is that once

the field ϕ acquires the vev (5.62), and after gauging away the field ϑ, the fermion action takes the form

Sfermion =

∫
d4x

[
iψRD/ψR + iψLD/ψL −

cv√
2

(
ψLψR − ψRψL

)

− c√
2
hψLψR −

c√
2
hψRψL

]
. (5.71)

15The same result can be obtained noticing that the action (5.64) contains a term ev2Aµ∂µϑ mixing the NG boson and the
gauge field. Physically, this means that as the photon propagates it transmutes into the NG boson and vice versa. Resumming
these transmutations results in the mass term for Aµ.
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Thus, the same mechanism giving mass to the photon also results in a mass for the fermion field,

mf =
cv√
2
, (5.72)

also generated without an explicit breaking of gauge invariance, hidden due to the choice of vacuum

of the complex scalar field. Notice that, owing to symmetry breaking, the now massive Dirac fermion

couples to the remaining scalar degree of freedom h with a strength controlled by the dimensionless

constant c√
2
=

mf

v . This indicates that the higher the mass of the fermion, the stronger it couples to the

Higgs field. This feature, as we will see, has important experimental consequences for the SM.

This Abelian Higgs model illustrates the basic features of the BEH mechanism responsible for

giving masses to the SM particles, with the scalar field h corresponding to the Higgs boson discovered at

CERN in 2012 [19, 20]. In its nonrelativistic version it also provides the basis for the Ginzburg–Landau

analysis of the BCS theory of superconductivity, where the free energy in the broken phase has the same

structure as the potential terms in the action (5.59)

FBCS =

∫
d3r





1

2µ
(∇×A)2 +

1

2m∗

∣∣∇ϕ− ie∗Aϕ
∣∣2 + λ(T )

4

[
ϕ∗ϕ− v(T )

2

2
]2
 . (5.73)

Here ϕ(r) is the Cooper pair condensate, µ the magnetic permeability of the medium, and m∗ and e∗
the effective mass and charge of the quasiparticles. For T > Tc we have v(T ) = 0, so at temperatures

above the critical one, the only minimum of the free energy is at ⟨ϕ⟩ = 0. When T < Tc, on the other

hand, v(T ) ̸= 0 and the U(1) invariance of the theory is spontaneously broken at the |⟨ϕ⟩| = v(T )

minima, while the former one at ⟨ϕ⟩ = 0 becomes a local maximum. As in the case studied earlier, this

results in a nonzero mass for the vector potential A(r) given bym(T ) = e∗v(T ). This provides the order

parameter of the transition and physically accounts for the Meissner effect inside the superconductor [83].

The system also contains a scalar massive excitation, the condensed matter equivalent of the Higgs

boson [90, 91].

Box 9. “Large” vs. “small” gauge transformations

We return briefly to the discussion of Noether’s second theorem on page 58. There we paid attention

to gauge transformations in the connected component of the identity and made an important distinc-

tion among those approaching the identity at the spacetime boundary (ϵA → 0) and those that do

not. Let us call them “small” and “large” gauge transformations, respectively. To understand the

physical difference between them, we compare (5.17) with (5.16) to see that jµ − Sµ is conserved

even off-shell, namely that ∂µ(jµ − Sµ) is identically zero. This means that we can write

jµ = Sµ + ∂νk
µν ≈ ∂νkµν , (5.74)

where kµν is an antisymmetric tensor and we have applied that Sµ vanishes on-shell. This peculiar

structure of the gauge theory current implies that the gauge charge is determined by an integral over
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the boundary of the spatial sections

Q ≈
∫

Σ
dV ∂ik

0i =

∫

∂Σ
dSi k

0i. (5.75)

Since the current, and therefore also kµν , is linear in the gauge functions ϵA(x), we conclude that

the charge vanishes for “small” gauge transformations

Qsmall ≈ 0. (5.76)

This is not the case of “large” transformations, the ones determining the value of Q.

A very important fact to remember about “small” gauge transformations is that they are the

ones leading to the Noether identities (5.14) that, as we indicated, express the redundancy intrinsic

to gauge theories. Quantum mechanically, invariance under these transformations is mandatory

in order to get rid of the spurious states that we introduced as the price of maintaining locality

and Lorentz covariance. They cannot be spontaneously broken or affected by anomalies without

rendering the theory inconsistent. However, no such restriction exists for “large” transformations,

that can be broken without disastrous consequences.

To connect with the discussion of the Abelian Higgs model, let us look at the case of

Maxwell’s electrodynamics in the temporal gauge A0 = 0. In the quantum theory, the vacuum

Gauss law constraint ∇ ·E = 0 is implemented by the corresponding operator annihilating physical

states, namely (to keep notation simple, we drop hats to denote operators)

∇ ·E|phys⟩ = 0. (5.77)

Finite gauge transformations preserving the temporal gauge condition A0 = 0 are generated by

time-independent gauge functions and implemented in the space of states by the operator

Uϵ = exp

[
i

∫
d3rE(t, r) ·∇ϵ(r)

]
. (5.78)

Using the canonical commutation relations (3.68), we readily compute

UϵA0(t, r)U
−1
ϵ = 0,

UϵA(t, r)U −1
ϵ = A(t, r) +∇ϵ(r). (5.79)

At the same time, the operator Uϵ leaves the physical states invariant

Uϵ|phys⟩ = exp

[
i

∫
d3xE(t, r) ·∇ϵ(r)

]
|phys⟩

= exp

[
−i
∫
d3x ϵ(r)∇ ·E(t, r)

]
|phys⟩ = |phys⟩, (5.80)

where in the second line it is crucial that the gauge function ϵ(r) vanishes at infinity so that after
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integrating by parts we do not pick up a boundary term. This means that Uϵ → 1 as |r| → ∞.

We have shown that invariance of the physical states under “small” gauge transformations

follows from Gauss’ law (5.77) annihilating them, precisely the condition that factors out the spu-

rious degrees of freedom. The conclusion is that “large” gauge transformations are not necessary

to eliminate the gauge redundancy and can be broken without jeopardizing the consistency of the

theory. This is precisely how the BEH mechanism works. The nonvanishing vacuum expectation

value of the complex scalar field breaks “large” gauge transformations without spoiling Gauss’ law.

This is the reason why we need to qualify our statement in pages 20 and 56 that gauge invariance

is just a redundancy in state labelling: “small” gauge transformations are indeed redundancies, but

“large” gauge transformations are bona fide symmetries.

6 Some more gauge invariances

So far the only gauge theory we dealt with was Maxwell’s electrodynamics, although here and there we

hinted at its non-Abelian generalizations. It is about time to introduce these in a more systematic fashion.

We start with a set of fermions ψT = (ψ1, . . . , ψN ) transforming in some representation R of the gauge

group G

ψ −→ eiα
aTa

Rψ ≡ g(α)ψ. (6.1)

By now, we know very well how to construct an action that has this symmetry,

S =

∫
d4xψ

(
i∂/−m

)
ψ. (6.2)

The problem arises when we want to make G a local invariance. In this case, the action we just wrote

fails to be invariant due to the nonvanishing derivatives of αa(x),

∂µψ −→ g∂µψ + i∂µgψ = g
(
∂µψ + ig−1∂µg

)
ψ, (6.3)

where, to avoid cluttering expressions, we have omitted the dependence of the group element g on the

parameters αa.

To overcome this problem we have to find a covariant derivative Dµ, similarly to the one we

introduced for Maxwell’s theory, with the transformation

Dµψ −→ gDµψ. (6.4)

A reasonable Ansatz turns out to be

Dµψ =
(
∂µ − iAµ

)
ψ, (6.5)

where we omitted the identity multiplying ∂µ and Aµ ≡ AaµT
a
R is a field taking values in the algebra of
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generators of G. In order to get the transformations (6.4), Aµ has to transform according to

Aµ −→ A′
µ = ig−1∂µg + g−1Aµg. (6.6)

With this we can turn (6.2) into a locally invariant action by replacing ∂µ withDµ defined in Eq. (6.5). In

addition, we must include the dynamics of the new field Aµ adding a suitable kinetic term that preserves

the gauge invariance of the fermionic action. The Abelian-informed choice ∂µAν − ∂νAµ for the gauge

field strength will not do, since it does not transform covariantly

∂µAν − ∂νAµ −→ g−1
(
∂µAν − ∂νAµ

)
g + i

[
g−1∂µg, g

−1∂νg
]

+
[
g−1Aµg, g

−1∂νg
]
+
[
g−1∂µg, g

−1Aνg
]
. (6.7)

This however suggests a wiser choice,

Fµν = ∂µAν − ∂νAµ + i
[
Aµ, Aν

]
, (6.8)

with the much nicer (i.e., covariant) transformation

Fµν −→ F ′
µν = g−1Fµνg. (6.9)

Notice that, similar to Aµ, the field strenght Fµν takes values in the algebra of generators, so we can

write Fµν = F aµνT
a
R, with the components given by

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν , (6.10)

where fabd are the structure constants of the Lie algebra of generators, [T aR, T
b
R] = ifabcT cR.

We denote by G the set of gauge transformations acting on the fields. Although to fix ideas here,

we have considered transformations (6.1) in the connected component of the identity G0, the derived

expressions remain valid for all transformations in G , even if they lie in disconnected components (we

saw an example of this in the case of the Lorentz group studied in page 41). For transformations in G0,

we can write their infinitesimal form,

g(α) ≃ 1+ iαaT aR, (6.11)

to write the first order transformation of both the gauge field and its field strength

δαA
a
µ = ∂µα

a + ifabcαbAcµ ≡ (Dµα)
a,

δαF
a
µν = ifabcαbF cµν , (6.12)

where in the first line we expressed the variation of the gauge field in terms of the (adjoint) covariant

derivative of the gauge function. The field strength, in turn, can be also recast as the commutator of two

covariant derivatives, Fµν = [Dµ, Dν ].
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After all these preliminaries, we can write a gauge invariant action for fermions coupled to non-

Abelian gauge fields,

SYM =

∫
d4x

[
− 1

2g2YM

tr
(
FµνF

µν
)
+ψ

(
iD/−m

)
ψ

]

=

∫
d4x

[
− 1

4g2YM

F aµνF
aµν +ψ

(
i∂/−m

)
ψ +Aaµψγ

µT aRψ

]
, (6.13)

where gYM is the only coupling constant of the theory16. This non-Abelian generalization of QED was

first formulated by C. N. Yang and Robert L. Mills [92]. Yang–Mills (YM) theories are the backbone

of our understanding of elementary particle physics. Although the action SYM reduces to that of QED in

Eq. (4.58) for G = U(1), it displays a much richer structure for non-Abelian gauge groups. For starters,

the commutator in the field strength (6.8) is nonzero and the F aµνF
aµν term in Eq. (6.13) contains cubic

and quartic gauge field self-interaction terms. This indicates that, unlike the photon, non-Abelian gauge

bosons are never free particles even if uncoupled to matter.

The general analysis of gauge invariance follows in many aspects the Abelian case. The corre-

sponding electric and magnetic fields are defined in terms of the gauge potential Aaµ ≡ (Aa0,−Aa) by

Ea = −∇Aa0 −
∂Aa

∂t
+ fabcAa0A

b,

Ba = ∇×Aa + fabcAb ×Ac, (6.14)

and, unlike their Abelian counterparts, they are not gauge invariant. The electric field Ea is in fact the

momentum canonically conjugate to Aa,

{
Aai (t, r), E

b
j (t, r

′)
}
PB

= δijδ
abδ(3)(r− r′), (6.15)

and the Hamiltonian reads

H =

∫
d3x

[
1

2
Ea ·Ea + 1

2
Ba ·Ba +Aa0

(
D ·E

)a
]
. (6.16)

Similarly to Maxwell’s electrodynamics, Aa0 plays the role of a Lagrange multiplier enforcing the Gauss

law constraint, now reading

(D ·E)a ≡∇ ·Ea + fabcAb ×Ec = 0. (6.17)

In the quantum theory, classical fields are replaced by operators. Using the non-Abelian version

of the temporal gauge, Aa0 = 0, residual gauge transformations correspond to time-independent gauge

16The factors of gYM in front of the first term in the action can be removed by a rescale Aµ → gYMAµ. In doing so, an
inverse power of the coupling constant appears in the derivative terms in Eq. (6.6) and the first identity in Eq. (6.12), while
the commutator in Eq. (6.8) acquires a power of gYM, as well as the structure constant term in Eq. (6.10).
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functions αa(r) and are generated by D ·E,

δαA(t, r) = i

[∫
d3r αa(r)(D ·E)a,A(t, r)

]

= ∇αa + ifabcαbAc ≡ (Dα)a, (6.18)

where we have used the canonical commutation relations derived from Eq. (6.15) and to avoid boundary

terms after integration by parts we need to restrict to “small” gauge transformations where αa(r) vanishes

when |r| → ∞. Those in the connected component of the identity G0 are therefore implemented on the

space of physical states by the operator

U (α) = exp

[
i

∫
d3r αa(r)(D ·E)a

]
. (6.19)

As in the Abelian case discussed in Box 9 (see page 71), the invariance under these “small” gauge trans-

formations has to be preserved at all expenses to avoid unphysical states entering the theory’s spectrum.

To achieve this, we require that the Gauss law annihilates physical states:

(D ·E)a|phys⟩ = 0. (6.20)

In the presence of non-Abelian sources, (D · E)a gets replaced by (D · E)a − ρa, with ρa the matter

charge density operator.

We should not forget about “large” gauge transformations whose gauge parameter αa(r) does not

vanish when |r| → ∞. Notice that any transformation of this kind can be written as

g(r)large = hg(r)small, (6.21)

where h ̸= 1 is a rigid transformation such that g(r)large → h as |r| → ∞. They build up what can

be called a copy of the group at infinity, G∞, the global invariance leading to charge conservation by

the first Noether theorem. This is a real symmetry that quantum mechanically can be realized either

à la Wigner–Weyl or à la Nambu–Goldstone. For the SM gauge group SU(3) × SU(2) × U(1), the

color SU(3)∞ symmetry remains unbroken by the vacuum, whereas due to the BEH mechanism the

electroweak factor [SU(2)×U(1)]∞ is partially realized à la Nambu–Goldstone, with a preserved U(1)∞
corresponding to the global invariance of electromagnetism17.

7 Anomalous symmetries

In Section 5, we mentioned the possibility that classical symmetries or invariances could somehow turn

out to be incompatible with the process of quantization but so far did not elaborate any further. Since

anomalous symmetries are crucial in our understanding of a number of physical phenomena, it is about

time to look into anomalies in some detail (see Refs. [93–96] for some reviews on the topic).

17As we will see shortly, the unbroken U(1) generator is a mixture of the two generators of the Cartan subalgebra of the
electroweak SU(2) × U(1) gauge group factor.
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7.1 Symmetry vs. the quantum

Let us go back to the QED action Eq. (4.58). We have already discussed the global phase invariance

leading by the first Noether theorem to the conserved current (4.57). In addition, we can also consider

the transformations

ψ −→ eiαγ5ψ, ψ −→ ψeiαγ5 , (7.1)

where γ5 is the chirality matrix defined in Eq. (4.53). Unlike the transformation ψ → eiϑψ rotating

the positive and negative chirality components of the Dirac spinor by the same phase, in Eq. (7.1) they

change by opposite phases. In what follows, we refer to the first type as vector transformations, while the

second we dub as axial-vector. The latter, however, are not a symmetry of the QED action for m ̸= 0,

since ψψ → ψe2iαγ5ψ ̸= ψψ, whereas ψγµ∂µψ is invariant. In fact, using the Dirac field equations it

can be shown that the axial-vector current

jµ5 = ψγ5γ
µψ (7.2)

satisfies the relation

∂µj
µ
5 = 2imψγ5ψ (7.3)

and for m = 0 gives the conservation equation associated with the invariance of massless QED under

axial-vector transformations. Similar to what we found on Box 8 for the flavor symmetry of QCD, in this

limit the global U(1)V symmetry of QED gets enhanced to U(1)V × U(1)A.

In the quantum theory, Noether currents are constructed as products of field operators evaluated

at the same spacetime point. These quantities are typically divergent and it is necessary to introduce

some regularization in order to make sense of them. In the case of QED one way to handle the vector

current jµ(x) = ψ(x)γµψ(x) is by using point splitting

jµ(x, ϵ)reg ≡ ψ
(
x− 1

2
ϵ

)
γµψ

(
x+

1

2
ϵ

)
exp

(
ie

∫ x+ 1
2
ϵ

x− 1
2
ϵ
dxµAµ

)
, (7.4)

where the divergences appear as poles in ϵ = 0. Notice that since the phases introduced by the gauge

transformations of the two fields are evaluated at different points, an extra Wilson line term is needed

to restore gauge invariance of the regularized current. Alternatively, we can use Pauli–Villars (PV)

regularization, where a number of spurious fermion fields of masses Mi are added to the action

Sreg =

∫
d4x

[
−1

4
FµνF

µν + ψ(iD/−m)ψ +

n∑

i=1

ckΨk(iD/−Mk)Ψk

]
, (7.5)

with n and ck chosen so that the limit

jµ(x)reg ≡ lim
x′→x

[
ψ(x′)γµψ(x) +

n∑

k=1

ckΨk(x
′)γµΨk(x)

]
(7.6)
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remains finite (i.e., all poles at x− x′ = 0 cancel). An important feature of the PV regularization is that

it explicitly preserves gauge invariance. The masses Mk act as regulators, since in the limit Mk → ∞
the PV fermions decouple and the original divergences reapear.

The need to make sense of composite operators is at the core of the potential problems with

current conservation in the quantum domain. The regularization procedure might collide with some of

the classical symmetries of the theory, resulting in its breaking after divergences are properly handled.

This is why our discussion of the regularization of the current operator in QED has been conspicuously

concerned with the issue of gauge invariance of the vector current. The existence of gauge invariant

regularization schemes guarantees that the current coupling to the gauge field can be defined in the

quantum theory without spoiling its conservation ∂µjµ = 0 at operator level. Otherwise, we would be

in serious trouble, as we can see by applying the quantization prescription Eq. (3.66) to the stability

condition of the Gauss law Eq. (3.54),

[G,H] = −i∂µjµ, (7.7)

where we have defined G ≡∇ ·E− j0. If ∂µjµ ̸= 0, the Gauss law condition ensuring the factorization

of redundant states would not be preserved by time evolution. Indeed, imposing the constraint at t = 0

on some state, G|Ψ(0)⟩ = 0, we would have at first order in δt

G|Ψ(δt)⟩ = −iδtGH|Ψ(0)⟩ = −δt∂µjµ|Ψ(0)⟩ ≠ 0, (7.8)

so the constraint is no longer satisfied and unphysical states enter the spectrum. Another sign that some-

thing goes wrong when implementing the Gauss law constraint in theories with gauge anomalies appears

when computing the commutator of two G’s evaluated at different points. In the presence of a gauge

anomaly, it is no longer zero [97–99], but

[G(r), G(r′)] = cB(r) ·∇δ(3)(r− r′), (7.9)

where c ̸= 0 is a constant determined by the value of ∂µjµ. This result implies that G(r)|phys⟩ = 0

cannot be consistently imposed, since this condition would imply [G(r), G(r′)]|phys⟩ = 0 whereas the

right-hand side of Eq. (7.9) gives a nonzero result when acting on the state18. This being the case, spuri-

ous states cannot be factored out from the spectrum, with the upshot that the theory becomes inconsistent.

This shows that in constructing QFTs, gauge anomalies cannot emerge. This condition is a very

powerful constraint in model building, since it limits both the type of fields that can be allowed in the

actions and also their couplings. As we will see in Box 13 in page 104, in the SM this requirement

completely fixes the hypercharges of quarks and leptons, up to a global normalization (see Ref. [96] for

examples of anomaly cancellation in the SM and beyond).

After this digression, we go back to the quantum mechanical definition of the axial-vector current

Eq. (7.2) and the fate of its (pseudo)conservation Eq. (7.3). To simplify things, we consider the massless

18Something similar happens in the case of non-Abelian gauge theories that we will discuss in the next section. There, the
commutator of two Gauss law operators acquires a central extension, [Ga(r), Gb(r′)] = ifabcGc(r)δ(3)(r−r′)+Aab(r, r′),
with Ga ≡ (D ·E)a − ja0 in this case.
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case where axial-vector transformations Eq. (7.1) are a symmetry of the classical action. A very conve-

nient way to study this problem is to treat the gauge field as a classical external source coupling to the

quantum Dirac field. This is made clear by denoting gauge fields and field strengths using calligraphic

fonts as Aµ and Fµν , respectively. Instead of working with operators, we deal with their vacuum expec-

tation values in the presence of the background field and compute ⟨Jµ5 ⟩A ≡ ⟨0|Jµ5 |0⟩ together with its

divergence. This can be done using either the regularized operators introduced above (see, for example,

Ref. [100] for a calculation using point-splitting regularization) or diagrammatic techniques. In the latter

case, we need to compute the celebrated triangle diagrams

�
Aβ

Aα

Jµ5 + �
Aβ

Aα

Jµ5 (7.10)

where in the left vertex of both diagrams (indicated by a dot) an axial-vector current is inserted, whereas

the other two are coupled to the external gauge field through the vector gauge currents. Since in these

lectures we are not entering into the computation of Feynman graphs, we will not elaborate on how to

calculate these ones. Details can be found in Chapter 9 of Refs. [14] or in [94]. Here we just give the

final result for the anomaly of the axial-vector current,

∂µ⟨Jµ5 ⟩A = − e2ℏ
16π2

ϵµναβFµνFαβ. (7.11)

Despite having used all the time natural units with ℏ = 1, in this expression we have restored the powers

of the Planck constant to make explicit the fact that the anomaly is a pure quantum effect.

This crucial result has a long history. The diagrams in Eq. (7.10) were computed in 1949 by

Jack Steinberger [101] and later in 1951 by Julian Schwinger [102], in both cases in the context of the

electromagnetic decay of neutral mesons19. Almost two decades later, the consequences of the triangle

diagram for the quantum realization of the axial-vector symmetry of QED were pointed out by Stephen

Adler [105], and John S. Bell and Roman Jackiw [106] in what are considered today the foundational

papers of the subject of quantum anomalies.

There are some very important issues that should be mentioned concerning the calculation of the

axial anomaly Eq. (7.11). We have stressed how the anomaly could be seen as originated by the need

to regularize UV (i.e., short distance) divergences in the definition of the current or, alternatively, in

the computation of the triangle diagrams. Nevertheless, using either method, we find a regular result

in the limit in which the regulator is removed. In the language of QFT, we do not need to subtract

and renormalize divergences to find the anomaly of the axial current. At the level of diagrams, what

happens is that, although the integrals are linearly divergent, this only results in an ambiguity in their

19Other early calculations of the triangle diagrams were carried out in 1949 by Hiroshi Fukuda and Yoneji Miyamoto [103],
and by S. Ozaki, S. Oneda, and S. Sasaki [104].
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value that is fixed by requiring the gauge (vector) current to be conserved. In the case of the point

splitting calculation, introducing a Wilson line similar to the one inserted in Eq. (7.4) in the regularized

definition of the axial-vector current to preserve gauge invariance we are led to the axial anomaly after

taking the ϵ→ 0 limit.

Another important point to be stressed is a tension between the conservation of the gauge and the

axial-vector currents: we can impose the conservation of either of the two, but not of both simultaneously.

After the above discussion of the dire consequences of violating gauge current conservation, the choice

is clear enough.

7.2 The physical power of the anomaly

When studying the global symmetries of QCD, we have also encountered axial transformations [see

Box 8 and in particular Eq. (5.48)] and mentioned that they are anomalous. Now we can be more

explicit. The axial-vector current of interest in this case is given by

Jµ5 = qγ5γ
µq, (7.12)

where a sum over color indices should be understood. Its anomaly comes from triangle diagrams similar

to the ones shown in Diagram (7.10), this time with quarks running in the loop. But, together with the

triangles coupling to the electromagnetic external potential Aµ, we also have a pair of triangles where

the vertices on the right couple to an external gluon field Aaµ (for this, we also use calligraphic fonts to

indicate that we are dealing with classical sources). This results in the anomaly

∂µ⟨Jµ5 ⟩A ,A = − Nc

16π2

( Nf∑

f=1

q2f

)
ϵµναβFµνFαβ −

Nf

16π2
ϵµναβFaµνFaαβ, (7.13)

whereFaµν is the non-Abelian field strength associated with the external gluon field andNc is the number

of colors. The coefficient of the first term is obtained by summing the expression of the axial anomaly

given in (7.11) to all quarks running in the loop. As for the second, the quarks couple to the gluon fields

through the gauge current

Jµa = qγµτaq, (7.14)

where τa are the generators of the fundamental representation of SU(3) acting on the color indices of

each component of q. Since the axial current does not act on color indices, the prefactor is proportional

to (tr1)(tr {τa, τ b}) = Nfδ
ab, with 1 the identity in flavor space.

Anomalies can also affect the global non-Abelian SU(Nf )L × SU(Nf )R symmetry defined

in (5.49). This global symmetry group can be rearranged in terms of vector and axial transformations

SU(Nf )L × SU(Nf )R = SU(Nf )V × SU(Nf )A acting on the quark fields as

SU(Nf )V : q → eiα
I
V t

I
f q, SU(Nf )A : q → eiα

I
At

I
f γ5q, (7.15)
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with qR and qL transforming respectively with the same or opposite SU(Nf ) parameters20. Vector

currents, however, are always anomaly-free. A simple way to come to this conclusion is to notice that

the PV regularization method introduced above preserved all vector symmetries, since these remain

unbroken by fermion mass terms21. We thus focus on the chiral SU(Nf )A factor, whose associated

axial-vector current is

JIµ5 = qγ5γ
µtIf q, (7.16)

where, again, there is a tacit sum over the quark color index. As in the case of the singlet current (7.12),

there are contributions coming from the photon and gluon couplings of the quarks. Taking into account

that, unlike photons, gluons are flavor-blind, we find

∂µ⟨JIµ5 ⟩A ,A = − Nc

16π2

[ Nf∑

f=1

q2f (t
I
f )ff

]
ϵµναβFµνFαβ −

Nf

16π2
(
tr tIf

)
ϵµναβFaµνFaαβ. (7.17)

Since all generators of SU(Nf ) are traceless, the second term is zero but the first one does not necessarily

vanish.

Let be focus on the dynamics of the two lightest quarks u and d, where qu = 2
3e and qd = −1

3e.

In this case Nf = 2 and the flavor group is generated by tIf = 1
2σ

I , with σI the Pauli matrices. We have

then

2∑

f=1

q2f (t
1
f )ff =

2∑

f=1

q2f (t
2
f )ff = 0,

2∑

f=1

q2f (t
3
f )ff =

e2

6
, (7.18)

where Nc is the number of quark colors. This means that J3µ
5 is anomalous,

∂µ⟨J3µ
5 ⟩A ,A = −e

2Nc

48π2
ϵµναβFµνFαβ. (7.19)

The physical importance of this result lies in that after chiral symmetry breaking (see Box 8 in page 65),

the operator ∂µJ
aµ
5 becomes the interpolating field for pions, creating them out of the vacuum22

⟨πa(p)|∂µJaµ5 (x)|0⟩ = fπmπδ
abe−ip·x =⇒ πa(x) =

1

fπmπ
∂µJ

aµ
5 (x), (7.20)

where mπ is the pion mass and fπ the pion decay constant introduced in Eq. (5.54) to parametrize the

matrix of NG bosons resulting from chiral symmetry breaking. Although to compute the anomaly (7.19)

we took the electromagnetic field to be a classical source, the corresponding operator identity implies the

20A warning note here. Unlike the Abelian U(1)A, transformations in SU(Nf )A do not close and therefore do not form a group.
This can be checked by composing two of them and applying the Baker–Campbell–Hausdorff formula. Our notation has to
be understood in a formal sense.

21This argument also applies to the SU(3) gauge invariance of QCD, which cannot be anomalous since it acts in the same way
on quarks of both chiralities. As a consequence, the theory can be regularized in a gauge invariant way.

22The first identity follows from ⟨πa(p)|Jbµ
5 (x)|0⟩ ∼ pµδabe−ip·x, a direct consequence of the Goldstone theorem [79].
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p2

m2
⇡ 9m2

⇡

Fig. 10: Complex p2-plane showing the structure of singularities of the function f(p2) in Eq. (7.24): a
pole at p2 = m2

π and a branch cut beginning at p2 = 9m2
π.

existence of a nontrivial overlap between the neutral pion state and the state with two photons,

⟨k1, λ1;k2, λ2|π0(p)⟩ =
e2Nc

12π2fπ
(2π)4δ(4)(p− k1 − k2)ϵµναβkµ1kν2ϵα(k1)ϵ

β(k2). (7.21)

The width of the process can be computed from this result to be

Γ(π0 → 2γ) =
α2N2

cm
3
π

576π3f2π
= 7.73 eV, (7.22)

which is perfectly consistent with experimental measurements [107]

Γ(π0 → 2γ)exp = 7.798± 0.056 (stat.) ± 0.109 (syst.) eV. (7.23)

Incidentally, the presence of fπ = 93MeV in Eq. (7.22) gives a rationale for it being called the pion

decay constant.

The electromagnetic decay of the neutral pion is a direct consequence of the existence of the axial

anomaly. On general grounds, it can be argued that the amplitude for the decay process of the π0 into

two photons has the structure

⟨k1, λ1;k2, λ2|π0(p)⟩ = i
p2 −m2

π

fπm2
π

p2f(p2)(2π)4δ(4)(p− k1 − k2)ϵµναβkµ1kν2ϵα(k1)ϵ
β(k2), (7.24)

with f(p2) a function of the pion squared momentum. We could naively assume f(p2) to be well-

behaved, with a pole singularity at p2 = m2
π and a branch cut starting at 9m2

π signalling multi-pion

production (see Fig. 10). Were this the case, the amplitude would be suppressed in the p2 → 0 limit.

Historically, this result was known as the Sutherland–Veltman theorem [108, 109] and essentially ruled

out the existence of the process π0 → 2γ, that was nevertheless observed. The catch lies in that the

regularity hypothesis concerning f(p2), called partial conservation of the axial current (PCAC), is wrong

due to the axial anomaly. The calculation of the triangle diagrams (7.10) shows that this function is not
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regular at zero momentum, but actually has a pole

f(p2) ∼ ie2Nc

12π

1

p2
as p→ 0. (7.25)

This singularity is precisely responsible for compensating the low-momentum suppression of the am-

plitude (7.24), giving the nonzero result accounting for the π0 → 2γ decay. It is somewhat fascinating

that the anomaly, that we identified from the start as resulting from UV ambiguities in the definition of

the current, is also associated with an IR pole and determined by its residue. This reflects the profound

topological connections of QFT anomalies [93–96].

Box 10. The path integral way to the anomaly

There are many different roads leading to the chiral anomaly. For our presentation above we have

chosen the perturbative approach, involving the computation of the two one-loop triangle diagrams

shown in Eq. (7.10). But the anomaly can also be computed using path integrals, where it appears as

a result of the noninvariance of the functional measure under chiral rotations of the Dirac fermions.

To see how this comes about, let us consider again a Dirac fermion coupled to an external

electromagnetic field Aµ that we treat as a classical source. Its action is given by

S[ψ,ψ,Aµ] =

∫
d4xψγµ

(
i∂µ + eAµ

)
ψ

=

∫
d4x
[
ψR
(
i∂µ + eAµ

)
ψR + ψL

(
i∂µ + eAµ

)
ψL

]
, (7.26)

where in the second line we split the Dirac fermion into its two chiralities. A quantum effective

action Γ[Aµ] for the external field can be defined by integrating out the fermions

eiΓ[Aµ] =

∫
DψDψ eiS[ψ,ψ,Aµ]. (7.27)

The important point in this expression is that the Dirac fields are dummy variables that can be

modified without changing the value of the functional integral. In particular, we can implement the

following “change of variables”:

ψ = eiαγ5ψ′ =⇒ ψR,L = e±iαψ′
R,L, (7.28)

writing the original Dirac field in terms of its chiral-transform [see Eq. (7.1)]. As we know, in the

absence of a Dirac mass term the fermion action does not change

S[ψ,ψ,Aµ] = S[ψ′, ψ
′
,Aµ], (7.29)

reflecting the classical chiral invariance of the massless theory.

However, we have to be careful when implementing this change in the integral (7.27). The

reason is that we have to properly transform the fermion integration measure, which in principle
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might pick up a nontrivial Jacobian. Since the transformation is linear in the fermions, this Jacobian

can only depend on the external sources, as well as on the transformations parameter α,

DψDψ = J [Aµ]Dψ
′
Dψ′. (7.30)

Taking this into account, we go back to (7.27) that now reads

eiΓ[Aµ] =

∫
Dψ

′
Dψ′ eiS[ψ

′,ψ
′
,Aµ]+log J [Aµ] ≡

∫
Dψ

′
Dψ′ eiS

′[ψ′,ψ
′
,Aµ]. (7.31)

Thus, the effective action can be computed in the new variables, provided we use the new fermion

action S′[ψ′, ψ
′
,Aµ] including an additional term,

S′[ψ′, ψ
′
,Aµ] =

∫
d4xψ

′
γµ
(
i∂µ + eAµ

)
ψ′ − i log J [Aµ], (7.32)

that, coming from the functional measure, is obviously a pure quantum effect. A convenient way

to compute the Jacobian is by expanding the Dirac fermions in a basis of Dirac operator D/ (A ) ≡
γµ(∂µ − ieAµ) eigenstates. Using a regularization method preserving gauge invariance, a finite

result is obtained [95, 110, 111]:

−i log J [Aµ] =
e2α

16π2

∫
d4x ϵµναβFµνFαβ. (7.33)

Notice that in the case of massive fermions the change (7.28) also introduces, besides the quantum

anomalous term, a complex phase in the mass, which has a classical origin:

S′[ψ′, ψ
′
,Aµ] =

∫
d4x

[
ψ
′
Rγ

µ
(
i∂µ + eAµ

)
ψ′
R + ψ

′
Lγ

µ
(
i∂µ + eAµ

)
ψ′
L

+me2iα
(
ψ
′
Rψ

′
L + ψ

′
Lψ

′
R

)]
+

e2α

16π2

∫
d4x ϵµναβFµνFαβ. (7.34)

The last term associated to the nonzero Jacobian is just the integrated form of the chiral anomaly

found in (7.11). The analysis just presented will be useful in analyzing the strong CP problem in the

next section.

8 The strong CP problem and axions

When studying magnetic monopoles in Box 5 (see page 27), we discussed the possibility of having non-

trivial gauge field topologies. In this section, we are going to look deeper into the role played by topology

in non-Abelian gauge field theories and study how nonequivalent topological gauge field configurations

define different vacua of the theory.

8.1 The (infinitely) many vacua of QCD

To fix ideas, let us consider pure YM theory in the temporal gauge Aa0 = 0, preserved by the set G of

time-independent gauge transformations g(r). Adding to the Euclidean space R3 the point at infinity,
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it gets compatified to a three-sphere, R3 ∪ {∞} ≃ S3. Thus, the residual gauge transformations in G

define maps from S3 onto the gauge group23:

G : S3 −→ G. (8.1)

The space G consists of infinitely topological nonequivalent sectors classified by the third-homotopy

group π3(G) [57–60]. As an example, let us consider a gauge theory with group G = SU(2). This Lie

group is topologically equivalent to a three-dimensional sphere S3, as can be seen by writing

g = n01+ in · σ, (8.2)

with n0 and n = (n1, n2, n3) real. Both unitarity

g†g = gg† =
[
(n0) + n2

]
1 = 1, (8.3)

and the requirement of unit determinant

det g = (n0)2 + n2 = 1, (8.4)

lead to the condition

(n0)2 + n2 = 1, (8.5)

so (n0,n) parametrizes the unit three-sphere S3. Since π3(S3) = Z, the set of time-independent

SU(2) gauge transformations decomposes into topological nonequivalent sectors

G =
⋃

n∈Z
Gn, (8.6)

where n is the winding number of the map S3 → S3. For a gauge transformation g(r), its winding

number can be shown to be

n =
1

24π2

∫

S3

d3r ϵijktr
[
(g−1∂ig)(g

−1∂jg)(g
−1∂kg)

]
. (8.7)

Moreover, two gauge transformations can be continuously deformed into one another only when they

share the same winding number, with G0 the identity’s connected component. Additivity is an important

property of the winding number. Given g ∈ Gn and g′ ∈ Gn′ , their product gg′ has winding number

ngg′ = ng + ng′ , (8.8)

and in particular ng−1 = −ng. This, together with the fact that 1 ∈ G0, shows that G0 is the only sector

forming a subgroup.

From the discussion in Section 6, we learn that physical states are preserved by “small” gauge

23At a more physical level, the compactification of R3 to S3 amounts to requiring that all fields, as well as gauge transforma-
tions, have well-defined limits as |r| → ∞, independent of the direction along which the limit is taken.
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transformations in G0 provided they satisfy the Gauss law (6.20). As for transformations in Gn with

n ̸= 0, keeping in mind that quantum states are rays in a Hilbert space defined up to a global complex

phase, we conclude that physical invariance under a transformation g1 ∈ G1 requires

g1|phys⟩ = eiθ|phys⟩, (8.9)

for some θ ∈ R. This number should be independent of the state, since otherwise gauge transformations

would give rise to observable interference. Another relevant fact to notice is that the value of θ is also

independent of the transformation in G1. To see this, let us consider g1, g′1 ∈ G1 and assume that

g1|phys⟩ = eiθ|phys⟩, g′1|phys⟩ = eiθ
′ |phys⟩. (8.10)

Since by additivity of the winding number g′1g
−1
1 ∈ G0, and transformations in the connected component

of the identity leave the physical states invariant without any complex phase, we immediately conclude

that θ′ = θ. Using a similar argument it is straightforward to show that for gn ∈ Gn

gn|phys⟩ = einθ|phys⟩. (8.11)

The conclusion is that a single actual number θ determines the action of all gauge transformations on

physical states.

We can reach the same conclusion about the vacuum structure of YM theories in a different way.

Besides the gauge kinetic term in the action (6.13), there is also a second admissible gauge invariant term

Sθ = −
θ

32π2

∫
d4xF aµνF̃

aµν

= − θ

8π2

∫
d4xEa ·Ba, (8.12)

where F̃ aµν is the non-Abelian analog of the dual tensor field introduced in Eq. (3.45), defined as

F̃ aµν =
1

2
ϵµναβF

aαβ. (8.13)

What makes the θ-term (8.12) interesting is that it is the integral of a total derivative

ϵµναβF aµνF
a
αβ = ∂µJ

µ, (8.14)

and therefore does not contribute to the field equations. The current on the right-hand side of the previous

equation takes the form (see Box 11 below for a rather simple derivation of this result)

J µ = 4ϵµναβ
(
Aaν∂αA

a
β +

1

3
fabcAaνA

b
αA

c
β

)
. (8.15)
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In the Aa0 = 0 gauge, we have

ϵµναβF aµνF
a
αβ = 4

∂

∂t

[
Aa ·

(∇×Aa
)
+

1

3
fabcAa ·

(
Ab ×Ac

)]
, (8.16)

which, once integrated and with the proper normalization, gives the following expression of the θ-term

Sθ = −
θ

8π2

{∫
d3r

[
Aa ·

(∇×Aa
)
+

1

3
fabcAa ·

(
Ab ×Ac

)]∣∣∣∣
t=∞

−
∫
d3r

[
Aa ·

(∇×Aa
)
+

1

3
fabcAa ·

(
Ab ×Ac

)]∣∣∣∣
t=−∞

}
. (8.17)

To ensure finiteness, we take the gauge field A = AaT aR to approach pure-gauge configurations A± =

g−1
± ∇g± at t = ±∞ (see Fig. 11). It is easy to see that the integrands in Eq. (8.17) are not gauge

invariant and therefore the θ-term is nonzero (again, a derivation is outlined in Box 11),

Sθ =
θ

24π2

∫
d3r tr

{
(g−1

+ ∇g+) ·
[
(g−1

+ ∇g+)× (g−1
+ ∇g+)

]}

− θ

24π2

∫
d3r tr

{
(g−1

− ∇g−) ·
[
(g−1

− ∇g−)× (g−1
− ∇g−)

]}
. (8.18)

Comparing with Eq. (8.7), we identify the winding numbers n± of the asymptotic gauge transforma-

tions g±, to write

Sθ = (n+ − n−)θ. (8.19)

Thus, non-Abelian gauge field configurations are classified into topological sectors interpolating between

early and late time configurations of definite winding number n±. These sectors are labelled by the

integer n = n+−n−, and when summing in the Feynman path integral over all gauge configurations we

also have to include all possible sectors. Each one is weighted by the same phase,

eiSθ = einθ, (8.20)

that we encountered in Eq. (8.11).

Box 11. Gauge fields and differential forms

The analysis of YM theories gets very much simplified in the language of differential forms [57–60].

The gauge field Aµ = AaµT
a
R can be recast as the Lie algebra valued one-form

A = −iAµdxµ, (8.21)

while the two-form field strength is given by

F ≡ − i
2
Fµνdx

µ ∧ dxν = dA+A ∧A, (8.22)
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Fig. 11: Representation of the spacetime interpolating between two pure gauge configurations A± =
g±∇g± at t = ±∞, in the A0 = 0 gauge.

where in the second term on the right-hand side a matrix multiplication of the one-forms is also

understood (in the Abelian case the matrices commute and the term vanishes due to the anticommu-

tativity of the wedge product). The factor of −i in both eqs. (8.21) and (8.22) is introduced to avoid

cluttering expressions with powers of i.

Gauge transformations are determined by a zero-form g ∈ G acting on the gauge field one-

form as [cf. (6.6)]

A −→ A′ = g−1dg + g−1Ag. (8.23)

This leads to the corresponding transformation of the field strength

F −→ F ′ = dA′ +A′ ∧A′

= g−1Fg, (8.24)

that once written in components agrees with the one given in Eq. (6.9). In fact, given an adjoint

p-form field

Φp = −
i

p!
Φµ1...µpdx

µ1 ∧ . . . ∧ dxµp =⇒ Φp → Φ′
p = g−1Φpg, (8.25)

a covariant exterior derivative is defined acting as

DΦp ≡ dΦp +A ∧ Φp − (−1)pΦp ∧A =⇒ (DΦp)
′ = g−1(DΦp)g, (8.26)

satisfying the Leibniz rule

D(Φp ∧Ψq) = (DΦp) ∧Ψq + (−1)pΦp ∧ (DΨq). (8.27)

Using these definitions and properties, it is easy to check that the field strength two-form (8.22)
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verifies the Bianchi identity DF = 0.

In four dimensions there are two gauge invariant four-forms that can be constructed from the

field-strength two-form. The first one is

tr (F ∧ ⋆F ), (8.28)

where ⋆ denotes the Hodge dual, acting on a p-form field as [58]

⋆Φp = −
i

p!(4− p)!ϵ
µ1...µp

ν1...ν4−pΦµ1...µpdx
ν1 ∧ . . . ∧ dxν4−p . (8.29)

Since this operation commutes with the multiplication by a zero-form, the gauge invariance of (8.28)

follows directly from applying the cyclic property of the trace. In addition, we can also construct a

second gauge invariant four-form

tr (F ∧ F ), (8.30)

so the action of pure YM theory without matter couplings can be written as

SYM =
1

2g2YM

∫

M4

tr (F ∧ ⋆F ) + θ

8π2

∫

M4

tr (F ∧ F ), (8.31)

whereM4 represents the four-dimensional spacetime. The two terms correspond respectively to the

kinetic and θ terms given in components in eqs. (6.13) and (8.12). Incidentally, notice that while the

term inside the first integral is always a maximal form in any dimension, the one in the second term

is only maximal in D = 4. In fact, no analog of the θ-term exits in odd-dimensional spacetimes.

Although in these lectures we are restricting our attention to (flat) Minkowski spacetime,

QFTs can also be defined in curved spacetimes. In this respect, the action (8.31) written in terms of

differential forms is also valid for non-flat metrics. An interesting difference between the two terms

is that, while the first one depends on the spacetime metric the θ-term does not and is therefore

topological. Metric dependence is actually signaled by the presence of the Hodge dual in the action.

Another relevant fact that can be easily shown using differential forms is that the θ-term is a

total derivative, as we saw in Eq. (8.16). Indeed, Eq. (8.30) can be explicitly written in terms of the

gauge field one-form as

tr (F ∧ F ) = tr (dA ∧ dA+ 2dA ∧A ∧A+A ∧A ∧A ∧A)

= d tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (8.32)

where we have used that tr (A∧A∧A∧A) = 0, as a result of the anticommutativity of one-forms

and the trace’s cyclic property. Using the properties of the Hodge dual operator, we finally write

⋆tr (F ∧ F ) = d†J, (8.33)
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where d† ≡ ⋆d⋆ is the adjoint exterior derivative [58] and J is the current one form

J = ⋆tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (8.34)

Once expressed in components we retrieve Eq. (8.16).

The trace on the right-hand side of (8.34) defines the Chern–Simons form. Applying (8.23)

and after some algebra we obtain its gauge transformation

ω3(A) ≡ tr

(
A ∧ dA+

2

3
A ∧A ∧A

)

−→ ω3(A)−
1

3
tr
[
(g−1dg) ∧ (g−1dg) ∧ (g−1dg)

]
. (8.35)

The Chern–Simons form is a very interesting object for many reasons. One is that it gives rise to the

action

SCS = − k

4π

∫

M3

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (8.36)

whereM3 is a three-dimensional spacetime and k is a constant known as the Chern–Simons level.

Although (8.35) implies that the action is not gauge invariant

SCS −→ SCS +
k

12π

∫

M3

tr
[
(g−1dg) ∧ (g−1dg) ∧ (g−1dg)

]
, (8.37)

the extra term equals 2πnk, with n the winding number of the gauge transformation defined

in Eq. (8.7). Since the quantum theory can be formulated using functional integrals involv-

ing exp(iSCS), this gauge variance is not a problem provided the Chern–Simons level k is an integer.

The action (8.36) defines a topological field theory appearing in many contexts in physics, ranging

from quantum gravity [112, 113] to condensed matter, where it has found important applications in

the theory of the quantum Hall effect [84, 114].

To conclude this discussion, let us also mention that the four-form (8.30) is also related to the

axial anomaly studied in Section 7. Defined on a Euclidean spacetime, the integrated anomaly of

the axial-vector current can be shown to be [95, 110, 111]
∫

M4

d4x ∂µ⟨JµA(x)⟩ = −2i
(
N+ −N−), (8.38)

and N± are the number of positive/negative chirality solutions to the equation D/ (A)ψ = 0,

with D/ (A) ≡ γµ(∂µ − iAµ) the Dirac operator on the Euclidean manifold M4. The differ-

ence N+ − N− appearing on the right-hand side of Eq. (8.38) is in fact a topological invariant

called the index of the Dirac operator. This quantity can be computed using the Atiyah–Singer index
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Fig. 12: Classical depiction of the neutron and its electric dipolar moment dn. The components of the
d quarks position vectors r1 and r2 are written using the coordinate axes shown in the picture, with origin
on the position of the u quark.

theorem [57–60] and in four dimensions it is given by the integral of the four-form (8.30)

indD/ = − 1

8π2

∫

M4

F ∧ F, (8.39)

which, as explained above, is itself a topological quantity. By substituting this result into (8.38), we

retrieve the known form of the anomaly, apart from a global factor of i that is the consequence of

working in Euclidean signature.

8.2 Breaking CP strongly

A significant feature of the θ-term (8.12) is that it violates both parity and CP, the combination of parity

and charge conjugation,

CP :





Ea(t, r) −→ Ea(t,−r)

Ba(t, r) −→ −Ba(t,−r)
=⇒ CP : Sθ −→ −Sθ. (8.40)

To understand these transformations heuristically, we can use the analogy with Maxwell’s electric and

magnetic fields to conclude that Ea is reversed by both parity and charge conjugation, whereas the

pseudovector Ba is preserved by the former and reversed by the latter. Notice that since CPT is a

symmetry of QFT, a breaking of CP is equivalent to a violation of time reversal T.

Among the phenomena where CP (or T) violation can manifest in QCD is the existence of a

nonvanishing electric dipole moment of the neutron (see, for example, Refs. [115, 116] for reviews).

To be clear, were neutrons elementary, we would not expect them to have an electric dipolar moment.

But being composed of three valence quarks with different charges, a nonvanishing value may appear

depending on the quark distribution. To estimate its size, let us consider a classical picture of the neutron

91



LUIS ÁLVAREZ-GAUMÉ AND MIGUEL Á. VÁZQUEZ-MOZO

assuming a structure similar to the water molecule (see Fig. 12): the two d quarks are located at a

distance ℓ of the u quark and their position vectors r1 and r2 span an angle ψ with each other. Taking

coordinates on the plane defined by the three quarks, the modulus of the electric dipole moment dn is

readily computed to be

|dn| =
2

3
eℓ cos

ψ

2
≡ 2

3
eℓ sin

θ

2
, (8.41)

where we have introduced the angle θ ≡ π − ψ, controlling the amount of CP violation. To estimate

the prefactor in Eq. (8.41), we recall that the distance ℓ between the quarks is of the order of the pion’s

Compton wavelength

ℓ ≃ ℏ
mπc

, (8.42)

where for computational purposes we have restored powers of ℏ and c. Noticing that ℏc ≃ 200MeV · fm
and mπc

2 ≃ 135MeV, we find

|dn| ≃ 10−13 sin
θ

2
e · cm. (8.43)

A comparison with experimental measurements of the neutron electric dipole [117, 118]

|dn|exp ≲ 10−26 e · cm, (8.44)

leads then to the bound

θ ≲ 10−13. (8.45)

This means that the angle ψ = π − θ in Fig. 12 is extremely close to π, making the quark configuration

inside the neutron look like a CO2 rather than a water molecule.

This cartoon calculation exhibits the basic feature of the so-called strong CP problem: the stringent

experimental bound for the neutron electric dipole moment implies the existence of a dimensionless

parameter that is extremely small without any dynamical reason. Once we rephrase the problem in

the correct language of QCD, we will see that this parameter is precisely the θ coupling introduced in

Eq. (8.12).

From a QFT point of view the neutron electric dipole emerges from the dimension-five nonminimal

coupling of the neutron to the electromagnetic field

S ⊃ − i
2
|dn|

∫
d4xnσµνγ5nFµν , (8.46)

where n is the neutron field and σµν has been defined in Eq. (4.49). This term is explicitly gauge invariant

but breaks parity, as follows from the presence of γ5. It is, however, invariant under charge conjugation,

which preserves the neutron and gauge fields, and therefore it breaks CP. The operator (8.46) is in fact

an effective interaction emerging from loop diagrams in the EFT of pions and nucleons described by an

extension of the action (5.58). To construct this theory, let us consider QCD with the two light flavors u
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and d. Written in terms of the chiral isospin doublets

qR,L =

(
uR,L

dR,L

)
, (8.47)

the microscopic action takes the form

S =

∫
d4x

(
iqRD/ qR + iqLD/ qL + qLMqR + qRM

TqL −
θ

32π2
ϵµναβF aµνF

a
αβ + . . .

)
, (8.48)

where Dµ = ∂µ − iAaµT a denotes the gauge covariant derivative and the mass matrix is given by

M =

(
mu 0

0 md

)
. (8.49)

We have included the θ-term, while the ellipsis indicates other terms not important for the argument. In

writing the action (5.58) we assumed that quarks are massless, and also the NG bosons associated with

chiral SSB, but we now relax this condition. Although the chiral SU(2)R × SU(2)L transformations

qR,L −→ UR,LqR,L, (8.50)

do not leave the quark action (8.48) invariant, we can restore the symmetry promoting the mass matrixM

to a spurion field transforming as

M −→ ULMU †
R. (8.51)

Thus, the original action can be seen as one where chiral symmetry is spontaneously broken byM taking

the value in Eq. (8.49). The transformation of M , together with Eq. (5.56), provides the basic clue to

incorporate masses into the NG action (5.58). An invariant mass term can be built by taking the trace of

the product of the mass and the NG boson matrices

SNG =

∫
d4x

[
f2π
4
tr
(
DµΣ

†DµΣ
)
+ f3πB0tr

(
M †Σ+Σ†M

)]
. (8.52)

Here DµΣ = ∂µΣ− iAµ[Q,Σ], with Q = eσ3 the pion charge matrix, is the electromagnetic covariant

derivative and B0 is a numerical constant that cannot be determined within the EFT framework24. Sub-

stituting the explicit expressions of M and Σ, and expanding in powers of the pion fields, we find the

mass term

∆SNG = −fπB0(mu +md)

∫
d4x
[
(π0)2 + 2π+π−

]
, (8.53)

24The pion effective action SNG also contains terms induced by the anomalous global symmetries of QCD, which are fully
determined by the mathematical structure of the anomaly (see, for example, Ref. [93]). An example is the term proportional
to

(
tr logΣ− tr logΣ†)Fµν F̃

µν , accounting for the electromagnetic decay of the neutral pion discussed in page 82.
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from where we read off the pion mass

m2
π = 2fπB0(mu +md) =⇒ B0 =

m2
π

2fπ(mu +md)
. (8.54)

Within this approximation, neutral and charged pions have the same mass.

Nucleons can also be added to the chiral Lagrangian (see Refs. [119, 120] for reviews). They are

introduced through the isospin doublet

N =

(
p

n

)
, (8.55)

transforming under SU(2)R × SU(2)L as outlined in Refs. [121–123]

N −→ K(UR, UL,Σ)N. (8.56)

The so-called compensating field K(UR, UL,Σ) is a SU(2)-valued matrix depending on the NG boson

matrix Σ(x), and through it on the spacetime point. It is defined by K(UR, UL,Σ) = u′(x)−1URu(x),

where u(x)2 ≡ Σ(x) and u′(x)2 ≡ Σ′(x) = URΣ(x)U †
L, thus providing a nonlinear realization of

the SU(2)R × SU(2)L global chiral symmetry acting on the nucleon isospin doublet.

Having established the transformation of nucleons, we add to the effective action the term

∆SπN =

∫
d4xN

[
iD/ − f(Σ)

]
N, (8.57)

with f(Σ) a matrix-valued function depending on the NG boson matrix and such that D/ ≡ D/ + if(Σ)

defines a covariant derivative with respect to the local transformation (8.56), D/ → KD/K†. At linear

order in the pion fields, it includes the pion–nucleon vertices

f(Σ) = mN1+
gA
2fπ

γµγ5∂µπ +O(π2)

= mN1+
gA

2
√
2fπ

(
nγµγ5n− pγµγ5p

)
∂µπ

0 +
gA
2fπ

(
nγµγ5p ∂µπ

− + pγµγ5n∂µπ
+
)
, (8.58)

where mN is the nucleon mass. Incidentally, substituting this expression of f(Σ) into the action (8.57)

we can integrate by parts and move the derivative from π to N and N . For scattering processes with

on-shell nucleons the Dirac equation i∂/N = mNN can be implemented to write the nucleon–pion

interaction term as igπNNNtIfNπ
I , with tIf the generators in the fundamental representation of SU(2).

Furthermore, the coupling constant gπNN satisfies by the Goldberger–Treiman relation [124]

fπgπNN = gAmN . (8.59)

Notice that, since gA is real, the couplings in Eq. (8.58) preserve CP.

We would like to study the effects in the chiral Lagrangian of adding the θ-term to the quark action.

At this point we should invoke the analysis presented in Box 10 (see page 83) where we saw how, due to

the chiral anomaly, implementing a chiral rotation of the fermions induces a θ-term in the action. More
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precisely, performing a chiral rotation of the u-quark

uR,L −→ e±iαuR,L, (8.60)

results in shifting the value of the theta angle

S =

∫
d4x

(
iqRD/ qR + iqLD/ qL + qLMqR + qRM

†qL −
θ − 2α

32π2
ϵµναβF aµνF

a
αβ + . . .

)
, (8.61)

and a complex mass matrix

M =

(
e2iαmu 0

0 md

)
. (8.62)

In particular, setting α = 1
2θ the θ-term cancels and all dependence on θ is shifted to a phase in the mass

matrix M . In more physical terms, we have transferred the source of CP violation in the quark action

from the θ-term to a complex coupling25.

It might seem that, at the level of the chiral effective field theory, the phase in the mass ma-

trix M = diag(eiθmu,md) could be removed by an appropriate chiral transformation of the NG

field Σ(x). In doing so, however, we introduce a θ-dependence in f(Σ, θ) defined in (8.57), inducing

additional nucleon–pion couplings. In particular, besides the neutron–proton–pion vertex in Eq. (8.58),

there is a new CP violating vertex contributing to the dimension-five non-minimal electromagnetic cou-

pling in Eq. (8.46)

�
n

n

γ =�π−

p

π−

n

n

γ +�π−

p

π−

n

n

γ (8.63)

The black dots in the diagrams on the right-hand side represent the CP-violating vertex, whereas the

lined blobs indicate the neutron–pion coupling in (8.58). The chiral loop integrals are logarithmically

divergent and once evaluated give the following contribution to the neutron electric dipole moment [125]

|dn| =
1

4π2
|gπNNgπNN |

mN
log

(
mN

mπ

)
, (8.64)

where

|gπNN | ≈ 0.027|θ| (8.65)

is the coupling of the CP-violating vertex and, in the spirit of EFT, integrals have been cut off at Λ = mπ.

25In fact, it is easy to prove that the quantity θ ≡ θ + arg detM remains invariant under chiral transformations of the quarks.
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Substituting the value for the CP-preserving pion–nucleon coupling and implementing the experimental

bound (8.44), we find

|θ| ≲ 10−11. (8.66)

We see that the amount of fine tuning in the θ parameter needed to explain experiments is not very far

off the one obtained for the angle θ in (8.45) in the classical toy model of the neutron (not by accident

both quantities were denoted by the same Greek letter).

Box 12. A “potential” for θ

We would like to understand how the energy of the ground state of QCD depends on the parameter θ.

There are a number of things that can be said about this quantity, that we denote by V (θ). As we

learned above [see Eq. (8.19)], the θ-term is a topological object and any physical quantity depending

on it like V (θ) should be periodic in θ with period equal to 2π,

V (θ + 2π) = V (θ). (8.67)

Moreover, there exists a very elegant argument showing that energy is minimized for θ = 0 [126]

V (0) ≤ V (θ). (8.68)

To go beyond these general considerations and find an explicit expression of V (θ) in QCD, we

consider the potential energy in the pion effective action (8.52),

V(Σ) = − m2
πf

2
π

2(mu +md)
tr
(
M †Σ+MΣ†), (8.69)

where M is given by

M =

(
eiθmu 0

0 md

)
. (8.70)

To find the vacuum energy, we look for a NG boson matrix configuration minimizing V(Σ).

In fact, since the mass matrix is diagonal it can be seen that the trace in (8.69) only depends

on the diagonal components of Σ. This means that, in order to minimize the potential, it is enough

consider to NG matrices of the form Σ = diag(eiφ1 , eiφ2). Furthermore, the dependence on θ in the

mass matrix can be shifted to the NG boson matrix by the field redefinition

Σ −→ Σ̃ ≡
(
e−

iθ
2 0

0 1

)
Σ

(
e−

iθ
2 0

0 1

)
=

(
ei(φ1−θ) 0

0 eiφ2

)
. (8.71)

Imposing the condition det Σ̃ = 1, we have φ1 + φ2 = θ mod 2π.

Substituting the redefined NG matrix field Σ̃ into (8.69) with M = diag(mu,md), we arrive
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at the potential

V(φ1, φ2) = −
m2
πf

2
π

mu +md

(
mu cosφ1 +md cosφ2

)
, (8.72)

that has to be minimized subject to the constraint φ1 + φ2 = θ. The equation to be solved is

mu sinφ1 = md sin(θ − φ1), (8.73)

that, after a bit of algebra, gives

cos2 φ1 =
(mu +md cos θ)

2

m2
u +m2

d + 2mumd cos θ
,

cos2 φ2 =
(md +mu cos θ)

2

m2
u +m2

d + 2mumd cos θ
. (8.74)

Substituting these results into (8.72), we arrive at the expression of the QCD vacuum energy as a

function of θ

V (θ) = − m2
πf

2
π

mu +md

√
m2
u +m2

d + 2mumd cos θ. (8.75)

In Fig. 13 we have represented this function for various values of the ratio md/mu, from where we

see that, as announced, the minimum occurs at θ = 0. We also see that when mu = md there are

cusps at the maxima located at θ = (2n+1)π, that are smoothed out when the quarks have different

masses. Being an experimental fact that θ is very small, we can expand V (θ) around θ = 0 to find

V (θ) = −m2
πf

2
π +

1

2
m2
πf

2
π

mumd

(mu +md)2
θ2. (8.76)

This expression will become handy later on when it will be reinterpreted as the potential for the

axion field.

Since ms ≫ mu,md we have restricted our attention to QCD with the two lightest flavors,

although the analysis can be easily extended to any Nf ≥ 2. The resulting expression of the ground

state energy V (θ;m1, . . . ,mf ) for small θ is symmetric under permutations of the quark masses

and satisfies a recursion relation

V (θ;m1, . . . ,mf−1) = lim
mf→∞

V (θ;m1, . . . ,mf ), (8.77)

implementing the decoupling of the f -th flavor.
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Fig. 13: Plot of V (θ) in Eq. (8.75) for three different values of the mu
md

ratio: 1 (blue), 0.3 (orange), and
0.5 (green).

8.3 Enters the axion

We would like to understand the smallness of θ in a natural way, i.e., either as following from some sym-

metry principle or by finding out some dynamical reason for its value26. One possible explanation would

be that mu = 0, so a chiral rotation of the u-quark field would get rid of the θ-term without introducing

CP-violating phases in the chiral Lagrangian. This is however no good, since all experimental evidences

indicate that the u-quark is not massless.

A very popular solution to the CP problem is the one proposed by Roberto Peccei and Helen

Quinn [127, 128] consisting in making the θ-parameter the vev of a pseudoscalar field a(x), the ax-

ion [129, 130], whose potential would drive it to ⟨0|a(x)|0⟩ = 0. To be more precise, let us consider the

action

S =

∫
d4x

(
iqRD/ qR + iqLD/ qL + qLMqR + qRM

†qL −
1

32π2fa
aF aµνF̃

aµν

)
, (8.78)

where fa is an energy scale introduced so the axion field has the canonical dimenension of energy. We

can now play the old game of shifting the last term in the action (8.78) to a complex phase in the mass

matrix. In the low-energy effective field theory, this phase can be absorbed into the NG bosons matrix

by the field redefinition (cf. the analysis presented in Box 12)

Σ −→
(
e
− ia

2fa 0

0 1

)
Σ

(
e
− ia

2fa 0

0 1

)
. (8.79)

In the absence of a mass term for the NG bosons, Σ only has derivative couplings and the theory

is invariant under constant shifts of the axion field, a(x) → a(x) + constant. The presence of the

term f3πB0tr
(
M †Σ + Σ†M

)
, however, induces a potential that can be read off Eq. (8.75) with θ re-

26The fact that in the CO2 molecule the angle θ is zero is a consequence of the dynamics of the atomic orbitals and is therefore
“natural”.
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Fig. 14: Exclusion plot from Ref. [134] for the axion parameters fa (resp. ganγ) and ma. The yellow
line represents the relation given in Eq. (8.81).

placed by a/fa. Expanding around the minimum at a = 0, we find

V (a) =
m2
πf

2
π

2f2a

mumd

(mu +md)2
a2 + . . . , (8.80)

where we have dropped constant terms and the ellipsis indicates higher-order axion self-interactions.

This gives the axion mass

ma =
mπfπ
fa

√
mumd

mu +md
= 5.7

(
109 GeV

fa

)
meV. (8.81)

The field redefinition (8.79) also induces axion interactions with mesons, baryons, leptons, and photons.

For example,

Saxion ⊃ −
∫
d4x

(
i

2
gapγapσ

µνγ5pFµν +
i

2
ganγanσ

µνγ5nFµν +
gaγγ
4
aFµνF̃

µν

)
, (8.82)

where ganγ = −gapγ ∼ f−2
a and gaγγ ∼ f−1

a . The last non-minimal electromagnetic coupling of

the axion comes from the anomaly-induced term in the chiral Lagrangian pointed out in the footnote

on page 93. In a strong magnetic field, this term allows the conversion of a photon into an axion and

vice versa, one of the main astrophysical signatures of the axion and also the target process of the light-

shining-through-walls experiments [131].

Among other candidates for dark matter (sterile neutrinos, supersymmetric particles, etc.) axions

are currently one of the most popular candidates to account for the missing matter in the universe [132,

133]. Cosmological and astrophysical phenomena provide a wide class of observational windows for

these kind of particles, ranging from CMB physics to stellar astrophysics and black holes (see Fig. 14).

Observations so far have been used to constrain the parameter space for axion-like particles (ALPs),
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leaving a wide allowed region including most of the values of the QCD axion. A comprehensive overview

of current axion experiments and the bounds on different parameters can be found in the review [116],

as well as in Ref. [117] (see also Ref. [134] for a collection of exclusion plots for various parameters).

9 The electroweak theory

It is time we look into the electroweak sector of the SM. As already mentioned several times in these

lectures, our current understanding of the electromagnetic and weak forces is based on a gauge theory

with group SU(2)×U(1)Y . This theory has subtle differences with respect to the color SU(3) QCD gauge

group used to describe strong interactions. The basic one is that it is a chiral theory in which left- and

right-handed fermions transform in different representations of the gauge group. Closely related to this is

that the SU(2)× U(1)Y gauge invariance is spontaneously broken at low energies by an implementation

of the BEH mechanism explained in Section 5. This feature, that for decades was the shakiest part of

the electroweak theory, was finally confirmed in July 2012 when the detection of the Higgs boson was

announced at CERN, thus fitting the final piece into the jigsaw puzzle.

Whereas only hadrons (i.e., quarks) partake of the strong interaction, the weak force affects both

quarks and leptons. Its chiral character is reflected in that the weak interaction violate parity, a fact

discovered in the late 1950s in the study of β-decay and other processes mediated by the weak force [135–

138]. Unlike gluons, which couple to quarks through a vector current JµQCD = qγµq, the carriers of the

weak force interact with matter via the V− A current Jµweak = ψγµ(1− γ5)ψ, with ψ either a lepton or

a quark field [139, 140].

9.1 Implementing SU(2) × U(1)Y

To be more precise, β-decay transmutes left-handed electrons into left-handed electron neutrinos (and

vice versa), while u-quarks (resp. d-quarks) transform into d quarks (resp. u-quarks). This suggests

grouping left-handed electrons/neutrinos and quarks into doublets

L =

(
νe

e−

)

L

, Q =

(
u

d

)

L

, (9.1)

and assume they transform in the fundamental representation 2 of the SU(2) algebra. At the same time,

since right-handed electrons and quarks do not undergo β-decay, their components are taken to be SU(2)

singlets

ℓR ≡ e−R, UR ≡ uR, DR ≡ dR. (9.2)

Moreover, since there is no experimental evidence of the existence of right-handed neutrinos, we do not

include them in the description (at least for now; we will return to this issue later).

The whole picture is complicated because the weak force mixes with the electromagnetic inter-

action. In fact, the U(1)Y of the electroweak gauge group is not the U(1) of Maxwell’s theory. The
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Leptons

i = 1 i = 2 i = 3 t3R YR

Li
(
νe
e−

)

L

(
νµ
µ−

)

L

(
ντ
τ−

)

L

1
2σ

3 −1
21

ℓiR e−R µ−R τ−R 0 −1

Quarks

i = 1 i = 2 i = 3 t3R YR

Qi

(
u
d

)

L

(
c
s

)

L

(
t
b

)

L

1
2σ

3 1
61

U iR uR cR tR 0 2
3

Di
R dR sR bR 0 −1

3

Table 2: Transformation properties of leptons and quarks in the electroweak sector of the SM. In addition
to the indicated representations of SU(2)×U(1)Y , quarks transform in the fundamental 3 irrep of SU(3),
whereas leptons are singled under this group.

generator YR of the former, called the weak hypercharge, satisfies the Gell-Mann–Nishijima relation

Q = YR + t3R, (9.3)

where Q is the charge of the field in units of e and t3R is the Cartan generator of SU(2) in the representa-

tion R. As an example, for L in Eq. (9.1) we have t32 ≡ 1
2σ

2 = diag(12 ,−1
2) and Q = diag(0,−1), so

we have Y (L) = −1
21. Repeating this for all lepton and quark fields, we find

Y (L) = −1

2
1, Y (ℓ) = −1, Y (Q) = −1

6
1, Y (UR) =

2

3
, Y (DR) = −

1

3
, (9.4)

where for the SU(2) singlets we have t31 = 0. Notice that for U(1)Y we have YR = Y 1, so the represen-

tation of U(1)Y is fully determined by the hypercharge Y .

We might be tempted to believe that with this we have determined how all matter fields in the SM

transform under the gauge group SU(2)×U(1)Y . However, for reasons that we so far ignore, nature has

decided to have three copies of the structure just described. In addition to the electron, its neutrino, and

the u- and d-quarks there are two more replicas or families. The second family includes the muon (µ−)
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and its neutrino (νµ), together with the charm (c) and strange (s) quarks. The third family, on the other

hand, contains the τ− lepton, its neutrino (ντ ), and the top (t) and bottom (b) quarks. Apart from an

increasing hierarchy of masses, each extra family exactly replicates the transformation properties of the

fields in the first one. To include this feature in our description, we add an index i = 1, 2, 3 to the

doublet {Li,Qi} and singlet {ℓiR, U iR, Di
R} fields introduced above, summarizing in Table 2 the three-

family structure with the corresponding representations of SU(2) × U(1)Y . We should not forget that,

besides the electroweak quantum numbers, leptons are singlets with respect to color SU(3), whereas

quarks are triplets transforming in the fundamental representation of this group.

Once the matter content of the SM is determined, as well as how the fields transform under the

electroweak gauge group, we fix our attention on the gauge bosons. In the case of SU(2), it is convenient

to use the {t±R, t3R} basis, so the corresponding gauge field is written as27

Wµ =W+
µ t

−
R +W−

µ t
+
R +W 3

µt
3
R, (9.5)

whereas for the Abelian gauge field associated with U(1)Y , we have

Bµ = BµY 1. (9.6)

The covariant derivative needed to construct the matter action is then given by

Dµ = ∂µ − igWµ − ig′Bµ

= ∂µ − igW+
µ t

−
R − igW−

µ t
+
R − igW 3

µt
3
R − ig′BµY 1, (9.7)

where g and g′ are the coupling constants associated with the two factors of the electroweak gauge group.

We should not forget, however, that the electric charge Q, the hypercharge Y 1, and the SU(2)

Cartan generator t3R are not independent, but connected by the Gell-Mann–Nishijima relation (9.3). It is

therefore useful to consider the combinations

Aµ = Bµ cos θw +W 3
µ sin θw,

Zµ = −Bµ sin θw +W 3
µ cos θw, (9.8)

whereAµ is to be identified with the electromagnetic field, whose gauge group will be denoted by U(1)em
to distinguish it from the one associated with the gauge field Bµ. The parameter θw is called the weak

mixing angle and sometimes also the Weinberg angle, although it was first introduced by Glashow in

Ref. [37]. Expressing the covariant derivative (9.7) in terms of the {W±
µ , Aµ, Zµ} gauge fields, we find

Dµ = ∂µ − igW+
µ t

−
R − igW−

µ t
+
R − iAµ

(
g sin θwt

3
R + g′ cos θwY 1

)

− iZµ
(
g sin θwt

3
R − g′ cos θwY 1

)
. (9.9)

27In terms of the generators t±R ≡ t1R ± it2R, the SU(2) algebra reads [t3R, t±R] = ±t±R, [t+R, t−R] = 2t3R. This is just the algebra
of ladder operators familiar from the theory of angular momentum in quantum mechanics.
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Now, if Aµ is to be identified with the electromagnetic field, it has to couple to the electric charge

matrix eQ. Consistency with the Gell-Mann–Nishijima relation (9.3) implies then

g sin θw = g′ cos θw = e =⇒ tan θw =
g

g′
. (9.10)

This relation shows that the weak mixing angle not only measures the mixing among the Abelian gauge

fields associated with the U(1)Y and the Cartan generator of SU(2), but also of the relative strength of

the interactions associated with the two factors of the electroweak gauge group. Implementing all the

previous relations, the covariant derivative reads

Dµ = ∂µ −
ie

sin θw
W+
µ t

−
R −

ie

sin θw
W−
µ t

+
R − ieAµQ−

2ie

sin(2θw)
Zµ
(
t3R −Q sin2 θw

)
, (9.11)

where we have eliminated Y , g, and g′ in favor of Q, e, and θw. With this, the SM matter action reads

Smatter =

3∑

k=1

∫
d4x

(
iL

k
D/Lk + iℓ

k
RD/ ℓ

k
R + iQ

k
D/Qk + iU

k
RD/U

k
R + iD

k
RD/D

k
R

)
. (9.12)

Next we look at the gauge action

Sgauge = −
1

2

∫
d4x

[
tr
(
WµνW

µν
)
+ tr

(
BµνB

µν
)]
, (9.13)

where Wµν and Bµν are the field strengths of Wµ and Bµ respectively. Recasting it in terms of the

electromagnetic and Zµ gauge fields defined in Eq. (9.8), we have

Sgauge = −
∫
d4x

{
1

4
W+
µνW

−µν +
1

4
ZµνZ

µν +
1

4
FµνF

µν − ie

2
cot θwW

+
µ W

−
ν Z

µν

− ie
2
W+
µ W

−
ν F

µν +
e2

2 sin θw

[
(W+

µ W
+µ)(W−

µ W
−µ)− (W+

µ W
−µ)2

]}
, (9.14)

where Zµν = ∂µZν − ∂νZµ, Fµν = ∂µAν − ∂νAµ, and we have defined

W±
µν = ∂µW

±
ν − ∂νW±

µ ∓ e
(
W±
µ Aν −W±

ν Aµ
)
∓ ie cot θw

(
W±Zν −W±

ν Zµ
)
. (9.15)

The SM gauge couplings can be now read off eqs. (9.11), (9.12), (9.14), and (9.15). The first thing

to notice from the last two equations is that the W±
µ gauge fields have electric charge±e and also couple

to the Zµ gauge field, which has itself zero electric charge. A look at the matter action also shows that

the two components of the SU(2) doublets are transmuted into one another by the emission/absorption of

a W boson. As to the Z0, it can be emitted/absorbed by quarks and leptons with couplings that depend

on their SU(2)× U(1)Y quantum numbers (see Chapter 5 of Ref. [14] or any other SM textbook for the

details). As a practical example, the neutron β-decay n → p+e−νe proceeds by the emission of a W−

by one of the neutron’s d quarks, turning itself into a u quark (and the neutron into a proton). The W−
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then decays into an electron and an electronic antineutrino.

n[udd] −→ p+[uud] + e− + νe =⇒ �W−
d

u

νe

e−

(9.16)

As a second example, we also have lepton–neutrino scattering mediated by the interchange of a Z0

ℓ− + νℓ −→ ℓ− + νℓ =⇒ �Z0

ℓ−

νℓ

ℓ−

νℓ

(9.17)

where ℓ stands for e, µ or τ . The existence of weak processes without transfer of electric charge is a

distinctive prediction of the Glashow–Weinberg–Salam model. The discovery of these so-called neutral

weak currents in the Gargamelle bubble chamber at CERN in 1973 [141] was solid experimental evidence

in favor of the electroweak theory (see also Ref. [142] for a historical account). Let us also mention

that Smatter + Sgauge includes QED, and therefore describes all electromagnetic-mediated processes

among leptons and quarks.

Box 13. Hypercharges and anomaly cancellation

Our discussion in Section 7 has very much stressed the need to eliminate anomalies affecting gauge

invariance. Gauge anomalies come from the same triangle diagrams we encountered in our discus-

sion of the chiral anomaly, namely those shown in Eq. (7.10). The only difference is that, instead

of having an axial-vector current on the left and two vector currents on the right, now we have three

gauge currents, one at each vertex.

Fortunately, to decide whether the SM is anomaly free we do not need to compute the dia-

grams themselves. It is enough to look at the group theory factor and check that the result is zero

once we sum over all chiral fermions running in the loop. To compute this factor we consider the

gauge generator at each vertex (T aR)ij , where the indices i, j are associated with the gauge index of

the incoming/outgoing fermion entering/leaving the vertex, while a is the index of the gauge field

attached to it. Thus, for a given fermion species in the loop, the group theory factor multiplying the

sum of the two triangles in (7.10) is given by

(T aR)ij(T
b
R)jk(T

c
R)ki + (T aR)ij(T

c
R)jk(T

b
R)ki = tr

(
T aR{T bR, T cR}

)
. (9.18)
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Notice how the second term on the left-hand side is obtained from the first one by interchanging

the two right vertices, as it happens in the second triangle diagram. Next, we have to sum over all

fermion species, taking into account that left- and right-handed fermions contribute with opposite

signs. Thus, the condition for anomaly cancellation is

∑

L

tr
(
T aR{T bR, T cR}

)
L
−
∑

R

tr
(
T aR{T bR, T cR}

)
R
= 0, (9.19)

where the sums are respectively over all left- and right-handed fermions in their corresponding

representations. In checking anomaly cancellation it is important to keep in mind that if the gauge

group has several semisimple factors, like the case of the SM, the generator T aR is the tensor product

of the generators of each factor.

There is a simple way to summarize the group-theoretical information contained in Table 2 by

just indicating the representations of the different fermion species with respect to SU(3)× SU(2)×
U(1)Y , including also now the gauge group factor associated with the strong force. Using the nota-

tion (Nc,N)Y , with Nc, N, and Y the representations of SU(3), SU(2), and U(1)Y , we write for a

single family

Li : (1,2)L− 1
2

, ℓiR : (1,1)R−1,

Qi : (3,2)L1
6

, U iR : (3,1)R2
3

, Di
R : (3,1)R− 1

3

, (9.20)

and we also introduced a superscript to remind ourselves whether they are left- or right-handed

fermions (a useful information to decide what sign they come with in the anomaly cancellation

condition). In this notation, the generators of the representation (Nc,N)Y are given by

T
(I,a)
(Nc,N)Y

= tINc
⊗ 1⊗ 1+ 1⊗ taN ⊗ 1 + 1⊗ 1⊗ Y, (9.21)

where I = 1, . . . , 8 and a = 1, 2, 3 respectively label the generators of SU(3) and SU(2). At a

practical level, in order to check anomaly cancellation in the SM we attach a group factor to each

vertex of the triangle and compute the left-hand side of (9.19) to check whether it vanishes. Since
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we have three different factors and three vertices, there are ten inequivalent possibilities

There is no twin paradox
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Some of the possibilities are rather trivial. For example, the triangle with three SU(3) factors gives

zero since the strong interaction does not distinguish left- from right-handed quarks and the two

terms on the left-hand side of (9.19) are equal. The same happens whenever we have a single SU(3)

or SU(2) factor, since the generators of these groups are traceless. At the end of the day, there are

just four nontrivial cases. Using an obvious notation, they are: SU(2)3, SU(2)2U(1), SU(3)2U(1),

and U(1)3. In the first case, since only left-handed fermions couple to SU(2), anomaly cancellation

follows directly from the properties of the Pauli matrices

tr
(
σi{σj , σk}

)
= 2δjktrσi = 0. (9.22)

For SU(2)2U(1), again the SU(2) factors only allow left-handed fermions in the loop, and the

anomaly cancellation condition reads

∑

L

YL = 0, (9.23)

while in the SU(3)2U(1) triangle the color factor rules out leptons, so we have

∑

quarks,L

YL −
∑

quarks,R

YR = 0. (9.24)

Finally, we are left with the triangle with one U(1) at each vertex, leading to the condition

∑

L

Y 3
L −

∑

R

Y 3
R = 0, (9.25)
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where the sum in this case extends to all fermion species.

But this is not all. Since the SM model couples to gravity, it turns out that we might have gauge

anomalies triggered by triangle diagrams with one gauge boson and two gravitons. The condition to

avoid this is

∑

L

tr (T aR)L −
∑

R

tr (T aR)R = 0. (9.26)

In this case there are just three possibilities, corresponding to having a SU(3), SU(2) or U(1) factor

in the non-graviton vertex. For the first two cases, the condition for anomaly cancellation is automat-

ically satisfied, again because the generators of SU(3) and SU(2) are traceless. The third possibility,

on the other hand, gives a nontrivial condition

∑

L

YL −
∑

R

YR = 0, (9.27)

where the sum runs over both leptons and quarks.

We have found the four conditions (9.23), (9.24), (9.25), and (9.27) to ensure the cancela-

tion of anomalies, all of them involving the hypercharges of the chiral fermion fields in the SM.

Now, instead of checking whether the hypercharges in Eq. (9.20) satisfy this condition, we are going

to see to what extent anomaly cancellation determines the fermion hypercharges. Let us there-

fore write the representations of leptons and quarks in each family as (1,2)LY1 , (1,1)RY2 , (3,2)LY3 ,

U iR : (3,1)RY4 , and Di
R : (3,1)RY5 , reading now the anomaly cancellation conditions as equations to

determine Y1, . . . , Y5. These are

2Y1 + 6Y3 = 0,

6Y3 − 3Y4 − 3Y5 = 0,

2Y 3
1 + 6Y 3

3 − Y 3
2 − 3Y 3

4 − 3Y 3
5 = 0, (9.28)

2Y1 + 6Y3 − Y2 − 3Y4 − 3Y5 = 0.

Now, since these are homogeneous equations there exists the freedom to fix the overall normal-

ization of the five hypercharges or, equivalently, to choose the value of one of them. Taking for

example Y2 = −1, we are left with four equations for the four remaining unknowns. They have a

single solution given by

Y1 = −
1

2
, Y2 = −1, Y3 =

1

6
, Y4 = −

1

3
, Y5 =

2

3
, (9.29)

up to the interchange of Y4 and Y5 (notice that the associated fieldsU iR andDi
R transform in the same

representation with respect to the other two gauge group factors). This solution precisely reproduces

the hypercharges shown in Eq. (9.20).

With this calculation we have learned two things. One is that all gauge anomalies (and also
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the so-called mixed gauge-gravitational anomalies) cancel in the SM, and that they do so within each

family. And second, that the anomaly cancellation condition is a very powerful way of constraining

viable models in particle physics: in the SM it fixes, up to a global normalization, the U(1)Y charges

of all chiral fermions in the theory.

9.2 But, where are the masses?

Adding together eqs. (9.12) and (9.14), we still do not get the full action of the electroweak sector of the

SM model. The reason is that all fermion species in the SM have nonvanishing masses and, therefore, we

need to add the corresponding mass terms to the matter action. This is, however, a very risky business in

a chiral theory like the electroweak model. As we learned in Box 7 (see page 48), fermion mass terms

mix left- and right-handed components. In our case, since they transform in different representations of

the SU(2)× U(1)Y gauge group, adding such terms spoils gauge invariance and with that all hell breaks

loose.

Fermion masses are not the only problem. Weak interactions are short ranged, something that can

only be explained if the intermediate bosons W± and Z0 have masses of the order of tens of GeV. Mass

terms of the form m2
WW

∓
µ W

±µ and m2
ZZµZ

µ also violate gauge invariance, so it seems that we are

facing double trouble.

The theory resulting from adding all needed mass terms to Smatter + Sgauge is the original model

proposed in 1961 by Glashow [37], where gauge invariance in explicitly broken. The inclusion of masses

in the SM in a manner compatible with gauge invariance was achieved by Weinberg and Salam [38, 39]

and requires the implementation of the BEH mechanism [34–36] studied in Section 5 in its Abelian

version. In the case at hand, we need to introduce a SU(2) complex scalar doublet

H =

(
H+

H0

)
, (9.30)

with Y (H) = 1
21, so using the Gell-Mann–Nishijima relation (9.3) we find thatH+ has charge e andH0

is neutral. We consider then the action

SHiggs =

∫
d4x

[
(DµH)†DµH− λ

4

(
H†H− v2

2

)2
]
, (9.31)

where the covariant derivative is defined in (9.11). Although the action is fully SU(2)×U(1)Y invariant,

the potential has the Mexican hat shape shown in Fig. 9 and the field H gets a nonzero vev, that by a

suitable gauge transformation can always be brought to the form

⟨H⟩ = 1√
2

(
0

v

)
. (9.32)

This vev obviously breaks SU(2) and, having nonzero hypercharge, also U(1)Y . However, since ⟨H+⟩ =
0 it nevertheless preserves the gauge invariance of electromagnetism. We have then the SSB pattern

SU(2)× U(1)Y −→ U(1)em. (9.33)
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The masses of the gauge bosons are obtained by substituting the vev (9.32) into the action (9.31)

and collecting the terms quadratic in the gauge fields. With this, we see that the W and Z bosons acquire

nonzero masses given, respectively, by

mW =
ev

2 sin θw
, mZ =

ev

sin(2θw)
, (9.34)

and satisfying the custodial relation mW = mZ cos θw.

Interestingly, the scale v is related to the Fermi constant GF , a quantity that can be measured at

low energies. Considering the neutron β-decay process in Eq. (9.16) at energies below the mass of theW

boson and comparing with the result obtained from the Fermi interaction

SFermi =
GF√
2

∫
d4x νeγµ(1− γ5)e dγµ(1− γ5)u, (9.35)

we get the relation

GF =

√
2

8

e2

m2
W sin2 θw

=
1√
2v2

, (9.36)

where the expression of mW given in Eq. (9.34) has been used. Substituting now the experimental value

of the Fermi constant GF = 1.166× 10−5 GeV2 [117], we find

v ≈ 246 GeV. (9.37)

In order to give mass to the fermions, we need to follow the strategy explained in page 70 and

write the appropriate Yukawa couplings, which in this case read

SYukawa = −
3∑

i,j=1

∫
d4x
(
C

(ℓ)
ij L

i
HℓjR + C

(ℓ)∗
ji ℓ

i
RH

†Lj + C
(q)
ij Q

i
HDj

R + C
(q)∗
ji D

i
RH

†Qj

+ C̃
(q)
ij QH̃U jR + C̃

(q)∗
ji U

i
RH̃

†Qj
)
. (9.38)

The two terms in the second line involve the conjugate field

H̃ ≡ iσ2
(
H+∗

H0∗

)
=

(
H0∗

−H+∗

)
, (9.39)

which has Y (H̃) = −1
21 and can be seen to transform also as a SU(2) doublet. Given the transformation

properties of all fields involved, it is very easy to check that the action (9.38) is SU(2) × U(1)Y gauge

invariant. Notice that here we are assuming that neutrino masses are not due to the BEH mechanism.

This is the reason why lepton doublets only couple to the Higgs doublet H, whose upper component

has zero vev. In the case of quarks, however, we need to generate masses for both the upper and lower

components of Q. This is why they couple to the conjugate field H̃, whose upper component acquires a
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nonzero vev

⟨H̃⟩ = 1√
2

(
v

0

)
. (9.40)

To find the expression of the fermion masses generated by the BEH mechanism, we substitute in the

Yukawa action the field H and its conjugate H̃ by their vevs (9.32) and (9.40). The resulting mass terms

have the form

Smass = −
∫
d4x



(
eL, µL, τL

)
M (ℓ)




eR

µR

τR


+

(
dL, sL, bL

)
M (q)




dR

sR

bR




+
(
uL, cL, tL

)
M̃ (q)




uR

cR

tR


+ H.c.


 , (9.41)

where the mass matrices are given in term of the couplings in Eq. (9.38) by

M
(ℓ)
ij =

v√
2
C

(ℓ)
ij , M

(q)
ij =

v√
2
C

(q)
ij , M̃

(q)
ij =

v√
2
C̃

(q)
ij . (9.42)

These complex matrices are however not necessarily diagonal, although they can be diagonalized through

bi-unitary transformations

U
(ℓ)†
L M (ℓ)U

(ℓ)
R = diag(me,mµ,mτ ),

V
(q)†
L M (q)V

(q)
R = diag(md,ms,mb), (9.43)

Ṽ
(q)†
L M̃ (q)Ṽ

(q)
R = diag(mu,mc,mt),

where the eigenvalues are the leptons and quarks masses. Notice that fermion masses are determined

by both the Higgs vev scale v and the dimensionless Yukawa couplings C(ℓ)
ij , C(q)

ij , and C̃(q)
ij , which are

experimentally determined.

Let us focus for the time being on the quark sector (leptons will be dealt with below in section 9.4).

Since V (q)
L,R, Ṽ (q)

L,R are constant unitary matrices we could use them to redefine the quark and lepton triplets

in the total action




u′L,R
c′L,R
t′L,R


 = Ṽ

(q)†
L,R




uL,R

cL,R

tL,R


 ,




d′L,R
s′L,R
b′L,R


 = V

(q)†
L,R




dL,R

sL,R

bL,R


 , (9.44)

in such a way that the new fields are mass eigenstates, i.e., their free kinetic terms in the action have the

standard diagonal form. A problem however arises when implementing this field redefinition in the in-

teraction terms between the quarks and the W± gauge bosons, mixing the lower with upper components

of the SU(2) doublets. The issue is that, unlike in the kinetic terms, the matrices implementing the field
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redefinition do not cancel

S ⊃
∫
d4x

(
uL, cL, tL

)
γµ




dL

sL

bL


W+

µ =

∫
d4x

(
u′L, c

′
L, t

′
L

)
Ṽ

(q)†
L V

(q)
L γµ




d′L
s′L
b′L


W+

µ , (9.45)

where, to simplify the expression, the overall coupling is omitted and the corresponding coupling of the

quarks to the W− boson is obtained by taking the Hermitian conjugate of this term. The combination

Ṽ
(q)†
L V

(q)
R ≡ VCKM (9.46)

defines the Cabibbo–Kobayashi–Maskawa (CKM) matrix [143] and determines the mixing among the

quarks families. It is an experimental fact that this matrix is nondiagonal, so the emission/absorption

of a W± boson does not merely transform the upper into the lower fields (or vice versa) within a sin-

gle SU(2) quark doublet, but can also “jump” into another family. This gives rise to processes known as

flavor changing charged currents. For example, there is a nonzero probability that a u quark turns into

a s quark by the emission of a W+, or vice versa with a W−, accounting for decays like Λ0 → p+e−νe.

What happens inside the Λ0 baryon (uds) is that the strange quark emits a W− and transforms into

a u-quark, thus converting the Λ0 into a proton (uud). The W− then decays into an electron and its

antineutrino.

It is an interesting feature of the electroweak sector of the SM that there are no flavor changing

neutral currents at tree level. In the case of electromagnetic-mediated processes, this follows from the

fact that the field redefinitions induced by the matrices V (q)
L,R and Ṽ (q)

L,R mix fields with the same electric

charge, so they commute with the charge matrixQ and cancel from the quark electromagnetic couplings.

In the case of the weak neutral currents (mediated by the Z0) the same happens, though maybe it is less

obvious. Indeed, looking at the form of the covariant derivative (9.11) we find the following couplings

between the quarks and the Z0:

S ⊃
∫
d4x



(
1

2
− 2

3
sin2 θw

)
(uL, cL, tL)γ

µ




uL

cL

tL


−

(
1

2
− 1

3
sin2 θw

)
(dL, sL, bL)γ

µ




dL

sL

bL




+
2

3
sin2 θw(uR, cR, tR)γ

µ




uR

cR

tR


− 1

3
sin2 θw(dR, sR, bR)γ

µ




dR

sR

bR





 , (9.47)

where again we have dropped an overall constant which is irrelevant for the argument. What matters for

our discussion is that, after the field redefinition, we get the combinations V (q)†
L,R V

(q)
L,R = 1 = Ṽ

(q)†
L,R Ṽ

(q)
L,R

and no mixing matrix is left behind. This shows that there are no flavor changing neutral currents at tree

level28.

28Once quantum effects are included, flavor changing neutral currents are suppressed due to the flavor mixing brought about by
the Cabibbo–Kobayashi–Maskawa matrix, via the so-called GIM (Glashow–Iliopoulos–Maiani) mechanism [144].
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Box 14. SSB or QCD?

We have seen how the BEH mechanism provides the rationale to understand how the particles in

the SM acquire their masses, a scenario ultimately confirmed by the experimental detection of the

Higgs boson. But, does the BEH mechanism really explains the mass of everything we see around

us, from the paper in our hands to the sun over our heads? The answer is no. As we will see, the

fraction of the mass of macroscopic objects that we can assign to the Higgs boson acquiring a vev is

really tiny.

We know that the masses of protons and neutrons are very similar to one another, and much

larger than the mass of the electron

mp ≃ mn ≃ 1836me. (9.48)

In turn, the mass of a (A,Z) nucleus is

M(A,Z) = Zmp + (A− Z)mn +∆M(A,Z), (9.49)

with ∆M(A,Z) the binding energy, which varies from a bit over 1% for deuterium to around 10%

for 62
28Ni. Taking Eq. (9.48) into account and to a fairly good approximation, the mass of an atom

can be written in terms of its mass number alone

m(A,Z) ≃ Amp. (9.50)

The point of this argument is to show that in order to explain the mass around us we essentially

need to explain the mass of the proton. But here we run into trouble if we want to trace back mp

to the BEH mechanism. The values of the masses of the u and d quarks accounted for by the BEH

mechanism (the so-called current algebra masses) are

mu ≃ 2.2 MeV, md = 4.7 MeV. (9.51)

Comparing with mp[uud] ≃ 938.3 MeV and md[udd] = 939.6 MeV, we see that quark masses

only explain about 1% of the nucleon mass. Thus, close to 99% of the mass in atomic form in the

universe is not due to the BEH mechanism.

Where does this mass/energy come from? Actually, from QCD effects. Protons and neutrons

are not only made out of their three valence quarks, but they are filled with a plethora of virtual

quarks and gluons fluctuating in and out of existence whose energy make up the missing 99%.

These effects can be computed numerically using lattice field theory [145, 146]. Here, however,

we just want to offer some general arguments pointing to the origin of the difficulties in describing

protons and neutrons in terms of their constituent quarks.

Let us begin with a very simple argument. We know that because of the strong dynamics

of QCD at low energies quarks get confined into hadrons in a region whose linear size is of the
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order Λ−1
QCD. Applying Heisenberg’s uncertainty principle, we can estimate the size of their mo-

mentum fluctuations to be about

∆p ∼ ΛQCD. (9.52)

If fluctuations are isotropic the statistical average of the quark momentum vanishes, ⟨p⟩ = 0.

Since (∆p)2 ≡ ⟨p2⟩ − ⟨p⟩2, we determine the averaged quark momentum squared to be

⟨p2⟩ ∼ Λ2
QCD. (9.53)

Now, ΛQCD is of the order of a few hundred MeV, so the masses of the u and d quarks sat-

isfymu,md ≪ ΛQCD. This means that the linear momenta of the valence quarks inside protons and

neutrons is much larger than their masses, so they are relativistic particles. Moreover, since their

typical energy is of order ΛQCD, they are in the low energy regime of QCD where the dynamics is

strongly coupled.

What we said about the u and d quarks does not apply however to the top (mt ≃ 173.7 GeV),

bottom (mb ≃ 4.6 GeV), and charm (mc ≃ 1.3 GeV) quarks, which under the same conditions

would behave as nonrelativistic particles. Besides, since their energies are dominated by their

masses, which are well above ΛQCD, their QCD interactions are weakly coupled. This is why

heavy quark bounds states (quarkonium) can be analytically studied using perturbation theory, un-

like the bound states of light quarks (u, d, and s) that have to be treated numerically. The difficulties

in describing quarks inside protons and neutrons boils down to them being ultrarelativistic particles.

The moral of the story is that the popular line that the BEH mechanism “explains” mass is

simply not correct. Most of our own mass and the mass of every object we see around us (and this

includes the Earth, the Sun, the Moon, and the stars in the sky) has nothing to do with the Higgs

field and is the result of the quantum behavior of the strong interaction. Even in a universe where

the up and down quarks were massless, the proton and the neutron would still have nonzero masses

and moreover very similar to the ones in our world.

9.3 The Higgs boson

In order to analyze mass generation in the electroweak sector of the SM, it was enough to replace the

scalar doublet H by its vev. However, as we learned in Section 5.4 for the Abelian case, the system

has excitations around the minimum of the potential corresponding to a propagating scalar degree of

freedom. To analyze the dynamics of this field, the Higgs boson, we write the Higgs doublet H as

H(x) =
1√
2
eia

I(x)tI2

(
0

v + h(x)

)
, (9.54)

where aI(x) and h(x) are the four real degrees of freedom encoding the two complex components

in (9.30). In fact, as in the Abelian case of Section 5.4, we can use the gauge invariance of SHiggs +

SYukawa to eliminate the global SU(2) global factor, after which we are left with a single real degree of
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freedom representing the Higgs boson [36]. Substituting into (9.31) and expanding, we get

SHiggs =

∫
d4x

[
1

2
∂µh∂

µh− λv2

4
h2 − λv

4
h3 − λ

16
h4 +

2m2
W

v
W−
µ W

+µh (9.55)

+
m2
W

v2
W−
µ W

+µh2 +
m2
Z

v
ZµZ

µh+
m2
Z

2v2
ZµZ

µh2 +m2
WW

+
µ W

−µ +
m2
Z

2
ZµZ

µ

]
,

where in the last two terms we recognize the masses for the W± and Z0 gauge bosons. The first thing to

be noticed is that the mass of the Higgs boson is determined by the vev v and the strength λ of the Higgs

quartic self-couplings,

mH = v

√
λ

2
= (125.25± 0.17) GeV, (9.56)

where the current average experimental value is quoted [117]. The action (9.55) also contains the cou-

pling between the Higgs boson and the W± and Z0 intermediate bosons, giving rise to the interaction

vertices

�
W±, Z0

W±, Z0

h ∼
m2
W,Z

v
, 	

W±, Z0

W±, Z0

h

h

∼
m2
W,Z

v2
. (9.57)

In both cases, the strength of the coupling is proportional to the mass squared of the corresponding

intermediate bosons.

As to the coupling of the Higgs boson to fermions, this is obtained by replacing (9.54) into the

Yukawa action (9.38),

SYukawa = −
∫
d4x



(
eL, µL, τL

)(1

v
M (ℓ)

)



eR

µR

τR


h (9.58)

+
(
dL, sL, bL

)(1

v
M (q)

)



dR

sR

bR


h+

(
uL, cL, tL

)(1

v
M̃ (q)

)



uR

cR

tR


h+ H.c.


 .

This, upon switching to mass eigenstates, takes the general form

SYukawa = −
∑

f

mf

v

∫
d4x ffh, (9.59)

where f = (e′, µ′, τ ′, u′, d′, c′, s′, t′, b′) runs over all the fermion mass eigenstates, apart from the three
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neutrinos that we will treat separately. The corresponding interaction vertices are



f

f

h ∼
mf

v
. (9.60)

That the coupling of the Higgs boson to the fermions is proportional to their masses has important exper-

imental consequences. Given the value of the Higgs vev energy scale found in (9.37), only the heaviest

fermions have sizeable Higgs couplings, in particular the top quark with mass mt = 173.3 GeV [117].

This fact is at the heart of the experimental strategy that culminated with the observation of the Higgs

boson at CERN. In a hadron collider such as the LHC, there are plenty of gluons produced during the

collision that can fuse through a top quark loop to produce a Higgs boson

�t
t

t
h

g

g

(9.61)

The Higgs boson produced in the gluon fusion process can decay in various distinctive ways. One of

them is by a second top loop with emission of two photons

�t

t

t

h

γ

γ

(9.62)

Alternatively, the Higgs boson may produce a pair of Z0 bosons that in turn decay into two lepton–

antilepton pairs



Z0

Z0h

ℓ

ℓ

ℓ

ℓ

(9.63)
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These were precisely the decay channels that led to the discovery of the Higgs boson by the ATLAS and

CMS collaborations at the LHC [19, 20].

9.4 Neutrino masses

We have been postponing the issue of neutrinos masses. It is however an experimental fact that neutrinos

have nonzero masses and this is something we have to incorporate in the SM action. One way to do it

is to extend the SM to include right-handed sterile neutrinos νiR transforming as (1,1)0 under SU(3) ×
SU(2)×U(1)Y (see the notation introduced on page 105), adding then the following terms to the Yukawa

action

∆SYukawa = −
3∑

i=1

∫
d4x

(
C̃(ν)L

i
H̃νiR + C̃

(ν)∗
ji νiRH̃Lj

)
. (9.64)

Once the Higgs field gets a vev, this term generates a mass term of the form

∆SYukawa = −
∫
d4x


(νeL, νµL, ντL)M̃ (ν)




ν1R

ν2R

ν3R


+ H.c.


 , (9.65)

with

M
(ν)
ij =

v√
2
C̃

(ν)
ij . (9.66)

Being singlets under all SM gauge groups, the sterile neutrinos only interact gravitationally with other

particles.

Box 15. Dirac vs. Majorana fermions

In previous sections, we have shown how antiparticles in QFT are somehow related to complex

fields, for example in the complex scalar field discussed in Box 6 (see page 37). In this case, particles

are interchanged with antiparticles by replacing the field φ(x) with its complex conjugate φ(x)∗. To

make things more elegant, we may call this operation charge conjugation and the result the charge

conjugated field

C : φ(x) −→ ηCφ(x)
∗ ≡ φc(x), (9.67)

where ηC is some phase that we are always free to add while keeping the action (3.86) invariant. At

the quantum level, C does indeed interchange particles and antiparticles

C|p; 0⟩ = η∗C |0;p⟩, C|0;p⟩ = ηC |p; 0⟩. (9.68)

From this perspective, a real scalar field is one identical to its charge conjugate, φ(x) = φc(x).

After quantization, its elementary excitations are their own antiparticles.
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Let us try to make something similar with the Dirac field. In the scalar field case, replac-

ing φ(x) by φ(x)∗ does not change the field’s Lorentz transformation properties, after all, complex

conjugate or not, both fields are scalars. Not so for a Dirac fermion. The spinorψ(x) and its complex

conjugate ψ(x)∗ do not transform the same way under the Lorentz group and neither satisfy the same

Dirac equation. This means that we cannot define a “real” Dirac spinor just requiring ψ(x) = ψ(x)∗.

We have to work a little bit more and consider

C : ψ(x) −→ ηC(−iγ2)ψ(x)∗ ≡ ψc(x), (9.69)

where again ηC is a complex phase. This charge conjugate spinor transforms in the same way as

the original field and also satisfies the same free Dirac equation. Moreover, its action on the multi-

particle states generated by the creation operators b̂(k, s)† and d̂(k, s)† in Eq. (4.56) is given by

C|k, s; 0⟩ = η∗C |0;k, s⟩, C|0;k, s⟩ = ηC |k, s; 0⟩, (9.70)

and interchanges particles and antiparticles.

The spinor analog of the real scalar field is a Majorana spinor, which equals its charge con-

jugate

ψ(x) = ψc(x). (9.71)

Upon quantization, this identifies particles and antiparticles, as follows from Eq. (9.70). It is in-

teresting to implement the Majorana condition expressing the Dirac fermion in terms of its chiral

components and using the representation (4.47) of the Dirac matrices

(
χ+

χ−

)
= ηC

(
iσ2χ∗

−
−iσ2χ+

)
=⇒ ψ =

1√
2

(
χ+

−iηCσ2χ∗
+

)
. (9.72)

In the second identity we wrote a solution to (9.71), and a similar expression can be written in terms

of the negative chirality component χ−. Here we see how the Majorana condition halves the four

complex components of a Dirac field down to two. In fact, the Majorana spinor can be written as

the sum of a Weyl fermion and its charge conjugate as

ψ =
1√
2

(
χ+

0

)
+

1√
2

(
0

−iηCσ2χ+

)
≡ 1√

2

(
ψ+ + ψc+

)
. (9.73)

Using this expression, we write the Dirac action for a Majorana fermion

S =

∫
d4x

[
iψ+∂/ψ+ −

m

2

(
ψc+ψ+ + ψ+ψ

c
+

)]
. (9.74)

Unlike Weyl fermions, Majorana spinors admit a mass term without doubling the number of degrees

of freedom.

An important point concerning Majorana fermions is that they cannot be coupled to the elec-
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tromagnetic field. This is to be expected, since the Majorana condition identifies particles with

antiparticles that, as we saw in Box 7, have opposite electric charge. In more precise terms what

happens is that the associated Noether current vanishes

jµ = ψγµψ =
1

2

(
χ†
+σ

µ
+χ+ + χT+σ

µT
+ χ∗

+

)
= 0. (9.75)

This can be also seen as a consequence of the incompatibility of the Majorana condition (9.71) with

a global U(1) phase rotation of the spinor ψ → eiϑψ. In particular, the Majorana mass term in (9.74)

does not conserve the U(1) charge

ψc+ψ+ + ψ+ψ
c
+ −→ e2iθψc+ψ+ + e−2iθψ+ψ

c
+, (9.76)

a very important feature for the accidental symmetries of the SM such as lepton number.

The addition of sterile neutrinos to generate neutrino masses is only partly satisfactory. One ob-

vious problem is its lack of economy, since it requires the addition of extra species to the SM that

nevertheless do not partake in its interactions. But the solution is also unnatural. Due to the smallness of

the neutrino masses, the new Yukawa couplings have to be many orders of magnitude smaller than the

ones for charged leptons.

Generating a Dirac mass term is not the only possibility of accounting for neutrino masses. Having

zero electric charge, they are the only fermions in the SM that can be of Majorana type. If this were the

case, their mass terms in the action would be build from the left components alone, as we saw in Box 15

∆S = −
3∑

i,j=1

∫
d4x

(
1

2
MijνicLν

j
L + H.c.

)
, (9.77)

where because of Fermi statistics νicLν
j
L = νjcLν

i
L and the mass matrix M (ν)

ij can be taken to be sym-

metric. The problem now lies in how to generate a Majorana mass from a coupling of the neutrinos to

the Higgs field, since both Li and its charge conjugate are SU(2) doublets and there is no way to con-

struct a gauge invariant dimension four operator involving Li, Lic, and H (or H̃). A group-theoretical

way to see this is by noticing that the product representation 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2 does not con-

tain any SU(2) singlet. This changes if we admit a dimension-five operator with two Higgs doublets,

a left-handed fermion and its charge conjugate. Now it is possible to construct a gauge invariant term

since 2⊗ 2⊗ 2⊗ 2 = 5⊕ 3⊕ 3⊕ 3⊕ 1⊕ 1. For example,

∆S = − 1

M

3∑

i,j=1

∫
d4x

[
C

(ν)
ij

(
Lic H̃∗

)(
H̃†Lj

)
+ H.c.

]
(9.78)

is invariant under SU(2)× U(1)Y . This operator in the action has to be understood, in the spirit of EFT,

as the result of some new physics appearing at the energy scale M ≫ v, with v the Higgs vev.

When the Higgs field acquires its vev, the coupling (9.78) generates a Majorana mass term for the
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neutrinos,

∆S = −1

2

3∑

i,j=1

∫
d4x
(
M

(ν)
ij ν

ic
Lν

j
L + H.c.

)
, (9.79)

where the neutrino mass matrix is given by

M
(ν)
ij =

v2

M
C

(ν)
ij . (9.80)

The entries of this matrix are suppressed by the factor v/M ≪ 1, naturally producing neutrinos with

masses well below the ones of the charged leptons. Thus, Majorana neutrinos not only are the most

economical solution, making unnecessary adding new fermion species, but also avoids the unnaturalness

of the neutrino Yukawa couplings. Incidentally, the Majorana mass term (9.79) violates lepton number,

since νjL and νicL transform with the same phase [cf. (9.76)].

Neutrinos are regarded as one of the most promising windows to physics beyond the SM, being

the main reason why neutrino physics has remained for decades one of the most exciting fields in (as-

tro)particle physics and cosmology [147–149]. As to the question of whether the neutrino is a Dirac or a

Majorana particle, however, the jury is still out. Some processes can only take place if the neutrino is its

own antiparticle, most notably neutrinoless double β decay [150, 151]. A nucleus with mass and atomic

numbers (A,Z) can undergo double β-decay and transmute into the nucleus (A,Z + 2) with emission

of two electrons and two antineutrinos:

(A,Z) −→ (A,Z + 1) + e− + νe

|−→ (A,Z + 2) + e− + νe

. (9.81)

If the neutrino is a Majorana particle there is an alternative. The neutrino produced in the first decay may

interact with a neutron in the nucleus, turning it into a proton with the emission of an electron,

νe(≡ νe) + n −→ p+ + e−, (9.82)

so no neutrino is emitted in the process (A,Z)→ (A,Z + 2) + 2e−. This is described by the diagram

�W−

(A,Z + 1) νe

W−

(A,Z)

(A,Z + 2)

e−

e−

(9.83)

where the double-arrowed line represents the Majorana neutrino. The detection of neutrinoless double

β-decay would decide the question of the Dirac or Majorana character of the neutrino. A lot of exper-

imental effort is being dedicated to this problem, so far without definite results (see Ref. [152] for an

updated overview of past, present, and future experiments).
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Box 16. CP violation and the CKM and PMNS matrices

When studying the strong CP problem in Section 8.2, we hinted at the fact that CP violation is as-

sociated with the existence of complex couplings in the action. This is shown easily, taking into

account that the CP transformation acting on an operator O transforms it into its Hermitian conju-

gate, CPO(CP)−1 = O†. Hence, a term in the Hamiltonian of the form gO + g∗O†, although being

Hermitian, leads to CP violation unless the coupling is real, g = g∗. This is why when exploiting the

axial anomaly to move the θ dependence in the QCD action from the θ-term into a complex phase

in the fermion mass matrix we said that we were shifting the source of CP-violation to a complex

coupling.

Besides the θ-term in the QCD action, it is a fact that CP symmetry is broken in the elec-

troweak sector of the SM, for example in neutral kaon decays. Its origin is found in the unitary

CKM matrix

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (9.84)

introduced in (9.46) since, as we will see now, it contains a complex phase that cannot be removed

by redefinition of the quark fields. Let us be general and analyze the case of a SM with n families.

An n×n unitary matrix depends on n2 real parameters (the 2n2 real parameter of a general complex

matrix reduced by the n2 conditions imposed by unitarity). In addition to this, we can play with

the phases of the 2n quarks, keeping in mind the invariance of the action under a common phase

redefinition of all quark fields leading to (perturbative) baryon number conservation. This means

that 2n − 1 of the n2 real parameters can be absorbed in the phases of the quark fields, and we are

left with n2 − 2n+ 1 = (n− 1)2 independent ones. The question is how many of them correspond

to complex phases. To decide this, let us recall that were the CKM matrix real it would be an SO(N )

matrix depending on 1
2n(n − 1) real angles. Subtracting this number from the total number of

independent real parameters computed above, we get the final number of complex phases in the

CKM matrix to be

n2 − 2n+ 1− 1

2
n(n− 1) =

1

2
(n− 1)(n− 2). (9.85)

For three families (n = 3) the matrix depends on a single complex phase eiδ and three real

angles θ12, θ13, and θ23. In terms of them, the CKM matrix is usually parametrized as

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 , (9.86)

where sij ≡ sin θij and cij ≡ cos θij . The modulus of the entries can be measured through the

observation of various weak interaction mediated decays and scattering processes (see for example
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Ref. [153]), with the result [117]

|VCKM| =




0.97435± 0.00016 0.22500± 0.00067 0.00369± 0.00011

0.22486± 0.00067 0.97349± 0.00016 0.04182+0.00085
−0.00074

0.00857+0.00020
−0.00018 0.04110+0.00083

−0.00072 0.999118+0.000031
−0.000036


 , (9.87)

while the value of the CP-violating phase is δ = 1.144 ± 0.027. The experimental measurement

of |VCKM| exhibits a clear hierarchy among its entries, derived from s13 ≪ s23 ≪ s12 ≪ 1. This is

manifest in the so-called Wolfenstein parametrization [154]

VCKM =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (9.88)

where λ ≡ s12. The diagonal elements are all of order one, whereas the size of the other entries

decreases as we move away from it.

A look at (9.85) shows that with just two families the corresponding flavor mixing matrix

would contain no complex phases and depend on a single real parameter, the Cabibbo angle θC ≡
θ12 [155]. Thus, CP violation in the electroweak sector, like the one showing up in for example kaon

decays, requires the existence of at least three SM families.

CP-violation in the SM is of major importance, since it is a basic ingredient to explain why

there is such a tiny amount of antimatter in our universe. However, the amount of CP violation

produced by the single complex phase of the CKM matrix is far too small to account for the observed

matter–antimatter asymmetry [156]. Finding additional sources in or beyond the SM is one of the

big open problems in contemporary high energy physics.

Maybe the lepton sector is a good place to look for more CP violation. As with quarks, lepton

masses appear when switching from interaction to mass eigenstates by diagonalizing the lepton mass

matrix. Redefining the massive lepton fields




e′L,R
µ′L,R
τ ′L,R


 = U

(ℓ)
L,R




eL,R

µL,R

τL,R


 (9.89)

with U (ℓ)
L,R defined in Eq. (9.43), the interaction terms with the W± bosons take the form

S ⊃
∫
d4x



(
e′L, µ

′
L, τ

′
L

)
U

(ℓ)†
L γµ




νeL

νµL

ντL


W+

µ + H.c.


 . (9.90)

Here, the Hermitian conjugate term contains the interaction with the W− and we have dropped

the global normalization. In the original version of the SM there are no right-handed neutrinos

and therefore we can reabsorb the matrix U (ℓ)†
L in a redefinition of the left-handed neutrino fields,
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without it appearing elsewhere in the SM action. As a result, if the neutrino were massless there

would be no flavor mixing in the lepton sector.

Things are drastically different once we add the neutrino mass terms. Let us consider first

the case of Dirac masses. As with quarks and charged leptons, the mass matrix in Eq. (9.66) can be

diagonalized by a bi-unitary transformation

U
(ν)†
L M (ν)U

(ν)
R = diag(m1,m2,m3), (9.91)

and the interaction term (9.90) is recast in terms of neutrino mass eigenstates as

S ⊃
∫
d4x



(
e′L, µ

′
L, τ

′
L

)
U

(ℓ)†
L U

(ν)
L γµ




ν1L

ν2L

ν3L


W+

µ + H.c.


 , (9.92)

where

U ≡ U (ℓ)†
L U

(ν)
L =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 , (9.93)

is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) unitary matrix [157, 158]. Similarly to what

the CKM matrix does for quarks, the PMNS matrix introduces flavor mixing in the leptonic sector.

Moreover, following the same reasoning as with the CKM matrix, we see that for three families

the PMNS matrix also depends on three real angles and a single complex phase, representing an

additional source of CP violation. It also admits a parametrization similar to the one shown in

Eq. (9.86) for the CKM matrix, where the phase is denoted by δCP.

For Majorana neutrinos, however, the mass matrix (9.80) is symmetric and can be diagonal-

ized by a unitary transformation

U
(ν)T
L MU

(ν)
L = diag(m1,m2,m3), (9.94)

so switching to neutrino mass eigenstates we find again an interaction term of the form (9.92). The

big difference with respect to the Dirac case is that, since the Majorana mass term (9.79) is not

invariant under phase rotations of the neutrino fields, we cannot get rid of two of three phases in the

PMNS matrix. As a consequence, besides the three angles θ12, θ13, θ23 and the phase eiδCP of the

Dirac case, the matrix depends now on two additional complex phases eiλ1 and eiλ2 , known as Ma-

jorana phases. The three angles and δCP can be measured from the neutrino oscillations, whereas the

measurement of the two Majorana phases would be possible through the observation of neutrinoless

double β decay [152]. Fits of neutrino data (including the Super-Kamiokande atmospheric neutrino
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data) give the following 3σ ranges for the absolute values of the entries of the PMNS matrix [159]

|U | =




0.801→ 0.845 0.513→ 0.579 0.143→ 0.155

0.234→ 0.500 0.471→ 0.689 0.637→ 0.776

0.271→ 0.525 0.477→ 0.694 0.613→ 0.756


 . (9.95)

It is interesting to compare the textures of the matrices (9.88) and (9.95). As already mentioned, for

quarks the matrix is of order 1 at the diagonal, λ for the second diagonal, and λ2 in the upper right

and lower left corners. There seems to be a hierarchical pattern (this is a bit of wishful thinking,

clearly). In the case of neutrinos, however, it seems that there is democracy in all its entries, and

a crude approximation to (9.95) would be to set all its entries to 1. This is a matrix with a single

nonzero eigenvalue and two degenerate zeros, reminiscent of the normal or inverted hierarchies in

the fit of the neutrino masses. Both textures are so different that it is difficult to imagine that they

have a common origin. A major mystery, whose clarification is beyond the SM.

10 Scale invariance and renormalization

Renormalization appeared in physics as a way to make sense of the divergent results in QFT. In quantum

mechanics, infinities are usually handled by invoking a normal ordering prescription, and even in QFT,

they are absent when computing semiclassical contributions to processes in perturbation theory29. The

trouble comes when calculating quantum corrections, associated in the perturbative expansion to Feyn-

man diagrams with closed loops. These contain integrals over all independent momenta running in the

loops that are frequently divergent.

We will not enter into the many details and subtleties involved in the study of divergences in

QFT and the philosophy and practicalities of renormalization. They are explained in all major textbooks

on the subject and a concise and not too technical overview can be found in Chapter 8 of Ref. [14].

The first step is to make the divergent integrals finite in order to handle them mathematically. This is

done by introducing a proper regulator, that can either be a scale where loop momenta are cut off or a

more abstract procedure to render the integrals finite, such as playing with the dimension of spacetime

or introducing PV fermions. In any case, regularization implies the introduction of an energy scale Λ,

called the cutoff for short. The basic point is that this cutoff is an artefact of the calculation and cannot

appear in any physical quantity that we compute.

Roughly speaking, renormalization consists on getting rid of the cutoff. The key point to do this

is the realization that the masses, couplings, and the fields themselves appearing in the classical action

are not physical quantities. Therefore, there is nothing wrong with them depending on Λ. What must

be cutoff independent are the physical quantities that we compute and can (and will) be compared with

experiments. These quantities are operationally defined, in the sense that their definition within the

theory’s framework is given in terms of the process to be used to measure them. An example is the

29Here we are going to be concerned with UV divergences associated with the high energy regime of the theory. IR divergences,
which appear in the limit of low momenta, cancel once the physical question is properly posed and all contributions to the
given process are taken into account.
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self-interacting scalar theory

S =

∫
d4x

(
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4

)
, (10.1)

where we would like to define the physical coupling λphys. We could identify it as the value of the

scattering amplitude for four scalar particles when all p2
i are equal

λphys ≡�
p2

p1

p3

p4 ∣∣∣∣∣∣∣∣∣
p2
i=µ

2

, (10.2)

where the blob stands for all diagrams contributing at a given order in perturbation theory and µ is the

energy scale of the process. The dependence of the action parameters on Λ is then chosen so this renor-

malization condition remains cutoff independent. Once this is done not just for the coupling constant but

also for all physical quantities (e.g., masses), the theory is renormalized and everything can be computed

in terms of experimentally defined physical couplings and masses.

In the case of the scalar theory defined by the action (10.1), as well as in other physically relevant

theories like QED, QCD or the SM as a whole, it is possible to get rid of the cutoff dependence in

any physical process by “hiding” it in a finite number of parameters. Those theories for which this can

be accomplished are called renormalizable. Nonrenormalizable theories, on the other hand, require the

introduction of an infinite number of parameters to absorb the cutoff dependence, that in turn means

that we need to specify an infinite number of operationally-defined physical quantities. In this picture,

nonrenormalizability seems quite a disaster, since it seems that to compute physical observables we need

to specify an infinite number of physical renormalization conditions. This is the reason why, historically,

nonrenormalizable theories were considered to be no good for physics.

Regularization and renormalization may have important consequences for classical symmetries,

and we have seen examples of this in Section 7. One of the immediate consequences of regularization

is the necessity of introducing a cutoff in the theory and therefore an energy scale. This has the result

that, after renormalization, the physical couplings acquire a dependence on the energy scale where they

are measured. This scale dependence is codified in the β function, containing information on how the

coupling constant g depends on the scale where it is measured,

β(g) ≡ µdg
dµ
. (10.3)

This function can be computed order by order in perturbation theory. In QCD β(g) < 0, which means

that the coupling constant decreases as the energy grows, a property known as asymptotic freedom. Be-

sides, the theory dynamically generates an energy scale ΛQCD below which it becomes strongly coupled,

with quarks and gluons confined into mesons and baryons. Asymptotic freedom is the reason behind

QCD’s success as a description of strong interactions. It allows us to understand, for example, why in

deep inelastic scattering experiments electrons seem to interact with quasifree partons inside the proton.

124



FIELD THEORY AND THE STANDARD MODEL: A SYMMETRY-ORIENTED APPROACH

To summarize, we can say that generically classical scale invariance is anomalous, in the sense

that it disappears as the result of renormalization30. The β-function is just one example of a set of

functions describing how couplings and masses change with the energy scale. Together, they build the

coefficients of a set of first-order differential equations satisfied by the theory’s correlation functions and

other quantities and known as the renormalization group equations.

The cartoon description of renormalization presented above might lead to thinking that it is just a

smart trick, somehow justifying Feynman’s dictum that renormalization is sweeping the infinities under

the rug [160]. We have come, however, a long way from there. The current understanding of renormal-

ization, dating back to the groundbreaking work of Kenneth Wilson [161–163], goes much deeper and

beyond the mere mathematics of shifting the cutoff dependence from one place to another. It is also

closely related to the idea of EFTs, so now we can revisit our discussion on pages 3-7 in more precise

terms.

Everything boils down to making a physical interpretation of the cutoff. Instead of seeing it as an

artificial scale introduced to render integrals finite, we can regard it as the upper energy scale at which

our theory is defined. At energies above Λ, new physics may pop up, but we do not really care too much,

since all we need to know are the values of the masses mi(Λ) and dimensionless couplings gi(Λ).

Now we ask ourselves how the theory looks at some lower energy scale µ < Λ. To answer, we

need to “integrate out” all physical processes taking place in the range µ ≤ E ≤ Λ, which results in a new

field theory now defined at scale µ and expressed in terms of some “renormalized” fields. Generically,

the masses and couplings of this theory will differ from the original ones, so we have mi(µ) ̸= mi(Λ)

and gi(µ) ̸= gi(Λ). But, in addition to this, the new theory might also contain additional couplings not

present at the scale Λ, in principle an infinite number of them. Using the language of path integrals, we

symbolically summarize all this by writing

∫

µ≤E≤Λ

DΦ0 e
iS0[Φ0] = eiS[Φ], (10.4)

where Φ0 collectively denotes the fields of the original theory and Φ their renormalized counterparts,

while S[Φ] is the action of the new theory defined at the energy scale µ. On general grounds, it can be

written as

S[Φ] = S0[Φ] +
∑

n

g′n(µ)
ΛdimOn−4

∫
d4xOn[Φ]. (10.5)

In this expression S0[Φ] is the action of the original theory with all fields, masses, and couplings replaced

by the corresponding renormalized quantities, andOi[Φ] are new operators with dimensions greater than

or equal to four induced by the physics integrated out between the scales Λ and µ. Their couplings g′n(µ)

are dimensionless and we see that higher-dimensional operators are suppressed by inverse powers of the

high energy scale Λ.

In this Wilsonian picture of renormalization the dependence of the coupling constants with the

30This happens, for example, in QCD with massless quarks. There are however a few examples of theories for which this does
not happen, most notably N = 4 supersymmetric Yang Mills theory in four dimensions. Due to its large symmetry, classical
conformal invariance is preserved by quantization.
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scale has a clear physical meaning: as we go to lower energies, their changing values incorporate the

physics that we are integrating out at intermediate scales. But not only this, also the difference between

renormalizable and nonrenormalizable theories gets blurred. All theories are defined at a given energy

scale Λ. In order to describe the physics above this scale, the theory would have to be “completed” with

additional degrees of freedom and/or interactions. What is special in renormalizable theories is that they

are their own UV completion, in the sense that they can be extended to arbitrarily high energies without

running into trouble, although technically this only makes sense for asymptotically free theories.

Nonrenormalizable theories need to be completed in the UV to make sense of them above Λ. Let

us look at the example of Fermi’s theory of weak interaction. It has a natural cutoff given by Λ =

mW , and if we try to go beyond this energy we run into trouble. For example, the theory violates

unitarity at high energies. The theory, however, can be completed in the UV by the electroweak model

studied in Section 9, which being renormalizable can in principle be extended to higher energies without

inconsistencies.

Another case of nonrenormalizable theories encountered in section 5 is the chiral Lagrangian (see

page 67). Again, the theory is endowed with a physical cutoff, in this case ΛQCD, above which the

description in terms of pions is no longer valid. In fact, we can see the chiral Lagrangian as resulting

from Wilsonian renormalization applied to QCD: by integrating out the physics of strongly coupled

quarks and gluons we get a low energy action for the new fields (the pions) and their interactions. Since

the resulting theory does not make sense above ΛQCD there is no problem with the divergences appearing

in loops. After all, before the momenta running in them can reach infinity the pion as such ceases to exist.

The final instance of a nonrenormalizable theory we discuss is gravity, which, as explained in

section 1, has to be completed above the Planck scale (1.7). But here we have to remember that everything

couples to gravity, including the SM. Thus, we are led to conclude that despite being renormalizable,

the SM itself has to be regarded as an effective description to be supplemented at the Planck scale, if

not earlier. In fact, phenomena like the nonzero neutrino masses strongly indicate new physics lurking

somewhere between the electroweak scale and the Planck scale.

The bottomline of our discussion is that nonrenormalizability is just a sign that we are dealing

with an EFT and that the ubiquitous presence of gravity in nature forces us to regard all QFTs as EFTs

(have a look again at Fig. 1 in page 7). Nonrenormalizable theories are not anymore those sinister objects

they were when renormalization was seen as nothing but infinites removal. They are perfectly reasonable

theories, provided we are aware of what they are and of what they are good for (and they are indeed very

good for quite many things!).

Box 17. The Planck chimney

Let us go back to the Higgs action (9.31) and particularly to the potential

V (H,H†) =
λ

4

(
H†H− v2

2

)2

. (10.6)

We have seen that after symmetry breaking the parameter λ directly relates to the Higgs mass (9.56)

and determines its self couplings in the action (9.55). Since after quantization masses and couplings
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get a dependence on the energy scale, we would like to know how λ(µ) or the Higgs mass mH(µ)

depend on the scale µ. At this point we should recall that the strength of the coupling of the Higgs

boson to fermions is proportional to the latter’s masses [see Eq. (9.60)], so its interactions with the

matter fields are dominated by the top quark. Thus the renormalization group equations determining

the evolution of λ(µ) and µH(µ) with the energy scale should also involve the top quark massmt(µ).

An important question is whether the evolution of these parameters with the scale changes

in a significant way the shape of the Mexican hat potential and, most importantly, whether this

jeopardizes the existence of a stable Higgs vacuum (see [164] and references therein). It might be

that the sombrero’s brim get flattened at higher energies, or even inverted like in the case shown

here:
There is no twin paradox
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If this happens, the Higgs vacuum becomes metastable or outright unstable.

Since the renormalization group equations are first order, we need to specify some “initial

conditions”. In this case they are the values of the Higgs and top masses measured at the LHC.

Assuming that the SM correctly describes the physics all the way to ΛPl, the bounds to be satisfied

by the masses in order to preserve the stability of the Higgs vacuum are [165–167]

mH > (129.1± 1.5) GeV,

mt < (171.53± 0.42) GeV. (10.7)

Comparing with the experimental values mH = (125.25 ± 0.17) GeV and mt = (172.69 ±
0.30) GeV [117], we see that the SM lies slightly outside the stability zone. In fact, the SM seems

to be metastable, with the Higgs boson trapped in a false vacuum. The energy scale where the in-

stability appears turns out to be of the order of the geometric mean of the W mass and the Planck

scale Λinst ∼
√
mWΛPl. This is quite a discovery made at the LHC!

The instability of the Higgs vacuum is indeed no good news. Of course, living in a metastable

universe is no major problem if its tunneling probability is so low that its decay time turns out to

be much larger than the age of the universe, around 13.6 Gyr. But we have to remember that the

bounds (10.7) are obtained with the proviso that there are no new degrees of freedom between the

electroweak and the Planck scales. This is yet another reason to expect some physics beyond the

SM making the universe stable.
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The apparent metastability of the Higgs vacuum highlights a very important feature of the

renormalization group. We can run it from high to low energies with total confidence. Knowing the

degrees of freedom and interactions at a certain scale Λ, everything is determined at energies µ < Λ.

The worst thing that may happen is that the degrees of freedom get “rearranged”, as it happens in

QCD where mesons and baryons replace quarks and gluons at low energies. But if the aim is getting

information about what is going on at µ > Λ, additional assumptions are required: either that no

new degrees of freedom emerge above Λ, or that there is some UV completion whose details are

necessarily an educated guess. After all, this is why particle physics is hard. Whatever happens

above the energies we explore is blurred in the parameters of the theory we test. The best we can

do is to play the model building game to reproduce this blurriness, and hopefully predict distinct

signals that could be detected in some future facility.

11 Closing remarks

The SM is a vast and complex subject, providing the best description of particle physics and its ap-

plications at energies below a few TeV. It explains a large amount of phenomena in microphysics and

in cosmology. However, its precise formulation delineates some of its limitation, as illustrated by the

following list:

- The SM does not predict the values for the masses and mixing angles of quarks and leptons (in-

cluding neutrino masses).

- The SM does not provide adequate candidates to explain dark matter.

- The only real progress in the study of dark energy has been to change its name from the previous

one: the cosmological constant.

- We know that CP needs to be violated in the universe in order to generate a matter–antimatter

asymmetry. Thus, three families are the minimum needed to generate a CP violating angle, apart

from the QCD vacuum angle. Unfortunately, CP violation from the CKM matrix is not enough

to generate the observed asymmetry. The equivalent angle in the neutrino sector has not yet been

measured. It would be ironical if the ultimate origin of “humans” was related to properties of

the ghostly neutrinos. Theories beyond the Standard Model provide many scenarios with larger

amounts of CP violation.

- The currently preferred paradigm in cosmology is inflation. We still do not have a convincing

candidate for what the inflaton is, or how the big bang was triggered, if that question makes any

sense at all. There are still many open questions in cosmology, including what is the correct

paradigm.

This is just a sample of the most pressing issues for which the SM cannot provide a satisfactory answer.

For decades now the scientific community has been trying to address these problems through exten-

sions of the SM, from minimal ones inspired by supersymmetry to radical proposals rethinking the very

structure of the elementary constituents, like string theory.

So far the experiments have not given any positive indication as to where the answers to the open

questions might lie. Despite transient anomalies or data bumps, the more we probe the Higgs particle
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the more it looks like its “vanilla version”. It is truly fascinating that, in order to give masses to the SM

particles, nature has chosen the simplest solution we came up with, the Higgs field. The SM’s definite

triumph, the discovery of the Higgs particle in 2012, was also a disappointment, because it apparently

closed the door to more exciting possibilities with a clear bearing on new physics.

One of the reasons for the impasse might be that we are at the end of a cycle and the current con-

ceptual framework based on symmetry and locality has been exhausted, or maybe the idea of naturalness,

a basic guiding principle in our understanding of particle physics, is after all a red herring. We still need

to bring gravity into the SM and this opens a plethora of problems and questions, some of them touching

notions like landscapes or multiverses loaded with philosophical or just metascientific ideas.

Cosmology and astroparticle physics might offer some hope. In recent years, we have witnessed

important discoveries, from the first direct detection of gravitational waves in 2015 [168] to the “photo”

of the black hole at the center of the M87 galaxy [169] in 2019. The rapidly developing field of gravita-

tional wave astronomy opens up new windows to phenomena up to now out of observational reach, and

it may allow unprecedented glimpses into the physics of compact astrophysical objects or the very early

universe.

We should not give up hope. Maybe we are on the verge of a golden era of discoveries that will

leave us gasping with awe and laughing with joy in amazement of a new vision of the universe. One

never knows, and dreaming is for free.
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1 Introduction

Neutrinos made their first invisible appearance at the beginning of the 20th century as dark particles in

radioactive β-decay. In this process a nucleus undergoes a transition

A
ZX →A

Z+1 X
′ + e−, (1.1)

emitting an electron, which, by energy–momentum conservation, should have an energy approximately

equal to the difference of the parent and daughter nuclear masses, Q, see Fig. 1.

Expected

Observed

Q
Energy

Number of electrons

Fig. 1: Electron spectrum of β-decay.

The spectrum of the electrons was measured to be instead continuous with an end-point at Q. It

took almost 20 years to come up with an explanation to this apparent violation of energy–momentum

conservation. W. Pauli called for a desperate remedy, suggesting that in the decay, a neutral and light

particle was being emitted together with the electron and escaped undetected. In that case the spectrum of

the electron would indeed be continuous since only the sum of the energy of the electron and the phantom

particle should equal Q. The dark particle got an Italian name: neutrino in honour of E. Fermi, who was

among the first to take seriously Pauli’s hypothesis, from which he constructed the famous theory of

β-decay [1]. In this theory, the interaction responsible for β-decay is shown in Fig. 2, a four-fermion

interaction with strength given by GF , the Fermi constant.

Such interaction implies that neutrinos should also scatter off matter through the inverse beta
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p

n Νe

e

Fig. 2: Fermi four-fermion coupling responsible for β-decay.

process, ν̄ p→ ne+. Bethe and Pearls [2] estimated the cross section for such process to be

σν̄ ≤ 10−44 cm2, Eν̄ ≃ 2 MeV, (1.2)

and concluded that “it is absolutely impossible to observe processes of this kin”. Indeed this tiny cross

section implies that a neutrino has a mean free path of thousands of light-years in water.

Pontecorvo [3] however was among the first to realise that it was not so hopeless. One could

get a few events per day in a ton-mass scale detector with a neutrino flux of 1011ν/cm2/s. Such is the

neutrino flux from a typical nuclear reactor at a few tens of meters distance from its core. Reines and

Cowen (RC) succeeded in detecting reactor neutrinos [4, 5]. They were able to detect neutrinos via

inverse beta decay in a very massive detector thanks to the extremely clean signal which combines the

detection of the positron and the neutron in delayed coincidence, see Fig. 3. This experiment not only led

to the discovery of anti-neutrinos, but introduced a detection technique that is still being used today in

state-of-the-art reactor neutrino experiments and continues to make fundamental discoveries in neutrino

physics.

Fig. 3: Detection technique in the Reines–Cowan experiment.

Shortly after anti-neutrinos were discovered, it was realised that they come in flavours or families.

The muon had been discovered in cosmic rays much earlier, and pion decay to muons is an analogous
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process to β-decay:

π− → µ−ν̄µ. (1.3)

It was understood that also in this case a (anti-)neutrino is emitted but, accompanying a µ instead of an

electron, it had a different identity to that in β-decay. Since the energy transfer in this process is higher

than in β-decay, and the neutrino cross-sections grow fast with energy in the Fermi theory, it would

actually be easier to detect this new type of neutrino.

In 1962 Lederman, Schwartz and Steinberger (LSS) detected for the first time neutrinos from pion

decay by creating the first accelerator neutrino beam [6]. The accelerated proton beam is made to hit a

fixed target producing pions and other hadrons that decay into neutrinos and other particles, mimicking

what happens in cosmic rays. If a thick shield intercepts the secondary particles, all particles except the

neutrinos are stopped, see Fig. 4. Finally a neutrino detector is located behind the shield. A neutrino

event will induce the appearance of a muon in the detector. Again this was such a great idea that we are

still making discoveries with the modern versions of the LSS experiment, in the so-called conventional

accelerator neutrino beams.

Fig. 4: Lederman, Schwartz, Steinberger experiment.

Kinematical effects of neutrino masses were searched for by measuring very precisely the end-

point of the lepton energy spectrum in weak decays, that gets modified if neutrinos are massive. In

particular the most stringent limit is obtained from tritium β-decay for the “electron” neutrino:

3H →3 He + e− + ν̄e. (1.4)

Figure 5 shows the effect of a neutrino mass in the end-point electron energy spectrum in this decay.

The best limit has been recently improved by the Katrin experiment [7]:

mνe < 0.8 eV(90%CL) , (1.5)

which aims at reaching a sensitivity of 0.2 eV. The direct limits from processes involving µ, τ leptons

are much weaker. The best limit on the νµ mass (mνµ < 170 keV [8]) was obtained from the end-

point spectrum of the decay π+ → µ+νµ, while that on the ντ mass was obtained at LEP (mντ <
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Fig. 5: Effect of a neutrino mass in the end-point of the lepton energy spectrum in β decay.

Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3), dSU(2))Y .

(1,2)− 1
2

(3,2) 1
6

(1,1)−1 (3,1) 2
3

(3,1)− 1
3

(
νe
e

)

L

(
ui

di

)

L

eR uiR diR

(
νµ
µ

)

L

(
ci

si

)

L

µR ciR siR

(
ντ
τ

)

L

(
ti

bi

)

L

τR tiR biR

18.2 MeV [9]) from the decay τ → 5πντ . Neutrinos in the Standard Model were therefore conjectured

to be massless.

2 Neutrinos in the Standard Model

The Standard Model (SM) is a gauge theory based on the gauge group SU(3) × SU(2) × UY (1). All

elementary particles arrange in irreducible representations of this gauge group. The quantum numbers

of the fermions (dSU(3), dSU(2))Y are listed in Table 1.

Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under

SU(3) and their hypercharge is −1/2. The electric charge, given by Q = T3 + Y , vanishes. They are

therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of Table 1 are its left–right or chiral asymmetry, and the three-

fold repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions

The left and right entries in Table 1 have well defined chirality, negative and positive respectively. They

are two-component spinors or Weyl fermions, the smallest irreducible representation of the Lorentz

group representing spin 1/2 particles. Only fields with negative chirality carry the SU(2) charge. For

free fermions moving at the speed of light (i.e., massless), the chiral states have a well defined helicity,
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i.e they are eigenstates of the helicity operator, Σ = s·p
|p| , that measures the component of the spin in

the direction of the momentum. This is not inconsistent with Lorentz invariance, since for a fermion

travelling at the speed of light, the helicity is the same in any reference frame. In other words, the

helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good quantum

number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic

building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any

left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed

particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and

an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak

interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious

than for neutrinos since the parity partner of the neutrino does not exist. All the remaining fermions in

the SM come in parity pairs, albeit with different SU(2) × U(1) charges. Since this gauge symmetry

is spontaneously broken, the left and right fields combine into massive Dirac fermions, that is a four

component representation of the Lorentz group and parity, which represents a particle and an antiparticle

with either helicity. The chirality components are recovered from the four-component Dirac spinor by

the chiral projectors

ψL = PLψ =
1− γ5

2
ψ, ψR = PRψ =

1 + γ5
2

ψ. (2.1)

The SM resolved the Fermi interaction as being the result of the exchange of the SU(2) massive

W boson as in Fig. 6.

p

n

W

Νe

e

Fig. 6: β-decay process in the SM.

Neutrinos interact in the SM via charged and neutral currents:

LSM ⊃ −
g√
2

∑

α

ν̄αγµPLlαW
+
µ −

g

2 cos θW

∑

α

ν̄αγµPLναZ
+
µ + h.c. (2.2)

The weak current is therefore V –A since it only couples to the left fields: γµPL ∝ γµ–γµγ5.

This structure is clearly seen in the kinematics of weak decays involving neutrinos, such as the classic
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π
+

+

e
+

ν
e

pp
eν

e

S S
ν

e
e

+

Fig. 7: Kinematics of pion decay: two recoiling particles must have same helicity to ensure angular
momentum conservation.

Fig. 8: Triangle diagrams that can give rise to anomalies. W,B,G are the gauge bosons associated to
the SU(2), UY (1), SU(3) gauge groups, respectively, and g is the graviton

example of pion decay to eν̄e or µν̄µ. In the limit of vanishing electron or muon mass, this decay is

forbidden, because the spin of the initial state is zero and thus it is impossible to conserve simultaneously

momentum and angular momentum if the two recoiling particles must have opposite helicities, as shown

in Fig. 7. The decay amplitude is therefore proportional to the lepton mass and the ratio of the decay

rates to electrons and muons, in spite of the larger phase space in the former, is strongly suppressed by

the factor
(
me
mµ

)2
∼ 2× 10−5.

Another profound consequence of the chiral nature of the weak interaction is anomaly cancella-

tion. The chiral coupling of fermions to gauge fields leads generically to inconsistent gauge theories due

to chiral anomalies: if any of the diagrams depicted in Fig. 8 is non-vanishing, the weak current which is

conserved at tree level is not at one loop, implying a catastrophic breaking of gauge invariance. Anomaly

cancellation is the requirement that all these triangle diagrams vanish, which imposes strong constraints

on the hypercharge assignments of the fermions in the SM, which are miraculously satisfied:

GGB︷ ︸︸ ︷∑

i=quarks

Y L
i − Y R

i =

WWB︷ ︸︸ ︷∑

i=doublets

Y L
i =

Bgg︷ ︸︸ ︷∑

i

Y L
i − Y R

i =

B3

︷ ︸︸ ︷∑

i

(Y L
i )3 − (Y R

i )3 = 0, (2.3)

where Y L/R
i are the hypercharges of the left/right components of the fermionic field i, and the

triangle diagram corresponding to each of the sums is indicated above the bracket.

2.2 Family structure

Concerning the family structure, we know, thanks to neutrinos, that there are exactly three families in

the SM. An extra SM family with quarks and charged leptons so heavy that cannot be produced at the

energies explored so far in colliders, would also have massless neutrinos that would contribute to the
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Fig. 9: Z0 resonance from the LEP experiments. Data are compared to the case of Nν = 2, 3 and 4

invisible Z0 decay:

Z0 → ν̄ανα. (2.4)

The invisible width of the Z0 has been measured at LEP with an impressive precision, as shown in

Fig. 9 [10]. This measurement has been recently revised [11, 12] with a reduced systematic error and

excludes any number of standard families different from three:

Nν =
Γinv

Γν̄ν
= 2.9963± 0.00074. (2.5)

3 Massive neutrinos

Neutrinos are ubiquitous in our surroundings. If we open our hand, it will be crossed each second by

about O(1012) neutrinos from the sun, about O(10) from the atmosphere, about O(109) from natural

radioactivity in the earth and even O(1012) relic neutrinos from the Big Bang. In 1987, the Kamiokande

detector in Japan observed the neutrino burst from a SuperNova that exploded in the Large Magellanic

Cloud, at a distance of 160 thousand light years from earth. For a few seconds, the supernova neutrino

flux was of the same order of magnitude as the flux of solar neutrinos!

Using many of these sources as well as others from reactors and accelerators, a decade of revolu-

tionary neutrino experiments have demonstrated that, for the time being, neutrinos are the less standard

of the SM particles. They have tiny masses and this necessarily requires new degrees of freedom with

respect to those in Table 1.

A massive fermion necessarily has two states of helicity, since it is always possible to reverse the

helicity of a state that moves at a slower speed than light by looking at it from a boosted reference frame.

What is the right-handed state of the neutrino? It turns out there are two ways to proceed.
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Let us consider the case of free fermions. A four-component Dirac fermion can be made massive

adding the following mass term to the Lagrangian:

−LDirac
m = mψ̄ψ = m(ψL + ψR)(ψL + ψR) = m(ψLψR + ψRψL). (3.1)

A Dirac mass term couples the left-handed and right-handed chiral components of the fermion field, and

therefore this coupling vanishes identically in the case of a Weyl fermion.

Can one give a mass to a two-component Weyl fermion? As first noticed by Majorana, this indeed

can be done with the following mass term:

−LMajorana
m =

m

2
ψcψ +

m

2
ψψc =

m

2
ψTCψ +

m

2
ψ̄Cψ̄T , (3.2)

where

ψc ≡ Cψ̄T = Cγ0ψ
∗. (3.3)

It is easy to check that the Majorana mass term satisfies the required properties:

1) It can be constructed with a two-component spinor or Weyl fermion: if ψ = PLψ

ψTCψ = ψTL iσ2ψL, (3.4)

which does not vanish in the absence of the right chiral component.

2) It is Lorentz invariant. It is easy to show, using the properties of the gamma matrices that under a

Lorentz transformation ψ and ψc transform in the same way,

ψ → e−
i
4
ωµνσµν

ψ ≡ S(Λ)ψ, ψc → S(Λ)ψc, (3.5)

with σµν ≡= i
4 [γµ, γν ], and therefore the bilinear ψcψ is Lorentz invariant.

3) The equation of motion derived from Eq. (3.2) for a free majorana fermion has plane wave solu-

tions satisfying the relativistic relation for a massive fermion:

E2 − p2 = m2.

In the SM none of the mass terms of Eqs. (3.1) and (3.2) are gauge invariant. Spontaneous sym-

metry breaking allows to generate the Dirac mass term from Yukawa couplings for all fermions in the

SM, while the Majorana mass term can only be generated for neutrinos. Let us see how this works.

3.1 Massive Dirac neutrinos

We can enlarge the SM by adding a set of three right-handed neutrino, νR states, with quantum numbers

(1, 1)0, i.e. singlets under all the gauge groups. A new Yukawa (Fig. 10) coupling of these new states

with the lepton doublet is exactly gauge invariant and therefore can be added to the SM:

−LDirac
m = L λΦ̃ νR + h.c. (3.6)
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Fig. 10: Neutrino Yukawa coupling.
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Fig. 11: Fermion spectrum in the Standard Model.

where L = (ν l) is the lepton doublet, Φ̃ ≡ iσ2ϕ
∗ and ϕ is the Higgs field, with quantum numbers

(1,2)− 1
2
. Upon spontaneous symmetry breaking the scalar doublet gets a vacuum expectation value

⟨Φ̃⟩ = ( v√
2
0), and therefore a neutrino Dirac mass term is generated

−LDirac
m → − νL λ

v√
2
νR + h.c. (3.7)

The neutrino mass matrix is proportional to the Higgs vacuum expectation value, in complete analogy to

the remaining fermions:

mν = λ
v√
2
. (3.8)

There are two important consequences of Dirac neutrinos. First, there is a new hierarchy problem

in the SM to be explained: why are neutrinos so much lighter than the remaining leptons, even those in

the same family (see Fig. 11), if they get the mass in the same way? This requires a large hierarchy in

the Yukawa couplings that should differ in many orders of magnitude. Secondly, an accidental global

symmetry, lepton number L, that counts the number of leptons minus that of antilepton, remains exactly

conserved at the classical level,1 just as baryon number, B, is.

1As usual B+ L is broken by the anomaly and only B− L remains exact at all orders.
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Fig. 12: Weinberg operator.

3.2 Massive Majorana neutrinos

Since the combination L̄ϕ̃ is a singlet under all gauge groups, the Majorana-type contraction (see

Fig. 12):

−LMajorana
m = L̄ϕ̃ αCϕ̃T L̄T + h.c., (3.9)

is gauge invariant. This term, first writen down by Weinberg [13], gives rise to a Majorana mass term for

neutrinos upon spontaneous symmetry breaking:

−LMajorana
m → ν̄Lα

v2

2
Cν̄TL + h.c., (3.10)

The neutrino mass matrix in this case is given by:

mν = αv2. (3.11)

The Weinberg operator has dimension 5, and therefore the coupling [α] = −1. We can write it in terms

of a dimensionless coupling as

α =
λ

Λ
, (3.12)

where Λ is a new physics scale, in principle unrelated to the electroweak scale.

The consequences of the SM neutrinos being massive Majorana particles are profound. If the scale

Λ is much higher than the electroweak scale v, a strong hierarchy between the neutrino and the charged

lepton masses arises naturally. If all dimensionless couplings λ are of the same order, neutrino masses are

suppressed by a factor v/Λ with respect to the charged fermions. On the other hand, Weinberg’s operator

violates lepton number L and provides a new seed for generating the matter/antimatter asymmetry in the

Universe as we will see.

Even though the Majorana mechanism to generate neutrino masses does not involve any extra

degree of freedom with respect to those in the SM, the existence of the Weinberg coupling implies that

cross sections involving for example the scattering of neutrinos and the Higgs will grow with energy,
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ultimately violating unitarity. The situation is analogous to that of the Fermi interaction of Fig. 2. The

SM resolved this interaction at higher energies as being the result of the interchange of a heavy vector

boson, Fig. 6. The Majorana coupling, if it exists, should also represent the effect at low energies of

the exchange of one or more unknown massive states. What those states are remains one of the most

interesting open questions in neutrino physics.

Finally, it is interesting to note that the anomaly cancellation conditions fix all the hypercharges

in this case (i.e., there is only one possible choice for the hypercharges that satisfies Eq. (2.3)), which

implies that electromagnetic charge quantization is the only possibility in a field theory with the same

matter content as the SM.

3.3 Neutrino masses and physics beyond the Standard Model

Any new physics beyond the standard model (BSM) characterized by a high scale, Λ, will induce effects

at low energies E ≪ Λ that can be described by an effective field theory [14, 15] of the form:

Leff = LSM +
∑

i

αi
Λ
Od=5
i +

∑

i

βi
Λ2
Od=6
i + ... (3.13)

It is the most general Lagrangian which includes the SM and an infinite tower of operators constructed

out of the SM fields respecting Lorentz and gauge symmetries. In principle such a theory depends on

infinite new couplings, one per new independent operator, and it is therefore not predictive. However, if

we are interested in describing processes at energies E ≪ Λ, we can truncate the sum of operators up to

a given dimension d in such a way that our predictions are correct up to order
(
E
Λ

)d−4
.

The operators of lowest dimension are the most relevant at low energies. It turns out that there

is only one such operator of the lowest possible dimension, d = 5, which is precisely the Weinberg

operator of Eq. (3.9). In this perspective, it is natural to expect that the first indication of BSM physics

is precisely Majorana neutrino masses. While many types of BSM theories can give rise to neutrino

masses, generically they will induce other new physics effects represented by the operators of d = 6 and

higher.

4 Neutrino masses and lepton mixing

Neutrino masses, whether Dirac or Majorana, imply lepton mixing [16, 17]. The Yukawa coupling in

Eq. (3.6) is a generic complex matrix in flavour space, while that in Eq. (3.9) is a generic complex

symmetric matrix, and the same holds for the corresponding leptonic mass matrices:

−LDirac
m = νiL (Mν)ij ν

j
R + liL (Ml)ij l

j
R + h.c. (4.1)

−LMajorana
m =

1

2
νiL (Mν)ij ν

cj
L + liL (Ml)ij l

j
R + h.c. (4.2)

In the Dirac case, the two mass matrices can be diagonalized by a bi-unitary rotation:

Mν = U †
νDiag(m1,m2,m3)Vν , Ml = U †

l Diag(me,mµ,mτ )Vl, (4.3)

150



NEUTRINO PHYSICS

while in the Majorana case, the neutrino mass matrix, being symmetric, can be taken to a diagonal form

by

Mν = U †
νDiag(m1,m2,m3)U

∗
ν . (4.4)

We can go to the mass basis by rotating the fields as:

ν ′R = VννR, ν
′
L = UννL, l

′
R = VllR, l

′
L = UllL. (4.5)

In this basis the charged-current interactions are no longer diagonal, in complete analogy with the quark

sector (see Fig. 13):

LleptonCC = − g√
2
l̄′iγµPLW

+
µ (U †

l Uν)ij︸ ︷︷ ︸
UPMNS

ν ′j + h.c. (4.6)

The mixing matrix in the lepton sector is referred to as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix, analogous to the CKM one in the quark sector.

W
+

_

i

u
j

d

j

W
+

l
_

i

ν

Fig. 13: Quark and lepton mixing.

The number of physical parameters in the lepton mixing matrix, UPMNS, can easily be computed by

counting the number of independent real and imaginary elements of the Yukawa matrices and eliminating

those that can be absorbed in field redefinitions. The allowed field redefinitions are the unitary rotations

of the fields that leave the rest of the Lagrangian invariant (only those that are not symmetries of the full

Lagrangian when lepton masses are included are efficient in absorbing flavour parameters).

In the Dirac case, it is possible to rotate independently the left-handed lepton doublet, together

with the right-handed charged leptons and neutrinos, that is U(n)3, for a generic number of families n.

However, this includes total lepton number which remains a symmetry of the massive theory and thus

cannot be used to reduce the number of physical parameters in the mass matrix. The parameters that can

be absorbed in field redefinitions are thus the parameters of the group U(n)3/U(1) (that is 3(n2−n)
2 real,

3(n2+n)−1
2 imaginary).

In the case of Majorana neutrinos, there is no independent right-handed neutrino field, nor is lepton

number a good symmetry. Therefore the number of field redefinitions is the number of parameters of the

elements in U(n)2 (that is n2 − n real and n2 + n imaginary).

The resulting real physical parameters are the mass eigenstates and the mixing angles, while the

resulting imaginary parameters are CP-violating phases. All this is summarized in Table 2. Dirac and

Majorana neutrinos differ only in the number of observables phases. For three families (n = 3), there is
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Table 2: Number of real and imaginary parameters in the Yukawa matrices, of those that can be absorbed
in field redefinitions. The difference between the two is the number of observable parameters: the lepton
masses (m), mixing angles (θ), and imaginary phases (ϕ).

Yukawas Field redefinitions No. m No. θ No. ϕ

Dirac λl, λν U(n)3/U(1)

Real, Im 2n2, 2n2
3(n2 − n)

2
,
3(n2 + n)− 1

2
2n

n2 − n
2

(n− 2)(n− 1)

2

Majorana λl, α
T
ν = αν U(n)2

Real,Im n2 + n(n+1)
2 , n2 + n(n+1)

2 n2 − n, n2 + n 2n
n2 − n

2

n2 − n
2

just one Dirac phase and three in the Majorana case.

A standard parametrization of the mixing matrices for Dirac, UPMNS, and Majorana, ŨPMNS, is

given by

UPMNS =



1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13






c12 s12 0

−s12 c12 0

0 0 1


 ,

ŨPMNS = UPMNS(θ12, θ13, θ23, δ)



1 0 0

0 eiα1 0

0 0 eiα2


 , (4.7)

where in all generality θij ∈ [0, π/2] and δ, α1, α2 ∈ [0, 2π].

5 Majorana versus Dirac

It is clear that establishing the Majorana nature of neutrinos is of great importance, since it would imply

the existence of a new physics scale. In principle there are very clear signatures, such as the one depicted

in Fig. 14, where a νµ beam from π+ decay is intercepted by a detector, D. In the Dirac case, the

interaction of neutrinos on the detector via a charged current interaction will produce only a µ− in the

final state. If neutrinos are Majorana, a wrong-sign muon in the final state is also possible. Unfortunately

the rate for µ+ production is suppressed by mν/E in amplitude with respect to the µ−. For example, for

Eν = O(1) GeV and mν ∼ O(1) eV the cross section for this process will be roughly 10−18 times the

usual CC neutrino cross section.

The best hope of observing a rare process of this type seems to be the search for neutrinoless

double-beta decay (2β0ν), the right diagram of Fig. 15. The background to this process is the standard

double-beta decay depicted on the left of Fig. 15, which has been observed to take place for various

isotopes with a lifetime of T2β2ν > 1019–1021 years.

If the source of this process is just the Majorana ν mass, the inverse lifetime for this process is
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π+ ν

D µ+

Majorana

π+ ν

µ−

D

Dirac or Majorana

Fig. 14: A neutrino beam from π+ decay (νµ) could interact in the magnetized detector producing a µ+

only if neutrinos are Majorana.

given by

T−1
2β0ν ≃ G0ν

︸︷︷︸
Phase

∣∣M0ν
∣∣2

︸ ︷︷ ︸
NuclearM.E.

∣∣∣∣∣
∑

i

(
Ũ eiPMNS

)2
mi

∣∣∣∣∣

2

︸ ︷︷ ︸
|mee|2

. (5.1)

In spite of the suppression in the neutrino mass (over the energy of this process), the neutrinoless

mode has a phase factor orders of magnitude larger than the 2ν mode, and as a result present experiments

searching for this rare process have already set bounds on neutrino masses in the eV range as shown in

Table 3.

W

2β2ν

W

eL

eL

νeL

νeL

uL

uLdL

dL

W

2β0ν

×

W

eL

eL

mL

νeL

νeL

uL

uLdL

dL

Figure 1: 2β decay: normal (left) and neutrinoless (right)

1

Fig. 15: 2β decay: normal (left) and neutrinoless (right).

Table 3: Present bounds at 90%CL from some recent neutrinoless double-beta-decay experiments [18].

Experiment Nucleus |mee|
EXO-200 136Xe < 0.093–0.286 eV
AMoRE 100Mo < 1.2–2.1 eV
GERDA 76Ge < 0.079–0.18 eV
KamLAND-Zen 136Xe < 0.061–0.165 eV
CUORE 130Te < 0.11–0.52 eV
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6 Neutrino oscillations

The most spectacular implication of neutrino masses and mixings is the macroscopic quantum phe-

nomenon of neutrino oscillations, first introduced by B. Pontecorvo [19]. The Nobel Prize of 2015 was

awarded to T. Kajita (from the SuperKakiokande collaboration) and A. B. McDonald (from the SNO

collaboration) for the discovery of neutrino oscillations, which shows that neutrinos have a mass.

We have seen that if neutrinos are massive the neutrino flavour fields (νe, νµ, ντ ), that couple via

CC to the leptons (e, µ, τ) , are unitary combinations of the mass eigenstates fields (ν1, ν2, ν3):




νe

νµ

ντ


 = UPMNS(θ12, θ13, θ23,phases)




ν1

ν2

ν3


 . (6.1)

In a neutrino oscillation experiment, neutrinos are produced by a source (e.g. pion or µ decays, nuclear

reactions, etc) and are detected some macroscopic distance, L, away from the production point. They are

produced and detected via weak processes in combination with a given lepton flavour, that is in flavour

states or a combination of mass eigenstates. As these states propagate undisturbed in space-time from

the production to the detection regions, the different mass eigenstates, having slighly different phase

velocities, pick up different phases, resulting in a non-zero probability that the state that arrives at the

detector is in a different flavour combination to the one originally produced, see Fig. 16. The probability

for this flavour transition oscillates with the distance travelled.

Two ingredients are mandatory for this phenomenon to take place:

– neutrinos must keep quantum coherence in propagation over macroscopic distances, which is only

possible because they are so weakly interacting

– there is sufficient uncertainty in momentum at production and detection so that a coherent flavour

state can be produced2.

The master formula for the oscillation probability of να turning into a νβ is

P (να → νβ) =
∑

i,j

U∗
αiUβiUαjU

∗
βje

−i
∆m2

jiL

2|p| , (6.2)

where ∆m2
ji ≡ m2

i − m2
j , Uαi are the elements of the PMNS matrix, L is the baseline and p is the

neutrino momentum.

There are many ways to derive this formula. The simplest way that appears in most textbooks

uses simple quantum mechanics, where neutrinos are treated as plane waves. A slightly more rigorous

method treats neutrinos as wave packets. Finally, it is also possible to derive it from QFT, where neutrinos

are treated as intermediate virtual states. The different methods make more or less explicit the basic

necessary conditions of neutrino oscillations mentioned above, and therefore are more or less prone to

quantum paradoxes.

2If the momentum uncertainty is sufficiently small one could kinematically distinguish the mass eigenstate being pro-
duced/detected.
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∑
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2

Fig. 16: Neutrino oscillations.

6.1 Plane wave derivation

Let us suppose that a neutrino of flavor α is produced at t0. It is therefore a superposition of the mass

eigenstates that we assume to be plane waves with spatial momentum p:

|να(t0)⟩ =
∑

i

U∗
αi|νi(p)⟩. (6.3)

The mass eigenstates are eigenstates of the free Hamiltonian:

Ĥ|νi(p)⟩. = Ei(p)|νi(p)⟩, Ei(p)
2 = p2 +m2

i . (6.4)

The time evolution operator from t0 → t is given by e−iĤ(t−t0) and therefore the state at time t is given

by

|να(t)⟩ = e−iĤ(t−t0)|να(t0)⟩ =
∑

i

U∗
αie

−iEi(p)(t−t0)|νi(p)⟩. (6.5)

The probability that at time t the state is in flavour β is

P (να → νβ)(t) = |⟨νβ|να(t)⟩|2 =
∣∣∣∣∣
∑

i

UβiU
∗
αie

−iEi(p)(t−t0)
∣∣∣∣∣

2

, (6.6)

where we have used the orthogonality relation ⟨νi(p)|νj(p)⟩ = δij .

Since the neutrinos are ultrarelativistic, we can approximate

Ei(p)− Ej(p) ≃
1

2

m2
i −m2

j

|p| +O(m4), (6.7)

and L ≃ (t− t0), so that the master formula in Eq. (6.2) is recovered.

The well-founded criticism to this derivation can be summarized in the following questions: 1)

why are all mass eigenstates of equal spatial momentum, p? 2) is the plane wave treatment justified

when the production and detection regions are localized? 3) why is it necessary to do the t − t0 → L

conversion?

A number of quantum paradoxes can be formulated from these questions, that can be resolved only

when the two basic conditions for neutrino oscillations above are made explicit. This can be achieved in
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a wave packet treatment.

6.2 Wave packet derivation

Many authors have derived the master formula treating neutrinos involved as wave packets. For exam-

ples, see Refs. [20, 21].

A neutrino of flavour α is produced at time and position (t0,x0) = (0,0) as a superposition

of source wave packets, fSi (p), one for each mass eigenstate. The state at time and position (t,x) is

therefore

|να(t,x)⟩ =
∑

i

U∗
αi

∫

p
fSi (p)e

−iEi(p)teipx|νi⟩. (6.8)

For simplicity we will assume Gaussian wave packets, with an average momentum Qi and width σS :

fSi (p) ∝ e−(p−Qi)
2/2σ2

S . (6.9)

Note that we have lifted the assumption that all mass eigenstates have the same spatial momentum.

A neutrino of flavour β is detected at time and position (T,L) as a superposition of detector wave

packets, fDi (p), created at this space-time position. The state detected is therefore

|νβ(t,x)⟩ =
∑

j

U∗
βj

∫

p
fDj (p)e−iEj(p)(t−T )eip(x−L)|νj⟩, (6.10)

where we also assume Gaussian wave packets at detection, with average momentum Q′
j and width σD:

fDj (p) ∝ e−(p−Q′
j)

2/2σ2
D . (6.11)

The probability amplitude for the first state to turn into the second is therefore

A(να → νβ) ∝
∫
dx⟨νβ(t,x)|να(t,x)⟩ =

∑

i

U∗
αiUβi

∫

p
e−iEi(p)T eipLfSi (p)f

D∗
i (p) (6.12)

For Gaussian wave packets we can rewrite the product of the S and D wave packets as a Gaussian wave

packet:

fD∗
i (p)fSi (p) ∝ fovi (p)e−(Qi−Q′

i)
2/4(σ2

S+σ
2
D), (6.13)

where the overlap wave packet

fovi (p) ≡ e−(p−Q̄i)
2/2σ2

ov , Q̄i ≡
(
Qi

σ2S
+

Q′
i

σ2D

)
σ2ov, σ

2
ov ≡

1

1/σ2S + 1/σ2D
. (6.14)

The momentum integral in Eq. (6.12) can be done analytically if we approximate

Ei(p) ≃ Ei(Q̄i) +
∑

k

∂Ei
∂pk

∣∣∣∣
Q̄i

(pk − (Q̄i)k) + ... = Ei(Q̄i) + vi(p− Q̄i) + ..., (6.15)
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where vi is the overlap wave packet group velocity.

The amplitude obtained is

A(να → νβ) ∝
∑

i

U∗
αiUβie

−iEi(Q̄i)T eiQ̄iLe−(Qi−Q′
i)

2/4(σ2
S+σ

2
D)e−(L−viT )

2σ2
ov/2. (6.16)

Note that the two last exponential factors impose momentum conservation (the average momentum of

the source and detector wave packets should be equal up to the momentum uncertainty) and the classical

relation L = viT within the spatial uncertainty, σ−1
ov .

Since we usually do not measure the detection time T in a neutrino oscillation experiment, we

should integrate the probability over this variable. For simplicity we assume Qi ≃ Q′
i and parallel to L.

In this case, the integral gives:

P (να → νβ) ∝
∫ ∞

−∞
dT |A(να → νβ)|2

∝
∑

i,j

U∗
αiUβiUαjU

∗
βje

−i
∆m2

jiL

2|p| e
−
(

L
Lcoh(i,j)

)2

︸ ︷︷ ︸
coherence

e
−
(

Ei(Q̄i)−Ej(Q̄j)

2σov

)2

︸ ︷︷ ︸
momentum uncertainty

(6.17)

where the coherence length

Lcoh(i, j) ≃ σov
|vi − vj |√
v2
i + v2

j

, (6.18)

represents the distance travelled by the two wave packets, moving at slightly different group velocities vi
and vj , such that the center of the two wave packets have separated spacially a distance of the order of the

spatial uncertainty σ−1
ov . For L ≥ Lcoh(i, j) the coherence between the wave packets i, j is lost and the

corresponding terms in the oscillation probability exponentially suppressed. The last exponential factor

in Eq. (6.17) leads to a suppression of the oscillation probability when the difference in average energies

of the two wave packets i, j is larger than the momentum uncertainty of the overlap wave packet, σov.

Note that σov is dominated by the smallest of the production and detection uncertainties, and therefore

both should be large enough to ensure that the wave packets of the different mass eigenstates remain

coherent. To the extent that L ≪ Lcoh and |Ei − Ej | ≪ Min(σS , σD), the probability reduces to

the master formula, with one caveat: we have lost the normalization along the way. This is usually

unavoidable in the wave packet derivation. The right normalization can be imposed only a posteriori, for

example, from unitarity,
∑

β P (να → νβ) = 1.

In summary, the wave packet derivation is clearly more physical, as it makes explicit the two nec-

essary conditions for neutrino oscillations to take place: coherence and sufficient momentum uncertainty.

6.3 QFT derivation

Since we are dealing with relativistic quantum mechanics, QFT should be the appropriate framework to

derive the oscillation probability.

In QFT we consider scattering processes where some asymptotic in-states that we can prepare
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Fig. 17: Neutrino oscillations in QFT.

in the infinite past come close together at some finite time in an interaction region and scatter off into

other asymptotic out-states at time t → ∞. The probability amplitude for this process is just the scalar

product of the in and out states. In computing this amplitude we usually idealise the asymptotic states

as plane waves, which is a good approximation provided the interaction region is small compared to the

Compton wavelength of the scattering states. In reality however the proper normalization of the scattering

probability as a probability per unit time and volume requires that the initial states are normalized wave

packets.

In a neutrino oscillation experiment, the asymptotic states are not the neutrinos, we cannot re-

ally prepare the neutrino states, but the particles that produce the neutrino at the source and those that

interact with the neutrino in the detector. The neutrino is just a virtual particle being exchanged be-

tween the source and detector, see Fig. 17, and in this perspective the interaction region is as large as

the baseline and therefore macroscopic, in particular much larger than the Compton wavelength of the

asymptotic states involved. It is mandatory therefore to consider the in-states as wave packets to ensure

the localization of the source and detector.

Consider for example a neutrino beam produced from pions at rest and a detector some distance

apart, where neutrinos interact with nucleons that are also at rest, via a quasi-elastic event:

πn→ pµlβ. (6.19)

The in-states therefore will be the two wave packets representing a static pion that decays and is localized

at time and position (0,0) within the uncertainty better defined than the decay tunnel, and a nucleon that

is static and localized within the detector, at time and position (T,L), when the interaction takes place.

The out-states are the muon produced in pion decay and the lepton and hadron produced in the quasi-

elastic event. The probability amplitude for the whole process includes the pion decay amplitude, the

neutrino propagation and the scattering amplitude at the detector. Therefore in order to extract from the

full amplitude an oscillation probability, it must be the case that there is factorization of the whole prob-

ability into three factors that can be identified with the flux of neutrino from pion decay, an oscillation
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probability and a neutrino cross section.

By explicit calculation [22], it is possible to show that such factorization does indeed take place

as long as kinematical effects of neutrino masses can be neglected. The oscillation probability defined

as the ratio of the probability for the whole process and the product of the neutrino flux from pion decay

and the neutrino scattering cross-section is properly normalized.

6.4 Neutrino oscillations in vacuum

Let us analyse more closely the master formula Eq. (6.2). The probability is a superposition of oscillatory

functions of the baseline with wavelengths that depend on the neutrino mass differences ∆m2
ij = m2

j −
m2
i , and amplitudes that depend on different combinations of the mixing matrix elements. Defining

W ij
αβ ≡ [UαiU

∗
βiU

∗
αjUβj ] and using the unitarity of the mixing matrix, we can rewrite the probability in

the more familiar form:

P (να → νβ) = δαβ − 4
∑

j>i

Re[Wij
αβ] sin

2

(
∆m2

ij L

4Eν

)

∓ 2
∑

j>i

Im[Wij
αβ] sin

(
∆m2

ij L

2Eν

)
, (6.20)

where the ∓ refers to neutrinos/antineutrinos and |p| ≃ Eν .

We refer to an appearance or disappearance oscillation probability when the initial and final

flavours are different (α ̸= β) or the same (α = β), respectively. Note that oscillation probabilities

show the expected GIM suppression of any flavour changing process: they vanish if the neutrinos are

degenerate.

In the simplest case of two-family mixing, the mixing matrix depends on just one mixing angle:

UPMNS =

(
cos θ sin θ

− sin θ cos θ

)
, (6.21)

and there is only one mass square difference ∆m2. The oscillation probability of Eq. (6.20) simplifies to

the well-known expression where we have introduced convenient physical units:

P (να → νβ) = sin2 2θ sin2
(
1.27

∆m2(eV2)L(km)

Eν(GeV)

)
, α ̸= β .

P (να → να) = 1− P (να → νβ). (6.22)

The probability is the same for neutrinos and antineutrinos, because there cannot be CP violation when

there are only two families. Indeed CPT implies that the disappearance probabilities are the same for

neutrinos and antineutrinos, and therefore according to Eq. (6.22) the same must hold for the appearance

probability. The latter is a sinusoidal function of the distance between source and detector, with a period

determined by the oscillation length:

Losc (km) = π
Eν(GeV)

1.27∆m2(eV2)
, (6.23)
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Fig. 18: Left: two-family appearance oscillation probability as a function of the baseline of L at fixed
neutrino energy. Right: same probability shown as a function of the neutrino energy for fixed baseline.

which is proportional to the neutrino energy and inversely proportional to the neutrino mass square differ-

ence. The amplitude of the oscillation is determined by the mixing angle. It is maximal for sin2 2θ = 1

or θ = π/4. The oscillation probability as a function of the baseline is shown on the left plot of Fig. 18.

In many neutrino oscillation experiments the baseline is not varied but the oscillation probability

can be measured as a function of the neutrino energy. This is shown on the right plot of Fig. 18. In this

case, the position of the first maximum contains information on the mass splitting:

Emax(GeV) = 1.27
∆m2(eV2)L(km)

π/2
. (6.24)

An optimal neutrino oscillation experiment in vacuum is such that the ratio of the neutrino

energy and baseline are tuned to be of the same order as the mass splitting, E/L ∼ ∆m2. If

E/L ≫ ∆m2, the oscillation phase is small and the oscillation probability is approximately P (να →
νβ) ∝ sin2 2θ(∆m2)2, so the mixing angle and mass splitting cannot be disentangled. The opposite limit

E/L≪ ∆m2 is the fast oscillation regime, where one can only measure an energy or baseline-smeared

oscillation probability

⟨P (να → νβ)⟩ ≃
1

2
sin2 2θ, (6.25)

sensitivity to the mass splitting is lost in this limit. It is interesting, and reassuring, to note that this

averaged oscillation regime gives the same result as the flavour transition probability in the case of

incoherent propagation (L≫ Lcoh):

P (να → νβ) =
∑

i

|UαiUβi|2 = 2 cos2 θ sin2 θ =
1

2
sin2 2θ. (6.26)

Flavour transitions via incoherent propagation are sensitive to mixing but not to the neutrino mass split-

ting. The smoking gun for neutrino oscillations is not the flavour transition, which can occur in the

presence of neutrino mixing without oscillations, but the peculiar L/Eν dependence. An optimal exper-

iment that intends to measure both the mixing and the mass splitting requires running E/L ∼ ∆m2.
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6.5 Neutrino propagation in matter

When neutrinos propagate in matter (earth, sun, etc.), their propagation is modified owing to coherent

forward scattering on electrons and nucleons [23]:
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dL
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Figure 1: 2β decay: normal (left) and neutrinoless (right)
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The effective Hamiltonian density resulting from the charged current interaction is

HCC = 2
√
2GF [ēγµPLνe][ν̄eγ

µPLe] = 2
√
2GF [ēγµPLe][ν̄eγ

µPLνe]. (6.27)

Since the medium is not polarized, the expectation value of the electron current is simply the number

density of electrons:

⟨ēγµPLe⟩unpol.medium = δµ0
Ne

2
. (6.28)

Including also the neutral current interactions in the same way, the effective Hamiltonian for neutrinos

in the presence of matter is

⟨HCC +HNC⟩medium = ν̄Vmγ
0(1− γ5)ν (6.29)

Vm =




GF√
2

(
Ne − Nn

2

)
0 0

0 GF√
2

(
−Nn

2

)
0

0 0 GF√
2

(
−Nn

2

)


 , (6.30)

where Nn is the number density of neutrons. Due to the neutrality of matter, the proton and electron

contributions to the neutral current potential cancel.

The plane wave solutions to the modified Dirac equation satisfy a different dispersion relation

E2 = |p|2 +M2
ν ± 4EVm, (6.31)

where ± is for neutrinos/antineutrinos. The phases of neutrino oscillation phenomena change.

The effect of matter can be simply accommodated in an effective mass matrix:

M̃2
ν =M2

ν ± 4EVm. (6.32)
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The effective mixing matrix ṼMNS is the one that takes us from the original flavour basis to that which

diagonalizes this effective mass matrix:



m̃2

1 0 0

0 m̃2
2 0

0 0 m̃2
3


 = Ṽ †

MNS


M2

ν ± 4E



Ve 0 0

0 Vµ 0

0 0 Vτ





 ṼMNS. (6.33)

The effective mixing angles and masses depend on the energy.

The matter potential in the center of the sun is Vm ∼ 10−12 eV and in the earth Vm ∼ 10−13 eV.

In spite of these tiny values, these effects are non-negligible in neutrino oscillations.

6.6 Neutrino oscillations in constant matter

In the case of two flavours, the effective mass and mixing angle have relatively simple expressions:

∆m̃2 =

√(
∆m2 cos 2θ ∓ 2

√
2EGF Ne

)2
+ (∆m2 sin 2θ)2, (6.34)

sin2 2θ̃ =

(
∆m2 sin 2θ

)2

(∆m̃2)2
, (6.35)

where the sign ∓ corresponds to neutrinos/antineutrinos. The corresponding oscillation amplitude has a

resonance [24], when the neutrino energy satisfies

√
2GF Ne ∓

∆m2

2E
cos 2θ = 0 ⇒ sin2 2θ̃ = 1, ∆m̃2 = ∆m2 sin 2θ. (6.36)

The oscillation amplitude is therefore maximal, independently of the value of the vacuum mixing angle.

We also note that

– oscillations vanish at θ = 0, because the oscillation length becomes infinite for θ = 0;

– the resonance is only there for ν or ν̄ but not both;

– the resonance condition depends on the sign(∆m2 cos 2θ):

resonance observed in ν → sign(∆m2 cos 2θ) > 0,

resonance observed in ν̄ → sign(∆m2 cos 2θ) < 0.

The origin of this resonance is a would-be level crossing in the case of vanishing mixing. In the

case of two families, for θ = 0, the mass eigenstates as a function of the electron number density, at

fixed neutrino energy, are depicted in Fig. 19 for ∆m2 > 0. As soon as the mixing is lifted from zero, no

matter how small, the crossing cannot take place. The resonance condition corresponds to the minimum

level-splitting point.

6.7 Neutrino oscillations in variable matter

In the sun the density of electrons is not constant. However, if the variation is sufficiently slow, the

eigenstates will change slowly with the density, and we can assume that the neutrino produced in an
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Fig. 19: Mass eigenstates as a function of the electron number density at fixed neutrino energy for θ = 0
(left) and θ ̸= 0 (right).

eigenstate in the center of the sun, remains in the same eigenstate along the trajectory. This is the so-

called adiabatic approximation.

We consider here two-family mixing for simplicity. At any point in the trajectory, it is possible to

diagonalize the Hamiltonian fixing the matter density to that at the given point. The resulting eigenstates

can be written as

|ν̃1⟩ = |νe⟩ cos θ̃ − |νµ⟩ sin θ̃, (6.37)

|ν̃2⟩ = |νe⟩ sin θ̃ + |νµ⟩ cos θ̃. (6.38)

Neutrinos are produced close to the centre x = 0 where the electron density is Ne(0). Let us suppose

that it satisfies

2
√
2GFNe(0)≫ ∆m2 cos 2θ. (6.39)

Then the diagonalization of the mass matrix at this point gives

θ̃ ≃ π

2
⇒ |νe⟩ ≃ |ν̃2⟩, (6.40)

in such a way that an electron neutrino is mostly the second mass eigenstate. When neutrinos exit the

sun, at x = R⊙, the matter density falls to zero, Ne(R⊙) = 0, and the local effective mixing angle is the

one in vacuum, θ̃ = θ. If θ is small, the eigenstate ν̃2 is mostly νµ according to Eq. (6.38).

Therefore an electron neutrino produced at x = 0 is mostly the eigenstate ν̃2, but this eigenstate

outside the sun is mostly νµ. There is maximal νe → νµ conversion if the adiabatic approximation is a

good one. This is the famous MSW effect [23, 24]. The conditions for this to happen are:

– Resonant condition: the density at the production is above the critical one

Ne(0) >
∆m2 cos 2θ

2
√
2EGF

. (6.41)

– Adiabaticity: the splitting of the levels is large compared to energy injected in the system by the
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Fig. 20: MSW triangle: in the region between the two lines the resonance and adiabaticity conditions
are both satisfied for neutrinos of energy 1 MeV.

variation of Ne(r). A measurement of this is given by γ which should be much larger than one:

γ =
sin2 2θ

cos 2θ

∆m2

2E

1

|∇ logNe(r)|
> γmin > 1, (6.42)

where∇ = ∂/∂r.

At fixed energy both conditions give the famous MSW triangles, if plotted on the plane

(log(sin2 2θ), log(∆m2)):

log
(
∆m2

)
< log

(
2
√
2GFNe(0)E

cos 2θ

)
(6.43)

log
(
∆m2

)
> log

(
γmin2E∇ logNe

cos 2θ

sin2 2θ

)
. (6.44)

For example, taking Ne(r) = Nc exp(−r/R0), R0 = R⊙/10.54, Nc = 1.6 × 1026 cm−3, E = 1 MeV,

these curves are shown in Fig. 20.

It should be stressed that neutrino oscillations are not responsible for the flavour transition of solar

neutrinos. The survival probability of the solar νe in the adiabatic approximation is the incoherent sum

of the contribution of each of the mass eigenstates:

P (νe → νe) =
∑

i

|⟨νe|ν̃i(R⊙)⟩|2|⟨ν̃i(0)|νe⟩|2, (6.45)

where ν̃i(r) is the i-th mass eigenstate for the electron number density, Ne(r), at a distance r from the

center of the sun. If the mass eigenstates contribute incoherently, how can we measure the neutrino mass

splitting? The answer is that the resonance condition of Eq. (6.41) depends on the neutrino energy. If we
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define

Eres ≡
∆m2 cos 2θ

2
√
2GFNe(0)

, (6.46)

the MSW effect will affect neutrinos with E > Eres, while for E < Eres, the oscillation probability

is close to that in vacuum for averaged oscillations. The spectrum of the solar neutrino flux includes

energies both above and below Eres:

P (νe → νe) ≃ 1− 1
2 sin

2 2θ, E ≪ Eres

P (νe → νe) ≃ sin2 θ, E ≫ Eres (6.47)

The sensitivity to ∆m2 relies on the ability to locate the resonant energy. This behaviour is schematically

depicted in Fig. 21.

7 Evidence for neutrino oscillations

Nature has been kind enough to provide us with two natural sources of neutrinos (the sun and the atmo-

sphere) where neutrino flavour transitions have been observed in a series of ingenious experiments, that

started back in the 1960s with the pioneering experiment of R. Davies. This effort was rewarded with

the Nobel prize of 2002 to R. Davies and M. Koshiba for the detection of cosmic neutrinos.

7.1 Solar neutrinos

The sun, like all stars, is an intense source of neutrinos produced in the chain of nuclear reactions that

burn hydrogen into helium:

4p −→ 4He + 2e+ + 2νe. (7.1)
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¿How many neutrinos from the Sun ? 

Bahcall (died 2005)�

Fig. 22: Spectrum of solar neutrinos [26]. The arrows indicate the threshold of the different detection
techniques.

The theory of stellar nucleosynthesis was established at the end of the 30’s by H. Bethe [25]. The

spectrum of the solar νe, for massless neutrinos, is shown in Fig. 22. The prediction of this flux, obtained

by J. Bahcall and collaborators [26], is the result of a detailed simulation of the solar interior and has

been improved over many years. It is the so-called standard solar model (SSM).

Neutrinos coming from the sun have been detected with several experimental techniques that have

a different neutrino energy threshold as indicated in Fig. 22. On the one hand, the radiochemical tech-

niques, used in the experiments Homestake (chlorine, 37Cl) [27], Gallex/GNO [28] and Sage [29] (using

gallium, 71Ga, and germanium, 71Ge, respectively), can count the total number of neutrinos with a rather

low threshold (Eν > 0.81 MeV in Homestake and Eν > 0.23 MeV in Gallex and Sage), but they cannot

get any information on the directionality, the energy of the neutrinos, nor the time of the event.

On the other hand, Kamiokande [30] pioneered a new technique to observe solar neutrinos using

water Cherenkov detectors that can measure the recoil electron in elastic neutrino scattering on electrons:

νe + e− → νe + e−. This is a real-time experiment that provides information on the directionality

and the energy of the neutrinos. The threshold on the other hand is much higher, ∼ 5 MeV. All these

experiments have consistently observed a number of solar neutrinos between 1/3 and 1/2 of the number

expected in the SSM and for a long time this was referred to as the solar neutrino problem or deficit.

The progress in this field over the last two decades has been enormous culminating in a solution

to this puzzle that no longer relies on the predictions of the SSM. There have been three milestones.

1998: The experiment Super-Kamiokande [31] measured the solar neutrino deficit with unprece-

dented precision, using the elastic reaction (ES):

(ES) νe + e− → νe + e− Ethres > 5 MeV. (7.2)

The measurement of the direction of the events demonstrated that the neutrinos measured definitely come

from the sun: the left plot of Fig. 23 shows the distribution of the events as a function of the zenith angle
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Total 3.43 × 107

A. Noise reduction
(a) 2.66 × 107

(b) 2.51 × 107

(c) 2.50 × 107

(d) 2.50 × 107

(e) 2.48 × 107

(f) 1.81 × 107

B. Spallation cut
1.29 × 107

C. Ambient B.G. cut
(a) 3.61 × 106

(b) 2.72 × 106

(c) 1.86 × 106

D. Gamma cut
2.96 × 105

E. 16N cut
2.87 × 105

TABLE VII: The summary of number of events remaining
after each reduction step

E (signal events) and ui(cos θsun) is the background shape
in energy bin i. Each of the ni events in energy bin i is
assigned the background factor bij = ui(cos θij) and the
signal factor sij = p(cos θij , Ej).

The signal shape p(cos θsun, E) is obtained from the
known, strongly forward-peaked angular distribution of
neutrino-electron elastic scattering with smearing due to
multiple scattering and the detector’s angular resolution.
The background shape ui(cos θsun) has no directional cor-
relation with the neutrino direction, but deviates from a
flat shape due to the cylindrical shape of the SK de-
tector: the number of PMT’s per solid angle depends
on the SK zenith angle. In order to calculate the ex-
pected background shape, we use the angular distribu-
tion of data itself. The presence of solar neutrinos in the
sample biases mostly the azimuthal distribution, so at
first we fit only the zenith angle distribution and assume
the azimuthal distribution to be flat. We generate toy
Monte Carlo directions according to this fit and calcu-
late cos θsun. We also fit both zenith and azimuthal dis-
tributions, approximately subtracting the solar neutrino
events from the sample and repeat the toy Monte Carlo
calculation. We compare the obtained number of solar
neutrino events from both background shapes and as-
sign the difference as a systematic uncertainty. Since the
azimuthal distributions don’t deviate very significantly
from flat distributions, we quote the solar neutrino events
obtained from the first shape (assuming a flat azimuthal
distribution). The dotted area in Figure 40 shows this
background shape. The systematic uncertainty due to
the background shape is 0.1% for the entire data sample
(5.0-20.0 MeV). If the data sample is divided into a day
and a night sample, the systematic uncertainty is 0.4%.
The amount of background contamination is much less
above 10 MeV than it is near the SK–I energy thresh-
old (5.0 MeV), so small differences in background shape

between the two methods become important only in the
lowest energy bins: between 5.0 and 5.5 MeV, the sys-
tematic uncertainty is estimated to be 1.2%, between 5.5
and 6.0 MeV 0.4%, and above 6.0 MeV 0.15%.

5-20 MeV
Super-Kamiokande

θSun
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FIG. 40: Angular distribution of solar neutrino event candi-
dates. The shaded area indicates the elastic scattering peak.
The dotted area is the contribution from background events.

B. Observed solar neutrino flux

Figure 40 shows the cos θsun distribution for 1496 days
of SK–I data. The best fit value for the number of
signal events due to solar neutrinos between 5.0 MeV
and 20.0 MeV is calculated by the maximum likeli-
hood method in Eq. (8.1), and the result for SK–I is
22, 404 ± 226 (stat.)+784

−717 (sys.). The corresponding 8B
flux is:

2.35 ± 0.02 (stat.) ± 0.08 (sys.) × 106 cm−2s−1.

The systematic errors for the solar neutrino flux, sea-
sonal variation and day-night differences for the energy
range 5.0 MeV to 20.0 MeV are shown in Table VIII. The
detailed explanations are written in each topic’s section,
but the total systematic error for the solar neutrino flux
measurement is estimated to be +3.5%

−3.2%.

C. Time variations of solar neutrino flux

1. Day-Night difference

The day time flux and night time flux of solar neutrinos
in SK–I are calculated using events which occurred when
the solar zenith angle cosine was less than and greater
than zero, respectively. The observed flux are:

Φday = 2.32 ± 0.03 (stat.)+0.08
−0.07 (sys.) × 106 cm−2s−1

Φnight = 2.37 ± 0.03 (stat.)+0.08
−0.08 (sys.) × 106 cm−2s−1

22

Flux Seasonal day-night

Energy scale, resolution ±1.6 +1.2
−1.1

+1.2
−1.1

Theoretical uncertainty +1.1
−1.0

for 8B spectrum
Trigger efficiency +0.4

−0.3 ±0.1
Reduction +2.1

−1.6 ±0.5
Spallation dead time ±0.2 ±0.1 ±0.1
Gamma ray cut ±0.5 ±0.25
Vertex shift ±1.3
Background shape ±0.1 ±0.4

for signal extraction
Angular resolution ±1.2
Cross section of ν-e scattering ±0.5
Livetime calculation ±0.1 ±0.1 ±0.1

Total +3.5
−3.2 ±0.3 +1.3

−1.2

TABLE VIII: Systematic error of each item (in %).

Their difference leads to a day-night asymmetry, defined
as A = (Φday − Φnight)/(1

2 (Φday + Φnight)). We find:

A = −0.021 ± 0.020 (stat.)+0.013
−0.012 (sys.)

Including systematic errors, this is less than 1 − σ from
zero asymmetry. The largest sources of systematic error
in the asymmetry are energy scale and resolution (+0.012

−0.011)
and the non-flat background shape of the cos θsun distri-
bution (±0.004). As described in the neutrino oscillation
analysis section, we can reduce the statistical uncertainty
if we assume two-neutrino oscillations within the Large
Mixing Angle region. The day-night asymmetry in that
case is

A = −0.017 ± 0.016 (stat.)+0.013
−0.012 (sys.) ± 0.0004 (osc.)

with the final, tiny additional uncertainty due to the un-
certainty of the oscillation parameters themselves. Fig-
ure 41 shows the solar neutrino flux as a function of the
solar zenith angle cosine.

2. Seasonal variation

Figure 42 shows the monthly variation of the flux,
which each horizontal bin covers 1.5 months. The fig-
ure shows that the experimental operation is very stable.

Figure 43 shows the seasonal variation of solar neu-
trino flux. As in Figure 42, each horizontal time bin is
1.5 months wide, but in this figure data taken at simi-
lar times during the year over the entire course of SK–I’s
data taking has been combined into single bins. The 1.7%
orbital eccentricity of the Earth, which causes about a
7% flux variation simply due to the inverse square law,
is included in the flux prediction (solid line). The ob-
served flux variation is consistent with the predicted an-
nual modulation. Its χ2/d.o.f. is 4.7/7, which is equiva-
lent to 69% C.L.. If we fit the eccentricity to the Earth’s
orbit to the observed SK rate variation, the perihelion
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FIG. 41: The solar zenith angle dependence of the solar neu-
trino flux (error bars show statistical error). The width of
the night-time bins was chosen to separate solar neutrinos
that pass through the Earth’s dense core (the rightmost Night
bin) from those that pass through the mantle. The horizontal
line shows the flux for all data.
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FIG. 42: Solar neutrino flux as a function of time. The bin-
ning of the horizontal axis is 1.5 months.

shift is 13± 18 days (with respect to the true perihelion)
and the eccentricity is 2.1±0.3% [14]. This is the world’s
first observation of the eccentricity of the Earth’s orbit
made with neutrinos. The total systematic error on the
relative flux values in each seasonal bin is estimated to
±1.3%. The largest sources come from energy scale and
resolution (+1.2%

−1.1%) and reduction cut efficiency (±0.5%),
as shown in Table VIII.

D. Energy spectrum

Figure 44 shows the expected and measured recoil elec-
tron energy spectrum. The expected spectrum is calcu-

Fig. 23: Left: distribution of solar neutrino events as a function of the zenith angle of the sun. Right:
seasonal variation of the solar neutrino flux in Super-Kamiokande (from Ref. ( [32])).

of the sun. A seasonal variation of the flux is expected since the distance between the earth and the sun

varies seasonally. The right plot of Fig. 23 shows that the measured variation is in perfect agreement

with that expectation.

2001: The SNO experiment [33, 34] measured the flux of solar neutrinos using also the two reac-

tions:

(CC) νe + d→ p+ p+ e− Ethres > 5 MeV (7.3)

(NC) νx + d→ p+ n+ νx x = e, µ, τ Ethres > 2.2 MeV (7.4)

Since the CC reaction is only sensitive to electron neutrinos, while the NC one is sensitive to all the types

that couple to the Z0 boson, the comparison of the fluxes measured with both reactions can establish if

there are νµ and ντ in the solar flux independently of the normalization given by the SSM. The result

is shown on the Nobel-prize-winning plot Fig. 24. These measurements demonstrate that the sun shines

(νµ, ντ ) about twice more than it shines νe, which constitutes the first direct demonstration of flavour

transitions in the solar flux! Furthermore the NC flux that measures all active species in the solar flux, is

compatible with the total νe flux expected according to the SSM.

All solar neutrino data can be interpreted in terms of neutrino masses and mixings. The solar νe
deficit can be explained for a ∆m2

solar ≃ 7–8×10−5eV and a relatively large mixing angle. The fortunate

circumstance that

∆m2
solar ∼ ⟨Eν(1 MeV)⟩/L(100 km) (7.5)

implies that one could look for this oscillation measuring reactor neutrinos at baselines of ∼ 100 km.

This was the third milestone.

2002: The solar oscillation is confirmed with reactor neutrinos in the KamLAND experiment [35].

This has 1 kilo ton of liquid scintillator which measures the flux of reactor neutrinos produced in a cluster

of nuclear plants around the Kamioka mine in Japan. The average distance is ⟨L⟩ = 175 km. Neutrinos
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are detected via inverse β-decay which has a threshold energy of about 2.6 MeV:

ν̄e + p→ e+ + n Eth > 2.6 MeV . (7.6)

Figure 25 shows the KamLAND results [36] on the antineutrino spectrum, as well as the survival

probability as a function of the ratio Eν/L.

The low-energy contribution of geo-neutrinos is clearly visible. This measurement could have

important implications in geophysics.

Concerning the sensitivity to the oscillation parameters, Fig. 26 shows the present determination

of the solar oscillation parameters from KamLAND and other solar experiments. The precision in the

determination of ∆m2
solar is spectacular and shows that solar neutrino experiments are entering the era of
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FIG. 84. Electron neutrino survival probability as a function
of neutrino energy according to MSW–LMA model. The band
is the same as in Fig. 83, calculated for the production region
of 8B solar neutrinos which represents well also other species
of solar neutrinos. The points represent the solar neutrino
experimental data for 7Be and pep mono–energetic neutrinos
(Borexino data), for 8B neutrinos detected above 5000 keV
of scattered-electron energy T (SNO and Super-Kamiokande
data) and for T > 3000 keV (SNO LETA + Borexino data),
and for pp neutrinos considering all solar neutrino data, in-
cluding radiochemical experiments.

including both the experimental and theoretical (solar
model) uncertainties and P 3⌫

ee (E⌫ = 1440 keV) = 0.62 ±
0.17. A combined analysis of the Borexino data together
with those of other solar experiments allows to obtain
also the values of survival probability for the pp and 8B
neutrinos. Figure 84 reports the results.

XXVIII. CONCLUSIONS AND PERSPECTIVES

The rich scientific harvest of the Borexino Phase-I was
made possible by the extreme radio–purity of the detec-
tor and of its liquid scintillator core in particular. Chal-
lenging design purity levels have been mostly met, and,

in some cases, surpassed by a few orders of magnitude.
The central physics goal was achieved with the 5%

measurement of the 7Be solar neutrino rate. Three more
measurements beyond the scope of the original proposal
were made as well: the first observation of the solar pep
neutrinos, the most stringent experimental constraint on
the flux of CNO neutrinos, and the low-threshold mea-
surement of the 8B solar neutrino interaction rate. The
latter measurement was possible thanks to the extremely
low background rate above natural radioactivity, while
the first two exploited the superior particle identifica-
tion capability of the scintillator and an e�cient cosmo-
genic background subtraction. All measurements benefit
from an extensive calibration campaign with radioactive
sources that preserved scintillator radio–purity.

In this paper we have described the sources of back-
ground and the data analysis methods that led to the
published solar neutrinos results. We also reported, for
the first time, the detection of the annual modulation of
the 7Be solar neutrino rate, consistent with their solar
origin. The implications of Borexino solar neutrino re-
sults for neutrino and solar physics were also discussed,
both stand–alone and in combination with other solar
neutrino data.

Additional important scientific results (not discussed
in this paper) were the detection of geo–neutrinos [56]
and state-of-the art upper limits on many rare and exotic
processes [99].

Borexino has performed several purification cycles in
2010 and 2011 by means of water extraction [26] in batch
mode, reducing even further several background com-
ponents, among which 85Kr, 210Bi, and the 238U and
232Th chains. After these purification cycles, the Borex-
ino Phase-II has started at the beginning of 2012, with
the goal of improving all solar neutrino measurements.
Borexino is also an ideal apparatus to look for short base-
line neutrino oscillations into sterile species using strong
artificial neutrino and anti–neutrino sources [100]. An
experimental program, called SOX (Source Oscillation
eXperiment), was approved and it is now in progress.

The Borexino program is made possible by funding
from INFN (Italy), NSF (USA), BMBF, DFG and MPG
(Germany), NRC Kurchatov Institute (Russia) and NCN
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Fig. 27: Comparison of solar neutrino fluxes measured by the different solar neutrino experiments (from
Ref. [37]).

precision physics.

The last addition to this success story is the Borexino experiment [37]. This is the lowest-threshold

real-time solar neutrino experiment and the only one capable of measuring the flux of the monochromatic
7Be neutrinos and pep neutrinos. Their recent results are shown in Fig. 27. The result is in agreement

with the oscillation interpretation of other solar and reactor experiments and it adds further information

to disfavour alternative exotic interpretations of the data.

In summary, solar neutrinos experiments have made fundamental discoveries in particle physics

and are now becoming useful for other applications, such as a precise understanding of the sun and the
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E1!10 GeV and E2!1000 GeV for this work, HKKM95,
BARTOL, and FLUKA for !" and ! " fluxes. The median
energy is #100 GeV. We find a large difference in absolute
values as is expected from the left panel of Fig. 15. However,

the differences are small when they are normalized. The ratio
of the normalized weighted integral I2 is shown as a function
of zenith angle in the right panel of Fig. 15. The differences
in normalized fluxes are "3 %.

FIG. 15. $Color online% $a% Atmospheric neutrino fluxes averaged over all directions. $b% Flux ratios (!"#! ")/(!e#! e), !" /! " , and
!e /! e . Solid lines are for this work, dotted lines for HKKM95, dashed lines for FLUKA, and long dashed lines for BARTOL.

FIG. 16. $Color online% $a% Zenith angle variation of I1 defined by Eq. $2%. $b% The normalized ratio of I1 of each flux to this work as a
function of zenith angle. The solid lines are for this work, dotted lines for HKKM95, dashed lines for FLUKA, and long dashed lines for
BARTOL in both panels.

HONDA et al. PHYSICAL REVIEW D 70, 043008 $2004%

043008-12

Fig. 28: Comparison of the predictions of different Monte Carlo simulations of the atmospheric neutrino
fluxes averaged over all directions (left) and of the flux ratios (νµ + ν̄µ)/(νe + ν̄e), νµ/ν̄µ, and νe/ν̄e
(right). The solid line corresponds to a recent full 3D simulation. Taken from the last reference in
Ref. [38].

earth.

7.2 Atmospheric neutrinos

Neutrinos are also produced in the atmosphere when primary cosmic rays impinge on it producing K,π

that subsequently decay. The fluxes of such neutrinos can be predicted within a 10–20% accuracy to be

those in the left plot of Fig. 28.

Clearly, atmospheric neutrinos are an ideal place to look for neutrino oscillation since the Eν/L

span several orders of magnitude, with neutrino energies ranging from a few hundred MeV to 103 GeV

and distances between production and detection varying from 10–104 km, as shown in Fig. 29 (right).

Many of the uncertainties in the predicted fluxes cancel when the ratio of muon to electron events

is considered. The first indication of a problem was found when a deficit was observed precisely in this

ratio by several experiments: Kamiokande, IMB, Soudan2 and Macro.

In 1998, Super-Kamiokande clarified the origin of this anomaly [39]. This experiment can dis-

tinguish muon and electron events, measure the direction of the outgoing lepton (the zenith angle with

respect to the earth’s axis) which is correlated to that of the neutrino (the higher the energy the higher

the correlation), in such a way that they could measure the variation of the flux as a function of the

distance travelled by the neutrinos. Furthermore, they considered different samples of events: sub-GeV

(lepton with energy below 1 GeV), multi-GeV (lepton with energy above 1 GeV), together with stopping

and through-going muons that are produced on the rock surrounding Super-Kamiokande. The different
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Fig. 29: Left: Parent neutrino energies of the different samples considered in Super-Kamiokande: sub-
GeV, multi-GeV, stopping and through-going muons. Right: Distances travelled by atmospheric neutri-
nos as a function of the zenith angle.

samples correspond to different parent neutrino energies as can be seen in Fig. 29 (left).

The number of events for the different samples as a function of the zenith angle of the lepton are

shown in the Nobel-prize-winning plot Fig. 30.

While the electron events observed are in rough agreement with predictions, a large deficit of muon

events was found with a strong dependence on the zenith angle: the deficit was almost 50% for those

events corresponding to neutrinos coming from below cos θ = −1, while there is no deficit for those

coming from above. The perfect fit to the oscillation hypothesis is rather non-trivial given the sensitivity

of this measurement to the Eν (different samples) and L (zenith angle) dependence. The significance of

the Eν/L dependence has also been measured by the Super-Kamiokande Collaboration [41], as shown

in Fig. 31. The best fit value of the oscillation parameters indicate ∆m2 ≃ 3 × 10−3 eV2 and maximal

mixing.

Appropriate neutrino beams to search for the atmospheric oscillation can easily be produced at

accelerators if the detector is located at a long baseline of a few hundred kilometres, and also with

reactor neutrinos in a baseline of O(1km), since

|∆m2
atmos| ∼

Eν(1− 10 GeV)

L(102 − 103 km)
∼ Eν(1− 10 MeV)

L(0.1− 1 km)
. (7.7)

A conventional accelerator neutrino beam, as the one used in the LSS experiment, is produced from

protons hitting a target and producing π and K:

p → Target→ π+,K+ → νµ(%νe, ν̄µ, ν̄e) (7.8)

νµ → νx. (7.9)

Those of a selected charge are focused and are left to decay in a long decay tunnel producing a neutrino

beam of mostly muon neutrinos (or antineutrinos) with a contamination of electron neutrinos of a few

per cent. The atmospheric oscillation can be established by studying, as a function of the energy, either

the disappearance of muon neutrinos, the appearance of electron neutrinos or, if the energy of the beam
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FIG. 31: The zenith angle distribution for fully-contained 1-ring events, multi-ring events, partially-contained events and upward muons. The
points show the data, box histograms show the non-oscillated Monte Carlo events and the lines show the best-fit expectations for νµ ↔ ντ
oscillations with sin2 2θ = 1.00 and Δm2 = 2.1×10−3 eV2. The best-fit expectation is corrected by the 39 systematic error terms, while the
correction is not made for the non-oscillated Monte Carlo events. The height of the boxes shows the statistical error of the Monte Carlo.

ergy scale uncertainty leads to a +0.9
−1.1 % error in the stop-

ping muons due to the 1.6 GeV/c cut; the reduction effi-
ciency for stopping (through-going)muons has an uncertainty
of +0.34

−1.25 % (+0.32−0.54 %); and stopping/through-going separation
+0.29
−0.38 % (where “+” means through-going muons misidenti-
fied as stopping). As in the contained event analysis, com-
parison of data and expectations is done between observed
number of events and the live-time-scaled MC number of
events. However, to facilitate comparisons with other exper-

iments, these numbers are also presented in units of flux as
described in [3, 4]. The additional systematic uncertainty in
the observed through-going (stopping) flux comes from effec-
tive area of 0.3% and the live-time calculation (0.1%). The
absolute expected flux has theoretical uncertainties of at least
20% in the normalization for high energy (> 100 GeV) neu-
trinos and 5 to 10% from interaction model differences.

The zenith angle distributions of the upward through-going
and stopping muons are shown in Fig. 31. The shape of

Fig. 30: Zenith angle distribution for fully-contained single-ring e-like and µ-like events, multi-ring µ-
like events, partially contained events, and upward-going muons. The points show the data and the boxes
show the Monte Carlo events without neutrino oscillations. The solid lines show the best-fit expectations
for νµ ↔ ντ oscillations (from Ref. [40]).

is large enough, the appearance of τ neutrinos.

Three conventional beams confirmed the atmospheric oscillation from the measurement of the dis-

appearance of νµ neutrinos: K2K (L = 235 km) [42], MINOS (L = 730 km) [43] and from the appearance

of ντ , OPERA (L = 730 km) [44]. Fig. 32 shows the measurement of the νµ survival probability as a

function of the reconstructed neutrino energy in the MINOS experiment.

Three reactor neutrino experiments, Daya Bay [46], RENO [47] and Double Chooz [48], have

discovered that the electron neutrino flavour also oscillates with the atmospheric wavelength: electron

antineutrinos from reactors disappear at distances of O(1 km), but with a small amplitude. See Fig. 33.

Finally the T2K and NOVA experiments have measured the appearance of νe and ν̄e in an accel-

erator νµ/ν̄µ beam [49, 50] in the atmospheric range. The agreement of all these measurements with the
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Fig. 31: Ratio of the data to the non-oscillated Monte Carlo events (points) with the best-fit expectation
for 2-flavour νµ ↔ ντ oscillations (solid line) as a function of Eν/L (from Ref. [41]).

Fig. 32: Ratio of measured to expected (in absence of oscillations) neutrino events in MINOS as a
functions of neutrino energy compared to the best fit oscillation solution (from Ref. [45]).

original atmospheric oscillation signal is excellent.

8 The three-neutrino mixing scenario

As we have seen, the evidence summarized in the previous section points to two distinct neutrino mass

square differences related to the solar and atmospheric oscillation frequencies:

|∆m2
solar|︸ ︷︷ ︸

∼8·10−5 eV2

≪ |∆m2
atmos|︸ ︷︷ ︸

∼2.5·10−3 eV2

(8.1)

The mixing of the three standard neutrinos νe, νµ, ντ can accommodate both. The two independent

neutrino mass square differences are conventionally assigned to the solar and atmospheric ones in the
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Fig. 33: Ratio of measured to expected reactor neutrino events as function of the baseline in the Daya
Bay experiment (from Ref. [46]).

following way:

∆m2
13 = m2

3 −m2
1 = ∆m2

atmos, ∆m2
12 = m2

2 −m2
1 = ∆m2

solar . (8.2)

The PMNS mixing matrix depends on three angles and one or more CP phases (see Eq. (4.7) for the stan-

dard parametrization). Only one CP phase, the so-called Dirac phase δ, appears in neutrino oscillation

probabilities.

With this convention, the mixing angles θ23 and θ12 in the parametrization of Eq. (4.7) corre-

spond approximately to the ones measured in atmospheric and solar oscillations, respectively. This is

because solar and atmospheric anomalies approximately decouple as independent 2-by-2 mixing phe-

nomena thanks to the hierarchy between the two mass splittings, |∆m2
atmos| ≫ |∆m2

solar| , on the one

hand, and the fact that the angle θ13, which measures the electron component of the third mass eigenstate

element sin θ13 = (UPMNS)e3, is small.

To see this, let us first consider the situation in which Eν/L ∼ |∆m2
atmos|. We can thus neglect

the solar mass square difference in front of the atmospheric one and Eν/L. The oscillation probabilities

obtained in this limit are given by

P (νe → νµ) ≃ s223 sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
, (8.3)

P (νe → ντ ) ≃ c223 sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
, (8.4)

P (νµ → ντ ) ≃ c413 sin2 2θ23 sin2
(
∆m2

13L

4Eν

)
. (8.5)

The results for antineutrinos are the same (there is no CP violation if one mass difference is neglected).

All flavours oscillate therefore with the atmospheric frequency, but only two angles enter these formulae:

θ23 and θ13. The latter is the only one that enters the disappearance probability for νe or ν̄e in this regime
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since

P (νe → νe) = P (ν̄e → ν̄e) = 1− P (νe → νµ)− P (νe → ντ ) ≃ sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
. (8.6)

This is precisely the measurement of reactor neutrino experiments like Chooz, Daya Bay, RENO and

Double Chooz. Therefore the oscillation amplitude of these experiments is a direct measurement of the

angle θ13, which has been measured to be small.

Note that in the limit θ13 → 0, the only probability that survives in Eq. (8.5) is the νµ → ντ one,

which has the same form as a 2-family mixing formula Eq. (6.22) if we identify

(∆m2
atmos, θatmos)→ (∆m2

13, θ23) . (8.7)

Therefore the close-to-maximal mixing angle observed in atmospheric neutrinos and the accelerator

neutrino experiments like MINOS is identified with θ23.

Instead if we consider experiments in the solar range, Eν/L ∼ ∆m2
solar, the atmospheric oscil-

lation its too rapid and gets averaged out. The survival probability for electrons in this limit is given

by:

P (νe → νe) = P (ν̄e → ν̄e) ≃ c413
(
1− sin2 2θ12 sin2

(
∆m2

12L

4Eν

))
+ s413. (8.8)

Again it depends only on two angles, θ12 and θ13, and in the limit in which the latter is zero, the survival

probability measured in solar experiments has the form of two-family mixing if we identify

(∆m2
solar, θsolar)→ (∆m2

12, θ12) . (8.9)

The results that we have shown in the previous section of solar and atmospheric experiments have been

analysed in terms of 2-family mixing. The previous argument indicates that when fits are done in the

context of 3-family mixing nothing changes too much.

On the other hand, the fact that reactor experiments have already measured the disappearance of

reactor ν̄e in the atmospheric range implies that the effects of θ13 ≃ 9◦ are not negligible, and therefore

a proper analysis of all the oscillation data requires performing global fits in the 3-family scenario.

Figure 34 shows the ∆χ2 as a function of each of the six parameters from one recent global analysis [51].

See also Refs. [52, 53].

There are two parameters in which we observe two distinct minima, these corresponds to degen-

eracies that cannot be resolved with present data. The first corresponds to the neutrino mass ordering or

hierarchy: present data cannot distinguish between the normal (NH or NO) and inverted ordering (IH or

IO) represented in Fig. 35.

Note that we denote by ∆m2
13 = ∆m2

atmos the atmospheric splitting for NO and ∆m2
23 =

−∆m2
atmos for IO. The second degeneracy corresponds to the octant choice of θ23. Present data are

mostly sensitive to sin2 2θ23. If this angle is not maximal, there are two possible choices that are roughly

equivalent θ23 ↔ π/4− θ23. Due to this degeneracy, the largest angle is also the one less accurate. The
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1σ limits for NO are:

θ23/
◦ = 49.2+1

−1.3, θ12/
◦ = 33.4+0.77

−0.74, θ13/
◦ = 8.57(13),

∆m2
12 = 7.42(21)× 10−5 eV2, ∆m2

13 = 2.515(28)× 10−3 eV2. (8.10)

The CP phase δ remains roughly unconstrained at 3σ, while there is about half of the region excluded at

2σ. As we will see, the dependence on the phase requires sensitivity to both frequencies simultaneously.

9 Prospects in determining unknown neutrino parameters

An ambitious experimental program is underway to pin down the remaining unknowns and reach a 1%

precision in the lepton flavour parameters. The neutrino ordering, the octant of θ23 and the CP violat-

ing phase, δ, can be searched for in neutrino oscillation experiments with improved capabilities. The

determination of the absolute neutrino mass scale relies on tritium beta decay experiments or cosmology.

9.1 Neutrino ordering

Concerning the neutrino ordering, the best hope to identify the spectrum exploits the MSW effect in

the propagation of GeV neutrinos through earth’s matter. In the case of three neutrinos propagating in

matter, the ν mass eigenstates as a function of the electron density for vanishing θ12, θ13 are depicted

in Fig. 36 for NO and IO. For NO we see that there are two level crossings giving rise to two MSW

resonances. The first one is essentially the one relevant for solar neutrinos, as it affects the smallest mass

splitting, with the resonance condition:

E(1)
res =

∆m2
12 cos 2θ12

2
√
2GFNe

. (9.1)

The second one affects the largest mass splitting

E(2)
res =

∆m2
13 cos 2θ13

2
√
2GFNe

. (9.2)

For IO, only the first resonance appears in the ν channel.

For ν̄ the dependence on Ne of the first eigenstate has a negative slope and therefore there is no

resonance for NO and only the atmospheric resonance appears for IO.

The existence of the atmospheric resonance implies a large enhancement of the oscillation prob-

ability P (νe ↔ νµ) for NO for energies near the resonant energy and at sufficiently long baseline. For

IO the enhancement occurs in P (ν̄e ↔ ν̄µ) instead. For the typical matter densities of the earth’s crust

and mantle and the value of the atmospheric mass splitting, the resonant energy for neutrinos travelling

through earth is ≃ 6 GeV, an energy that can be reached in accelerator neutrino beams. The measure-

ment of the neutrino ordering becomes almost a digital measurement sending a conventional ν beam

sufficiently far as shown in Fig. 37, which shows the oscillation probability P (νµ → νe) as a function of

the neutrino energy at a distance corresponding to the baseline from CERN-Kamioka (8770 km).

The first experiment that will be sensitive to this effect is the NOvA experiment, optimized like
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FIG. 2: Pµe as a function of E for the CERN-Kamioka baseline. We have taken sin2 2✓13 = 0.101 and

for all other oscillation parameters we assume the central values of Table I. In left panel, the band portrays

the e↵ect of unknown �CP. In middle panel, the band shows the e↵ect of ± 5% uncertainty in the PREM

profile on Pµe. The combined e↵ect of unknown �CP and ± 5% uncertainty in the PREM profile is depicted

as a band in right panel.

priors on these parameters, with the corresponding 1� errors as mentioned in the second

column of Table I which are taken from [5]. Note that, in our study, we have imposed a

prior on sin2 ✓13(true) with the 1 � error of 13% based on the information from [5], but its

impact is marginal. The external information on the Earth matter density (⇢) is assumed

to come from the study of the tomography of the Earth [29, 30]. In the fit, we allow for

a 5% uncertainty in the PREM profile and take it into account by inserting a prior and

marginalizing over the density normalization. The CP phase �CP is completely free in the

marginalization.

In Fig. 2, we show the full three-flavor oscillation probability ⌫µ ! ⌫e using the PREM [28]

density profile for the CERN-Kamioka baseline as a function of neutrino energy. We allow

�CP to vary in its entire range of 0 to 2⇡ and the resultant probability is shown as a band

in left panel of Fig. 2, with the thickness of the band reflecting the e↵ect of �CP on Pµe.

Since this baseline is close to the magic baseline, the e↵ect of the CP phase is seen to be

almost negligible. This figure is drawn assuming the benchmark values of the oscillation

parameters given in Table I. We present the probability for both NH and IH. As expected

the probability for the NH is a bit lower than 1/2 but still close to this maximal value. The

7

Fig. 37: Resonant increase of the Pµe for NH as a function of neutrino energy for L corresponding to the
distance CERN-Kamioka for NH/IH. The bands corresponds to the uncertainty in δ (from Ref. [54]).

T2K to see the νe appearance signal, with a baseline of 810km, which is however a bit short to see a

large enhancement. Nevertheless if lucky NOvA could discriminate the ordering at 3σ.

The atmospheric resonance must also affect atmospheric neutrinos at the appropriate energy and

baseline. Unfortunately the atmospheric flux contains both neutrinos and antineutrinos in similar num-

bers, and the corresponding events cannot be told apart, because present atmospheric neutrino detectors

cannot measure the lepton charge. If we superimpose the neutrino and antineutrino signals, both order-

ings will give rise to an enhancement in the resonance region, since either the neutrino or antineutrino

channel will have a resonance. Nevertheless with sufficient statistics, there is some discrimination power

and in fact the biggest neutrino telescopes, IceCube and KM3NeT have proposed to instrument more

finely some part of their detectors (PINGU and ORCA projects) to perform this measurement. Also

the next generation of atmospheric neutrino detectors, such as Hyper-Kamiokande, with a factor O(20)
more mass than the present Super-Kamiokande, or the INO detector that is designed to measure the muon

charge in atmospheric events, could discriminate between the two orderings.

A very different strategy has been proposed for reactor neutrino experiments (e.g. JUNO project).

The idea is to measure very precisely the reactor neutrinos at a baseline of roughly 50 km, where the

depletion of the flux due to the solar oscillation is maximal. At this optimal distance, one can get a superb
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Figure 2-4: (left panel) The effective mass-squared difference shift ∆m2
φ [79] as a function of

baseline (y-axis) and visible prompt energy Evis ! Eν − 0.8MeV (x-axis). The legend of color
code is shown in the right bar, which represents the size of ∆m2

φ in eV2. The solid, dashed, and
dotted lines represent three choices of detector energy resolution with 2.8%, 5.0%, and 7.0% at 1
MeV, respectively. The purple solid line represents the approximate boundary of degenerate mass-
squared difference. (right panel) The relative shape difference [65, 66] of the reactor antineutrino
flux for different neutrino MHs.

explained in the models with the discrete or U(1) flavor symmetries. Therefore, MH is a
critical parameter to understand the origin of neutrino masses and mixing.

JUNO is designed to resolve the neutrino MH using precision spectral measurements of reactor
antineutrino oscillations. Before giving the quantitative calculation of the MH sensitivity, we shall
briefly review the principle of this method. The electron antineutrino survival probability in vacuum
can be written as [69,79,94]:

Pν̄e→ν̄e = 1 − sin2 2θ13(cos
2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32) − cos4 θ13 sin2 2θ12 sin2 ∆21 (2.1)

= 1 − 1

2
sin2 2θ13

[
1 −

√
1 − sin2 2θ12 sin2 ∆21 cos(2|∆ee| ± φ)

]
− cos4 θ13 sin2 2θ12 sin2 ∆21,

where ∆ij ≡ ∆m2
ijL/4E, in which L is the baseline, E is the antineutrino energy,

sinφ =
c2
12 sin(2s2

12∆21) − s2
12 sin(2c2

12∆21)√
1 − sin2 2θ12 sin2 ∆21

, cosφ =
c2
12 cos(2s2

12∆21) + s2
12 cos(2c2

12∆21)√
1 − sin2 2θ12 sin2 ∆21

,

and [95,96]

∆m2
ee = cos2 θ12∆m2

31 + sin2 θ12∆m2
32 . (2.2)

The ± sign in the last term of Eq. (2.1) is decided by the MH with plus sign for the normal MH
and minus sign for the inverted MH.

In a medium-baseline reactor antineutrino experiment (e.g., JUNO), oscillation of the atmo-
spheric mass-squared difference manifests itself in the energy spectrum as the multiple cycles.
The spectral distortion contains the MH information, and can be understood with the left panel
of Fig. 2-4 which shows the energy and baseline dependence of the extra effective mass-squared
difference,

∆m2
φ = 4Eφ/L , (2.3)

36

Fig. 38: Reactor neutrino spectrum in JUNO for NO/IO (from Ref. [57]).

measurement of the solar oscillation parameters, (θ12,∆m2
12), and, with sufficient energy resolution, one

could detect the modulation of the signal due to the atmospheric oscillation [55, 56]. Figure 38 shows

how this modulation is sensitive to the neutrino ordering. A leap ahead is however needed to reach the

required energy resolution that would enable this measurement.

9.2 Leptonic CP violation

As we have seen, the CP phase, δ, in the mixing matrix induces CP violation in vacuum neutrino oscil-

lations, that is a difference between P (να → νβ) and P (ν̄α → ν̄β), for α ̸= β. As we saw in the general

expression of Eq. (6.20), CP violation is possible if there are imaginary entries in the mixing matrix that

make Im[W jk
αβ] ̸= 0. By CPT, disappearance probabilities cannot violate CP however, because under

CPT

P (να → νβ) = P (ν̄β → ν̄α) , (9.3)

so in order to observe a CP or T-odd asymmetry the initial and final flavour must be different, α ̸= β:

ACPαβ ≡
P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
, ATαβ ≡

P (να → νβ)− P (νβ → να)

P (να → νβ) + P (νβ → να)
. (9.4)

In the case of 3-family mixing it is easy to see that the CP(T)-odd terms in the numerator are the same

for all transitions α ̸= β:

ACP(T)-odd
νανβ

=
sin δc13 sin 2θ13

solar︷ ︸︸ ︷
sin 2θ12

∆m2
12L

4Eν

atmos︷ ︸︸ ︷
sin 2θ23 sin

2 ∆m
2
13L

4Eν
PCP-even
νανβ

. (9.5)

As expected, the numerator is GIM suppressed in all the ∆m2
ij and all the angles, because if any of

them is zero, the CP-odd phase becomes unphysical. Therefore an experiment which is sensitive to CP

violation must be sensitive to both mass splittings simultaneously. In this situation, it is not clear a priori

what the optimization of E/L should be.

It can be shown that including only statistical errors, the signal-to-noise ratio for this asymmetry is
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maximized for ⟨Eν⟩/L ∼ ∆m2
atmos. In this case, only two small parameters remain in the CP-odd terms:

the solar splitting, ∆m2
solar (i.e., compared to the other scales, ∆m2

atmos and ⟨Eν⟩/L), and the angle θ13.

The asymmetry is then larger in the sub-leading transitions: νe → νµ(ντ ), because the CP-even terms in

the denominator are also suppressed by the same small parameters. A convenient approximation for the

νe ↔ νµ transitions is obtained expanding to second order in both small parameters [58]:

Pνeνµ(ν̄eν̄µ) = s223 sin2 2θ13 sin2
(
∆m2

13 L

4Eν

)
≡ P atmos

+ c223 sin2 2θ12 sin2
(
∆m2

12 L

4Eν

)
≡ P solar

+ J̃ cos

(
±δ − ∆m2

13 L

4Eν

)
∆m2

12 L

4Eν
sin

(
∆m2

13 L

4Eν

)
≡ P inter, (9.6)

where J̃ ≡ c13 sin 2θ13 sin 2θ12 sin 2θ23. The first term corresponds to the atmospheric oscillation, the

second one is the solar one and there is an interference term which has the information on the phase δ

and depends on both mass splittings.

These results correspond to vacuum propagation, but usually these experiments require the propa-

gation of neutrinos in the earth’s matter. The oscillation probabilities in matter can also be approximated

by a similar series expansion [58]. The result has the same structure as in vacuum:

Pνeνµ(ν̄eν̄µ) = s223 sin2 2θ13

(
∆13

B±

)2

sin2
(
B±L
2

)

+ c223 sin2 2θ12

(
∆12

A

)2

sin2
(
AL

2

)

+ J̃
∆12

A
sin(

AL

2
)
∆13

B±
sin

(
B±L
2

)
cos

(
±δ − ∆13 L

2

)
, (9.7)

where

B± = |A±∆13| ,∆ij =
∆m2

ij

2Eν
, A =

√
2GFNe . (9.8)

The oscillation probability for neutrinos and antineutrinos now differ not just because of leptonic CP

violation, but also due to the matter effects, that as we have seen can be resonant. In particular, the

atmospheric term which is the dominant one, shows the expected resonant enhancement in the neutrino

or antineutrino oscillation probability (depending on the ordering).

The sensitivity to the interference term requires very good knowledge of the leading atmospheric

term and the present degeneracies (the octant and the neutrino ordering) directly affect the leading term

compromising therefore the δ sensitivity. Either both uncertainties are solved before this measurement,

or there must be sufficient sensitivity from the energy dependence of the signal to resolve all unknowns

simultaneously.

A rough optimization ofL for fixedE/L for discovering CP violation is shown in Fig. 39. It shows

the signal-to-noise as a function of the true value of δ, assuming only statistical errors, but including

the expected dependence of the cross sections and fluxes. At very short baselines, the sensitivity is

compromised due to the lack of knowledge of the neutrino ordering. In a wide intermediate region
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Fig. 39: Signal-to-noise for the discovery of CP violation at fixed E/L ∼ ∆m2
atm as a function of

the true value of δ for L = 295km (long-dashed), L = 650km (short-dashed), L = 1300km (dotted),
L = 2300km (solid). The ordering is assumed to be unknown.

Fig. 40: Sensitivity to CP violation as a function of the true value of δ in Hyper-Kamiokande (left) [59]
and DUNE (right) [60]. Solid (dashed) lines on the left plot correspond to the mass ordering (MO)
known(unknown).

around O(1000)km the sensitivity is optimal, and at much larger baselines the sensitivity deteriorates

because the matter effects completely hide CP-violation.

Several projects have been proposed to search for leptonic CP violation, including conventional

beams, but also novel neutrino beams from muon decays (neutrino factories), from radioactive ion decays

(β-beams) or from spalation sources (ESS). The relatively large value of θ13 has refocused the interest

in using the less challenging conventional beams and two projects are presently being developed: the

Hyper-Kamiokande detector, an up-scaled version of Super-Kamiokande that will measure atmospheric

neutrinos with unprecedented precision, and also intercept a neutrino beam from JPARC at a relatively

short baseline L = 295km, and the DUNE project that involves a liquid argon neutrino detector and a

neutrino beam from Fermilab to the Soudan mine at a baseline of L = 1500km. The expected sensitivi-

ties to CP violation of both projects are shown in Fig. 40.
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9.3 Absolute neutrino mass scale

Neutrino oscillation experiments are only sensitive to neutrino mass differences, so at present we do not

have information on the absolute neutrino mass scale, only upper limits. The sum of all neutrino masses

is tightly constrained by cosmological measurements of the cosmic microwave background (CMB) [61]:

∑

i

mi ≤ 0.12 eV. (9.9)

As we have seen the kinematical effects of neutrino masses in this range can also modify the end-point

spectrum of beta decay. More precisely, this measurement can constrain the combination

mνe ≡
√∑

i

|Uei|2m2
i . (9.10)

The strongest upper limit of 0.8 eV as we saw has been set by the Katrin experiment [7].

In Fig. 41 we show the allowed regions on the plane mνe vs
∑

imi from the known neutrino

masses and mixings. The limit from cosmology on the right axis is already more stringent (although

cosmological model dependent) than the present and future expected sensitivity of the Katrin experiment.
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Fig. 41: Allowed region for mνe for IO (blue contour) and NO (red contour) from a global analysis of
neutrino data (from Ref. [51]) on the plane mνe vs the sum of all neutrino masses.

10 Outliers: the LSND anomaly

The long-standing puzzle brought by the LSND experiment is still unresolved. This experiment [62]

observed a surplus of electron events in a muon neutrino beam from π+ decaying in flight (DIF) and a

surplus of positron events in a neutrino beam from µ+ decaying at rest (DAR). The interpretation of this

data in terms of neutrino oscillations, that is a non-vanishing P (νµ → νe), gives the range shown by a

coloured band in Fig. 43.
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4

driven oscillation effect must be corrected for in each detec-
tor. A normalization factor R was defined to scale the mea-
sured rate to that predicted with a fissile antineutrino spectrum
model. The value of R, together with the value of sin2 2✓13,
were simultaneously determined with a �2 similar to the one
used in Ref. [4]:

�2 =

6X

d=1

[Md �R · Td(1 + ✏D +
P

r !
d
r↵r + ✏d) + ⌘d]

2

Md + Bd

+
X

r

↵2
r

�2
r

+

6X

d=1

✓
✏2d
�2

d

+
⌘2

d

�2
Bd

◆
+
✏2D
�2

D

, (3)

where Md is the number of measured IBD events in the d-th
detector with backgrounds subtracted, Bd is the correspond-
ing number of background events, Td is the number of IBD
events predicted with a fissile antineutrino spectrum model
via Eq. (2), and !d

r is the fractional IBD contribution from
the r-th reactor to the d-th detector determined with baselines
and reactor antineutrino rates, �r (0.9%) is the uncorrelated
reactor uncertainty, �d (0.2% [17]) is the uncorrelated de-
tection uncertainty, �Bd

is the background uncertainty listed
in Ref. [17], and �D (2.1%) is the correlated detection un-
certainty, i.e. the uncertainty of detection efficiency in Ta-
ble I. Their corresponding nuisance parameters are ↵r, ✏d,
⌘d, and ✏D, respectively. The best-fit value of sin2 2✓13 =
0.090 ± 0.009 is insensitive to the choice of model. The best-
fit value of R is 0.946±0.022 (0.991±0.023) when predicting
with the Huber+Mueller (ILL+Vogel) model. Replacing the
Mueller 238U spectrum with the recently-measured spectrum
in Ref. [35] yields negligible change in R. The uncertainty in
R is dominated by the correlated detection uncertainty �D.

With the oscillation effect for each AD corrected using
the best-fit value of sin2 2✓13 in Eq. (3), the measured IBD
yield for each AD is expressed in two ways: the yield per
GWth per day, Y , and equivalently, the yield per nuclear fis-
sion, �f . These results are shown in the top panel of Fig. 1.
The measured IBD yields are consistent among all ADs after
further correcting for the small variations of fission fractions
among the different sites. The average IBD yield in the three
near ADs is Y = (1.55 ± 0.04) ⇥ 10�18 cm2/GW/day, or
�f = (5.92 ± 0.14) ⇥ 10�43 cm2/fission. These results are
summarized in Table II along with the flux-weighted average
fission fractions in the three near ADs.

A global fit for R was performed to compare with previous
reactor antineutrino flux measurements following the method
described in Ref. [36]. Nineteen past short-baseline (<100 m)
measurements were included using the data from Ref. [14].
The measurements from CHOOZ [37] and Palo Verde [38]
were also included after correcting for the effect of standard
three-neutrino oscillations. All measurements were compared
to the Huber+Mueller model. All predictions were fixed at
their nominal value in the fit. The resulting past global average
is Rpast

g = 0.942±0.009 (exp.)±0.025 (model). Daya Bay’s
measurement of the reactor antineutrino flux is consistent with
the past experiments. Including Daya Bay in the global fit, the

TABLE II. Average IBD yields (Y and �f ) of the near halls, flux nor-
malization with respect to different fissile antineutrino model predic-
tions, and flux-weighted average fission fractions of the near halls.

IBD Yield
Y ( cm2/GW/day) (1.55 ± 0.04) ⇥ 10�18

�f (cm2/fission) (5.92 ± 0.14) ⇥ 10�43

Data / Prediction
R (Huber+Mueller) 0.946 ± 0.022

R (ILL+Vogel) 0.991 ± 0.023
235U : 238U : 239Pu : 241Pu 0.586 : 0.076 : 0.288 : 0.050

new average is Rg = 0.943 ± 0.008 (exp.) ± 0.025 (model).
The results of the global fit are shown in the bottom panel of
Fig. 1.

Extending the study from the integrated flux to the en-
ergy spectrum, the measured prompt-energy spectra of the
three near-site ADs were combined after background subtrac-
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FIG. 1. Top: Rate of reactor antineutrino candidate events in the six
ADs with corrections for 3-flavor oscillations (closed circles), and
additionally for the variation of flux-weighted fission fractions at the
different sites (open squares). The average of the three near detectors
is shown as a gray line (and extended through the three far detectors
as a dotted gray line) with its 1� systematic uncertainty (gray band).
The rate predicted with the Huber+Mueller (ILL+Vogel) model and
its uncertainty are shown in blue (orange). Bottom: The measured
reactor ⌫̄e rate as a function of the distance from the reactor, nor-
malized to the theoretical prediction with the Huber+Mueller model.
The rate is corrected for 3-flavor neutrino oscillations at each base-
line. The blue shaded region represents the global average and its 1�
uncertainty. The 2.7% model uncertainty is shown as a band around
unity. Measurements at the same baseline are combined for clarity.
The Daya Bay measurement is shown at the flux-weighted baseline
(573 m) of the two near halls.

Fig. 42: Reactor neutrino flux measured by various near detectors compared with the recent flux predic-
tions (from Ref. [70]).

π+ → µ+ νµ

νµ → νe DIF (28± 6/10± 2)

µ+ → e+νeν̄µ

ν̄µ → ν̄e DAR (64± 18/12± 3)

A significant fraction of this region was already excluded by the experiment KARMEN [63] that has

unsuccessfully searched for ν̄µ → ν̄e in a similar range.

The experiment MiniBOONE was designed to further investigate the LSND signal, with incon-

clusive results [64]. They did not confirm the LSND anomaly, but found a significant excess at lower

energies [65]. Recently the MicroBoone experiment [66], designed to have improved discrimination

capabilities of NC background, did not find evidence for the MiniBOONE anomaly.

On the other hand, the results of various short baseline (tens of meters) reactor neutrino experi-

ments were revised, after an update on the reactor neutrino flux predictions [67–69], which increased

these fluxes by a few per cent. While the measured neutrino flux was found to be in agreement with

predictions before, after this revision some reactor neutrinos seem to disappear before reaching near

detectors, L = O(10)m. This is the so-called reactor anomaly shown in Fig. 42. This result brought

some excitement because if this disappearance is due to oscillations, it might reinforce the oscillation

interpretation of the LSND anomaly.

The required mass splitting to describe both anomalies is ∆m2
LSND ≃ 1eV2, which is much

larger than the solar and atmospheric, and therefore requires the existence of at least a fourth neutrino

mass eigenstate, i. If such a state can explain the LSND anomaly, it must couple to both electrons and

muons. Unfortunately the smoking gun would require that also accelerator νµ disappear with the same

wavelength and this has not been observed:

P (νµ → νe) ∝ |UeiUµi|2 LSND

1− P (νe → νe) ∝ |Uei|4 reactor

1− P (νµ → νµ) ∝ |Uµi|4 not observed
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Fig. 43: Sterile neutrino search combining disappearance of νµ’s and νe (from Ref. [71]). At 90% CL
only the region to the left of the red line is allowed, excluding most of the regions favoured by LSND,
MiniBoone and the global fits.

The strongest constraint on the disappearance of νµ in the LSND range has been recently set by MINOS+

and the tension between appearance and disappearance measurements is shown in Fig. 43.

Very recently a new update on the flux predictions has been presented and the significance of the

reactor anomaly has decreased. In parallel a plethora of new short baseline reactor neutrino experiments

(Prospect, DANSS, Stereo, NEOS, NEUTRINO-4) have taken data exploiting the L dependence of a

putative oscillation signal. The results have for the most part not confirmed the oscillation of reactor

neutrinos. A global analysis of all the reactor data results shows that at 2.6σ the results are compatible

with the non-oscillation hypothesis. See Ref. [72] for a recent status and references.

11 Neutrinos and BSM physics

The new lepton flavour sector of the SM has opened new perspectives into the flavour puzzle. As we

have seen neutrinos are massive but significantly lighter than the remaining charged fermions. Clearly

the gap of Fig. 11 calls for an explanation. The leptonic mixing matrix is also very different to that in the

quark sector. The neutrino mixing matrix is approximately given in Ref. [51]

|UPMNS|3σ ≃



0.80− 0.84 0.51− 0.58 0.14− 0.16

0.23− 0.50 0.46− 0.69 0.63− 0.78

0.26− 0.52 0.47− 0.70 0.61− 0.76


 . (11.1)

The CKM matrix is presently constrained [73] to be:

|VCKM| ≃



0.97435(16) 0.22500(67) 0.00369(11)

0.22486(67) 0.97349(16) 0.04182(85)

0.00857(20) 0.04110(83) 0.999118(31)


 . (11.2)
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There is a striking difference between the two (and not only in the precision of the entries). The CKM

matrix is close to the unit matrix:

VCKM ≃




1 O(λ) O(λ3)

O(λ) 1 O(λ2)

O(λ3) O(λ2) 1


 , λ ∼ 0.2, (11.3)

while the leptonic one has large off-diagonal entries. With a similar level of precision, it is close to the

tri-bimaximal mixing pattern [74]

UPMNS ≃ Vtri-bi ≃




√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2


 .

Discrete flavour symmetries have been extensively studied as the possible origin of this pattern.

While we do not have yet a compelling explanation of the different mixing patterns, we do have

one for the gap between neutrino and other fermion masses. We saw that if the light neutrinos are

Majorana particles and get their mass via the Weinberg interaction of Fig. 12, they are signalling BSM

physics. As we have seen neutrino masses are then

mν = λ
v2

Λ
, (11.4)

where Λ represents the mass of the neutrino mass mediators, i.e. the heavy particles that give rise to the

Weinberg interaction. The more massive these particles are, the lighter neutrinos become. This is the

famous seesaw mechanism depicted in Fig. 44.

L

mn

Seesaw mechanism: 
Minkowski
Gell-Mann, Ramond Slansky
Yanagida, Glashow
Mohapatra, Senjanovic

Fig. 44: Seesaw mechanism: the higher the scale Λ of new physics is, the lighter neutrino masses
become.

λ on the other hand is the strength of the coupling of the new states with the lepton and Higgs

doublets. Both parameters are in principle undetermined and only the combination λ
Λ is fixed by neutrino

masses. If we assume that the natural choice for λ is O(1), then neutrino masses require Λ ∼ MGUT,
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that is a grand unification scale. This is an intriguing fact, however it leads to the famous hierarchy

problem [75, 76]:

m2
H ∼ Λ2. (11.5)

The recent discovery of the Higgs field and in particular the value of its mass mH = 125 GeV [77]

suggests that the SM is as healthy as ever. In spite of the Landau poles present in the theory, the value of

the SM couplings surprisingly conspire to make the model consistent up to the Planck scale [78].

On the other hand, the SM contains other small couplings, for example the electron Yukawa cou-

pling is Ye ∼ O(10−6). It is then a fair question to ask how small can λ be not to worsen the flavour

hierarchies in the charged lepton and quark sectors. Unfortunately the answer to this question depends on

the underlying model. We can for example consider the three types of seesaw models, which correspond

to the models that give rise to the Weinberg operator from the exchange of a massive particle, as depicted

in Fig. 45:
Type II see-saw:
a heavy triplet scalar

Konetschny, Kummer; 
Cheng, Li;
Lazarides, Shafi, Wetterich…

Resolving the neutrino mass operator at tree level

Type III see-saw:
a heavy triplet fermion

Foot et al; Ma; 
Bajc, Senjanovic…

Type I see-saw:
a heavy singlet scalar

Minkowski; 
Yanagida; Glashow; 
Gell-Mann, Ramond Slansky; 
Mohapatra, Senjanovic…

E. Ma

l ~ O(Y2) l ~ O(Y2)l ~ O(Yµ/MD)

l l lFig. 45: Magnifying-glass view of the Weinberg operator in seesaw models of Type I (left), Type II
(middle), Type III (right).

– type I see-saw: SM+ heavy singlet fermions, N , with mass MN [79–82],

– type II see-saw: SM + heavy triplet scalar, ∆, with mass M∆ [83–87],

– type III see-saw: SM + heavy triple fermions, Σ with mass MΣ [88, 89],

In each of these cases Λ =MN/∆/Σ and the matching of the underlying theory to the Weinberg interac-

tion fixes λ. For Type I and III:

TypeI/III : λ = O(Y 2
N/Σ), (11.6)

where YN,Σ is the neutrino Yukawa coupling. In the case of Type II also the scalar trilinear coupling

enters. If we now plot the hierarchies in the Yukawa couplings as opposed to the masses for Type I and

III, we see that assuming a YN,Σ ∼ Ye, the scale Λ can be close to the electroweak scale, as shown in

Fig. 46.

It is also possible that Weinberg’s interaction is generated by new physics at higher orders, such as

in the famous Zee model [90] and related ones [91, 92]. In this case, neutrino masses have an additional

suppression by loop factors 1/(16π2) and generically higher powers of the couplings of the underlying

theory.
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MN = GUT

MN~ v
n

Yukawa

Yukawa

MN~ GUT
n

Type I and III

Fig. 46: Yukawa hierarchies in the Type I and III seesaw model if MN ∼MGUT or ∼ v.

Summarizing, for Λ ∈ [v,MGUT], neutrino masses do not imply larger hierarchies than already

present in the minimal SM. Determining the scale Λ is one of the crucial problems in neutrino physics

that we will try to elucidate in the future.

If Λ ≫ 100MeV, there is a model-independent prediction: neutrinoless double-beta decay is

possible with an amplitude proportional to the combination

mee =
∑

i=1,3

(UPMNS)
2
eimi. (11.7)

The information we already have about neutrino masses and mixings constrains this quantity to be in any

of the bands in Fig. 47 depending on the neutrino mass ordering.

Fig. 47: Allowed region for mee for IO (blue contour) and NO (red contour) from a global analysis of
neutrino data (from Ref. [51]) on the plane mee vs the sum of all neutrino masses. We have added by the
shaded region the exclusion from present neutrinoless double-beta decay searches.

Obviously if Λ is below the energies of present colliders, the new particles may be directly acces-
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sible. The dynamics of this new physics sector breaks lepton number and generically might induce the

generation of the baryon asymmetry in the universe or may be connected to dark matter. Unfortunately

both predictions: the production of these new states in colliders and their connection to baryogenesis or

dark matter are model dependent. The type I seesaw model is the better studied case so we will consider

this scenario in the following discussion.

11.1 One example: Type I seesaw model

It is arguably the most minimal extension of the SM explaining neutrino masses [79–82]. It involves

the addition of nR ≥ 2 singlet Weyl fermions, νR, to the SM. With nR = 2 two light neutrinos can be

massive, which is the minimum compatible with neutrino mass measurements, i.e. two neutrino mass

differences. The minimum number of singlets required to give non-zero mass to the three light neutrinos

is nR = 3, as shown in Fig. 48.
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Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3), dSU(2))Y

2 Neutrinos in the Standard Model
The Standard Model (SM) is a gauge theory based on the gauge group SU(3) ⇥ SU(2) ⇥ UY (1). All
elementary particles arrange in irreducible representations of this gauge group. The quantum numbers
of the fermions (dSU(3), dSU(2))Y are listed in table 1.

Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under
SU(3) and their hypercharge is �1/2. The electric charge, given by Q = T3 + Y , vanishes. They are
therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of table 1 are its left-right or chiral asymmetry, and the three-fold
repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions
The left and right entries in table 1 have well defined chirality, negative and positive respectively.
They are two-component spinors or Weyl fermions, that is the smallest irreducible representation of
the Lorentz group representing spin 1/2 particles. Only fields with negative chirality (i.e. eigenvalue of
�5 minus one) carry the SU(2) charge. For free fermions moving at the speed of light (i.e., massless), it
is easy to see that the chiral projectors are equivalent to the projectors on helicity components:

PR,L ⌘
1 ± �5

2
=

1

2

✓
1 ± s · p

|p|

◆
+ O

⇣mi

E

⌘
, (6)

where the helicity operator ⌃ = s·p
|p| measures the component of the spin in the direction of the momen-

tum. Therefore for massless fermions only the left-handed states (with the spin pointing in the opposite
direction to the momentum) carry SU(2) charge. This is not inconsistent with Lorentz invariance, since
for a fermion travelling at the speed of light, the helicity is the same in any reference frame. In other
words, the helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good
quantum number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic
building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any
left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed
particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and
an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak
interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious

4
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Fig. 48: Particle content of the SM+Type I seesaw model with three light massive neutrinos.

The most general renormalizable Lagrangian which satisfies Lorentz and the gauge symmetries is

given by:

LTypeI = LSM −
∑

α,i

L̄αY αi
ν Φ̃ νiR −

nR∑

i,j

1

2
ν̄icR M ij

N νjR + h.c. , (11.8)

where the new parameters involved are a 3 × nR neutrino Yukawa matrix and a nR × nR symmetric

Majorana mass matrix for the singlet fields. Upon spontaneous symmetry breaking these couplings

become mass terms, that can be written in the Majorana basis (νcL, νR) as

LTypeI → LSM −
1

2

(
ν̄L ν̄cR

)( 0 mD

mT
D MN

)(
νcL
νR

)
+ h.c.+ ... (11.9)

where

mD = Yν
v√
2
. (11.10)
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Note that Dirac neutrinos are a particular case of the model for nR = 3. If we invoke a global lepton

number symmetry, under which νR have charge +1, this forces MN = 0, the singlets are exactly equiva-

lent to the right-handed neutrinos in the Dirac case described in sec. 3.1. In the opposite limit MN ≫ v,

the singlets can be integrated out and give rise to the Weinberg interaction as well as others at d = 6, etc.

For intermediate MN , the spectrum of this theory contains in general 3+ nR Majorana neutrinos, which

are admixtures of the active ones and the extra singlets.

It is easy to diagonalize the mass matrix in Eq. (11.9) in an expansion in mD/MN . The result to

leading order in this expansion is

UT

(
0 mD

mT
D MN

)
U ≃

(
−mD

1
MN

mT
D 0

0 MN

)
+O(θ2), U =

(
1 θ

−θ† 1

)
, (11.11)

where

θ = m∗
D

1

MN
. (11.12)

The matrix represents the active component of the heavy neutrino states and therefore controls their

gauge interactions. To this order therefore the light neutrino and heavy neutrino masses are given by

ml = Diag

[
−mD

1

MN
mT
D

]
, Mh = Diag[MN ]. (11.13)

Spectra of Type I seesaw models 

 �
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Fig. 49: Spectrum of the type I seesaw model for nR = 3 as a function of a common MN .

Figure 49 depicts the spectrum for the case of nR = 3 as a function of a common MN . In the

limit MN → 0 the states degenerate in pairs to form Dirac fermions. As MN increases three states get

more massive proportional to MN . These are often referred to as heavy neutral leptons (HNL), while

three get lighter proportional to M−1
N , as expected from the seesaw mechanism. The number of new free

parameters is large. For the case nR = 3 there are 18 fundamental parameters in the lepton sector: six of

them are masses, six mixing angles and six phases. The counting of parameters for general nR is shown

in Table 4. Out of these 18 parameters we have determined only five: two mass differences and three

neutrino mixing angles.

A very convenient parametrization in this model was introduced by Casas–Ibarra [93], which
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Table 4: Number of physical parameters in the see-saw model with n families and the same number of
right-handed Majorana neutrinos at high and low energies

Yukawas Field redefinitions No. m No. θ No. ϕ

see-saw Yl, Yν ,MR =MT
R U(n)3

E ≥Mi 5n2 + n 3(n2−n)
2 , 3(n

2+n)
2 3n n2 − n n2 − n

see-saw Yl, α
T
ν = αν U(n)2

E ≪Mi 3n2 + n n2 − n, n2 + n 2n n2−n
2

n2−n
2

allows to write in all generality (up to corrections of O(θ2)) the Lagrangian parameters in terms of

those of the light neutrino masses and mixings, and others related to the HNLs. In particular the phe-

nomenology of this model depends on the spectrum of neutrino mass eigenstates, that we denote by

(ν1, ν2, ν3, N1, N2, ...NnR), and their admixture in the flavour neutrino states :



νe

νµ

ντ


 = Ull



ν1

ν2

ν3


+ Ulh




N1

N2

..

NnR



. (11.14)

In the Casas–Ibarra parametrization we have

Ull = UPMNS +O(θ2),
Ulh = iUPMNS

√
mlR

1√
Mh

+O(θ2), (11.15)

where R is a general complex orthogonal matrix, RTR = 1, which together with the heavy neutrino

masses, Mh, parametrizes the parameter space inaccessible to neutrino oscillation experiments. Note

that Ull is the mixing matrix that we measure in neutrino oscillation experiments, assuming the heavy

states are too heavy to play a role. This matrix is however no longer unitary,3 but the unitarity violations

are parametrically of O(θ2) ∼ ml/Mh .

Equations (11.15) indicate that in this model there is a strong correlation between flavour mixings

of the heavy states, Ulh, and the ratio of light-to-heavy neutrino masses. However the presence of the

unknown matrix R, which is not bounded, implies that the naive seesaw scaling, |Ulh|2 ∼ ml/Mh, that

would hold exactly for one neutrino family, is far too naive for nR > 1. In fact there are regions of

parameter space where these mixings can be much larger than suggested by the naive scaling, and these

are precisely the regions with more phenomenological interest, as we will see below.

Let us discuss some phenomenological implications of the different choices of the scale MN .

3The Casas–Ibarra parametrization needs to be modified in the presence of large unitarity violations. A similar parametrization
valid to all orders in θ is given in Ref. [94].
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11.1.1 Neutrinoless double-beta decay

The amplitude for this process receives contributions from the light and heavy states:

mee ≡
3∑

i=1

(UPMNS)
2
eimi +

nR∑

j=1

(Ulh)
2
ejMj

Mββ0ν(Mj)

Mββ0ν(0)
, (11.16)

where the ratio of matrix elementsMββ0ν for heavy and light mediators satisfy [95]:

Mββ0ν(Mj)

Mββ0ν(0)
∝
(
100MeV

Mj

)2

, Mj →∞. (11.17)

If all the heavy state masses≫ 100 MeV, the second term is suppressed and the amplitude contains only

the light neutrino masses and mixings, which is constrained as shown before in Fig. 47. A plethora of

experiments using different technologies have been proposed to reach a sensitivity in mee in the range

of 10−2 eV , which could be sufficient to explore the full parameter space in the case of the IO. The

importance of this measurement can hardly be overstated. A non-zero mee will imply that neutrinos are

Majorana and therefore a new physics scale must exist, that lepton number is violated, and might give

very valuable information on the lightest neutrino mass, and even help establishing the neutrino mass

ordering. On the other hand, if the heavy states are not too heavy, within 100 MeV–few GeV, they could

also contribute to the process significantly and even dominate over the light neutrino contribution for

both orderings [96–98].

11.1.2 Cosmology and the seesaw scale

For MN ≤ 100 MeV, the heavy states in seesaw models can sizeably modify the history of the Uni-

verse: the abundance of light elements, the fluctuations in the CMB and the galaxy distribution at large

scales. This is the case because these extra states contribute to the expansion either as a significant extra

component of dark matter (Ωm) or radiation (∆Neff ).

The singlet states in this mass range are produced at T below the electroweak phase transition

via mixing. The state i will reach thermal equilibrium if their interaction rate, Γsi(T ), is larger than the

Hubble parameter at some T . If this is the case, the extra species will contribute like one extra neutrino

for T > Mi or like an extra component of dark matter for T < Mi. The latest results from Planck

strongly constrain an extra radiation component at CMB:

Neff(CMB) = 3.2± 0.5. (11.18)

and also measures the dark matter component to be Ωm = 0.308 ± 0.012. Similar bounds are obtained

from the abundance of light elements, BBN. These bounds exclude the possibility of having essentially

any extra fully thermalized neutrino that is sufficiently long-lived to survive BBN. It can be shown that

the ratio Γsi (T )

H(T ) reaches a maximum at Tmax [99, 100] and

Γsi(Tmax)

H(Tmax)
∼
∑

α |(Ulh)αi|2Mi√
g∗(Tmax)

. (11.19)
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The naive seesaw scaling U2
lhMh ∼ ml, would seem to imply that the thermalization condition depends

only on the light neutrino masses and is independent on the seesaw scale. In fact a detailed study shows

that indeed this naive expectation holds.

For nR = 2, the heavy states must beMi ≥ 100 MeV [101], so that they might decay before BBN.

For nR = 3 two things can happen [102]. If the lightest neutrino mass, mlightest ≥ 3× 10−3 eV, all the

three heavy states thermalize and Mi ≥ 100 MeV. If mlightest ≤ 3× 10−3 eV two states must be above

this limit, but one of the states with mass M1 might not thermalize and therefore be sufficiently diluted.

M1 may take any value provided mlightest, which is presently unconstrained, and is tuned accordingly.

11.1.3 Warm dark matter

For mlightest ≤ 10−5 eV, M1 might be O( keV), and a viable warm dark matter candidate [103, 104].

This scenario is the so-called νMSM model [104]. The most spectacular signal of this type of dark matter

is a monochromatic X-ray line from the decay of this keV neutrino. There has been some evidence for

an unexplained X-ray line in galaxy clusters that might be compatible with a 7 keV neutrino [105, 106].

These results are under intense scrutiny. If interpreted in terms of a keV neutrino, the mixing however is

too small and some extra mechanism is needed to enhance the production so that it matches the required

dark matter density, such as the presence of large primordial lepton asymmetries [107].

11.1.4 Direct searches for heavy neutral leptons

Naturalness arguments suggest that maybe the scale of MN is not far from the electroweak scale. States

with masses in this range could be produced in the lab [108]. The production of the HNL is mediated

by charged or neutral currents or Higgs interactions with strength given by the Uhl coupling, see Fig. 50.

The most important production mechanisms, from meson decays, at e+e− collisions at the Z peak or at

hadron colliders, are shown in Fig. 51.
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Fig. 50: Interactions of HNL in Type I seesaw model.
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a

1

Fig. 51: Production processes of HNLs from meson decays, e+e− colliders and hadron colliders.
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The present experimental bounds on the e mixings of these heavy states are shown in Figs. 52,

on the plane
∑

α=e,µ,τ |(Uhl)αi|2 versus Mi. The shaded regions correspond to existing constraints and

the unshaded ones to prospects of various new experiments. For masses below a few GeV, the best

constraints come from peak searches in meson decays. In particular the new beam dump experiment

SHiP [109] can improve considerably the sensitivity in the region between the Kaon and B meson mass.

Above the B meson mass and below the Z boson mass, searches in FCCee at the Z peak would improve

present limits by several orders of magnitude [110]. The best existing limits in this range come from the

LEP experiment DELPHI [111] and LHC searches from displaced vertices [112, 113]. The HNL in this

range are very long lived and lead to displaced decays [114–116] that have a negligible SM background.

FCC

Heavy Neutral Leptons

Most of the accessible region is quite far from the seesaw limit …

Within naive see-saw scaling   

Larger mixings can be achieved via an approximate Lepton Number symmetry!  

                                              


U2 ∼ mν

M

7
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g
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0
(|U

2
|)

Direct Searches in |U2
e |

BBN

See-Saw Limit

Future experimental sensitivity  
               SHiP & FCC-ee

ΔM = 2μ

U2 ≃ y2 v2

M2
mν = f (y′ /y, μ /Λ)y′ ≪ y, μ ≪ Λ

M = (0 Λ
Λ 0) + diag(μ)

Y = (y, 0) + (0, y′ )

Wyler, Wolfenstein ’83; Mohapatra, Valle ’86 
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Fig. 52: Constraints from present and future experiments on a HNLs. Shaded regions are existing bounds
on the HNL electron mixing as a function of the HNL mass, from the various processes that are sensitive
to different mass ranges. The dashed line is the future sensitivity of SHiP at lower masses and FCCee at
higher ones. Below the seesaw line neutrino masses cannot be explained. The exclusion from BBN is
also added. Figure is courtesy of S. Sandner.

For masses above the W and Z masses, the best constraints are presently coming from LHC

searches [117–119].

12 Low-scale leptogenesis

The Universe is made of matter. The matter–antimatter asymmetry is measured to be [61]

ηB ≡
Nb −Nb̄

Nγ
∼ 6.21(16)× 10−10 . (12.1)

One generic implication of neutrino mass models is that they provide a new mechanism to explain this

asymmetry dynamically.

It has been known for a long time that all the ingredients to generate such an asymmetry from a

symmetric initial state are present in the laws of particle physics. These ingredients were first put forward

by Sakharov [120]:

1. Baryon number violation

B + L is anomalous in the SM [121] both with and without massive neutrinos. At high T in the early
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Figure 3: Artistic view of a sphaleron

3

Fig. 53: Artistic view of a sphaleron.

The Standard Model (subtly) complies   

I    Baryon Number 
Symmetry is broken by quantum vacuum effects: anomaly

W W

t’Hooft ‘76, Klinkhammer, Manton ’84;  

Only B-L is conserved in the SM !

3
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

sphaleron barrier (∼ sphaleron energy), and special real-
time runs are performed to calculate the dynamical pref-
actors of the tunneling process. The physical rate is then
obtained by reweighting the measurements. For details
of this intricate technique, we refer to [12, 27]. As we will
observe, in the temperature range where both methods
work, these overlap smoothly.

Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g2

3) (i.e. βG = 4/(g2
3a) = 9 in

conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiencies in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite-volume effects to be negligible [12].

The expectation value of the square of the Higgs field,
v2/T 2 = 2〈φ†φ〉/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159 ± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable 〈φ†φ〉 is ultraviolet divergent and
is additively renormalized; because of additive renormal-
ization, v2(T ) can become negative.

We also show the two-loop RG-improved perturbative

130 140 150 160 170
T / GeV

-45

-40

-35

-30

-25

-20

-15

-10

lo
g 
Γ
/Τ

4

standard
multicanonical
fit
perturbative

pure gauge

log[αH(T)/T]

FIG. 3: The measured sphaleron rate and the fit to the broken
phase rate, Eq. (7), shown with a shaded error band. The
perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
Pure gauge refers to the rate in hot SU(2) gauge theory [19].
The freeze-out temperature T∗ is solved from the crossing of
Γ and the appropriately scaled Hubble rate, shown with the
almost horizontal line.

result [2] for v2(T ) in the broken phase. Perturbation
theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.

Finally, in Fig. 3 we show the sphaleron rate as a func-
tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.

Using the multicanonical simulation methods we are
able to compute the rate 4 orders of magnitude further
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140 <∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83 ± 0.01)

T

GeV
− (147.7 ± 1.9). (7)

The error in the second constant is completely dominated

D’Onofrio, Rummukainen, Trangberg ‘14

/ log↵5
W
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Fig. 54: Sphaleron rate in the SM normalized by T 4 as function of the temperature, from [123]. The
horizontal line corresponds to the Hubble expansion rate.

Universe, B + L violating transitions are in thermal equilibrium [122] due to the thermal excitation of

configurations with topological charge called sphalerons, see Fig. 53.

These processes violate baryon and lepton numbers by the same amount:

∆B = ∆L. (12.2)

In seesaw models, there is generically an additional source of L violation (andB−L). If a lepton charge

is generated at temperatures where the sphalerons are still in thermal equilibrium, a baryon charge can

be generated.

The sphaleron rate in the SM has been computed accurately after the discovery of the Higgs

boson [123]. The rate normalized to the fourth power of the temperature is shown in Fig. 54 around the

electroweak phase transition. At T ≥ 160GeV the rate is∝ α5
WT

4, while it drops exponentially at lower

temperatures. The Hubble rate is indicated by the horizontal line. The temperature where the sphaleron

rate equals the Hubble expansion rate is the sphaleron decoupling temperature, T sph
dec , below which no

baryon number violation is possible.
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2. C and CP violation

Any lepton or baryon asymmetry can only be generated if there is C and CP violation. Seesaw models

generically include new sources of CP violation. As we have seen in type I seesaw model with nR = 3

there are six new CP phases in the lepton sector. They can be absorbed in the Yukawa matrix, Yν of

Eq. (11.8). Even though CP violation is connected to imaginary phases, CP violating observables such as

the baryon asymmetry depends on many flavour parameters. A very useful concept is that of the flavour

CP invariants [124]. Let us consider for example the minimal SM. Since quark Yukawa couplings are the

only source of CP violation and they are small, we expect that any CP violating asymmetry generated

at high temperatures (above the quark masses) can be expanded as a a polynomial in the up and down

Yukawa couplings, Yu and Yd. Furthermore we expect that this polynomial is independent of the flavour

basis used4 and it is not real, that is it must have a non-zero imaginary part. The lowest order polynomial

of Yu and Yd that satisfies these conditions is the famous Jarlskog invariant [124]

∆quarks
CP = Im

[
det
(
[YuY

†
u , YdY

†
d

)]
∝ J

∏

i<j

(m2
di
−m2

dj
)
∏

i<j

(m2
ui −m2

uj ), (12.3)

with

J ≡ Im[V ∗
ijViiV

∗
jiVjj ] = c23s23c12s12c

2
13s13 sin δ. (12.4)

We can then naively estimate the baryon asymmetry generated at the EW transition in the SM as

YB ∝
∆quarks

CP

T 12
EW

∼ 10−20, (12.5)

where the denominator is fixed by dimensional analysis. This simple analysis shows that the CP violation

in the minimal SM is far too small to explain the baryon asymmetry at the electroweak phase transition.

A detailed computation arrives to the same conclusion [125].

In the case of the Type I seesaw extension of the SM we have also CP violation in the lepton

sector encoded in the flavour parameters: Majorana mass matrix of the singlets, MN , and the neutrino

and charge lepton Yukawas, Yν and Yl. The lowest order invariant involving Yν and MN is [126, 127]:

∆leptons
CP = Im

(
Tr[Y †

ν YνM
†MM∗(Y †

ν Yν)
∗M ]

)
, (12.6)

or including also the lepton Yukawa

∆̃leptons
CP = Im

(
Tr[Y †

ν YνM
†MY †

ν YlY
†
l Yν ]

)
≡
∑

α

y2lα∆α. (12.7)

Even at low scales, these invariants are potentially much larger that those in the quark sector [128].

3. Departure from thermal equilibrium

In order for a CP asymmetry to arise, it is necessary that the relevant processes occur out of thermal

equilibrium since otherwise the abundances are fixed by the thermal Fermi–Dirac distributions and are

4A unitary rotation in flavour space of left and right chiral fields leaves all the terms in the Lagrangian invariant except the
Yukawa couplings.
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Fig. 55: High scale seesaw: abundance of the heavy Majorana singlets at the decoupling temperature
and the lepton number generated in the decay.

equal for particles and antiparticles. Out-of-equilibrium conditions can happen in the evolution of the

universe in the presence of first-order phase transitions, or due to the presence of sufficiently weakly

coupled sectors that cannot keep up with the expansion of the universe. This happens when the interaction

rates become smaller than the Hubble expansion rate, Γ(T ) ≤ H(T ). This must happen at T above the

sphaleron decoupling, T sph
dec to be effective in generating baryons.

No particle in the minimal SM satisfies this condition within the standard cosmological model,

not even neutrinos, that decouple much below sphaleron decoupling. On the other hand, the SM predicts

the existence of a phase transition from the broken phase at low temperatures to a symmetric phase

above, i.e. the EW phase transition. The critical temperature, TEW, is closely related to the sphaleron

decoupling temperature. The EW transition has been shown to be a crossover transition and therefore

with insufficient departure from thermal equilibrium [129].

In the Type I seesaw extension at low scales however, some of the states are more weakly interact-

ing than neutrinos and therefore can fulfil the requirement ΓNi(T ) ≤ Hu(T ), for T ≥ T sph
dec .

In the high scale scenario Mi ≫ v, the non-equilibrium condition is met at freeze out of the

heavy neutrino states. These are thermally produced and freeze out at temperatures similar to their

masses [128]. A net lepton asymmetry can be produced if the decay rate is slower than the expansion of

the Universe at T ∼Mi, as shown in Fig. 55.

In contrast, in the low-scale scenario, for Mi < v, the out-of-equilibrium condition is met at

freeze-in [104, 130, 131], that is some of the states never reach thermal equilibrium above T sph
dec . A non-

vanishing lepton and baryon asymmetry can survive and, if this is the case, sphaleron transitions can

no longer wash it out. It turns out that these conditions can be met naturally in type I seesaw models

for masses in the range [0.1, 100] GeV. The relevant CP asymmetries arise in the production of the

heavy seesaw states via the interference of CP-odd phases from the Yukawa couplings with CP-even

phases from propagation and oscillations, see Fig. 56. A quantum treatment of the corresponding kinetic

equations is mandatory in this case and quite complex.

A perturbative solution to the kinetic equations [132] allows to extract the analytical solution for

YB in terms of the CP invariants, and using the Casas–Ibarra parametrization can then be expressed in

terms of the neutrino masses and mixings, CP phases and HNL parameters.
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Leptogenesis via oscillations
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Fig. 56: Low-scale seesaw: abundance of the heavy Majorana singlets at TEW.Upper bound on the HNL mixing

Numerical scan within the sensitivity region of SHIP and FCCee
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PH, Lopez-Pavon, Rius, Sandner ‘22Fig. 57: Numerical scan of points on the plane of mixing versus mass of the HNL where the baryon
asymmetry can be explained and within the sensitivity region of SHiP and/or FCCee (dashed line) in the
minimal Type I seesaw (nR = 2). The line is obtained analytically from a perturbative solution of the
kinetic equations that can be expressed in terms of CP flavour invariants and maximized over unknown
parameters. From Ref. [132].

In Fig. 57 we show the region on the plane U2 v.s. Mi, where the baryon asymmetry and neutrino

masses can be accounted for within the range of sensitivity of the future SHiP and FCCee projects. The

solid line is the analytical upper bound to explain the baryon asymmetry based on the analytical solutions,

and maximizing the asymmetry over the unknown parameters. This demonstrates the discovery potential

of the future projects.

Other interesting correlations between YB and other observables are shown in Fig. 58. On the left,

we show the HNL flavoured mixings for masses in the range accessible to FCC when neutrino masses are

explained for both hierarchies. On the right plot the constrain of generating the correct baryon asymmetry

is added. The correct baryon asymmetry therefore restricts the flavour of the HNL mixings as well as the

PMNS CP phases (only two for nR = 2), as shown in Fig. 59 for both hierarchies.
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Implications for HNL mixings
In the not-so-degenerate case YB constrains significantly flavour ratios because 
flavour effects are necessary
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Fig. 58: Normalized mixings to e, µ, τ of HNLs with masses in the range of FCCee and mild degeneracy.
Only the constrain from neutrino masses is imposed on the left plot, while also the YB is imposed on the
right plot. The two regions correspond to neutrino orderings. From Ref. [132].

Implications for PMNS CP violation
In the not-so-degenerate case strong correlations with UPMNS CP phases because
flavour effects are necessary
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Figure 15. Points from the scan at �M/M = 10�2 for NH (left) and IH (right). The black dashed

lines enclose the regions where ✏e  0.01 (NH), and ✏e  0.05 (IH), while the dashed blue lines

enclose the region ✏µ  0.03 and the green ones that corresponding to ✏⌧  0.03.

ings or the PMNS phases when �M/M is su�ciently large.

7.2 Neutrinoless double-beta decay

The amplitude for this process depends on the combination of neutrino parameters m�� ,

that gets contributions from the light and heavy neutrino sectors

m�� =

������
X

i=light

U2
eimi +

X

I=heavy

⇥2
eIMIM (MI) /M (0)

������
, (7.1)

where M (Mi) are the Nuclear Matrix Elements (NME) as a function of the mass of

the neutrino mediating the process, as defined in [71]. In order to illustrate the main

dependence of m�� on the neutrino parameters, using eq. (3.11) together with eqs. (3.6)-

(3.8) and (A.11), the following approximated expression8 can be derived [32, 71–73] for the

symmetry protected scenario considered here:

Normal Hierarchy

mNH
�� =

����
q

�m2
atm

⇣
c2
12c

2
13r � e�2i(�+�)s2

13

⌘

� 2ei✓U2�Mf(A)

✓
0.9GeV

M

◆2 ⇣
rs2

12 + 2
p

rs12s13e
�i(�+�) + s2

13e
�2i(�+�)

⌘����� . (7.2)

8The approximation implies a scaling of the NMEs as M (MI) / 1/M2
I . For MI . 3 GeV the deviation

with respect to the nuclear computation [71] is larger than 1%.
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Majorana phase
Fig. 59: Numerical scan of points that explain YB on the plane of the Dirac CP violating phase, δ, and
the Majorana phase, ϕ in the minimal Type I seesaw (nR = 2). From Ref. [132].

An interesting question is whether the baryon asymmetry can be predicted quantitatively from the

measurements of CP violation in neutrino oscillations or from the CP violation in the neutrino mass ma-

trix. Unfortunately this is not the case generically, because the asymmetry depends on more parameters

than those in the light neutrino mass matrix. However, if the model is sufficiently constrained very strong

correlations can occur.

For example, in the minimal Type I seesaw model, nR = 2, and in the assumption that the two

eigenvalues of the matrix MN are degenerate, there are only two physical CP violating phases, that can

then be parametrized by the two in the light neutrino mass matrix. They determine both YB and CP

violation in neutrino oscillations. In this case, the measurement of the HNL mixings to electrons, muons

and τ ’s can pin down the CP phase in neutrino oscillations and YB up to discrete degeneracies, as shown

in Fig. 60. If the phase δ is also measured, a prediction of YB is possible from laboratory measurements.

This simple example demonstrates the interplay between YB and other observables in neutrino

physics.
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Figure 8. Result of a numerical likelihood inference in the case of a measurement of (M, U2
e , U2

µ)

(top), (M, U2
e , U2

µ, U2
⌧ ) (middle) and (M, U2

e , U2
µ, U2

⌧ , �) (bottom), with the true values and errors

given in Table 4. All plots show the correlation between � (left panel) and m�� (right panel)

with the baryon asymmetry. The blue regions represent the NH case and the red regions the IH.

The green vertical line represents the observed value of the asymmetry. The red and blue dashed

horizontal lines in the right panel indicate the range of m�� predicted by the model with current

neutrino oscillations data.

We find that the observed baryon asymmetry is only compatible with significant flavour

hierarchies in the Yukawa interactions, which restrict the CP violating phases, see Figures 3

– 27 –

Fig. 60: Assuming the minimal Type I seesaw model with nR = 2, and degenerate singlets within the
FCCee range, with parameters that can explain neutrino masses and YB . Upper Plot: determination
of δ and YB from a putative measurement of HNL mixings to electrons and muons and masses with
accuracies as indicated, and for NO (blue) and IO(blue). Middle Plot: adding also a measurement of
the HNL mixing to τ ’s. Bottom Plot: adding also a measurement of the phase δ from future neutrino
oscillation experiments. From Ref. [133].
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13 Conclusions

The results of many beautiful experiments in the last decade have demonstrated that neutrinos are massive

and mix. The standard 3ν scenario can explain all available data, except that of the unconfirmed signal

of LSND. The lepton flavour sector of the Standard Model is expected to be at least as complex as the

quark one, even though we know it only partially.

The structure of the neutrino spectrum and mixing is quite different from the one that has been

observed for the quarks: there are large leptonic mixing angles and the neutrino masses are much smaller

than those of the remaining leptons. These peculiar features of the lepton sector strongly suggest that

leptons and quarks constitute two complementary approaches to understanding the origin of flavour in

the Standard Model. In fact, the smallness of neutrino masses can be naturally understood if there is new

physics beyond the electroweak scale.

Many fundamental questions remain to be answered in future neutrino experiments, and these can

have very important implications for our understanding of the Standard Model and of what lies beyond:

Are neutrinos Majorana particles? Are neutrino masses the result of a new physics scale? Is CP violated

in the lepton sector? Could neutrinos be the seed of the matter–antimatter asymmetry in the Universe?

A rich experimental programme lies ahead where fundamental physics discoveries are very likely

(almost warranted). We can only hope that neutrinos will keep up with their old tradition and provide a

window to what lies beyond the Standard Model.
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such as flavor universality and flavor diagonality. We describe the flavor structure of flavor changing
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1 Introduction

1.1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several mass eigenstates of

the same gauge representation, namely several fields that are assigned the same quantum charges under

the unbroken symmetries. Within the Standard Model (SM), when thinking of its unbroken SU(3)C ×
U(1)EM gauge group, there are four different types of fermions, each coming in three flavors:

– Up-type quarks in the (3)+2/3 representation: u, c, t;

– Down-type quarks in the (3)−1/3 representation: d, s, b;

– Charged leptons in the (1)−1 representation: e, µ, τ ;

– Neutrinos in the (1)0 representation: ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,

gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore

by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor

physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Standard

Model, these are the nine masses of the charged fermions and the four “mixing parameters” (three angles

and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark–anti-

quark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one should

add to the list three neutrino masses and six mixing parameters (three angles and three phases) for the

W± interactions with lepton–anti-lepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-

portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-

universal. An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-

nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions

of the Higgs boson are flavor diagonal.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that

is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)

are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type

flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) µ → eν̄eνµ, (ii)

K− → µ−ν̄µ (which corresponds, at the quark level, to sū → µ−ν̄µ), and (iii) B → ψK (b → cc̄s).

Within the Standard Model, these processes are mediated by the W -bosons and occur at tree level. In

“flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but not both,

and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i) µ → eγ, (ii)

KL → µ+µ− (which corresponds, at the quark level, to sd̄ → µ+µ−), and (iii) B → ϕK (b → ss̄s).

Within the Standard Model, these processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.
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1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of

intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.

Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

– The size of ∆mK led to a successful prediction of the charm mass;

– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation;

– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP

violating parameter, the Kobayashi–Maskawa phase δKM. Baryogenesis tells us, however, that

there must exist new sources of CP violation. Measurements of CP violation in flavor changing

processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter suggest that there

may exist new physics at, or below, the TeV scale. If such new physics had a generic flavor struc-

ture, it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude

above the observed rates. The question of why this does not happen constitutes the new physics

flavor puzzle.

– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The

puzzle became even deeper after neutrino masses and lepton mixing were measured because, so

far, neither smallness nor hierarchy in these parameters have been established.

2 The Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The

symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking (SSB); (ii) The repre-

sentations of fermions and scalars. The Standard Model (SM) is defined as follows:

– The symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y . (2.1)

– It is spontaneously broken,

GSM → SU(3)C × U(1)EM (QEM = T3 + Y ), (2.2)

by the VEV of a single scalar field,

ϕ(1, 2)+1/2, (⟨ϕ0⟩ = v/
√
2). (2.3)
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– There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (2.4)

The SM scalar field is called the Higgs field. The SU(3)C-triplet fermions fields are called quark fields,

and the SU(3)C-singlet fermions fields are called lepton fields.

2.1 The Lagrangian

The most general renormalizable Lagrangian with scalar and fermion fields can be decomposed into

L = Lkin + Lψ + LYuk + Lϕ. (2.5)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, Lψ gives fermion mass

terms, LYuk describes the Yukawa interactions, and Lϕ gives the scalar potential. We now find the

specific form of the Lagrangian made of the fermion fields QLi, URi, DRi, LLi and ERi (2.4), and the

scalar field (2.3), subject to the gauge symmetry (2.1) and leading to the SSB of Eq. (2.2).

2.1.1 Lkin

The local symmetry requires the following gauge boson degrees of freedom:

Gµa(8, 1)0, Wµ
a (1, 3)0, Bµ(1, 1)0. (2.6)

The corresponding field strengths are given by

Gµνa = ∂µGνa − ∂νGµa − gsfabcGµbGνc ,
Wµν
a = ∂µW ν

a − ∂νWµ
a − gϵabcWµ

b W
ν
c ,

Bµν = ∂µBν − ∂νBµ. (2.7)

The covariant derivative is

Dµ = ∂µ + igsG
µ
aLa + igWµ

b Tb + ig′BµY, (2.8)

where the La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2λa for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2×2 Pauli matrices 1
2τb for doublets, 0 for singlets), and the Y ’s are

the U(1)Y charges. Explicitly, the covariant derivatives acting on the various scalar and fermion fields

are given by

Dµϕ =

(
∂µ +

i

2
gWµ

b τb +
i

2
g′Bµ

)
ϕ,

DµQLi =

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gWµ

b τb +
i

6
g′Bµ

)
QLi,

DµURi =

(
∂µ +

i

2
gsG

µ
aλa +

2i

3
g′Bµ

)
URi,
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DµDRi =

(
∂µ +

i

2
gsG

µ
aλa −

i

3
g′Bµ

)
DRi,

DµLLi =

(
∂µ +

i

2
gWµ

b τb −
i

2
g′Bµ

)
LLi,

DµERi =
(
∂µ − ig′Bµ

)
ERi. (2.9)

Lkin is given by

LSMkin = −1

4
Gµνa Gaµν −

1

4
Wµν
b Wbµν −

1

4
BµνBµν

+iQLiD/QLi + iURiD/URi + iDRiD/DRi + iLLiD/LLi + iERiD/ERi

+(Dµϕ)†(Dµϕ). (2.10)

This part of the interaction Lagrangian is generation-universal. In addition, it conserves CP.

2.1.2 Lψ
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions

because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana

mass terms for the fermions because they all have Y ̸= 0. Thus,

LSMψ = 0. (2.11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

−LSMY = Y d
ijQLiϕDRj + Y u

ijQLiϕ̃URj + Y e
ijLLiϕERj + h.c., (2.12)

where ϕ̃a = ϵabϕ
∗
b (a, b are the SU(2)-indices). The Y f ’s are general complex 3 × 3 matrices of

dimensionless couplings. This part of the Lagrangian is, in general, generation-dependent (that is, Y f ̸∝
1) and CP violating.

We now present three special interaction bases. Without loss of generality, we can use a bi-unitary

transformation,

Y e → Ŷe = UeLY
eU †

eR, (2.13)

to change the basis to one where Y e is diagonal and real:

Ŷ e = diag(ye, yµ, yτ ). (2.14)

In the basis defined in Eq. (2.14), we denote the components of the lepton SU(2)-doublets, and the three

lepton SU(2)-singlets, as follows:

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
; eR, µR, τR, (2.15)
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where e, µ, τ are ordered by the size of ye,µ,τ (from smallest to largest).

Similarly, without loss of generality, we can use a bi-unitary transformation,

Y u → Ŷ u = VuLY
uV †

uR, (2.16)

to change the basis to one where Ŷ u is diagonal and real:

Ŷ u = diag(yu, yc, yt). (2.17)

In the basis defined in Eq. (2.17), we denote the components of the quark SU(2)-doublets, and the quark

up SU(2)-singlets, as follows:

(
uL

duL

)
,

(
cL

dcL

)
,

(
tL

dtL

)
; uR, cR, tR, (2.18)

where u, c, t are ordered by the size of yu,c,t (from smallest to largest).

We can use yet another bi-unitary transformation,

Y d → Ŷ d = VdLY
dV †

dR, (2.19)

to change the basis to one where Ŷ d is diagonal and real:

Ŷ d = diag(yd, ys, yb). (2.20)

In the basis defined in Eq. (2.20), we denote the components of the quark SU(2)-doublets, and the quark

down SU(2)-singlets, as follows:

(
udL

dL

)
,

(
usL

sL

)
,

(
ubL

bL

)
; dR, sR, bR, (2.21)

where d, s, b are ordered by the size of yd,s,b (from smallest to largest).

2.1.4 Lϕ
The scalar potential is given by

LSMϕ = −µ2ϕ†ϕ− λ(ϕ†ϕ)2. (2.22)

Choosing µ2 < 0 and λ > 0 leads to the required spontaneous symmetry breaking. This part of the

Lagrangian is also CP conserving.

2.2 The spectrum

The fermion masses arise from the Yukawa couplings as a result of the spontaneous symmetry breaking.

The mass matrices are given by

Mf = (v/
√
2)Y f (f = e, u, d). (2.23)
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Table 1: The SM particles.

particle spin color QEM mass [v]

W± 1 (1) ±1 1
2g

Z0 1 (1) 0 1
2

√
g2 + g′2

A0 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
√
2λ

e, µ, τ 1/2 (1) −1 ye,µ,τ/
√
2

νe, νµ, ντ 1/2 (1) 0 0

u, c, t 1/2 (3) +2/3 yu,c,t/
√
2

d, s, b 1/2 (3) −1/3 yd,s,b/
√
2

It is clear then that the bases of diagonal Yukawa matrices—the Ŷ e basis of Eq. (2.14), the Ŷ u basis of

Eq. (2.17), and the Ŷ d basis of Eq. (2.20)—are mass bases for, respectively, the charged leptons, the up

quarks and the down quarks, with mf = (v/
√
2)yf . The spectrum of the Standard Model is presented

in Table 1.

All masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,

and for the fermions, this is expected: In the absence of spontaneous symmetry breaking, the former

would be protected by the gauge symmetry and the latter by their chiral nature. For the Higgs boson, the

situation is different, as a mass-squared term does not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because they

are in vector-like representations of the SU(3)C × U(1)EM group: The LH and RH charged lepton

fields, e, µ and τ , are in the (1)−1 representation; The LH and RH up-type quark fields, u, c and t, are

in the (3)+2/3 representation; The LH and RH down-type quark fields, d, s and b, are in the (3)−1/3

representation. On the other hand, the neutrinos remain massless in spite of the fact that they are in the

(1)0 representation of SU(3)C × U(1)EM, which allows for Majorana masses. Such masses require a

VEV carried by a scalar field in the (1, 3)+1 representation of the SU(3)C×SU(2)L×U(1)Y symmetry,

but there is no such field in the SM.

The experimental values of the charged fermion masses are [1]1

me = 0.510998946(3) MeV, mµ = 105.6583745(24) MeV, mτ = 1776.86(12) MeV,

mu = 2.2+0.5
−0.3 MeV, mc = 1.27± 0.02 GeV, mt = 172.9± 0.4 GeV,

md = 4.7+0.5
−0.2 MeV, ms = 93+11

−5 MeV, mb = 4.18+0.03
−0.02 GeV. (2.24)

2.2.1 The CKM matrix

In the derivation above, there is an important difference between the analysis of the quark spectrum

and the analysis of the lepton spectrum. For the leptons, there exists a basis that is simultaneously an

1See Ref. [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark masses in
the MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).
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Table 2: The SM fermion interactions.

interaction fermions force carrier coupling flavor

Electromagnetic u, d, ℓ A0 eQ universal
Strong u, d g gs universal

NC weak u, d, e, ν Z0 e(T3−s2WQ)
sW cW

universal
CC weak (q) ūd W± gV non-universal
CC weak (l) ℓ̄ν W± g universal

Yukawa u, d, ℓ h yq diagonal

interaction basis and a mass basis for both the charged leptons and the neutrinos, that is the Ŷe basis. In

contrast, for the quarks, in general there is no interaction basis that is also a mass basis for both up-type

and down-type quarks. To see that, we denote ui = (u, c, t) and di = (d, s, b), and write the relation of

these mass eigenstates to the interaction eigenstates:

uiL = (VuL)ijU
j
L, uiR = (VuR)ijU

j
R, diL = (VdL)ijD

j
L, diR = (VdR)ijD

j
R. (2.25)

If VuL ̸= VdL, as is the general case, then the interaction basis defined by Eq. (2.17) is different from

the interaction basis defined by Eq. (2.20). In the former, Y d can be written as a unitary matrix times a

diagonal one,

Y u = Ŷ u, Y d = V Ŷ d. (2.26)

In the latter, Y u can be written as a unitary matrix times a diagonal one,

Y d = Ŷ d, Y u = V †Ŷ u. (2.27)

In either case, the unitary matrix V is given by

V = VuLV
†
dL, (2.28)

where VuL and VdL are defined in Eqs. (2.16) and (2.19), respectively. Note that each of VuL, VuR, VdL
and VdR depends on the basis from which we start the diagonalization. The combination V = VuLV

†
dL,

however, does not. This is a hint that V is physical. The matrix V is called the Cabibbo–Kobayashi–

Maskawa (CKM) matrix [2, 3]. Its physical significance becomes clear in Section 2.3.3.

2.3 The interactions

Within the SM, the fermions have five types of interactions. These interactions are summarized in Ta-

ble 2. In the next few subsections, we explain the entries of this table.
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2.3.1 EM and strong interactions

By construction, a local SU(3)C × U(1)EM symmetry survives the SSB. The SM has thus the photon

and gluon massless gauge fields. All charged fermions interact with the photon:

LQED,ψ = −2e

3
uiA/ui +

e

3
diA/di + eℓiA/ℓi, (2.29)

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and ℓ1,2,3 = e, µ, τ . We emphasize the following points:

1. The photon couplings are vector-like.

2. The EM interactions are P , C and T conserving.

3. Diagonality: The photon couples to e+e−, µ+µ− and τ+τ−, but not to e±µ∓, e±τ∓ or µ±τ∓

pairs, and similarly in the up and down sectors.

4. Universality: The couplings of the photon to different generations are universal.

All colored fermions (namely, quarks) interact with the gluon:

LQCD,ψ = −gs
2
qλaG/aq, (2.30)

where q = u, c, t, d, s, b. We emphasize the following points:

1. The gluon couplings are vector-like.

2. The strong interactions are P , C and T conserving.

3. Diagonality: The gluon couples to t̄t, c̄c, etc., but not to t̄c or any other flavor changing pair.

4. Universality: The couplings of the gluon to different quark generations are universal.

The universality of the photon and gluon couplings is a result of the SU(3)C×U(1)EM gauge invariance,

and thus holds in any model, and not just within the SM.

2.3.2 Neutral current weak interactions

All SM fermions couple to the Z-boson:

LZ,ψ =
e

sW cW

[
−
(
1

2
− s2W

)
eLiZ/eLi + s2W eRiZ/eRi +

1

2
νLαZ/νLα (2.31)

+

(
1

2
− 2

3
s2W

)
uLiZ/uLi −

2

3
s2W uRiZ/uRi −

(
1

2
− 1

3
s2W

)
dLiZ/dLi +

1

3
s2W dRiZ/dRi

]
.

where να = νe, νµ, ντ . We emphasize the following points:

1. The Z-boson couplings are chiral and parity violating.

2. Diagonality: The Z-boson couples diagonally. For example, in the lepton sector, the Z-boson

couples to e+e− and to µ+µ− but not to e±µ∓ pairs. The diagonality in the lepton sector holds to

all orders in perturbation theory, due to an accidental [U(1)]3 symmetry of the SM (see below).

3. Universality: The couplings of the Z-boson in each of the seven sectors

(νL, ℓL, ℓR, dL, dR, uL, uR) are universal. This is a result of a special feature of the SM:
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all fermions of given chirality, EM charge and SU(3)C representation come from the same

SU(2)L × U(1)Y representation (see below).

As an example to experimental tests of diagonality and universality, we can take the leptonic

sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z → e+e−) = (3.363± 0.004)% , (2.32)

BR(Z → µ+µ−) = (3.366± 0.007)% ,

BR(Z → τ+τ−) = (3.370± 0.008)% ,

beautifully confirms universality:

Γ(µ+µ−)/Γ(e+e−) = 1.0001± 0.0024,

Γ(τ+τ−)/Γ(e+e−) = 1.002± 0.003.

Diagonality is also tested by the following experimental searches:

BR(Z → e+µ−) < 7.5× 10−7,

BR(Z → e+τ−) < 5.0× 10−6,

BR(Z → µ+τ−) < 6.5× 10−6. (2.33)

Thus, for example,

Γ(e+µ−)/Γ(ℓ+ℓ−) < 2.2× 10−5,

Γ(µ+τ−)/Γ(τ+τ−) < 1.9× 10−4. (2.34)

2.3.3 Charged current weak interactions

We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass

eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,ℓ = −
g√
2

(
νeL W/

+e−L + νµL W/
+µ−L + ντL W/

+τ−L + h.c.
)
. (2.35)

Eq. (2.35) reveals some important features of the model:

1. Parity violation: The W -boson couplings are chiral. More specifically, only left-handed particles

take part in charged-current interactions. Consequently, parity is violated.

2. Universality: the couplings of the W -boson to τ ν̄τ , to µν̄µ and to eν̄e are equal. This is a result

of the local nature of the imposed SU(2): a global symmetry would have allowed an independent

coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,

consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ → e+νe) = (10.71± 0.16)× 10−2,
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BR(W+ → µ+νµ) = (10.63± 0.15)× 10−2,

BR(W+ → τ+ντ ) = (11.38± 0.21)× 10−2. (2.36)

These results confirm universality:

Γ(µ+ν)/Γ(e+ν) = 0.996± 0.008,

Γ(τ+ν)/Γ(µ+ν) = 1.043± 0.024. (2.37)

As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis, the W interactions have the following form:

LW,q = −
g√
2
U iL W/

+Di
L + h.c.. (2.38)

Using Eq. (2.25) to write U iL = (V †
uL)iju

j
L and Di

L = (V †
dL)ijd

j
L, we can rewrite LW,q in terms of the

mass eigenstates:

LW,q = −
g√
2
ukL(VuL)ki W/

+(V †
dL)ild

l
L + h.c. = − g√

2
ukLVkl W/

+dlL + h.c., (2.39)

where V is the CKM matrix defined in Eq. (2.28).

Eq. (2.39) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-

lated by these interactions.

2. The W couplings to the quark mass eigenstates are not universal. The universality of gauge inter-

actions is hidden in the unitarity of the CKM matrix, V .

3. The W couplings are not diagonal. This is a manifestation of the fact that no pair of an up-type

and a down-type mass eigenstates fits into an SU(2)L doublet. For example, the d and u mass

eigenstates are not members of a single SU(2)L doublet.

The matrix V is called the CKM matrix [2,3]. The (hidden) universality within the quark sector is tested

by the prediction

Γ(W → uX) = Γ(W → cX) =
1

2
Γ(W → hadrons). (2.40)

Experimentally,

Γ(W → cX)/Γ(W → hadrons) = 0.49± 0.04. (2.41)

2.3.4 Yukawa interactions

The Yukawa interactions are given by

LYuk = − h

v
(me eL eR +mµ µL µR +mτ τL τR

+mu uL uR +mc cL cR +mt tL tR +md dL dR +ms sL sR +mb bL bR + h.c.
)
.
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To see that the Higgs boson couples diagonally to the fermion mass eigenstates, let us take the

example of the down quarks, and start from an arbitrary interaction basis:

hDLY
dDR = hDL(V

†
dLVdL)Y

d(V †
dRVdR)DR

= h(DLV
†
dL)(VdLY

dV †
dR)(VdRDR)

= h(dL sL bL)Ŷ
d(dR sR bR)

T . (2.42)

We conclude that the Higgs couplings to the fermion mass eigenstates have the following features:

1. Diagonality.

2. Non-universality.

3. Proportionality to the fermion masses: the heavier the fermion, the stronger the coupling. The

factor of proportionality is mf/v.

4. CP conservation.

Thus, the Higgs boson decay is dominated by the heaviest particle which can be pair-produced in

the decay. Formh ∼ 125 GeV, this is the bottom quark. Indeed, the SM predicts the following branching

ratios for the leading decay modes:

BRb̄b : BRWW ∗ : BRgg : BRτ+τ− : BRZZ∗ : BRcc̄ = 0.58 : 0.21 : 0.09 : 0.06 : 0.03 : 0.03. (2.43)

The following comments are in order with regard to Eq. (2.43):

1. From the six branching ratios, three (b, τ, c) stand for two-body tree-level decays. Thus, at tree

level, the respective branching ratios obey BRb̄b : BRτ+τ− : BRcc̄ = 3m2
b : m2

τ : 3m2
c . QCD

radiative corrections somewhat suppress the two modes with the quark final states (b, c) compared

to one with the lepton final state (τ ).

2. The WW ∗ and ZZ∗ modes stand for the three-body tree-level decays (Wff ′ and Zff , respec-

tively), where one of the vector bosons is on-shell and the other off-shell.

3. The Higgs boson does not have a tree-level coupling to gluons since it carries no color (and the

gluons have no mass). The decay into final gluons proceeds via loop diagrams. The dominant

contribution comes from the top-quark loop.

4. Similarly, the Higgs decays into final two photons via loop diagrams with small (BRγγ ∼ 0.002),

but observable, rate. The dominant contributions come from the W and the top-quark loops which

interfere destructively.

Experimentally, the decays into final ZZ∗, WW ∗, γγ, b̄b and τ+τ− have been established with rates

that are consistent with the SM predictions.

2.4 Global symmetries

In the absence of the Yukawa matrices, LYuk = 0, the SM has a [U(3)]5 global symmetry:

GSM
global(Y

u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (2.44)
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where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)Q × U(1)U × U(1)D × U(1)L × U(1)E . (2.45)

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry

SU(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (2.46)

where the Vi are unitary matrices. The Yukawa interactions (2.12) break the global symmetry,

GSM
global(Y

u,d,e ̸= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (2.47)

Thus, the transformations of Eq. (2.46) are not a symmetry of LSM. Instead, they correspond to a change

of the interaction basis. These observations also offer an alternative way of defining flavor physics: it

refers to interactions that break the [SU(3)]5 symmetry (2.46). Thus, the term “flavor violation” is often

used to describe processes or parameters that break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q symmetry

(but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (2.48)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2ℓ symmetry (but are neutral

under U(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2ℓ
. (2.49)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification

of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.3).

2.5 Counting parameters

How many independent parameters are there in LqYuk? The two Yukawa matrices, Y u and Y d, are 3× 3

and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of

them are, however, physical. The pattern ofGglobal breaking means that there is freedom to remove 9 real

and 17 imaginary parameters (the number of parameters in three 3× 3 unitary matrices minus the phase

related to U(1)B). For example, we can use the unitary transformations QL → VQQL, UR → VUUR

and DR → VDDR, to lead to the following interaction basis:

Y d = Ŷ d, Y u = V †Ŷ u, (2.50)
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where Ŷ d,u are diagonal,

Ŷ d = diag(yd, ys, yb), Ŷ u = diag(yu, yc, yt), (2.51)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that

there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the

nine real parameters as six quark masses and three mixing angles, while the single phase is δKM.

How many independent parameters are there in LℓYuk? The Yukawa matrix Y e is 3 × 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,

freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 × 3 unitary

matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL →
VLLL and ER → VEER, to lead to the following interaction basis:

Y e = Ŷ e = diag(ye, yµ, yτ ). (2.52)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters

as the three charged lepton masses. We must, however, modify the model when we take into account the

evidence for neutrino masses.

3 Flavor changing charged current (FCCC) processes

3.1 The CKM matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal in

the mass basis. Consequently, all flavor changing processes depend on the CKM parameters. The fact

that there are only four independent CKM parameters, while the number of measured flavor changing

processes is much larger, allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1.1 The standard parametrization

The CKM matrix is defined in Eq. (2.28). Its explicit form is not unique. First, there is freedom in

defining V in that we can permute between the various generations. This freedom is fixed by ordering the

up quarks and the down quarks by their masses, i.e. (u1, u2, u3)→ (u, c, t) and (d1, d2, d3)→ (d, s, b).

We then write the W interaction of Eq. (2.39) as

LW,q = −
g√
2

(
uL cL tL

)
V W/ +



dL

sL

bL


+ h.c.. (3.1)

The elements of V are therefore written as follows:

V =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (3.2)
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Second, we can redefine the phases of the quark fields in such a way that the masses remain real

but the phase structure of the CKM matrix changes. This freedom can be used to choose an explicit

parametrization that depends on three real and one imaginary parameters. For example, the standard

parametrization [4, 5], used by the PDG, is given by

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 , (3.3)

where cij ≡ cos θij and sij ≡ sin θij . The three θij are the three mixing angles while δ is the Kobayashi–

Maskawa phase. With the fixed mass ordering explained above, we have θij ∈ {0, π/2} and δ ∈ {0, 2π}.
The mixing angles θij are often referred to as the real parameters, and δ as the imaginary one, or the CP

violating one.

The fitted values of the four parameters are given by

sin θ12 = 0.2250± 0.0007,

sin θ23 = 0.0418± 0.0008,

sin θ13 = 0.0037± 0.0001,

δ = 1.20± 0.04. (3.4)

This translates into the following ranges for the magnitude of the CKM elements:

|V | =



0.97401± 0.00011 0.22650± 0.00048 0.00361± 0.00010

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035


 . (3.5)

We discuss some of the ways in which these entries are determined below.

3.1.2 The Wolfenstein parametrization

Equation (3.5) implies that the CKM matrix is numerically close to a unit matrix, with small off-diagonal

terms that obey the following hierarchy:

|Vub|, |Vtd| ≪ |Vcb|, |Vts| ≪ |Vus|, |Vcd|. (3.6)

This situation inspires an approximate parametrization, known as the Wolfenstein parametrization. The

Wolfenstein parameters consist of the three real parameters λ,A and ρ, and the imaginary (CP violating)

parameter iη. The expansion is in the small parameter,

λ = |Vus| ≈ 0.23. (3.7)
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The order of magnitude of each element can be read from the power of λ. To O(λ3), the CKM matrix is

written in terms of the Wolfenstein parameters as follows [6, 7]:

V =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 . (3.8)

The relations between the standard parameters and the Wolfenstein parameters are given by

λ = s12, Aλ2 = s23, Aλ3(ρ− iη) = s13e
−iδ. (3.9)

The fitted values of the four parameters can be read from Eq. (3.4)

ρ = 0.16± 0.01,

η = 0.35± 0.01,

A = 0.83± 0.02,

λ = 0.2250± 0.0007. (3.10)

The experimental fact that the CKM matrix is close to a unit matrix is one of the ingredients of the

SM that are far from a generic SM. The hierarchy in the quark masses constitutes another such ingredient.

3.1.3 CP violation

Various parameterizations differ in the way that the freedom of phase rotation is used to leave a sin-

gle phase in V . One can define, however, a CP violating quantity in V that is independent of the

parametrization. This quantity, the Jarlskog invariant [8, 9], JCKM, is defined through

Im(VijVklV
∗
ilV

∗
kj) = JCKM

3∑

m,n=1

ϵikmϵjln, (i, j, k, l = 1, 2, 3). (3.11)

(There is no sum over the i, j, k, l indices.) In terms of the explicit parameterizations given in Eqs. (3.3)

and (3.8), the Jarlskog invariant is given by

JCKM = c12c23c
2
13s12s23s13 sin δ ≈ λ6A2η. (3.12)

Note that |JCKM| is bounded from above,

|JCKM| ≤
1

6
√
3
∼ 0.1. (3.13)

The current best fit for JCKM is given by

JCKM = (3.00+0.15
−0.09)× 10−5, (3.14)
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which is much smaller than the upper bound of Eq. (3.13). More significantly, the experimental value

is much smaller than the value it would have if all relevant parameters were O(1). This is one more

demonstration that, within the flavor sector, the SM has non-generic features.

While a generic SM violates CP , specific realizations of it could still conserve CP . In order that

the SM violates CP , the following necessary and sufficient condition must be fulfilled:

XCP ≡ ∆m2
tc∆m

2
tu∆m

2
cu∆m

2
bs∆m

2
bd∆m

2
sdJCKM ̸= 0, (3.15)

where ∆m2
ij ≡ m2

i −m2
j . Equation (3.15) puts the following requirements on the SM in order that CP

is violated:

1. Within each quark sector, there should be no mass degeneracy;

2. The Jarlskog invariant does not vanish.

These conditions can also be written as a single requirement on the quark mass matrices in any interaction

basis [8, 9]:

XCP = Im
{
det
[
MdM

†
d ,MuM

†
u

]}
̸= 0 ⇔ CP violation. (3.16)

This is a convention independent condition.

3.1.4 SM2: CP conserving

Consider a two generation Standard Model, SM2. This model is similar to the one defined in Section 2,

which in this section will be referred to as SM3, except that there are two, rather than three fermion

generations. Many features of SM2 are similar to SM3, but there is one important difference: CP is a

good symmetry of SM2, but not of SM3. To see how this difference comes about, let us examine the

accidental symmetries of SM2. We follow here the line of analysis of SM3 in Section 2.5.

If we set the Yukawa couplings to zero, LSM2
Yuk = 0, SM2 gains an accidental global symmetry:

Gglobal
SM2 (Y u,d,e = 0) = U(2)Q × U(2)U × U(2)D × U(2)L × U(2)E , (3.17)

where the two generations of each gauge representation are a doublet of the corresponding U(2). The

Yukawa couplings break this symmetry into the subgroup

Gglobal
SM2 = U(1)B × U(1)e × U(1)µ. (3.18)

A-priori, the Yukawa terms depend on three 2× 2 complex matrices, namely 12R+12I parameters. The

global symmetry breaking, [U(2)]5 → [U(1)]3, implies that we can remove 5× (1R + 3I)− 3I = 5R +

12I parameters. Thus the number of physical flavor parameters is 7 real parameters and no imaginary

parameter. The real parameters can be identified as two charged lepton masses, four quark masses, and

the single real mixing angle, sin θc = |Vus|.
The important conclusion for our purposes is that all imaginary couplings can be removed from

SM2, and CP is an accidental symmetry of the model.
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Fig. 1: The rescaled unitarity triangle.

3.1.5 Unitarity triangles

A very useful concept with regard to CP violation is that of the unitarity triangles. The unitarity of the

CKM matrix leads to various relations among its elements. Of particular interest are the six relations:

∑

i=u,c,t

ViqV
∗
iq′ = 0 (qq′ = ds, db, sb),

∑

i=d,s,b

VqiV
∗
q′i = 0 (qq′ = uc, ut, ct). (3.19)

Each of these relations requires the sum of three complex quantities to vanish. Therefore, they can be

geometrically represented in the complex plane as triangles and are called “unitarity triangles”. It is a

feature of the CKM matrix that all six unitarity triangles have equal areas. Moreover, the area of each

unitarity triangle equals |JCKM|/2 while the sign of JCKM gives the direction of the complex vectors

around the triangles.

The triangle which corresponds to the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (3.20)

has its three sides of roughly the same length, ofO(λ3)—see Eq. (3.8). Furthermore, both the lengths of

its sides and its angles are experimentally accessible. For these reasons, the term “the unitarity triangle”

is reserved for Eq. (3.20).

We further define the rescaled unitarity triangle. It is derived from Eq. (3.20) by choosing a phase

convention such that (VcdV ∗
cb) is real and dividing the lengths of all sides by |VcdV ∗

cb|. The rescaled

unitarity triangle is similar to the unitarity triangle. Two vertices of the rescaled unitarity triangle are

fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the Wolfenstein parameters

(ρ, η). The rescaled unitarity triangle is shown in Fig. 1. The lengths of the two complex sides are

Ru ≡
∣∣∣∣
VudVub
VcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣
VtdVtb
VcdVcb

∣∣∣∣ =
√
(1− ρ)2 + η2. (3.21)
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The three angles of the unitarity triangle are defined as follows:

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (3.22)

They are physical quantities and can be independently measured, as we discuss below. Another com-

monly used notation is ϕ1 = β, ϕ2 = α, and ϕ3 = γ. Note that in the standard parametrization γ = δ.

3.2 Tree level determination of the CKM parameters

The charged current weak interactions allow the determination of CKM parameters from tree level pro-

cesses. There is an inherent difficulty in determining the CKM parameters: While the SM Lagrangian

has the quarks as its degrees of freedom, in Nature they appear only within hadrons. There are vari-

ous tools to overcome this difficulty, particularly for semileptonic decays, such as isospin symmetry and

heavy quark symmetry.

At tree level, the W -mediated interactions lead to only FCCC processes. These suffice, however,

to over-constrain the CKM parameters. The most useful processes are semileptonic ones. Here we give

a short summary of the results:

– Processes related to d→ uℓ−ν̄ transitions give |Vud| = 0.97370± 0.00014.

– Processes related to s→ uℓ−ν̄ transitions give |Vus| = 0.2245± 0.0008.

– Processes related to c→ dℓ+ν or to νµ + d→ c+ µ− transitions give |Vcd| = 0.221± 0.004.

– Processes related to c→ sℓ+ν or to cs̄→ ℓ+ν transitions give |Vcs| = 0.987± 0.011.

– Processes related to b→ cℓ−ν̄ transitions give |Vcb| = 0.0410± 0.0014.

– Processes related to b→ uℓ−ν̄ transitions give |Vub| = 0.00382± 0.00024.

There are two additional classes of tree level processes that depend on the CKM parameters:

– Processes related to single top production in hadron colliders give |Vtb| = 1.013± 0.030.

– Processes related to b→ scū and b→ suc̄ transitions give γ = (72± 5)o.

These eight distinct classes of processes depend on only four CKM parameters. The system is thus

over-constrained and tests the SM.

The values of λ and A can be straightforwardly extracted from the measurements of |Vus| and

|Vcb|, respectively:

λ = 0.2250± 0.0007, A = 0.83± 0.02. (3.23)

The values of ρ and η are extracted mainly from combining the measurements of |Vub| and γ, as shown

in Fig. 2:

ρ = 0.13± 0.03, η = 0.38± 0.02. (3.24)

The fact that the ranges of the four parameters in Eqs. (3.23) and (3.24) are consistent with all the

measurements means that the SM passes the test successfully.

Note that the error bars on the determination here, Eqs. (3.23) and (3.24), is larger than the one in

Eq. (3.10). The reason is that here we only consider tree level processes.
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Fig. 2: Allowed region in the (ρ, η) plane from SM tree level processes (taken from Ref. [10]).

4 Flavor changing neutral current (FCNC) processes

4.1 No FCNC at tree level

Historically, the strong suppression of FCNC played a very important role in constructing the SM. At

present it continues to play a significant role in testing the SM and in searching for new physics. In

this subsection we explain why, within the SM, there are no tree level contributions to FCNC processes.

Since there is no symmetry that forbids FCNC in the quark sector, there are loop contributions to these

processes. These are discussed in the following subsections.

The W -boson cannot mediate FCNC processes at tree level, since it couples to up–down pairs, or

to neutrino–charged-lepton pairs. Only neutral bosons could mediate FCNC at tree level. The SM has

four neutral bosons: the gluon, the photon, the Z-boson and the Higgs-boson. As derived explicitly in

Section 2, within the SM all of them couple diagonally in the mass basis, and therefore cannot mediate

FCNC at tree level. Here we explain the qualitative features of the SM that lead to this situation.

4.1.1 Photon- and gluon-mediated FCNC

As concerns the massless gauge bosons, the gluon and the photon, their couplings are flavor-universal

and, in particular, flavor-diagonal. This is guaranteed by gauge invariance. The universality of the

kinetic terms in the canonical basis requires universality of the gauge couplings related to the unbroken

symmetries. Hence neither the gluon nor the photon can mediate flavor changing processes at tree level.

Since we require that extensions of the SM respect the local SU(3)C × U(1)EM symmetry, this result

holds in all such extensions.

4.1.2 Z-mediated FCNC

The Z-boson, similarly to the W -boson, corresponds to a broken gauge symmetry (as manifest in the

fact that it is massive). Hence, there is no fundamental symmetry principle that forbids flavor changing

Z couplings. Yet, as we explicitly find in Section 2.3.2, in the SM the Z couplings are universal and

diagonal.

The key point is the following. The Z couplings are proportional to T3 −Q sin2 θW . A sector of

mass eigenstates is characterized by spin, SU(3)C representation and U(1)EM charge. While Q must be
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the same for all the flavors in a given sector, there are two possibilities regarding T3:

1. All mass eigenstates in this sector originate from interaction eigenstates in the same SU(2)L ×
U(1)Y representation, and thus have the same T3 and Y .

2. The mass eigenstates in this sector mix interaction eigenstates with the same Q = T3 + Y but

different SU(2)L × U(1)Y representations and, more specifically, different T3 and Y .

Let us examine the Z couplings in the interaction and mass bases for several flavors of (hypothetical)

fermions in the same SU(3)C × U(1)EM representation:

1. In the first class, the Z couplings in the fermion interaction basis are universal, namely they are

proportional to the unit matrix (times T3 −Q sin2 θW of the relevant interaction eigenstates). The

rotation to the mass basis maintains the universality:

VfM × 1× V †
fM = 1, (f = u, d, e;M = L,R). (4.1)

2. In the second class, the Z couplings in the fermion interaction basis are diagonal but not universal.

Each diagonal entry is proportional to the relevant T3 − Q sin2 θW . Generally in this case, the

rotation to the mass basis does not maintain the diagonality:

VfM × Ĝdiagonal × V †
fM = Gnon−diagonal, (f = u, d, e;M = L,R). (4.2)

The SM fermions belong to the first class: All fermion mass eigenstates with a given chirality

and in a given SU(3)C × U(1)EM representation come from the same SU(3)C × SU(2)L × U(1)Y

representation. For example, all the left-handed up quark mass eigenstates, which are in the (3)+2/3

representation, come from interaction eigenstates in the (3, 2)+1/6 representation. This is the reason that

the SM predicts universal Z couplings to fermions. If, for example, Nature had also left-handed quarks

in the (3, 1)+2/3 representation, then the Z couplings in the left-handed up sector would be non-universal

and the Z-boson could mediate FCNC, such as t→ cZ decay, at tree level.

4.1.3 Higgs-mediated FCNC

The Yukawa couplings of the Higgs boson are not universal. In fact, in the interaction basis, they are

given by completely general 3 × 3 matrices. Yet, as explained in Section 2.3.4, in the fermion mass

basis they are diagonal. The reason is that the fermion mass matrix is proportional to the corresponding

Yukawa matrix and, consequently, the mass matrix and the Yukawa matrix are simultaneously diagonal-

ized. The general condition for the absence of Higgs-mediated FCNC at tree level is that the only source

of masses for any fermion type is a single Higgs field.

The relevant features of the SM are the following:

1. All the SM fermions are chiral and charged (under SU(2)L × U(1)Y ), and therefore there are no

bare mass terms.

2. The scalar sector has a single Higgs doublet.

In contrast, either of the following possible extensions would lead to flavor changing Higgs couplings:
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1. There are quarks and/or leptons in vector-like representations, and thus there are bare mass terms.

2. There is more than one SU(2)L-doublet scalar that couples to a specific type of fermions.

Subsection 4.1.4 provides an example of the first case. Subsection 4.1.5 provides an example of the

second case.

We conclude that, within the SM, all FCNC processes in the quark sector are loop suppressed

(while in the lepton sector they are forbidden). However, in extensions of the SM, FCNC can appear at

the tree level, mediated by the Z-boson, the Higgs boson, or by new massive bosons.

To summarize, FCNC processes cannot be mediated at tree level in the SM. Yet, since there is

no symmetry that forbids them in the quark sector, they are mediated at the loop level. Concretely, the

W -mediated interactions lead to FCNC at the one-loop level. Since the W -boson couplings are charged

current flavor changing, an even number of insertions of W -boson couplings are needed to generate an

FCNC process. We consider two classes of FCNC based on the change in F (the charge under the global

[U(1)]6 flavor symmetry of the QCD Lagrangian):

– FCNC decays (∆F = 1 processes) have two insertions of W -couplings.

– Neutral meson mixings (∆F = 2 processes) have four insertions of W -couplings.

4.1.4 SM1.5: FCNC at tree level

Consider a model with the SM gauge group and pattern of SSB, but with only three quark flavors: u, d,

s. Such a situation cannot fit into a model with all left-handed quarks in doublets of SU(2)L. How can

we incorporate the interactions of the strange quark in this picture? The solution that we now describe

is wrong. Yet, it is of historical significance and, moreover, helps us to understand some of the unique

properties of the SM described above. In particular, it leads to FCNC at tree level. We define the three

flavor Standard Model (SM1.5) as follows (we ignore the lepton sector):

– The symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y . (4.3)

– It is spontaneously broken by the VEV of a single Higgs scalar,

ϕ(1, 2)+1/2, (⟨ϕ0⟩ = v/
√
2), (4.4)

GSM → SU(3)C × U(1)EM (QEM = T3 + Y ). (4.5)

– The colored fermion representations are the following:

QL(3, 2)+1/6, DL(3, 1)−1/3, UR(3, 1)+2/3, DRi(3, 1)−1/3 (i = 1, 2). (4.6)

We point out two important ingredients that are different from the SM:

1. There are quarks in a vector-like representation (DL +DR);

2. Not all (3)−1/3 quarks come from the same type of SU(2)L × U(1)Y representations.
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We first note that DL does not couple to the W -bosons:

LW =
g

2
QLW/bτbQL. (4.7)

The Yukawa interactions are given by

LYuk = −yuQLϕ̃UR − Y d
i QLϕDRi + h.c.. (4.8)

Unlike the SM, we now have bare mass terms for fermions:

Lq = −mdiDLDRi + h.c.. (4.9)

Given that there is a single up generation, the interaction basis is also the up mass basis. Explicitly,

we identify the up-component of QL with uL (and denote the down component of the doublet as duL),

and UR with uR. With the SSB, we have the following mass terms:

−Lmass = (duL DL)

(
Yd1

v√
2

Yd2
v√
2

md1 md2

)(
DR1

DR2

)
+ yu

v√
2
uLuR + h.c.. (4.10)

We now rotate to the down mass basis:

VdL

(
Yd1

v√
2

Yd2
v√
2

md1 md2

)
V †
dR =

(
md

ms

)
. (4.11)

The resulting mixing matrix for the charged current interactions is a 1× 2 matrix:

−LW,q =
g√
2
uLW/

+(cos θC sin θC)

(
dL

sL

)
+ h.c., (4.12)

where θC is the rotation angle of VdL. The neutral current interactions in the left-handed down sector are

neither universal nor diagonal:

LZ,q =
g

cW

[(
1

2
− 2

3
s2W

)
uLZ/uL −

2

3
s2W uRZ/uR +

1

3
s2W (dLZ/dL + sLZ/sL + dRZ/dR + sRZ/sR)

]

− g

2cW
(dL sL)Z/

(
cos2 θC cos θC sin θC

cos θC sin θC sin2 θC

)(
dL

sL

)
. (4.13)

The Higgs interactions in the down sector are neither proportional to the mass matrix nor diagonal:

LqYuk = yuhuLuR + h(dL sL)

[
VdL

(
Yd1 Yd2

0 0

)
V †
dR

](
dR

sR

)
+ h.c.. (4.14)

Thus, in this model, both the Z-boson and the h-boson mediate FCNC at tree level. For example,

KL → µ+µ− and K0 −K0 mixing get Z- and h-mediated tree-level contributions.
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4.1.5 2HDM: FCNC at tree level

Consider a model with two Higgs doublets. The symmetry structure, the pattern of spontaneous symme-

try breaking, and the fermion content are the same as in the SM. However, the scalar content is extended:

– The scalar representations are

ϕi(1, 2)+1/2, i = 1, 2. (4.15)

We are particularly interested in the modification of the Yukawa terms:

LYuk = (Y u
k )ijQLiURj ϕ̃k + (Y d

k )ijQLiDRj ϕk + (Y e
k )ijLLiERj ϕk + h.c.. (4.16)

Without loss of generality, we can work in a basis (commonly called “the Higgs basis") (ϕA, ϕM ), where

one the Higgs doublets carries the VEV, ⟨ϕM ⟩ = v, while the other has zero VEV, ⟨ϕA⟩ = 0. In this

basis, Y f
M is known and related to the fermions masses in the same way as the Yukawa matrices of the

SM:

Y f
M =

√
2Mf/v. (4.17)

The entries in the Yukawa matrices Y f
A are, however, free parameters and, in general, unrelated to the

fermion masses. The rotation angle from the Higgs basis to the basis of neutral CP-even Higgs states,

(ϕh, ϕH), is denoted by (α− β). The Yukawa matrix of the light Higgs field h is given by

Y f
h = cα−βY

f
A − sα−βY

f
M . (4.18)

Given the arbitrary structure of Y f
A , the Higgs boson can have couplings that are neither proportional to

the mass matrix nor diagonal.

It is interesting to note, however, that not all multi Higgs doublet models lead to flavor changing

Higgs couplings. If all the fermions of a given sector couple to one and the same doublet, then the Higgs

couplings in that sector would still be diagonal. For example, in a model with two Higgs doublets, ϕ1
and ϕ2, and Yukawa terms of the form

LYuk = Y u
ijQLiURj ϕ̃2 + Y d

ijQLiDRj ϕ1 + Y e
ijLLiERj ϕ1 + h.c., (4.19)

the Higgs couplings are flavor diagonal:

Y u
h = (cα/sβ)Y

u
M , Y d

h = −(sα/cβ)Y d
M , Y e

h = −(sα/cβ)Y e
M , (4.20)

where β [α] is the rotation angle from the (ϕ1, ϕ2) basis to the (ϕA, ϕM ) [(ϕh, ϕH)] basis. In the physics

jargon, we say that such models have natural flavor conservation (NFC) [11–13].

4.2 CKM and GIM suppressions in FCNC decays

In this section, we discuss FCNC meson decays, which are ∆F = 1 processes. To demonstrate the

generic features of one-loop FCNC, we consider the example of s → d transitions. Since the change of

flavor QNs is ∆s = −∆d = 1, this transition belongs to the class of ∆F = 1 processes. The FCNC part
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(a) (b)

Fig. 3: (a) One loop diagrams for ∆F = 1 s → d FCNC. (b) A one loop diagram that contributes to
K− → π−νν̄.

of any process that involves s → d transition is plotted in Fig. 3(a). For example, in Fig. 3(b) we show

a full diagram that contributes to the decay K → πνν̄, and which includes Fig. 3(a) as a sub-diagram

(diagrams with such a topology are usually called penguin diagrams).

By inspecting the diagram in Fig. 3(a), we learn that its flavor structure is given by

As→d ∼
∑

i=u,c,t

(VisV
∗
id) f(xi), xi =

m2
i

m2
W

, (4.21)

where f(xi) depends on the specific decay. CKM unitarity implies

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0. (4.22)

We can then use this unitarity condition to eliminate one of the three CKM terms in the sum in Eq. (4.21).

We choose to eliminate the u-term and write

As→d ∼
∑

i=c,t

[f (xi)− f (xu)]VisV ∗
id. (4.23)

We draw the following lessons:

– The contribution of the mi-independent terms in f(xi) to As→d vanishes when summed over all

internal quarks.

– As→d would vanish if the up-type quarks were all degenerate and, therefore, it must depend on the

mass-splittings among the up-type quarks.

The explicit dependence on the mass-splittings among the quarks depends on the process. In many cases,

for small xi we have

f(xi) ∼ xi. (4.24)
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Using this crude approximation we can write

As→d ∼ [(xt − xu)VtsV ∗
td + (xc − xu)VcsV ∗

cd] . (4.25)

Inspecting Eq. (4.25), we identify two suppression factors:

(i) CKM suppression: The amplitude is proportional to at least one off-diagonal CKM matrix element.

Given the specific structure of the CKM matrix, off-diagonal elements are small. Specifically,

|VtsV ∗
td| ∼ λ5 and |VcsV ∗

cd| ∼ λ where λ is the Wolfenstein parameter defined in Eq. (3.7).

(ii) GIM suppression: The amplitude is proportional to mass-squared differences between the up-type

quarks. In particular, (xc − xu) ∼ (mc/mW )2. The suppression by factors of small quark masses

is called the Glashow–Iliopoulos–Maiani (GIM) mechanism [14].

While we derive the results based on one specific example, the CKM and GIM suppressions play a role

in all FCNC processes. For the other FCNC in the down sector, b→ q with q = d, s, we have

Ab→q ∼ (xt − xu)VtbV ∗
tq + (xc − xu)VcbV ∗

cq. (4.26)

With regard to FCNC in the up sector, for c→ u, we have

Ac→u ∼ (xb − xd)V ∗
cbVub + (xs − xd)V ∗

csVus, (4.27)

and, for t→ q with q = u, c, we have

At→q ∼ (xb − xd)V ∗
tbVqb + (xs − xd)V ∗

tsVqs. (4.28)

The CKM suppression applies to FCNC decay rates. It does not necessarily apply, however, to

the corresponding branching ratios. The reason is that branching ratios depend on the ratio between

the FCNC decay rate and the full decay width which, in the down sector, is CKM-suppressed, and thus

the ratio of CKM factors is not necessarily small. In particular, the leading (FCCC) K decay rate is

suppressed by |Vus| ∼ |VcsVcd| and the leading (FCCC) B decay rate is suppressed by |Vcb| ∼ |VtbVts|.
Several remarks are in order:

1. While the f(xi) ∼ xi approximation is not valid for the top quark, it gives a reasonable order of

magnitude estimate, and we use it for the purpose of demonstration. For example, while xt/xc ∼
104, we have for f(x) defined in Eq. (4.31), f(xt)/f(xc) ≈ 103.

2. The exact form of the dependence on the mass splitting is process dependent, but in all cases the

amplitude vanishes when the internal quarks are degenerate. We refer to quadratic dependence

[xi − xj] as hard GIM, and to logarithmic dependence [log(xi/xj)] as soft GIM.

3. The size of FCNC amplitudes increases with the mass of the internal quark. The reason that

this does not violate the decoupling theorem is that the mass comes from SSB, so larger masses

correspond to larger Yukawa couplings.
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4.2.1 Examples: K → πνν̄ andB → πνν̄

As examples of ∆F = 1 processes, we consider the semileptonic decays

K+ → π+νν̄, B+ → π+νν̄, (4.29)

which proceed via the s̄→ d̄νν̄ and b̄→ d̄νν̄ transitions.

Consider the following ratios of FCNC-to-FCCC semileptonic decay rates:

RKπ =
Γ(K+ → π+νν̄)

Γ(K+ → π0e+ν)
=

3

2

g4

16π2

∣∣∣∣
V ∗
tsVtd[f(xt)− f(xu)] + V ∗

csVcd[f(xc)− f(xu)]
Vus

∣∣∣∣
2

,(4.30)

RBπ =
Γ(B+ → π+νν̄)

Γ(B+ → π0e+ν)
=

3

2

g4

16π2

∣∣∣∣
V ∗
tbVtd[f(xt)− f(xu)] + V ∗

cbVcd[f(xc)− f(xu)]
Vub

∣∣∣∣
2

,

where

f(x) =
x

8

[
2 + x

1− x −
3x− 6

(1− x)2 log x
]
. (4.31)

For small x, we have

f(x≪ 1) ≈ x(3 log x+ 1)

4
. (4.32)

Since f(xu)≪ 1, we have to a very good approximation f(xi)− f(xu) ≈ f(xi) for i = c, t.

A few comments are in order with regard to Eq. (4.30):

1. The factor of 3 comes from summing over the neutrino flavors, while the factor of 1/2 is an isospin

factor between the P+ → π+ and P+ → π0 (P = K,B) transitions.

2. The g4/16π2 is the loop suppression factor.

3. For RKπ, the t-term is CKM-suppressed, |VtsVtd/Vus| ∼ λ4, but not GIM-suppressed, f(xt) =

O(1). The c-term is GIM-suppressed, f(xc) = O(m2
c/m

2
W ), but not CKM-suppressed,

|VcsVcd/Vus| ≃ 1. The two terms contribute comparably.

4. For RBπ, the t-term is neither CKM-suppressed, |VtbVtd/Vub| = O(1), nor GIM-suppressed,

f(xt) = O(1). The c-term is not CKM-suppressed, |VcbVcd/Vub| = O(1), but it is GIM-

suppressed, f(xc) = O(m2
c/m

2
W ). Thus, the contribution of the c-term is negligible.

5. As a result of the different CKM and GIM suppression factors, we obtain numerically very differ-

ent predictions:

RKπ ∼ 10−9, RBπ ∼ 10−4. (4.33)

These predictions have not been fully tested yet, as we have only experimental upper bounds,

RKπ ∼< 10−8 and RBπ ∼< 0.18.

The comparison of RKπ and RBπ demonstrates how the CKM and GIM suppression factors de-

pend crucially on the specific quarks involved, and how they come into play in determining the various

FCNC rates. While for the two specific examples presented here there exist only experimental upper

bounds, many FCNC decays have been observed and their rates measured. To date, all measured FCNC

decay rates in the quark sector agree with the SM predictions.

236



FLAVOUR PHYSICS

Table 3: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd ∆mK/mK = 7.0× 10−15 ϵK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.05
bd ∆mB/mB = 6.3× 10−14 SψK = +0.699± 0.017
bs ∆mBs/mBs = 2.1× 10−12 Sψϕ = +0.046± 0.020

4.3 CKM and GIM suppressions in neutral meson mixing

A very useful class of FCNC is that of neutral meson mixing. Nature provides us with four pairs of

neutral mesons: K0−K0, B0−B0, B0
s −B0

s, andD0−D0. Mixing in this context refers to a transition

such asK0 → K0 (s̄d→ d̄s).2 The experimental results for CP conserving and CP violating observables

related to neutral meson mixing (mass splittings and CP asymmetries in tree level decays, respectively)

are given in Table 3.

Neutral meson mixing is a ∆F = 2 process. This phenomenon is observed and measured via

meson oscillations, as discussed in Appendix B. In Appendix A we present the explicit SM calculation.

In this section we show that the general lessons learned from ∆F = 1 processes about the loop, CKM,

and GIM suppression factors of FCNC, mostly carry over to ∆F = 2 processes.

To demonstrate the features of ∆F = 2 FCNC processes, we consider the example of K0 −K0

mixing. It is generated by the sd̄ → ds̄ transition which is a ∆s = −∆d = 2 process. The leading

diagram for this transition is plotted in Fig. 4. By inspecting this diagram, we learn that its flavor structure

is given by

Asd̄→ds̄ ∼
∑

i,j=u,c,t

(VisV
∗
idVjsV

∗
jd) S(xi, xj), (4.34)

where S(xj , xi) [xi ≡ m2
i /m

2
W ] is given explicitly in Eq. (A.6). We draw the following lessons:

– The contribution of themi-independent terms in S(xi, xj) toAsd̄→ds̄ vanishes when summed over

all internal quarks.

– Asd̄→ds̄ would vanish if the up-type quarks were all degenerate and, therefore, it must depend on

the mass-splittings among the up-type quarks.

To proceed, we use the unitarity condition of Eq. (4.22) and approximate xu = 0 to eliminate the u-terms

in the sum. We obtain:

Asd̄→ds̄ ∼ (VcsV
∗
cd)

2S(xc, xc) + 2VcsV
∗
cdVtsV

∗
tdS(xc, xt) + (VtsV

∗
td)

2S(xt, xt). (4.35)

We conclude that ∆F = 2 amplitudes have, in addition to the loop suppression factor, also the following

suppression factors:

2These transitions involve four-quark operators. When calculating the matrix elements of these operators between meson-
antimeson states, approximate symmetries of QCD are of no help. Instead, one uses lattice calculations to relate, for example,
the B0 → B0 transition to the corresponding quark process, b̄d → d̄b.
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Fig. 4: The one loop diagrams for ∆F = 2 FCNC.

(i) CKM suppression: The amplitude is proportional to a least two off-diagonal CKM matrix ele-

ments.

(ii) GIM suppression: The amplitude depends on the mass-squared differences between the up-type

quarks.

While we derive the results based on one example, the CKM and GIM suppressions play a role

in the mixing of all neutral mesons. In fact, there are three more ∆F = 2 amplitudes that we should

consider:

Abd̄→db̄ ∼ (VcbV
∗
cd)

2S(xc, xc) + 2VcbV
∗
cdVtbV

∗
tdS(xc, xt) + (VtbV

∗
td)

2S(xt, xt),

Abs̄→sb̄ ∼ (VcbV
∗
cs)

2S(xc, xc) + 2VcbV
∗
csVtbV

∗
tsS(xc, xt) + (VtbV

∗
ts)

2S(xt, xt),

Acū→uc̄ ∼ (V ∗
csVus)

2S(xs, xs) + 2V ∗
csVusV

∗
cbVubS(xs, xb) + (V ∗

cbVub)
2S(xb, xb), (4.36)

which correspond to B0 −B0, B0
s −Bs0, and D0 −D0 mixing, respectively.

4.3.1 Examples: ∆mK , ∆mB and ∆mBs

The hadronic process of K0 −K0 mixing proceeds via the sd̄ → ds̄ quark transition, and leads to the

mass splitting ∆mK between the two neutral kaon mass eigenstates. The SM calculation gives [see

Eq. (A.10)]

|∆mK |
mK

=
g4

96π2
m2
K

m2
W

BKf
2
K

m2
K

∣∣(V ∗
csVcd)

2S(xc, xc) + 2V ∗
csVcdV

∗
tsVtdS(xc, xt) + (V ∗

tsVtd)
2S(xt, xt)

∣∣ .
(4.37)

To estimate the relative size of the three terms, we note that

|V ∗
tsVtd|
|V ∗
csVcd|

∼ 10−3,
S(xc, xt)

S(xc, xc)
∼ 10,

S(xt, xt)

S(xc, xc)
∼ 104. (4.38)
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We conclude that the contributions of the terms proportional to S(xt, xt) are smaller by a factor of

O(100) than the contribution of the S(xc, xc) term and can thus be neglected:

∆mK

mK
≈ BKf

2
K

m2
K

× g4

96π2
× m2

K

m2
W

× |VcsVcd|2 ×
m2
c

m2
W

. (4.39)

The BKf2K/m
2
K ∼ O(1) factor encodes the QCD hadronic matrix element. The m2

K/m
2
W factor is

related to the fact that the flavor changing processes are W -mediated, so we get the scale suppression.

This factor is also present in FCCC tree level processes. The other three factors are the following:

– The g4/(96π2) factor represents the one-loop suppression.

– The |VcsVcd|2 factor represents the CKM suppression.

– The m2
c/m

2
W factor represents the GIM suppression.

The B0 − B0 and Bs − Bs mixing amplitudes are given in Eqs. (A.7) and (A.8), respectively. In

both cases the S(xt, xt) is the largest of the S-functions while the CKM factors are of the same order in

all three terms. We thus have

∆mB

mB
∝ g4

96π2

(
m2
t

m2
W

)
|VtbVtd|2,

∆mBs

mBs

∝ g4

96π2

(
m2
t

m2
W

)
|VtbVts|2. (4.40)

The GIM- and CKM-suppression factors are thus different among the various neutral meson sys-

tems of the down sector:

– B0
s −B0

s mixing: CKM suppression by |VtbVts|2 ∼ 2× 10−3, and no GIM suppression;

– B0 −B0 mixing: CKM suppression by |VtbVtd|2 ∼ 10−4, and no GIM suppression;

– K0 −K0 mixing: CKM and GIM suppression by |VcsVcd|2(m2
c/m

2
W ) ∼ 10−5.

We learn that the SM predicts hierarchy among the ∆F = 2 processes:

∆mK

mK
≪ ∆mB

mB
≪ ∆mBs

mBs

. (4.41)

The experimental results,

∆mK

mK
= 7.0× 10−15,

∆mB

mB
= 6.3× 10−14,

∆mBs

mBs

= 2.1× 10−12, (4.42)

show that this pattern is indeed realized in Nature.

4.3.2 CPV suppression

In some cases, CP violating (CPV) observables are CKM suppressed beyond their CP conserving (CPC)

counterparts. Whether this is the case can be understood by examining the relevant unitarity triangle:

The CPV observables depend on the area of it, while CPC observables depend on the length-squared of

one side. Thus, in cases where the unitarity triangle is squashed (such as the sd and bs triangles), we can

have a situation where the area of the triangle, |JCKM|/2 ∼ λ6, is much smaller than the length-squared
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of one of its sides, resulting in an extra suppression for CPV observables. Explicitly, for FCNC in the

down sector, we have

sd : JCKM/|VusVud|2 = O(λ4),
bs : JCKM/|VtbVts|2 = O(λ2),
bd : JCKM/|VtbVtd|2 = O(1). (4.43)

CP asymmetries measure the ratios between the CPV difference between two CP-conjugate rates

and the CPC sum of these rates:

– CPV inK0−K0 mixing is the source of δL, the CP asymmetry inKL → πℓν defined in Eq. (C.13);

– CPV in the interference of Bs −Bs mixing with b→ cc̄s decay is the source of Im(λψϕ), the CP

asymmetry in Bs → ψϕ defined similarly to Eq. (C.15);

– CPV in the interference of B0−B0 mixing with b→ cc̄d decay is the source of Im(λD+D−), the

CP asymmetry in B → D+D− defined in Eq. (C.15).

The pattern of a possible significant CP suppression in the sd sector, possible intermediate CP suppres-

sion in the bs sector, and no CP suppression in the bd sector, is manifest in the SM predictions:

δL ∝ JCKM/|VusVud|2 ∼ 10−3,

Im(λψϕ) ∝ JCKM/|VtbVts|2 ∼ 10−2,

Im(λD+D−) ∝ JCKM/|VtbVtd|2 ∼ 1. (4.44)

Experiments confirm this pattern:

δL = (3.34± 0.07)× 10−3,

Im(λψϕ) = (5.0± 2.0)× 10−2,

Im(λD+D−) = −0.76+0.15
−0.13. (4.45)

4.4 Summary

Within the SM, we identify four possible suppression factors of FCNC processes relative to FCCC ones:

1. Loop suppression.

2. CKM suppression.

3. GIM suppression in processes that are not dominated by the top quark contribution.

4. CPV suppression in some of the processes related to squashed unitarity triangles.

5 Testing the CKM sector

Within the SM, the CKM matrix is the only source of flavor changing processes and of CP violation.

In Section 3.2 we use only tree level processes to extract the values of CKM parameters. Here we add
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FCNC to the set of CKM measurements to form a global test of the SM. The primary question is whether

the long list of measurements can be fitted by the four CKM parameters.

5.1 SψKS

The CP asymmetry in B → ψKS decays plays a major role in testing the KM mechanism. Before

we explain the test itself, we should understand why the theoretical interpretation of the asymmetry is

exceptionally clean, and what are the theoretical parameters on which it depends, within and beyond the

Standard Model.

The CP asymmetry in neutralB meson decays into final CP eigenstates fCP is defined as follows:

AfCP
(t) ≡

dΓ/dt[B0
phys(t)→ fCP ]− dΓ/dt[B0

phys(t)→ fCP ]

dΓ/dt[B0
phys(t)→ fCP ] + dΓ/dt[B0

phys(t)→ fCP ]
. (5.1)

A detailed evaluation of this asymmetry is given in Appendix B. It leads to the following form:

AfCP
(t) = SfCP

sin(∆mBt)− CfCP
cos(∆mBt),

SfCP
≡ 2 Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1− |λfCP
|2

1 + |λfCP
|2 , (5.2)

where

λfCP
= e−iϕB (AfCP

/AfCP
) . (5.3)

Here ϕB refers to the phase of MBB̄ [see Eq. (C.3)]. Within the Standard Model, the corresponding

phase factor is given by

e−iϕB = (V ∗
tbVtd)/(VtbV

∗
td) . (5.4)

The decay amplitudes Af and Af are defined in Eq. (B.1).

The B0 → J/ψK0 decay [15, 16] proceeds via the quark transition b̄ → c̄cs̄. There are contri-

butions from both tree (t) and penguin (pqu , where qu = u, c, t is the quark in the loop) diagrams (see

Fig. 5) which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(
V ∗
qubVqus

)
pquf (5.5)

(the distinction between tree and penguin contributions is a heuristic one, the separation by the operator

that enters is more precise. For a detailed discussion of the more complete operator product approach,

which also includes higher order QCD corrections, see, for example, Ref. [17]). Using CKM unitarity,

these decay amplitudes can always be written in terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (5.6)

where TψK = tψK + pcψK − ptψK and P uψK = puψK − ptψK . A subtlety arises in this decay that is

related to the fact that B0 → J/ψK0 and B0 → J/ψK0. A common final state, e.g. J/ψKS , can

be reached via K0 − K0 mixing. Consequently, the phase factor corresponding to neutral K mixing,
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Fig. 5: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or Bs → f
via a b̄→ q̄qq̄′ quark-level process.

e−iϕK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS

AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK(

V ∗
cbVcs

)
TψK +

(
V ∗
ubVus

)
P uψK

× V ∗
cdVcs
VcdV

∗
cs

. (5.7)

The crucial point is that, for B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect the P u

contribution to AψK , in the SM, to an approximation that is better than one percent:

|P uψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1× 0.23 ∼< 0.005. (5.8)

Thus, to an accuracy better than one percent,

λψKS
=

(
V ∗
tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ, (5.9)

where β is defined in Eq. (3.22), and consequently

SψKS
= sin 2β, CψKS

= 0 (5.10)

(below the percent level, several effects modify this equation [18–21]).

Exercise 1: Show that, if the B → ππ decays were dominated by tree diagrams, then Sππ =

sin 2α.

Exercise 2: Estimate the accuracy of the predictions SϕKS
= sin 2β and CϕKS

= 0.
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The experimental measurements give the following ranges [22]:

SψKS
= +0.70± 0.02, CψKS

= −0.005± 0.015 . (5.11)

5.2 Is the CKM picture self-consistent?

The present status of our knowledge of the absolute values of the various entries in the CKM matrix is

given in Eq. (3.5). The values there take into account all the relevant tree-level and loop processes. Yet,

as explained above, the test of the SM is stronger when we reduce the above to the four CKM parameters.

Indeed, the following ranges for the four Wolfenstein parameters are consistent with all measurements:

λ = 0.2265± 0.0005, A = 0.790± 0.015, ρ = 0.14± 0.02, η = 0.36± 0.01. (5.12)

For the purpose of demonstration, it is useful to project the individual constraints onto the (ρ, η)

plane:

– Charmless semileptonic B decays can be used to extract

∣∣∣∣
Vub
Vcb

∣∣∣∣
2

= λ2(ρ2 + η2). (5.13)

– B → DK decays can be used to extract

tan γ =

(
η

ρ

)
. (5.14)

– SψKS
, the CP asymmetry in B → ψKS , is used to extract

sin 2β =
2η(1− ρ)

(1− ρ)2 + η2
. (5.15)

– The CP asymmetries of various B → ππ, B → ρπ, and B → ρρ decays depend on the phase

α = π − β − γ. (5.16)

– The ratio between the mass splittings in the B and Bs systems depends on

∣∣∣∣
Vtd
Vts

∣∣∣∣
2

= λ2[(1− ρ)2 + η2] (5.17)

– The CP violation in K → ππ decays, ϵK , depends in a complicated way on ρ and η.

The resulting constraints are shown in Fig. 6. The consistency of the various constraints is im-

pressive. This is a triumph of the SM in that such a variety of measurements, with different sources of

uncertainties, all agree to a high precision. We conclude that the flavor structure of the SM passes a

highly non-trivial test.
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Fig. 6: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charmless
semileptonicB decays (|Vub|), mass differences in theB0 (∆md) andBs (∆ms) neutral meson systems,
and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK (γ). Taken
from Ref. [10].

6 Probing BSM

In spite of the enormous experimental success of the SM, we know that the SM is not a complete theory

of Nature. In this section, we explain this statement and discuss the formalism and the experimental

probes to be used in case that the physics that extends the SM takes place at a high energy scale.

One obvious reason that we know that the SM is not the full theory of Nature is that it does not

include gravity. There are, however, reasons to think that, beyond gravity and the SM list of elementary

particles and fundamental interactions, there must exist degrees of freedom that are yet unknown to us.

These reasons can be roughly divided into four classes:

1. Experiments: measurements that are inconsistent with the SM predictions.

2. Cosmology and astrophysics: observations that cannot be explained by the SM.

3. Fine-tuning: parameters whose values can be explained in the SM only with accidental fine-tuned

cancellations among several contributions.

4. Clues: various non-generic features that are just parameterized in the SM, but not explained.

We elaborate on this list with specific examples in Sections 6.1 and 6.2.

Models that extend the SM by adding degrees of freedom (DoF), and often by imposing larger

symmetries, come under the general name of “Beyond the SM,” or BSM for short. The fact that exper-

iments have not observed any particles related to such hypothetical new fields tells us that either these

new particles are very heavy, or that their couplings to the SM particles are very weak. In light BSM

scenarios, where the new DoF are at or below the weak scale, the SM is not a good low energy effective

theory. Each such feebly coupled BSM scenario requires a specific discussion of how to probe it. We do

not discuss such theories any further.

The situation is different for heavy BSM scenarios, where the new DoF are much above the weak
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scale. There is a unified framework that allows one to understand the possible probes of heavy BSM

scenarios, while remaining agnostic about the details of the new degrees of freedom. We present this

framework in Section 6.4 and employ it in our discussion of BSM flavor physics.

Direct searches for BSM physics aim to produce the new particles on shell and study their proper-

ties. Numerous such searches have been conducted but, as of now, no BSM particle has been discovered.

Instead, these searches have set combination of lower bounds on the masses and upper bounds on the

couplings of such states to SM states. Roughly speaking, the lower bounds on the masses of particles

with order one couplings to the SM particles are of order 1 TeV. What sets this scale is the center of mass

energy of the most powerful accelerator in action (the LHC). Indirect searches for BSM physics aim to

observe virtual effects of the new states at low energies. We discuss this method below.

6.1 Experimental and observational problems

There are several experimental results and observational data that cannot be explained within the SM.

They provide the most direct evidence that we need to extend the SM. Here we present the three that are

the most robust.

Neutrino masses. There are several, related, pieces of experimental evidence for BSM physics

from the neutrino sector. All of these measurements prove that the neutrinos are massive, in contrast

to the SM prediction that they are massless. First, measurements of the ratio of νµ to νe fluxes of

atmospheric neutrinos and the directional dependence of the νµ flux are different from the SM pre-

dictions. Both facts are beautifully explained by neutrino masses and mixing which lead to νµ − ντ

oscillations. Second, measurements of the solar neutrino flux find that, while the Sun produces only

electron-neutrinos, their flux on Earth is significantly smaller than the total flux of neutrinos. This puzzle

is beautifully explained by νe− νµ,τ mixing. Both the atmospheric neutrino result and the solar neutrino

result are now confirmed by terrestrial accelerator and reactor neutrino experiments.

The baryon asymmetry of the universe (BAU). There exists observational evidence for BSM

physics from cosmology. The features of the Cosmic Microwave Background (CMB) radiation imply

a certain baryon asymmetry of the Universe. Similarly, the standard Big Bang Nucleosynthesis (BBN)

scenario is consistent with the observed abundances of light elements only for a certain range of the

baryon asymmetry, consistent with the CMB constraint. Baryogenesis, the dynamical generation of a

baryon asymmetry, requires CP violation. The CP violation in the SM generates baryon asymmetry that

is smaller by at least ten orders of magnitude than the observed asymmetry. This implies that there must

exist new sources of CP violation, beyond the SM. Furthermore, baryogenesis requires a departure from

thermal equilibrium at a very early time after the Big Bang, and the one provided by the SM is not of the

right kind.

Dark matter (DM). The evidence for dark matter—particles that are EM neutral and do not carry

the color charge of the strong interactions—comes from several observations: Rotation curves in galax-

ies, gravitational lensing, the CMB, and the large scale structure of the Universe. The neutrinos of the

SM do constitute dark matter, but their abundance is too small to be all the dark matter abundance. Thus,

there must exist DoF beyond those of the SM.
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6.2 Theoretical considerations

Some of the SM parameters are small. We distinguish between two classes of small parameters. “Techni-

cally natural” small parameters are those that, if set to zero, the theory gains an extra symmetry. The small

parameters that are not technically natural are those where the symmetry of the theory is not enlarged

when setting them to zero. An equivalent way to distinguish the two classes is based on their renor-

malization properties: For technically natural parameters the renormalization is multiplicative, while for

non-technically natural parameters it is additive. For a technically natural parameter, loop corrections are

proportional to the parameter itself, and if the parameter is set to be small at tree level, it remains small

to all orders in perturbation theory. For a non-technically natural parameter, the radiative corrections

are not proportional to the tree level parameter, and in cases where the radiative corrections are much

larger than the measured value of the parameter, the smallness of the parameter can only be maintained

by fine-tuned cancellation between the tree level and loop level contributions.

The existence in the SM of small parameters that are not technically natural is suggestive of BSM

frameworks, where the smallness of the parameters is protected against large radiative corrections by

some symmetry. There are two parameters of this kind in the SM: m2
h and θQCD.

The Higgs fine-tuning problem. Within the SM, the mass-squared of the Higgs µ2, gets additive,

quadratically divergent, radiative corrections. Given that the SM is an effective theory, the radiative

corrections must be finite and proportional to the scale above which the SM is no longer valid. The higher

the cutoff scale above the weak scale, the stronger the fine-tuned cancellation between the tree-level

mass-squared term and the radiative corrections must be. In particular, if there is no BSM physics below

mPl, the bare mass-squared term and the loop contributions have to cancel each other to an accuracy

of about thirty four orders of magnitude. Among the theories that aim to solve the Higgs fine-tuning

problem, supersymmetry and composite Higgs have been intensively studied and searched for.

The strong CP problem. The CP violating θQCD parameter contributes to the electric dipole

moment of the neutron dN . The experimental upper bound on dN puts an upper bound on θQCD of

O(10−9). The smallness of θQCD is not technically natural. Among the theories that aim to solve the

strong CP problem, the Peccei–Quinn mechanism, and its prediction of an ultra-light pseudoscalar, the

axion, have been intensively studied and searched for.

Other features of the SM parameters provide hints for the existence of BSM physics because they

are non-generic, but they are not related to non-technically natural small parameters. We mention two of

them below.

The flavor parameters. The Yukawa couplings are small (except for yt) and hierarchical. For

example, the electron Yukawa is of O(10−5). These are technically natural small numbers, but their

non-generic structure—smallness and hierarchy—is suggestive of BSM physics. Among the theories

that aim to solve this puzzle, the Froggatt–Nielsen mechanism, U(2) flavor models, and models of extra

dimensions, have been intensively studied.

Grand unification. The three gauge couplings of the strong, weak, and electromagnetic interac-

tions seem to converge to a unified value at a high energy scale. The SM cannot explain this fact, which

is just accidental within this model. Yet, it can be explained if the gauge group of the SM is part of a

larger simple group. This idea is called Grand Unified Theory, or GUT, and among the relevant unifying
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groups, SU(5) and SO(10) have been intensively studied.

6.3 The BSM scale

The SM has a single mass scale that we call the weak scale and denote by ΛEW. It can be represented

by the masses of the weak force carriers, mW or mZ , or by the VEV of the Higgs field, v. As an order

of magnitude estimate, we take ΛEW ∼ 102 GeV.

Some of the problems of the SM presented above are suggestive of where the BSM scale lies. We

present these well-motivated scales in decreasing order. Of course, there could be more than one scale

for the BSM physics.

The Planck scale, mPl ∼ 1019 GeV. The Planck scale constitutes a cut-off scale of all QFTs.

At this scale, gravitational effects become as important as the known gauge interactions and cannot be

neglected.

The GUT scale, ΛGUT ∼ 1016 GeV. The GUT scale is the one where the three gauge couplings

of the SM roughly unify. It is an indication that at that scale, the GUT symmetry group is broken into

the SM symmetry group. For example, in SU(5) GUT models, ΛGUT can be represented by the VEV

of the scalar field that breaks SU(5)→ SU(3)× SU(2)× U(1), or by the masses of the gauge bosons

that correspond to the broken SU(5) generators.

The seesaw scale, Λν ∼ 1015 GeV. The value of the neutrino masses mν hints that new degrees

of freedom appear at or below the so-called seesaw scale, Λν ∼ v2/mν . This scale is intriguingly close

to the GUT scale, and thus the two might be in fact related to the same BSM physics.

The Higgs fine-tuning scale ΛFT ∼ 1 TeV. No fine tuning is necessary to explain the smallness

of m2
h if radiative corrections are cut-off at a scale ΛFT of order 4πmh/yt ∼ TeV.

The WIMP scale ΛDM ∼ 1 TeV. If the DM particles are weakly interacting massive particles

(WIMPs), the cross section of their annihilation that is required to explain the DM abundance is of order

1/(20 TeV)2. If the relevant coupling is of order αW , the relevant scale is of order 1 TeV.

6.4 The SMEFT

As argued above, the SM is not a full theory of Nature. If the BSM degrees of freedom are at a scale

Λ ≫ ΛEW, then the SM is a good low energy effective theory which is valid below Λ. In such a case,

the SM Lagrangian should be extended to include all nonrenormalizable terms, suppressed by powers of

Λ:

LSMEFT = LSM +
1

Λ
Od=5 +

1

Λ2
Od=6 + · · · . (6.1)

Here LSM is the renormalizable SM Lagrangian and Od=n represents operators that are products of SM

fields, of overall dimension n in the fields, and transforming as singlets under the SM gauge group. The

SM extended to include such non-renormalizable term is called the SM effective field theory, or SMEFT

for short. For physics at an energy scale E well below Λ, the effects of operators of dimension n > 4

are suppressed by (E/Λ)n−4. Thus, in general, the higher the dimension of an operator, the smaller its

effect at low energies.

Nonrenormalizable operators are generated by extensions of the SM, which introduce new degrees
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of freedom that are much heavier than the electroweak scale. By studying nonrenormalizable operators,

we allow the most general extension of the SM and remain agnostic about its specific structure. At the

same time, constraints on nonrenormalizable terms can be translated into constraints on specific BSM

models.

The low energy effects of nonrenormalizable operators are small. Thus, when we study them, we

have to consider also loop effects in the SM. We can classify the effects of including loop corrections

and nonrenormalizable terms into three broad categories:

1. Forbidden processes: Various processes are forbidden by the accidental symmetries of the SM.

Nonrenormalizable terms, but not loop corrections, can break these accidental symmetries and

allow the forbidden processes to occur. Examples include neutrino masses, and proton decay. In

particular, neutrino masses and mixing violate the lepton flavor symmetries of the SM.

2. Rare processes: Within the SM, various processes that are not forbidden do not occur at tree level.

Here both loop corrections and nonrenormalizable terms can contribute. Examples include FCNC

processes.

3. Tree level processes: Often tree level processes in a particular sector depend on a small subset of

the SM parameters. This situation leads to relations among different processes within this sector.

These relations are violated by both loop effects and nonrenormalizable terms. Here, precision

measurements and precision theory calculations are needed to observe these small effects. Exam-

ples include electroweak precision measurements.

As concerns the last two types of effects, where loop corrections and nonrenormalizable terms may

both contribute, their use in phenomenology can be divided into two eras. Before all the SM particles

have been directly discovered and all the SM parameters measured, one could assume the validity of the

renormalizable SM and indirectly measure the properties of the yet unobserved SM particles. Indeed,

the masses of charm quark, the top quark, and the Higgs boson were first indirectly measured in this

way. Once all the SM particles have been observed and the parameters measured directly, the loop

corrections can be quantitatively determined, and the effects of nonrenormalizable terms in the SMEFT

can be unambiguously probed. Thus, at present, all three classes of processes serve to search for BSM

physics.

In this section, we go beyond testing the self-consistency of the CKM picture of flavor physics and

CP violation. The aim is to quantify how much room is left for BSM physics in the flavor sector and to

translate these constraints into lower bounds on the scale of higher-dimension flavor-violating operators

in the SMEFT. We make the following working assumption:

– The contribution of new physics to FCCC processes, where the SM contributions are tree-level,

can be neglected.

On the other hand, we allow BSM physics of arbitrary size and phase to contribute to FCNC processes.

6.5 New physics contributions toB0 −B0 mixing

We consider BSM effects in the FCNC process ofB0−B0 mixing, which plays a role in the mass splitting

∆mB and in the CP asymmetry SψKS
. The SM amplitude is given by Eq. (A.7). The modification of
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the mixing amplitude by general BSM physics can be parameterized as follows:

MBB =MSM
BB

∆d, (6.2)

where ∆d is a dimensionless complex parameter. BSM physics will be signalled by ∆d ̸= 1. Our aim is

to find the phenomenological constraints on ∆d.

Our first step is to use all relevant tree level processes which, under our assumption, can be used

to determine the CKM parameters. This was done in Section 3.2 and the results of this fit were shown in

Fig. 2. Our second step is to use ∆B = 2 processes to determine ∆d:

– The mass splitting between the two neutral B-mesons is given by

∆mB = 2|MSM
BB

(ρ, η)| × |∆d|. (6.3)

– The CP asymmetry in B → ψKS is given by

SψKS
= sin

[
2arctan

(
η

1− ρ

)
+ arg(∆d)

]
. (6.4)

The results of the fit are (see Fig. 7)

Re(∆d) = +0.94+0.18
−0.15, Im(∆d) = −0.11+0.11

−0.05. (6.5)

We learn that BSM physics can contribute to the B0 −B0 mixing amplitude up to about 20% of the SM

contribution.

Analogous upper bounds can be obtained for BSM contributions to the K0 − K0 and B0
s − B0

s

mixing amplitudes.

6.6 Probing the SMEFT

Assuming that new degrees of freedom that have flavor changing couplings to quarks are much heavier

than the electroweak breaking scale, their effects on low energy processes, such as neutral meson mixing,

can be presented as higher dimension operators. Then, bounds such as Eq. (6.5), constrain the coefficients

of such operators.

Consider a simple example, where we have a single dimension-six operator that contributes to ∆d:

zbd
Λ2

(QLdγµQLb)(QLdγ
µQLb). (6.6)

where QLd and QLb are the SU(2)-doublet quark fields whose T3 = −1/2 members are the dL and bL
fields [see Eq. (2.21)], and where we separated the coefficient into a dimensionless complex coupling,

zbd, and a high energy scale, Λ. We further define Λ̃ = Λ/
√
zbd. We consider the bound that can be

obtained from ∆mB . Comparing Eqs. (A.1) and (6.6), we obtain

|∆d| − 1 =

∣∣∣∣
1

Λ̃2CSM

∣∣∣∣ ≈
1

|Λ̃2|
× 2π2

|V ∗
tdVtb|2S(xt, xt)G2

Fm
2
W

. (6.7)
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Fig. 7: Allowed region in the (Re∆d, Im∆d) plane. Superimposed are the individual constraints from
the mass differences in theB0 (∆md), CP violation inB → ψK (SψK), and CP violation in semileptonic
B0 decay (aSL). Taken from Ref. [10].

The bound of Eq. (6.5) translates into a lower bound on Λ̃:

Λ̃ ∼> 103 TeV. (6.8)

Using SψKS
, one can obtain analogous bounds for various operators that contribute to CP violation in

B0 −B0 mixing. We can also obtain bounds for operators that affect other ∆F = 2 processes. Some of

these bounds are given in Table 4.

The following points are worth emphasizing:

1. BSM physics can contribute to FCNC at a level comparable to the SM contributions even if it takes

place at a scale that is five orders of magnitude above the electroweak scale.

2. If the BSM physics has a generic flavor structure, that is zij = O(1), then its scale must be above

104 TeV.
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Table 4: Lower bounds from CPC and CPV ∆F = 2 processes on the scale of new physics Λ̃, for
(QLiγµQLj)(QLiγ

µQLj) operators.

i, j Λ̃ [TeV] CPC Λ̃ [TeV] CPV Observables
s, d 9.8× 102 1.6× 104 ∆mK ; ϵK
b, d 6.6× 102 9.3× 102 ∆mB; SψK
b, s 1.4× 102 2.5× 102 ∆mBs ; Sψϕ

3. It could be that there are new particles with mass of order a TeV, but then their flavor structure

must be far from generic, |zij | ≪ 1.

4. The pattern of the bounds—those from K0 are stronger than those from B0 which are stronger

than those from Bs—is directly related to the strength of the flavor (CKM and GIM) suppression

we have in the SM, as discussed in Section 4.3.1. The reason for that is that the experimental

accuracy and the QCD uncertainties are similar for the three cases.

7 The new physics flavor puzzle

7.1 A model independent discussion

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to

LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that

are inversely proportional to the scale of new physics ΛNP.

The lowest dimension non-renormalizable terms are dimension-five:

−Ldim−5
Seesaw =

Zνij
ΛNP

LLiLLjϕϕ+ h.c.. (7.1)

These are the seesaw terms, leading to neutrino masses.

Exercise 3: How does the global symmetry breaking pattern in Eq. (2.47) change when Eq. (7.1)

is taken into account?

Exercise 4: What is the number of physical lepton flavor parameters in this case? Identify these

parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-

ators:

Ldim−6
∆F=2 =

∑

i ̸=j

zij
Λ2

(QLiγµQLj)
2, (7.2)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the

corresponding two neutral mesons. As discussed in the previous section, the consistency of the exper-

imental results with the SM predictions for neutral meson mixing allows us to impose the condition
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|MNP
PP̄
| < |MSM

PP̄
| for P = K,B,Bs, which implies that

Λ >
3.4 TeV

|V ∗
tiVtj |/|zij |1/2

∼





9× 103 TeV × |zsd|1/2
4× 102 TeV × |zbd|1/2
7× 101 TeV × |zbs|1/2

(7.3)

The first lesson that we draw from these bounds on Λ is that new physics can contribute to FCNC at

a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude

above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,

that is zij = O(1), then its scale must be above 104 − 105 TeV (or, if the leading contributions involve

electroweak loops, above 103 − 104 TeV). If indeed Λ≫ TeV, it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale

couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,

such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,

or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-

nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,

the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from box dia-

grams, the zij coefficients are suppressed by α2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B0 −B0 mixing

involves dLbL which transforms as (8, 1, 1)SU(3)3q
. The leading contribution must then be proportional to

(Y uY u†)13 ∝ y2t VtbV ∗
td. Indeed, an explicit calculation (using VIA for the matrix element and neglecting

QCD corrections) gives3

2MBB̄

mB
≈ −α

2
2

12

f2B
m2
W

S0(xt)(VtbV
∗
td)

2, (7.4)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2
[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1− x)

]
. (7.5)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor suppression

factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

Im(zSMcu ) ∼ α2
2y

2
b |VubVcb|2 ∼ 2× 10−14,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (7.6)

3A detailed derivation can be found in Appendix B of Ref. [23].
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(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading

short distance contribution is∝ α2
2(y

4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)
2 [24]. Moreover, long distance contributions are expected to dominate.

In particular, peculiar phase space effects [25, 26] have been identified which are expected to enhance

∆mD to within an order of magnitude of the its measured value. The CP violating part, on the other

hand, is dominated by short distance physics.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by

factors that are comparable or smaller than the SM ones. Why does that happen? This is the new physics

flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic means that

flavor measurements are a good probe of the new physics. Perhaps the best-studied example is that of

supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM

fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

7.2 Lessons for supersymmetry from neutral meson mixing

We consider, as an example, the contributions from the box diagrams involving the squark doublets of the

second and third generations, Q̃L2,3, to theBs−Bs mixing amplitude. The contributions are proportional

to Kd∗
3iK

d
2iK

d∗
3jK

d
2j , where Kd is the mixing matrix of the gluino couplings to a left-handed down quark

and their supersymmetric squark partners (∝ [(δdLL)23]
2 in the mass insertion approximation). We work

in the mass basis for both quarks and squarks. A detailed derivation can be found in Ref. [27]. It gives:

MBsBs
=

α2
smBsf

2
Bs
BBsηQCD

108m2
d̃

[11f̃6(x) + 4xf6(x)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
32K

d
22)

2. (7.7)

Here md̃ is the average mass of the two squark generations, ∆m2
d̃

is the mass-squared difference, and

x = m2
g̃/m

2
d̃
.

Equation (7.7) can be translated into our generic language:

ΛNP = mq̃, (7.8)

zbs1 =
11f̃6(x) + 4xf6(x)

18
α2
s

(
∆m̃2

d̃

m2
d̃

)2

(Kd∗
32K

d
22)

2 ≈ 10−4(δLL23 )2,

where, for the last approximation, we took the example of x = 1 [and used, correspondingly, 11f̃6(1) +

4f6(1) = 1/6], and defined

δLL23 =

(
∆m̃2

d̃

m2
d̃

)
(Kd∗

32K
d
22). (7.9)

Similar expressions can be derived for the dependence of K0 −K0 on (δdMN )12, B0 −B0 on (δdMN )13,

and D0 −D0 on (δuMN )12. Then we can use the constraints of Table 4 to put upper bounds on (δqMN )ij .

Some examples are given in Table 5 (see Ref. [28] for details and list of references).

We learn that, in most cases, we need δqij/mq̃ ≪ 1/TeV. One can immediately identify three

generic ways in which supersymmetric contributions to neutral meson mixing can be suppressed:
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Table 5: The phenomenological upper bounds on (δqLL)ij and ⟨δqij⟩ =
√

(δqLL)ij(δ
q
RR)ij . Here q = u, d

and M = L,R. The constraints are given for mq̃ = 1 TeV and x = m2
g̃/m

2
q̃ = 1. We assume that the

phases could suppress the imaginary part by a factor of ∼ 0.3. Taken from Ref. [28].

q ij (δqLL)ij ⟨δqij⟩
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.2 0.07
u 12 0.1 0.008

1. Heaviness: mq̃ ≫ 1 TeV;

2. Degeneracy: ∆m2
q̃ ≪ m2

q̃ ;

3. Alignment: Kq
ij ≪ 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [29], the squarks are very

heavy and supersymmetry no longer solves the fine tuning problem. If we want to maintain supersym-

metry as a solution to the fine tuning problem, either degeneracy or alignment or a combination of both

is needed. This means that the flavor structure of supersymmetry is not generic, as argued in the previous

section.

Take, for example, (δdLL)12 ≤ 0.03. Naively, one might expect the alignment to be of order

(VcdV
∗
cs) ∼ 0.2, which is far from sufficient by itself. Barring a very precise alignment (|Kd

12| ≪ |Vus|)
and accidental cancellations, we are led to conclude that the first two squark generations must be quasi-

degenerate. Actually, by combining the constraints from K0 − K0 mixing and D0 − D0 mixing, one

can show that this is the case independently of assumptions about the alignment [30–32]. Analogous

conclusions can be drawn for many TeV-scale new physics scenarios: a strong level of degeneracy is

required (for definitions and detailed analysis, see Ref. [33]).

Exercise 5: Does Kd
31 ∼ |Vub| suffice to satisfy the ∆mB constraint with neither degeneracy nor

heaviness? (Use the two generation approximation and ignore the second generation.)

Is there a natural way to make the squarks degenerate? Degeneracy requires that the 3×3 matrix of

soft supersymmetry breaking mass-squared terms m̃2
QL
≃ m̃2

q̃1. We have mentioned already that flavor

universality is a generic feature of gauge interactions. Thus, the requirement of degeneracy is perhaps a

hint that supersymmetry breaking is gauge mediated to the MSSM fields.

7.3 Minimal flavor violation (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matrices for SU(2)L-doublet and

SU(2)L-singlet squarks have the following form at the scale of mediation mM :

M̃2
UL

(mM ) =
(
m2
Q̃L

+DUL

)
1+MuM

†
u,

M̃2
DL

(mM ) =
(
m2
Q̃L

+DDL

)
1+MdM

†
d ,
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M̃2
UR

(mM ) =
(
m2
ŨR

+DUR

)
1+M †

uMu,

M̃2
DR

(mM ) =
(
m2
D̃R

+DDR

)
1+M †

dMd, (7.10)

where DqA = [(T3)qA − (QEM)qAs
2
W ]m2

Z cos 2β are the D-term contributions. Here, the only source of

the SU(3)3q breaking are the SM Yukawa matrices.

This statement holds also when the renormalization group evolution is applied to find the form of

these matrices at the weak scale. Taking the scale of the soft breaking terms mq̃A to be somewhat higher

than the electroweak breaking scale mZ allows us to neglect the DqA and Mq terms in Eq. (7.10). Then

we obtain

M̃2
QL

(mZ) ∼ m2
Q̃L

(
r31+ cuY

uY u† + cdY
dY d†

)
,

M̃2
UR

(mZ) ∼ m2
ŨR

(
r31+ cuRY

u†Y u
)
,

M̃2
DR

(mZ) ∼ m2
D̃R

(
r31+ cdRY

d†Y d
)
. (7.11)

Here r3 represents the universal RGE contribution that is proportional to the gluino mass (r3 = O(6)×
(M3(mM )/mq̃(mM ))) and the c-coefficients depend logarithmically on mM/mZ and can be of O(1)
when mM is not far below the GUT scale.

Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example of a

large class of models that obey a simple principle called minimal flavor violation (MFV) [34]. This

principle guarantees that low energy flavor changing processes deviate only very little from the SM

predictions. The basic idea can be described as follows. The gauge interactions of the SM are universal

in flavor space. The only breaking of this flavor universality comes from the three Yukawa matrices, Y u,

Y d and Y e. If this remains true in the presence of the new physics, namely Y u, Y d and Y e are the only

flavor non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions that

we presented in section 2.4. The Standard Model with vanishing Yukawa couplings has a large global

symmetry, see Eqs. (2.44, 2.45). In this section we concentrate only on the quarks. The non-Abelian part

of the flavor symmetry for the quarks is SU(3)3q of Eq. (2.45) with the three generations of quark fields

transforming as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (7.12)

The Yukawa interactions,

LqYuk = QLY
dDRH +QLY

uURHc, (7.13)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties under SU(3)3q [see Eq. (2.48)]:

Y u ∼ (3, 3̄, 1), Y d ∼ (3, 1, 3̄). (7.14)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields which transform

under the flavor symmetry, and then require that all the Lagrangian terms, constructed from the SM
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fields, Y d and Y u, must be (formally) invariant under the flavor group SU(3)3q . Of course, in reality,

LqYuk breaks SU(3)3q precisely because Y d,u are not fields and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in two

ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension operators, con-

structed from SM-fields and Y -spurions, are formally invariant under Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from

SM and the new fields, and from Y -spurions, are formally invariant under Gglobal.

Exercise 6: Use the spurion formalism to argue that, in MFV models, the KL → π0νν̄ decay

amplitude is proportional to y2t VtdV
∗
ts.

Exercise 7: Find the flavor suppression factors in the zbsi coefficients, if MFV is imposed, and

compare to the bounds in Table 4.

Examples of MFV models include models of supersymmetry with gauge-mediation or with

anomaly-mediation of its breaking.

8 The Standard Model flavor puzzle

The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three angles

and a phase), and three charged lepton Yukawa couplings (one can use fermions masses instead of the

fermion Yukawa couplings, yf =
√
2mf/v). The orders of magnitudes of these thirteen dimensionless

parameters are as follows:

yt ∼ 1, yc ∼ 10−2, yu ∼ 10−5,

yb ∼ 10−2, ys ∼ 10−3, yd ∼ 10−4,

yτ ∼ 10−2, yµ ∼ 10−3, ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1. (8.1)

Only two of these parameters are clearly of O(1), the top-Yukawa and the KM phase. The other flavor

parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may be that

this set of numerical values are just accidental. More likely, the smallness and the hierarchy have a

reason. The question of why there is smallness and hierarchy in the SM flavor parameters constitutes

“The Standard Model flavor puzzle."

The motivation to think that there is indeed a structure in the flavor parameters is strengthened by

considering the values of the four SM parameters that are not flavor parameters, namely the three gauge

couplings and the Higgs self-coupling:

gs ∼ 1, g ∼ 0.6, e ∼ 0.3, λ ∼ 0.12. (8.2)

This set of values does seem to be a random distribution of order-one numbers, as one would naively

expect.
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A few examples of mechanisms that were proposed to explain the observed structure of the flavor

parameters are the following:

– An approximate Abelian symmetry (“The Froggatt–Nielsen mechanism" [35]);

– An approximate non-Abelian symmetry (see e.g. Ref. [36]);

– Conformal dynamics (“The Nelson–Strassler mechanism" [37]);

– Location in an extra dimension [38];

– Loop corrections (see e.g. Ref. [39]).

We take as an example the Froggatt–Nielsen mechanism.

8.1 The Froggatt–Nielsen (FN) mechanism

Small numbers and hierarchies are often explained by approximate symmetries. For example, the small

mass splitting between the charged and neutral pions finds an explanation in the approximate isospin

(global SU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations from the

symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Froggatt–

Nielsen mechanism postulates a U(1)H symmetry, that is broken by a small spurion ϵH . Without loss of

generality, we assign ϵH a U(1)H charge ofH(ϵH) = −1. Each SM field is assigned a U(1)H charge. In

general, different fermion generations are assigned different charges, hence the term ‘horizontal symme-

try’. The rule is that each term in the Lagrangian, made of SM fields and the spurion, should be formally

invariant under U(1)H .

The approximate U(1)H symmetry thus leads to the following selection rules:

Y u
ij = ϵ

|H(Q̄i)+H(Uj)+H(ϕu)|
H ,

Y d
ij = ϵ

|H(Q̄i)+H(Dj)+H(ϕd)|
H ,

Y e
ij = ϵ

|H(L̄i)+H(Ej)−H(ϕd)|
H . (8.3)

As a concrete example, we take the following set of charges:

H(Q̄i) = H(Ui) = H(Ei) = (2, 1, 0),

H(L̄i) = H(Di) = (0, 0, 0),

H(ϕu) = H(ϕd) = 0. (8.4)

It leads to the following parametric suppressions of the Yukawa couplings:

Y u ∼



ϵ4 ϵ3 ϵ2

ϵ3 ϵ2 ϵ

ϵ2 ϵ 1


 , Y d ∼ (Y e)T ∼



ϵ2 ϵ2 ϵ2

ϵ ϵ ϵ

1 1 1


 . (8.5)

We emphasize that for each entry we give the parametric suppression (that is the power of ϵ), but each

entry has an unknown (complex) coefficient of order one, and there are no relations between the order
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one coefficients of different entries.

The structure of the Yukawa matrices dictates the parametric suppression of the physical observ-

ables:

yt ∼ 1, yc ∼ ϵ2, yu ∼ ϵ4,
yb ∼ 1, ys ∼ ϵ, yd ∼ ϵ2,
yτ ∼ 1, yµ ∼ ϵ, ye ∼ ϵ2,

|Vus| ∼ ϵ, |Vcb| ∼ ϵ, |Vub| ∼ ϵ2, δKM ∼ 1. (8.6)

For ϵ ∼ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In partic-

ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, while the

up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 8: Derive the parametric suppression and approximate numerical values of Y u, its

eigenvalues, and the three angles of V u
L , for H(Qi) = 4, 2, 0, H(Ui) = 3, 2, 0 and ϵH = 0.2.

Could we explain any set of observed values with such an approximate symmetry? If we could,

then the FN mechanism cannot be really tested. The answer however is negative. Consider, for example,

the quark sector. Naively, we have 11 U(1)H charges that we are free to choose. However, the U(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of

the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be a single

relation between the physical parameters that is independent of the choice of charges. Assuming that the

sum of charges in the exponents of Eq. (8.3) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb|, (8.7)

which is fulfilled to within a factor of 2. There are also interesting inequalities (here i < j):

|Vij | ∼> m(Ui)/m(Uj), m(Di)/m(Dj). (8.8)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then

the CKM matrix is predicted to be ∼ 1, namely the diagonal entries are not parametrically suppressed.

This structure is also consistent with the observed CKM structure.

8.2 The flavor of neutrinos

Five neutrino flavor parameters have been measured in recent years (see e.g. Ref. [40]): two mass-squared

differences,

∆m2
21 = (7.4± 0.2)× 10−5 eV2, |∆m2

32| = (2.51± 0.03)× 10−3 eV2, (8.9)

and the three mixing angles,

sin2 θ12 = 0.310± 0.013, sin2 θ23 = 0.56± 0.03, sin2 θ13 = 0.0224± 0.0007. (8.10)
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These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in

principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij |;
– |Ue2| > any |Vij |;
– |Ue3| is not particularly small (|Ue3| ̸≪ |Ue2Uµ3|);
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions, neither

smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy

[41–43]. It postulates that the neutrino mass matrix has no special structure, namely all entries are of

the same order of magnitude. Normalized to an effective neutrino mass scale, v2/Λseesaw, the various

entries are random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.

If true, the contrast between neutrino mass anarchy and quark and charged lepton mass hierarchy

may be a deep hint for a difference between the flavor physics of Majorana and Dirac fermions. The

source of both anarchy and hierarchy might, however, be explained by a much more mundane mech-

anism. In particular, neutrino mass anarchy could be a result of a FN mechanism, where the three

left-handed lepton doublets carry the same FN charge. In that case, the FN mechanism predicts paramet-

ric suppression of neither neutrino mass ratios nor leptonic mixing angles, which is quite consistent with

(8.9) and (8.10). Indeed, the viable FN model presented in Section 8.1 belongs to this class.

Another possible interpretation of the neutrino data is to take m2/m3 ∼ |Ue3| ∼ 0.15 to be small,

and require that they are parametrically suppressed (while the other two mixing angles are order one).

Such a situation is impossible to accommodate in a large class of FN models [44].

The same data, and in particular the proximity of (|Uµ3|, |Uτ3|) to (1/
√
2, 1/
√
2), and the proxim-

ity of |Ue2| to 1/
√
3 ≃ 0.58, led to a very different interpretation. This interpretation, termed ‘tribimax-

imal mixing’ (TBM), postulates that the leptonic mixing matrix is parametrically close to the following

special form [45]:

|U |TBM =




2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2


 . (8.11)

Such a form is suggestive of discrete non-Abelian symmetries, and indeed numerous models based on

an A4 symmetry have been proposed [46, 47]. A significant feature of of TBM is that the third mixing

angle should be close to |Ue3| = 0. Until 2012, there have been only upper bounds on |Ue3|, consistent

with the models in the literature. In recent years, however, a value of |Ue3| close to the previous upper

bound has been established [48], see Eq. (8.10). Such a large value (and the consequent significant

deviation of |Uµ3| from maximal bimixing) puts in serious doubt the TBM idea. Indeed, it is difficult in

this framework, if not impossible, to account for ∆m2
12/∆m

2
23 ∼ |Ue3|2 without fine-tuning [49].
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9 Higgs physics: the new flavor arena

The SM relates the Yukawa couplings to the corresponding mass matrices:

Y f =
√
2Mf/v. (9.1)

Examining the Yukawa couplings in the mass basis, this simple equation implies four features:

1. Proportionality: yi ≡ Y f
ii ∝ mi;

2. Factor of proportionality: yi/mi =
√
2/v;

3. Diagonality: Y f
ij = 0 for i ̸= j.

4. CP: Im(yi/mi) = 0.

In extensions of the SM, each of these four features might be violated. Thus, testing these features might

provide a window to new physics and to allow progress in understanding the flavor puzzles.

The Higgs boson h was discovered by the ATLAS and CMS experiments at the LHC [50,51]. The

experiments normalize their results for Higgs production and decays to the SM rates:

µf ≡
σ(pp→ h)BR(h→ f)

[σ(pp→ h)BR(h→ f)]SM
. (9.2)

The measurements give:

µγγ = 1.10± 0.07,

µZZ∗ = 1.02± 0.08,

µWW ∗ = 1.00± 0.08,

µbb̄ = 0.99± 0.12,

µττ = 0.91± 0.09,

µµµ = 1.21± 0.33, (9.3)

and the bounds [52–54]

µcc̄ ∈ [1.2, 26],

µcc̄ ≤ 20µbb̄,

BRee < 3.6× 10−4. (9.4)

Given that mb/mc ≃ 4.58 [55], and that the upper bound on µcc̄/µbb̄ implies that κc/κb < 4.5, it

is now experimentally established that yc < yb. Given BRSM
ee = 5 × 10−9, the latter translates into

µee < 7.2× 104.

As concerns quark flavor changing Higgs couplings, these have been searched for in t → qh

decays (q = c, u) [56, 57]:

BR(t→ ch) < 7.3× 10−4,
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BR(t→ uh) < 1.9× 10−4. (9.5)

As concerns lepton flavor violating Higgs decays, the current bounds are

BR(h→ τµ) < 1.5× 10−3,

BR(h→ τe) < 2.2× 10−3,

BR(h→ µe) < 6.1× 10−5. (9.6)

CPV has been searched for in the Higgs couplings to tt̄ and to τ+τ−, yielding uppr bounds on the

relative CP-odd fraction [58–60]:

sin θhtt = 0.00± 0.33,

sin θhττ = −0.02± 0.32. (9.7)

The measurements quoted in Eq. (9.3) can be presented in the yi −mi plane. We do so in Fig. 8.

The first two features quoted above are already being tested. The upper bounds on flavor violating decays

quoted in Eqs. (9.5) and (9.6) test the third feature. The allowed ranges in Eq. (9.7) test the fourth feature.

We can make the following statements:

– ye ∼< yµ < yτ . This goes in the direction of proportionality.

– The third generation Yukawa couplings, yt, yb, yτ , as well as the second generation yµ, obey

yi/mi ≈
√
2/v. This is in agreement with the predicted factor of proportionality.

– There are strong upper bounds on violation of diagonality: Ytc ∼< 0.02 and Yτµ ∼< 0.002.

– There are upper bounds on CPV in yt/mt and yτ/mτ .

Beyond the search for new physics via Higgs decays, it is interesting to ask whether the measure-

ments of the Higgs couplings to quarks and leptons can shed light on the Standard Model and/or new

physics flavor puzzles. If eventually the values of yb and/or yτ deviate from their SM values, the most

likely explanation of such deviations will be that there are more than one Higgs doublets, and that the

doublet(s) that couple to the down and charged lepton sectors are not the same as the one that couples to

the up sector. A more significant test of our understanding of flavor physics comes from the double ratio

Xµ+µ− ≡
BR(h→ µ+µ−)/BR(h→ τ+τ−)

m2
µ/m

2
τ

, (9.8)

which is predicted within the SM with impressive theoretical cleanliness. To leading order, it is given by

1, and the corrections of order αW and of order m2
µ/m

2
τ to this leading result are known, and reduce the

value to 0.98. The current experimental value is given by

Xµ+µ− = 1.03± 0.31, (9.9)

consistent with the SM prediction (as well as with the predictions of 2HDMs with NFC, the MSSM and

MFV models), and excluding the possibility that Yµ and Yτ arise from terms of different dimensions

in the SMEFT [61]. It is also interesting to test diagonality via the search for the SM-forbidden decay
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Fig. 8: The allowed ranges for the Higgs couplings. The SM prediction is presented by the dashed line.

modes, h→ µ±τ∓. A measurement of, or an upper bound on

Xµτ ≡
BR(h→ µ+τ−) + BR(h→ µ−τ+)

BR(h→ τ+τ−)
, (9.10)

would provide additional information relevant to flavor physics. The current experimental value is given

by

Xµτ < 0.04. (9.11)

We demonstrate below the potential power of Higgs flavor physics to lead to progress in our understand-

ing of the flavor puzzles by focusing on the measurements of µτ+τ− , Xµ+µ− and Xµτ [61].

Let us take as an example how we can use the set of these three measurements if there is a single

light Higgs boson. A violation of the SM relation Y SM
ij =

√
2mi
v δij , is a consequence of non renormaliz-

able terms. The leading ones are the d = 6 terms. In the interaction basis, we have

Ld=4
Y = −λij f̄ iLf jRϕ+ h.c., (9.12)

Ld=6
Y = −

λ′ij
Λ2
f̄ iLf

j
Rϕ(ϕ

†ϕ) + h.c. ,
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where expanding around the vacuum we have ϕ = (v + h)/
√
2. Defining VL,R via

√
2m = VL

(
λ+

v2

2Λ2
λ′
)
V †
Rv, (9.13)

where m = diag(me,mµ,mτ ), and defining λ̂ via

λ̂ = VLλ
′V †
R, (9.14)

we obtain

Yij =

√
2mi

v
δij +

v2

Λ2
λ̂ij . (9.15)

To proceed, one has to make assumptions about the structure of λ̂. In what follows, we consider

first the assumption of minimal flavor violation (MFV) and then a Froggatt–Nielsen (FN) symmetry.

Exercise 9: Find the predictions of models with Natural Flavor Conservation (NFC) for

µτ+τ− , Xµ+µ− and Xτµ.

9.1 MFV

MFV requires that the leptonic part of the Lagrangian is invariant under an SU(3)L × SU(3)E global

symmetry, with the left-handed lepton doublets transforming as (3, 1), the right-handed charged lepton

singlets transforming as (1, 3) and the charged lepton Yukawa matrix Y is a spurion transforming as

(3, 3̄).

Specifically, MFV means that, in Eq. (9.12),

λ′ = aλ+ bλλ†λ+O(λ5), (9.16)

where a and b are numbers. Note that, if VL and VR are the diagonalizing matrices for λ, VLλV
†
R = λdiag,

then they are also the diagonalizing matrices for λλ†λ: VLλλ†λV
†
R = (λdiag)3. Then, Eqs. (9.13), (9.14),

and (9.15) become

√
2m

v
=

(
1 +

av2

2Λ2

)
λdiag +

bv2

2Λ2
(λdiag)3,

λ̂ = aλdiag + b(λdiag)3 = a

√
2m

v
+

2
√
2bm3

v3
,

Yij =

√
2mi

v
δij

[
1 +

av2

Λ2
+

2bm2
i

Λ2

]
, (9.17)

where, in the expressions for λ̂ and Y , we included only the leading universal and leading non-universal

corrections to the SM relations.

We learn the following points about the Higgs-related lepton flavor parameters in this class of

models:
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1. h has no flavor off-diagonal couplings:

Yµτ , Yτµ = 0. (9.18)

2. The values of the diagonal couplings deviate from their SM values. The deviation is small, of order

v2/Λ2:

yτ ≈
(
1 +

av2

Λ2

) √
2mτ

v
. (9.19)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM

value. The deviation is, however, very small, of order m2
ℓ/Λ

2:

yµ
yτ

=
mµ

mτ

(
1−

2b(m2
τ −m2

µ)

Λ2

)
. (9.20)

The predictions of the SM with MFV non-renormalizable terms are then the following:

µτ+τ− = 1 + 2av2/Λ2,

Xµ+µ− = 1− 4bm2
τ/Λ

2,

Xτµ = 0. (9.21)

Thus, MFV will be excluded if experiments observe the h→ µτ decay. On the other hand, MFV allows

for a universal deviation of O(v2/Λ2) of the flavor-diagonal dilepton rates, and a smaller non-universal

deviation of O(m2
τ/Λ

2).

9.2 FN

An attractive explanation of the smallness and hierarchy in the Yukawa couplings is provided by the

Froggatt–Nielsen (FN) mechanism [35]. In this framework, a U(1)H symmetry, under which different

generations carry different charges, is broken by a small parameter ϵH . Without loss of generality, ϵH is

taken to be a spurion of charge −1. Then, various entries in the Yukawa mass matrices are suppressed

by different powers of ϵH , leading to smallness and hierarchy.

Specifically for the leptonic Yukawa matrix, taking the Higgs field to be neutral under U(1)H ,

H(ϕ) = 0, we have

λij ∝ ϵH(Ej)−H(Li)
H . (9.22)

We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an

arbitrary order-one coefficient. The resulting parametric suppression of the masses and leptonic mixing

angles is given by [62]

mℓi/v ∼ ϵ
H(Ei)−H(Li)
H , |Uij | ∼ ϵH(Lj)−H(Li)

H . (9.23)

Since H(ϕ†ϕ) = 0, the entries of the matrix λ′ have the same parametric suppression as the
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corresponding entries in λ [63], though the order-one coefficients are different:

λ′ij = O(1)× λij . (9.24)

This structure allows us to estimate the entries of λ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (9.25)

We learn the following points about the Higgs-related lepton flavor parameters in this class of

models:

1. h has flavor off-diagonal couplings:

Yµτ = O
( |U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (9.26)

2. The values of the diagonal couplings deviate from their SM values:

yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (9.27)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM

value:
yµ
yτ

=
mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (9.28)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:

µτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = 1 +O(v2/Λ2),

Xτµ = O(v4/Λ4). (9.29)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both

flavor-diagonal and flavor-changing h decays. On the other hand, FN allows non-universal deviations of

O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation of O(v4/Λ4) in the off-diagonal

rate.

10 New physics?

In this section we discuss two sets of recent measurements of flavor changing processes that arouse

much interest: lepton flavor universality in semileptonic B decays, R(D(∗)), and direct CP violation in
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D decays, ∆ACP .

10.1 B → D(∗)τν

Within the Standard Model (SM), the electroweak interactions of the leptons are flavor universal. Viola-

tion of lepton flavor universality arises from Yukawa interactions, that are negligible in this context, and

from phase space effects, which are calculable. A test of the SM prediction of lepton flavor universality

between the τ -lepton and the light ℓ-leptons (ℓ = e, µ) is provided by the ratios

R(D(∗)) ≡ Γ(B → D(∗)τ ν̄)
Γ(B → D(∗)ℓν̄)

, (ℓ = e or µ). (10.1)

The SM predictions, derived by naive averaging [22] over the results reported in Refs. [64–67], are

R(D) = 0.299± 0.003,

R(D∗) = 0.258± 0.005. (10.2)

The current world averages for R(D) and R(D∗), combining the results reported in Refs. [68–76] are as

follows [22]:

R(D) = 0.340± 0.027± 0.013,

R(D∗) = 0.295± 0.011± 0.008. (10.3)

The difference of the experimental measurements from the SM predictions corresponds to about 3.1σ

(p-value of 2.7× 10−3). We thus aim to explain

R(D(∗))/R(D(∗))SM ≈ 1.14± 0.05. (10.4)

In this section we entertain the idea that a deviation from the SM will indeed be established. We

describe the analysis of Ref. [77]. The quark transition via which the B → D(∗)τν proceeds is b→ cτν.

Note, however, that the flavor of the neutrino is, of course, unobservable. It could be ντ , in which

case the process respects the accidental lepton flavor symmetry of the SM. There is no reason, however,

that the symmetry is respected by new physics, particularly when the new physics violates lepton flavor

universality, so that the neutrino could also be νµ or νe or some combination of the three flavors [77,78].

Let us ask two questions:

– Could the R(D(∗)) puzzle be solved via new physics contributions to b→ cτνe,µ?

– If not, how precise should the alignment of ν with ντ be?

We assume that the new physics contributions originate at a scale Λ≫ v, and consider the follow-

ing two terms in the SMEFT Lagrangian [78]:

LNP =
Cilkm1

Λ2
(LiγσLl)(Qkγ

σQm) +
Cilkm3

Λ2
(Liγστ

aLl)(Qkγ
στaQm), (10.5)

where L is the SU(2)-doublet lepton field, Q is the SU(2)-doublet quark field, and i, l, k,m are flavor
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indices. For the sake of definiteness, and to avoid the strongest constraints from flavor changing neutral

current (FCNC) processes, we take i = τ , k = s, and m = b, while l runs over e, µ, τ . We denote Cτlsb1,3

by C l1,3. The C l1,3-dependent terms can be rewritten as follows:

Λ2LNP = (C l1 + C l3)VisV
∗
jb(uLiγ

µuLj)(ντγµνl) + (C l1 + C l3)(sLγ
µbL)(τLγµlL)

+ (C l1 − C l3)VisV ∗
jb(uLiγ

µuLj)(τLγµlL) + (C l1 − C l3)(sLγµbL)(ντγµνl)
+ 2C l3Vis(uLiγ

µbL)(τLγµνl) + 2C l3Vjb(uLjγ
µsL)(τLγµνl) + h.c.. (10.6)

Thus, the SMEFT Lagrangian terms that contribute to b→ cτν are

L =

(
4GFVcbδlτ√

2
+

2C l3Vcs
Λ2

)
(cLγ

µbL)(τLγµνl). (10.7)

We obtain:
R(D(∗))
R(D(∗))SM

= 1 +

√
2

GF
Re
(
Vcs
Vcb

Cτ3
Λ2

)
+

∑
ℓ=e,µ |Cℓ3|2
2G2

FΛ
4

∣∣∣∣
Vcs
Vcb

∣∣∣∣
2

, (10.8)

where we assume that the contribution of the term quadratic in Cτ3 is negligible compared to the term

linear in Cτ3 .

Thus, to account for the R(D(∗)) puzzle by purely b→ cτνℓ, ℓ = e, µ, we need

(∑
ℓ=e,µ |Cℓ3|2

Λ4

)1/2

= (0.24± 0.04) TeV−2 =
1

[(2.0± 0.2) TeV]2
. (10.9)

On the other hand, to account for the R(D(∗)) puzzle by purely b→ cτντ , we need

Cτ3
Λ2

= (0.046± 0.016) TeV−2 ≈ 1

[(4.7± 0.8) TeV]2
. (10.10)

If the R(D(∗)) puzzle is accounted for by purely b → cτ ν̄ℓ, Eq. (10.9) implies that we need

|Cℓ3|/Λ2 ∼ 1/(2 TeV)2. Eq. (10.6) implies that the Cℓ3 term contributes, via four Fermi operators

with the flavor structures s̄bτ̄ ℓ and bs̄ν̄τνℓ, to various flavor changing neutral current and lepton flavor

violating processes which are forbidden in the SM. The strongest constraints are the following:

– The experimental upper bound on BR(B+ → K+τ+µ−) [79] implies

|Cµ1 + Cµ3 |
Λ2

< 0.058 TeV−2. (10.11)

– The experimental upper bound on BR(B+ → K+e−τ+) [79] implies

|Ce1 + Ce3 |
Λ2

< 0.044 TeV−2. (10.12)

– The experimental upper bound on BR(B+ → K+νν̄) [80, 81] implies

|Cℓ1 − Cℓ3|
Λ2

< 0.031 TeV−2. (10.13)
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The effective operators of Eq. (10.5) will contribute to the scattering process pp→ τ±µ∓Xh, where Xh

stands for final hadrons. At present, however, these bounds are not competitive with the ones extracted

from the LFV B decays.

From the upper bounds on |Cℓ1 ± Cℓ3| we can obtain upper bounds on Cℓ3 alone:

|Cµ3 |
Λ2

< 0.044 TeV−2,
|Ce3 |
Λ2

< 0.037 TeV−2. (10.14)

We reach the following conclusions:

– Given that, to account for the central value of R(D(∗)), it is required that |Cℓ3|/Λ2 ≃ 0.24 TeV−2,

but other constraints require that |Cµ3 |/Λ2 < 0.044 TeV−2, the contribution of b → cτνℓ, with

ℓ = e, µ, to R(D(∗))/R(D(∗))SM − 1 cannot exceed about 4% of the required shift.

– Given that, to account for the central value ofR(D(∗)), it is required that |Cτ3 |/Λ2 ≃ 0.046 TeV−2,

but phenomenological constraints require that |Cµ3 |/Λ2 < 0.044 TeV−2, and |Ce3 |/Λ2 <

0.037 TeV−2, we learn that no special alignment with the τ -direction is needed to explain the

R(D(∗)) puzzle.

– Conversely, if operators of the form

C l3
Λ2

(Lτγστ
aLl)(Qsγ

στaQb) (10.15)

have Cτ3 , Cµ3 and Ce3 all of the same order of magnitude, C l3/Λ
2 ∼ 0.04 TeV−2, then the shift in

R(D(∗)) will be dominated by a factor of order 30 by Cτ3 , and all phenomenological constraints

satisfied.

10.2 Direct CP violation in charm decays

Direct CP violation can be measured in charm decays to final CP eigenstates [82] via

∆ACP = ACP (K
+K−)−ACP (π+π−), (10.16)

where

ACP (f) =
Γ(D0 → f)− Γ(D0 → f)

Γ(D0 → f) + Γ(D0 → f)
. (10.17)

The LHCb collaboraion measured [83, 84]

∆ACP = (−1.54± 0.29)× 10−3, (10.18)

ACP (K
+K−) = (+0.77± 0.57)× 10−3,

ACP (π
+π−) = (+2.32± 0.61)× 10−3.

The CP asymmetry arises from interference between a strong penguin and tree diagrams. It is thus
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loop suppressed, and CKM suppressed by a factor of

2Im
(
VubV

∗
cb

VusV ∗
cs

)
≈ 1.4× 10−3. (10.19)

Within the SM, and assuming the U-spin symmetry of QCD, one can then estimate the size of the asym-

metry:

∆ASM
CP ≈ −2.8× 10−3 × (αs/π)rQCD,

ACP (K
+K−) = −ACP (π+π−). (10.20)

Thus, to accommodate the experimental results within the SM, two surprising features should arise in

the relevant strong interactions:

– The ratio of penguin to tree should be enhanced by a surprisingly large factor, rQCD ∼ 10 [85].

– U-spin should be strongly broken. with AUSV /AUSC ∼ 1.7 [86].

If these features are not realized in nature, the measured values call for new physics (see e.g.

Ref. [87, 88]). Relevant models include the 2HDM, the MSSM, vector-like up quarks and Z ′ models.

Within the SMEFT, the scale of the CP violating new physics is bounded:

ΛNP ∼< 40 TeV. (10.21)

11 Conclusions

(i) The symmetry principles that define the Standard Model have a very strong predictive power concern-

ing flavor physics. They predict that the photon-, gluon- and Z-mediated interactions are flavor universal,

that the W -mediated interactions in the lepton sector are flavor universal, and in the quark sector depend

on a unitary matrix, and that the Higgs mediated interactions are flavor diagonal.

(ii) Experimental results are consistent with all of these predictions, except for the lepton flavor

universality of the leptonic W interactions. The observed lepton flavor transitions established that the

neutrinos are massive.

(iii) Measurements of CP violating B-meson decays have established that the Kobayashi–

Maskawa mechanism is the dominant source of the observed CP violation.

(iv) Measurements of flavor changing B-meson decays have established the the Cabibbo–

Kobayashi–Maskawa mechanism is the dominant source of the observed quark flavor violation.

(v) The consistency of all these measurements with the CKM predictions sharpens the new physics

flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor structure must be highly

non-generic.

(vi) Measurements of neutrino flavor parameters have not only not clarified the Standard Model

flavor puzzle, but actually deepened it. Whether they imply an anarchical structure, or a tribimaximal

mixing, it seems that the neutrino flavor structure is very different from that of quarks.

(vii) If the LHC experiments, ATLAS and CMS, discover new particles that couple to the Standard
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Model fermions, then, in principle, they will be able to measure new flavor parameters. Consequently,

the new physics flavor puzzle is likely to be understood.

(viii) If the flavor structure of such new particles is affected by the same physics that sets the flavor

structure of the Yukawa couplings, then the LHC experiments (and future flavor factories) may be able

to shed light also on the Standard Model flavor puzzle.

(ix) The Higgs program provides an opportunity to make progress in our understanding of the

flavor puzzle(s).

(x) Extensions of the SM where new particles couple to quark- and/or lepton-pairs are constrained

by flavor.

(xi) There are experimental hints that lepton flavor universality is violated in B decays. These

hints will be further tested in the coming years.

The huge progress in flavor physics in recent years has provided answers to many questions. At

the same time, new questions arise. The LHC experiments, Belle-II and neutrino experiments are likely

to provide more answers and more questions.
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Appendices

A SM calculations of the mixing amplitude

We present the SM calculation of the mixing amplitude MBB and its generalization to the other meson

systems. The leading diagrams that contribute to MBB are one loop diagrams that are called “box

diagrams” and are displayed in Fig. 4. We can write the transition amplitude as

AB0→B0 = CSM(d̄LγµbL)(d̄Lγ
µbL). (A.1)

The normalized matrix element is related to the amplitude via

MBB =
1

2mB
⟨B0|AB0→B0 |B0⟩, (A.2)

and thus

MBB =
CSM

2mB
⟨B0|(d̄LγµbL)(d̄LγµbL)|B0⟩. (A.3)

The non-perturbative QCD effects are encoded in the hadronic matrix element, which we parameterize

as follows:

⟨B0|(d̄LγµbL)(d̄LγµbL)|B0⟩ = −1

3
m2
BBBf

2
B, (A.4)

where BB is a number and fB is the B-meson decay constant. Lattice calculations give
√
BBfB ≈ 0.22

GeV. This is where the hadronic uncertainties lie.

The weak interactions effects are encoded in CSM, which is calculated from the box diagrams:

CSM =
G2
Fm

2
W

2π2
×
[
(VcbV

∗
cd)

2S(xc, xc) + (VtbV
∗
td)

2S(xt, xt) + (VcbV
∗
cd)(VtbV

∗
td)S(xt, xc)

]
, (A.5)

where xi = m2
i /m

2
W , we approximate xu = 0, and S is the loop function:

S(xi, xj) = xixj

[
− 3

4(1− xi)(1− xj)
+

log xi
(xi − xj)(1− xi)2

(
1− 2xi +

x2i
4

)
+

log xj
(xj − xi)(1− xj)2

(
1− 2xj +

x2j
4

)]
. (A.6)

Note that S(0, x) = 0. Taking into account the values of the quark masses and CKM elements, we

conclude that the term proportional to S(xt, xt) dominates over those proportional to S(xt, xc) and

S(xc, xc), and thus

MBB ≈
G2
F

12π2
mBm

2
W (BBf

2
B)(VtbV

∗
td)

2S(xt, xt). (A.7)

This result is subject to known radiative correction that are of O(1).

Eq. (A.7) can be straightforwardly generalized to other systems. For MBsBs
, we replace d→ s:

MBsBs
≈ G2

F

12π2
mBsm

2
W (BBsf

2
Bs
)(VtbV

∗
ts)

2S(xt, xt) . (A.8)
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Table A.1: The experimental values of the neutral meson mixing parameters. In all cases (including the
K meson system) we define x and y as in Eqs. (B.12). For the K0 system, the error on y is well below a
permill and thus we do not include an error. For the B0 system, there is only an upper bound on |y|.

P m [GeV] Γ [GeV] x y

K0 0.498 3.68× 10−15 0.945± 0.001 −0.997
D0 1.86 1.60× 10−13 0.0039± 0.0018 +0.0065± 0.0009
B0 5.28 4.33× 10−13 0.775± 0.006 −0.007± 0.009
Bs 5.37 4.34× 10−13 26.82± 0.23 −0.061± 0.008

The ratio ∆mB/∆mBs is particularly interesting:

∆mB

∆mBs

=
mBBBf

2
B

mBsBBsf
2
Bs

∣∣∣∣
Vtd
Vts

∣∣∣∣
2

. (A.9)

In the SU(3)F limit, the hadronic matrix elements of B and Bs are the same. Consequently, in the ratio

of Eq. (A.9), the hadronic uncertainty is only in the correction to the SU(3)F limit, and is therefore

small. Thus, the ratio ∆mB/∆mBs provides an excellent measurement of |Vtd/Vts|.
For MKK , we replace b→ s:

MKK =
G2
F

12π2
mKm

2
W (BKf

2
K)
[
(VcsV

∗
cd)

2S(xc, xc) + (VtsV
∗
td)

2S(xt, xt) + (VcsV
∗
cd)(VtsV

∗
td)S(xt, xc)

]
.

(A.10)

Lattice results gives BK = 0.86± 0.24.

For the four systems, P = B,Bs, D,K, the calculation of MPP translates into the calculation of

the mass splitting ∆MP = 2|MPP | (in the D system, however, the calculation of MDD is complicated,

and we do not discuss it here).

The numerical values of the mixing parameters are presented in Table A.1. The SM calculations

outlined above agree well with the data.

B Neutral meson oscillations

We define decay amplitudes of B (which could be charged or neutral) and its CP conjugate B to a

multi-particle final state f and its CP conjugate f as

Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , Af = ⟨f |H|B⟩ , (B.1)

where H is the Hamiltonian governing weak interactions. The action of CP on these states introduces

phases ξB and ξf according to

CP |B⟩ = e+iξB |B⟩ , CP |f⟩ = e+iξf |f⟩ ,
CP |B⟩ = e−iξB |B⟩ , CP |f⟩ = e−iξf |f⟩ , (B.2)
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so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor symmetry

of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then Af and Af have the

same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B.3)

A state that is initially a superposition of B0 and B0, say

|ψ(0)⟩ = a(0)|B0⟩+ b(0)|B0⟩ , (B.4)

will evolve in time acquiring components that describe all possible decay final states {f1, f2, . . .}, that

is,

|ψ(t)⟩ = a(t)|B0⟩+ b(t)|B0⟩+ c1(t)|f1⟩+ c2(t)|f2⟩+ · · · . (B.5)

If we are interested in computing only the values of a(t) and b(t) (and not the values of all ci(t)), and

if the times t in which we are interested are much larger than the typical strong interaction scale, then

we can use a much simplified formalism [89]. The simplified time evolution is determined by a 2 × 2

effective Hamiltonian H that is not Hermitian, since otherwise the mesons would only oscillate and not

decay. Any complex matrix, such asH, can be written in terms of Hermitian matrices M and Γ as

H =M − i

2
Γ . (B.6)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and on-shell

(absorptive) intermediate states, respectively. Diagonal elements of M and Γ are associated with the

flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal elements are associated with

flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex pa-

rameters p and q to specify the components of the strong interaction eigenstates, B0 and B0, in the light

(BL) and heavy (BH ) mass eigenstates:

|BL,H⟩ = p|B0⟩ ± q|B0⟩ (B.7)

with the normalization |p|2 + |q|2 = 1. The special form of Eq. (B.7) is related to the fact that CPT

imposes M11 =M22 and Γ11 = Γ22. Solving the eigenvalue problem gives

(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (B.8)

If either CP or T is a symmetry ofH, then M12 and Γ12 are relatively real, leading to

(
q

p

)2

= e2iξB ⇒
∣∣∣∣
q

p

∣∣∣∣ = 1 , (B.9)

where ξB is the arbitrary unphysical phase introduced in Eq. (B.2).

273



YOSSI NIR

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H⟩ represent their

masses and decay-widths, respectively. The mass difference ∆mB and the width difference ∆ΓB are

defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL. (B.10)

Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally determined.

The average mass and width are given by

mB ≡
MH +ML

2
, ΓB ≡

ΓH + ΓL
2

. (B.11)

It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B.12)

Solving the eigenvalue equation gives

(∆mB)
2 − 1

4
(∆ΓB)

2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ
∗
12). (B.13)

All CP-violating observables in B and B decays to final states f and f can be expressed in terms

of phase-convention-independent combinations of Af , Af , Af and Af , together with, for neutral-meson

decays only, q/p. CP violation in charged-meson decays depends only on the combination |Af/Af |,
while CP violation in neutral-meson decays is complicated by B0 ↔ B0 oscillations and depends,

additionally, on |q/p| and on

λf ≡ (q/p)(Af/Af ). (B.14)

For neutral D, B, and Bs mesons, ∆Γ/Γ ≪ 1 and so both mass eigenstates must be considered

in their evolution. We denote the state of an initially pure |B0⟩ or |B0⟩ after an elapsed proper time t as

|B0
phys(t)⟩ or |B0

phys(t)⟩, respectively. Using the effective Hamiltonian approximation, we obtain

|B0
phys(t)⟩ = g+(t) |B0⟩ − q

p
g−(t)|B0⟩,

|B0
phys(t)⟩ = g+(t) |B0⟩ − p

q
g−(t)|B0⟩ , (B.15)

where

g±(t) ≡
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (B.16)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t)→ f ]/dt

e−ΓtNf
=

(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)

+ 2Re((q/p)A∗
fAf ) sinh(yΓt)− 2 Im((q/p)A∗

fAf ) sin(xΓt) , (B.17)

dΓ[B0
phys(t)→ f ]/dt

e−ΓtNf
=

(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA∗
f ) sinh(yΓt)− 2 Im((p/q)AfA

∗
f ) sin(xΓt) , (B.18)
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where Nf is a common normalization factor. Decay rates to the CP-conjugate final state f are obtained

analogously, with Nf = Nf and the substitutions Af → Af and Af → Af in Eqs. (B.17,B.18). Terms

proportional to |Af |2 or |Af |2 are associated with decays that occur without any net B ↔ B oscilla-

tion, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2 are associated with decays following a net

oscillation. The sinh(yΓt) and sin(xΓt) terms of Eqs. (B.17,B.18) are associated with the interference

between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-space vari-

ables. Interference may be present in some regions but not others, and is strongly influenced by resonant

substructure.

C CP violation in neutral meson decays

CP asymmetries arise when two processes related by CP conjugation differ in their rates. Given the fact

that CP violation is related to a phase in the Lagrangian, all CP asymmetries must arise from interference

effects.

To date, CP violation has been observed (at a level higher than 5σ) in about thirty different hadron

decay modes, involving b or c or s decays. It has not been established in other quark decays, nor in the

leptonic sector, nor in flavor diagonal processes. Here we present the formalism relevant to measuring

CP asymmetries in meson decays.

C.1 Notations and formalism

We discuss here the specific case of B-meson decays, but our discussion applies to all meson decays.

Our starting points are Eqs. (B.17,B.18), which give the time-dependent decay rates of B0 and B0. We

also use the parameter λf , defined in Eq. (B.14).

Consider Af , the B → f decay amplitude, and Af , the amplitude of the CP conjugate process,

B → f . There are two types of phases that may appear in these decay amplitudes:

– CP-odd phases, also known as weak phases. They are complex parameters in any Lagrangian term

that contributes toAf , and appear in a complex conjugate form inAf . In other words, CP violating

phases change sign between Af and Af . In the SM, these phases appear only in the couplings of

the W±-bosons, hence the CP violating phases are called “weak phases”.

– CP-even phases, also known as strong phases. Phases can appear in decay amplitudes even when

the Lagrangian parameters are all real. They arise from contributions of intermediate on-shell

states, and can be identified with the e−iHt term in the time evolution Schrödinger equation. These

CP conserving phases appear with the same sign in Af and Af . In meson decays, the intermediate

states are typically hadronic state with the same flavor QN as the final state, and their dynamics is

driven by strong interactions, hence the CP conserving phases are called “strong phases”.

It is useful to factorize an amplitude into three parts: the magnitude ai, the weak phase ϕi, and the

strong phase δi. If there are two such contributions we write

Af = a1e
i(δ1+ϕ1) + a2e

i(δ2+ϕ2), Af = a1e
i(δ1−ϕ1) + a2e

i(δ2−ϕ2). (C.1)
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where we always can choose a1 ≥ a2. It is further useful to define

ϕf ≡ ϕ2 − ϕ1, δf ≡ δ2 − δ1, rf ≡
a2
a1
. (C.2)

For neutral meson mixing, it is useful to write

MBB = |MBB|eiϕM , ΓBB = |ΓBB|eiϕΓ , (C.3)

and define

θB = ϕM − ϕΓ. (C.4)

Note that each of the phases appearing in Eqs. (C.1) and (C.3) is convention dependent, but combinations

such as δ1 − δ2, ϕ1 − ϕ2, ϕM − ϕΓ, are physical.

In neutral meson decays, the phenomenology of CP violation is particularly rich thanks to the fact

that meson mixing can contribute to the CP violating interference effects. One distinguishes three types

of CP violation in meson decays, depending on which amplitudes interfere:

1. In decay: The interference is between two decay amplitudes. It corresponds to interference be-

tween a1 and a2.

2. In mixing: The interference is between the absorptive and dispersive mixing amplitudes. It corre-

sponds to interference between MBB and ΓBB .

3. In interference of decays with and without mixing: The interference is between the direct decay

amplitude and a first-mix-then-decay amplitude. It corresponds to interference between Af and

MBBAf .

We discuss these three types below.

For the discussion of CP violation in the K0 −K0 system, we use a somewhat different notation.

The reason is that, since the lifetimes of KS and KL are so different, experiments often identify these

mass eigenstates, rather than the flavor-tagged decays, as done in most measurements of CP violation in

the B0 −B0 system. Thus, for K-mesons, we define

ϵf ≡
1− λf
1 + λf

. (C.5)

The converse relation reads

λf ≡
1− ϵf
1 + ϵf

. (C.6)

Historically, CP violation was first observed in theKL → π+π− decay and thus we denote ϵπ+π− = ϵK .

For modes with |Āf/Af | − 1 ≪ |q/p| − 1, as is the case for f = π+π−, we can set |Āf/Af | = 1 and

then we have |q/p| = |λf |.

C.2 CP violation in decay

CP violation in decay corresponds to

|Af/Af | ≠ 1. (C.7)
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In charged particle decays, this is the only possible contribution to the CP asymmetry:

Af ≡
Γ(B− → f−)− Γ(B+ → f+)

Γ(B− → f−) + Γ(B+ → f+)
=
|Af−/Af+ |2 − 1

|Af−/Af+ |2 + 1
. (C.8)

Using Eq. (C.1), we obtain, for rf ≪ 1,

Af = 2rf sinϕf sin δf . (C.9)

This result shows explicitly that we need two decay amplitudes, that is, rf ̸= 0, with different weak

phases, ϕf ̸= 0, π and different strong phases, δf ̸= 0, π.

A few comments are in order:

1. In order to have a large CP asymmetry, we need each of the three factors in (C.9) not to be small.

2. A similar expression holds for the contribution of CP violation in decay in neutral meson decays.

In this case there are, however, additional contributions from mixing, as discussed below.

3. Another complication with regard to neutral meson decays is that it is not always possible to tell

the flavor of the decaying meson, that is, if it is B0 or B0. This can be a problem or a virtue.

4. In general, the strong phase is not calculable since it is related to QCD. This is not a problem if the

aim is just to demonstrate CP violation, but it is if we want to extract the weak parameter ϕf . In

some cases, however, the strong phase can be independently measured, eliminating this particular

source of theoretical uncertainty.

C.3 CP violation in mixing

CP violation in mixing corresponds to

|q/p| ≠ 1 . (C.10)

In decays of neutral mesons into flavor specific final states (Af = 0 and, consequently, λf = 0), and, in

particular, semileptonic neutral meson decays, this is the only source of CP violation:

ASL(t) ≡
Γ̂[B0(t)→ ℓ+X]− Γ̂[B0(t)→ ℓ−X]

Γ̂[B0(t)→ ℓ+X] + Γ̂[B0(t)→ ℓ−X]
=

1− |q/p|4
1 + |q/p|4 . (C.11)

Using Eq. (B.8), we obtain, for |ΓBB/MBB| ≪ 1,

ASL = −
∣∣ΓBB/MBB

∣∣ sin(ϕM − ϕΓ). (C.12)

Two comments are in order:

1. Eq. (C.11) implies that ASL(t), which is an asymmetry of time-dependent decay rates, is actually

time independent.

2. The calculation of |ΓBB/MBB| is difficult, since it depends on low-energy QCD effects. Hence,

the extraction of the value of the CP violating phase ϕM−ϕΓ from a measurement ofASL involves,

in general, large hadronic uncertainties.
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CP violation in K0 −K0 mixing is measured via a semileptonic asymmetry which is defined as

follows:

δL ≡
Γ(KL → ℓ+νℓπ

−)− Γ(KL → ℓ−νℓπ+)
Γ(KL → ℓ+νℓπ−) + Γ(KL → ℓ−νℓπ+)

=
1− |q/p|2
1 + |q/p|2 ≈ 2Re(ϵK), (C.13)

where we use Eq. (C.6) and the fact that |ϵK | ≪ 1. This asymmetry is different from the one defined

in Eq. (C.11) in that the decaying meson is the neutral mass eigenstate, rather than the flavor eigenstate,

hence the different dependence on |q/p|.

C.4 CP violation in interference of decays with and without mixing

CP violation in interference of decays with and without mixing corresponds to

Im(λf ) ̸= 0. (C.14)

A particular simple case is the CP asymmetry in decays into final CP eigenstates. Moreover, a situation

that is relevant in many cases is when one can neglect the effects of CP violation in decay and in mixing,

that is when |AfCP
/AfCP

| ≈ 1 and |q/p| ≈ 1. In this case, λfCP
is, to a good approximation, a pure

phase, |λfCP
| = 1. We further consider the case where we can neglect y (|y| ≪ 1). Then,

AfCP
(t) ≡ Γ[B0(t)→ fCP ]− Γ[B0(t)→ fCP ]

Γ[B0(t)→ fCP ] + Γ[B0(t)→ fCP ]
= Im(λfCP

) sin(∆mBt). (C.15)

The approximations made above are valid in cases that |ΓBB/MBB| ≪ 1 and a2 ≪ a1, which lead to

q

p
=

M∗
BB

|MBB|
= e−iϕM ,

AfCP

AfCP

= e−2iϕA , (C.16)

where ϕM is defined in Eq. (C.3), and ϕA = ϕ1 is defined in Eq. (C.1). We then get

Im(λfCP
) = Im

(
M∗
BB

|MBB|
AfCP

AfCP

)
= − sin(ϕM + 2ϕA). (C.17)

We learn that a measurement of a CP asymmetry in a process where these approximations are valid

provides a direct probe of the weak phase between the mixing amplitude and the decay amplitude.

For the case where we measure decays of the KL and KS mass eigenstates into final CP-even

eigenstates, one obtains

Amass
fCP
≡ Γ(KL → fCP )

Γ(KS → fCP )
=

∣∣∣∣
1− λfCP

1 + λfCP

∣∣∣∣
2

= |ϵfCP
|2. (C.18)

In particular, for fCP = π+π− we have

Amass
π+π− = |ϵK |2. (C.19)
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